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Abstract. Witness encryption (WE), introduced by Garg, Gentry, Sa-
hai, and Waters (STOC 2013) allows one to encrypt a message to a
statement x for some NP language L, such that any user holding a wit-
ness for x ∈ L can decrypt the ciphertext. The extreme power of this
primitive comes at the cost of its elusiveness: a practical construction
from established cryptographic assumptions is currently out of reach.
In this work, we investigate a new notion of encryption that has a flavor
of WE and that we can build only based on bilinear pairings, for interest-
ing classes of computation. We do this by connecting witness encryption
to functional commitments (FC). FCs are an advanced notion of commit-
ments that allows fine-grained openings, that is non-interactive proofs to
show that a commitment cm opens to v such that y = G(v), with the
crucial feature that both commitments and openings are succinct.
Our new WE notion, witness encryption for (succinct) functional com-
mitment (WE-FC), allows one to encrypt a message with respect to a
triple (cm, G, y), and decryption is unlocked using an FC opening that
cm opens to v such that y = G(v). This mechanism is similar to the
notion of witness encryption for NIZK of commitments [Benhamouda
and Lin, TCC’20], with the crucial difference that ours supports com-
mitments and decryption time whose size and complexity do not depend
on the length of the committed data v.
Our main contributions are therefore the formal definition of WE-FC, a
generic methodology to compile an FC in bilinear groups into an asso-
ciated WE-FC scheme (semantically secure in the generic group model),
and a new FC construction for NC1 circuits that yields a WE-FC for the
same class of functions. Similarly to [Benhamouda and Lin, TCC’20],
we show how to apply WE-FC to construct multiparty reusable non-
interactive secure computation (mrNISC) protocols. Crucially, the effi-
ciency profile of WE-FC yields mrNISC protocols whose offline stage has
shorter communication (only a succinct commitment from each party).
As an additional contribution, we discuss further applications of WE-FC
and show how to extend this primitive to better suit these settings.
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1 Introduction

Witness Encryption (WE) [GGSW13] is an encryption paradigm that allows one
to encrypt a message under a hard problem—a statement x of an NP language
L—so that anyone knowing a solution to this problem—a witness w such that



(x,w) ∈ RL—can decrypt the ciphertext in an efficient manner. Witness encryp-
tion generalizes the classical notion of public-key encryption, where a user can
encrypt a message m to any user who knows the (secret) decryption key w = sk
associated to some (public) encryption key x = pk.

A general-purpose WE, one for all NP, is a powerful tool: it can be used
to construct several cryptographic primitives [DH76, Sha84, BF03, SW05]. Yet,
currently, all its general-purpose constructions rely on powerful and/or inefficient
primitives, e.g., multilinear maps [GGSW13, GLW14] or indistinguishability ob-
fuscation (iO) [GGH+13]. An interesting question is whether the full power of
WE is always needed. Perhaps some of the applications of WE can be obtained
through primitives that are both more efficient and require weaker assumptions.

Some of the recent literature has indeed confirmed this intuition. A relevant
work addressing this is that of Benhamouda and Lin [BL20] who apply the
round-collapsing techniques of [GLS15] to construct multi-party reusable non-
interactive secure computation (or mrNISC), a type of MPC that requires no
interaction among subsets of users, provided that users had earlier committed
to their input on a public bulletin board (this offline stage is called “input
encoding stage”). While work prior to [BL20] required full-blown WE to obtain
this result, Benhamouda and Lin show its feasibility under a different type of
WE called “WE for NIZK of commitments” (WEZK-CM for short). In WEZK-CM,
the encryption statement is (cm, G, y), and decryption requires as the witness a
non-interactive zero-knowledge (NIZK) proof π proving that the evaluation of
G on the value v committed in cm outputs y, i.e., “cm = Commit(v) and y =
G(v)”. The interesting aspect of this weakening of WE is that [BL20] constructs
WEZK-CM from well established assumptions over bilinear groups.

On the other hand, in [BL20], both the commitment and the proof size—and
hence decryption time—grow linearly in the size of v. The latter represents a
piece of potentially large data and whose commitment is publicly shared at an
earlier time. We refer concisely to a construction not having this dependency
in efficiency as having “input-independent (decryptor’s) complexity”. A scheme
with input-independent complexity would be interesting to further minimize
the communication complexity of applications of this type of WE. This can be
relevant, for example, in the input encoding phase of mrNISC (as well as in other
applications, see section 7): commitments are stored on a bulletin board (e.g., a
blockchain) forever and thus their size significantly affects its growth over time.

1.1 Our Work: WE For Succinct Functional Commitments

The work from [BL20] is encouraging: we may be able to use more familiar as-
sumptions to obtain useful variants of witness encryption. Our work is motivated
by pushing this avenue further, both practically and theoretically. We ask:

What are other weak-but-useful variants of WE that remain “as simple as
possible” in terms of assumptions to build them and that can achieve

input-independent complexity?
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In this work, we address this question by generalizing WEZK-CM, the primitive
in [BL20], to support succinct commitments with succinct arguments. That is,
where commitments are of fixed size—independent of the input’s length—and
so are the arguments about the correctness of computations on the committed
inputs. We call our notion “WE for functional commitments” (WEFC), as we
define it on top of the notion of functional commitments [LRY16].

Our main contributions are therefore to formally define the WEFC primitive,
to propose a generic methodology to construct WEFC over bilinear groups, and
to show applications of WEFC to mrNISC (with succinct offline phase) and to
more scenarios. In the following section we discuss our contributions in detail.

1.2 Our Contributions

Defining WEFC. We introduce and formally define the notion of witness en-
cryption for functional commitments (WEFC). A functional commitment (FC)
allows a party to commit to a value v and to later open the commitment to
y = G(v) for some functions G, by generating an opening proof π. In terms
of security, an FC should be evaluation binding and hiding. The former means
that an adversary cannot open the commitment to two distinct outputs y ̸= y′

for the same function G, while the latter is the standard hiding property of
commitments. In addition, in our work we require FC to be zero-knowledge,
which informally states that the opening proof π should not reveal any informa-
tion about the committed value v. What makes FCs suitable to our scenario is
that both the commitment and the opening proofs are succinct (in particular,
throughout this work we always use the term ‘functional commitments’ to mean
succinct ones). Similarly to the WEZK-CM of [BL20], in our WEFC one encrypts
with respect to a triple (cm, G, y) and decryption is unlocked when using an
opening proof of cm to y = G(v).

Construction and techniques. We present several realizations of WEFC based
on bilinear pairings and secure in the generic group model. Our approach consists
in a generic methodology that combines any functional commitment whose ver-
ification is a “linear” pairing equation (here by linear, we mean that it is linear
in the group elements of the opening proof), together with a suitable variant of
smooth projective hash functions (SPHFs, [CS02]), that we define in our work.
To realize this approach, we develop three main technical contributions (and we
refer to our technical overview in section 1.3 for further details).

The first one is finding a useful variant of projective hash function for our
purposes. While our approach follows the blueprint of [BL20] (i.e., combining
a proof system with an SPHF for its verification language), we had to solve
substantial challenges due to our shift from the “soundness against any adver-
sary” of NIZKs to the “computational binding” of functional commitments. The
WEZK-CM construction of [BL20] crucially relies on statistically binding commit-
ments and statistically sound NIZKs—we cannot. We solve this issue by using a
different building block. We introduce a new notion, extractable PHFs (EPHF),
in which every adversary that successfully computes the hash value for a state-
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ment must know the corresponding witness. We then propose a construction of
this primitive in the generic group model.4

The second technical contribution is the generic construction of WEFC that
combines an FC and an EPHF for its verification language. Notably, it turns
out that we cannot encrypt following the same approach of [BL20] based on
SPHF. For wrong statements, the EPHF values are only computationally hard
to compute, hence we cannot use them as a mask for the message. We solve
this issue via a different methodology for building WE from extractable projective
hash functions. Instantiated with our EPHF construction, we obtain a WEFC in
the generic group model.

Finally, our third technical contribution is the realization of a new FC scheme
that supports the evaluation of circuits in the class NC1 and that enjoys the linear
verification requirement needed by our generic construction. Among prior work
on FCs, only the schemes of [LRY16, LP20] have the linear verification property.
However, the class of functions supported by these schemes is insufficient to
instantiate the mrNISC protocols, which need at least the support of circuits in
NC1. On the other hand, all the recent pairing-based constructions for NC1 in
[CFT22] and general circuits in [BCFL23] have quadratic verification.

A construction of mrNISC from WEFC.We show how our WEFC notion can
be used to build mrNISC. The latter is a class of secure multiparty computation
protocols in which parties work with minimal interaction. In a first round, each
party posts an encoding of its inputs in a public bulletin board. This is done
once and for all. Next, any subset of parties can compute a function of their
private inputs by sending only one message each. This second phase can be
repeated many times for different computations and different subsets of parties.
Our construction for mrNISC confirms that our notion is not losing expressivity
compared to WEZK-CM from [BL20] and, thanks to our new FC, yields the first
mrNISC protocols with a succinct input encoding phase.

Other applications of WEFC. We provide additional applications beyond
mrNISC where WEFC can be useful. As a first application, we show how WEFC

can be used for a simple construction of a variant of targeted broadcast. In tar-
geted broadcast [GPSW06] we want a certain message to be conveyed only to
authorized parties. An authorized party is one holding attributes satisfying a
certain property (specified at encryption time). As an example, a streaming ser-
vice may want to broadcast an encryption of a movie so that only users having
purchased certain packages would be able to decrypt (and watch) it. There exist
ways to build this primitive non-naively while satisfying basic desiderata of the
application domain5, for example through ciphertext-policy ABE [GPSW06].
We show how we can achieve targeted broadcast in a new (and simple) man-
ner through WEFC. We observe that our construction achieves some interesting

4 See Remark 2 for a discussion on the idealized models used in our realizations.
5 For example, sometimes a desideratum in such systems is that the broadcaster should
not have to refer to a database of user authorizations each time a different item is
to be encrypted for broadcast.

5



properties absent in previous approaches: it achieves flexible and secret attesta-
tion and without any master secret. This means that decryption attributes may
be granted to a user through different methods, that the latter can be kept secret
and that there is no single party holding a key that can decrypt all messages in
the system. We provide further details and motivation in section 7.

As a second application, we show how, through WEFC, we can achieve sim-
ple and non-interactive contingent payment for services [CGGN17] (“contingent
payment” for short6). In a contingent payment a payer wants to provide a re-
ward/payment to another user conditional to the user having performed a certain
service. For example, a user may want to pay a cloud service conditionally to
them storing their data. Ideally this protocol should require no interaction. We
describe a simple way to instantiate the above through WEFC. Our solution can
be used, for example, to incentivize, in a fine-grained manner, portions of large
committed data (for instance incentivizing storage of specific pages of Wikipedia
or the Internet Archive of particular importance on IPFS7) [dec22]. Compared
to other approaches [CGGN17], our solution is simple (e.g., does not require a
blockchain with special properties or smart contracts) and is highly communi-
cation efficient. To achieve this solution we need to solve additional technical
challenges: modeling and building an extractable variant of WEFC. We provide
further details in section 7.

1.3 Technical Overview

We start with an overview of the techniques in [BL20]. Their notion of witness
encryption called “WE for NIZK of Commitments” (WEZK-CM) is defined for
an NP language whose statements are of the form x = (cm, G, y) such that cm
is a commitment, G is an arbitrary polynomial-size circuit, and y is a value
(additionally, this language is parametrized by the common reference string,
or crs, of the NIZK). The type of commitment assumed in [BL20] is perfectly
binding; therefore, a statement (cm, G, y) is true if there exists a NIZK proof
π (as a witness) which proves w.r.t. crs that G evaluates to y on the value v
committed in cm.

The definition of WEZK-CM states that semantic security property should hold
for ciphertexts created with respect to false claims (that is, commitments whose
opening v is such that G(v) ̸= y). To achieve this property, the idea in [BL20]
relies on applying smooth projective hash functions on the verification algorithm
of the NIZK. For the sake of this high-level overview, the reader can think of
an SPHF as a form of WE itself and which we know how to realize for simple
languages. The crux of the construction in [BL20] is that, if the NIZK verification
algorithm is “simple enough”, then we can leverage it to build WEZK-CM. In more
detail, let Θ = Mπ be the linear equation corresponding to the verification of
a NIZK for a statement x = (cm, G, y), such that Θ and M depend on x and

6 Notice that “contingent payment” can also refer to payment for goods, rather than
services. In this paper we only refer to payment for services.

7 http://wikipedia.org, http://archive.org, http://ipfs.io
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crs, and hence are known at the time of encryption. To encrypt a message, one
can use an SPHF for this relation such that only those who can compute the
hash value using a valid witness π (i.e., π such that Θ = Mπ) can retrieve the
message. The work in [BL20] instantiates the above paradigm through Groth-
Sahai NIZKs, which can be reduced to a linear verification for committed inputs
(this is true for only a restricted class of computations which then [BL20] shows
how to extend to all of P through randomized encodings). The commitments
they rely on are statistically binding and thus not compressing.

Our General Construction of WEFC. We now discuss how to go from
this idea to our solutions. Recall that our goal is to have a type of witness
encryption that works on succinct functional commitments. This implies that
both the commitments and opening proofs for functional evaluation on them are
compressing. This efficiency requirement is the main point of divergence between
WEFC and WEZK-CM.

Moving from [BL20] to our approach is not unproblematic. In [BL20], in order
to (i) effectively reduce the original relation (G(v) = y for a correct opening v) to
the verification of the NIZK, and (ii) to maintain semantic security at the same
time—in order to simultaneously achieve these two points—it is crucial that the
NIZK proof has unconditional soundness and that the underlying commitments
are perfectly binding8. At a very high level, the switch from [BL20] to our work
consists of the switch from a NIZK proof system [GS08], with linear proof size,
to a succinct certificate, a succinct functional commitment. Simple as it may
sound, however, this switch is not immediate and requires solving several new
challenges on the way.

