Compact FE for Unbounded Attribute-Weighted Sums
for Logspace from SXDH*

Pratish Datta!, Tapas Pal? and Katsuyuki Takashima?®

I NTT Research, Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com,
2 NTT Social Informatics Laboratories, Musashino-shi, Tokyo, Japan 180-8585
tapas.pal.wh@hco.ntt.co.jp,
3 Waseda University, Shinjuku-ku, Tokyo, Japan 169-8050
ktakashima@waseda. jp

Abstract.

This paper presents the first functional encryption (FE) scheme for the attribute-weighted sum (AWS)
functionality that supports the uniform model of computation. In such an FE scheme, encryption takes as
input a pair of attributes (x,z) where the attribute x is public while the attribute z is private. A secret key
corresponds to some weight function f, and decryption recovers the weighted sum f(z)z. This is an important
functionality with a wide range of potential real life applications, many of which require the attribute lengths
to be flexible rather than being fixed at system setup. In the proposed scheme, the public attributes are
considered as binary strings while the private attributes are considered as vectors over some finite field, both
having arbitrary polynomial lengths that are not fixed at system setup. The weight functions are modeled as
Logspace Turing machines.

Prior schemes [Abdalla, Gong, and Wee, CRYPTO 2020 and Datta and Pal, ASTACRYPT 2021] could
only support non-uniform Logspace. The proposed scheme is built in asymmetric prime-order bilinear groups
and is proven adaptively simulation secure under the well-studied symmetric external Diffie-Hellman (SXDH)
assumption against an arbitrary polynomial number of secret key queries both before and after the challenge
ciphertext. This is the best possible level of security for FE as noted in the literature. As a special case of the
proposed FE scheme, we also obtain the first adaptively simulation secure inner-product FE (IPFE) for vectors
of arbitrary length that is not fixed at system setup.

On the technical side, our contributions lie in extending the techniques of Lin and Luo [EUROCRYPT 2020]
devised for payload hiding attribute-based encryption (ABE) for uniform Logspace access policies avoiding
the so-called “one-use” restriction in the indistinguishability-based security model as well as the “three-slot
reduction” technique for simulation-secure attribute-hiding FE for non-uniform Logspace devised by Datta and
Pal [ASTACRYPT 2021] to the context of simulation-secure attribute-hiding FE for uniform Logspace.

* This is the full version of an extended abstract that will appear in ASTACRYPT 2022.

Table of Contents

Introduction
Technical OvVerview
2.1 From All-or-Nothing to Functional Encryption
Preliminaries.
3.1 Bilinear Groups and Hardness Assumptions
3.2 Turing Machine Formulation
3.3 Functional Encryption for Unbounded Attribute-Weighted Sum for

Turing machines
3.4 Function-Hiding Slotted Inner Product Functional Encryption
3.5 Arithmetic Key Garbling Scheme for Turing machines
Construction of AKGS for the function class F
(1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L
5.1 The Construction
5.2 Security Analysis
1-Slot FE for Unbounded AWS for L
6.1 The Construction e
6.2 Security Analysis

1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by Boneh et al.
[BSW11] and O’Neill [O'N10], redefines the classical encryption procedure with the motivation
to overcome the limitation of the “all-or-nothing” paradigm of decryption. In a traditional
encryption system, there is a single secret key such that a user given a ciphertext can either
recover the whole message or learns nothing about it, depending on the availability of the secret
key. FE in contrast provides fine grained access control over encrypted data by generating
artistic secret keys according to the desired functions of the encrypted data to be disclosed.
More specifically, in a public-key FE scheme for a function class F, there is a setup authority
which produces a master secret key and publishes a master public key. Using the master secret
key, the setup authority can derive secret keys or functional decryption keys SK; associated
with functions f € F. Anyone can encrypt messages msg belonging to a specified message
space msg € M using the master public key to produce a ciphertext CT. The ciphertext
CT along with a secret key SK; recovers the function of the message f(msg) at the time of
decryption, while unable to extract any other information about msg. More specifically, the
security of FE requires collusion resistance meaning that any polynomial number of secret
keys together cannot gather more information about an encrypted message except the union
of what each of the secret keys can learn individually.

By this time, we have a plethora of exciting works on fe. These works can be broadly
classified in two categories. The first line of works attempted to build FE for general func-
tionalities [GVW12,CKZ13,GKP*13b, GKP*13a, GGG14,ABSV15, BLR 15, GJKS15,1715,
Wat15,AS16,BGJS16,BKS16,CI016, GGHZ16, GGH"16,GS16,AR17,BCG*17,AM18,BS18,
KSY18,AVI19,LT19,AMVY21,JL.521, GGLW22, J1.522]. However, those constructions were ei-
ther only secure against bounded collusion and/or extremely inefficient. With the motivation to
overcome these limitations, a second line of work attempted to design efficient FE schemes sup-
porting arbitrary collusion of users for practically relevant functionalities, e.g., linear/quadratic
functions [ABDCP15, ALS16, DDM16,1.V16, TAO16, AGRW17,BCFG17,Lin17,LT17, Weel7,
ACF*18,CLT18,CDSG'18, KLM 18, ABKW19,ABG19,DSP19, WFL19, ACGU20, ABM*20,
AGW20,ALMT20,CDSG'20,TT20,Wee20,AGT21,CSW21,DP21,LLW21,LLHG22, MKMS22].
In this work, we advance the state of the art along the latter research direction.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [AGW20] and Datta
and Pal [DP21] studied FE schemes for a new class of functionalities termed as “attribute-
weighted sums” (AWS). This is a generalization of the inner product functional encryption
(IPFE) [ABDCP15, ALS16]. In such a scheme, an attribute pair (z, z) is encrypted using the
master public key of the scheme, where x is a public attribute (e.g., demographic data) and z is
a private attribute containing sensitive information (e.g., salary, medical condition, loans, col-
lege admission outcomes). A recipient having a secret key corresponding to a weight function f
can learn the attribute-weighted sum f(x)z. The attribute-weighted sum functionality appears
naturally in several real life applications. For instance, as discussed by Abdalla et al. [AGW20)]
if we consider the weight function f as a boolean predicate, then the attribute-weighted sum
functionality f(z) would correspond to the average z over all users whose attribute x satis-
fies the predicate f. Important practical scenarios include average salaries of minority groups
holding a particular job (z = salary) and approval ratings of an election candidate amongst
specific demographic groups in a particular state (z = rating).

3

The works of [AGW20, DP21] considered a more general case of the notion where the
domain and range of the weight functions are vectors, in particular, the attribute pair of
public/private attribute vectors (x, z), which is encrypted to a ciphertext CT. A secret key
SK; generated for a weight function f allows a recipient to learn f(z)'z from CT without
leaking any information about the private attribute z.

The FE schemes of [AGW20, DP21] support an expressive function class of arithmetic
branching programs (ABPs) which captures non-uniform Logspace computations. Both schemes
were built in asymmetric bilinear groups of prime order and are proven secure in the simulation-
based security model, which is known to be the desirable security model for FE [O'N10,
BSW11], under the (bilateral) k-Linear (k-Lin)/ (bilateral) Matriz Diffie-Hellman (MDDH)
assumption. The FE scheme of [AGW20] achieves semi-adaptive security, where the adversary
is restricted to making secret key queries only after making the ciphertext queries, whereas
the FE scheme of [DP21] achieves adaptive security, where the adversary is allowed to make
secret key queries both before and after the ciphertext queries.

However, as mentioned above, ABP is a non-uniform computational model. As such, in
both the FE schemes [AGW20, DP21], the length of the public and private attribute vec-
tors must be fixed at system setup. This is clearly a bottleneck in several applications of
this primitive especially when the computation is done over attributes whose lengths vary
widely among ciphertexts and are not fixed at system setup. For instance, suppose a gov-
ernment hires an external audit service to perform a survey on average salary of employ-
ees working under different job categories in various companies to resolve salary discrep-
ancy. The companies create salary databases (X,Z) where X = (z;); contains public at-
tributes x; = (job title, department, company name) and Z = (z;); includes private attribute
z; = salary. To facilitate this auditing process without revealing individual salaries (private at-
tribute) to the auditor, the companies encrypt their own database (X, Z) using an FE scheme
for AWS. The government provides the auditor a functional secret key SK for a function f that
takes input a public attribute X and outputs 1 for x;’s for which the “job title” matches with a
particular job, say manager. The auditor decrypts ciphertexts of the various companies using
SK; and calculates the average salaries of employees working under that job category in those
companies. Now, if the existing FE schemes for AWS [AGW20, DP21] supporting non-uniform
computations are employed then to make the system sustainable the government would have
to fix a probable size (an upper bound) of the number of employees in all the companies.
Also, the size of all ciphertexts ever generated would scale with that upper bound even if the
number of employees in some companies, at the time of encryption, are much smaller than
that upper bound. This motivates us to consider the following problem.

Open Problem Can we construct an FE scheme for AWS in some uniform computational
model capable of handling public/private attributes of arbitrary length?

Our Results. This work resolves the above open problem. For the first time in the literature,
we formally define and construct a FE scheme for unbounded AWS (UAWS) functionality where
the setup only depends on the security parameter of the system and the weight functions are
modeled as Turing machines. The proposed FE scheme supports both public and private at-
tributes of arbitrary lengths. In particular, the public parameters of the system are completely
independent of the lengths of attribute pairs. Moreover, the ciphertext size is compact mean-
ing that it does not grow with the number of occurrences of a specific attribute in the weight

4

functions which are represented as Logspace Turing machines. The scheme is adaptively sim-
ulation secure against the release of an unbounded (polynomial) number of secret keys both
before and after the challenge ciphertext. As noted in [BSW11,0’N10], simulation security is
the best possible and the most desirable model for FE. Moreover, simulation-based security
also captures indistinguishability-based security but the converse does not hold in general.

Our FE for UAWS is proven secure in the standard model based on the symmetric external
Diffie-Hellman (SXDH) assumption in the asymmetric prime-order pairing groups. Our main
result in the paper is summarized as follows.

Theorem 1.1 (Informal) Assuming the SXDH assumption holds in asymmetric pairing groups
of prime-order, there exists an adaptively simulation secure FE scheme for the attribute weighted
sum functionality with the weight functions modeled as Logspace Turing machines such that
the lengths of public and private attributes are unbounded and can be chosen at the time of
encryption, the ciphertexts are compact with respect to the multiple occurrences of attributes
in the weight functions.

Viewing IPFE as a special case of FE for AWS, we also obtain the first adaptively simulation
secure IPFE scheme for unbounded length vectors (UIPFE), i.e., the length of the vectors is
not fixed in setup. Observe that all prior simulation secure IPFE [Weel7, AGW20, ALMT20,
DP21] could only support bounded length vectors, i.e., the lengths must be fixed in the setup.
On the other hand, the only known construction of UIPFE [TT20] is proven secure in the
indistinguishability-based model.

The proposed FE construction is semi-generic and extends the frameworks of the works
of Lin and Luo [LL20] and Datta and Pal [DP21]. Lin and Luo [LL20] develop an adap-
tively secure attribute-based encryption (ABE) scheme for Logspace Turing machines proven
secure in the indistinguishability-based model. Although the input length of their ABE is un-
bounded, but an ABE is an “all-or-nothing” type primitive which fully discloses the message
to a secret key generated for accepting policies. Further, the ABE of [LL20] is only pay-
load hiding secure meaning that the ciphertexts themselves can leak sensitive information
about the associated attributes. In contrast, our FE for UAWS provides more fine grained
encryption methodologies where the ciphertexts reveal nothing about the private part of as-
sociated attributes but their weighted sums. Our FE construction depends on two building
blocks, an arithmetic key garbling scheme (AKGS) for Logspace Turing machines which is an
information-theoretic tool and a function hiding (bounded) slotted IPFE scheme which is a
computational primitive. An important motivation of [L1.20] is to achieve compact cipher-
texts for ABEs. In other words, they get rid of the so-called one-use restriction from prior
adaptively secure ABEs [LW10,L.OST10,0T10,LW11,0T12,Weel4, CGW15,Att16, CGKW18§]
by replacing the core information-theoretic step with the computational primitive of func-
tion hiding slotted IPFE. The FE of [DP21] is able to accomplish this property for non-
uniform computations by developing a three-slot encryption technique. Specifically, three slots
are utilized to simulate the label functions obtained from the underlying AKGS garbling for
pre-ciphertext secret keys. Note that, the three-slot encryption technique is an extension of
dual system encryption methodologies [Wat09, LW 10, LOS™10]. In this work, we extend their
frameworks [LL20, DP21] to avoid the one-use restriction in the case of FE for UAWS that
computes weights via Logspace Turing machines. It is non-trivial to implement such three-
slot techniques in the uniform model. The main reason behind this fact is that in case of
ABPs [DP21] the garbling randomness can be sampled knowing the size of ABPs, and hence

5

the garbling algorithm is possible to run while generating secret keys. However, in the case
of AKGS for Logspace Turing machines, the garbling randomness depends on the size of the
Turing machine as well as its input lengths. Consequently, it is not possible to execute the
garbling in the key generation or encryption algorithms as the information about the garbling
randomness is distributed between these two algorithms. We tackle this by developing a more
advanced three-slot encryption technique with distributed randomness which enables us to
carry out such a sophisticated procedure for Logspace Turing machines.

Our FE for UAWS is a one-slot scheme. This means one pair of public-private attribute
can be processed in a single encryption. An unbounded-slot FE for UAWS [AGW20] enables
us to encrypt unbounded many such pairs in a single encryption. Abdalla et al. [AGW20)]
devise a generic transformation for bootstrapping from one-slot to unbounded-slot scheme.
However, this transformation only works if the underlying one-slot scheme is semi-adaptively
secure [DP21]. Thus, if we restrict our scheme to semi-adaptive security then using such trans-
formations [AGW20,DP21] our one-slot FE scheme can be bootstrapped to support unbounded
slots.

Organization. We discuss a detailed technical overview of our results in Section 2. We
provide useful notations, related definitions, and complexity assumptions in Section 3. We
give a description of AKGS construction for evaluating Turing machines via a sequence of
matrix multiplications in Section 4. Our construction of a single key and single ciphertext
secure FE scheme for UAWS along with its security analysis are described in Section 5. Next,
we build our full fledge 1-slot FE scheme for UAWS and prove its security in Section 6.

2 Technical Overview

We now present an overview of our techniques for achieving a FE scheme for AWS functionality
which supports the uniform model of computations. We consider prime-order bilinear pairing
groups (G1, Gy, Gr, g1, go,€) with a generator gy = e(g1,¢92) of Gp and denote [a]; by an
element g¢ € G; for ¢ € {1,2, T}. For any vector z, the k-th entry is denoted by z[k] and [n]
denotes the set {1,...,n}.

The unbounded AWS Functionality. In this work, we consider an unbounded FE scheme
for the AWS functionality for Logspace Turing machines (or the class of L), in shorthand it
is written as UAWSL. More specifically, the setup only takes input the security parameter of
the system and is independent of any other parameter, e.g., the lengths of the public and
private attributes. UAWS" generates secret keys SK(a1,z,,) for a tuple of Turing machines
denoted by M = {My}yez,, such that the index set Zps contains any arbitrary number of
Turing machines M}, € L. The ciphertexts are computed for a pair of public-private attributes
(x, z) whose lengths are arbitrary and are decided at the time of encryption. Precisely, the
public attribute @ of length N comes with a polynomial time bound 7' = poly(/N) and a
logarithmic space bound S, and the private attribute z is an integer vector of length n.
At the time of decryption, if Zps C [n] then it reveals an integer value ;. My (z)z[k].
Since My (x) is binary, we observe that the summation selects and adds the entries of z for
which the corresponding Turing machine accepts the public attribute . An appealing feature
of the functionality is that the secret key SK(asz,,) can decrypt ciphertexts of unbounded
length attributes in unbounded time/ (logarithmic) space bounds. In contrast, existing FE for
AWSs [AGW20,DP21] are designed to handle non-uniform computations that can only handle

6

attributes of bounded lengths and the public parameters grows linearly with the lengths. Next,
we describe the formulation of Turing machines in L considered in UAWS".

Turing machines Formulation. We introduce the notations for Logspace Turning machines
(TM) over binary alphabets. A Turing machine M = (Q, Yacc,d) consists of @) states with
the initial state being 1 and a characteristic vector y..c € {0,1}9 of accepting states and
a transition function . When an input (x, N,T,S) with length N and time, space bounds
T,S is provided, the computation of M|xrs(x) is performed in T steps passing through
configurations (x, (i, 7, W, q)) where i € [N] is the input tape pointer, j € [S] is the work tape
pointer, W € {0,1}* the content of work tape, and ¢ € [Q] the state under consideration. The
initial internal configuration is (1,1,0g,1) and the transition function § determines whether,
on input @, it is possible to move from one internal configuration (i,j, W,q) to the next
(¢, ', W' q')), namely if §(q, z[i], W[j]) = (¢, v, Ai, Aj). In other words, the transition
function 0 on input state ¢, an input bit @[i] and an work tape bit W[j], outputs the next
state ¢’, the new bit w’ overwriting w = W [j] by w' = W'[j] (keeping W [j"] = W'[;"] for all
j # j"), and the directions Ai, Aj € {0, £1} to move the input and work tape pointers.

Our construction of adaptively simulation secure UAWS" depends on two building blocks:
AKGS for Logspace Turing machines, an information-theoretic tool and slotted IPFE, a com-
putation tool. We only need a bounded slotted IPFE, meaning that the length of vectors of
the slotted IPFE is fixed in the setup, and we only require the primitive to satisfy adaptive
indistinguishability based security. Hence, our work shows how to (semi-)generically bootstrap
a bounded IPFE to an unbounded FE scheme beyond the inner product functionality. Before
going to describe the UAWS", we briefly discuss about these two building blocks.

AKGS for Logspace Turing machines. In [LL20], the authors present an ABE scheme for
Logspace Turing machines by constructing an efficient AKGS for sequence of matrix multipli-
cations over Z,. Thus, their core idea was to represent a Turing machine computation through
a sequence of matrix multiplications. An internal configuration (7, j, W, q) is represented as
a basis vector e(; jw g of dimension NS2%@Q with a single 1 at the position (7,7, W,q). We
define a transition matriz given by

1, it 6(g, xli], Wj]) = (¢, W'[jl.7" =i, 5" =)

M(x)[(i,5, W, q), (., W', ¢')] = and W'[j"] = W{j"] for all j" # j;
0, otherwise;
such that e&j’W’q)M(a:) = ea’,j’,W’,q’)‘ This holds because the ((i,7, W,q),

(7', 5', W’ q"))-th entry of M(x) is 1 if and only if there is a valid transition from (g, [i], Wj])
to (¢, W'[j],7 —i,5" — j). Therefore, one can write the Turing machine computation by right
multiplying the matrix M(x) for T times with the initial configuration e(T1,1,os,1) to reach of
one of the final configurations 1yjx(sjx{0,1}5 ® Yace- In other words, the function M|y 7 s(x) is
written as

M|nzs(®) = €1 051 (Mys(2) (1 nx8)x(0,1}5 © Yace) (2.1)

Thus, [LLL.20] constructs an AKGS for the the sequence of matrix multiplications as in Equa-
tion (2.1). Their AKGS is inspired from the randomized encoding scheme of [AIK11] and
homomorphic evaluation procedure of [BGG™14]. Given the function M|y 7s over Z, and two

7

secrets z, 3, the garbling procedure computes the label functions
Linit(w) = ﬁ + 62—1’170511)7'0;
fort € [T] : (Ltﬂ)@ = =741+ MN,S(.’,C)’I’},
(Lrs16)0 = =71 + 21 [N]x[8]%{0,1}5 ® Yace-
and outputs the coefficients of these label functions lini, € = (€ 9)s where 6 = (i,7, W, q)

and r; < ZLN]X[S}X{O’I}SX[Q]. To compute the functional value for an input «, the evalua-
tion procedure add 4,; with a telescoping sum e(Tl,l,Os,l) : Z;(MNﬁ(a:))t*lEt and outputs
zM|nrs(x) + . More precisely, it uses the fact that

T _ T T .
€t er1 Wi 1,qe1 T L = Ciyjy Wiq, Tt + €irge.We,ar (\ T+ M(w)rt‘*‘l,)
TV
i1

A crucial and essential property that the AKGS have is the linearity of evaluation procedure,
meaning that the procedure is linear in the label function values ¢s and, hence can be performed
even if /s are available in the exponent of a group. Lin and Luo identify two important security
notions of AKGS, jointly called piecewise security. Firstly, £, can be reversely sampled given
a functional value and all other label values, which is known as the reverse sampleability.
Secondly, ¢; is random with respect to the subsequent label functions Ly ¢ for all ¢ > ¢ and z,
which is called the marginal randomness.

Function Hiding Slotted IPFE. A normal IPFE computes inner product between two
vectors v and u using a secret key IPFE.SK, and a ciphertext IPFE.CT,. The IPFE is said
to satisfy indistinguishability-based security if an adversary having received many functional
secret keys {IPFE.SK, } remains incapable to extract any information about the message vector
u except the inner products {v - u}. It is easy to observe that if encryption is done publicly
then no security can be ensured about v from the secret key IPFE.SK, [DDM16] due to the
linear functionality. However, if the encryption algorithm is private then IPFE.SK, can be
produced in a fashion to hide sensitive information about v. This is termed as function hiding
security notion for private key IPFE. Slotted IPFE [LV16] is a hybrid of public and private IPFE
where vectors are divided into public and private slots, and function hiding is only guaranteed
for the entries in the private slots. Further, Slotted IPFEs of [LV16, L1.20] generate secret keys
and ciphertexts even when the vectors are given in the exponent of source groups whereas
decryption recovers the inner product in the target group.

2.1 From All-or-Nothing to Functional Encryption

We are all set to describe our approach to extend the framework of [LL1.20] from all-or-nothing
to functional encryption for the uniform model of computations. In a previous work of Datta
and Pal [DP21], an adaptively secure FE for AWS functionality was built for the non-uniform
model of computations, ABPs to be precise. Their idea was to garble a function fy(x)z[k]+ B
during key generation (keeping z[k| and x as variables) and compute IPFE secret keys to
encode the m labels, and a ciphertext associated to a tuple (x, z) consists of a collection of
IPFE ciphertexts which encode the attributes:

= SFE SK- : Vktem = Lit, Uk = Lim Where
SKy = {IPFESKuy s IPFESKs Jem (g,), Garble(fu(@)2[k] + B1) .t S B = 0
CT, = (IPFE.CT,, {IPFE.CTq, }1) : w=(12), @ = (1, 2[k)

Therefore, using the inner product functionality, decryption computes the actual label values
with @, z[k| as inputs and recovers fi(x)z[k] + B for each k, and hence finally >, fi(x)z[k].
However, this approach fails to build UAWS" because we can not execute the AKGS garbling for
the function My|n 1 .s(x)z[k]+ Bk at the time of generating keys. More specifically, the garbling
randomness depends on parameters N,T,.S,n that are unknown to the key generator. Note
that, in contrast to the ABE of [L1.20] where z can be viewed as a payload (hence n = 1), the
UAWS functionality has an additional parameter n (length of z) the value of which is chosen
at the time of encryption. Moreover, the compactness of UAWS" necessitates the secret key
size |SK(n,za)| = O(|Zm|Q) to be linear in the number of states ¢ and the ciphertext size
|ICT (@.1,5)| = O(RTNS2%) be linear in TN 525,

The obstacle is circumvented by the randomness distribution technique used in [LL20]. In-
stead of computing the AKGS garblings in key generation or encryption phase, the label values
are produced by a joint effort of both the secret key and ciphertext. To do so, the garbling is
executed under the hood of IPFE using pseudorandomness, instead of true randomness. That
is, some part of the garbling randomness is sampled in key generation whereas the rest is
sampled in encryption. More specifically, every true random value r;[(7, j, W, q)| is written
as a product r4[(t,1, j, W)|ry rlq] where r4[(t,4,j, W)] is used in the ciphertext and 7y [q] is
utilized to encode the transition blocks of M} in the secret key. To enable this, the transition
matrix associated to M}, is represented as follows:

"'c[l]7W[]]vW/[.7]77'l717]/7.7 q,q
where §)((i,5, W ,q), (i',7', W', ¢)) is 1 if there is a valid transition from the configuration
(1,7, W,q) to (7,5, W' ¢'), otherwise 0. Therefore, every block of M(x)[(7, j, W, q), (¢, 7/, W', ¢')]
is either a) X) zero matrix or a transition block that belongs to a small set
T ={M,| 7= (z,w,w,Ai,Aj) € {0,1}* x {0, +£1}*}
The (i,5,W,q)-th block row M, = M, ain; appears at My s(x)[(i, 5, W, o),
(W' O] it © = xfil,w = W[jl,Ai =i —i,Aj = 5/ — j, and W’ is W with j-th
entry changed to w’. Thus, every label £, ,[i, ¢] with i = (¢, 7, W) can be decomposed as inner
product v 4 - Uk 5, w. More precisely,
Ek,tﬁ) Q] - _rt—l[i7 q] + Mk,N,S(m)[(i7 Q)7 (‘ﬂ =y oy u)]T’t
= _rt_l[i7 q] + Z (Mk,:c[z],W[]],w’,Az,A]'rt [i/’ ‘_‘:I)[Q] (1/ = <Z —I— Al?] + A]? W/))
w' Ai,Aj
=ralt — Lilreglg + > ralt, V) (Miamwiw.anaite.s)d)

w! Ai,Aj

=ralt — Lilreglg + D raltV)(Mioriy)g) = vrg - Urpiiw
w! NG, Aj
so that one can set the vectors

Vkg = (—Trslal, 0, My rrp)lg] || 0),
Ui = (rm[t_ 171]707 CT(m;rw) || 0)

where ¢, (x;r,) (a shorthand of the notation ¢, (x,t,1, j, W;r,) [LL20]) is given by

() rglt, V], if z =a[i],w=W][j);
(@ ry) = .
0, otherwise.

Similarly, the other labels can be decomposed: flpinie = (7kf[1], Bk, 0) - (72[(0,1,1,

05)],1,0) = B + 6(11705,1)7"0 and £, 741[(1,¢)] = Vg - Wrririjw = —rrl(i,)] + 2[k]Yk acc[d]
where _
Vi,q = (_rk,f[Q]v yk,acc[‘]] || 0)a
'iZT—i-l,i: (rz[T,i], =z[k] | 0)

A First Attempt. Armed with this, we now present the first candidate UAWS" construction
in the secret key setting and it supports a single key. We consider two independent master
keys imsk and imsk of IPFE. For simplicity, we assume the length of private attribute z is the
same as the number of Turing machines present in M = (My)kez,,, i-€., n = |Zar]. We also
assume that each Turing machine in the secret key share the same set of states.

SKat 70, = {IPFE.SKy, ..., IPFE.SK,, , IPFE.SKg, }rezy, :

[[’Uk,init]]z = [[(—T“k,f[l]a Br, 0, || 0)]]2,
[kgla=[(—7rslal, 0, (Mi.rip)ldl [0)]2
[Vrql2 = [(—7k.f[q]; Yraccld] [0)]2

CTy = (IPFE.CT.,,, IPFE.CT,, {IPFE.CTg, }4) :

[[uinit]]l = [[(7’:,3[(071,1,05)], L, 0, H 0)]]1,
J’u’t<T7i]]1 = [[(’l"m[t - 17 i]’ 07 CT(CB; ’l"m) || 0)]]1’
[wr sl =10 ma[T0i], 2[k] 0]

Observe that the inner products between the ciphertext and secret key vectors yield the
label values [Cginit]T, [€rt]T = [(Lrro)o]T for 0 = (i, j, W, q). Now, the evaluation procedure
of AKGS is applied to obtain the partial values [z[k|My|nr.s(x) + Br]r. Combining all this
values gives the required attribute weighted sum), My|n 1 s(x)z[k] Since >, B; = 0.