The main challenge arises when using arguments (as opposed to proofs) as
witness in the witness encryption scheme. Recall that WEZK-CM constructs WE
for the augmented relation R corresponding to the verification algorithm of the
NIZK proof and, as mentioned above, switching to R still preserves semantic
security. However, the same idea does not work when using an argument system.
This is because semantic security only guarantees security when the statement,
under which the challenge ciphertext is generated, is false. Defining R as the
relation specified by the verification of an argument system makes all statements
potentially true. Hence, even though finding a witness (i.e, an argument) is
computationally hard, semantic security holds vacuously and makes no guarantee
about the encrypted message.

To solve this challenge, we observe that even though the relation is trivial
here, finding the witness for a statement yields a contradiction to security prop-
erties of the commitment in use. To elaborate further, we note that the WE is
constructed for the NP language corresponding to the verification algorithm of
a functional commitment. Now, given a “false” statement x̄ = (cm, G, y), where

8 Unconditional soundness of a proof system means: “for a false statement, no proof
string will have a substantial probability of being accepted as valid”. This is in con-
trast to the computational soundness of our building blocks: “for a false statement,
no PPT adversary can produce a proof string with substantial probability of being
accepted”. The latter does not state that such proof string does not exist.
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G(v) ̸= y for v committed in cm and chosen by the adversary, our construction
is such that for any efficient adversary that distinguishes ciphertexts encrypted
under the statement x corresponding to the verification circuit which (incor-
rectly) asserts the truth of x̄, there exists an efficient adversary that breaks the
evaluation-binding property of the functional commitment by computing a valid
opening proof op that satisfies the FC verification.

To build the above reduction, we make use of the Goldreich-Levin tech-
nique [GL89] by which we can transform a ciphertext distinguisher into an effi-
cient algorithm that computes the hash value H (from a hash proof system) used
as a one-time pad to mask the message. While this part of the reduction may
seem straightforward, one challenge is how to compute a valid opening proof
op from H. To this end, we observe that the underlying SPHF is for the same
language L that we build our WE and thus op plays the role of the witness for
x by which one can compute H. Thus, it seems like we would need a type of
SPHF with a strong notion of extractable security. Namely, a type of projective
hash function (PHF) that guarantees the existence of an extractor such that for
any adversary that is able to compute a valid hash, the extractor can compute
a witness for the corresponding problem statement 9.

Unfortunately, there exists no construction of extractable PHF in litera-
ture, even based on non-standard assumptions. The closest work is that of
Wee [Wee10] which suggests a similar notion but only for some relations not
in NP that correspond to search problems. Therefore, we propose a new con-
struction of extractable PHF and prove it secure under the discrete logarithm
assumption in the algebraic group model.

Our FC for NC1 with linear verification. To build an FC supporting the
evaluation of circuits in the class NC1, we build an FC for the language of
(read-once) monotone span programs (MSP) [KW93], and then use standard
transformations to turn it into one for NC1. We construct our scheme by adapting
the FC for MSP recently proposed by Catalano, Fiore and Tucker [CFT22]. In
particular, while the scheme of [CFT22] has a quadratic verification (i.e., it needs
to pair group elements in the opening between themselves), we give a variant of
their technique with linear verification.

We begin by recalling that a read-once MSP is defined by a matrix M and

M accepts x ∈ {0, 1}n iff ∃w : (x ◦w) ·M = e⊤1 = (1, 0, . . . , 0) (1)

where ◦ refers to entry-wise multiplication. In an FC for MSP, the commit-
ment contains x and the opening to an MSP M should prove the existence of
w that satisfies equation (1). To achieve this, the basic idea of [CFT22] is to
“linearize” the quadratic part of equation 1, so as to reduce the problem to

9 At the high-level SPHFs are also used as the main leveraging point in [BL20], but
with one important difference (we skip some details for simplicity): their construc-
tion produces a hash through a standard SPHF, where security is only guaranteed
statistically for false statements. Because of our switch from (statistically secure)
NIZKs to succinct functional commitment, we cannot rely on the latter.
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that of proving satisfiability of a linear system and thus apply the techniques of
Lai and Malavolta for linear map functional commitments [LM19]. In [CFT22],
this linearization is done by defining the matrix Mx = (x|| · · · ||x) ◦M, i.e.,
the matrix where each column of M is multiplied entry-wise with x, so that
proving equation (1) boils down to proving the satisfiability of the linear system
∃w : M⊤x ·w = e1. However, the verifier only knows M and not x. Thus [CFT22]
includes in the opening an element Φx ∈ G2 which is a succinct encoding of Mx,
and then they use a variant of [LM19]: they include a commitment πw ∈ G1 to
the witness w and a proof π̂ ∈ G1. The verifier in [CFT22] needs to check that
Φx is a valid encoding of Mx w.r.t. the committed x—this is done by testing

ê(cmx, Φ)
?
= ê([1]1, Φx), where Φ is an encoding of M and cmx :=

∑
j∈[n] xj ·[ρj ]2

for some [ρj ]2-s part of the commitment key. Then the verifier checks the validity

of the linear system by testing ê(πw, Φx)
?
= ê(π̂, [1]2)·B, for some elementB ∈ GT

in the public parameters. This last equation is the issue why this scheme does
not have a linear verification, that is one needs to compute the pairing ê(πw, Φx)
where both inputs are part of the opening proof.

To get around this problem, we use an alternative linearization technique. In
a nutshell, we include in the opening a commitment πw to w (as in [CFT22])
and a succinct commitment πu of u = x⊗w. The verifier can test the validity

of πu by checking the linear pairing equation ê(πw, cmx)
?
= ê(πu, [1]2). Next, we

propose a variant of the [LM19] technique to prove that, with respect to the
commitment πu, the linear system (M⊤ | e1) is satisfied, but not by the full
committed vector u, but rather by the portion corresponding to the subvector
u∗ = w ◦ x ⊂ w ⊗ x. This proof is a single group element π, which can be

verified by a second linear pairing equation ê(πu, Φ)
?
= ê(π̂, [1]2) ·B.

Other Technical Points.

Reusability. By replacing NIZK of commitments with a functional commit-
ment as described above and then following the same approach of [GLS15,
BL20], we can obtain a two-round MPC protocol. However, building a mrNISC
protocol is more challenging as the construction may not necessarily pro-
vide reusability. To provide this property, we need functional commitment
schemes that satisfy a strong form of zero-knowledge, wherein any number
of opening proofs for a given commitment can be simulated. In other words,
for a commitment cm broadcasted by a party in the first round of the proto-
col, running computation on different statements (cm, Gi, yi) with the same
commitment cm does not reveal any information about the committed value.
This should be guaranteed by the existence of an efficient simulator that can
generate simulated openings for any adversarially chosen computation.

Trusted Setup and Malicious Security. We note that both existing con-
structions of mrNISC from bilinear pairing groups [BL20] or from LWE [BJKL21]
are in the plain model, whereas our construction requires a trusted setup.
However, for security analysis of mrNISC construction in previous works,
it is assumed that the corruption by the adversary is static. Further, the
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security in these works is only against semi-malicious adversaries where cor-
rupted parties follow the protocol specification, except they are allowed to
select their input and randomness from arbitrary distributions. This has
been justified by the fact that providing stronger notion of malicious secu-
rity for MPC in two rounds in the plain model is impossible and hence one
should use either a trusted setup assumption or overcome this impossibility
by relying on super-polynomial time simulation (See [FJK21] for the second
approach). We thus see the use of trusted setup in our construction, in a
sense, at no cost as it is crucial for achieving malicious security 10. We point
out that the setup of our FC construction is also updatable (any party can
add randomness to it).

1.4 Related Work

The first candidate construction of witness encryption was proposed by the sem-
inal work of Garg et al. [GGSW13] based on multilinear maps. In a line of
research, several other works [GGH+13, GLW14, GKW17] proposed construc-
tions from similar strong assumptions; i.e., multilinear maps as in [GGSW13],
or indistinguishability obfuscation (iO). Recently, Barta et al. [BIOW20] showed
a witness encryption scheme based on a coding problem called Gap Minimum
Distance Problem (GapMDP). However, they left it as an open problem whether
their version of GapMDP is NP-hard. Another recent proposal based on new un-
explored algebraic structures and with conjectured security is that in [CVW18].

A recent line of work started by [JLS21] builds iO—which implies a WE
construction—from standard assumption. Asymptotically, this approach runs in
polynomial time, but it still is impractical for two reasons. First, the polynomial
describing its running time has a relatively high degree. On top of that, the WE
construction would need to indirectly invoke iO, which is a plausibly stronger
primitive 11. This indirect approach results in compounded efficiency costs.

The work of [BL20] defines a restricted flavour of witness encryption called
WE for NIZK of commitments wherein parties first commit to their private in-
puts once and for all, and then later, an encryptor can produce a ciphertext so
that any party with a NIZK showing that the committed input satisfies the rela-
tion can decrypt. Their construction relies on the SXDH assumption in bilinear
pairings and Groth-Sahai commitments and NIZKs. Using NIZK proofs as the
decryption key provides a “delegatability” property in [BL20], where the holder
of a witness can delegate the decryption by publishing a NIZK proof for the truth
of the statement. Recently, [CDK+21] formalize a similar notion but without
delegation property, and give more efficient instantiations based on two-party

10 Achieving malicious security by using NIZK proofs in the trust model is a folklore
technique and has been used in many classical MPC works (e.g., See Lemma 7.5
in [BL20]). We thus omit details on malicious security and similarly to previous
works focus only on semi-malicious security.

11 As shown in [WZ17, GKW17], under the LWE assumption, WE is equivalent to a
very weak form of iO, called null-iO.
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Multi-Sender Non-Interactive Secure Computation (MS-NISC) protocols. The
recent work of [Kho22] also defines a similar notion of Witness Encryption with
Decryptor Privacy that provides zero-knowledge, but not delegation property.
Our approach is a follow-up to the work of [BL20]. Finally, we note that construc-
tions with a flavor of witness-encryption-over-commitments [BL20, CDK+21] are
also a viable solution to the problem of encrypting to who knows the opening
of a commitment, but with the caveat of commitments having to be as large as
the data (which is problematic if the data is large). This is not the case in our
constructions.

If we turn our attention to NIZKs and succinct commitments, one may won-
der whether one can adapt the results of [BL20] to work with (commit-and-
prove) SNARKs. Although we cannot exclude this option, we argue this may be
an overkill for two reasons. First, in terms of assumptions this approach would
inherently require the use of non-falsifiable assumptions due to the impossibility
result of Gentry and Wichs [GW11]. In particular, the semantic security defi-
nition of WEZK-CM is falsifiable and thus could in principle be realized without
these strong assumptions. Second, in terms of efficiency, if we want to rely on the
SPHF construction blueprint we would need a SNARK with a linear verification
over bilinear groups, but such schemes are likely impossible [Gro16].

The primitive that we propose in this work is closely tied to functional com-
mitments, first formalized by Libert et al. [LRY16]. The functional commitment
schemes in the state of the art support a variety of functions classes, which in-
clude linear maps [LRY16, LM19], sparse polynomials [LP20], constant-degree
polynomials [CFT22, ACL+22], and NC1 circuits [CFT22]. Also, very recent
works [BCFL23, dCP23, WW23] propose FC schemes for virtually arbitrary
computations. As we mentioned earlier, our construction of WEFC relies on FCs
whose verification algorithm is a “linear” pairing-based equation. This prop-
erty is achieved by the FC schemes for linear maps [LRY16] [LM19] and sparse
polynomials [LP20], which means we can obtain instantiations of WEFC for these
classes of functions. The recent and more expressive constructions that are based
on pairings [CFT22, BCFL23] unfortunately do not support this linear verifica-
tion, as they need to pair elements of the proof. Our new FC construction does
not have this limitation and supports large classes of circuits.

2 Preliminaries

Notation. We use DPT (resp. PPT) to mean a deterministic (resp. probabilis-
tic) polynomial time algorithm. We denote by [n] the set {1, . . . , n} ⊆ N. To
represent matrices and vectors, we use bold upper-case and bold lower-case let-
ters, respectively. We denote the security parameter by λ ∈ N. For an algorithm
A, RND(A) is the random tape of A (for a fixed choice of λ), and r ←$ RND(A)
denotes the random choice of r from RND(A). By y ← A(x; r) we denote that
A, given an input x and a randomizer r, outputs y. By x←$ D we denote that x
is sampled according to distribution D or uniformly randomly if D is a set. Let
negl(λ) be an arbitrary negligible function.
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Pairings. Bilinear groups are defined by a tuple bp = (p,G1,G2,GT , ê, g1, g2)
where G1,G2,GT are groups of prime order p, g1 (resp. g2) is a generator of G1

(resp. G2), and ê : G1 ×G2 → GT is an efficient, non-degenerate bilinear map.

For group elements, we use the bracket notation in which, for t ∈ {1, 2, T}
and a ∈ Zp, [a]t denotes g

a
t . We use additive notation for G1 and G2 and multi-

plicative one for GT . For t = 1, 2, given an element [a]t and a scalar x, one can
efficiently compute x[a]t = [xa]t = gxat ∈ Gt; and given group elements [a]1 ∈ G1

and [b]2 ∈ G2, one can efficiently compute ê([a]1, [b]2) = [ab]T . For u,v vectors
we write ê([u]⊤1 , [v]2) for

∏
j ê([uj ]1, [vj ]2). The same notation naturally extends

to pairings between a matrix [M ]1 and vector [v]2 where we return the vector
of pairing products performed between each row of the matrix and [v]2, i.e.,
ê([M ]1, [v]2) = [M · v]T .

Algebraic (Bilinear) Group Model. In the algebraic group model (AGM) [FKL18],
one assumes that every PPT algorithm A is algebraic in the sense that A is al-
lowed to see and use the structure of the group, but is required to also output a
representation of output group elements as a linear combination of the inputs.
While the definition of AGM in [FKL18] only captures regular groups, here we
require an extension that captures asymmetric pairings as well. To formalize this
notion, we use the following definition that is taken from [CH20], but adjusted
for our setting where A only outputs target group elements. We note that the
idea of proving statements with respect to algebraic adversaries has also been
explored in earlier works [ABM15, BFW16].