However, this scheme is not fully unbounded, in particular, the setup needs to know the
length of the private attribute. To realise this, let us try to prove the security of the scheme.
The main idea of the proof would be to make all the label values (€;9)s truly random and
simulated except the initial labels ¢ jnir so that one can reversely sample ¢} jnir hardcoded with
a desired functional value. Suppose, for instance, the single secret key is queried before the
challenge ciphertext. In this case, the honest label values are first hardwired in the ciphertext
vectors and then the labels are transformed into their simulated version. This is because the
ciphertext vectors are computed after the secret key. So, the first step is to hardwire the initial
label values ¢y it into the ciphertext vector uini and hence it indicates that the length of winit
must grow with respect to the number of ¢ jni’s. The same situation arises while simulating
the other label values through u;;. In other word, we need to know the size of Zps or the
length of z in setup, which is against our desired functionality.

To tackle this, we increase the number of win: and wu;cr; in the above system. More
specifically, each of these vectors are now computed for all k£ € [n], just like @y, 741 . Although
this fix the requirement of unboundedness of the system, there is another issue related to the
security that must be solved. Note that, in the current structure, there is a possibility of mix-
and-match attack since, for example, @, 741 can be paired with vy, , and this results in some
unwanted attribute weighted sum of the form » 7, , My (x)z[k]+ My, (2) 2 [k2]+ My, (z) z[k1].
We employ the index encoding technique used in previous works achieving unbounded ABE or
IPFE [OT12,TT20] to overcome the attack. In particular, we add two extra dimension pg(—k, 1)
in the ciphertext and 74 (1, k) in the secret key for encoding the index & in each of the vectors

10

of the system. Observe that for each Turing machine M, an independent randomness 7y, is
sampled. It ensures that an adversary can only recover the desired attribute weighted sum
and whenever vectors from different indices are paired only a garbage value is obtained.

Combining the Ideas. After combining the above ideas, we describe our UAWS" supporting
a single key as follows.

SKng 70y = {IPFE.SK,, ..., IPFE.SK,, IPFE.SKg, }rcr, :

[onimels = [71,), —risll], G 0, |0
[Vrglz = [(mr(1, k), =i glal, 0, My rrg)lg] || 0)]2,
[[6/67(1]]2 = [[(ﬂ-k(la k)’ —Tk,f [Q]a yk,acc[Q] H 0)H2

CT, = {IPFE.CTy, 0, IPFE.CTo, ,_, . IPFECTay 0 Ji ¢
[[uk,init]]l = [[(pk(_kvl)vrw[(()?l’laos)]’ 17 07 || 0)]]17
[['U/k,t<T,i]]1 = [[(Pk(—k, 1)7 Tz[t - 171], 0, CT(CB; Tm) || 0)]]17
[[ﬂk,T-i-l,i]]l - [[(pk<_k7 1)7 T$[T, 1]7 z[k} || 0)]]1

Although the above construction satisfies our desired functionality, preserves the compactness
of ciphertexts and resists the aforementioned attack, we face multiple challenges in adapting
the proof ideas of previous works [TT20, L1.20, DP21].

Security Challenges and Solutions. Next, we discuss the challenges in proving the adap-
tive simulation security of the scheme. Firstly, the unbounded IPFE scheme of Tomida and
Takashima [T'T20] is proved in the indistinguishability-based model whereas we aim to prove
simulation security that is much more challenging. The work closer to ours is the FE for AWS
of Datta and Pal [DP21], but it only supports a non-uniform model of computation and the
inner product functionality is bounded. Moreover, since the garbling randomness is distributed
in the secret key and ciphertext vectors, we can not adapt their proof techniques [TT20,DP21]
in a straightforward manner. Although the ABE scheme of Lin and Luo [LL20] handles a uni-
form model of computation, they only consider all-or-nothing type encryptions and hence the
adversary is allowed to query secret keys which always fail to decrypt the challenge cipher-
text. In contrast, we construct a more advanced encryption mechanism which overcomes all
the above constraints of prior works, i.e., our UAWS' is an adaptively simulation secure func-
tional encryption scheme that supports unbounded inner product functionality with a uniform
model of computations over the public attributes.

Our proof technique is inspired by that of [LL20, DP21]. One of the core technical chal-
lenges is involved in the case where the secret key is queried before the challenge cipher-
text. Thus, we focus more on “sk queried before ct” in this overview. As noted above, in
the security analysis of [L1.20] the adversary A is not allowed to decrypt the challenge ci-
phertext and hence they completely randomize the ciphertext in the final game. However,
since we are building a FE scheme any secret key queried by A should be able to decrypt
the challenge ciphertext. For this, we use the pre-image sampleability technique from prior
works [DOT18, DP21]. In particular, the reduction samples a dummy vector d € Zj satis-
fying >, Mi|nrs(x)z[k] = Y, Mi|n1,s(x)d[k] where M = (My)y is a pre-challenge secret
key. To plant the dummy vector into the ciphertext, we first need to make all label values
{lktiq} truly random depending on the terms r ¢[¢]rz[t — 1,i]’s and then turn them into

11

their simulated forms, and finally traverse in the reverse path to get back the original form
of the ciphertext with d taking place of the private attribute z. In order to make all these
labels truly random, the honest label values are needed to be hardwired into the ciphertext
vectors (since these are computed later) so that we can apply the DDH assumption in G; to
randomize the term r, ¢[q|r,[t —1,1] (hence the label values). However, this step is much more
complicated than [L1.20] since there are two independent IPFE systems in our construction
and 7, r[q| appears in both vy , and v, (i-e., in both the IPFE systems). We design a two-level
nested loop running over ¢ and ¢ for relocating 7 f[g] from v’s and vy, to w’s and Wy 741,
To this end, we note that the case of “sk queried after ct” is simpler where we embed the
reversely sampled initial label values into the secret key. Before going to discuss the hybrids,
we first present the simulator of the ideal world.

SKnt 70, = {IPFE.SKy, .o, IPFE.SK,, IPFE.SKg, }rezn, ¢ (sk queried before ct)
[orinile = [(m(L), —ris [l B 0 | 0)]2,
[vigle = [(me(L k), —=rigla), 0, (Migerig)lal || 0)]2
[Okql2 = [(7(L, k), —7hfla], Yraceld] I 0)]>
— {IPFE.CT,, ,..,IPFE.CT,, ,_,.,IPFECTa, ., Jx :
[[uk:,mnt]]l - [[((k>1)7rw[(07171705)]7 17 07 H 1> 0)]]1:
Huk,t<T7i]]1 - [[((k? 1)7 Tiv[t - 1’ i]v 07 CT(w; ’I’m) ” Sm[t7 i]> 0)]]17
[[ﬂ’k,T-Fl,i]]l = [[((k, 1)7 ’I"w[T, i]a d[k] H SCB[T + 1, i]: 0)]]1

SKar,zy, = {IPFE.SKy, ..., IPFE.SK,, , IPFE.SK5, }rez,, @ (sk queried after ct)
[k init]2 = [(me(1, k’) 0,0,0 || Lkinit, 0)]2,
[or)> = [(74(1£).0,0,0 | s1.5[g], 0).
[Urql2 = [(m(1,%),0,0 || sks[al, 0)]2
where lj inie < RevSamp((My, x, Mi|x|z[k] + Bk, {lrtiq}) st
> vty Bk = 0if Ing C [n]; otherwise By < Z,.

nit ?

Security Analysis. We use a three-step approach and each step consists of a group of hybrid
sequence. At a very high level, we discuss the case of “sk queried before ct”. In this overview,
for simplicity, we assume that the challenger knows the length of z while it generates the

secret key.
First group of Hybrids: The reduction starts with the real scheme. In the first step, the

label function €y i is reversely sampled with the value Mj[x]z[k] + 55 which is hardwired in
U init-

Vg, init = () 7 @; 0 H 0, 0)7

Vg = (", —riglal, 0, (Myrrig)la) || |Skrlal],0),

Vkg= (s =7 slq]s Yraccld] | 0, 0)

uk,init = (Ty gk’,init 5 @a 07 “ Oa 0)7
WU t<Ti = (7rw[t_ 17i]7 07 CT<w;r:c) H Oa 0)7
ak,T-{-l,i = () ’I"w[T, 1]a ZUC] || Ssc[T + 171]) 0)

12

where (p inie <— RevSamp((My, &, My[x|z[k] + Br, {lk1iq}) and ly i ,'s are computed honestly.
Note that, the secret values {3} are sampled depending on whether the queried key is eligible
for decryption. More specifically, if Zps C [n], then [;’s are sampled as in the original key
generation algorithm, i.e., >, B = 0. On the other hand, if maxZy; > n then f;’s are
sampled uniformly at random, i.e., they do not necessarily be secret shares of zero. This
can be done by the function hiding property of IPFE which ensures that the distributions
{{IPFE.SKU](:)}ke[n+1’|zMH, {IPFE.CTy,, }rem} for b € {0,1} are indistinguishable where

vlib):(Tk, k-7, 0,0, +b-1,0) forken+1,|Znll, e < Zp
uk’:(_k/'pkla Pk’ 07 17 O) for kle[n]

Thus, the indistinguishability between the group of hybrids can be guaranteed by the piecewise
security of AKGS and the function hiding security of IPFE.

Second group of Hybrids: The second step is a loop. The purpose of the loop is to change
all the honest label values ¢ ;;, to simulated ones that take the form (;;, = sz[t,1]sk f[q]
where s;t,i] is hardwired in wy;; or Wy ri1,i and s ¢[g] is hardwired in vy, or Uy ,.

The whole procedure is executed in via a two-level loop with outer loop running over ¢ and
inner loop running over ¢ (both in increasing order). In each iteration of the loop, we move all
occurrences of 7y r[q] into the w’s in one shot and hardwire the honest labels €y, , into wy;
for all i. Below we present two crucial intermediate hybrids of the loop when ¢t < T

Vg = (-, = Xrgla] |- || [0],[1] 0),
6’@‘1:("" _@_ || 0, ’0)’

B : honest 0y 14
U t<T)i = (a_lrkj[Q] - || Sﬂc[t?l] R —Tm[t—l,i]’rk,f[Q]‘i‘"' ’O)’
~ . . honest ¢ ;
epen = (o smolTl 2k sal T+ L, | 70t L 0)

where X7y ¢[q] and v/ ¢[q] indicate the presence of 7 f[q] in their respective positions. The
indistinguishability can be argued using the function hiding security of IPFE. Next, by invoking
DDH in Gy, we first make 7,[t — 1,i]7y f[g] truly random for all i and then transform the label
values into their simulated form ¢y ;, = sz[t,i]sk f[q] again by using DDH in G, for all i. We
emphasize that the labels ¢ 741, are kept as honest and hardwired when the loop runs for
t <T. Finally, the terms s, ¢[g| are shifted back to vy, or Uy ,.

[0].0),

veg= (- —mglalh 00 [(Mo p)lal] || | sesld]
6:’941 = (T _rk,f[Q] s yk,acc[Q] || 07 @7 0)7

U t<Ti = (Tty _@_ ” Sz [ta 1]7 @7 0)7

alc,T+1,i = (Tty "'w[Ta i]a z[k] ” Sw[T + 1,1], @7 0)
After the two-label loop finishes, the reduction run an additional loop over ¢ with ¢ fixed
at T'+1 to make the last few label values ¢} 741 i, simulated. The indistinguishability between
the hybrids follows from a similar argument as in the two-level loop.

13

Veg= (-, —rrslal, 0, (Mpsrrg)lal | skylgl, 0,0),

6k,q = (T _rk,f[Q]a yk,acc[Q] || Sk,f[(ﬂ) 07 0)a
U t<Ti = () —0— H Sm[ta 1]7 07 0)7
Wprgri= (-, —@— | sz[T"+1,i],0,0)

Third group of Hybrids: After all the label values ¢;,;, are simulated, the third step
uses a few more hybrids to reversely sample 1 i and g init|x>1 with the hardcoded values
M (x)" z+ 31 and By |p>1 respectively. This can be achieved through a statistical transformation
on {Bx| >, Br = 0}. Finally, we are all set to insert the dummy vector d in place of z keeping
A’s view identical.

Vint = (---,1,0,0 || 0, 0,0),

kg = (-, —[0]= || sks[g],0,0),

U= (-, =0} || sks0g],0,0),

Upinit = (5 | Lrjnie [, 0,0, || 0, 0,0),
Upperi= (-, —0— | s«[t,i], 0,0),
Upriri= (-, —0— | sz|T+1,i],0,0)

where all the label values {/y i ,} are simulated and the initial label values are computed as
follows

C1init < RevSamp(My,x, M (z)"d + 81, {lrtiq}),

Ek,init — RevSamp(Mk, x, Bka {gk,t,i,q})a forall k > 1

From this hybrid we can traverse in the reverse direction all the way to the very first hybrid

while keeping the private attribute as d. We also rearrange the elements using the security
of IPFE so that the distribution of the ciphertext does not change with the occurrence of the
secret key whether it comes before or after the ciphertext. This is important for the public
key UAWS". The formal security is discussed in Theorem 5.1.

From Single Key to Full-Fledge UAWS". The next and final goal is to bootstrap the
single key, single ciphertext secure UAWS" to a public key UAWS" scheme that supports
releasing many secret keys and ciphertexts. Observe that our secret key UAWS" already sup-
ports multiple keys and single ciphertext. However, it fails to remain secure if two cipher-
texts are published. This is because the piecewise security of AKGS can not be guaranteed
if the label functions are reused. Our bootstrapping procedure takes inspiration from prior
works [LL20,DP21], that is to sample a random multiplier s <— Z, at the time of encryption,
which will randomize the label values in the exponent of Gs. In particular, using IPFE security
the random multiplier s is moved to the secret key vectors where the DDH assumption ensures
that s€j+i,’s are pseudorandom in the exponent of G. To upgrade the scheme into public
key setting, we employ the Slotted IPFE that enables encrypting into the public slots using
the public key whereas the function hiding security still holds in the private slots. We describe
below our public key UAWS" scheme.

14

SKngzpr = {IPFE.SK,, IPFE.SKy, ..., IPFE.SKy, ., IPFE.SK5, brezas © @ < 7y

init 7

[[vk |n|t]]2 [[(07 a, 07 07 07 H 0)]]2’
[oknic]e = [(mn(1, k), 0, —ry e (1], B, 0, 0],
[Vkgle = [(mk(1, k), 0, =riglal, 0, (Myrreg)lg] || 0],
[Okql2 = [0 (1, k), 0, =7k fla], aYraceld] 0]
CT, = {IPFE.CTy, ., IPFE.CTy, , 1, IPFE.CTg, ;.. Ji i 5 < Z,
[wpad]1 = [(0, S, 0, 0, 0, I L)),
[[uk,init]]l = [[(pk(—k,l),o,S-’I“w[(o,l,l,(]s)], S, Oa H J—)]]la
[[uk‘,t<T,i]]1 = [[(pk<_k71)707 S'Tw[t_ 17i]7 07 S'CT(:B;’I“Q,,) H J—)]]lv
[weririle = [Cou(=k, 1), 0, s-ra[T0i], s 2[k] [
The slots at the left/right of “ || ” are public/private. The ciphertexts are computed using

only the public slots and the private slots are utilized only in the security analysis. At a very
high level, we utilize the triple-slot encryption technique devised in [DP21] to simulate the
pre-challenge secret keys with a dummy vector encoded into the ciphertext and hardwire the
functional value into the post-challenge secret keys. As mentioned earlier that the triple-slot
encryption technique [DP21] was devised for non-uniform model which crucially uses the fact
that the garbling randomness can be (fully) sampled in the key generation process. It does
not hold in our setting. Thus, we design a more advanced three-slot encryption technique
that is compatible with distributed randomness of AKGS garbling procedure. More specifically,
we add one additional hidden subspace in order to realize such sophisticated mechanism for
Logspace Turing machines. This additional subspace enables us to simulate the post-ciphertext
secret keys with distributed randomness. However, shuttle technical challenges still remain to
be overcome due to the structure of AKGS for Logspace Turing machines. We prove the security
of the scheme in Theorem 6.1.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will be used in the
sequence.

Notations. We denote by A the security parameter that belongs to the set of natural number
N and 17 denotes its unary representation. We use the notation s <— S to indicate the fact that
s is sampled uniformly at random from the finite set S. For a distribution X', we write z + X
to denote that x is sampled at random according to distribution X. A function negl : N — R
is said to be a negligible function of A, if for every ¢ € N there exists a A. € N such that for
all A > A, |negl(\)| < A~

Let Expt be an interactive security experiment played between a challenger and an adver-
sary, which always outputs a single bit. We assume that Expt$ 7 1s a functlon of A\ and it is
parametrized by an adversary A and a cryptographic protocol C. Let Expt 2 and Exptil1 be
two such experiment. The experiments are computationally /statistically indistinguishable if
for any PPT/computationally unbounded adversary A there exists a negligible function negl
such that for all A € N,

AdvG(A) = [Pr[l < ExptG°(1M)] — Pr[l < Expt§' (1Y)]] < negl(\)

15

We write Exptj’0 ~ Exptfﬁ(1 if they are computationally indistinguishable (or simply indis-
tinguishable). Similarly, ExptS\’0 ~ Exptj’1 means statistically indistinguishable and Exptfi\’0 =

Expti{1 means they are identically distributed.

Sets and Indexing. For n € N, we denote [n] the set {1,2,...,n} and for n,m € N with
n < m, we denote [n, m] be the set {n,n + 1,...,m}. We use lowercase boldface, e.g., v, to
denote column vectors in Z; and uppercase boldface, e.g., M, to denote matrices in Z;*™ for
p,n,m € N. The i-th component of a vector v € Z7 is written as v|[i] and the (4, j)-th element
of a matrix M € Z3*™ is denoted by M[i, j]. The transpose of a matrix M is denoted by M
such that M [i, j] = M[j,]. To write a vector of length n with all zero elements, we write 0,
or simply 0 when the length is clear from the context. Let u,v € Z7, then the inner product
between the vectors is denoted as u - v = u'v = > icn ulivli] € Z,. We define generalized

inner product between two vectors w € Z', v € Z* by w-v =Y, .7 1

Tensor Products. Let u € Zgl and v € ZZ? be two vectors, their tensor product w = u ® v

is a vector in ZI** with entries defined by w/((i, 7)] = w[i]v[j]. For two matrices My € ZJ***

and M, € Zﬁx%,their tensor product M = M = M; ® M, is a matrix in ZZ(DLXZ{)XZQXZé with

entries defined by M[(’Ll, le), (22, Z/2>] = Ml[Zl, ZQ]MQ[Z&, 2/2]

Currying. Currying is the product of partially applying a function or specifying part of the
indices of a vector/matrices, which yields another function with fewer arguments or another
vector/matrix with fewer indices. We use the usual syntax for evaluating a function or indexing
into a vector/matrix, except that unspecified variables are represented by “_”. For example, let
M e P RDIIXED and i) € 7, jy € Jo, then M[(i1,-), (=, J2)] is a matrix N € ZiPI17]
such that N[ig,jl] = M[(il,ig), (jl,jg)] for all iz € Ig,jl S jl.

Coefficient Vector: Let f : ZT — Z, be an affine function with coefficient vector f € Z$ for
S = {const} U{coef;| i € Z}. Then for any x € Z%, we have f(x) = f[const] + ", f[coef;|x]i].

3.1 Bilinear Groups and Hardness Assumptions

We use a pairing group generator G that takes as input 1* and outputs a tuple G = (G, G, Gr,
g1, g2, €) where Gq, Gy, Gt are groups of prime order p = p(\) and g; is a generator of the group
G; for i € {1,2}. The map e : G; x Gy — G satisfies the following properties:

— bilinear: e(g¢, g5) = e(g1, g2)® for all a,b € Z,.
— non-degenerate: e(gy, g2) generates Gr.

The group operations in G; for i € {1,2, T} and the map e are efficiently computable in deter-
ministic polynomial time in the security parameter A. For a matrix A and eachi € {1,2, T}, we
use the notation [AJ]; to denote g where the exponentiation is element-wise. The group oper-
ation is written additively while using the bracket notation, i.e. [A+B]; = [A]; +[B]; for ma-
trices A and B. Observe that, given A and [B];, we can efficiently compute [AB]; = A - [B];.
We write the pairing operation multiplicatively, i.e. e([A]1, [B]2) = [A]:1[B]2 = [AB]r.

Assumption 3.1 (Symmetric External Diffie-Hellman Assumption) We say that the
SXDH assumption holds in a pairing group G = (Gy, Gs, G, g1, g2, €) of order p, if the DDH
assumption holds in G, i.e., {[a];, [b]:, [ab]:} = {[a]:, [b]:, [c]:} fori € {1,2,T} and a,b,c +
L.

16

3.2 Turing Machine Formulation

In this subsection, we describe the main computational model of this work, which is Turing
machines with a read-only input and a read-write work tape. This type of Turing machines
are used to handle decision problems belonging to space-bounded complexity classes such as
Logspace predicates. We define below Turing machines with time complexity 7" and space
complexity S. The Turing machine can either accept or reject an input string within this
time/space bound. We also stick to the binary alphabet for the shake of simplicity.

Definition 3.1 (Turing machine with time/space bound computation)

[LL20] A (deterministic) Turing machine over {0, 1} is a tuple M = (Q, Yacc, 9), where @ > 1
is the number of states (we use [Q] as the set of states and 1 as the initial state), y,.. € {0,1}%
indicates whether each state is accepting, and

5:[Q] x{0,1} x {0,1} — [Q] x {0,1} x {0, £1} x {0,+1},
(¢, x,w) — (¢, w', Ai, Aj)

is the state transition function, which, given the current state ¢, the symbol z on the input
tape under scan, and the symbol w on the work tape under scan, specifies the new state ¢/,
the symbol w’ overwriting w, the direction A¢ to which the input tape pointer moves, and the
direction Aj to which the work tape pointer moves. The machine is required to hang (instead
of halting) once it reaches on the accepting state, i.e., for all ¢ € [@Q] such that y...[¢] = 1 and
all z,w € {0, 1}, it holds that (¢, z,w) = (¢, w,0,0).

For input length N > 1 and space complexity bound S > 1, the set of internal configura-
tions of M is

Curvs = [N] % [S] x {0,1} x (@],

where (4,7, W,q) € Cuy s specifies the input tape pointer ¢ € [IV], the work tape pointer
j € [S], the content of the work tape W € {0,1}* and the machine state q € [Q)].

For any bit-string & € {0,1}" for N > 1 and time/space complexity bounds 7', S > 1,
the machine M accepts & within time 7" and space S if there exists a sequence of internal
configurations (computation path of T" steps) co, ...,cr € Carn,s With ¢; = (i, ji, Wi, @) such
that

io =1,jo = 1, Wy = 0g, g0 = 1(initial configuration),
(e, [is), Wiljie]) = (qre1, Wi el deer — dt, e — Je),
<
for 0 < < T{ Wiilj] = Wi[j] for all j # j; (valid transitions);
Yacclqr] = 1 (accepting).

Denote by M|y s the function {0,1}* — {0, 1} mapping to whether M accepts x in time T'
and space S. Define TM = {M| M is a Turing machine} to be the set of all Turing machines.

Note that,the above definition does not allow the Turing machines moving off the in-
put/work tape. For instance, if d specifies moving the input pointer to the left/right when
it is already at the leftmost/rightmost position, there is no valid next internal configuration.
This type of situation can be handled by encoding the input string described in [LLL20]. The
problem of moving off the work tape to the left can be managed similarly, however, moving
off the work tape to the right is undetectable by the machine, and this is intended due to the
space bound. That is, when the space bound is violated, the input is silently rejected.

17

3.3 Functional Encryption for Unbounded Attribute-Weighted Sum for
Turing machines

We formally present the syntax of FE for unbounded attribute-weighted sum (AWS) and
define adaptive simulation security of the primitive. We consider the set of all Turing machines
TM = {M| M is a Turing machine} with time bound 7" and space bound S.

Definition 3.2 (The AWS Functionality for Turing machines) For any n, N € N, the
class of attribute-weighted sum functionalities is defined as

N, T,5>1,
{((zc e {0, 1}V 171¥) z € 7)) — M(x) z = Z z[k]- My(x) M, € TM VEk € [n], }

Definition 3.3 (Functional Encryption for Attribute-Weighted Sum) An unbounded-
slot FE for unbounded attribute-weighted sum associated to the set of Turing machines TM
and the message space M consists of four PPT algorithms defined as follows:

Setup(1*): The setup algorithm takes as input a security parameter and outputs the master
secret-key MSK and the master public-key MPK.

KeyGen(MSK, (M, Zyr)): The key generation algorithm takes as input MSK and a tuple
of Turing machines M = (My)rez,,- It outputs a secret-key SK(as.z,,) and make (M, Zyy)
available publicly.

Enc(MPK, ((x;, 17,15, 2;);cinq): The encryption algorithm takes as input MPK and a
message consisting of A" number of public-private pair of attributes (x;, z;) € M such that the
public attribute ; € {0, 1} for some N; > 1 with time and space bounds given by T}, S; > 1,
and the private attribute z; € Zpi. It outputs a ciphertext CT (4, 1,,5,) and make (x;, T;, S;)iecn]
available publicly.

Dec((SK(a1,z0)s (M, Znr)), (CT(a;,15,8:)> (€45 Ty Si)iciag)): The decryption algorithm takes
as input SK(as,z,,) along with the tuple of Turing machines and index sets (M,Zas), and a
ciphertext CT 4, 7,,5,) along with a collection of associated public attributes (;, T3, S;)ica- It
outputs a value in Z, or L.

Correctness: The unbounded-slot FE for unbounded attribute-weighted sum is said to be
correct if for all ((a; € {0,1},17,1%), z; € Z7);cpn and for all (M = (M) rezy, - Iax), We
get

Dec((SKa1 zas)s (M, Iar)), (CT @, 1.5 (03, Tiy Siiein)) = D > Mi(@i)zi[k] -
Pr ieN k€l — 1
(MSK, MPK) «— Setup(1*), SK(ar,z7,,) KeyGen(MSK, (M, Zys)),
CT (@15, < Enc(MPK, (2,17, 1%), 2))iciny), I C [na] Vi e N

We now define the adaptively simulation-based security of FE for unbounded attribute-weighted
sum for Turing machines.

Definition 3.4 (Adaptive Simulation Security) Let (Setup, KeyGen,Enc,Dec) be an
unbounded-slot FE for unbounded attribute-weighted sum for TM and message space M. The
scheme is said to be (Ppre, Pcr, Ppost)-adaptively simulation secure if for any PPT adversary A

18

making at most ®cr ciphertext queries and ®pre, Ppost Secret key queries before and after the

ciphertext queries respectively, we have Exptﬂﬁ\é\g(l/\) ~ Exptg"p}\é\éﬁ'(l)‘), where the experiments

are defined as follows. Also, an unbounded-slot FE for attribute-weighted sums is said to be
(poly, ®cr, poly)-adaptively simulation secure if it is (Ppre, P, Ppost)-adaptively simulation
secure as well as @ and Ppos are unbounded polynomials in the security parameter A.