Definition 1 (Algebraic Adversaries). . Let bp = (p,G1,G2,GT , ê, g1, g2)
be a bilinear group and [x]1 = ([x1]1, . . . , [xn]1) ∈ Gn

1 , [y]2 = ([y1]2, . . . , [ym]2) ∈
Gm

2 , [z]T = ([z1]T , . . . , [zl]T ) ∈ Gl
T . An algorithm A with input [x]1, [y]2, [z]T is

called algebraic if in addition to its output

S = ([S1]T . . . , [Sl′ ]T ) ∈ Gl′

T ,

A also provides a vector

s =
(
(Aijk)i∈[l′],j∈[n],k∈[m] , (Bij)i∈[l′],j∈[l]

)
∈ Zζ

p with ζ = l′ · (l + n ·m)

such that [Si]T =

n∏
j=1

m∏
k=1

ê ([xj ]1, [yk]2)
Aijk ·

l∏
j=1

[zi]
Bij

T for i ∈ {1, . . . , l′}

2.1 Functional Commitment Schemes

We recall the notion of functional commitments (FC) [LRY16]. Let D be some
domain and F := {F : Dn → Dκ} be a class of functions over D. In a functional
commitment for F , the committer first commits to an input vector x ∈ Dn,
obtaining commitment cm; she can later open cm to y = F (x) ∈ Dκ, for F ∈ F .

12



Definition 2 (Functional Commitments [LRY16]). For a class F of func-
tions F : Dn → Dκ, a functional commitment scheme FC consists of four
polynomial-time algorithms (Setup,Commit,Open,Verify) that satisfy correctness
as described below.

Setup. Setup(1λ,F) is a probabilistic algorithm that given a security parameter
λ ∈ N, and a function class F , outputs a commitment key ck and a trapdoor
key td. For simplicity of notation, we assume that ck contains the description
of 1λ and F .

Commitment. Commit(ck,x; r) is a probabilistic algorithm that on input a
commitment key ck, a message x ∈ Dn, and randomness r, outputs (cm, d),
where cm is a commitment to x and d is a decommitment information.

Opening. Open(ck, d, F ) is a deterministic algorithm that on input ck, a de-
commitment d, and a function F ∈ F , outputs an opening opy to y = F (x).

Verification. Verify(ck, cm, opy, F,y) is a deterministic algorithm that on input
ck, a commitment cm, an opening opy, a function F ∈ F , and y ∈ Dκ,
outputs 1 if opy is a valid opening for cm and outputs 0 otherwise.

Correctness. FC is correct if for any (ck, td)← Setup(1λ,F), any F ∈ F , and
any vector x ∈ Dn, if (cm, d)← Commit(ck,x; r), then

Pr[Verify(ck, cm,Open(ck, d, F ), F, F (x)) = 1] = 1.

Succinctness. We say that FC is succinct if the length of commitments and
openings are poly-logarithmic in |x|.
Evaluation binding. FCs are required to be evaluation binding, which intu-
itively means that a PPT adversary cannot create valid openings for incorrect
results. In [LRY16], this concept is formalized by requiring that no PPT adver-
sary can generate a commitment and opens it to two different outputs for the
same function. In our work, we only need a weaker version of this property in
which the adversary reveals the committed vector and wins if it creates a valid
opening for an incorrect result. In [CFT22] this notion is called weak evaluation
binding; we recall it below.

Definition 3 (Weak evaluation-binding [CFT22]). A functional commit-
ment scheme FC = (Setup,Commit,Open,Verify) for F satisfies weak evaluation-
binding if for any PPT adversary A, AdvbindFC,A(λ) = negl(λ), where

AdvbindFC,A(λ) := Pr

F ∈ F ∧ y ∈ Dκ ∧ F (x) ̸= y

∧ cm = Commit(ck,x; r)

Verify(ck, cm, opy, F,y) = 1

:
(ck, td)← Setup(1λ,F)
(x, r, F,y, opy)← A(ck)


Zero-knowledge. The zero-knowledge property can be seen as a simulation-
based definition of hiding property, considerably stronger than the definition
given in [LRY16] 12. Further, compared to the zero-knowledge definition of [LP20],

12 The definition of hiding in [LRY16] only guarantees that the commitment does not
reveal any information about x.
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ours is stronger in the sense that the commitment and simulated openings are
not generated at the same time. In other words, to make commitments reusable
for our mrNISC application, we need two simulators S1,S2, where S1 generates a
simulated commitment, and S2—given the simulated commitment—can produce
any number of simulated openings for different adversarially chosen functions.

Definition 4 (Perfect zero-knowledge). A functional commitment scheme
FC = (Setup,Commit,Open,Verify) for a class of functions F is perfectly zero-
knowledge if there exists a PPT simulator S = (S1,S2), such that for any λ,
(ck, td) ← Setup(1λ,F), and any adversary A, the following distributions are
identical.{
AOOpen(st) = 1 : (st,x)← A(td), r ←$ RNDλ(Commit), (cm, d)← Commit(ck,x; r)

}}
{
AOS (st) = 1 : (st,x)← A(td), (cm, aux)← S1(td)

}
where OOpen(F ) := Open(ck, d, F ) and OS(F ) := S2(td, aux, F, F (x)).

3 WEFC: Witness Encryption for Functional Commitment

In this section we define our notion of witness encryption for functional com-
mitments. In standard witness encryption, we require semantic security for false
statements; in our notion we require semantic security for false statements on
committed inputs. The decryption algorithm requires an opening proof of the
functional commitment w.r.t. a function and output specified at encryption time.
Like other variants of WE [BL20, CDK+21], loses the pure “non-deterministic”
flavor of WE since it requires the existence of a commitment to the decryption
witness. We refer to the introduction for further intuitions about the notion.

Definition 5 (Witness Encryption for Functional Commitments). Let
FC = (Setup,Commit,Open,Verify) be a functional commitment scheme for a
class of functions F . A witness encryption for FC, denoted by WEFC, is a tuple
of polynomial-time algorithms WEFC = (Setup,Commit,Open,Verify,Enc,Dec),
where Setup,Commit,Open, and Verify are defined by FC and

Encryption. Enc(ck, cm, F,y,m) is a probabilistic algorithm that takes as input
the commitment key ck, a statement x = (cm, F,y), and a bitstring m, and
outputs an encryption ct of m under x.

Decryption. Dec(ck, ct, cm, F,y, opy) is a deterministic algorithm that on in-
put ck, a ciphertext ct, a statement x = (cm, F,y), and an opening proof
opy, decrypts ct into a message m, or returns ⊥.

We require two properties, correctness and semantic security.

(Perfect) Correctness. For all λ ∈ N, ck← Setup(1λ,F), F ∈ F , message m,
and vector x we have:

Pr

Dec(ck, ct, cm, F, F (x), op) = m :

(cm, d)← Commit(ck,x; r)

ct← Enc(ck, cm, F, F (x),m)

op← Open(ck, d, F )

 = 1

14



Semantic Security. For any PPT adversary A = (A1,A2), Adv
ss
WE,FC,A(λ) =

negl(λ), where AdvssWE,FC,A(λ) :=∣∣∣∣∣∣∣∣∣Pr
b′ = b :

(ck, td)← Setup(1λ,F); (x, r, F,y,m0,m1)← A1(ck)

(cm, d)← Commit(ck,x; r);

b←$ {0, 1}; ct← Enc(ck, cm, F,y,mb)

if F (x) = y then ct := ⊥; b′ ← A2(ct)

− 1/2

∣∣∣∣∣∣∣∣∣
4 Our WEFC Construction

We present our construction of WEFC. The construction consists of two build-
ing blocks: Functional Commitments (see section 2.1), and a flavor of Smooth
Projective Hash Functions with extractability property.

We start by recalling the definition of SPHFs.

4.1 Smooth Projective Hash Functions

Let Llpar ⊆ Xlpar be a NP language, parametrized by a language parameter
lpar, and Rlpar be its corresponding relation. A Smooth projective hash func-
tions (SPHFs, [CS02]) for Llpar is a cryptographic primitive with this property
that given lpar and a statement x, one can compute a hash of x in two dif-
ferent ways: either by using a projection key hp and (x,w) ∈ Rlpar as pH ←
projhash(lpar, hp, x,w), or by using a hashing key hk and x ∈ Xlpar as H ←
hash(lpar, hk, x). The formal definition of SPHF follows.

Definition 6. A SPHF for {Llpar} is a tuple of PPT algorithms (PGen, hashkg,
projkg, hash, projhash), which are defined as follows:

PGen(1λ): Takes in a security parameter λ and generates the global parameters
pp together with the language parameters lpar. We assume that all algorithms
have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key hk.
projkg(lpar, hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs

a projection key hp, possibly depending on x.
hash(lpar, hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs

a hash value H.
projhash(lpar, hp, x,w): Takes in a projection key hp, lpar, a statement x, and a

witness w for x ∈ Llpar and outputs a hash value pH.

To shorten notation, we sometimes denote “hk← hashkg(lpar); hp← projkg(lpar, hk, x)”
by (hp, hk)← kgen(lpar, x). A SPHF must satisfy the following properties:

Correctness. It is required that hash(lpar, hk, x) = projhash(lpar, hp, x,w) for all
x ∈ Llpar and their corresponding witnesses w.
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Smoothness. It is required that for any lpar and any x ̸∈ Llpar, the following
distributions are statistically indistinguishable:

{(hp,H) : (hp, hk)← kgen(lpar, x),H← hash(lpar, hk, x)}
{(hp,H) : (hp, hk)← kgen(lpar, x),H← Ω} .

where Ω is the set of hash values.

Remark 1. For our application, we need a type of SPHF where hp depends on
the statement. This type of SPHF with such “non-adaptivity” in the smoothness
property was formally defined by Gennaro and Lindell in [GL06] and was later
named GL-SPHF in [BBC+13]. Throughout this work, we always mean GL-
SPHF when talking about SPHFs.

Existing constructions of SPHFs over groups are based on a framework called
diverse vector space (DVS). Intuitively, a DVS [BBC+13, ABP15, Ham16] is a
way to represent a language L ⊆ X as a subspace L̂ of some vector space of
some finite field. In the seminal work [CS02], Cramer and Shoup showed that
such languages automatically admit SPHFs. To briefly recap the notion of DVS,
let R = {(x,w)} be a relation with L = {x : ∃w, (x,w) ∈ R}13. Let pp be system
parameters, including say the description of a bilinear group. A (pairing-based)
DVS V is defined as V = (pp,X ,L,R, n, k,M,Θ,Λ), where M(x) is an n × k
matrix, Θ(x) is an n-dimensional vector, and Λ(x,w) a k-dimensional vector. In
this work, we consider the case that the matrix M(x) may depend on x (i.e.,
GL-DVS similarly to GL-SPHF). Moreover, as long as the equation Θ(x) =
M(x) ·Λ(x,w) is consistent, it could be that different coefficients of Θ(x), M(x),
and Λ(x,w) belong to different algebraic structures. The most common case is
that for a given bilinear group pp = (p,G1,G2,GT , ê, g1, g2), these coefficients
belong to either Zp, G1, G2, or GT as long as the consistency is preserved.

For our WEFC, we are interested in SPHFs defined over bilinear groups.
Namely, SPHFs for languages Llpar with lpar = (M,Θ,Λ), such that the coef-
ficients of [M(x)]ι (resp. [Λ(x,w)]3−ι) belong to the group Gι (resp. G3−ι, i.e.
the other group) for some ι ∈ {1, 2}, and that [Θ(x)]T ∈ GT is the pairing of
[M(x)]ι and [Λ(x,w)]3−ι. For notational simplicity, we specifically pick ι = 1 in
the rest of the paper. We define Llpar therefore as

Llpar =
{
[Θ(x)]T : ∃[Λ(x,w)]2 s.t [Θ(x)]T = ê([M(x)]1, [Λ(x,w)]2)

}
.

Given a GL-DVS for Llpar, one can construct an efficient GL-SPHF for Llpar as
depicted in fig. 1.

Extractable PHF. In the definition of SPHF, smoothness is guaranteed only
for false statements. Hence, for trivial languages where all statements are true,

13 The reader who is uninterested in fully understanding the formal details of DVS
can think of this formalism as a language to describe relations in (linear) algebraic
terms. We refer the reader to [Ham16] for more details on DVS.
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– hashkg(lpar): sample α←$ Zn
p , and output hk← α;

– projkg(lpar, hk, x): [γ]⊤1 ← α⊤[M(x)]1 ∈ G1×k
1 ; return hp← [γ]1;

– hash(lpar, hk, x): return [H]T ← α⊤[Θ(x)]T ;
– projhash(lpar, hp, x,w): return [pH]T ← ê([γ]⊤1 , [Λ(x,w)]2)

Fig. 1: DVS-based SPHF construction HFdvs for Llpar with lpar = (M,Θ,Λ).

1. (pp, lpar)← PGen(1λ);
2. aux← A1(lpar); x← IG(aux);
3. if x = ⊥, return 0; else x′ ← [Θ(x)]T ;
4. (hp, hk)← kgen(lpar, x); H← A2(lpar, hp, aux);
5. w′ ← ExtA(lpar, hp); H′ = hash(lpar, hk, x);

6. return
(
(H = H′) ∧ (x′,w′) /∈ Rlpar

)
;

Fig. 2: Knowledge smoothness experiment ExpKSPHF,IG(A, λ)

such notion of smoothness is vacuous. To argue security in this case, a stronger
notion of knowledge-smoothness is required which guarantees that if an adver-
sary can compute the hash value with non-negligible probability, it must know
a witness of the statement used in the hash computation. In the following, we
state the definition of knowledge smoothness for languages of our interest, and
prove that HFdvs in fig. 1 has this property in the algebraic bilinear group model.

Knowledge Smoothness. A projective hash function PHF = (PGen, hashkg,
projkg, hash, projhash) for {Llpar} defined by lpar = (M,Θ,Λ) is knowledge
smooth if for any λ, for any PPT adversary A = (A1,A2), there exists a PPT
extractor ExtA such that Pr[ExpKSPHF,IG(A, λ)] ≤ negl(λ), where ExpKSPHF,IG(A, λ)
is defined in fig. 2.

We call a PHF with knowledge-smoothness an extractable PHF. Note that by
the definition, the extractor is supposed to extract only w′ = [Λ(x,w)]2 (and not
w) such that ([Θ(x)]T ,w

′) ∈ Rlpar.The security guarantee is that for any PPT
adversary A = (A1,A2) that can compute a valid hash value for an adversarially
chosen statement, there exists an efficient extractor that can extract a valid
witness for the statement. Furthermore, since in our application we need to make
sure that the statement chosen by A satisfies some predicate 14, we let A1 to
select the statement by revealing the random coins aux of the statement, instead.

14 For example, for x = (cm, G, y), the predicate checks if G(v) ̸= y, where v is com-
mitted in cm.
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The actual statement is then generated by a deterministic instance generator IG
that takes aux as input and returns an instance x if the predicate holds.

Theorem 1. Let Llpar be a language defined by lpar = (M,Θ,Λ). Under the
discrete logarithm assumption, HFdvs in fig. 1 is an extractable PHF against all
PPT adversaries A = (A1,A2), where A2 is algebraic.

Proof. We prove the theorem for ι = 1; the other case goes exactly in the same
way. Let A = (A1,A2) be any PPT adversary against the knowledge smoothness
of HFdvs and assume that A2 is algebraic. Let x be the statement output by A1

on input lpar = (M,Θ,Λ). A2 returns a hash value H ∈ GT , and by its alge-
braic nature, A2 also provides coefficients that “explain” these elements as linear
combinations of the input. Let [x]1 = [1,γ,M(x)]1

15 be A2’s input in G1. Let
[y]2 = [1]2 be A2’s input in G2, and [z]T = [Θ(x)]T its input in GT . The coeffi-
cients returned by A2([x]1, [y]2, [z]T ) are A0, (Ai)i∈[k], (Bij)i∈[n],j∈[k], (Ci)i∈[n] ∈
Zp such that

H =

k∏
i=0

ê ([xi]1, [y]2)
Ai ·

n∏
i=1

k∏
j=1

ê ([Mij(x)]1, [y]2)
Bij ·

n∏
i=1

[zi]
Ci

T .

Let Ext be the extractor that runs the algebraic adversary A2 and returns
[Λ(x,w)]2 = ([A1]2, . . . , [Ak]2). We can show that this is a valid witness for
[Θ(x)]T as long as the hash value H returned by A2 is a correct hash. In other
words, if A2 can output H such that H = α⊤[Θ(x)]T , and Θ(x) ̸= M(x)Λ(x,w),
we can construct an algorithm B that exploits A2 and breaks the discrete log-
arithm problem. To do this, B on challenge input Z = [z]1 proceeds as follows.
First, it uses Dlpar to sample lpar = (M,Θ,Λ). Second, it samples r, s ←$ Zn

p

and implicitly sets α := z ·r+ s. Third, it computes hp = [γ]1 = [M(x)⊤α]1 and
runs A2(lpar, hp, x). Once received A2’s output H, B returns z computed from
the following equation.

α⊤Θ(x)− γ⊤A = A0 +

n∑
i=1

k∑
j=1

Mij(x)Bij +Θ(x)⊤C

⇒ α⊤(Θ(x)−M(x)A) = A0 +

n∑
i=1

k∑
j=1

Mij(x)Bij +Θ(x)⊤C

where A = (A1, . . . , Ak) and C = (C1, . . . , Cn). Note that z is the only unknown
in the equation and can be computed by the assumption that Θ(x) ̸= M(x)A.

⊓⊔

In the following corollary, we argue the extractability of HFdvs also in the GGM,
which we use to enable the instantiation of our Theorem 2 (see Remark 2).

Corollary 1. HFdvs in fig. 1 is an extractable PHF in the generic group model.

Proof. The proof follows straightforwardly from theorem 1 and lemma 2.2 in [FKL18].
15 x0 = 1 and xi = γi for 1 ≤ i ≤ k.
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4.2 Our Construction

Let FC = (Setup,Commit,Open,Verify) be a succinct functional commitment
scheme for F , where the verification circuit is linear (i.e., of degree one) in
the opening proof. Let EPHF = (PGen, hashkg, projkg, hash, projhash) be an ex-
tractable projective hash function. The key idea of the construction is to use
EPHF for the language defined by the verification circuit of FC. Since this circuit
is affine in the opening proof op, and we know how to construct PHF for affine
languages, the witness encryption just uses EPHF in a straightforward way. Note
that because the language is trivial, we need knowledge smoothness rather than
standard smoothness.

Construction. Let lpar = (ck,M,Θ) be the language parameter that defines
Llpar corresponding to the verification circuit of FC as follows:

Llpar = {x = (cm,β,y)|∃op : Verify(ck, cm, op,β,y) = 1}

Note that due to the linearity of verification circuit in the opening op, there
should exist a matrix [M(x)]⋆

16 and a vector [Θ(x)]T such that

[Θ(x)]T = [M(x) · õp]T

where õp is derived from op by replacing its group elements with their discrete
logarithms. Let σ : GT → {0, 1}ℓ be a generic deterministic injective encoding
that maps group elements in GT into ℓ-bit strings, and that has an efficient
inversion algorithm σ−1. Our WE for functional commitments WEFC = (Setup,
Commit,Open,Verify,Enc,Dec) for Llpar can be described as follows:

Setup,Commit,Open,Verify are defined by FC, and specify lpar = (ck,M,Θ).

Enc(ck, cm,β,y,m). Let x = (cm,β,y). To encrypt a bit message m ∈ {0, 1},
select a uniformly random vector hk ∈ Z1×ν

p , where ν is the number of

rows of M(x), sample a random r ←$ {0, 1}ℓ, and compute the ciphertext
ct = (hp, r, ĉt), where

hp = [hk ·M(x)]⋆, H = [hk ·Θ(x)]T , ĉt = ⟨σ(H), r⟩ ⊕m

Dec(ck, ct, cm,β,y, op). On input a ciphertext ct = (hp, r, ĉt), first compute
pH = [hp · õp]T using op, and then output the message m ∈ {0, 1} com-
puted as m = ⟨σ(pH), r⟩ ⊕ ĉt.

Theorem 2. Let FC be a functional commitment scheme for functions F that
is evaluation-binding. Let EPHF be an extractable PHF. Then WEFC described
above is a WEFC for F . Furthermore, if EPHF is extractable in the generic group
model (GGM), then WEFC is semantically secure in the GGM.

16 The star ⋆ means that the elements are not necessarily in the same group.
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Proof. Perfect correctness follows directly from correctness of FC and EPHF. To
prove semantic security, we show a reduction from evaluation-binding of FC to
semantic security of WEFC. To do so, let us assume that WEFC is not semantically
secure. By definition, there exists an efficient adversary A that, for a maliciously
chosen (false) statement x = (cm,β,y) 17, where cm = Commit(ck,α; r) (all
known to A), it can distinguish, with non-negligible advantage, encryptions of
0 and 1 under x. We first show how to construct an efficient algorithm B that
uses A to compute a hash value H = hash(lpar, hk, x).

Before giving the description of B, let us first recall the classic Goldreich-
Levin theorem [GL89] based on which we construct B.

Theorem 3 (Goldreich-Levin). Let ϵ > 0. Fix some x ∈ {0, 1}n and let
Ax be a PPT algorithm such that Pr[Ax(r) = ⟨r, x⟩|r ←$ {0, 1}n] ≥ 1/2 + ϵ.
There exists a decoding algorithm DAx(·) with oracle access to Ax that runs in
poly(n, 1/ϵ)-time and outputs a list L ⊆ {0, 1}n such that |L| = poly(n, 1/ϵ) and
x ∈ L with probability at least 1/2.

The fact that A can distinguishes ct0 and ct1 under x = (cm,β,y) with
non-negligible advantage implies that

Pr

b′ = b :

b←$ {0, 1}; hk←$ Z1×ν
p ; r ←$ {0, 1}ℓ;

hp = [hk ·M(x)]⋆;H = [hk ·Θ(x)]T ; ĉt = ⟨σ(H), r⟩ ⊕ b;

b′ ← A(hp, r, ĉt)

 ≥ 1/2 + ϵ

for some ϵ = 1/p(λ), where p is a polynomial. We first construct an algorithm B̄
that on input (hp, r) for r ←$ {0, 1}ℓ, it uses A to predict the value of ⟨r, σ(H)⟩. B̄
proceeds as follows: on input (hp, r), it samples b←$ {0, 1} and runs A on input
(hp, r, b). If A correctly guesses b, B̄ outputs 0, and otherwise 1. By construction,
it is easy to see that B̄ outputs ⟨r, σ(H)⟩ with probability at least 1/2+ϵ. Using B̄
and Goldreich-Levin decoding algorithm DB̄(hp,·) in theorem 3, we now construct
B that on input lpar, hp and x, computes σ(H) as follows:

– Runs DB̄(hp,·) so that to answer an oracle query r ∈ {0, 1}ℓ, B outputs
B̄(hp, r).

– Let L ⊆ {0, 1}ℓ be the list that DB̄(hp,·) outputs. B returns σ(H)←$ L.

To analyze the success probability of B, let K be the set of hashing keys hk ∈
Z1×ν
p such that for hp← projkg(lpar, hk, x), and H← hash(lpar, hk, x),

Pr[B̄(hp, r) = ⟨r, σ(H)⟩|r ←$ {0, 1}ℓ] ≥ 1/2 + ϵ/2.

By an averaging argument, the probability that a random hk ←$ Z1×ν
p is in K

is at least ϵ. This indicates that with probability at least ϵ, the hashing key hk
chosen in the knowledge smoothness experiment of EPHF lies in K and hence

17 Note that x is false in the sense that for cm = Commit(ck,α; r), we have F (α,β) ̸= y.
With respect to the language Llpar corresponding to the verification of functional
commitments, such statements are always true however.
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the oracle B̄(hp, ·) satisfies the requirement in theorem 3. This subsequently
indicates that the list L returned by DB̄(hp,·) contains σ(H) with probability at
least 1/2. Therefore, B computes σ(H), and thus H with probability at least
ϵ · 1

2 ·
1
|L| which is 1

q(λ) for some polynomial q. Due to extractability of the

EPHF, there should exist an efficient extractor ExtB for B such that for cm =
Commit(ck,α; r) and x = (cm,β,y), ExtB can extract a valid witness w′ =
op such that ([Θ(x)]T ,w

′) ∈ Rlpar with probability at least 1
q(λ) . The above

reduction can subsequently be invoked by a computational evaluation-binding
adversary to break this property with non-negligible probability by outputting
(α, r,β,y, op). Note that the reduction is generic and thus a GGM adversary
against semantic security of WEFC yields a GGM adversary against EPHF. ⊓⊔

Remark 2 (Instantiating our WEFC scheme using the EPHF of Fig. 1). Due
to a subtle technicality (and an intriguing gap between AGM and GGM), we
cannot apply Theorem 2 to an EPHF that is extractable in the AGM and then
argue that the semantic security of the resulting WE scheme holds in the AGM.
The strategy to prove the semantic security of the WE scheme is to reduce a
distinguisher A against the WE to a PHF adversary B that returns the correct
PHF output. To do this reduction in the AGM, we would have to construct an
algebraic PHF adversary that, along with the PHF output, returns an algebraic
explanation of it. However, we do not see a way to build this algebraic adversary
from the WE one. The reason is that, before using the Goldreich-Levin technique,
the WE adversary A only returns a bit (thus, even if we assume it is algebraic, we
cannot extract any algebraic representations from A because it does not return
group elements). Therefore, even if eventually we can build a PHF adversary B
that, with good probability, returns the correct group elements, we cannot return
their algebraic representation. This issue does not arise in the GGM, where we
can reduce a generic WE adversary A into a generic PHF adversary B by letting
B relay A’s GGM oracle queries to its own GGM oracle. It is an interesting
future direction to find a non-GGM based EPHF construction.

5 Our WEFC Instantiations

In this section, we present succinct FC schemes that are compatible with the
requirements of our WEFC construction of Section 4.2, namely they are pairing-
based schemes whose verification algorithm can be expressed as a system of
equations linear in opening elements. Our main contribution is a new FC scheme
for the language of monotone span programs (MSP) which, using known trans-
formations can be turned into an FC for circuits in the class NC1.18 Next, in
Section 5.2 we show that also the functional commitments of Libert, Ramanna
and Yung [LRY16] for linear functions, and that of Lipmaa and Pavlyk for semi-
sparse polynomials [LP20] satisfy the required properties.

18 One can convert a circuit in NC1 into a polynomial-size boolean formula, and then
turn this one into a MSP of equivalent size [LW11b, Appendix G].
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5.1 Our FC for Monotone Span Programs

We construct our scheme by adapting the FC proposed by Catalano, Fiore and
Tucker [CFT22]. In particular, while the scheme of [CFT22] has a quadratic veri-
fication (i.e., it needs to pair group elements in the opening between themselves),
we show a variant of their technique with linear verification.

We start by recalling the notion of (monotone) span programs (MSP) [KW93].

Definition 7 (Monotone Span Programs [KW93]). A monotone span pro-
gram for attribute universe [n] is a pair (M, ρ) where M ∈ Zℓ×m

p and ρ : [ℓ] →
[n]. Let Mi denote the i-th row of M. For an input x ∈ {0, 1}n, we say that

(M, ρ) accepts x iff ∃w ∈ Zℓ
p :

∑
i:xρ(i)=1

wi ·Mi = (1, 0, . . . , 0)

MSPs are in the class P as one can use Gaussian elimination to find w in
polynomial time. As in other works [LOS+10, CGW15, CGKW18], we use a
restricted version of MSPs where every input xi is read only once, and thus ℓ = n
and ρ is a permutation (which up to reordering the rows of M can be assumed
the identity function). The one-use restriction can be removed by working with
larger inputs of length n′ = k · n in which each entry xi is repeated k times,
where k is an upper bound on the input’s fan out. Therefore, without loss of
generality in our FC we work with MSPs defined by M ∈ Zn×m

p such that

M accepts x iff ∃w ∈ Zn
p : (w ◦ x)⊤ ·M = (1, 0 . . . , 0) (2)

Our FC for MSP. For simplicity, we present our FC with deterministic com-
mitments and openings. At the end of this section, we discuss how to easily
change it to achieve zero-knowledge.

In the scheme, for a vector v we denote by pv(Z) the polynomial
∑

j∈[n] vjZ
j .