EXPt,LAJt/X\g(lA) OKeyGen(MSK,-)

e A Tt (M, Zar)

2. (MSK, MPK) < Setup(1*); 2. output: SK(ar,z5)

30 (@4, 17,15), 25 € Zpti)i p)) 4= AKorsntisn (MPK); OkeyGens;(MSK*,)

4. CT(w,,Ti,Si) — EnC(MPK, ((:131 1Tz’ 157:), z,;)ie[/\/]); m’ IM¢) for ¢ € [q)pre}

5. return A%eenossi) (MPK, CT) 2. output: SKar, 1)

Exptidlica(1") Enc’(MPK, MSK*, (;, 17, 15, 1) e, -)

L1V A(1Y); Loinput: V= {(Mg,In,): X icp My(z;)" 2

(MSK*, MPK) <« Setup*(1*, 1V); Lo € [Dpe]}

i ng o eyGen’* *
(2,170,157, z; € Zy')ien)) 4 AT MO (MPK) 2. output: CT (e 1))
CT (2135 ¢ Enc*(MPK, MSK*, (z;, 175, 15 n;)ien, V)

0, * * (p; 111 15 .
return A (@it @t ieny) (MPK, CT (g, 1,5,

AR

7(QKeyGen’{(MSK*,(ar:;‘),;E[N],~.,~)

1. input: (M¢7IM¢),ZZ-€NM¢($¢)TZ¢ for (b S
[q)post]

2. output: SK<M¢_’IM¢)

3.4 Function-Hiding Slotted Inner Product Functional Encryption

Definition 3.5 (Slotted Inner Product Functional Encryption) [LL20] Let G = (G, Gy,
Gr, g1, g2, €) be a tuple of pairing groups of prime order p. A slotted inner product functional
encryption (IPFE) scheme based on G consists of 5 efficient algorithms:

IPFE.Setup(1?*, Spubs Spriv): The setup algorithm takes as input a security parameter A and
two disjoint index sets, the public slot Sy, and the private slot Spyy. It outputs the master
secret-key IPFE.MSK and the master public-key IPFE.MPK. Let S = Spup U Spriv be the whole

index set and |S|, | Spub|, | Spriv| denote the number of indices in S, Spy and Syry respectively.

IPFE.KeyGen(IPFE.MSK, [v]2): The key generation algorithm takes as input IPFE.MSK
and a vector [v]s € Gl Tt outputs a secret-key IPFE.SK for v € Z);'.

IPFE.Enc(IPFE.MSK, [u]1): The encryption algorithm takes as input IPFE.MSK and a vec-
tor [u]; € G|15|. It outputs a ciphertext IPFE.CT for u € ZLS|.

IPFE.Dec(IPFE.SK, IPFE.CT): The decryption algorithm takes as input a secret-key IPFE.SK
and a ciphertext IPFE.CT. It outputs an element from Gr.

IPFE.SlotEnc(IPFE.MPK, [u]1): The slot encryption algorithm takes as input IPFE.MPK
and a vector [u]; € G'ls"“b‘. It outputs a ciphertext IPFE.CT for (ul|0s,.|) € z!

19

Correctness: The correctness of a slotted IPFE scheme requires the following two properties.

— Decryption Correctness: The slotted IPFE is said to satisfy decryption correctness if for all
u,v € ZJDS|, we have
(IPFE.MSK, IPFE.MPK) < Setup(1*, Spup; Spriv),

Pr | Dec(IPFE.SK, IPFE.CT) = [v - u]r : IPFE.SK +— KeyGen(IPFE.MSK, [v]5), =1
IPFE.CT + Enc(IPFE.MSK, [u]:)

— Slot-Mode Correctness: The slotted IPFE is said to satisfy the slot-mode correctness if for
all vectors u € ZLSP“b‘, we have

{(lPFE.MSK IPFE.MPK, IPFE.CT) ; UTTEMSK,IPFEMPK) < Set“p(“>5p“b’5pfiv)>}

IPFE.CT < Enc(IPFE.MSK, [ul|0;s,.]1)

E{(IPFE.MSK IPFEMPK, IPFE.CT) ; (PFEMSKIPFEMPK) < Set“pm’sp“b’sp'”)’}

IPFE.CT « SlotEnc(IPFE.MPK, [u];)

Security: Let (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SlotEnc) be a slotted IPFE.
The scheme is said to be adaptively function-hiding secure if for all PPT adversary A, we have

ExptZH"PFE(l)‘7 0) ~ ExptZH'IPFE(l)‘, 1), where the experiment Expt';‘H'IPFE(lA, b) for b € {0,1} is
defined as follows:

EXptE‘H_IPFE(l)‘7 b) OKeyGenb('a)
1. (Spubs Spriv) A(1%); 1. input: [v%]s, [v!], € GY”
2. (IPFE.MSK, IPFE.MPK) < Setup(1*, Spub, Spriv); | 2. output
3. return APKecen, (+):Oene, () (IPFE. MPK) if IPFE.SK; < KeyGen(IPFE.MSK, [v"]>)
Vlsw = Ujls,, and v} - uf = 'vj1 -, for Otne, ()
all {[v9]2, [vi]2};, {[uf]1, [u;]:}s queried by A to|————*= .))
OkeyGen, (+,) and Ognc, (-,) respectively. L. input: [w;]y, [w;]: € Gy
2. output
IPFE.CT; + Enc(IPFE.MSK, [!],)

where v;|g,,, represents the elements of v; sitting at the indices in Spyp.

Lemma 3.1 ([Linl17,LL20]) Let G = (G1,Ga, Gr, g1, g2, €) be a tuple of pairing groups of
prime order p and k > 1 an integer constant. If MDDH, holds in both groups Gy, Gy, then
there is an adaptively function-hiding secure IPFE scheme based on G.

3.5 Arithmetic Key Garbling Scheme for Turing machines

Lin and Luo [LL20] introduced arithmetic key garbling scheme (AKGS). The notion of AKGS
is an information theoretic primitive, inspired by randomized encodings [AIK11] and partial
garbling schemes [ITW14]. It garbles a function f : Z7 — 7Z, (possibly of size (m + 1)) along
with two secrets z, 8 € Z,, and produces affine label functions Ly, ..., Lyy1 @ Zy — Zy. Given
f, an input @ € Z; and the values Li(x), ..., Ly1(x), there is an efficient algorithm which
computes zf(x) + [without revealing any information about z and . Lin and Luo [LL20]
additionally design AKGS for Turing machines with time/space bounds. Many parts of this
section is verbatim to the sections 5 and 7.1 of [L1.20]. Thus, the reader familiar with the

20

notion of AKGS for Turing machines can skip this section. We define AKGS for the function
class
F={M|nrs: Zi,v — Z,,N,T,S > 1,p prime}

for the set of all time/space bounded Turing machine computations. We refer to [LL20] for a
detailed discussion on the computation of Turing machines as a sequence of matrix multipli-
cations, and the construction of AKGS for matrix multiplication.

Definition 3.6 (Arithmetic Key Garbling Scheme (AKGS), [LL20]) An arithmetic gar-
bling scheme (AKGS) for the function class F, consists of two efficient algorithms:

Garble((M, 1V,17,15, p), 2, 3): The garbling is a randomized algorithm that takes as input
a tuple of a function M|y 1 s over Z, from F, an input length N, a time bound 7', a space bound
S with N,T,S > 1, a prime p, and two secret integers z, 8 € Z,. It outputs a set of affine func-
tions Linit, (Ltg)te[r+1],0eCh n.s ° Z;V — Z, which are called label functions that specifies how
an input of length NV is encoded as labels. Pragmatically, it outputs the coefficient vectors £;,;:,

(et,e)te[TJrl},eeCM,N,s :

Eval((M, 1V,17,15,p), x, linit, (Le,0)te[r+1],0eCrin.s): The evaluation is a deterministic al-
gorithm that takes as input a function M|y g over Z, from F, an input vector « € Zév and
the integers finit, (£1,0)ie[r+1)0echrns € Zp Which are supposed to be the values of the label
functions at @ € Zév . It outputs a value in Z,,.

Correctness: The AKGS is said to be correct if for all tuple (M, 1V,17,1° p), integers z, 3 €
Z, and x € Z, we have

Pr Eval((M, 1V, 17,1, p), @, linit, (e0)icirr1)0ccrns) = 2M|nrs(x) + 6

=1
(einita (’et,e)tE[T+1],9€C]u,N7s) — Garble((Mv 1N7 1T7 1Sap>7 Z, ﬁ)a Where E — L(.’.B)

The scheme have deterministic shape, meaning that the number of label functions, m =
1+ (T + 1)NS2%Q, is determined solely by the tuple (M, 1Y 17 19 p), independent of z, 3
and the randomness in Garble. The number of label functions m is called the garbling size of
M|n s under this scheme. For the shake of simpler representation, let us number the label
values (or functions) as 1,...,m in the lexicographical order where the first two label values
are linit, £(1,1,1,0,1) and the last label value is {7, n 515 q)-

Linearity: The AKGS is said to be linear if the following conditions hold:

— Garble((M, 1V,17 19 p), 2, B) uses a uniformly random vector 7 < Z,' as its randomness,
where m is determined solely by (M, 1V,17,1° p), independent of z, 3.

— The coefficient vectors £y, ..., #£,, produced by Garble((M, 1V 17 1% p), 2, 8) are linear in
(z,8,7).

— Bval((M, 1V 17,19 p), x, 01, ..., £,,) is linear in 41, ..., 0.

For our UAWS, we consider the piecewise security notion of AKGS defined by Lin and
Luo [LL20]*.

4 The usual simulation-based security considered in previous works [IW14,DP21] follows from the piecewise security
of AKGS.

21

Definition 3.7 (Piecewise Security of AKGS, [LL20]) An AKGS = (Garble, Eval) for the
function class F is piecewise secure if the following conditions hold:

— The first label value is reversely sampleable from the other labels together with (M, 1V, 17,19,
p) and @. This reconstruction is perfect even given all the other label functions. Formally,
there exists an efficient algorithm RevSamp such that for all M|yrs € F, 2,0 € Z, and
T e Zi,v , the following distributions are identical:

o 0, (£1,...,£,) < Garble((M, 1V, 17,15 p), 2, B),
1,%25---54tm £1<—L1(33) s

(£y,...,£,) + Garble((M, 17,1715 p), 2, B),
(01,8s,...,£) : {; < Lj(x) for j € [2,m],
01 < RevSamp((M, 1V 1715 p), @, 2M |n1.5(x) + B, lay . . ., Ur)

— For the other labels, each is marginally random even given all the label functions after it.
Formally, this means for all M|y 15 € F, 2,8 € Zy, x € Z; and all j € [2,m], the following
distributions are identical:

(£ E E) (’617""em) <~ Garble((Ma 1N71T715)p)7z)6)7
PRI g e Li(@) |

(£y,...,£,) < Garble((M, 1V, 17,15 p), 2, B),
(ﬁj,ﬁjﬂ,...,ﬁm):
fj (—Zp

We now define special structural properties of AKGS as given in [LLL20], related to the piecewise
security of it.

Definition 3.8 (Special Piecewise Security of AKGS, [LL20]) An AKGS = (Garble, Eval)
for a function class F is special piecewise secure if for any (M, 1V, 17,19 p) € F,z,8 € L
and x € ZI])V , it has the following special form:

— The first label value ¢; is always non-zero, i.e., Eval((M,1V, 17,15 p), x, 1,0,
...,0) # 0 where we take {; = 1 and ¢; =0 for 1 < j < m.

— Let 7 < Z7" be the randomness used in Garble((M, 1V 17,1 p), z, 3). For all j € [2,m)].
the label function L; produced by Garble((M, 1V, 17,15 p), z, 3;7) can be written as

Lj(w) = kjr[j — 1+ Li(z; 2, 8, vl rlj + 1], ..., 7[m])

where k; € Z, is a non-zero constant (not depending on x, z, 5,) and L; is an affine func-
tion of & whose coefficient vector is linear in (z, 5, 7[j], r[j + 1], ..., r[m]). The component
r(j — 1] is called the randomizer of L; and ¢;.

Lemma 3.2 ([LL20]) A special piecewise secure AKGS = (Garble, Eval) for a function class
F is also piecewise secure. The RevSamp algorithm (required in piecewise security) obtained
for a special piecewise secure AKGS is linear in 7y, s, ..., lyi1 and perfectly recovers {1 even if
the randomness of Garble is not uniformly sampled. More specifically, we have the following:

Eval(M, 1V, 17,15 p), x, 01, ... L)

22

= (1Eval((M, 1V, 17,15 p), 2, 1,0,...,0) + Eval((M, 1V, 17 15 p), 2,0, 4y, ... , 4,) (3.1)
RevSamp((M, 1%, 17,15 p), a2, 7, la, . .., €mn)

= (Eval((M, 17, 17,15 p), 2, 1,0,...,0)) " (v — Eval((M, 1V, 17 15 p), 2,0, £, ...,)

(3.2)

Note that, Equation (3.1) follows from the linearity of Eval and Equation (3.2) ensures

that RevSamp perfectly computes ¢; (which can be verified by Equation (3.1) with v =

ZM’N7T75(ZU> + 6)

Lemma 3.3 ([LL20]) A piecewise secure AKGS = (Garble, Eval) is also special piecewise
secure after an appropriate change of variable for the randommness used by Garble.

4 Construction of AKGS for the function class F

We now describe the AKGS construction for the function class F given by Lin and Luo [LL20)].
Before going to the actual construction, we first represent the computation of Turing machines
as a sequence of matrix multiplications.
Transition Matrix. Given a Turing machine M = (Q, Yacc, d), upper bounds of time and
space T, S > 1 and an input € {0, 1} for some N > 1, we consider the length-T'computation
path of M with input @ and space bound S. Recall that the set of internal configuration is
Cuns = [N]x[S] x{0,1}* x [Q]. An internal configuration 6 = (i, j, W, q) € Cyr.n.s specifies
that the input and work tape pointers are at position ¢ and j respectively, the work tape has
content W, an the current state is ¢. In particular, the initial configuration is (1,1, 0g,1): the
input/work tape pointers point to the first cell, the work tape is all-0, and the state is the
initial state 1. An accepting configuration satisfies that y...[q] = 1.

We construct a transition matrix My s(z) € {0, 1}¢7.¥s*Cuns such that My s(z)[0, 0] =
1 if and only if the internal configuration of M is 6 after 1 step of computation starting
from internal configuration #. According to how the Turing machine operates in each step
depending on the transition function §, the entries of My ¢(x) are defined as follows:

MN,S<w)[(7;7j7 W? Q>7 (i/mjla W/7 q/)]
1, if 6(q, z[i], W[j]) = (¢, W'[j],i" = i,j" = J)
= and W'[j"] = W[j"] for all j” # j;
0, otherwise;
1, ifo(q, 1, Wj]) = (¢, W'[j],i" =i, 5" — J)
= x[i] X and W'[j"] = W[j"] for all j" # j;
0, otherwise;
1, if 6(q, 0, W[j]) = (¢, W'[j],7 —i,5" — j)
= (1 —a[]) x and W'[j"] = Wj"] for all j” # j;

0, otherwise;

With the transition matrix, we can now write the computation of Turing machines as a se-
quence of matrix multiplication. We represent initial configurations using one-hot encoding —

23

the internal configuration 6 is represented by the basis vector e, € {0, 1}#:~5 whose f-entry
is 1 and the other entries are 0. Observe that multiplying e) on the right by the transition
matrix My s(x) produces exactly the next internal configuration: if there is no valid internal
configuration of M after 1 step of computation starting from 6, we have e] My s(x) = 0;
otherwise, the next internal configuration ¢’ is unique and e] My s(x) = e,,. The function
M|nr1s(x) can be written as

M|nrs(x) = e(Tl,l,os,l)(MN,S(m»T(l[N}x[S]x{o,l}S ® Yace)

where e(1,1,04,1) Tepresents the initial internal configuration. The sequence of multiplication
advances the computation by T steps and test whether the final internal configuration is an
accepting state. We elaborate on the last step: The tensor product 1;yjx(s1x{0,1}5 @ Yacc 1S a
vector in {0,1}M.~V.s such that its (4,7, W, ¢)-the entry is 1 if and only if y..c[g] = 1, i.e., ¢
is an accepting state. Therefore, taking the inner product of e(T1,1,oS,1)(MN,S(m))T =e, (0 is
the final internal configuration) or 0 with the tensor product indicates whether M accepts @
within time 7" and space S.

Transition Blocks. We observe that the transition matrix has the following two useful

properties:

— My s(z) is affine in & when regarded as an integer matrix.

— My s(x) has the following block structure. There is a finite set {M, }, of @ x @ matrices
defined by the transition function d, called transition blocks, such that for every (i, 7, W, q)
and (7,5, W' ¢') in [N] x [S] x {0,1}%, the submatrix My s(z)[(i, 5, W,), (¢, 5/, W',)]
is either some M, or O.

Below we define the transition blocks.

Definition 4.1 Let M = (Q, Yac,d) be a Turing machine and 7 = {0,1}* x {0, +1}* the
set of transition types. The transition blocks of M consists of 72 transition matrices M, €
{0,1}9*9 for 7 = (2, w,w’, Ai,Aj) € T, each encoding the possible transitions among the
states given the following information: the input tape symbol x under scan, the work tape
symbol w under scan, the symbol w’ overwriting w, the direction Di to which the input tape
pointer moves, and the direction Dj to which the work tape pointer moves. Formally,

1, if §(q, z,w) = (¢',w', Ai, Aj);

0, otherwise

Mm,w,’,Ai,Aj [q7 q/] = {

In My s(x), each @ x @ block is either one of the transition blocks or O:

Ma:[i],W[j],W’[j],i’—i,j’—j7 lf ’i/ — i,j/ —j S {0, Ztl} and
Mu,s(@)[(i, 5, W,), (', ', W',)] = W ;" = W'[;"] for all j” # j;

0, otherwise

Observe further that in My s(x)[(4, j, W,), (-, -, ,)], each transition block appears at most
once.

AKGS for Turing machines. Above, we have represented the Turing machine computation
as a sequence of matrix multiplication over the integers:

M|nzs(®) = el 051 (Mu,s(2)" (Linyx(s)x 10,135 @ Yace) for & € {0, 1}

24

We can formally extend M|yrs : {0,1}" — {0,1} to a Z)) — Z, function using the same
matrix multiplication formula, preserving its behavior when the input comes from {0,1}%.
When p is clear from the context, we use M|y r g to represent its extension over Z,. We now
describe the construction of AKGS [LL20] for the Turing machine computations.

We consider the function class

F={M|nrs: ZIJ,V — Zy, N,T,S > 1, p prime}

which is the set of time/space bounded Turing machine computations. The AKGS = (Garble, Eval)
for the function class works as follows:

Garble((M, 1V,17,15,p), 2, 3): It takes a function M|y 15 over Z, from F and two secrets
z, B € Z, as input. Suppose M = (Q, Yacc,), the algorithm samples r as the randomness by

for t €0,T): 1y 4 ZONS (Cruns = [N] x [S] x {0,1}° x [Q)]),
7 ZW0TPCs rlt,i, 5, W, q] = r,[(i,j, W, q)].

It computes the transition matrix My s() as a function of and defines the label functions
by
Linit(m> = 5 + eg—l,l,Og,l)TO’
for t € [T] : (Ltﬁ)@eCM,N,s = -1y + MN“g(ZE)T‘t,
(LT+1,9)9€CM,N,S =-—Tr+ Zl[N]x[S}x{O,l}S & Yace-

It collects the coefficients of these label functions and returns them as (£init, (€1,6)te[r+1],6eCh n.5)-
Note: We show that Garble satisfies the required properties of a linear AKGS:

— The label functions are affine in &: Liniy and Ly for all 8 € Cy n,s are constant with
respect to @. The rest are Ly g(x) = (—ri—1 + My g(x)r:)[0]. Since My g() is affine in «
and 7r;_1,r; are constant with respect to x, these label functions are also affine in .

— Shape determinism holds: The garbling size of M|y is 1+ (T + 1) NS29Q.

— Garble is linear in z, 5, : The coefficients of the label functions are linear in (z, 5,). Ob-
serve that My s(), €(1,1,05,1) and Yacc are constant with respect to (z,3,7), and z, 3 and
ry for all ¢ € [0,7T] are linear in (2,5, x). By the definition of the label functions, their
coefficients are linear in (z, 3, x).

Eval(M,1V,17,15,p), z, €1, ...,£y): It takes a function M|y1s over Z, from F, an
input string « € Zév and the labels as input. It first computes the transition matrix My g(x)
with @ substituted into it and sets £; = ({;4) for t € [T + 1]. The algorithm computes
and returns

0€Cr,N,s

T+1
Cinit + 6(T1,1,05,1) Z(MN,S(m))t_lzt
t=1

Correctness: Plugging ¢,y = L;y(x) and the formula for M|y7s into the simulation, we
find that it is a telescoping sum:

25

T+1 T+1

e(T1,1,05,1) Z(MN,S(m))t e, = 1 1,05,1) Z (My,s(x t 1(ri—1 + My g(x)re)
t=1

t=1
1,1,05, (MN,S()) (TT + Zl[N]x[S]x{o 1}s & yacc)

T
1,1,05, Z My s(x) " 'ris + Mpys(x))'r)
t=1

— el 105 Mns(®) ' rr 4+ 2M|y75(x)

= _e(Tl,l,os,l)"“o + 2M|n1s(x)

The value returned by Eval is

T+1
Cinit + 3?1,1705,1) Z(MMS(m))t_lEt =B+ 3?1,1,05,1)'”0) + (_3?1,1,05,1)% + zM|n7s(T))
t=1

= 5 + 2M|N7T,S(w)-

Therefore, the scheme is correct. Moreover, Eval is linear in the labels, as seen from the formula
of Eval.

Theorem 4.1 ([LL20]) The above construction of AKGS is piecewise secure. More pre-
cisely, the label functions are ordered as Linit, (L1g)occy; n.s» (L2.0)0cCrnss - - - > (Lr41,60)0eChr v s
the randomness is ordered as ro,r1,...,ry, and the randomizer of Ly is m_1[0]. For each
t € [T+ 1], the ordering of the components in (L;g)occ,, v s and 14—y can be arbitrary, as long
as the two are consistent.

An Exercise of Algebra: We note that the above construction of AKGS for the function
[o,

. 0,T]xC .
class F requires to sample r « Z, PEMNS We will use ”structured“ element r = Tz QTf

for r, < Zg] TIXINIXSPAO1 5 g e § ZI? as the randomness for the AKGS garbling. We show
that My s(x)r; (a central part of the label functions) can be expressed as a bilinear function
of &, 7z, ® ry, (known at encryption time) and M,rs, r;’s (known at key generation time),
and hence can be computed as the inner products of vectors depending on these two groups
of variables separately.

By our choice of randomness, r; = r[t, ., ., ., .| is a block vector with each block being a
multiple of r;. More precisely, r,[i, j, W, .| = r5[(k,t,i, 5, W)]r;. We compute each block of
the product My s(x)r;

(MN,S(w)rt)[@? j7 W? ”)]
(bt) =M@, W), (oo
(Do) = 30 M@, W), (5 W el W)

i'€[N],5'€[S]
w’e{0,1}5

- Z MN,S(‘CC)[(?;M].’Wv”)? (ilvjlaWl?“)]rw[<t7il7j/7wl)]rf
i'€[N],5'€[5]
w'e{0,1}%

26

Recall that in My g(x)[(¢, 7, W,), (-, -, -,)], each transition block appears at most once, and
the other) x @) blocks are 0. More specifically, M, , ' aia; appears at My s(x)[(i, j, W,),
(7, W' D] if ¢ = xfi],w = W[j],Ai = —i,Aj = j' — j, and W' is W with j-th entry

changed to w’. Therefore, we have

(M]mg(il))’l‘t)[(i, 7 W, u)] = Z Mm[z’],W[j],w’,Az’,Aij[(tai + AZ,] + A], WI>]’I°f
w’e{0,1}
Ai,AjE{0,£1}
i+Ai€[N],j+AjF€[S]
rol(ti+ i+ AW, ifx = afil,i + A € [N],
- Z Mz,w,w’,Ai,Aj'rf X w = W[.]]u] + AJ S [S]a

z,w,w' €{0,1} 0, otherwise
A, Aje{0,+1}

(4.1)

Here, W'[j] = w’ and W'[j"] = W [j"] for all j” # j. Note that in the last summation formula,
there are exactly 72 summands. Moreover, each summand is My, ai,a;77 (depending only
on r; and the transition blocks) multiplied by an entry in r, or 0 (depending only on x, 7).
To simplify notations, we define transition coefficients:

Definition 4.2 Let 7 = {0,1}® x {0,+1}* be the set of transition types. For all 7 =
(z,w,w',Ai,Aj) € T,N,T,S > 1,and z € {0,1}N,t € [T],i € [N],j € [S], W € {0,1}",7r, €

ZLO’T]X[N]X[S]X{O’I}S, define the transition coefficient as

rol(t, i+ Aij+ Aj, W), if o =a[i],i + Ai € [N],

C:E,w,w’,A’i,Aj(w;tuiaja erw) = w = Wb]?] + AJ € {5]7
0, otherwise

where W' € {0,1}%, W'[j] = w', and W'[j"] = W ;"] for all j” # j.

With the above definition, Equation (4.1) can be restated as

(My,s(@)r)[(i,5, W,)] = Y (@, t,i, 5, Wire) M7y, (4.2)
T€T

5 (1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L

In this section, we build a secret-key, 1-slot FE scheme for the unbounded attribute-weighted
sum functionality in L. At a high level, the scheme satisfies the following properties:

— The setup is independent of any parameters, other than the security parameter . Specif-
ically, the length of vectors and attributes, number of Turing machines and their sizes are
not fixed a-priori during setup. These parameters are flexible and can be chosen at the
time of key generation or encryption.

— A secret key is associated with a tuple (M,Zps), where M = (My)rez,, is a tuple of
Turing machines with indices k£ from an index set Zps. For each k € Zps, My € L, ie.,
M, is represented by a deterministic log-space bounded Turing machine (with an arbitrary
number of states).

27

— Each ciphertext encodes a tuple of public-private attributes (x,z) of lengths N and n
respectively. The runtime 7" and space bound S for all the machines in M are associated
with & which is the input of each machine M.

— Finally, decrypting a ciphertext CT, that encodes (x, z) with a secret key SKaz 7,, that is
tied to (M, Zpr) reveals the value), o z[k] - My(x) whenever Zps C [n].

We build an FE scheme for the functionality sketched above (also described in Definition 3.2)
and prove it to be simulation secure against a single ciphertext and secret key query, where
the key can be asked either before or after the ciphertext query. Accordingly, we denote the
scheme as SK—UAWS(LLM) = (Setup, KeyGen, Enc, Dec), where the index (1,1,1) represents in
order the number of secret keys, ciphertexts and slots supported. Below, we list the ingredients
for our scheme.

1. IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec): a secret-key, function-hiding |1PFE
based on G, where G = (G, Gy, Gr, g1, g2, €) is pairing group tuple of prime order p. We
can instantiate this from [LL20].

2. AKGS = (Garble, Eval): a special piecewise-secure AKGS for the function class M =
{M|n1s : Zév — Zy, | M € TM,N,T,S > 1,p prime} describing the set of time/space
bounded Turing machines. In our construction, the Garble algorithm would run implicitly
under the hood of IPFE and thus, it is not invoked directly in the scheme.

5.1 The Construction
We are now ready to describe the SK—UAWS(LLM) = (Setup, KeyGen, Enc, Dec).

Setup(1*): On input the security parameter, fix a prime integer p € N and define the slots
for two IPFE master secret keys as follows:

S1.uaws = {indexl, indexs, init, rand, rand®™™P, rand“°™P, rand®™™P°™P acc, sim, sim™™P, simc°mp}
t t
U {tb,, thi™P tb2™P thiemPomP | - ¢ T}

Si.uaws = {indexy, index,, init, rand, rand**™, rand*™P°™P acc, acc™™P, sim, sim*™" }.

Finally, it returns MSK = (IPFE.MSK, IPFE.MSK).
KeyGen(MSK, (M ,Zys)): On input the master secret key MSK = (IPFE.MSK,

—~—

IPFE.MSK) and a function tuple M = (My)gez,, indexed w.r.t. an index set Zpy C N
of arbitrary size, parse My = (Qk, Yk, Ox) € TM Vk € Zps and sample the set of elements

{B;M—Zp\ Zﬁk:O modp}
k

For all k € Zp;, do the following:

1. For My = (Q, Yr 6x), compute its transition blocks M;, € {0,1}9*P%,
VreT.

2. Sample independent random vectors 7y 5 < Zl?’f and a random element 7, € Z,,.

3. For the following vector vy i, compute a secret key IPFE.SKjn: < IPFE.KeyGen
(IPFEMSK, [[Ivk,init]]Q):

vector |index; indexy init rand acc tb, |theother

indices

k€Tpgr

Uk, init T k-mp reg[l] 0 Br 0 0

28

4. For each ¢ € [Qy], compute the following secret keys

IPFE.SK}., < IPFE.KeyGen(IPFE.MSK, [v;,]) and
IPFE.SK;., + IPFE.KeyGen(IPFE.MSK, [.,]»).

where the vectors vy, 4, Uy, are defined as follows:

vector|index; indexo init rand acc th, the other

Veg | ™ k-me 0 —miglg) 0 (My,reg)lgl| O

vector |index; indexs rand acc |[the other

indices

Vk g T k-me —rrfldl ykld 0

Finally, it returns the secret key as
SKMm 1) = ((M,IM), {IPFE.SKkVinit, {IPFE.SK;W, |PFE.SKk,q}qE[Qk]}k€IM> .

Enc(MSK, (2,17,12%),2): On input the master secret key MSK = (IPFE.MSK,

—_~—

IPFE.MSK), a public attribute € {0, 1} for some arbitrary N > 1 with time and space
complexity bounds given by 7,5 > 1 (as 17, 123) respectively, and the private attribute
z € 7, for some arbitrary n > 1, it does the following:

1. Sample a random vector r, < ZLO’T]X[N}X[S]X{O’I}S.

2. For each k € [n], do the following:
(a) Sample a random element pj, < Z,.
(b) Compute a ciphertext IPFE.CTy nit <— IPFE.Enc(IPFE.MSK, [u init]1) for the vector

Uk init-

vector |index; index, init rand acc th, |thepther

UL init —k- Pk Pk rw[<07 17 17 OS)] 0 1 0 0
(c) Forall t € [T],i € [N],j € [S], W € {0,1}*, do the following:
(i) Compute the transition coefficients ¢, (x;t,1,j, W;ry), V7T € T using 7.
(ii) Compute the ciphertext [IPFE.CTy,; ;w — IPFE.Enc(IPFE.MSK,
[t jwli) for the vector wy s, jw:

vector |index; indexy init rand acc tb, the other

W ti,5, W _kpk Pk 0 ’I’z[(t - Liaja W)] 0 C‘r(w;tﬂ'ajv W; Tw) 0

(d) For t = T + 1, compute the ciphertext IPFE.CTyri1,,w < IPFE.Enc
<|PFEMSK, [{ak,T+17i7j7w]]1) for the vector ak,T—&—l,i,j,W:
vector |index; indexy rand acc |the other

Wk r41i,W|—K- P Pk ro[(T,1,j, W)] z[K] 0

29

3. Finally, it returns the ciphertext as

CTers) = ((a:, T,S), {IPFE.CTkﬁinit, {IPFE.CTy 15w tecir)s

e~

IPFE.CT, ijw})
T k€[n],i€[N],j€[S],We{0,1}5
Dec(SK(a,z0,), CT(z,1,5)): On input a secret key SK(as,z,,) and a ciphertext CT (4 7,g), do the
following:
1. Parse SK(ar.7,,) and CT 5 15y as follows:

SK(!\LI) — <<(Z\4k)k€IMaZM> ’ {l 'SKk,initv {” I E'SKIWP ” I E'SKk,q}qE[Qk]}k T >)
M €lnm
lwk (Qkuyknék)’

CT(:Z:,T,S) - ((a:? TJ S)) {lPFE'CTk,initu {lPFE-CTk,t,i,j,W}tE[T]7

|P/|:EjETk7T+17i’jjw}) , L € {O, 1}N

ke[n],i€e[N],j€[S],We{0,1}5

2. Output L, if Zps € [n]. Else, select the sequence of ciphertexts for the indices k € Zys
as

CTars) = ((:c,T, S), {lPFE-CTk,inih {IPFE.CTy 1 jw tecir)s

—_—

IPFE.CTyr1i5w |)
’ e k€Zpng,i€[N],j€[S],We{0,1}S
3. Recall that Vk € Zns,Crr vs = [N] x [S] x {0,1}° x [@Q4], and that we denote any
element in it as 6, = (4,5, W, q) € Cu, n,s Where the only component in the tuple 6y

depending on k is q € [Q]°. Invoke the IPFE decryption to compute all label values as:
\V/k € IM . [[Ek,init]]T = |PFE.D€C(|PFE.SKk,init, |PFE.CTk’init)

Vk € IMyt € [T],ek = (i7j7 WaQ) S CMkwng :
[€.0,]7 = IPFE.Dec(IPFE.SK;, 4, IPFE.CTy 10 i w)

Vk’ S IM70k = (Z7J7W7Q) € CMkvas :

[, 7+1.6,]r = IPFE.Dec(IPFE.SK;,q, IPFE.CTr 10 1.0w)
4. Next, invoke the AKGS evaluation and obtain the combined value

] = H Eval ((Mk:> R O 123,]9) ., [Cr inie] T, {[[fk,t,ek]]T}

te[T+1],0,€C)
k€Tns E[T+1],0x€Cny, N, 5

5. Finally, it returns u = DLog, ([¢]r), where g = e(g1,g2). Similar to [AGW20], we
assume that the desired attribute-weighted sum lies within a specified polynomial-sized
domain so that discrete logarithm can be solved via brute-force.

® For simplicity of notations, we enumerate the states of each My as 1,...,q, i.e., [Qx] = [Q] for some Q € N.

30

Correctness: Correctness follows from that of IPFE and AKGS. The first step is to observe
that all the AKGS label values are correctly computed as functions of the input «. This holds by
the correctness of IPFE and AKGS encoding of the iterated matrix-vector product representing
any TM computation. The next (and final) correctness follows from the linearity of AKGS.Eval.
In more detail, for all k € Zps, 0, = (3,5, W,q) € Cr N5, let Liinit, L to, be the label
functions corresponding to the AKGS garbling of My = (Qr, Yk, k). By the definitions of
vectors vy init, Winie and the correctness of IPFE, we have
gk,init = (_kpkﬂ-k + kﬂ'kpk) + ’I‘m[<0, 17 17 OS)]rk»f[l] + 5’?
= 7‘0[(17 1, 0g, 1)] + B = 6{1,170571)7‘0 + Bk = Lk,init(w)-
Next, Vk € I, t € [T, q € [Qx], the structures of vy 4, us,; jw and the correctness of IPFE
yields
gk,t,i,j,W,q = (_kpkﬂ-k + kﬂkpk) - Tm[(t - 17 Z.7j7 W)]rk,f[Q] + Z CT(w; t? 7:7 ja W7 Tm)<Mk,Trk,f)[Q]
TET
= T [(27 .jv W’ Q)] + Z CT(m; t, i7 ja W7 raz)(Mk,T’rk,f)[Q] = Lk,t,i,j,W,q<m)
TET
Finally, Vk € Zpr,q € [Qk, the vectors v 4, Upr414;w and the IPFE correctness again
yields
Ueririgw.g = (kpeme + kmepr) — 72 [(T, 0, 5, W)lrw flq] + 2[k|yklq]
= —rp[(i, 5, W, @) + z[k] (U< is)xq0,135 @ Yi) [(4, 5, W, q)]
= Liry1,5,w.q().
The above label values are computed in the exponent of the target group Gr. Once all
these are generated correctly, the linearity of Eval implies that the garbling can be evaluated
in the exponent of Gr. Thus, this yields

[]r = H Eval ((Mk, IR 125,17) ., [Crinit] T {[[gk,t,ék]]T}

te|T+1],0k GCMk N,S)

k€Tlns

- [[Z Eval((Mk7]-N7 1T7 12571))7 €, gk,init; {gk,tﬁk}te[T+1],9k6CMk7N7S)]]T
k€Ln

=Y (2K Milvrs(@) + B)lr = [Y 2[k]- Mi|yrs@)]r = [M(z)" 2]
k€Tpr k€Zns

5.2 Security Analysis

We describe the simulator of our (1-SK, 1-CT, 1-Slot)-FE for UAWS. The simulated setup Setup®
operates exactly the same way as the honest setup works. The simulated master secret key is
MSK* = (IPFE.MSK, IPFE.MSK). The simulated key generation algorithm KeyGen; also works
in the same fashion as the honest key generation proceeds. We now describe the simulated
encryption Enc* and the simulated key generation KeyGen] below.

Enc*(MSK*, (x,17,12°), (M, Zn;, M () Tz),n): On input the simulated master secret
key MSK*, the challenge public attribute @ with associated parameters T,2° in unary, (if
there is a secret key query before the challenge ciphertext is generated then) the secret key-
functional value tuple (M = (My)kezy,, Ina, M () 2 = 3,7, Mi(x)2[k]) with Ty C [n]
and the length of the private attribute n, the encryption proceeds as follows:

31

1. It samples a dummy vector d < Z; such that

M(z)'z=M(x) d=">Y_ M/z)dk.
keln]

Note that, it can always set My(x) = 0 for k & [n] \ Zps. If there is no secret key query
before the challenge ciphertext then it chooses a random vector v € Z in place of d.

- Z][JO,T} x[N]x[S]x{0,1}% <_ ZLTJFHX [N]X[S]X{O,l}s.

2. Sample a random vector 7, and s,

3. For each k € [n], do the following:
(a) Sample a random element py < Z,.
(b) Compute a ciphertext IPFE.CTy e < IPFE.Enc(IPFE.MSK, [uy init]1) for the vector

U init-
vector | index; indexs init acc sim [the other
Upinit |~k -pr pe 72[(0,1,1,05)] 1 1 0

(c) For all t € [T],i € [N],j € [S], W € {0,1}", do the following:
(i) Compute the coefficients ¢, (x;t,1,j, W;ry),V7T € T using 7.
(ii) Compute the ciphertext IPFE.CTy; ;w < IPFE.Enc(IPFE.MSK, [wy . ;w]1) for the
vector g ; jw:

. . . the other
vector |index; indexs rand tb, sim he puac

W t,i,5,W _kpk Pk ’f'w[(t - 1ai7j7 W)] CT(m;tai7j>W;rw) Sw[(tvimj? W)] 0

(d) For t = T + 1, compute IPFE.CTyry1.4,w ¢ IPFE.Enc(IPFE.MSK, [g 1415w]1) for
the vector Wy 741, w:

H H H the other
vector |index; index; rand acc sim e othe

ﬂ’k,T-l-l,i,j,W —k- Pk Pk T:EKT? iv ja W)] V[k] or d[k] Sw[(T + 1a ivja W)] 0

4. Finally, it returns the ciphertext as
CT($7T75) = ((a:, T, S) s {lPFE.CTk’init, {IPFE‘CTk,t,i,j,W}tE[T];

IPFE.CTy 4105w } '
kT+1,i,5,W ke[n],z‘e[N],jE[SLWG{O’I}S)

KeyGen} (MSK*, (M, Zy;, M (x) " z)):: On input the master secret key MSK* and the secret
key-functional value tuple (M = (M)rezp,, Ing, M(2)'2 = 3, o7 Mi(x)z[k]) wrt. an
index set Zps C N, the key generation process works as follows:

1. It parses My = (Qk, Yk, 0r) € TM Vk € Zps and sample elements 5, € Z, for k € Iy as
follows:

if Zng Cn): B < Zyand), B, =0 mod p
if (max Zpg > n) A (min Zyy <n): B < Zy

32

2. For My = (Qr, Yr, Ox), compute transition blocks My, , € {0, 1}@=*@ V7 € Tj.
3. It reversely sample the label function values as
S
Oy jnit RevSamp((M;, 1N’ 1T7 12), x, M(m)Tz + ﬁi, (gk?,tﬂk)te[T‘Fl],akecA/[k,N,S)

S
gkz,init — Revsamp((Mk’v 1N7 1T7 12)7 m?ﬁllm (gk‘i,@k)tE[T+1},9k€CMk’N,S)7 fOI' all k: > 1

where all the other label values (y;; ;w , = Sz[(, %, J, W)|sy r[q] are simulated (and known
to the simulator).
4. For the following vector vy, jnir, compute a secret key IPFE.SKy, jnie <— IPFE.KeyGen(IPFE.MSK,

[[’Uk,init]]Q)i

; : i the other
vector |index; indexy sim [the othc

Uk init T kome Lrinie 0

5. For each ¢ € [Qy], compute the following secret keys

IPFE K}, < IPFE.KeyGen(IPFE.MSK, [v;,]2), and

IPFE.SK, + IPFE.KeyGen(IPFE.MSK, [3.,]-),

where the vectors vy 4, Ui, are defined as follows:

vector |index; indexy sim the other

maices

Vi q Tk k-7 Sw[(ta i7j7 W)] 0

H H ; the other
vector |index; indexy sim he othe

6k,q k k'ﬂ-k 8m[<T+17i7j7 W)] 0

Note that, the random vector s, has already been sampled during encryption.

Finally, it returns the simulated secret key as

SK(a1.20p) = ((M,IM), {lPFE.SKmt, {IPFE.SK . |PFE.SKk7q}qE[Qk}}k€IM) .

We will use the following lemmas in our security analysis.

Lemma 5.1. Let IPFE = (Setup, KeyGen, Enc, Dec) be a function hiding inner product encryp-
tion scheme. For any polynomial m = m(X\) and n = n(\) with m > n, define the following
vectors

Ths Phes Thy T <— Zyp3 b {0, 1}
vp=(m, k-m,D0, 0, 0) forke|n]
o =(m, kom0, +b-74,0) forke[n+1,m)
wpy = (=K pw, pw., 0, 1, 0) fork' €[n]
Then, for any IPFEIMSK <« IPFE.Setup(1*,1*), the distributions {{IPFE.SK}; } e
{IPFE.SK™ Y st 1.y {IPFE.CTi b} for b € {0,1} are indistinguishable where

33

IPFE.SK;, < IPFE.KeyGen(IPFE.MSK, vy,) for k € [n]

IPFE.SK\" < IPFE.KeyGen(IPFE.MSK, v\")) for k € [n+ 1, m]
IPFE.CT} + IPFE.Enc(IPFE.MSK, u;) for k € [n]

Proof. We prove this lemma by the transformation 7, = m;, — 5 for k # k'. Note that

Tk
pyr (K=K’
Ty, is uniform over Z, since 7, <— Z,. The lemma follows from the function hiding security of
IPFE since

v wy = mpr - (k= k) + 1y

= (Fi+ Jow - (k= k) + 74

Tk
pw (k= K')
= %kpk’ : (k‘ -]{/) + 7+ ?k = ’U(l) c Uy

a

Theorem 5.1 Assuming the SXDH assumption holds in G and the |IPFE is function hiding
secure, the above construction of (1-SK,1-CT, 1-Slot)-FE for UAWS is adaptively simulation
secure.

Proof Idea: Before going for a formal proof, we discuss a high level overview of the proof.
We use a three-step approach and each step consists of a group of hybrid sequence.

— In the first step, the label function ¢y j;x is reversely sampled with the value z[k]My[x]+ B
and it is hardwired in either wy jnix Or Vg init, whichever is computed later.

— The second step is a loop. The purpose of the loop is to change all the honest label values
Crtijw,q to simulated ones that take the form (., iw,, = Sz[(t,7, 7, W)|sk flq] where
Sg[(t, 4, j, W)] is hardwired in wy,; jw Or Wk ryi1.,;,w and si ¢lg] is hardwired in vy, or
Ukq- The procedure depends on the order of adversary’s queries.

— After all the label values ¢4, w, are simulated, the third step uses a few more hybrids
to reversely sample £ jnie and lg init|x>1 with the hardcoded values M ()" z + £ and Bi|r>1
respectively. We also rearrange the elements so that the distribution of the ciphertext does
not change with the occurrence of the secret key whether it comes before or after the
ciphertext.

Recall that the adversary is allowed to query only a single secret key either before (SK before
CT) or after (CT before SK) the challenge ciphertext. Accordingly, we consider two different
cases depending on the occurrence of the single secret key query.

Case 1 (CT before SK): In this case, we place the reversely sampled /e in the vy in
the exponent of Gy. The loop of the second step runs over (k,t,7,7, W) in lexicographi-
cal order. In each iteration, we clean wu,;;w and shift everything to v, in one shot and
truly randomize the label values using DDH in Gy and then change these to their simu-
lated form lyii;w.q = Sz[(t,7,7, W)|sk r[g] by again using DDH in Gs. Finally, the terms
{8z[(t, 4,5, W) }tepr41) are shifted back to wp i jw Or Uk 115w -

Case 2 (SK before CT): In this case, we place the reversely sampled (j jnir in the wy o in the
exponent of G;. The second step involves a two-level loop with outer loop running over ¢ in

34

increasing order and inner loop running over ¢ in increasing order. In each iteration of the
loop, we move all occurrences of 7, ¢[g] and sy, ¢[qg] into all wgy ;7 j» wr in one shot and hardwire
the honest labels ¢y ;; j w4 into wy ;5w for all 4, j, W. Next, by invoking DDH in G, we first
make the honest labels ¢4 ;; ; w , truly random for all 7, j, W and then transform these into
their simulated form 0y, ; jw , = Sz[(t, 1, 7, W)|sk r[¢] again by using DDH in G, for all 4, j, W.
Finally, the terms sy f[q] are shifted back to vy, or vy,.

We start the formal proof with the first step where both the cases can be handled together.
The next two steps are managed separately according to the occurrence of the secret key.

Proof. Let A be a PPT adversary in the security experiment of UAWS. We show that the ad-
vantage of A in distinguishing between the experiments Expt’ioa’(1*) and Expt’{ijer (1*) is
negligible. In this security analysis, we additionally assume that the adversary can query
only a single secret key for (M ,Zps) either before or after the challenge ciphertext. Let
((x,17,12%), 2) be the challenge message and z € Zy. We also assume that the single key
queried by the adversary cover all the indices of the ciphertexts, i.e., Zps 2 [n] which is nat-
ural as the adversary gets maximum information about the ciphertext in such case. Without
loss of generality and for the simplicity of exposition, we assume that the number of states in
all Turing machines is the same and it is Q.

The first few hybrids are the same for both the cases: CT before SK and SK before CT. The
indistinguishability arguments remain unchanged in such hybrids. In Table 5.1, we represent
the first/last few hybrids. Let nmax be the maximum value of n, the length of z, i.e., A can
choose the private attribute whose maximum length can be n.y.

Hybrid Hp: This is the real experiment Exptj}ﬂg\’lvs(l)‘) (= Hyear in Table 5.1) where the ci-
phertext vectors contains the challenge message (x, z) and the secret key vectors are computed
using (M, Zpg).

Hybrid Hg 1: This is exactly the real experiment except the challenger aborts the experiment
immediately if the vector length of z is not n’, i.e., n # n/. Suppose A outputs L when the
experiment is aborted. Thus, it is easy to see that the advantage of A in Hg is ﬁ times the
advantage in Hy. Thus, if the advantage of A is negligible in Hy, then it is so in Ho.i. Hence,
in the remaining hybrids we simply write n’ = n.

Hybrid Hp: It proceeds exactly the same as Hg; except that if the queried key (M, Zys)
is such that (max Zps > n) A (min Zpy < n), then Sy = vy nie[acc] is replaced with Bk — Z,
for each k € Zp;. Thus, with high probability it holds that ZkeIM Bk: # 0. The hybrids Hg
and Hgo are indistinguishable by the function hiding security of IPFE via the Lemma 5.1.
Note that in this hybrid, we crucially use the randomness of the positions vy nit[index;| and
Up.initindexs] (encoding the indices which are not available in the ciphertext vectors) to sample

Bk independently from other indices of the secret key.

Hybrid H;: It proceeds exactly the same as Hp o except £ init is hardwired in vy jnit OF Uk jnit,
Q [T+1]x [N]x[S]x{0,1}° : ~ .

and s 5 < Ly, Sa < Ly are embedded in vy g, Wi 7414,5,w respectively. The

first change sets the stage for £ init to be reversely sampled in the next hybrid and the second

change prepares the 1 ; i wqli<r, Ce 141,15, w,q t0 be simulated as pseudorandom values in the

loop hybrids. More specifically, the changes are implemented as follows:

35

— For CT before SK, wy init is set to 1 during encryption and vy, jnit is set to 7,[(0, 1,1, 0g)]rk, [1]
during key generation.

— For SK before CT, vy init is set to 1 during key generation and wy inie is set to r5[(0, 1,1, 0g)]
T 7[1] during encryption. Note that, 7y ¢[1]s are known only for k& € Zas. Thus, wy jnic[init]
is unchanged in this and in the rest of the hybrids for & € [n|\ Zas.

— Also, vy, 4[sim] is set to sy f[q] and Wk 141, w(sim] is set to sx[(T + 1,14, j, W)].

Note that, the inner products between v’s and u’s remain unchanged. Therefore, the function
hiding property of IPFE ensures that Hy and H; are indistinguishable.

Hybrid Hy: It proceeds identically to H; except that /i s is reversely sampled from the
other labels. By the piecewise security of AKGS, the hybrids H; and Hs are indistinguishable.

Hybrid Hy: It proceeds identically to Hy except the inner products wg:;;w - vk, and
Wk 7415w - Uk,q change from the honest to simulated labels s,[(¢,1, 7, W)]sg lq] and s, [(T +
1,4, 5, W)]sy lq] respectively. This is implemented by clearing the values at rand, acc, tb, of the
vectors Wy, jw, Uk 141w and embedding sy flq], sz[(t, 7,7, W)] at vy 4[sim], @y, jw[sim]
respectively. We show the indistinguishability between the hybrids Hy and Hs in two separate
claims:

Claim 5.1 In the case of CT before SK, Hy =~ H,.
Claim 5.2 In the case of SK before CT, Hy =~ H,.

Hybrid Hs: It proceeds exactly the same as Hy except the values at rand,acc,tb, of the
vectors vy g, Uy, are cleared and wg nie[sim] is set to 1. Also, for the case of CT before SK,
Ciinie 1s shifted from vy jnit[init] to Vg nie[sim]. While the former change is common for both
cases, the later prepares the ideal game for the case of CT before SK. Note that, the inner
products between v’s and u’s remain unchanged. Therefore, the function hiding property of
IPFE ensures that H, and Hj are indistinguishable.

Hybrid Hg: It is the same as Hj5 except the hardcoded values used in the reverse sampling
procedure while computing ¢y i (for both the cases). It computes ¢ jnir as follows:

S
gl,init — Revsamp((Mla 1N7 1T> 12)7 Z, M(w)Tz + 617 (gk’,t,@k)tE[T%»lL@kECMk’N,S)

S
Crinie < RevSamp((M;,, 1V, 17,177), z, By, (Ch,t.04)telT+1),0x€Ch, ns)s forall k>1

where all the other label values (., iw,q = Sz[(t,7,], W)]sk rlq] are already simulated. If
the queried key satisfies the permissiveness, i.e., Zpy C [n], then this is accomplished by a
statistical transformation on {fy : By, <= Zp, Y pc1,, Bx = 0}. We replace B by newly sampled

Br:

B =By — z[]]My(z) + M(x)" 2
Br = By, — z[k]|My(x) for all k >1

36

hybrid vector init rand, acc, tb, sim
Vk,init 7, (1] normal 0
Vi,q normal 0
Vk,q normal 0
Ho.2
Wk init 72[(0,1,1,05)] normal 0
Uk,t,i,j,W normal 0
Uk, T41,i,5,W normal 0
- or | 72[(0,1,1,08)Jre (1] + Bi(or Bi) | [0,0,0] 0
Vk,q normal
H, Vk,q normal 0
- \rm[(og,l,os)]rk,f[u + Bilor B) | or [1] 0.0,0 0
Uk,t,i,j,W normal 0
Uk, T+1,6,5,W normal sz[(T+ 1,4, 7, W)]
Vg init 1 or | £y init + RevSamp(z[k] My (x) 4+ Bi(or Bk)) ‘ 0,0,0 0
Vk,q normal sk, rlq
Ho Vk,q normal 0
Wkt \zk,m <+ RevSamp(z[k] My (z) + B (or Br)) \ or1 0,0,0 0
Uk, t,i,5,W normal 0
Uk, T+1,6,5,W normal sz|(T +1,4,7, W)]
loop
Vit 1 or £y ini + RevSamp(z[k] My (z) + Br(or Br)) 0,0,0 0
Vk,q normal Sk, flq]
Ha Vk,q - normal
Uk init Ly init < RevSamp(z[k] My (x) 4+ Br(or Bk)) or 1 0,0,0 0
Uk t,i,,W 0,0,0 Sz((t, 4,4, W)]
Uk, T41,i,5,W s2[(T + 1,4, 5, W)]
Uk, init 1 or @ 0,0,0 0 or | £i,init < RevSamp(z[k] My (x) + Br(or Bk))
Uk st.sd]
Hs Tkq 0,0, - sk, rlq]
Wk, init g init < RevSamp(z[k] My (z) + Bx(or Br)) or 1 0,0,0
Wk, t,i,5,W 0,0,0 sz((t,4,7, W)]
Uk, T+1,6,5,W 0,0, — sz|(T + 1,4,5, W)]
V1 init lor0 0,0,0 0 or | €1,inie + RevSamp(M (z) "z + 61) ‘
Vk>1,init lor0 0,0,0 0 or ‘ L inie < RevSamp(3;) ‘
Vi,q 0,0,0 sk, flq)
He Vk,q 0,0, — sk, rlq)
U init ‘Zl,;n;t + RevSamp(M ()" z + 8;) ‘ or 1 0,0,0 1
Uk>1,init ‘Ek,;n;t + RevSamp(5;) ‘ orl 0,0,0 1
Uk, t,i,5,W 0,0,0 Sa((t, 1,4, W)]
Uk, T+1,6,§,W 0,0, — sz|(T + 1,4,5, W)]

The table is continued to the next page...