Our scheme assumes a bilinear group description bp := (p,G1,G2,GT , ê, g1, g2)
associated to the security parameter λ and works as follows.

Setup(1λ, n,m) takes as input two integers m,n ≥ 1 that bound the size of the

MSPs supported by the scheme (i.e., matrices in Zm×n
p ) and the length of

the inputs. It samples random α, γ, η ←$ Zp,β ←$ Zm
p and outputs

ck :=

{[αj ]1, [ηγ
j ]2}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],

{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

[(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]


Commit(ck,x) returns cm :=

∑
j∈[n] xj · [ηγj ]2 = [ηpx(γ)]2 and d := x.

Open(ck, d,M) Let M ∈ Zn×m
p be an MSP which accepts the input x in d. The

algorithm computes a witness w ∈ Zn
p such that M⊤ · (w ◦ x) = e1, where
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e⊤1 = (1, 0, . . . , 0), and then returns the opening op := (πw, πu, π̂) ∈ G3
1

computed as follows:

πw :=
∑
j∈[n]

wj · [αj ]1 = [pw(α)]1

πu :=
∑

j,ℓ∈[n]

wj · xℓ · [ηαjγℓ]1 = [η · pw(α) · px(γ)]1

π̂ :=
∑
i∈[m]

j,k∈[n]:j ̸=k

Mj,i · xj · wk · [αn+1−j+kβiγ
n+1]1

+
∑
i∈[m]

j,k,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ · wk ·
[
αn+1−j+kβiγ

n+1−j+ℓ
]
1

Above, πw represents a commitment to the witness w = [pw(α)]1, πu =
[ηpw(α)px(γ)]1 is an encoding of u = w ◦ x. Finally, π̂ can be seen as an
evaluation proof for the linear map FC of [LM19] which shows that the vector
w committed in πw is a solution to the linear system ((x|| · · · ||x)◦M)⊤ ·w =
M⊤ · (w ◦ x) = e1.

Verify(ck, cm, op,M, true) Compute Φ ←
∑

i∈[m],j∈[m] Mj,i ·
[
(αγ)n+1−jβi

η

]
2
, and

output 1 iff the following checks are both satisfied:

ê(πw, cm)
?
= ê(πu, [1]2) (3)

ê(πu, Φ)
?
= ê(π̂, [1]2) · ê([αβ1γ]1, [(αγ)

n]2) (4)

Remark 3. In the FC scheme above one can only create an opening if the MSP
M accepts the committed input x, but not if it rejects. This functionality is
enough to build an FC for NC1 circuits with a single output. If one wants to
open for a circuit C such that C(x) outputs 1 then uses the MSP MC associated
to C. If on the other hand, one wants to open to C such that C(x) = 0 then
one can instead prove that C̄(x) = 1, where C̄ is the same as C with a negated
output, and then use the MSP MC̄ and show that it accepts.

Correctness. Equation (3) holds by way cm is constructed in Commit, and
πw, πu are constructed in Open and the bilinear property of ê: ê(πw, cm) =
[pw(α) · ηpx(γ)]T = ê(πu, [1]2). Let us now prove that correctness holds w.r.t.
equation (4). Denoting ϕ the element such that Φ = [ϕ]2 and using the correct-
ness of equation (3), the left-hand side of equation (4) is ê(πu, Φ) = [pw(α) · ηpx(γ) · ϕ]T .
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By construction of ϕ, one can see that

pw(α)px(γ)ηϕ =

=

 ∑
k∈[n]

wkα
k

 ∑
i∈[m],j,ℓ∈[n]

Mj,i · xℓ · αn+1−jβiγ
n+1−j+ℓ


=

∑
i∈[m]
j,k∈[n]

Mj,i · xj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ · wkα
n+1−j+kβiγ

n+1−j+ℓ

=
∑
i∈[m]
j∈[n]

Mj,i · xj · wj · αn+1βiγ
n+1 +

∑
i∈[m]

j,k∈[n]:j ̸=k

Mj,i · xj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ · wkα
n+1−j+kβiγ

n+1−j+ℓ

= (αγ)n+1β1 +
∑
i∈[m]

j,k∈[n]:j ̸=k

Mj,i · xj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ · wkα
n+1−j+kβiγ

n+1−j+ℓ

where the last equality is due to the MSP satisfiability,i.e,
∑

j∈[n] Mj,1xjwj = 1

and ∀i = 2, . . . ,m,
∑

j∈[n] Mj,ixjwj = 0.
Finally, using the construction of π̂ in the Open algorithm we can conclude

that [pw(α)px(γ)ηϕ]T = ê(π̂, [1]2) · ê([αγβ1]1, [(αγ)
n]2).

Proof of Security. We prove the weak evaluation binding of our FC based on
the following (falsifiable) assumption. This is a variant of the assumption used
in [CFT22], which we justify in the generic group model in Appendix A.

Definition 8 ((n,m)-QP-BDHE assumption). Let bp = (p,G1,G2,GT , ê,
g1, g2) be a bilinear group setting. The (n,m)-QP-BDHE holds if for every n,m =
poly(λ) and any PPT A, the following advantage is negligible

Adv
(n,m)-QP -BDHE
A (λ) = Pr[A(bp, Ω) = [αn+1γn+1δ]T ] where

Ω :=


{[αj ]1, [ηγ

j ]2}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],
{[

αjβiγ
ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

[(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]{[

δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i̸=k

,
{[

αjβiγ
ℓδ

βk

]
2

}
i,k∈[m],j∈[n]
ℓ∈[2n]\{n+1}


and the probability is over the random choices of α, γ, δ, η ←$ Zq, β ←$ Zm

q and
A’s random coins.

Theorem 4. If the (n,m)-QP-BDHE assumption holds then the FC scheme of
Section 5.1 satisfies weak evaluation binding.
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Proof. We show that any PPT A against the weak evaluation binding of the
FC scheme can be turned into a PPT adversary B against the (n,m)-QP-BDHE
assumption.

B receives the bilinear group description and the list of group elements Ω,
uses a subset of Ω to set the commitment key ck as below, and then runs A(ck).

ck :=

{[αj ]1, [ηγ
j ]2}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],

{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

[(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]


Assume thatA returns a tuple (M,x, π) such that, by parsing π := (πw, πu, π̂),

it holds:

– (i) π is accepted by Verify(ck, [ηpx(γ)]2, π,M, true), i.e.,

πu = (ηpx(γ)) · πw and ê(πw, ηpx(γ)Φ) = ê(π̂, [1]2) · ê([αγβ1]1, [(αγ)
n]2) (5)

– (ii) the MSP M does not accept x. This means that for F′ = (Mj,i · xj)i,j ,
the linear system (F′ | e1) is not satisfiable and it is possible to efficiently
compute a vector c ∈ Zm

p such that c⊤ · F′ = 0 and c⊤ · e1 = 1. These two
conditions for c can also be expressed as

c1 = 1, ∀j :
∑
k

ckMj,kxj = 0

B starts by computing, for every k ∈ [m]: π′k := ê
(
π̂,

[
δ
βk

]
2

)
. By the con-

struction of Φ in Verify, we have:

ηpx(γ)Φ =

∑
ℓ∈[n]

xℓ · γℓ

 ·
 ∑

i∈[m],j∈[n]

Mj,i · (αγ)n+1−jβi


2

=
∑
i∈[m]
j∈[n]

Mj,i · xj · [αn+1−jβiγ
n+1]2 +

∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓ
]
2

We can use equation (5) to see that, for every k ∈ [m],

π′k = ê

πw,
∑

i∈[m],j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·
ê

πw,
∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

βk

]
2

 · [− (αγ)n+1β1δ

βk

]
T
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Thus, for k = 1 we have

π′1 = ê

πw,
∑
j∈[n]

Mj,1 · xj ·
[
αn+1−jγn+1δ

]
2

 · [−(αγ)n+1δ
]
T
·

ê

πw,
∑

i∈[2,m]
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

β1

]
2

 ·

ê

πw,
∑
i∈[m]

j,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

β1

]
2



and for k ≥ 2:

π′k = ê

πw,
∑
j∈[n]

Mj,k · xj ·
[
αn+1−jγn+1δ

]
2

 ·
ê

πw,
∑

i∈[m]\{k}
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

ê

πw,
∑
i∈[m]

j,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

βk

]
2

 · [− (αγ)n+1β1δ

βk

]
T

Next, B computes:

π∗1 := π′k · ê

πw, −
∑

i∈[2,m]
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

β1

]
2

 ·

ê

πw,−
∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

β1

]
2

 ·

= ê

πw,
∑
j∈[n]

Mj,1 · xj ·
[
(αγ)n+1−jδ

]
2

 · [−(αγ)n+1δ
]
T
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and, for k = 2, . . . ,m:

π∗k := π′k · ê

πw, −
∑

i∈[m]\{k}
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

ê

πw,−
∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

βk

]
2

 ·
ê

(
[α]1 ,

[
αnγn+1δβ1

βk

]
2

)

= ê

πw,
∑
j∈[n]

Mj,k · xj ·
[
(αγ)n+1−jδ

]
2


B can compute the three pairings above using the group elements included

in the third row of Ω.
Finally, B computes and returns

∆∗ =
∏

k∈[m]

(π∗k)
−ck

We show that whenever A succeeds, the above value is ∆∗ = [(αγ)n+1δ]T ,
that is B succeeds in breaking the (n,m)-QP-BDHE assumption.

By construction of π∗k and using that c1 = 1, it holds:

∆∗ = [(αγ)n+1δ]T · ê

πw, −
∑
j∈[n]

[
(αγ)n+1−jδ

]
2

∑
k∈[m]

Mj,k · xj · ck


Therefore, ∆∗ = [(αγ)n+1δ]T holds since by definition of c it holds ∀j ∈ [n],∑

k∈[m] ck ·Mj,k · xj = 0. ⊓⊔

Zero-knowledge. We discuss how to tweak the FC scheme in such a way that
the commitment is hiding and the openings are zero-knowledge.

To do this, we consider an instantiation of the FC for vectors of length n+1.
Then, a commitment to x is a commitment to x̃ = (r,x) where r ←$ Zp. This
way the group element cm is distributed like a uniformly random group element.
The second change in the scheme is that in both Open and Verify, given an MSP
matrix M, one runs the same algorithms with a matrix M̃ = (0 | M⊤)⊤, i.e.,
M with a zero row on top. This way the linear system remains functionally
equivalent as r is ignored; this preserves both correctness and binding.

The third change is that Open computes πw as a commitment to the vector
w̃ = (s,w) for a random s←$ Zp. This way, πw is uniformly distributed. Thanks

to the row of zeros in M̃, correctness is preserved.
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Finally, to argue that this modified FC satisfies zero-knowledge, we show
the simulators (that are assumed to know as trapdoors the values α, γ, η,β).
S1 outputs cm as a commitment to (r,0) using a random r ←$ Zp, and stores
r in aux. S2 samples πw ←$ G1, computes πu ← (ηγr) · πw and computes the
simulated proof π̂ as

π̂ :=

 ∑
i∈[m],j∈[m]

Mj,i ·
(αγ)n+1−jβi

η

 · πu − [(αγ)n+1β1]1

which is the unique value satisfying equation (4).

5.2 Other Instantiations

Libert et al.’s FC. The seminal work of Libert et al. [LRY16] constructs
FC for linear functions F := {F : Zn

p → Zp}, such that each F is defined by
a vector β and Fβ(x) =

∑n
i=1 xiβi. Consider a bilinear group setting bp :=

(p,G1,G2,GT , e, g1, g2). The construction is as follows.

Setup(1λ, n) samples u←$ Zp and returns ck as

ck :=
(
{[uj ]1}j∈[2n]\{n+1}, {[uj ]2}j∈[n]

)
.

The trapdoor key is defined as td := [un+1]1.
Commit(ck,x; r) returns cm = [r]1 +

∑
j∈[n] xj · [uj ]1 and d = (x, r).

Open(ck, d,β) parses d as d = (x, r) and for y = ⟨x,β⟩, returns opy =
∑

i∈[n] βi ·Wi,

where Wi = r · [un−i+1]1 +
∑

j∈[n],j ̸=i xj · [un+1−i+j ]1.

Verify(ck, cm, opy,β, y) returns 1 if

ê(cm,
∑
i∈[n]

βi · [un+1−i]2)
?
= ê(opy, [1]2) · ê([u]1, [un]2)

y

It is clear that the verification is linear in the opening proof. To show the
construction provides perfect ZK, an efficient simulator S = (S1,S2) can be
constructed as follows: S1(td) first generates cm := Commit(ck,0; r) and de-
fines aux := r. Now, for any adversarially chosen vector x, and any query β,
S2(td, aux,β, y = ⟨x,β⟩) returns op = r ·(

∑
i∈[n] βi · [un+1−i]1)−y · [un+1]1 ∈ G1.

Lipmaa and Pavlyk’s FC. Limpaa and Pavlyk [LP20] proposed an FC for
a class of circuits F := {F : Dn → Dκ} where each F is defined by a vector
β ∈ Dµβ . Their scheme is based on the SNARK construction of Groth16 [Gro16]
for F ∗—a compiled version of F . In Groth’s SNARK, the argument consists of
three group elements π = ([A]1, [B]2, [C]1). The key idea in SFC of [LP20] is as
follows: first, express the first two elements [A]1, [B]2 as sums of two elements
where the first depends only on the secret data and the second depends only on
the public data (i.e., β and the output F (x,β)). That is, [A]1 = [As]1 + [Ap]1
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and [B]2 = [Bs]2+[Bp]2. Next, write [C]1 as [Csp]1+[Cp]1, where [Cp]1 depends
only on the public data and [Csp]1 depends on both the public and the secret
data. Now, a functional commitment to x is cm = ([As]1, [Bs]2) and the opening
to F (·,β) is op = [Csp]1. To verify an opening op, the verifier computes [Ap]1,
[Bp]2, and [Cp]1, and then runs the SNARK verifier on the argument ([As]1 +
[Ap]1, [Bs]2 + [Bp]2, [Csp]1 + [Cp]1). The construction is shown to be perfectly
zero-knowledge as defined in [LP20], but it is not hard to show that it satisfies
our stronger definition (i.e., definition 4) as well. In fact, given td = (u, v) as
the trapdoor of the commitment key, S1(td) generates the commitment as the
first step of the SNARK simulation in [LP20] and defines aux as the discrete
logarithm of the commitment. Now, S2 can utilises aux and answer oracle queries
for different circuits F (·,β) by performing the rest of the SNARK simulation.
Given that the verification in the SNARK of [Gro16] is linear in the opening
[Csp]1 makes this functional commitment an appropriate instantiation for our
construction of WEFC.