38

hybrid vector init rand, acc, tb, sim
V1, init 0 0,0,0 {1,nit < RevSamp(M () "z + 1)
Vie>1,init 0 0,0,0 £k init < RevSamp(y,)
Vk,q 0,0,0 skaf[q]
Hideal Bra 0,0, — si.ld]
Uk init r2[(0,1,1,05)] normal 1
Uk t,i,5,W SW[(t7 ia.j? W)]
Uk, T4 1,6,5,W normal(v) sz[(T + 1,4,7, W)]
for CT before SK the sequence of hybrids ends here, i.e., Higeal is the ideal world
Uk, init 1 0,0,0 0
Vk,q 07 O, 0 sk,f[q]
17k7q 07 07 - Sk,f[q]
Hz U1, init {1,init < RevSamp(M () "d + f1) 0,0,0 1
Uk>1,init O inie < RevSamp(y,) 0,0,0 1
uk:,t,i,j,W 07070 sm[(t,l,J,W)]
Uk, T+1,i,5,W 0,0, — 8a[(T + 1,4, 5, W)]
for SK before CT traverse in reverse direction until Hyp with d in place of z
Vk,q normal @
Vk,q normal @
H(7—>0)
Wk i ra((0,1,1,05)] [0]
Uk t,i,j, W normal @
Uk, T+1,i,5,W normal(d) @
Uk, init Tk, [1] normal 0
Vk,q normal 0
H Vk,q normal 0
dea! Wk, init r2[(0,1,1,05)] normal
Uk, t,i,5,W normal sz[(t, 1,5, W)]
Uk, T+1,i,5,W normal(d) ’ sz[(T + 1,4,7, W)] ‘

for SK before CT, Higeal is the ideal world

The "normal“ in

t<T, Uktijw:
if normal, ﬁk,T+1,i,j,W:

if normal(w), Wk, 7+1,i,5,w:

rand acc th,

Uk, init 0 Bk 0
Vk,g : —7k,1d] 0 (My.,~7,7) 4]

kg : —7k,fd] Yx[q] -

Uk, init 0 1 0

re[(t— 1,4, W)] 0
T;.;[(T, i7j7 W)] Z[k]
’I”w[(T, ivjv W)] w[k] B

CT(w7t7i7j7 W7 Tm)

The note is continued to the next page...

In Hy, [SK before CT | | CT before SK | : In Hz,Hi, | SK before CT| [CT before SK |

Vg init|init] = 1 72[(0,1,1,08)]7k, £ [1] | Uk, init]init] = 1 RevSamp(a)
wranlinit] = 72[(0,1,1,08)]re ¢[1] 1 | wp[init] = RevSamp(a) 1

In Hs, | SK before CT | [CT before SK| | TnHs, [SK before CT| [CT before SK|
Vg init[iNit] = 1 0 : Vg init[SIM] = 0 RevSamp(«)
Uk, init[iNit] = RevSamp(«) 1 ! U init[SiM] = 1 1

The “RevSamp(c)” means: £k init < RevSamp((My, 1V,17 123)7 T, q, (Zkvtvgk)tE[T+1]79kECJVIk,N,S)

In Hz, Hideal, fk,t,5,5,w.q = Li,t,i,5,w,q(2) are computed honestly using IPFE.

In Ha, Hs, He, Hideal, Lit,s,5,w,q = S2[(t,%,J, W)]sk,¢[q] are simulated and computed using IPFE.

In Higeal, the positions rand, acc, tbr of W init, Uk t,5,5,w, Wk, 7+1,5,5,w are kept either normal or normal(v),

for an arbitrary vector v, due to security proof of PK-UAWS. These entries have no effect in this simulation.

In Higeal, the position sim of wg init, Wk,t,i,j,w, Wk, 7+1,5,5,w are kept 1, 8g[(t,4, j, W)], s=[(T + 1,4, j, W)] respectively
due to security proof of PK-UAWS. These entries have no effect in this simulation.

Table 5.1: The first/last few hybrids in the security proof of 1-UAWS.

where 3 < Z,. Observe that it still holds that », ., 8 = 0. On the other hand, if the key
under consideration does not satisfy the permissiveness, i.e., (max Zps > n) A (min Zps < n),
then we know that f;, are uniform over Z,. Thus, we can replace 3; by new [;:

By = B, — z[1]My(x) + M(z)
B = B — z[k]My(z) forall k > 1

where f; < Z,. Note that, the distributions of new S or Ek are statistically close to their old
versions and hence the two hybrids Hs and Hg are indistinguishable.

Hybrid H;ge,: This hybrid is equivalent to the ideal experiment Expti}ijﬁg\fs(l)‘) for the case

of CT before SK. Thus, one should omit this hybrid in the case of SK before CT. In Higeal,
the positions init, rand, acc, tb, of the vectors wy init, Wk ¢ ; w, Wk, r+1,,;,w are changed back to
their normal form as they were in Hy except we use an arbitrary vector v <« Zj in place
of z (for @y r41,;w). This change has no effect in the inner products between u’s and v’s
since the corresponding terms in v’s are zero. The purpose of this change is to maintain
the distribution of the ciphertext vectors consistent with the case of SK before CT. Finally,
Higeal is indistinguishable from Hg by the function hiding property of IPFE, and hence Hy =
Expt’ieat (1%) ~ Higear.

The sequence of hybrids for the case of CT before SK ends here and the rest of the hybrids
are required only to handle the case of SK before CT.

Hybrid Hz: It proceeds exactly the same as Hg except it samples a dummy vector d < Zy
such that
M(z)'z=M(x) d= ") Mz)dk.
k€[n]
and reversely sample ¢y ;i with the hardcoded value M (z)"d + f; instead of M ()" z + f3;.
Note that, this is statistical change to the computation of ¢ jnit, and hence the hybrids Hg and
H; are indistinguishable to the adversary.

39

Hybrid Hz_.0): Next, for the case of SK before CT, we traverse in the reverse direction from
H; to all the way to Hy with the dummy vector d in place of z. This step is inspired from the
proof technique used by Datta and Pal [DP21]. We skip the descriptions of these hybrids as
the indistinguishability arguments would be exactly similar to what we used for reaching H-
from Hy. We denote the new Hy as H(70) and the hybrids H; and H;_,¢) are indistinguishable
by the function hiding security of IPFE and the piecewise security of AKGS. After this hybrid,
observe that the reduction do not need to guess n which enables the final simulator to generate
the pre-ciphertext secret key without any information about the length of private attribute z.

Hybrid Hijgea: It is exactly the same as H(7_,o) except the position sim of the vectors wy jnit,
Wprijw and U i1, w are set as 1, s,[(¢, 4, 7, W)] and s,[(T' + 1,4, j, W)] respectively. Ob-
serve that this change has no effect in the inner product computation of these vectors with
their corresponding vectors in the secret key as the positions in the secret key vectors are zero.
This, however, keeps the ciphertext distribution consistent with the case of CT before SK.
Therefore, Higeal and H(7_,) are indistinguishable by the function hiding security of the IPFE.

We also note that Higea is the ideal experiment Expti}f(@g\fs(l’\) for the case of SK before CT,
1-UAWS

and hence Hy = Expt 4 ;| (1) = Higeal. This completes the proof. ad
Proof of Claim 5.1: For the case of CT before SK, we prove Hy ~ H, using a sequence of
hybrids Hs w1, - Hawijws for (¢,i,5, W) € [T] x [N] x [S] x {0,1}* in lexicographical
order. These hybrids are described in Table 5.2. Then, we use another sequence of hybrids
(dedicated for the second IPFE) Hs, Hs; iw1,...,Hs,jwys for (4,7, W) € [T] x [N] x [S] x
{0,1}% in lexicographical order. These hybrids are illustrated in Table 5.3. We denote by
(t,i,7, W) + 1 the next tuple of indices in increasing order. We observe that u’s are listed
before v’s since in the case of CT before SK the ciphertext appears before the secret key.
Hybrid Hs.;;w,1: It proceeds identically to H; except that for all (¢4, ;" W’)
< (t,i,75, W), w7 w has its values in rand and tb,’s cleared, and that a random value
sg((t', 4, j', W')] is embedded in uy p ;7 j» w-[sim]. This means that all the labels for (¢, ', 7/, W)
< (t,i,j, W) are simulated, the first label ¢y jir is reversely sampled and the rest are honestly
computed.

Hybrid Hg . ; jw,2: It proceeds exactly the same way as Hs;; ;w1 except that the values in
Uy 5w are set to zero and its inner product with vy ,’s, i.e. the labels 45, ;w, for all k, g,
are hardcoded into vy ,’s as follows:

— The positions rand and tb; of wu;; ;w are set to 0.

— The value at wy; jw[sim™™] is set to 1.

— The honest labels ¢y ¢ jw.q = —Tz[(t — 1,7, 7, W)|ry £[q] + - - are embedded in vy 4[sim
for each ¢ € [Q] and k € Zpy where ™ --“ represents Y - c-(x;t, 4, j, Wi re)(My -7, 5)[q).

temp]

As one can verify that the inner products between the vectors are unchanged, the indistin-
guishability between the hybrids Hs;; ; w1 and Hs . ; j w2 is guaranteed by the function hiding
security of IPFE.

Hybrid Hs:;;w,3s: It proceeds similar to Hs.; ;w2 except that the labels ¢4, ;w , are
changed to truly randomized values. We can invoke DDH assumption in Gy between the
hybrids since the random values r.[(t — 1,4, 7, W)] and 7y r[g]’s only appear in the exponent
of Go: for each k € Zps, given an MDDH; , challenge

40

hybrid vector rand th, sim simtempP
uk Py j/ w' 0 0 Sm[(tl,i/,j/,wlﬂ 0
H < (t,i,5, W)
3,t,4,4,W,1 o o
" Uk, t,i,5,W re[(t—1,4,5, W) cr(z,t,i,5, Wirae) 0
Uy o i i W re([(t’ — 1,7, 5, W] cr(x,t/,i, 5 ,W/iry) 0
> (t, 4,5, W)
Vg g —7k,fld] (M, 7%,5)[d] sk, rldl 0
Hs.ti,5,w 2 it 1, W @ @ 0
honest £ ;i 5 w.q =
Vk,q —7g,rld] (My +7k,1)d] sk, rld] —ra(t— 1,5, W)]ry tla] + -1
Uk ti,5, W 0 0 0 1
Hs.t6,5,w .3 e 5
Vk,q 7k, fldl My, 77k, £)ld] sk, flal Ct,i W ,q < Lp
Wk t,i,5,W 0 0 0 1
Hs,t,6,5,w 4 T imulated £
simulated £y ¢ 5 ; w,
Vg —7k,flq] (Mg 7k, 1) 4] sk, lal = s|(t, i,], W‘Zﬁsk fq[q]
Hstigwos | Ye, i, 5, w/ 0 0 sa[(t', 1,5, W] 0
= < (t,i,5, W)
3,t/,z£6lr/7W/,l Wkt W 0 0 sa[(t, 4,5, W)] @
(3" W) [i g | Tl = L0 5 W] er(a,t, 0,5, W ira) 0 0
(jv) 1 > (t,i, 4, W)
t,i,7 +
s Vi,q —7k,7ld] (Mg, +7k,5)la] sk, ldl [0]

For brevity, Winit, Vinits Uk,q» Wk, T+1,i,5,W » Vk,qlacc] = 0, up t<7; jwlacc] = 0 are suppressed.

The reversely sampled £, injt is hardwired in wy jnit, and is only needed (and can only be computed so by
the reduction) in the exponent of Ga:

S
[k init]2 = RevSamp((My, 1V, 17,127), @, [2[k] M. (2) + Brl2, (Ik,t.0,02)te(m+1),0,eChr, w.5)-

In the intermediate hybrids, wy, s/ i j/ w’s are suppressed. They remain unchanged in this iteration.

The omitted term “: -

-7 at vy g[sim™™P] is Yorerer(@t, i, 5, Wire) (M -7k £)lq]-

In this iteration, the labels £y s ; ;s w o With (t/,4', 5, W) are computed as:

(t/7i,7jl?Wl) < (t7i7j7 W) :
i, 5", W) = (t,4,5, W) :

3"\ W') > (t,i,5, W) :

simulated as sz[(t',7,j', W')]sy, ¢[q] and computed using IPFE
computed honestly using IPFE in H3 k¢ ;w1

computed honestly and hardwired in SK in H3 ¢ ; ;w2

simulated as random and hardwired in SK in H3 1 ¢ ; j, w3
simulated as sz[(t, %, j, W)]sk, ¢[q] and hardwired in SK in H3 ¢,; ;w4
simulated as sgz[(t,%,j, W)]sk, ¢[q] and computed using IPFE in Hg 1 1 ; i w5

computed honestly using IPFE

The net effect is that £y ;<71,; j,w,q’'s change from honest to simulated.

Note that, in this iteration, £ 741, j,w,q’s are honestly computed for all (k,T + 1,4, 5, W, q).

Table 5.2: The loop hybrids for ¢ < T in the security proof of 1-UAWS for the case where the
ciphertext challenge comes before the secret key query.

LR PP A (O] VA VST

. Ak7Q]]2 : Ak,q

=ry[(t — 1,4,5, W)]ry slq],
— Z

D)

if DDH tuple

if truly random tuple

we compute the labels as 0y ;; jw , = — A+ - -. If a DDH tuple is received, the labels use pseu-
dorandom randomizers rv_1[(i,J, W, .)] = ro[(t — 1,1, 7, W)|ry f[q] as in Hgy; jwo. If a truly
random tuple is received, these label values are truly random randomizers r,_1[(i,j, W,)| +
Zz? as in Hs:; ;w3 due to the special piecewise security of AKGS. Note that, the values
[kinit]2 < RevSamp(- - -) can be efficiently computed in the exponent of Go.

41

42

hybrid vector rand acc sim simtemP
Hs Uk, T41,i,5,W r2[(T,4, 5, W) z[k] [0] 0
Vk,q —rk,rlal Yxld] sk, rld] 0
ﬁk,T+l,i/,j/,W/ 0 0 Sw[(T+17ilaj/7W/)] 0
A < (4,5, W)
3,i,,W,1 ~ .
e Uk, T41,i,§,W ro((T,i,5,W)] z[k] 0
ﬁk,TJrl,i’,j’,W’ re[(T,i',5',W")] z[k] 0
> (i,5, W)
Vk,q —7, sl Yrld] sk, rldl 0
~ Uk T41,i,5, W 0 1
| e O O
~ honest £, 741,55, w,
Vk,q —7k,11d] yr[d] Sk, flal — —’r‘w[(T,i,j,ZV%/)]’l‘zyf[q} T
~ Uk, T41,i,5,W 0 0 0 1
Hs w3 $
Uk,q =7k, fld] Yk[d] sk, fldl Ce, 141,65, W g < Lp
i Uk, T41,i,5,W 0 0 0 1
3,4,5, W ,4
T _ simulated €y ¢ ; 5 W q
Vk,q *"'k,f[lﬂ Yr[d] Sk,f[Q] — sz[(T—i— 1,1, 7, W)]Sk,f[q}
Haijow.s |1 41,6, 5, w' 0 0 sz[(T+1,4,5, W) 0
= < (i,4, W)
H3,i/7fj/,W/,1 Wt i1i W 0 0 ‘ se[(T+1,i,5, W) ‘ [0]
or
@5 W) S p g1, 4w ro[(T,i, 5, W')] z[k] 0 0
= > (1,3, W)
(6,5, W) +1 Vk,q —7,flq] Yrlal Sk, rld] @

For brevity, Winit, Vinit; Vk,q> Wk, T+1,i,5,W are suppressed.
The reversely sampled £y it is hardwired in wy jnit, and is only needed (and can only be computed so by
the reduction) in the exponent of Ga:
[ximic]2 < RevSamp((My, 1¥,17,12°), &, [2[K] My () + By]2, (U 2,00]2)teim 1100 €Cnr, N 5)
In the intermediate hybrids, @y 741,/ 57, w’s are suppressed. They remain unchanged in this iteration.
The omitted term “--” at ¥y 4[sim*™P] is y[q]=z[k].
In this iteration, the labels £y, 11 ;7 7/ w g With (3,5, W) are computed as:
(¢, 5", W') < (4,5, W) : simulated as so[(T' + 1,%’,5’, W’)]sy, ¢[q] and computed using IPFE
(i',j',W') = (i,5, W) : computed honestly using IPFE in ﬁg,i‘ijyl
computed honestly and hardwired in SK in ﬁ3,¢7ij72
simulated as random and hardwired in SK in H3; ; w3
simulated as s [(T + 1,4, j, W)]sy, r[q] and hardwired in the SK in H3; j w4
simulated as s%[(T + 1,4, j, W)]sy, r[q] and computed using IPFE in H3 ; ; w5
(&, ,W') > (i,7, W) : computed honestly using IPFE
The net effect is that £x 711,4,5,Ww,q’s change from honest to simulated.
Note that, in this iteration, £y ;<7 ; j,w,q’s are unchanged for all (k,t,4,7, W, q) and are already simulated.
The hybrid Hs starts after the loop of Table 5.2 finishes, i.e. after the hybrid H3 7 N, 5,14,5 and the hybrid
Hs n.s,1,5 is identical to the hybrid Hy (c.f. Table 5.1).

Table 5.3: The hybrid Hs followed by the loop hybrids in the security proof of 1-UAWS for the
case where the ciphertext challenge comes before the secret key query.

Hybrid Hs ¢ ; j w.4: It proceeds identical to Hs; ; ; w3 except the truly random labels £y, ; ;w4
for all ¢ € [Q],k € Znr are replaced by pseudorandom values s;[(¢,%,j, W)|sj rlqg] with
Sg((t,1,7, W)] < Z,. The hybrids Hs;; ;w3 and Hs,; ;w4 are indistinguishable due to the
DDH assumption in G, (the argument is similar to that of in the previous hybrid).

Hybrid Hs; ; jw,s: It proceeds exactly the same way as Hs;; j w4 except the pseudorandom
labels lx 1 jw.q = Sz[(t, 1, J, W)]|sk slq] hardwired in vy ,[sim**™P]’s are split into wg ;. ;w [sim]
(embedding the factor s;[(,, 7, W)|) and vy, 4[sim]’s (embedding the factor sy f[q]). The inner
products in the hybrids Hs,; ;w4 and Hs;;;w s are unchanged and hence the these two
hybrids are indistinguishable due to the function hiding security of IPFE. Moreover, it can be
observed that Hs ;w5 = Hsp i jowr s for (8,70, 5, W') = (t,i,5, W) + 1.

Therefore, in this sequence of hybrids for ¢ < T, we have H3 111051 = Hs1n.514,5 Now,

yhsds

we move to the next sequence of hybrids for ¢ =T + 1 as depicted in Table 5.3.

Hybrid ﬁ3 It is identical to Hsr N s14,5 except the position sim of wy py1,,w is zeroed
out and vy g[sim] is set to sy, ¢[g] for all k& € Zps. The inner products between the vectors are
unchanged in Hs 7 v g14,5 and Hs. Thus, the indistinguishability between these two hybrids is
ensured by the function security of IPFE.

Hybrld H3 4w, 1t proceeds identically to H3 except that for all (7,7, W') < (i,5, W),
Wy 741, w has its values in rand and acc’s cleared, and that a random value s.[(7 +
1,4, j',W')] is embedded in w141, j,w[sim].

Hybrid ﬁ3,i7j,W,2: It proceeds exactly the same way as ﬁ37i7]”W71 except that the values in
Wy, 5w are set to zero and its inner product with vy ’s, i.e. the labels £y ry1, ;w4 for all
k,q, are hardcoded into vy ,’s as follows:

— The positions rand and acc of w711, ;w are set to 0.

— The value at @y, 141, jw[sim* ™| is set to 1.

— The honest labels ¢y 711, w4 = —7T2[(T,1, j, W)|ri flg] + - - are embedded in vy, 4[sim
for each ¢ € [Q] and k € Zps where ™ - - represents the term yy[q]z[k].

temp]

The inner products between the vectors are unchanged, and hence the indistinguishability
between the hybrids Hs; ;w1 and Hs; jw o is guaranteed by the function hiding security of
IPFE.

Hybrid ﬁ3 ,5,w,3: It proceeds similar to ﬁguwg except that the labels ;741w are
changed to truly randomized values. We can invoke DDH assumption in G as before to show
the indistinguishability between the hybrids ng w2 and Hs; ;w3 since the random values
r2[(T,4,7, W)] and 74 ¢[g]’s only appear in the exponent of Go and hence the label functions
can be truly randomized due to the special piecewise security of AKGS. Note that, the values
[k init]2 <— RevSamp(- - -) can be efficiently computed in the exponent of Go.

Hybrid ﬁ3,i,j,w,4i It proceeds identical to ﬁg’i’j7W73 except the truly random labels £y 711 ;w4
for all ¢ € [Q],k € Zns are replaced by pseudorandom values s, [(7" + 1,4, j, W)]sy rlq]. The

hybrids /Hv37iﬁj7W73 and Hs; j w4 are indistinguishable due to the DDH assumption in Go.

43

Hybrid Itlg,i,j,wﬁz It proceeds exactly the same way as ﬁ37¢7j7w74 except the pseudoran-
dom labels ly i1 5w.q = S«[(T + 1,4, j, W)]sk ¢lq] hardwired in vy ,[sim**™]’s are split into
Wy, 741, 5,w(sim| (embedding the factor s, [(T" + 1,7,7, W)]) and vy 4[sim]’s (embedding the
factor s ¢[¢]). The inner products in the hybrids AHzgvi,j,WA and |:|137,~7j7W75 are unchanged and
hence the these two hybrids are indistinguishable due to the function hiding security of IPFE.
Moreover, it can be observed that Hs; ;w5 = Hs 7 j w3 for (¢, 5/, W') = (i, 5, W) + 1.
Therefore, in this sequence of hybrids for ¢ = 7'+ 1, we have ﬁg,m’os,l ~ ﬁg,N75713,5. Lastly,
we observe that vag,N757ls’5 = H, and hence Hy =~ H, for the case of CT before SK. O

Proof of Claim 5.2: The case of SK before CT for showing Hy ~ Hy is more involved and
further difficulties arises since we have two independent IPFEs for each Turing machine in
contrast to the security analysis of [LL20] where only a single IPFE was sufficient.

The overall goal of the claim is to make all the label values ¢} ;; j w 4 simulated by invoking
DDH similar to the case of CT before SK. However, since the secret key comes before the
challenge ciphertext and ¢ ;s <— RevSamp(---) is computed while encryption, we can only
apply DDH into the ciphertext vectors which are computed in the exponent of G;. Thus, we
have to move 7 ¢[¢] into the ciphertext vectors. But, in this case, 7y f[q] of vy, may appear
in (M, ;7. f)[¢] of any v; o depending on the transition block. Moreover, ry, ¢[g] also presents
in vy, , which are associated to second IPFE. Hence, in the security analysis, we must take care
of the following facts:

— The special piecewise security can only be applied in the increasing order of ¢ for changing
Citij.wq's to their simulated form.

— More importantly, to simulate ¢;;; ;w, for t < T, all occurrence of 7y f[g] must be in the
ciphertext of both the IPFE. Also, we can not simulate ¢ 141, ;w, (in the second IPFE)
while simulating (j, ; jw, (in the first IPFE).

— There is not enough space in the ciphertext to embed all the 7 ¢[g]’s at the same time for
each k € Zys.

— The values 7 ¢[¢] must not go away until all {y ., ;w,’s are simulated. Indeed, ry ¢[q] still
resides in vy ’s in Hy, the end hybrid of the claim.

To deal with all these facts, we employ a strategy inspired from the proof technique of [LL20]
where they use a two-level loop over t,q with t < T and switch, in the increasing order
of t,q, batches of NS2° label functions. That is, for fixed t,¢q and all 7,5, W and for all
k € I, the batches of label values ¢4, ;;w , are simulated by moving 7y r[g]’s back and
forth in each iteration. More precisely, in each iteration of ¢, ¢, when moving 7 f[q] into the
ciphertext vectors, we erase all its occurrence in the secret key vectors of both the IPFE and
must compensate some ly ; ;w o's for their loss of ry ¢[¢] using the indices with superscript
comp in the case of ¢ < T'. Observe that, 7y f[q] only appears in the position rand of vy , of the
second IPFE. Thus, it is not required to compensate the loss of 7y, ¢[q] in any other f.41;;w 4’s.
However, 7 f[q] is still required to shift into the ciphertext vectors of the second IPFE. We
use the indices with superscript temp to hardcode the honest label values of {71 ; ;w4 While
running the loop over ¢,q with ¢ < T'. Finally, after the two-level loop running over ¢, ¢ with
t <T ends, we erase 1 ¢[q] from vy, and run a separate loop over ¢ in the increasing order
to simulate the labels 71 ; ; w 4's using the the indices with superscript temp in the second
IPFE.

44

We define modes of a label £y ; ; w o for ease of understanding the loops used in this claim.
The definitions of modes are similar to what used by [LLL20]. There are three orthogonal group
of nodes:

— The first group is about the value of the label. A label is honest if its value Ly ; jw () is
computed using the garbling randomness r = r, ® 7. It is random if its value is sampled
uniformly at random. It is simulated if its value is s, [(t', 4, j, W)]sk.r[¢]-

— The second group is about where the terms r¢ and sy are placed while computing the labels
using the IPFEs. A label is normal (this is the default) if r, s are placed in the secret key.
It is compensated if r¢[q], s7[q] are placed in the ciphertext with the other components of
Ty, sy are still in the secret key (for simplicity, we note that this mode only appears in the
first IPFE). Tt is hardwired if the value (in its entirety) is hardwired in the ciphertext (for
simplicity, we note that this mode only appears to the labels with ' = t,¢' = q).

— In the last group, a label is normal (default) if it is computed without indices with super-
script temp. It is temporary if it is computed with indices having superscript temp.

As discussed above, the first loop of this claim is a two-level loop with outer loop running
overt =1,...,T (provided in Table 5.4) and the inner loop running over ¢ = 1, ..., @ (given in
Table 5.5). We call this part 1 of the proof. The second loop runs over ¢ = 1,...,Q (described
in Table 5.6) and it is dedicated for simulating the label values ¢y 141, ;w4 for all k € Zps.We
call this part 2 of the proof. In this hybrids, the secret key vectors v’s appear before the
ciphertext vectors u’s.

Part 1: The sequence of hybrids in the two-level loop (with ¢t < T, ¢ < Q) and their indistin-
guishability arguments.

Hybrid Hs.1: It proceeds identically to Hy except that for all ' < ¢ < T and all 4,5, W,
the vectors wyy ; ;w have their values at rand and tb;’s cleared, and that a random value
Sg((t', 4,5, W)] is embedded in wyy ;;w(sim]. This means that all the labels for (t < ¢ <
T,i,7, W) are simulated, the first label £y ;¢ is reversely sampled and the rest are honestly
computed.

Hybrid Hs; o: It proceeds exactly the same way as Hs ;1 except that the modes of £y 1, ;w4's
(for all 4, j, W, q with ¢t <T) are changed to honest and temporary, and that a random value
Sz[(t, 1,7, W)] is embedded in wy; ;w(sim*™] for all i, j, W. The change is implemented as
follows:

~ The positions rand and tb, of ug,;;w are copied to the positions rand*™ and tb:*™P
respectively, and then the positions rand and tb, are set to 0.

— The value at wgy; ;w(sim™™P] is set to s,[(¢,4,j, W)|. It sets the stage for the inner loop
which will make the label values (¢ ;w4’s as simulated and temporary.

— The positions rand and tb, of vy, , are copied to the positions rand™™ and tb!*™ respectively.

As one can verify that the inner products between the vectors are unchanged, the indistin-
guishability between the hybrids Hz;; and Hs, 2 is guaranteed by the function hiding security
of IPFE.

45

hybrid vector rand,tb, rand™"P, tbimP sim sim"™P

Vi,q normal 0,0 Sk,f[q] 0
H Uk <tigw | 0,0 0,0 sa[(t',i,5, W)] 0
3,t,1
Uk, t,i,5,W normal 0,0 0 0
Up,t'>t,5,5,w | normal 0,0 0 0
Vk,q normal normal Sk, fldl 0
H?’:’t’z) g <tigw | 0,0 0,0 sz[(t',i, 5, W)) 0
Hss1.1 WUk t,i,5,W 0,0 normal 0 Sa|(t, 4,4, W)]
Uk, t'>t,i,5,W normal 07 0 0 0

H3,t,3,1~Q,1~5

Vi,q normal sk, rlq sk, r[d]

H

P wpciw | 0,0 0,0 sal(t',i,5, W) 0
Hs.05.0.5 Wk b0, W 0,0 normal 0 sa((t, 1,7, W)]
Wy ¢/ >1,5,5,w | normal 0,0 0 0
Viq normal 0,0 sk,rlal @
Haes e crisw | 0,0 0,0 sal(tij,W)] 0
H37t+1,1 uk,t,i,j,W 0,0 0,0 Sm[(t’i7j7 W)] @
Wy ¢/ >1,4,5,Ww | normal 0,0 0 0

For brevity, Winit, Vinit, Wk, T+1,i,j,W , Ok,q, Vk,glacc] = 0, ur <1, ;,w[acc] = 0 are suppressed.
The reversely sampled £y init is hardwired in wp,inie:
Ok inie < RevSamp((My, 1V, 17,12%), 2, 2[k] My () + B, bkt 0,)ee)
The "normal“ in rand, rand*™ th,, thtemP
Vkg : —Tk,1d] (M.~ 7k,f)ld]
t<T, Uppijw: To[(t—1,4,5,W)] cr(x,t,i,5, W;rs)

In this iteration, the labels ¢k ; j,w,q With t are computed as:

,GkGCMk,N,s)

t<t': simulated as sz[(t',1,j, W)]sk, r[g] and computed using the slot sim
t =t": computed honestly using IPFE in AH’g’t’l
computed honestly via temporary slots rand™™, tb®®™ in Hs ;o
simulated and computed using the slot sim*™ in Hs ¢4
simulated and computed using the slot sim in Hz ;5
t' >t: computed honestly using IPFE
Table 5.4: The outer loop hybrids running from ¢ = 1 to 7" in the security proof of 1-UAWS
for the case where the ciphertext challenge comes after the secret key query.

Hybrid Hs.4: It proceeds identical to ﬁ37t72 except that the modes of ¢, ;w’s (for all
i,7, W,q with t < T') are changed from honest and temporary to simulated and temporary.
This is implemented by vy, ,’s have their values cleared at rand*™, tb!*™ and vy ,[sim**™] is
set to s, r[g]. We show that Hs ;o ~ Hs ;4 by a sequence of hybrids used by the inner loop.

Hybrid Hs.5: It proceeds identical to ﬁ37t74 except that the modes of (., ;w’s (for all
i,7, W,q with t < T') are changed from simulated and temporary to simulated. Moreover,
some clean-up work is done in preparation of the next iteration. The change is implemented
as follows:

46

— The positions rand*™, tb*™" and sim™™ of wy, jw are set to 0.
— The value at w4, j w(sim] is changed from 0 to s;[(¢, 1,7, W)].
— The positions sim*™ of vy, is set to 0.

Since the inner products between the vectors w’s and v’s are unchanged, the indistinguisha-
bility between the hybrids Hs; 4 and Hs 4 is ensured by the function hiding security of IPFE.
We observe that Hs ;1 = Hg and Hs 5 = Hs411.

Now, we discuss the hybrids of the inner loop running over ¢ = 1,..., @, which switches
the mode of ¢y ; j w4 from honest and temporary to simulated and temporary.

Hybrid Hs ¢ 3,4,1: It proceeds identical to Hs 2, except that for ¢’ < ¢, all the vy, have their
values at rand™™P tb*™P’s cleared, and the value sy ¢[¢] is embedded at vy, [sim™™P]. This
means that the labels ¢y ; jw o for all ¢, 7, W with ¢ <T and ¢’ < g have been changed from
honest and temporary to simulated and temporary.

Hybrid Hs3,4,2: It proceeds identical to Hs; 3,1 except that all occurrence of 7y ¢[¢] and
sk rlg] are moved from vy ,’s to ugy ;. jw’s using the compensation identity (Notes of Ta-
ble 5.5, Equation (5.1)), for all ¢’ # ¢. Further, to make vy, free of 7y ¢[g], it’s positions
rand, acc are set to zero and sim™™ is set to 1, and the labels ¢ 741, w,’s are hardwired at
sim™™ of w741, ,w (hence they are in honest and hardwired mode). Thus, the labels with
qd =qor (T >)t' >torq¢ > qare computed using the compensation identity on top of their
existing mode, and the labels ¢y, jw,, for all i, j, W become honest and hardwired (more
specifically, hardwired in wy; jw[sim“™]). The inner products between w,u’s and v, v’s are
unchanged due to these modifications. Hence, the indistinguishability between the hybrids
Hs 341 and Hs ;3,2 follows from the function hiding security of IPFE.

Hybrid Hs . 3,4,3: It proceeds identical to Hz ;342 except the labels ¢4, jw, (for all i, j, W
with ¢ < T') hardwired in wy, ¢ ; ; w [sim“™?| become random and hardwired. The hybrids Hs ;5 4.2
and Hs, 3,3 are indistinguishable by the DDH assumption in Gj.

Hybrid Hs ;3 4,4: It proceeds identical to Hs 3,3 except the labels ¢x ¢, ;w, (for all i, j, W
with ¢ < T') hardwired in wg ¢, ;w[sim®™P] become simulated and hardwired, i.e. ly 1, jw.q =
Sz[(t,i, 7, W)]sk rlg]. The hybrids Hs ; 3,3 and Hs ;3,4 are again indistinguishable by the DDH
assumption in Gy.

Hybrid Hst 3,45 It proceeds identical to Hs, 3,4 except that all occurrences of 7y f[g] and
si.flg] are moved back to vy ,’s, and in the second IPFE, all the vectors are restored back to
their initial form, i.e. 7 [q] is moved back to vy, ,. Further, some clean-up work is done in order
to prepare the vectors for the next iteration. The values at the position sim“™ of the vectors
Vo and ug . ; ;w are cleared, which means that the labels lose their compensation mode and
the labels ¢4 ;w,q (for all 4, j, W with ¢t < T') become simulated and temporary. Also, the
values at the position sim**™ of vy , and @k 741, j,w are cleared, which in turn ensures that the
labels €5 r+145,w 4's are changed from honest hardwired to honest mode. It is easy to see that
inner products between u,u’s and v, v’s are unchanged, and hence the indistinguishability
between the hybrids Hs; 3,4 and Hsz; 3,5 follows from the function hiding security of IPFE.
We observe that Hs ;3,5 = Hs.34+11, and hence Hz o ~ Hsz,;4 in the outer loop hybrids of
Table 5.4.

47

48

rand, rand“™ rand™™, rand®™mP<°"P

hybrid vector thy th©™P themp temp.comp sim simmP simmP
Vg,q' <q normal 0,0,0,0 sk.7q'] sk, rld] 0
Vk,q normal normal Sk, rlq] 0 0
Vk,q'>q normal normal Sk, rlq’] 0 0
Wewcrisw | 0,0,0,0 0,0,0,0 sa[(t',i, 5, W)] 0 0
Uk, t,i,5,W 0,0,0,0 normal 0 sz((t,i,7, W)] 0
Hst8.01 | wy vopiiw | normal 0,0,0,0 0 0 0
rand, acc sim sim®™™mP
Vk,q'<q normal 0
Vk,q normal 0
Vg,q'>q normal 0
Uk, T41,i,5,W normal 8q[(T + 1,14, j, W)] 0
Vg g/ <q X7, rlq] 0,0,0,0 sk,7q'] sk,7q'] 0
Vg Xt sld] 0,0,0,0 [0] 0
Vkq'>q ’X"'k,f[‘ﬂ ‘ ’x"'k,f[‘I] ‘ sk, s1q] 0 0
Upp<tigw | 0,0,0,0 0,0,0,0 sa[(t', 3,7, W)] 0] sa[(t', 4,4, W) sk, £[q] \
Mossaz | esw | 0,0,0,0 0 sa((t,i,5, W) iorie:i[f’;if‘;v; W)lre gl + -
U eseigw | | VTrsld] 0,0,0,0 0 0 0
rand, acc sim sim™™mP
Vg,q'<q normal 0 0
Vk,q 0
Vk,q'>q normal 0 0
Wk, T41,i,5,W normal sz[(T + 1,4,5, W)] };Oie:i [ﬁ{kf?:;:zafv;/]ﬁk’f[q] 4
Vk,q'<q Xri,rlq] 0,0,0,0 sk.r1d'] sk.rlq] 0
Vk,q Xri,rlq] 0,0,0,0 0 0 1
Vk,q'>q Xri,rld] Xy, rld] sk flq] 0 0
Ucrijw | 0,0,0,0 0,0,0,0 sal(t' 1,5, W)] 0 sa[(t', 1,4, W)k ¢[d]
Hs.t5.03 WUk, t,i,5,W 0,0,0,0 eI 0 sz((t, 1,5, W)] Corti W g & Z,
Uk t'>t,i,j,W V74l 0,0,0,0 0 0 0
rand, acc sim sim®™™mP
Vk,q'<q normal 0
Vk,q 0,0 1
Vk,q'>q normal 0
Girinigw | nomal sa[(T 41,45, W) N T W

= 77’415[(T7 i W)]rk>f[q] +e

The table is continued to the next page...

49

hybrid vector rfbnj’tﬁigg:mp rigg::pt’br;:gt;z:wmp’ sim sim®emP sim®™P
Vk.g'<q Xrr,r[q] 0,0,0,0 sk,r[d'] sk.r1d'] 0
Vkg X ¢[d] 0,0,0,0 0 0 1
Vk,q'>q Xry,¢(q] Xry,¢[q] sk,rlq’] 0 0
Upycrisw | 0,0,0,0 0,0,0,0 sal(t',, 5, W] 0 sa[(t', 1,7, W)]sk.rld]
Hs.t.3.0.4 Uk, t,i,5,W 0,0,0,0 il 0 sz[(t, 4,5, W)] S:m;il[‘?if)i ﬁki;{’/f,)]j,:::;[q]
Upsrijow | VTsld] 0,0,0,0 0 0 0
rand, acc sim sim'mP
Vp,q'<q normal 0 0
Vh,q 0,0 1
Vp,q'>q normal 0 0
_ . honest £i, 741,i,5,w,
Uk, T+1,i,5,W normal sz[(T + 1,4,5, W)]_ —re[(T, itj7 ‘;V)};kf[q] p..
Vk,q'<q 0,0,0,0 sk.fq'] Sk.[q] 0
Vkg 0,0,0,0 sk.s[d] [0]
Vjs g/ >q normal normal sk,£1d’] 0 0
wpv<rigw | 0,0,0,0 0,0,0,0 sa|(t, 1,5, W)] 0 [0]
Hs,t,3,4,5 Uk, t,i,5,W 0,0,0,0 normal 0 sz[(t,i,7, W)] @
H3,t’i+l’l Wk,¢/>t,i,w | | normal 0,0,0,0 0 0 0
rand, acc sim sim™mP
Vp,q'<q normal 0 0
Vk,q normal 0 @
V,q'>q normal 0 0
Uk, T41,5,5,W normal s2z[(T + 14,5, W)] @

For brevity, Winit, Vinit, Vk,q[acc] = 0, ur ¢t<7,:,j,w [acc] = 0 are suppressed.

For brevity, Winit, Vinit, Vk,q[acc] = 0, Wk 1<7,4,;,w [acc] = 0 are suppressed. The reversely sampled £ jnit is

hardwired in wg,init, and is only needed (and can only be computed so by the reduction) in the
exponent of G:
S
[[ek,initﬂl <~ Revsamp((Mk7 1N7 1T7 12)7 Z, [[Z[k}]Mk ($) + ﬂk]]h ([[Ek,t,Qk]]l)te[T+1]79k GcAlk,N,S)'

The omitted term - -

”.
UL Uk t,6,5, W

The ”normal* in rand, rand"™?

sim

comp}

th,, thtmP

comp temp,comp
rand“°™P rand™mP <M,
comp temp,comp
b the

Uk —7k,s[d] (M, r7x,5) 4] 0
t/ S T7 Uk, i,5,W * 'I';g[(t/ - 177:7.77 W)] CT(m,tlaivjaW;riﬂ) 0
The "normal® in vy 4[rand] = —ri rlq], Wk,1+1,:,5,w(rand] = rx[(T, i, j, W)]

Uk q[ace] = yi[g],

Uk, 7+1,i,5,w[acc] = z[k]

= (My,r7x,5)lg] and @r,741,i,5,w[sim™™] = y[q] z[K].

Table 5.5: The inner loop hybrids in the security proof of 1-UAWS for the case where the
ciphertext challenge comes after the secret key query (the note continues to the next page).

The compensation (X7, £(g], V7%, £[q]) components in ...

rand’ rand”<mP th? thcomP
0 #q Vrg —7hs1d] 0 (M r (rie g — 7, plaleq))ld'] (M -eq)ld']
Vk,q * 0 -1 (My, 7 (71, f — 7k, flaleq))(d] (My,req)ld]
<t wpgws e[t = 1,05, W)l ra(t' = 14,5, Wlrgldl - er(@,ti,5, Wira) er(@, 11,5, Wima)ri,rld]
t<T, ukijw: r=[(t' —1,i,75, W)] 0 cr(x,t,4,5, Wiry) cr (@, tyi, 4, Wi re)re, rlq]

In the above table, “?” is either nothing or “temp”, i.e., if the values are set in both non-temporary and
temporary slots, they are the same. Note that, 7, ; — 7 f[q]eq is simply 74, 5 with its ¢! entry changed
to 0, whence 7, [g] does not appear. The compensation is governed by the following identity for ¢’ < T
boigw,g =Tt = 14,0, W)lresld] +30, crer(@, i, 5, Wire) (M- (ks — 7. ldleq + 7k r[dleq))[d]
=ra[(t' = Li, 5, W)lresld'] +3 crer(@,t',i,5, Wira) (M- (7e,r — 7k r[d]eq)]d]

+ D er(@ i, Wira)ri gla] - Mire)ld] (5.1)

reT
In this iteration, the labels £y 4 ; jw .o With (t',q’) are computed as:

q<q d=q qd>q
vV <t<T: S S—SC—S S
¢ =t<T: ST [HT = HW — RW — SW — ST| HT — HCT — HT
T>t>t: H—-HC —-H H—-HC—H H—-HC—-H
¢ =T+1: H [H—> HW — HW — HW — H| H

The shorthands are Honest, Random, Simulated, Compensated, hardWired, Temporary.

The net effect is that i +<71,4,j,w,q’s change from honest and temporary to simulated and temporary.
Note that, in this iteration, £; 711, jw,q’s are unchanged for all ¢'.

The value £ 711,55, w,qg'=q 1S honest and hard wired in the intermediate hybrids Hs ¢ 3,4,2~4-

Table 5: The remaining notes.

Note that, the two-level loop ends with the hybrid Hs 75 where the labels ¢ ;; ;w4 for all
t <T and for all 7, j, W are simulated. We now go to the part 2 of the proof.

Part 2: The sequence of hybrids in the second loop running over ¢ = 1,...,Q (for simulating
the labels associated to t = T'+ 1) with two additional hybrids and their indistinguishability
arguments.

Hybrid FI3: It identical to Hs 15 except the positions rand, tb, of vy, are set to zero (in the
first IPFE), and the positions rand,acc of the vectors vy ,’s and Wy ry1.,w’s are copied to
their counterparts with superscript temp. Moreover, the positions rand, acc of wy 741, j,w’s are
cleared, which means that the labels €5 741, ;w ’s are in honest and temporary mode. The
inner products between u,u’s and v, v’s are unchanged, and hence the indistinguishability
between the hybrids Hs 75 and Hs is guaranteed by the function hiding security of IPFE.

Hybrid Ifl3,q,1: It proceeds identical to ﬁg except that for ¢’ < ¢, all the vy , have their values
at rand™P, acc™™P’s cleared, and the value sy ;[¢'] is embedded at ¥y, ,[sim]. This means that
the labels €5 711, jw o for all ¢, j, W and ¢’ < ¢ have been changed from honest and temporary
to simulated.

Hybrid ﬁ3,q,2: It proceeds identical to ﬁ&q,l except that the positions rand,acc,
rand* ™ acc™™P of vy, are cleared and vy, ,[sim™™P] is set to 1. Further, the labels 5711w 4

20

hybrid vector rand, th, randtemP thiemP sim sim*emP
Vg 0,0 0,0 sk, rlal 0
_ Uk, t<T,i,j,W 0,0 0,0 sz((t, 4,5, W)] 0
Hs rand, acc rand®mP_acctemp sim simtemP
Vi q normal normal 0 0
Uk, T+1,i,5,W 0,0 sz[(T+1,4,5, W) 0
rand, acc rand®mP acctemp sim simtemP
Vg g/ <q normal 0,0 sk, rld] 0
~ Vk,q normal normal 0 0
H3,q,1 .
Vg g/ >q normal normal 0 0
Uk, T+1,i,5,W 0,0 normal sz[(T +1,1,5, W)] 0
Vg q'<q normal 0,0 sk, r1d'] 0
ﬁ3,q72 ~'Uk,q 0 1
Vg g/ >q normal normal 0 0
_ o honest Ck,741,i,5,w,q
Uk, T41,i,5,W 0,0 normal se[(T+1,4,5, W) | = —r[(T,4,5, W)y slg] + -
Vg q'<q normal 0,0 sk, rld] 0
- Bh g 0,0 0,0 0
H3,4,3 .
Vi q'>q normal normal 0 0
- .. 3
Uk T41,i,5,W 0,0 normal sz[(T +1,i,5, W)] O, T41,i,5,W,q < Lp
Vg ' <q normal 0,0 Sk,f[q/] 0
- Brg 0,0 0,0 0 1
Hs,q,4 _
Vg’ >q normal normal 0 0
. L simulated ek,T+1,i,j,W,q
Uk, T41,i,j,W 0,0 normal se[(T + 1,4,5, W)] = s [(T+ 1,4, 5, W)]s r[q]
- ﬂk’q/<q normal 0,0 sk, r1d'] 0
H ~
sl]
Hg,q+1,1 Vi g'>q normal normal 0 0
’lA.I:kyT+1,i’j7W 0,0 normal Sw[(T-i- 1,4,7, W)} @
hybrid vector rand, tb- randtemP tpmP sim simtempP
kg 0,0 sk,flal 0
B Uk, t<Ti,5,W 0,0 0,0 sz[(t, 4,5, W)] 0
Hq rand, acc rand®mP_acctemp sim simtempP
Vi, q normal 0,0 sk, rld] 0
Uk, T41,0.5.W 0,0 0,0 sal(T +1,4,5,W)] 0

Table 5.6: The hybrid H; followed by the loop hybrids and Hy in the security proof of 1-UAWS

for the case where the ciphertext challenge comes after the secret key query.

(for all 4, j, W) are hardwired at sim**™ of @ 741w, which means the labels are in honest
and hardwired mode. The inner products between w’s and v’s are unchanged due to these
modifications. Hence, the indistinguishability between the hybrids Hs,; and Hs, o follows
from the function hiding security of IPFE.

o1

For brevity, Winit, Vinit, Vk,q, Uk,t<T,i,j,w are suppressed.
The reversely sampled £i ini is hardwired in wg,init, and is only needed (and can only be computed
so by the reduction) in the exponent of Gi:
[siniels ¢ RevSamp((Mi, 1V, 17,12°), @, [2[k] M (2) + Bilr, ([€e.ei0,]0)seirsn), 04 ECh1, N,5)-
The omitted term “--”: Uy r41,,5,w [siM™™] = yi[q]z[k].

The "normal® in rand, rand™™ acc, acc*™?

Ukg: —Thsldl Yrld]
Up,Tr1,i5w ¢ Te[(T,4,5, W)] z[k]
In this iteration, the labels € 741, 5w, With ¢’ are computed as:
7 <q 7 =q 7 >q
Hs : HT HT HT
Hsgios: S |HT - HW — RW — SW —» S| HT
Ha : S S S

The shorthands are Honest, Random, Simulated, hardWired, Temporary.
The net effect is that €, 7+1,i,5,w,q¢’s change from honest and temporary to simulated.
Note that, in this iteration, ¢y ¢+<7,:,j,w,q’s are unchanged for all ¢ and are already simulated.
The hybrid ﬁ3 starts after the outer loop of Table 5.4 finishes, i.e. after the hybrid Hs 75 and the
hybrid ﬁ4 is identical to the hybrid Hy (c.f.Table 5.1).

The notes of Table 5.6.

Hybrid Hs 4 3: It proceeds identical to Hs gy except the labels Cersriw,q (for all 4, j, W)
hardwired in @y 711, ;w[sim*™] become random and hardwired. The hybrids Hz ;o and Hs ;3

are indistinguishable by the DDH assumption in Gj.

Hybrid Hs 44 It proceeds identical to Hs g3 except the labels £, 74 ijw,g (for all 4,7, W)
hardwired in ﬁk,TH,i’j,W[simtemp] become simulated and hardwired, i.e. Uy ri1,jw.q = S2[(T +
1,4,5, W)]sg flg]. The hybrids Hs,3 and H3,q74 are again indistinguishable by the DDH as-
sumption in Gy.

Hybrid I’:Ig,q,5: It proceeds identical to ﬁ37q74 except that all occurrences of 7y ¢[g] and sy ¢[q]
are moved back to vy ,’s, and some clean-up work is done in order to prepare the vectors for the
next iteration. The values at the position sim™™ of the vectors vy , and @y, 741, w are cleared,
which means that the labels ¢ T+ W (for all i, j, W) become simulated. It is easy to see
that inner products between u’s and v’s are unchanged, and hence the indistinguishability
between the hybrids H3q4 and H3q5 follows from the function hiding security of IPFE. We

observe that Hs ;5 = H37q+171.

Hybrid Hy: It is identical to ﬁ3,Q75 except Ty rlg]’s are put back to vy ,’s and the positions
rand*™P, acc®™™P of wy, 1. ;w are set to zero. The inner products between u, u’s and v, v’s are
unchanged, and hence the indistinguishability between the hybrids ﬂ|:|37Q,5 and FL; is guaranteed
by the function hiding security of IPFE.

Lastly, we note that Hs;; = Hs and ﬁ4 = H, (cf. Table 5.1). Therefore, Hy ~ Hy in the
case of SK before CT. ad

52

6 1-Slot FE for Unbounded AWS for L

In this section, we construct a public key 1-slot FE scheme for the unbounded attribute-weighted
sum functionality for L. The scheme satisfies the same properties as of the SK—UAWS'(‘LLU.
However, the public key scheme supports releasing polynomially many secret keys and a single
challenge ciphertext, hence we denote the scheme as PK—UAWS(LP(J'),,LD.

Along with the AKGS for Logspace Turing machines we require a function-hiding slotted
IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec) based on G, where G =
(G1, Gy, Gr, g1, g2, €) is pairing group tuple of prime order p.

6.1 The Construction
We now describe the PK—UAWS(L = (Setup, KeyGen, Enc, Dec).

poly,1,1) —

Setup(1*): On input the security parameter, fix a prime integer p € N and define the slots
for generating two pair of IPFE master keys as follows:

Spub = {indexy, indexs, pad, init™, rand®*, acc®®} U {tb?*®|7 € T},
Seopy = (It rand P} U {157 € T,

Spriv = Seopy U S1.uaws U {pad®®, pad™™, accP™, sim*P },

gpub ={indexy, indexs, randP®, accp“b},

o o copy copyy o o copy copy
S1.copy ={randi®™ acci®™}, Ss copy = {rands™, accs™™},

‘Spriv = ‘Sl,copy) SQ,copy U Sl-UAWS U {Simcopy}

It generates (IPFE.MPK, IPFE.MSK) <— IPFE.Setup(Syub, Spriv) and (IPFE.I\]I\:’T(, IPFE.I\//I\ST() —
IPFE.Setup(Soub, Spriv) and returns MSK = (IPFE.MSK, IPFE.MET() and MPK = (IPFE.MPK,
IPFE.MPK).

KeyGen(MSK, (M ,Zys)): On input the master secret key MSK = (IPFE.MSK,lPFE.W)
and a function tuple M = (M)kez,, indexed w.r.t. an index set Zps C N of arbitrary size,
it parses My = (Qk, Yk, O0x) € TM Vk € Zps and samples the set of elements

{a,ﬁk%Zp \ kEIM,Zﬂk:O modp}.
k

It computes a secret key IPFE.SK,aq < IPFE.KeyGen(IPFE.MSK, [vpa4]2) for the following

vector Upag:

vector |index; index, pad initP'® randP“® accPub tbﬁUb in Spriv

Vpad 0 0 a 0 0 0 0 0

For all k € Zp;, do the following:

1. For My, = (Qg, Yx, dx), compute transition blocks My, € {0,1}9*%@ V7 € Ty.

2. Sample independent random vector 74y <= Z9% and a random element 7, € Z,.

3. For the following vector vy ., compute a secret key IPFE.SKy i < IPFE.KeyGen(
|PFEMSK, [['Uk,init]]Q):

93

vector |index; index, pad init* randP'® accPub th“b in Spriv
Uk init T k- 0 rsl] O B 0 0
4. For each ¢ € [Qy], compute the following secret keys
IPFE.SKy, « IPFE.KeyGen(IPFE.MSK, [v;,].) and
IPFE.SK,., « IPFE.KeyGen(IPFE.MSK, [#}.,]2)
where the vectors vy, 4, Uy, are defined as follows:
vector |index; index, pad init"® randP® accPub tbﬁ”b in Spriv
Vi g T kem. 0 0 —rirlg) 0 My, rey)gll O
vector |index; indexs randP“? accP® |in gp,iv
Dig ko keme —regld o yld] 0

Finally, it returns the secret key as

SK(M,IM) ((M;IM)7 IPFE‘SKpadu {lPFE'SKk,init’ {IPFESK}C#N llﬁgKk,q}qe[Qk] }kGZ) ’
M

Enc(MPK, (x, 17, 125),z): On input the master public key MPK (IPFE.MPK,
IPFE.m), a public attribute & € {0,1}" for some arbitrary N > 1 with time and
space complexity bounds given by T,S > 1 (as 17, 123) respectively, and the private at-
tribute z € Zj for some arbitrary n > 1, it samples s < Z, and compute a ciphertext

IPFE.CT pad < IPFE.Enc(IPFE.MPK, [wpad]1) for the vector wpaq :

initP"® randP*® accPU® thPU°

0 0 0 0

index; indexy pad

0 0

vector in Spriv

0

Upad S

Next, it does the following:
1. Sample a random vector r, < ZLO’T]X[N]X[S]X{O’I}S.
2. For each k € [n], do the following:

(a) Sample a random element py, < Z,.