6 From WEFC to Reusable Non-Interactive MPC

6.1 Preliminaries on mrNISC

Here we first recall the definition of mrNISC schemes in [BL20] and their con-
struction based on WEZK-CM. We then show how our notion of WEFC can be
used as a replacement of WEZK-CM in their construction.

There are two rounds in mrNISC-style variant of secure multiparty compu-
tation protocols, input encoding phase and evaluation phase. In the first round,
parties publish encodings of their secret inputs on a public bulletin board, with-
out any coordination with other parties. This happens once and for all. Next, in
the second round, any subset of parties can compute a function on their inputs
by publishing only one message each. More formally, a mrNISC scheme is defined
by the following three algorithms:

Input Encoding (x̂i, si)← Commit(1λ, xi) by which a party Pi encodes its pri-
vate input xi and publishes the encoding x̂i.

Computation Encoding ηi ← Encode(z, {x̂j}j∈J , si) by which each party Pi

among a subset of parties {Pj}j∈J generates and publishes a computation
encoding ηi. This allows parties in J to compute a functionality f described
by z (i.e., f(z, ⋆)) on their private inputs.

Output y = Eval(z, {x̂j}j∈J , {ηj}j∈J) which deterministically computes the out-
put y (required to be f(z, {xj}j∈J) by the correctness property).

The construction of mrNISC in [BL20] is based upon the work of [GLS15],
where they follow the round collapsing approach for constructing 2-round MPC
protocols used in [GGHR14]. Let

∏
be an L-round MPC protocol. The round

collapsing approach collapses
∏

into a 2-round protocol
∏

as follows. For ℓ ∈ [L],
let mℓ

i denote the message published by party Pi in round ℓ of
∏
. Let xi and

ri be respectively the secret input and random tape of Pi used to execute
∏
.
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In the first round of
∏
, each party Pi commits to its private input (xi, ri) and

broadcasts the resulting commitment cmi. In the second round, each party Pi

garbles its next-step message function F ℓ
i in

∏
for each round ℓ ∈ [L]. Note

that the resulting garbled circuit, denoted by F̂ ℓ
i , should take as input all the

messages m<ℓ = {mℓ
j}l<ℓ,j∈[n] of all parties up to round ℓ− 1, and outputs the

next message mℓ
i of Pi in

∏
. To do so, each Pi should provide a way for other

parties to compute the labels of F̂ ℓ
i that correspond to the correct messages in∏

, where a messageml
j is correct if it is computed from Pi’s committed messages

(xi, ri) in the first round. To this end, [GLS15] suggests the following mechanism:
let k0 and k1 be two labels for an input wire in Pi’s garbled circuit F̂ ℓ

i . Suppose

that F̂ ℓ
i takes as input the t’th bit y = ml

j,t of a message from Pj (where ml
j is

output by Pj ’s garbled circuit F̂ l
j), and provides a way for all parties to obtain

the valid label ky. The key idea in [GLS15] is to use a general-purpose WE to
produce a ciphertext cty ←WE.Enc(xy, ky) for y ∈ {0, 1} under the statement xy
that “there exists a NIZK proof πy that proves y = ml

j,t is computed correctly”.
Again, correct computation here means that y is computed from Pj ’s committed
messages (xi, ri) in the first round, and in accordance to the partial transcript of
messages m<l. The two ciphertexts (ct0, ct1) are part of what Pi in the garbled
circuit F̂ l

i outputs. Furthermore, to allow all parties to (publicly) obtain the

correct label ky, Pj ’s garbled circuit F̂ l
j additionally outputs a NIZK proof πy

that y = ml
j,t is correctly computed. Correctness of

∏
follows from correctness

of WE. Security also follows from the fact that k1−y remains hidden by the
soundness of NIZK and semantic security of WE. Furthermore, the ZK property
of NIZK guarantees the privacy of parties.

The main problem in the above construction of [GLS15] is the lack of general-
purpose WE from standard assumptions. Benhamouda and Lin [BL20] overcome
this problem by observing that not a WE for general NP language, but a WE
scheme for a particular language corresponding to the verification circuit of a
NIZK proof that proves the correctness of computation over committed informa-
tion suffices to realize the above construction. This variant of WE, denoted by
WEZK-CM in this work, consists of a triple WEZK-CM = (COM,NIZK,WE) and is
defined for a NP language L such that a statement x = (cm, G, y) is in L iff there
exists an accepting NIZK proof π (as the witness for x) w.r.t. crs that proves
cm is a commitment of some value v and that G(v) = y. As provided in the
construction of [GLS15] (but based on stronger assumption of general-purpose
WE), WEZK-CM should support all polynomial computations; i.e., it should be
that G in the statements x = (cm, G, y) can be any arbitrary polynomial-sized
circuit. Moreover, the commitments in WEZK-CM should be reusable in the sense
that generating unbounded number of NIZK proofs and WE ciphertexts w.r.t.
commitments should not reveal any information about the committed (secret)
values, except what is revealed by the statements. Equipped with this property
then allows to make the construction of [GLS15] reusable by replacing ri with a
PRF seed si that generates pseudo-random tapes for an unbounded number of
computations. The key idea in the construction of WEZK-CM in [BL20] is to use
a NIZK proof system that has a linear-decision verification. Given such NIZK
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is then sufficient to realize WEZK-CM using a WE for linear languages which can
be constructed efficiently based on SPHFs. In more details, let Θ = Mπ be
the linear equation corresponding to the verification of NIZK for a statement
x = (cm, G, y), such that Θ and M depend on x and thus are known at the
time of encryption. One can now encrypt a message straightforwardly by using
an SPHF for this relation such that only one who can compute the hash value
using a valid witness π can retrieve the message.

6.2 Our mrNISC construction

We now show how one can replace WEZK-CM with WEFC in the aforementioned
construction. Let FC be a succinct functional commitment for circuit class F , and
WEFC = (Setup,Commit,Open,Verify,Enc,Dec) be a WEFC for F constructed as
in section 4.2. Besides WEFC, the construction uses the following building blocks:

– A semi-malicious output-delayed simulatable L-round MPC protocol
∏

=
(Next,Output) for f (see definition 9).

– A garbled circuit GC = (Gen,Garble,Eval,Sim) for F (see definition 12).

The construction is as follows:

Input Encoding. For a binary input xi and PRF key fki ←$ {0, 1}λ, party
Pi commits to xi||fki as (cmi, di) ← Commit(ck, (xi||fki); ri). It then sets
x̂i := cmi and si := (xi, fki, di).

Computation Encoding. To encode a computation f(z, ⋆), each party Pi for
ℓ ∈ [L] generates input labels (stEℓ

i , {msgEℓ
i,j}j∈J) ← Gen(1λ) and garbles

the evaluation function Fℓ
i (defined in fig. 3) as F̂ℓ

i ← Garble((stEℓ
i , {msgEℓ

i,j}j∈J),Fℓ
i).

Finally, it sets ηi := {F̂ℓ
i}ℓ∈[L].

Output. The output is computed by recovering the input labels and then eval-
uating the garbled circuits on them in L iteration. That is, for ℓ = 1, . . . , L:
1. For i ∈ J ,(

stE′ℓ+1
i , {ctℓi,j,k,b}j,k,b,mℓ

i , {opℓi,k}k
)
:= Eval(F̂i, (stE

′ℓ
i , {msgEℓ

i,j [m
ℓ−1
j ]}j∈J)).

2. If ℓ ̸= L, then for i, j ∈ J and k ∈ [νm],

msgEℓ+1
i,j [mℓ

j ] :=
{
Dec(ck, ctℓ+1

i,j,k,mℓ
j,k

, cmj , G
ℓ
j,k,m

ℓ
j,k, op

ℓ
i,j,k)

}
After all the messages m = {mℓ

j}j∈J,ℓ∈[L] of the inner MPC are recovered,
the final output is computed as y := Output(z,m).

The correctness of the construction follows straightforwardly from the cor-
rectness of the underlying building blocks. For security, we refer to [BL20] as the
proof is similar to the security of the mrNISC construction in [BL20]. Here, we
only state the theorem.

Theorem 5. Let PRF be a pseudorandom function, GC be a garbled circuit with
simulatability property (see definition 12),

∏
be a semi-malicious output-delayed

simulatable MPC protocol (see definition 9), and WEFC be a WEFC with semantic
security (see section 3). The mrNISC scheme described above is semi-maliciously
private as defined in B.3.
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Hardwired Values:(
1λ, ℓ, i, z, {x̂j = cmj}j∈J , si = (xi, fki, di), stE

ℓ+1
i , {msgEℓ+1

i,j }j∈J

)
.

Circuit Inputs. (m<ℓ−1,mℓ−1), where m<ℓ−1 are the protocol messages of the first
ℓ − 2 rounds with corresponding garble labels stEℓ

i , and mℓ−1 are the messages of
the ℓ− 1 round with corresponding garble labels {msgEℓ

i,j}j∈J .

Procedure. 1. For j ∈ J and k ∈ [νm], define the circuits Gℓ
j and Gℓ

j,k as follows:

Gℓ
j(xj , fkj) = Nextj(z, xj ,PRF(fkj , z||[νr]),m<ℓ−1,mℓ−1) ; Gℓ

j,k := k-th bit of Gℓ
j

2. Compute the ℓ-th round message mℓ
i = mℓ

i,1|| . . . ||mℓ
i,νm of Pi, and proofs of correct

openings opℓi,k for each bit k ∈ [νm]:

mℓ
i := Gℓ

i(xi, fki) ; op
ℓ
i,k ← Open(ck, si, G

ℓ
i,k) for k ∈ [νm].

3. For j ∈ J and k ∈ [νm], encrypt labels msgEℓ+1
i,j [k, b] so that the valid message mℓ

j

can be used to obtain msgEℓ+1
i,j [mℓ

j ] = {msgEℓ+1
i,j [k,mℓ

j,k]}k∈[νm]:

ctℓ+1
i,j,k,b ← Enc(ck, cmj , G

ℓ
j,k, b,msgEℓ+1

i,j [k, b])a for b ∈ {0, 1}.

Circuit Output. (stEℓ+1
i [m<ℓ−1||mℓ−1], {ctℓ+1

i,j,k,b}j,k,b,m
ℓ
i , {opℓi,k}k).

a The ciphertexts are set to be empty strings for ℓ = L.

Fig. 3: Circuit Fℓ
i for the construction of mrNISC based on WEFC

On the Efficiency of our mrNISC Construction. The main advantage of our
mrNISC construction compared to the one in [BL20] is that our approach admits
an input encoding phase with much shorter communication since we use succinct
commitments. This is especially important since commitments are supposed to
be stored in a public bulletin board to be re-used in several future computations.

Remark 4. While our FC construction can be used to instantiate our WEFC

for NC1, we need one to support arbitrary circuits to instantiate our mrNISC
(roughly, this corresponds to the round function of the “lifted” MPC, plus PRFs).
To achieve this, we notice we can use the same generic bootstrapping technique
used in [BL20] to obtain WEFC for all polynomial-size circuits. For a polynomial-
size computation G(v) = y, the bootstrapping technique encodes the computa-
tion into a randomized encoding o = RE(G, v,PRF(k)) (for some PRF seed k)
that reveals y. Given that both RE and PRF are computable in NC1, our WEFC

for NC1 can be used to verify if the computation of o from (v, k)—committed in
a commitment cm—is correct. There is still one issue left that verifying that o
decodes to y is still in P. To get around this, a garbled circuit is instead used to
verify if a given input o′ decodes to y.

We observe that this technique preserves the succinctness of the encoding
(commitments) in the context of mrNISC protocols.
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7 Other Application Scenarios

In this section we show that our notion of WEFCcan be versatile; we describe
how it can be used in other scenarios besides mrNISC.

7.1 Targeted Broadcast

As a first application scenario, we discuss how to apply WEFC to a targeted
broadcast with “special properties”. See last item in section 1.2 for a descrip-
tion of the problem, but a quick summary is: we aim at encrypting a message
with respect to some attributes (not necessarily known before encryption time);
only users holding those attributes can decrypt (we discuss later how they are
granted).

This subsection proceeds in three parts. We first give a flavor of our approach
template, which we call “commit-and-receive” since it involves a commitment
to user attributes which allows them to decrypt to compatible messages. We
then argue what properties make this approach interesting compared to the
more standard targeted broadcast setting. Finally we compare to alternative
approaches in more detail. Due to the lack of space, the last two parts are
deferred to appendix C.

Our Approach: Commit-and-Receive. We now describe our general ap-
proach. To better provide an intuition for it, we start with a flavor of which
settings it is suitable for; this is best introduced through a specific toy example.
Consider a sophisticated programming contest where participants are asked to
write a program solving a specific algorithmic problem. To evaluate each sub-
mission, it is common for the organizers to execute the program against several
test cases (not public before submission deadline). If submission passes enough
test-cases, the sender can receive instructions to move on to the next stage (or
receive a digital prize, e.g. a full copy of TAOCP19). If the participants want to
keep their code secret, can their program still be tested and receive the instruc-
tions/prize? There are arguably other natural settings besides this one 20.

We aim at providing a solution for a generalized version of the setting above
with particular attention at minimizing round interaction. We call our approach

19 The Art Of Computer Programming (TAOCP) by Donald E. Knuth https://

www-cs-faculty.stanford.edu/~knuth/taocp.html.
20 Another straightforward example for our setting is that of lotteries. Each party

commits to a lottery number (or through an identifier sampled in some manner),
then a draw occurs and only the winner(s) can obtain a certain message, e.g., a
digital prize or some other message. The lottery setting while simple is actually quite
concretely practical, for instance in proofs of stake [DPS19]. The problem of commit-
and-receive can be seen as a a more general version of the primitive “Encryption to
the Current Winner” (ECW) defined in [CDK+21] in the context of proofs of stake.
In fact the solution described in this section can be leveraged as a construction for
ECW with short commitments.
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“Commit-and-Receive”21 and we show how it can be naturally built through our
primitive WEFC.

Our approach, described through the lens of the application example above:
consider a party R interested in receiving some message (e.g. a digital good)
from a sender S. The latter would like the message to be received by R only if
some data DR held by R satisfy a certain policy (e.g. the tests determined which
programs will pass the contest or the drawn lottery number). The data DR are
committed beforehand and the policy is not chosen adaptively and thus possibly
not known at commitment time. After each participant has published a commit-
ment cmi to their program, the organizers can broadcast ct := (ct1, . . . , ctℓ) with
cti ← WEFC.Enc(ck, cmi, Ftests,m), where m contains further instructions or a
digital prize and Ftests is a function checking if tests are passed. The participants
whose solutions do not pass the tests will not be able to decrypt their respective
ciphertext.

7.2 Simple Contingent Payment for Services

The next application setting we describe has to do with a form of conditional
payments. Imagine we want to incentivize the availability of some large data
(Internet Archive, Wikipedia, etc.). One approach to (publicly) check data avail-
ability uses some variant of this approach: for the data D there exists a public,
succinct commitment (e.g., a Merkle Tree or a functional commitment com-
patible with WEFC in our case); once every epoch, a verifier samples random
indices r1, . . . , rm ←$ [|D|]; a storage provider shows an opening (e.g., Merkle
tree paths) to the values D[r1], . . . , D[rm]. If carried out enough times and ap-
propriately choosing m, this procedure can guarantee data availability with low
communication [JK07]. Notice that the use of succinct commitments is essential
in such an application: if verification requires the same amount of storage as the
data D, one may be better off storing D.

There are several approaches to incentivizing availability without the need
of interaction from the party interested in keeping the data available (which we
call stakeholder in the remainder). Several of these approaches involve embedding
incentives in the mining process in a blockchain (e.g., Filecoin) or letting a smart
contract (e.g., on Ethereum) unlock a reward22 if the verification process above
succeeds. Other solutions apply threshold cryptography requiring a set of parties
to be available and act as decryptor oracles [KAS+18]. Through WEFC, we can
achieve a simpler solution that does not rely on threshold networks, a specific
blockchain architecture or smart contracts (convenient both in terms of gas costs,
simplicity and communication complexity on chain) . The solution is as follows.
The stakeholder produces a vector of random indices r as above and produces
the ciphertext ct←WEFC.Enc(ck, cmD, Fr, kca$h)

23 where cmD is a commitment

21 The name is a variant of “commit-and-prove” as used in [CFQ19, Lip16].
22 See respectively https://docs.filecoin.io/about-filecoin/what-is-filecoin/

and https://thegraph.com/docs/en/about/
23 We use a slightly different syntax than the usual one, which we explain later (see

also appendix E).
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to the data, Fr is a selector function—Fr(D) := (D[r1], . . . , D[rm])—and kca$h
is the message we are encrypting, that is a secret that allows access to the reward
(e.g., a Bitcoin private key). Further subtleties of this approach are discussed in
appendix C.2. We believe the solution above can be applied generically to other
natural settings.

An important note is that for the approach above to work we need a stronger
variant of WEFC in which (a) the encryptor does not need to know the output of
the function used in the statement, and (2) security has an extractability flavor
which ensures that a successful decryptor will actually know the output of Fr(D)
for committed data D. In appendix E, we define this variant of WEFC and prove
that our same construction of Section 4 satisfies this stronger property.
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Supporting Material

A Analysis of the QP -BDHE assumption in the generic
bilinear group model

Lemma 1. For n,m = poly(λ) the (n,m)-QP-BDHE assumption holds in the
generic bilinear group model.

Proof. Note that the (n,m)-QP-BDHE assumption is an instance of the (com-
putational) “Uber assumption” with Laurent polynomials of [BBG05, Boy08]
(actually, a special case in which all the input polynomials are monomials). To
justify the hardness of the assumption, we need to show that the monomial to
be computed by the adversary in the target group, that is [(αγ)n+1δ]T , is not
symbolically equivalent to any of the monomials that one can obtain by taking
the product of all the terms of Ω given in G1 with those in G2.

We recall the adversary’s input Ω.

Ω :=


{[αj ]1}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],

{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

{[ηγj ]2}j∈[n], [(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]{[

δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i̸=k

,
{[

αjβiγ
ℓδ

βk

]
2

}
i,k∈[m],j∈[n]
ℓ∈[2n]\{n+1}



We can restrict our analysis by considering only the products of the terms in
the third row of Ω with the terms in in the first row. We can do this restriction
because the target monomial contains the variable δ (which appears only in the
third row) and because elements in the third row are all in G2.

First, we analyze the products of
{[

δ
βk

]
2

}
k∈[m]

and the first row of Ω:

S1,1 :=

{[
αjδ

βk

]
T

}
j∈[n],k∈[m]

, S1,2 :=

{[
ηαjγℓδ

βk

]
T

}
j,ℓ∈[n],k∈[m]

S1,3 :=

{[
αjβiγ

ℓδ

βk

]
T

}
i,k∈[m],j,ℓ∈[2n]

ℓ̸=n+1



Second, we analyze the products of terms in
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i ̸=k

and

the first row of Ω:

S2,1 :=

{[
αj+j′βiγ

n+1δ

βk

]
T

}
j,j′∈[n],i,k∈[m]

i̸=k

S2,2 :=

{[
ηαj+j′βiγ

n+1+ℓδ

βk

]
T

}
j,j′,ℓ∈[n],i,k∈[m]

i ̸=k

S2,3 :=

{[
αj+j′βiβi′γ

ℓ+n+1δ

βk

]
T

}
j∈[n],j′,ℓ∈[2n],i,i′,k∈[m]

i ̸=k,ℓ ̸=n+1

Third, we analyze the products between
{[

αjβiγ
ℓδ

βk

]
2

}
i,k∈[m],j∈[n]
ℓ∈[2n]\{n+1}

and the

first row of Ω:

S3,1 :=

{[
αj+j′βiγ

ℓδ

βk

]
T

}
i,k∈[m],j,j′∈[n]
ℓ∈[2n]\{n+1}

, S3,2 :=

{[
ηαj+j′βiγ

ℓ+ℓ′δ

βk

]
T

}
i,k∈[m],j,j′,ℓ′∈[n]

ℓ∈[2n]\{n+1}

,

S3,3 :=

{[
αj+j′βiβi′γ

ℓ+ℓ′δ

βk

]
T

,

}
i,i′,k∈[m],j,j′∈[n]
ℓ,ℓ′∈[2n]\{n+1}

Below we show why [(αγ)n+1δ]T is not in the sets above:

– S1,1 ∪ S2,1: since all its elements contain a variable β−1k .
– S1,2 ∪ S2,2 ∪ S3,2: since all its elements contain the variable η.
– The subset of S1,3 ∪ S3,1 where i ̸= k: since all its elements contain the

variables βi/βk and i ̸= k.
– The subset of S1,3 ∪ S3,1 where i = k: since none of its elements contain the

term γn+1.
– S2,3 since all its elements have γℓ+n+1, with ℓ ≥ 1.
– S3,3 since every term has at least a variable βi.

B Additional Preliminaries

B.1 Output-delayed Simulatable MPC

Here we give the formal definition of a special MPC protocol with output-delayed
simulatability property which guarantees that all the messages except the last
one can be simulated for all-but-one honest parties before knowing the output.
This is required as the adversary in a mrNISC protocol learns the output only
when all the honest parties agreed to provide a computation encoding.
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Definition 9 (MPC Protocol). Let F be a class of functions. An L-rounds
MPC scheme

∏
= (Next,Output) for F between n parties consists of two PPT

algorithms:

Next message. mℓ
i := Nexti(1

λ, 1n, z, xi, ri,m
<ℓ) is the message broadcasted

by party Pi in round ℓ ∈ L, on public input z, private input xi, randomness

ri ∈ {0, 1}νr , and received messages m<ℓ = {mℓ̃
j}j∈[n],ℓ̃<ℓ, where mℓ̃

j is the

message broadcasted by Pj on round ℓ̃.
Output. y := Output(1λ, 1n, z,m) is the output of the MPC protocol based on

public input z and the full transcript m := m<L+1.

We require an L-round MPC protocol to be perfectly correct and semi-
malicious output-delayed Simulatable as defined below.

Definition 10 (Perfect Correctness). An L-round MPC protocol
∏

= (Next,Output)
for F is perfectly correct if for any λ ∈ N, for any public input z, any inputs
(x1, . . . , xn), and any f ∈ F ,

Pr
[
Output(1λ, 1n, z,m) = f(z, x1, . . . , xn) : r ←$ {0, 1}νr·n

]
= 1,

where r := (r1, . . . , rn), and m := m<L+1 such that mℓ
j = Nextj(1

λ, 1n, z, xj , rj ,m
<ℓ)

for j ∈ [n] and ℓ ∈ [L].

Definition 11 (Semi-Malicious Output-Delayed Simulatability). An L-
round MPC protocol

∏
= (Next,Output) for F is semi-malicious output-delayed

simulatable, if there exists a PPT simulator S, such that for any PPT adversary
A and any f ∈ F , the view of A in the Ideal-Real experiments in fig. 4 are
indistinguishable.

B.2 Garbled Circuit

Definition 12 (Garbled Circuit). Let F = {Cλ}λ∈N be a polynomial-size
class of circuits with input and output lengths n and l. A garbled circuit scheme
GC for F consists of four polynomial-time algorithms GC = (Gen,Garble,Eval,
Sim):

E← Gen(1λ): It generates input labels E = {E[i, b]}i∈[n],b∈{0,1} , where the input
label E[i, b] corresponds to the value b of the i-th input wire.

Ĉ ← Garble(E, C): Given input labels and a circuit C ∈ Cλ as input, it outputs

a garbled circuit Ĉ.
y ← Eval(Ĉ,E′): On input a garbled circuit Ĉ and input labels E′, it outputs

y ∈ {0, 1}l.
(C̃,E′)← Sim(1λ, y): Given the security parameter λ and a value y ∈ {0, 1}l, it

outputs a garbled circuit C̃ and input labels E′.

We require a garbled circuit to be perfectly correct and simulatable as defined
below.
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ExpRealA,S(λ, f)

1. A chooses the number of parties n, the set of honest partiesH ⊆ [n], the public
input z, the private inputs {xi}i∈[n] of all the parties and the randomnesses
{ri}i∈H̄ of all the corrupt parties.

2. The challenger picks fresh randomness {ri}i∈H of honest parties, runs the
MPC protocol with the specified inputs and randomnesses, and sends the
resulting transcript (m<L, {mL

i }i∈H̄) except the last message of the honest
parties to A.

3. A can send queries (Compute, Pi) to the challenger for i ∈ H and receive the
last message mL

i of Pi.

ExpIdealA,S(λ, f)

1. A chooses the number of parties n, the set of honest parties H ⊆ [n], the
public input z, the private inputs {xi}i∈[n] of all the parties and the random
tapes {ri}i∈H̄ of all the corrupt parties.

2. Given the inputs and randomnesses of the corrupt parties, S outputs a tran-
script (m<L, {mL

i }i∈H̄) of all but the last message of the honest parties to
A.

3. A can send queries (Compute, Pi) to S for i ∈ H and receive the last message
mL

i of Pi. If all the honest parties have been queried, S is additionally given
f(x1, . . . , xn) before answering the query.

Fig. 4: Real and Ideal experiments for semi-malicious output-delayed simulata-
bility

Definition 13 (Perfect Correctness). For any security parameter λ ∈ N,
for any circuit C ∈ Cλ, any input x ∈ {0, 1}n, any E ← Gen(1λ), and any

Ĉ ← Garble(E, C),

Pr[Eval(Ĉ, {E[i, xi]}i∈[n]) = C(x)] = 1,

Definition 14 (Simulatability). The following two distributions are compu-
tationally indistinguishable:{

(E, Ĉ) : E← Gen(1λ); Ĉ ← Garble(E, C)
}
λ,C∈Cλ,x∈{0,1}n

,{
(E′, Ĉ) : (E′, Ĉ)← Sim(1λ, C(x))

}
λ,C∈Cλ,x∈{0,1}n

B.3 Security Definition of mrNISC

Definition 15 (Semi-malicious Privacy). A mrNISC scheme for a function
f is called semi-malicious private if there exists a PPT simulator S such that
no PPT adversary A can distinguish the two experiments defined in fig. 5.
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ExpRealA,S(λ, f)

A chooses the number of parties n, and the set of honest parties H ⊆ [n]. It
then interacts with a challenger C for an arbitrary number of iterations until it
terminates. A can submit one query of the following three types in every iteration.

1. CORRUPT INPUT ENCODING. Upon A sending a query (input, Pi, xi, ρi) for a
corrupt party i ∈ H̄, C records the input encoding x̂i generated as (x̂i, si) =
Commit(xi; ρi) using input xi and randomness ρi.

2. HONEST INPUT ENCODING. Upon A choosing the input (input, Pi, xi) for an
honest party i ∈ H, C generates (x̂i, si) = Commit(xi), and sends x̂i to A.

3. HONEST COMPUTATION ENCODING. Upon A querying (compute, Pi, z, I) for an
honest party i ∈ H ∩ I, C checks if the input encodings {x̂j}j∈I for all
participants have been generated, then it sends the computation encoding
αi ← Encode(z, {x̂j}j∈I , si) to A.

ExpIdealA,S(λ, f)

The ideal experiment is the same as above, except for the following differences.

1. CORRUPT INPUT ENCODING. Additionally send query (input, Pi, xi, ρi) to S.
2. HONEST INPUT ENCODING. Upon A choosing the input (input, Pi, xi) for an

honest party i ∈ H, C sends query (input, Pi) to S and forwards the simulated
input encoding x̃i to A.