(b) Compute a ciphertext IPFE.CTy jnie <— IPFE.SlotEnc(IPFE.MPK, [ug init]1) for the vec-

tor Uy init:
vector |index; indexs pad initPu® randP'® accPub tbﬁUb in Spriv
U init —k- Pk Pk 0 S - Irw[(()a 17 17 OS)] 0 S 0 uE

(c) Forall t € [T),i € [N],j € [S], W € {0,1}*, do the following:
(i) Compute the transition coefficients ¢, (x;t,1,j, W;ry), V7T € T using 7.
(ii) Compute IPFE.CTy;, jw < IPFE.SlotEnc(IPFE.MPK, [wy+;;w]:1) for the vector

WUk, t,i,5,W+

vector

indexy

indexs pad

initPub

randPub

ub
accPub tb?

in Spriv

Uk,t,i,5,W

—k - pg

Pk 0

0

S 'T‘w[(t_ 177;7.77 W)]

0 S~CT($§t,’i,j7W;T:c)

o4

(d) Fort =T+1,andforalli € [N],j € [S], W € {0,1}*°, compute IP/FEET;C’THM’W —
IPFE.SlotEnc(IPFE.MPK, [k 1711, ,w]1) for the vector w141 w:

vector index; indexs randP"® accP® |in Spriv

Uprivigw |~k o e s Te[(T 4,5, W) s-z[k]| L

3. Finally, it returns the ciphertext as

CTiors) = ((%,T,5),n, IPFE.CT paq, {IPFE.CTk,init, {IPFE.CTy0iw }eerry.

IPFE.CTh 741, } '
k,T+1,i,5,W ke[nwe[m,jg[s],We{O,l}S)

Dec(SK(a .20, CT(z,1,5)): On input a secret key SK(az,z,,) and a ciphertext CT (g 7,g), do the
following:
1. Parse SK(ar.z,,) and CT 5 15y as follows:

SK(M.70s) = (((MWEIMJM) IPFE SKpaq, { IPFE.SKint,

{lPFESKk7q, |PFESKk7q}q€[Qk}})) Mk = (Qk‘7 Yk, 5k)7

kE€Tng

CT(m,T,S) = ((CC, T, S) ,n, IPFE.CTpad7 {lPFE.CTkJnit, {IPFE.CTkyt’wa}tE[T],

IPFE.CTh 4105w } '
k,T+1,i,5,W keM’Z-G[N],je[s],we{t),l}s>

2. Output L, if Zps & [n]. Else, select the sequence of ciphertexts for the indices k € Zps
as

CT(:I:,T,S) = ((wv T7 S)) {IPFE-CTk,inih {IPFE-CTk,t,i,j,W}tE[T]7

|PfEETk,TH,Z,j,W}) .
k€Zpng,i€[N],j€[S],We{0,1}5

@

Use the IPFE decryption to obtain [ppaa]r < IPFE.Dec(IPFE.SK a4, IPFE.CT 5a4).

4. Recall that Vk € Zns,Crr vs = [N] x [S] x {0,1}% x [Q1], and that we denote any
clement in it as 0, = (i,J, W, q) € Cuy,, n,s where the only component in the tuple 6y
depending on k is ¢ € [Qy]. Invoke the IPFE decryption to compute all label values as:

Vk - IM . [[Ek,init]]T = |PFE.D€C(|PFE.SK}€7init, |PFE.CTk7init)
Vk € IM,t < [T],@k = (i,j, W,q) < CMk,N,S :
[[gkr,t,ek]]T = IPFEDec(IPFESKM, IPFE.CTk7t7Z’7j7w)
Yk EIM,Qk = (z’,j,W,q) GCM,C,N,S:/_/ o
[[Ek,T—&—l,Gk]]T = |PFED€C(|PFESK}€7Q, lPFE-CTk,T+1,i,j,W>

5. Next, invoke the AKGS evaluation procedure and obtain the combined value

] = H Eval ((Mk, IR 123,29) 2, [Crinit] s {Vm,ek]]T}

te[T+1],6,€C)
kE€Lny e[+]7 A4S My, ,N,S

95

6. Finally, it returns g/ such that [u]r = ([tpaa])”, Where g = (g1, go). Similar to
[AGW20], we assume that the desired attribute-weighted sum lies within a specified
polynomial-sized domain so that i/ can be searched via brute-force.

The correctness of our PK—UAWS'(pdy’Ll) can be shown similarly to our secret key scheme of
the previous section.

Correctness: The first step is to observe that all the AKGS label values are correctly com-
puted for the Turing machines M}, with the fixed input a. This holds by the correctness of IPFE
and AKGS encoding of the iterated matrix-vector product representing any TM computation.
The next (and final) correctness follows from the linearity of AKGS.Eval.

First, by the correctness of IPFE, the decryption recovers [ppad]r = [sa]r from IPFE.SKp.q
and |PFE.CTpad. Next, for all £ € IM,Qk = (i,j,W,q) S CMk,N,57 let Lk,initaLk,t,Gk be the
label functions corresponding to the AKGS garbling of My = (Qk, Yk, dx). By the definitions
of vectors vy jnit, Winie and the correctness of IPFE, we have

‘ek,init = (_kPka + kﬂkpk) +s- 'r'm[((]7 1,1, OS)]Tk,f[l] +5- B
s+ (ro[(1,1,0g,1)] + i)
8- (e(T1,1,os,1)7°0 + Bk) = s Limit(x).

Next, Vk € Ia,t € [T],q € [Qx], the structures of vy 4, ur;;w and the correctness of IPFE
yields

gk,t,i,j,W,q :(_kpkﬂ-k + kﬂ'kpk) — S rm[(t - 17 i?ja W)]Irk,f [Q]
+ Z S CT("B; t? iaja W7 Tw)<Mk,‘rIrk,f>[Q]

TET

=—S5- Tt—l[(imjv W7 Q)] +s- (Z CT(w; ta i7j7 W7 Tm)Mk,Trk,f> [Q]
TET

=5 Litijwq(T)

When t =T + 1, Vk € Iy, q € [Q], the vectors v 4, Wy 7415w and the IPFE correctness
again yields
Ceririgw.g = (kpeme + kmppr) — s - 7m[(T, 0, , Wi flq] + as - z[k]y[q]
= —s5- (re[(i, 5, W,)] + az[k] (1n)xs)x 0,135 © Y) [(, 5, W, q)))
=S Lk,TJrl,i,j,W,q(w)-
The above label values are computed in the exponent of the target group Gr. Once all these

are generated correctly, the linearity of Eval implies that the garbling can be evaluated in the
exponent of Gr. Thus, this yields

(1]t = H Eval <(Mk, IR 12Sap> L&, [k init] s {[[fk,t,ek]]T}

te[T+1},0keCMk,N,s)

S
= [[Z Eval((Mka 1N7 1T7 12 7p>’ &€, gkﬂnita {gk/‘,t,@k }tE[TJrl},HkECMkﬂN,S)]]T

k€Tns

26

=[s- > (az[k]- Mi|nzs(z) + Bi)lr

kE€Tng

= [sa- > z[k]- My|nrs(@)]r = [sa- M(z)" 2]y

k€lns

Finally, since M (x)" z is in polynomial range the decryption recovers it by solving the equation
]t = (Jptpad]T)" for i through exhaustive search over the specified range.

6.2 Security Analysis

We first describe the simulator of our public key 1-slot UAWS scheme. The Setup™ works
exactly the same as honest Setup in the original scheme. Let the simulated master keys are

MSK* = (IPFE.MSK", IPFE.MSK) and MPK* = (IPFE.MPK", IPFE.MPK). We assume that
there are total ® number of secret key queries and ®,. be the number of secret keys appears
before the challenge ciphertext is computed. Without loss of generality, we assume that the
number of states is the same for all the Turing machine in a particular secret key. Let nmax
be the maximum length of z allowed to the adversary A. We assume ngn.,, = polyA as A
is a polynomial time algorithm. The simulator guesses n which is the length of the private
attribute z. The remaining algorithms are as follows:

KeyGeng (MSK™, (My, Zys,)): On input the simulated master secret key MSK* = (IPFE.MSK™,

IPFE.M\ST(*) and a function tuple M, = (M¢,,k)k€IM¢ indexed w.r.t. an index set Zps, C N of
arbitrary size, it parses My = (Q¢, Y, 0x) € TM Vk € Zps and proceeds as follows:

1. Sample the set of elements
{O%’a@@ﬁ,m@,k — Ly | k€ I, ZB¢,k =0 mod p, ZB\M =0 mod p}
k k

2. Compute IPFE.SK; paq < IPFE.KeyGen(IPFE.MSK, [vpad]2) for the vector vy p.q defined as

other
copy
vector pad | pad indices
Vpad %) &¢ 0

3. For each k € Zp;, do the following:
3.1 For My = (Qg, Yx, 0x), compute its transition blocks My ;. , € {0,1}9*% V7 € Ty.

3.2 Sample independent random vector 74 f ZIC;2 ¢ and a random element 7 € Z,,.
3.3 Compute |PFE.SK¢7k7init — IPFEKeyGen(IPFEMSK, [[’Uk,init]]Q) for the vector Vp k,init de-

fined as
. other
vector | index; indexs initP"® accPUP | init®PY acceory |. ..
indices
Vo hint | Tok K Tor Torslll Bor | Torsl Box 0

3.4 For each ¢ € [Qy], compute IPFE.SKy;, < IPFE.KeyGen(IPFE.MSK, [vy s 4]2) and

IPFE.SKy k4 < IPFE.KeyGen(IPFE.M\ST(, [Vs..4]2) where the vectors vy 4, Vg i are de-
fined as

o7

. . other
vector |index; index; rand®*® tbﬁ”b rand<oPY thCoPY R
indices
Vorg | T Komor Torgldl Merrrorp)ldl| Torslad) MorTors)lg 0
)) other
vector |index; index, rand®™® acc®® | rand®® accs™® |, .
indices

Vokg | K Kk-mpr —Torrld ap-yrldl| —Torsla) A yrlal| O

Finally, it returns the secret key as
SK(M%IM(#) = ((M¢,IM¢), IPFE.SK§ pad; {IPFE.SKM,;nit, {IPFE.SKM,q, |PFE.SK¢7k7q}q6[Q¢]}k€Z) .
M

Enc*(MPK*, MSK*, (z, 17, 12%), V, n): On input the master public key MPK = (IPFE.MPK,
IPFE.I\//IBP/(), a public attribute & € {0, 1}" for some arbitrary N > 1 with time and space com-
plexity bounds given by T, S > 1 (as 17,12") respectively, a set V = {(My, In,), My() 2} e,
and the length of the private arbitrary n € N, it proceeds as follows:

1. samples s <— Z, and compute a ciphertext IPFE.CT .4 < IPFE.Enc(IPFE.MPK, [upa4]1) for
the vector wp,q :

_ copy other
vector | in Sy pad indices
Upad 0 1 0
2. Sample random vectors 7, < ZI[)O,T]X[N]X[S]X{OJ}S and s, ZLTH]x[N}x[S]x{O,l}S_

3. For each k € [n], do the following:
(a) Sample a random element py, < Z,.

(b) Compute a ciphertext IPFE.CTy it < IPFE.SlotEnc(IPFE.MPK, [y init]1) for the vector

U init-
. . . . other
vector |index; indexs init«PY accOPY sim©P |, .
indices
U init —k- Pk Pk Irw[<07 17 17 OS)] 1 1 0

(c) For all t € [T],i € [N],j € [S], W € {0,1}", do the following:
(i) Compute the transition coefficients ¢, (x;t, 1, j, W;ry), V7 € T using 7.
(ii) Compute the ciphertext IPFE.CTy;;;w ¢ IPFE.SlotEnc(IPFE.MPK, [uy ., jw]1) for
the vector wy 4, ;w:

.) _ th
vector |index; indexs rand“°? {o)ded sim<°PY ower
indices
A ra[(t — R .
U t3,5,W Pk Pk 1.4] W)] cT(a:,t,z,],W,'rx) Sw[(t,Z,j, W)] 0

(d) It finds a dummy vector d € Z7 such that

My(x) z = Z My () z[k] = My(x) " d = Z My () d[k]

kEIM¢ k’EIM¢

holds for all ¢ € [Ppre].

o8

() For t = T + 1, and for all i € [N],j € [S],W € {0,1}", compute the ciphertext

—_—

IPFE.CT), 71w < IPFE.SlotEnc(IPFE.MPK, [t 741 w]1) for the vector @iy, 71w

other
: ; copy copy . copy
vector index; indexy rand; acc, sim ndices
~ . s[(T +
y —k - T dlk T
uk,T-l—l,z,],W Pk Pk Tm[(2R W)] [] 17 i, 7, W)] 0

4. Finally, it returns the ciphertext as

CTars) = ((m, T,S),n,IPFE.CT paq, {IPFE.CTMn;t, {IPFE.CTy 135w }eem,

|P?€ET,€,T+W7W}

ke[n],ie[N],je[SLWe{O,l}S) ’

KeyGen; (MSK*, (M, Iy, , My(x)" 2)): On input the simulated master secret key MSK* =
(IPFEIMSK”, IPFEIMSK) and a function tuple My, = (M 4)kez,,, indexed w.r.t. an index set

T, C N of arbitrary size and it’s functional value My(x)" z, it parses My, = (Qp, Y, Ok) €
TM Vk € Zps and proceeds as follows:

1. Sample the set of elements

{oz¢, A, B ke B\qik —Zy | k€, Z Bsr =0 mod p, B\@k satisfies (*)}

where the condition (x) is given by

if (max Zpz, > n) A (min Zpg, <n):

k

P Ednk =0 mod p
6(1)716 — Zp

2. Compute IPFE.SK paq < IPFE.KeyGen(IPFE.MSK; [vpad]2) for the vector vy paq defined as

other
copy
vector pad pad dices
Vpad (0%} a¢ 0

3. For all k € Zp;, do the following:
3.1 For My = (Qg, Yk, Ok), compute its transition blocks My, € {0,1}9*@ vr € Ty.

3.2 Sample independent random vectors Ty i f, S¢ k. f ng’ and a random element 7, € Z,,.
3.3 Compute IPFE.SKy . init — IPFE.KeyGen(IPFE.MSK, [vy init]2) for the vector v inie de-

fined as
. . .) other
vector |index; indexy initPuP accPub A
indices
Vg, k,init Tk k- Tk qu’k’f[l] 6¢,k gq&,k,init 0

3.4 For each ¢ € [Qy], compute IPFE.SKy;, < IPFE.KeyGen(IPFE.MSK, [vy,]2) and
IPFE.SK, 1, < IPFE.KeyGen(IPFE.MSK, [0k 4]2) where the vectors vy g, Vg i are de-

fined as

29

.)) other
vector | index; indexy randP!® tbﬁUb sim®©™ |, .
indices
Vorg | Tk Kemer Torgldl MersTors)ldl | Sexsladl | O
))) other
vector |index; index, randP“? accPUP sim? |7
indices
Vokg | Kk k-mor —Torsldl g yrlal| Serslal | 0O

where {4 j init for ¢ > @y are computed as

€¢,1,init — Revsamp((Mk7 1N7 1T7 125)7 Z, a¢M¢(£E)TZ + Bd),h (‘€¢,k,t,9k)tE[T—&-l],@kECMk,N,s)
U it < RevSamp((My, 1V, 17, 125); T, Bo ks (Lo kot 01 te[T+1],00€Ch1, n.5)
and the other label values (&c’t,@k)te[T_i_ngkech,N’S are given by ly 10, = Sz[(t, 7,7, W)|se . lql-

Finally, it returns the secret key as

SK a1, 7,) = ((M¢,IM¢), IPFE.SK. pag. { IPFE.SK. . {IPFE.SK 1. IPFESK o bocian |)
[

Theorem 6.1 Assuming the SXDH assumption holds in G and the |IPFE is function hiding
secure, the above construction of 1-Slot FE for UAWS is adaptively simulation secure.

Proof Idea: We discuss a high level idea of the proof. We use a two-step approach to show
the indistinguishability between the real and the ideal world. Let & be the total number of
secret keys queried by the adversary.

— In the first step, we move everything from the ciphertext vectors from Spub,gpub to the
private slots Spriy, gp,iv. Specifically, we use the Scopy to compute the inner products between
the secret key and ciphertext vectors. To enable this computation, the entries of secret key
vectors copied to Scopy. Note that, the slots of Syup, Spub Of the secret key vectors must be
kept as it is as this will felicitates the decryption of adversarially computed ciphertexts.

— The second step is more technically involved and challenging. We go through a loop of ®
iteration similar to the proof technique of [LL20], however, unlike their work we can not
fully randomize the ciphertext since it should lead to a successful decryption by all the
queried keys. We crucially apply the three slot encryption technique used by [DP21,1.1.20].
To handle all the pre-ciphertext secret key queries, we first embed a dummy vector into
the ciphertext and then restore it to its original form (copied in Sy copy) With the dummy
vector in place of the challenge (private) attribute. Additionally, we use the private slot
sim®® to handle the post-ciphertext secret key queries where we embed the functional
values directly into the secret keys. In a nutshell, each iteration of the loop takes care of
one particular key and use two independent randomness — 7, in Si.yaws, which interacts
with that particular key and 74 in Scopy, S1,copy, S2,copy; Which interacts with all other keys
— so that the security of (1-SK, 1-CT, 1-Slot)-FE can be invoked for each key one-by-one in
the loop.

We now illustrate the formal indistinguishability arguments of all the hybrids in the proof
below.

60

Proof. Let Abea PPT adversary in the security experiment of UAWS. We show that the advan-
tage of A in distinguishing between the experiments Exptj’sr'e‘;t[UAWS(l’\) and ExptiiLZE|UAWS(1A)
is negligible by a sequence of hybrid games played between A and the challenger. Let ((x, 17,
125),z) be the challenge message and z € Z7. Suppose A makes ® number of secret key
queries and out of which first @, are the pre-ciphertext queries. Let nmax be the maximum
value of n, the length of z, i.e., A can choose the private attribute whose maximum length
can be npmax. We assume that UgeeZnr, 2 [n], i.e., the union of all the index sets associated
to the the secret key queries of A covers the indices of the ciphertext vectors. This natural to
assume since A would always want to have maximum information about the encoded message.

In the reduction, we use the shorthand ”"oc @ to indicate that such components there are
linear in a and efficiently computable given a in the exponent, and that there is only one
natural way of computing them. We now proceed to describe the hybrids.

Hybrid Hg: It is identical to the real experiment Exptiig{UAWS(lA) of 1-Slot — UAWS scheme
where the ciphertexts are generated using SlotEnc of IPFE.

Hybrid Hg.;: This is exactly the real experiment except the challenger aborts the experiment
immediately if the vector length of z is not n/, i.e.;, n # n'. Suppose A outputs L when the
experiment is aborted. Thus, it is easy to see that the advantage of A in Hg is ﬁax times the
advantage in Hy. Thus, if the advantage of A is negligible in Hg, then it is so in Hy ;. Hence,
in the remaining hybrids we simply write n’ = n.

Hybrid H;: It is identical to Hg ; except the vectors of ciphertext are encrypted using normal
Enc of IPFE, i.e. using the master secret key and the positions ’Ll/’gpriv, ul S of the vectors u’s,
u’s are changed from L to zero. More specifically, all slots of Suiy for wpad, W init, Wk t.ijw
and all slots of gpri\, for @y 141, ;w are changed from L to zero. The hybrids Hy and H; are

indistinguishable by slot-mode correctness of the slotted IPFE.

Hybrid Hs: It is identical to H; except the way we compute the inner products between the
secret key and ciphertext vectors. Specifically, the ciphertext randomness s is moved to the
secret key, and 1 is placed into the ciphertext vectors in the positions of s. We implement this
as follows:

— The ciphertext and secret key vector elements are first copied to pad“® and the indices
init“P¥ rand ™, tb3°" acc®? of Scopy and Si copy-

— Then, the randomness s is shifted from the ciphertext to the secret key vectors. In partic-
ular, the position pad®® of vy paq and upaq are set to sa and 1 respectively. Similarly, the
randomness s is moved to all the indices such as init®? tb=°" rand“® acc®® of the secret
key vectors.

The hybrids are depicted in Table 6.1. Since the inner product between the secret key and ci-
phertext vectors are unchanged, the indistinguishability between the hybrids H; and Hs follows
from the function hiding security of IPFE. This change prepares the secret key randomness to
randomized in the next hybrid.

Hybrid Hj: It proceeds identical to Hy except that the private slots of the secret key vectors
are generated with an independent set of randomnesses: random pad @4, garbling randomness

61

init**®, randP®

. copy : 1 coPY
hybrid vector pad accP th? pad in Scopy sim
V¢ ,pad Qg 0
Ve, kinits Vs, k,q o (P, £+ Bo,k) 0 0
Upad S 1
Ho.x Uk init, Wk, t,i,5,W x (8, 87%) 1 L
rand™®, accP™® in S1,copy in S2,copy sim“
Vg, k.q o (T, 5) 0 0 0
Uk, T+1,i,,W X (87, $2) 1 1 n
Vg, pad Qg 0
Vg, kinits Vo, k,q o (P, £+ Bo k) 0 0
Upad S @
H: WUk, init, Wk,t,i,5, W o (8, 572) @ @
rand™*® accP® in §1,copy in §27copy sim®®
Vg, k.q o (P b, £y Qo) 0 0 0
Uk, T41,i,5,W x (872, 52) [0] [0] [0]
Vg, kinits Vo, k,q X (P k.5 Bo,ke) ‘ X (871,55 5Bo,k) ‘ 0
Upad @
Ha Wk, init; Wk, t,i,§, W [0] x (1,7z) 0
rand™® accP® in gl’copy in ggycopy sim®®
Ve kg o (T, fr) | | X (8T, 85 CtS) 0 0
Vg, pad Qe Ay
Vg, init> Vg kg o (P, 5 Bo,k) o (T, 5 Bo,k) 0
UWpad 0 1
Hs
Uk init, Wk, t,i,5, W 0 x (1,74) 0
rand™®, accP® in S copy in S, copy sim*
Vg, k.q o (P ke, fs) | | X (T, 5 Og) 0 0
Uk, T41,4,5,W 0 x (T, 2) 0 0
Vg, pad Qg Qo
Vo, ke inits Vg, k,q o (T, f5 Bo,k) o (To,k,f5 Bo.k) 0
Upad 0 1
Hi =Hs1 | wpjinit, Ukt,6,5,w 0 x (1,7z) ‘ L or sz (4,5, W)] ‘
rand™® accP® in gl’copy in gg,copy sim®®
Ve kg o (T, fs0p) | < (Tok,fsQp) 0 0
ﬁk,T+1,i,j,W 0 X (va Z) ‘ o8 (va d) ‘ ‘ Sm[(T + 17i7j7 W)] ‘

Hs,1~@,1~15

The table is continued to the next page...

. initP", randP® copy . : copy
hybrid vector pad accp“b’ theub pad in Scopy sim
Vg, pad e a
b < CI)pre ¢, pa [[R N
Vep, ke inits Vb, kg o (T,k,f5 Bok) o (Pt Bo,k) 0
Upad 0 1
Uk inity Uk, t,i,5, W 0 x (1,72) 1 or sz[(t,14,5, W)]
H@ = H5Y 15 v d (6% a
1| g ,pa ¢ ¢
Vo, inits Vb, g X (P15 Boyk) 0] ‘%,k,init or 8,k,f[d] ‘
rand"“b,accpub in gl,copy in gg,copy sim°PY
¢ < Ppre : Vs, kg X (Po,k.f5) [0] o (To.k,f,00) 0
ﬁk,T+1,i,j,W 0 X (Til!7z) X (Tw,d) Sm[(T+ 17i,j7 W)]
¢ > Dpe : Ve kg o (P, 5 Q) [0] 0 86,5k, r[4]
Ve.pad « Q.
b < By ,pa ¢ ¢) ~
Vo, kinits Vb, kg o< (P ke, 15 Beok) o (To,k, 15 Bo,k) 0
Upad 0 1
Uk, init, Wk, t,i,j,W 0 x (1, ’I‘w) 1 or Sw[(t, 1,7, W)}
H7 Ve pad «a a
b > ¢pre ¢,pa ¢ [
Vb ke inits Vb kg o (Pg,k, 15 Bek) 0 L,k init O Sk, £[q]
rand®® acc®® | in Si copy in Sz, copy sim“™
¢ < Ppre : Vg o (P, 5 Q) 0 o (Tg k1, 0g) 0
k111,65, W 0 [0] (7q, d) sa((T+1,i,5, W)
¢ > Ppre : Vg o (P, 5 Q) 0 0 $6,k,1[4]

For brevity, the vectors for computing the labels are not spelled out. The shorthand ”oc a“ means that the

components there are linear in a and efficiently computable given a in the exponent, and that there is only

one natural way of computing them (cf. construction of 1-slot UAWS described in the Section 6).

In Hg and H7, wp ini[sim™™] = 1, w105, w [Sim] = sz[(t, 4,5, W)] and vg k,init[SIMP] = £y 1 init; Vo, k,q = Sok, £14]

where ¢ i init for ¢ > ®pe are computed as follows:

S ~ o~
C5,1,inic < RevSamp((My, 17,17, 127), 2, 0 My (2) " 2 + Bs.1, (Crt.0))ieir+1],656Chr, w.s)

Z¢,k:,init — RevSamp((M;C, 1N, 1T, 125), T, E@k, ((k,t,Qk)te[T+1]
and the other label values ((k,t,0,)te[T+1],0,cCar, v s are all simulated such that 10, = sz[(t,4,5, W)]Sg k. rld]-
Table 6.1: The first/last few hybrids in the proof of IND-CPA security of our 1-slot UAWS
scheme for L.

19k€ch,N,S)

Tirl0, k, f] and random secret shares B@k of zero. The main difference is that in H,, the
randomnesses used in the secret key vectors at Spup and Spry are the same, but in Hs, the
slots of Spup and Sy are filled with independent set of randomnesses. We can invoke DDH
assumption in Go:

{[aw; Bok: To.15 506, SBoks 5T k2 oe@) ketas, = {06 Boks To,s3 0¥os Boks Tk]2} seia) heas,

. .

Vv vV
DDH tuple random tuple

63

If the DDH tuples is used to compute the secret key vectors, then H, is simulated, and if the
random tuples are used to compute the secret key vectors then Hs is simulated. Therefore, the
indistinguishability between the hybrids Hy and Hj is ensured by the DDH assumption in Gy.

Hybrid Hy: It is identical to the hybrid Hz except we change the ciphertext vectors to
prepare for the second step of the loop. More specifically, the changes are implemented using
the following steps:

S
— Sample a random vector s, ZLTH]X[N]X[S]X{O’I} and set the sim“® position of the vectors

W inits Wkt 5w 8S 1, 8g[(t,4, 7, W)] respectively.
— The position sim“™ of w711, w is set as sz [(T' + 1,4, 7, W)].
— The reduction finds a dummy vector d € Z; such that

My(x) 2 = My(z)'d = Myi(x)d[k] Vo € [Dpe].

ke[n]

Then, in @y r+1,;w, all the elements of gl,copy are copied to gg’copy with d in place of z.
We will change all the pre-ciphertext secret keys (in the second step) in such a way that
they only interact with Ss copy Of g 7414,5,w, instead of Sy copy-

Observe that, the inner products of the vectors w’s, u’s with the vectors v’s, v’s are
unchanged due to these changes because the corresponding positions of v’s and v’s are zero.
Therefore, the indistinguishability between the hybrids H3 and H, is ensured by the function
hiding security of IPFE.