3. HONEST COMPUTATION ENCODING. Upon A querying (compute, Pi, z, I) for an
honest party i ∈ H ∩ I, if this is the last honest computation encoding, C
sends the query (compute, Pi, z, I, y) with the output y = f(z, {xt}t∈I) to
S; otherwise, C sends the query (compute, Pi, z, I) without y. The challenger
forwards the simulated computation encoding α̃i to A.

Fig. 5: Real and Ideal experiments for semi-malicious output-delayed simulata-
bility

C More on Application Scenarios

C.1 Targeted Broadcast

Motivating our approach: more flexibility, more privacy, less trust. We
argue that the approach to targeted broadcasting we just described is of interest
because of three properties:

1) Flexible attestation. What is left undiscussed above is how, in general,
the list of commitments (cm1, cm2, . . . ) available to the sender is updated
or comes to be. Will a party with a special authority have to issue each of
them or could commitments be registered through some form of consensus?
A commit-and-receive approach is flexible in that respect because it enables
different solutions in that spectrum. We call the process of updating this list
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attestation since, once in the list, commitments are close to handles for some
user’s identity, which becomes attested once part of the list.
In fig. 6 we give some intuitive examples of how this process may work, from
the more centralizing/requiring trust in specific parties, to the more decen-
tralized. We assume an abstract informal interface AddUserComm/VfyUpdUsers
for adding a user commitment to the list and verify&update such list.
The first approach (fig. 6a) shows the case where users may receive explicit
attestation by one in a network of authorities. This is close to the approach
common in ABE—standard ABE corresponds to the special case where there
is only one authority. In some settings, we may do without an authority by
allowing users to perform attestation by showing their data satisfy a minimal
general property (fig. 6b), e.g. the format of an identification document (this
is not the property required for decryption but one common to all commit-
ted values). Pushing this to extreme, users can also be allowed to register
themselves (fig. 6c). We expand on application scenarios and other caveats
in appendix D.

2) No key escrow. Our approach does not require a party holding a global
secret that allows decryption of all ciphertexts. In this respect, some of our
examples in fig. 6 resemble the approach used in registration-based encryp-
tion which achieve the special case of IBE (rather than general attributes)
without a master secret key [GHMR18].

3) Attribute-hiding. Since the users’ communication handles—their commitments—
have hiding properties, they may be able to keep their content completely
secret. This is true in self-attestation approaches (fig. 6b and fig. 6c) where
no authority has access to their attributes through an attestation procedure
where they explicitly show attributes or through a master secret that acts
as a trapdoor.

Comparing Commit-and-Receive to Alternative Approaches

A naive solution based on zero-knowledge. As a starting point of compar-
ison, we observe that another simple solution to the problem could have the
receiving parties publish a (possibly zero-knowledge) proof that their data
satisfy the policy. The sender could then send the information only to the
parties with a valid proof. However, this solution clearly requires additional
rounds of interaction if the policy is not known at commitment time or is
adaptively chosen. This is, for example, the case in a programming contest
(test cases cannot be known in advance), lotteries or whenever we want to
reuse that same commitment stage for multiple rounds. Notice that this so-
lution is different than the one we propose in fig. 6b since there we are not
proving the property required for decryption but a once-and-for-all simple
property of the data D (e.g., the format of structure of the data).

FHE. Compact FHE [Gen09] could be used as a non-interactive solution, but
at the price of significantly worse efficiency in some settings. For example, in
the programming contest case, each participant can generate an FHE key-
pair and encrypt their submission with respect to it. The organizers can then

46



AddUserComm(D)→ (cm′, σ)

One of the valid authorities

first produces and then signs

a commitment cm′
to the data

VfyUpdUsers(cm, σ)→ pp′users

Signature of authority is checked;

if valid, the commitment list

is updated appropriately

(a) Attestation through authority. It assumes there is a pre-established agree-
ment on which entities are authorized to approve attestation after seeing a
commitment.

AddUserComm(D)→ (cm′, auxadd)

cm′ ← FC.Commit(ck, D)

// ZK proof of valid structure of data

πfmt ← ZK.Prove(Rfmt, D, . . . )

return
(
cm′

, πfmt

)

VfyUpdUsers(cm, πfmt)→ pp′users

if ZK proof verifies then

return ppusers ∪ {cm
′}

else

return ppusers

(b) Self-attestation with minimal validation

AddUserComm(D)→ cm′

return cm′ ← FC.Commit(ck, D)

VfyUpdUsers(ppusers, cm
′)→ pp′users

// no checks

return ppusers ∪ {cm
′}

(c) Self-attestation

Fig. 6: Examples of flexibility in attestation (informally described). We assume
all protocols in the interface take as input static public parameters such as
commitment keys, etc. We denote by D the committed data. The set ppusers
denotes the list of already registered commitments = (cm1, cm2, . . . ).

run cti ← FHE.Eval(pk, ct
(i)
subm, G

∗
m) where G∗m(P ) is a function that returns

m if P passes the tests and ⊥ otherwise. This solution satisfies the same
security goal as the one based on WEFC—as a circuit private FHE ensures
that cti does not reveal information on m—but requires communication at
least linear in the length of the committed data. In particular, in our example
each participant must send an FHE encryption of P , which is at least |P |-bits
long, whereas by using WEFC they only need to send a succinct commitment
to their solution P .

ABE. Our application is closely related to the “targeted broadcast” in [GPSW06]
(based on ciphertext-policy ABE) and in general to “Decentralized” ABE [LW11a].
Differences in approach and scope are the following. First, we want to account
for a wider class of settings where it is acceptable for users to self-attest or
the attesting could work through other mechanisms: by design, our approach
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keeps abstract the attribute registration stage (i.e., how user commitments
are registered). This allows more flexibility than ABE and its variants where
there is a clear structure of authority/authorities providing access keys. Sec-
ond, differently from ABE, our solutions do not have secrets (e.g., the master
secret key) that allow to decrypt all ciphertexts. Tradeoffs in Communica-
tion Complexity: The ciphertext size in our approach grows in the number
of commitments that are of interest for a certain plaintext. This may not be
practical in large networks and where there is no way to discriminate users
(and respective commitments) of interest for a given plaintext. This, how-
ever, does not necessarily make this approach worse than other systems. In
particular, (non-threshold) ABE systems have a ciphertext size that depends
on the policy/attribute size. Our ciphertexts do not. They may then offer
better bandwidth for the setting of large computations/data with a modest
amount of users.

C.2 Additional Subtleties in Contingent Payment Applications

Here we discuss some subtleties worth mentioning for the application in sec-
tion 7.2. We stress that our goal is to show that our primitive has the potential
to be versatile, not to provide a full-fledged solution to a specific application
setting.

– It is important that the indices are not revealed to the storage provider,
otherwise they could just store the part of the file revealed by those indices.
The indices themselves can be encrypted through a time-released encryption
so that they are only revealed after a certain amount of time [RSW96].
The WEFC ciphertext itself should be time-release encrypted: there is no
guarantee on hiding the function used for encryption and the indices could
be leaked as a consequence.

– This payment can be performed many times by simply releasing a large
number of timed-released encryptions as described above, each requiring
more and more time to decrypt.

– We assume the payer is either trusted or there is a way to guarantee that a
ciphertext contains a payment, e.g. through a zero-knowledge proof.

– If there are several providers, we ignore the issue of how to guarantee fairness
(“who gets the reward first”). If the reward is a digital good naturally this
problem does not occur as every honest party will be able to decrypt it.

D More on Attestation Approaches

This section expands on the discussion in section 7.1 and fig. 6. We are motivated
by providing a solution depending as little as possible on trusted parties. As
already mentioned, one solution to the problem of targeted broadcast is CP-ABE
(ciphertext-policy attribute-based encryption). The latter requires an authority
providing a key for a certain set of attributes. In the main text, we mention
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various approaches where users can register/attest themselves the attributes
that will allow them to decrypt for certain policies. Here we elaborate more on
them.

Self-Attestation: Where and Why

It may seem counterintuitive that there exist cases where we do not need to
involve in this attestation process. We observe, however, that there exist settings
actually amenable to self-attestation.

Some level of self-attestation may be meaningful in settings where the open-
ing allowing decryption:

– shows knowledge of a not easily available piece of information. For example,
the information could be a proof of the Riemann hypothesis and the encryp-
tor would like to send information readable only to those users holding such
valid proof. The programming contest example also falls into this category.

– has to do with something not necessarily referring to a ground truth. An
illustrative example are the features one can choose for their own character
at the beginning of a role-playing game (RPG)24. The application could then
for instance issue periodic messages, readable only by users with certain
features, but not others.

Full self-attestation. We can then ask where it would make sense to apply full self
attestation (fig. 6c). We notice that the first class of attributes described above
can be completely self-attested: a key for that attributes would just consist of a
commitment to the solution to a difficult puzzle (e.g., the proof of the Riemann
Hypothesis, the solutions to all New York Times Sudokus of the last year, etc.).
An adversary would need to be able to come up with the right attributes to
decrypt but this would deny the assumption on their hardness.

A mitigation against Sybil attacks: one-time tokens. Not all self-attested settings
have attributes that are hard to find (e.g. our RPG example or the lottery
one from earlier). Here an adversary could run a Sybil attack and “spam” the
system with commitments to different combinations of attributes. Potentially
this strategy can allow them to decrypt all ciphertexts (because there would
probably exist at least some of the adversarial commitments that open to data
satisfying the ciphertext policy). To prevent such an attack we can consider
one (or multiple) entity/entities that can issue tokens for attestation (fig. 7).
The adversary can thus issue no more commitments than the tokens it received.
Notice that such entity would be trusted only to properly issue tokens to users
but would not be trusted in other ways—it would not be learned the opening
of the commitment nor would be able to decrypt ciphertexts (as it is the case

24 Such features would involve for example gender, species (elf, human, etc...), back-
ground, weapon held, etc.. These features are chosen once and for all and it is not
important what they are. This is a toy example, but we believe natural higher-impact
examples could be found.
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AddUserComm(D, tokenadd)→ cm

cm′ ← FC.Commit(ck, D)

return
(
cm′

, tokenadd

)
VfyUpdUsers(Stokens)→ pp′users

if tokenadd ̸∈ Stokens

Stokens ← Stokens ∪ {tokenadd}

return ppusers ∪ {cm
′}

else

return ppusers

Fig. 7: Token-based attestation. Assumes an external mechanism for providing
registration tokens and maintaining a set Stokens of used ones.

for ABE authorities). Such entities could also be distributed and their authority
could be revoked in case of malfeasance.

Partially validating opening through zero-knowledge once. Another problem to
be solved for attributes that are self-attesting is that they could have the wrong
format. In the RPG example, we expect attributes to contain only one value
per field (see Footnote 24). This requirement can be enforced by letting the user
provide a zero-knowledge proof at the time of attestation that guarantees that
the opening satisfies certain format requirements fig. 6b. We stress this would
not be the same as providing a proof for the fact that the opening satisfies
a decryption policy: we assume this offline validation to be simpler (e.g. just
format based) and known in advance (in contrast to decryption policies which
are learned dynamically).

E Output Extractable WEFC

Here we discuss the output extractable variant of WEFCmentioned in our appli-
cation in section 7.2.

Model. The basic intuition of this primitive is that a party able to decrypt
should know the output value y = F (α,β). We model this through extraction
and dub it “output” extractability.

The syntax of this primitive is almost the same as that in definition 5 ex-
cept for a few changes. The syntax of encryption is Enc(ck, cm,β,m) instead
of Enc(ck, cm,β,y,m). The decryption algorithm additionally takes as input y.
Correctness stays the same mutatis mutandis.

We replace the security definition with the following one:

Output Extractability. For any λ, any F ∈ F , any stateless PPT adversary
A = (A1,A2), and any polynomial q(·), there exists a PPT extractor E and
a polynomial p(·), such that

Pr

b← A2(ck, ct) :

(ck, td)← Setup(1λ, F ); (α, r,β,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}
ct← Enc(ck, cm,β,mb)

 ≥ 1

2
+

1

q(λ)
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⇒ Pr

y← E(ck, ct)∧ F (α,β) = y
:

(ck, td)← Setup(1λ, F ); (α, r,β,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}
ct← Enc(ck, cm,β,mb)

 ≥ 1

p(λ)

Above we assume the extractor has also access to the random coins of the
adversary A2.

Construction. For the construction of output extractable WEFC, we modify
the language Llpar and [Θlpar,x]T as follows:

Llpar = {x = (cm,β)|∃op,y : Verify(ck, cm, op,β,y) = 1}

[Θlpar,x]T = [Mlpar,x · (õp||y)]T
where õp is derived from op by replacing its group elements with their discrete
logarithms. The new construction xWEFC = (Setup,Commit,Open,Verify, xEnc, xDec)
can be described as follows:

xEnc(ck, cm,β,m). Let x = (cm,β). To encrypt a bit messagem ∈ {0, 1}, select a
uniformly random vector hk ∈ Z1×ν

p , where ν is the number of rows ofMlpar,x,

sample a random r ←$ {0, 1}ℓ, and compute the ciphertext ct = (hp, r, ĉt),
where

hp = [hk ·Mlpar,x]⋆, H = [hk ·Θlpar,x]T , ĉt = ⟨σ(H), r⟩ ⊕m

xDec(ck, ct, cm,β,y, op). On input a ciphertext ct = (hp, r, ĉt), first compute
pH = [hp · (õp||y)]T , and then output the message m ∈ {0, 1} computed as
m = ⟨σ(pH), r⟩ ⊕ ĉt.

The proof of security is similar to the proof of theorem 2 with the observation
that we can still rely on the extractability of the underlying PHF to extract the
witness (õp||y) even though part of the witness (i.e., y) consists of field elements.
This comes from the fact that the extractor in the proof of theorem 1 can always
extract the representation of the witness as field elements efficiently. Below, we
state the theorem.

Theorem 6. Let FC be a functional commitment scheme for circuit class F
with computational evaluation-binding property. Let EPHF be an extractable pro-
jective hash function. The construction of xWEFC described above is an output
extractable WEFC for F .

Instantiations. All instantiations of functional commitments proposed in sec-
tion 5 have the property that their verification procedure is linear even if the
function output is part of the opening proof. In other words, the function output
is not paired together with the actual opening proof in the verification. Hence,
they can be used to instantiate our output extractable variant of WEFC.
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