We have completed the first step of the security analysis. Now, we move toward the second
step with the hybrids Hj 1¢ 1~15 Which is a loop (running over all secret keys) where we handle
each secret key in each iteration. Before going to the description of the loop, we present the
last hybrid of the loop and the hybrid that is equivalent to the ideal world.

Hybrid Hg: It is identical to Hy except the pre-ciphertext secret keys now interacts with S copy
and in the post-ciphertext secret keys, the functional values are hardwired. These changes are
implemented as follows:

— In the pre-ciphertext secret keys, everything from the positions in §1,copy of vy, (for

@ € [Ppre]) are copied to Sz copy, and then the positions in Sj opy are set zero.

— In the post-ciphertext secret keys, the positions in Scopy 0f Vg 1 init; Vg kg are set to zero, and
the positions v g init[SIMP’] is set as g g inie and both of vy i 4 [SIMPY], Uy ko [SIM“PY] are set
as Sy rlq). The label values £y init’s are computed as follows:

s .
lo1imie < RevSamp((Mj, 1V, 17,1%7), @, ay My ()" 2 + By, (o 0.0,)telr 41 046Chs, n5)

s N
o rinit < RevSamp((My, 1N 17 127) &, By i, (Lo b .00)teT+1],00Chr, N)

where ¢ > ®,e and the other label values (£k7t79k)tg[T+1]79k€c]VIk’
Sz[(t, 7,5, W)|84k.rld]-

Also, the reduction ignores the guessing step of all previous hybrids, meaning that it is not
required to guess the length of z. We show the indistinguishability between the hybrids in the
following claim.

Claim 6.1 The hybrids H; and Hg are indistinguishable, i.e., Hy ~ Hg.

v are given by (4 =

64

+9Fed 9xaU oY} 03 SONUIIUO0D TPIYM FI~T' @~ dooy 93y Jo SpLIqAY om) 381 oY T, :¢°9 e,

0 (M LT +.p)]™s (p =) % (21%a) MLV
0 0 0 Aﬂ/@/m\lxi.ﬂ&/mv b m\?&ék:?o v,&ém
m>><D.H)M4 urt fdoo WIS Eou"NM ur EouJ).M« ur n:a).mg ur
0 ‘C49)]®s 10 Ty ‘1) 0 ML iy,
M T T ge'ey
0 I pedn,
0 0 A%QQM Qirﬁ/em/mv be) 7 bésy‘pp cuu‘y ‘g
= s Fa'ey Po
0 ?08 ‘ ped‘dq,
0 0 0 A\Q/H\VF%J;G&V 0 mé,}v@ padp < B < \ﬂ
0 0 0 A\%/@Qi,}vﬁv be) w,v\,}v@ fo < \@ 2z maAv
gﬁ ¢ x ‘x ‘x Ca‘t+rt
0 (M LT+ .1)]%s (pf®a) (z¢®u) 2 (£646 g0 MLV T
yuopuadepur)
0 0 0 (PR P) 0 | g Sy ion rea
0 b}/ 28 0 0 Pava 19> 9> g
0 0 A\Q/@F%J\,}v@v be) 0 vhu\,}v\«(@ . P.n.@ w AV > \@
m>><3.H\,M4 urt fdoo WIS éou,NM ur EouJM ut n:a)Mg ut
0 0 Av\h\ﬁm f\:&r\%/.m\v X0 byt P cnuy P w_n_0 < @
0 %x@ pedt,¢q, F% < \%
0 0 A%\@mﬁ%%\ﬁ&.v b byt P cnuy o gy S \@
0 \Q/@ ped ¢ ‘P < \ﬂ e
H
0 [(mL29))®s 101 (®a 1) 20 MLV Ay
0 T pedn
(£ %4 90 jo
0 0 Av\rﬁm ux:«rﬁ/@v X0 PEQUQQQOVEC bl cnutyieq,
0) s f4'Pu 0 ped‘dp
0 Ex;?@m. 10 u_.__;w%w 0 bioy P wuy P gy < \ﬂ
0 \6@ pedt,¢q nﬂ > \ﬂ
0 0 Avﬁ\ﬁm f\;&r\%/.m\v be) byt P cnuy P m_ae S \@
0 \Q/@ pedt,¢q, nﬂ > \ﬁ
SMNTIQ UL g,,PEd Adoo WIS fdo>g uy fdo>Ped andg uy 109994 prqAy

65

Hybrid Hy: It is identical to Hg except it clears the positions in gl,copy of Wy 41, j,w. Since
the corresponding terms in v, , are already zero, the inner products are unaffected. Therefore,
the indistinguishability between the hybrids Hg and H; is guaranteed by the function hiding
security of IPFE. We observe that Hy is the ideal experiment Exptﬁ‘é‘;;UAWS(lA).

The remaining is the proof of the above claim which will complete the proof of the theorem.

a
Claim 6.1 The hybrids H4 and Hg are indistinguishable, i.e., Hy ~ Hg.

Proof. We prove the claim through a loop of hybrids Hs 1.4 115 running over all secret keys.

Hybrid Hs 4 1: It is identical to Hy except the first ¢ — 1 secret keys are modified so that they
either interact with the dummy vector d (if they are pre-ciphertext keys) or the functional
values are hardwired into them (if they are post-ciphertext keys). In other words, the first
¢ — 1 secret keys are changed as in Hg. The hybrid is shown in Table 6.2.

Hybrid Hs 4 2: It is identical to Hj 4 except that a random multiplier 5 <— Z, is multiplied
with the values in pad®®, Scopy, S1,copy- Since s is uniform over Z,, the probability that 5= 0
is negligible. Therefore, the hybrids Hs 4, and Hj ;2 are identically distributed (including the
case of 5 =0).

Hybrid Hs 4 3: It is identical to Hs 42 except that the inner product between the ¢-th secret
key vectors and the ciphertext vectors are now computed via the slots in {pad*™} U Si.yaws-
This change is implemented as follows:

— The position pad®® of v, sad set to zero and pad™™ is set to @ Also, Upaa[pad™™P] is set
to s.

— The positions in Seopy 0f the vectors vy g init, Vo kg are first copied to Si.uaws without the
random multlpher 5 and then Scopy is set to zero. Similarly, 81 1,copy of the vectors v, , are
copied to 51 uaws without the random multiplier s and then 81 copy 18 set to zero.

— The positions Scopy of the vectors wpy inie, Urr,i jw are copied to Si.yaws and the random
multiplier 5 is multiplied with the newly copied terms. Similarly, the positions gl,copy of the
vectors w11, j,w are copied to §1_UAW5 and the random multiplier s is multiplied with
the newly copied terms.

We can verify from the Table 6.3 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid Hj 4 4: It is identical to Hs 43 except that in the ciphertext vectors, the term sr,

in S1.uaws, S1-uaws is replaced by an independent and uniformly chosen random vector s. We
can invoke the DDH assumption in Gy:

—~ - ~ ~ 0,7],x[N]x[S]x{0,1}5 =~
ﬂrz,s,srw]]ljwl[rw,s,s]]k for s,r,ﬂ—ZL L XINTX[S]x{0,1} S Ly

Vv Vv
DDH tuple random tuple

to show the indistinguishability between the hybrids Hs 43 and Hs 4 4.

66

Hybrid Hs 45: It is identical to Hs 44 except that in the ciphertext vectors, the term s in

S1.uaws, S1-uaws is replaced by 57, where we note that 7, of Scopy is independent of this newly
sampled 7. We invoke the DDH assumption in Gy:

[7e,5,3]1 = [Fa, 5, 570], for 8,7 + Z

(-

P00 3 7,

Vv Vv
random tuple DDH tuple

to show the indistinguishability between the hybrids Hs 44 and Hs 4 5.

Hybrid Hs 46: It is identical to Hs 45 except that the random multiplier s is moved back to
the secret key vectors vy'’s from the ciphertext vectors w’s. The indistinguishability between
Hs 46 and Hs 45 follows from the function hiding property of IPFE.

Hybrid Hs 47 It is identical to H; 46 except that the random multiplier S is removed from
the secret key vectors. The hybrids Hs 46 and Hs 4 7 are identically distributed.

Hybrid Hs 4 s: It is identical to Hs , 7 except the ¢-th secret key (if it is a pre-ciphertext query,
ie. ¢ € [Pye]) now interacts with the dummy vector d or the functional value is hardwired
into it (if it is a post-challenge query, i.e. ¢ > ®,). This change is implemented as follows:

— If ¢ € [Ppe], then there is no change required in the secret key, but the z is replaced by d
in the ciphertext vector u’s.

— Also, in the ciphertext, the position sim of the vectors wg init, Ukt ;,w and Uy 41w are
set to 1, sg[(t,4,J, W)] and s, [(T + 1,1, j, W)] respectively.

— If ¢ > @, then everything in Si.yaws and §1_UAWS of the secret key vectors are cleared
except the sim position. More specifically, the positions rand, acc, tb, of Si_.yaws and §1_UAW5
are set to zero for v’s and v’s, and vy jinit[sim] is set as the label values 4 init, and both
of vy i 4[sim], Vg i 4[siM] are as sy £[q].

To make the change as shown in Section 6.2, we invoke the security of (1-SK,1-CT,
1-Slot)-FE scheme. In particular, Theorem 5.1 is applied for the ¢-th key and the single chal-
lenge ciphertext. Observe that the guessing step is already done in this security proof (i.e.,
Ho.1), hence this step is skipped while we apply the security of (1-SK, 1-CT, 1-Slot)-FE scheme.
This makes the reduction more efficient and reduces the security loss incurred due to guessing.
Also, we emphasize that in this hybrid we utilize the slots index; and indexs of Si_yaws, Si-uaws
through the security reduction of (1-SK,1-CT, 1-Slot)-FE scheme, which indeed depends on
Lemma 5.1. Thus, the hybrids Hs 47 and Hs 45 are indistinguishable.

Hybrid Hs 4 9: It is identical to the hybrid Hs 4 g except that everything is copied from the
position sim of Si.yaws to the corresponding position sim®“?, and then the position sim is
cleared from all u’s, u’s and v,’s, Uy’s. The hybrid is described in Section 6.2. The purpose of
this change is to compute the label values for post-ciphertext secret keys utilizing the position
sim“® instead of using the slots of Si_yaws and prepare it for handling the next key. Note that,
if ¢-th key is a pre-ciphertext secret key then there no change takes place in v,’s and v,’s,
however, the sim position of u’s and u’s are cleared. We observe that the inner products are
unchanged and, hence the indistinguishability between the hybrids Hs 4 s and Hs 4 ¢ is ensured
by the function hiding property of IPFE.

67

68

hybrid vector in Spub pad®® in Scopy sim®PY padmP in Si_uaws
Vg, pad , [0] o
¢, To,k,f S =~
Vo k,inits Vo, k,q [0] 0 o (T k,f+ Bo,k)
H Upad 1
P g e, .5, W x (1,72) 1or sz[(t,i,j, W)]
in gpub in gl,copy in §2,copy Simcopy in gl-UAWS
Vora | asrarss| [0] o 0
U410, o (ra,z) o (re,d) sa(T+1,i,5,W))
v 0 a
¢pad Qg 1°¢,k,f’s ¢ R ~
Vs, k,inits Voo k,q 0 0 o< (P k5 Book)
Upad 1 §
H5*¢’a4 Uk, inits Uk, t,i,5,W X (15 rm) lor sfﬂ[(t7 iv j: W)]
in gpub in gl,copy in gg,copy sim“°PY in gl-UAWS
ﬁ;g,k,q a¢,r¢,k7f’s 0 0 0 X ('F¢,k,f,a¢)
U410, x (re,z) o (re,d) sa(T+1,,5,W))
Vg, pad , 0 Qg
g, Tk, f'S R .
Vg, k,inits Vo, k,q 0 0 X (Tg,k,f+ B k)
Upad 1 /S\
Hs,6,5 | W,init, Wk,t,i,5,w x (1,72) 1 or sz|(t,i,5, W)]
in gpub in gl,copy in §2,c0py sim“°PY in gl—UAWS
Vg,k,q g, Tk f S 0 0 0 o (P k.5 Olgp)
ﬁqu+17isjsW X (vaz) X (Tﬂ)?d) Sm[(T+ 1,i7j7 W)]
Vp,pad , 0 sag
Qg Tk, f S —~
Vo, kinits Vo k,q 0 0 ‘0< (5765, 50.k) ‘
] Upad 1
4.6 U inity Wk, t,i,j, W o8 (17 ’I’z) 1or Sm[(t7 ivjv W)]
in gpub in §17copy in gg,copy sim®? in Siuaws
Gora | Qwrenss| 0 0 0
U, T41,i,5,W x (e, 2) o (Te,d) 8[(T +1,i,5, W)]
Vg,pad , 0 Qo
Qg Tk, f S —~
Vb k,inits Vo, k,q 0 0 o (Po,k, 1+ Bo.k)
UWpad 1 1
H . ~
BTN U ity Wit i W x (1,75) 1 or s:[(t,i,75, W)] x (1,7)
in gpub in gl,copy in ggycopy simcopy in gl—UAWS
Voka | Gerenss| 0 0 0
ﬁk,T-Fl,i,j,W X (T’m,Z) X ("‘mvd) Sw[(T+ 177:7.77 W)] X (’FVHZ)

Table 6.3: The intermediate hybrids Hs 4 3

to H57¢77 of the lOOp H571Nq>,1~15.

GI~Te~Tsy doof oYy Jo 6'9°¢Y pue 899 spriqAy 9yeIpPOTLIOUI O T, 9 O[qR],

[0] 0 [b] /v os 0 biog g < 6
@ (p'=a) 2 (M CaT+ 1)]=s (pé®a) 0| MEVTHIUR
0 (P04 F1Pa) 20 0 0 T Loy S ¢
wis Joe ‘pued
SIS T Adoo M!S fdoveg
[0] 0 [B]/ 408 0 Do, 6oy
@ 0 7 (*'?g)dwegnrey — E_ééi 0 W T<Y P, 2p < @
@ 0 7 (19g +z | (z) W P0)dwegnay — WT9) 7 0 W T Pg,
@ (PaT) 2 [(MmL2)]®s 10 T (Ba‘7) 0 | ML IAn
0 Axé,m\@éé@v b 0 0 biyppn nuy‘py . wEG S @
@ 0 0 vx«é@ : mEAHv < ﬂ
:Cs L'y +§ai Tvé«c 57 (M T2+ .1)]%s (p®a) x| M Eritrn
0 (P 50a) 0 0 0 Ptea 1p S @
wis Joe ‘pued
Adod‘g
SWNTS Tt Adoo M!S S ut
[b]/ 108 @ 0 0 by‘pq, 8'Piapy
(4'¢g)dwegnay — E__i;vi @ 0 0 WrT<z‘Pq, sl < @
Aﬂﬂq + NFASV:Q/@VQENW>QK — u_:_éivwi @ 0 0 n TP,
7 (M L29)]*s 101 7 (s 1) 2 (M L2)]®s 10 T (Tu ‘) 30 | MFEIAn A
0 ('eg A Pu) 0 0 0 ba‘pg wnr'eq g S @
wis +q3 ‘ooe ‘puel
Adoo WIS fdoog ur 10909 PrqAy

m>><D.H.W. ut

69

Hybrid Hs 4,10: It is identical to Hs 49 except that a random element § < Z,, is multiplied
to the secret key vectors v,’s and vy’s if ¢ < @, i.e. the ¢-th key under consideration is a
pre-challenge secret key. On the other hand, if ¢ > @, then the position pad*™ of vy yad is
first copied to pad®® and then pad*™ is cleared. Since is uniform over Z,, the probability
that 5 = 0 is negligible. The hybrid is described in Table 6.5. Therefore, the hybrids H; 4 ¢ and
Hs 10 are identically distributed (including the case of 5 = 0) if ¢ < ®,. On the other hand,
if ¢ > @y then the hybrids are indistinguishable due to function security of IPFE.

Hybrid Hs 4 11: It is identical to Hj 410 except that the random multiplier 5 is moved to
the ciphertext vectors u’s, u’s from the secret key vectors vy’s, ¥4’s. The indistinguishability
between Hs 419 and Hs 411 follows from the function hiding property of IPFE.

Hybrid Hs 412 It is identical to Hs 411 except that in the ciphertext vectors, the term sr,
in S1.uaws, S1-uaws is replaced by an independent and uniformly chosen random vector s. We
can invoke the DDH assumption in Gy:

N~ A ~ [== ~ ~ O,T,XNXS'XO,IS/\
[[rz,s,srgg]]lfvl[m,s,sh for s,rz<—Z][3 JXIN]x[S]>{0,1} S Ly

vV VvV
DDH tuple random tuple

to show the indistinguishability between the hybrids Hs 411 and Hs 4 12.

Hybrid Hs 4,13: It is identical to Hs 412 except that in the ciphertext vectors, the term s in

S1.uaws, S1.uaws 1s replaced by sr, where we note that the r, is the same as that of used in
the other slots such as Scopy. We invoke the DDH assumption in Gy:

~ ~~ ~ 5
[rz,s,8]1 = [re, S, sry]1 for 8,7, < ZLO’T]’X[N}X[S]X{O’I} 84— Ly
N TV - N TV
random tuple DDH tuple

to show the indistinguishability between the hybrids Hs 412 and Hs 4 13.

Hybrid Hs 4 14: It is identical to Hs 413 except that the inner product between the ¢-th secret
key vectors and the ciphertext vectors are now computed via the slots in {pad®™} U Scopy U

82 copy- This change is implemented as follows:

— The random multiplier § is moved back to the secret key vectors, i.e. v,’s and v,’s. The
positions in Sy.yaws of the vectors vy jinit, Vg kg are first copied to Scopy, and then Siyaws
ii set to zero. SiIEilarly, the positions in §1_UAW5 of the vectors v,y , are first copied to
S copys and then Siyaws is set to zero.

— The position pad*™ of v g is copied to pad®?, and then pad*™ is cleared.

— The positions pad®™™, Si_yaws and §1_UAW5 of the ciphertext vectors u’s and u’s are cleared.

We can verify from the Table 6.6 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid Hs 4,15: It is identical to Hs 414 except that the random multiplier 5 is removed from
the secret key vectors. The hybrids Hs 46 and Hs 4 7 are identically distributed.

We observe that Hs 415 ~ Hs 441,1. Also, the guessing of the length of 2z is not required from
the hybrid Hsg,.11,15.- This is because the reduction knows the length of z while simulating
all the post-challenge secret keys. Thus, Hs .15 = Hg. Therefore, by a hybrid argument we can
show that Hy = Hs 115 = Hs 6,15 = He. This completes the proof of the claim. O

70

hybrid vector in Spub pad®™® in Scopy sim®PY padtm? in Si.uaws
Vo, pad s 0 §a¢
d’ < q)pre Qg Tk, f S —~
Vg, k init; Vo kg 0 0 ‘0< (579,k.755Bo.k)
Upad 1 1
Uk, inity Wk, t,i,5, W X (er) 1or Sm[(t7iaja W)} X (177"’\3)
Hs.¢.10 =~
¢ > @pre{ ¢op2 ¢ @
Vb, ko init, Vb q 0 Lok init OT S,k £q] 0
in gpub in §1,copy in ggycopy SimCoPy in gl—UAWS
¢ < Dpre : Vg, kg Qs Tk f'S 0 0 0 o (8T, 1, 500)
ﬁk,T-‘—l,i,j,W X (rm,z) X (’I’m,d) Sw[(T+ 17i3j7 W)] X (’;‘\Ead)
¢ > Dpre : Vg, kg Qs T k,fS 0 0 84,k,714] 0
Vg pad 0 as
¢ < (I)pre{ " Qg Tk, =
Voo, koinit, Vo, o, q 0 0 X (P k.15 B k)
H Upad 1
5,4,11 .. PPN
¢ Wi jnies Wk 15,5, W o (1,7a) 1 or sal(t,i,j, W)] o (3, 572)
in gpub in §17copy in gg,capy SimCopy in §1-UAWS
¢ < Dpre : Vg, kg Qgy Tkt '8 0 0 0 o (To,k, 15 Og)
ﬁk,T+1,i,j7W X (’I"m,Z) X (’I"m,d) Sm[(T+ lvi7j7 W)] o8 (/S?mvé\d)
V. pad 0 a
¢ < cI:'pre 92 Qg T¢J€7f’s ’ = 2
Vb, kinits Vo, kg 0 0 o (P, 15 Bo,k)
Upad 1 §
Hs,4,12 Wk, inits Wk, t,4,5, W x (1,75) 1 or sz[(t,i,j, W)] x (3,8)
in gpub in 51,copy in gzycgpy sim®PY in gl—UAWS
¢ < Dpre : Vg, kg Qs Tk f’S 0 0 0 o (To,k, 15 Og)
W 11,05, W o (ra,2) o (re,d) so[(T'+ 14,5, W)]
Vg, pad 0 a
¢ < Ppre ¢p2 Qpy Tk f'S ’ = 2
Vo, e inits Vb kg 0 0 o (T k.t Bo.k)
Upad 1 :S\
Hs,¢,13 Wk init, Wk, t,3,5, W o« (1,72) 1 or sg|(t,i,5, W)] x (8,5rz)
in gpub in gl,copy in gg’copy SimCc>py in gl-UAWS
¢ < Ppre Vb, ke q Qs Tk, f S 0 0 0 o (T, f5 0y

Uk, T+1,i,5,W

X (re,2) x (rz,d)

sz[(T + 1,4, j, W)]

x (8rz,sd)

Table 6.5: The intermediate hybrids Hs 410 to Hs 413 of the loop Hs 1 e 115

72

hybrid vector in Spub pad©® in Scopy simePY pad™™ in Si_yaws
Vg, pad sa
¢ < (I:'pre{ o2 Qg Pk, 'S ¢ > (o]
Vb, b inits Vg kg ’0< (5T¢,k, 1, 5Be,k) 0 [0]
] Upad 1 0]
214 WUk, inity Wk, t,i,j,W o (1,72) 1 or sx[(t,4, 4, W)] @
in gpub in §1,copy in ggycopy sim®? in S1.uaws
¢ < Ppre U, k,q Qs Tk f 'S 0 o (87g,k,1,504) 0 [0]
Tk, 741,05, W X (ra,2) o (red) sal(T+1,i,5, W) [0]
Vg, pad , ag 0
¢ < Qpre{ oee g, Tk, fS —
Vb, ke inits Vo, kg o (To,k, 75 Bg.k) 0 0
UWUpad 1 0
Uk init, Uk, t,i,,W x (1,73) 1 or sz[(t, 1,4, W)] 0
H5,¢>,15 —~
= ¢ S @ V¢ ,pad Qg 0
pre
Hso+1,1 Vg b, inits Vb kg 0 Lo,k init OF 8¢,k 1q] 0
in gpub in §1,copy in §2,copy Simcopy in SI—UAWS
¢ < Ppre : U,k ,q Qg To ke, f S 0 o (T, 5 Og) 0 0
Uk, T+1,i,5,W x (T2, Z) X (Pg, d) sz[(T+1,i,5,W)] 0
¢ > Dpre : U, k,q Qs Tk f'S 0 0 S6.k,71d] 0

Table 6.6: The final two hybI‘ldS H5,¢’14 and H5,¢’15 of the 100p H571Nq>’1~15.

References

ABDCP15.

ABG19.

ABKW19.

ABM™20.

ABSV15.

ACFT18.

ACGU20.
AGRW17.
AGT?21.
AGW20.
AIK11.
ALMT20.
ALS16.

AMI18.

AMVY21.

ARI17.
AS16.
Att16.
AV19.

BCFG17.

BCG*17.

BGG™T14.

BGJS16.

BKS16.

Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption
schemes for inner products. In PKC 2015, pages 733—751. Springer, 2015.

Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client inner-product
functional encryption. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 552—582. Springer, 2019.

Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentralizing inner-
product functional encryption. In IACR International Workshop on Public Key Cryptography, pages
128-157. Springer, 2019.

Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam Soleimanian, and Hendrik Wald-
ner. Multi-client inner-product functional encryption in the random-oracle model. In International Con-
ference on Security and Cryptography for Networks, pages 525-545. Springer, 2020.

Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adaptive
security in functional encryption. In Annual Cryptology Conference, pages 657—677. Springer, 2015.
Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional
encryption for inner products: function-hiding realizations and constructions without pairings. In CRYPTO
2018, pages 597—627. Springer, 2018.

Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional encryption
with fine-grained access control. TACR Cryptology ePrint Archive, Report 2020/577, 2020.

Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product functional
encryption from pairings. In CRYPTO 2017, pages 601-626. Springer, 2017.

Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. In Annual International Cryptology Conference, pages 208—238. Springer, 2021.

Michel Abdalla, Junging Gong, and Hoeteck Wee. Functional encryption for attribute-weighted sums from
k-Lin. In CRYPTO 2020, pages 685-716. Springer, 2020.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In FOCS 2011,
pages 120-129. IEEE Computer Society, 2011.

Shweta Agrawal, Benoit Libert, Monosij Maitra, and Radu Titiu. Adaptive simulation security for inner
product functional encryption. In PKC 2020, pages 34-64. Springer, 2020.

Shweta Agrawal, Benoit Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In CRYPTO 2016, pages 333-362. Springer, 2016.

Shweta Agrawal and Monosij Maitra. Fe and io for turing machines from minimal assumptions. In
Theory of Cryptography: 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018,
Proceedings, Part 11, page 473-512. Springer-Verlag, 2018.

Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Functional encryption for
turing machines with dynamic bounded collusion from LWE. In CRYPTO 2021, pages 239-269. Springer,
2021.

Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited. In Theory of
Cryptography Conference, pages 173-205. Springer, 2017.

Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In T'CC 2016, pages
125-153. Springer, 2016.

Nuttapong Attrapadung. Dual system encryption framework in prime-order groups via computational pair
encodings. In ASTACRYPT 2016, pages 591-623. Springer, 2016.

Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure functional encryption.
In Theory of Cryptography Conference, pages 174—198. Springer, 2019.

Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In CRYPTO 2017, pages
67-98. Springer, 2017.

Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil Segev. Hierarchical
functional encryption. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE
and compact garbled circuits. In EUROCRYPT 2014, pages 533-556. Springer, 2014.

Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verifiable functional encryption.
In International Conference on the Theory and Application of Cryptology and Information Security, pages
557-587. Springer, 2016.

Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-key
setting: Stronger security from weaker assumptions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 852—880. Springer, 2016.

73

BLR™15.

BS18.
BSW11.

CDSG™*18.

CDSG™20.

CGKW18.
CGW15.
CIO16.

CKZ13.

CLT18.

CSW21.
DDM16.
DOT18.

DP21.

DSP19.

GGG'14.

GGH*16.

GGHZ16.

GGLW22.

GJKS15.
GKP*13a.

GKP*13b.

GS16.

Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Semanti-
cally secure order-revealing encryption: Multi-input functional encryption without obfuscation. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 563—-594.
Springer, 2015.

Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting. Journal
of Cryptology, 31(1):202-225, 2018.

Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In TCC
2011, pages 253-273. Springer, 2011.

Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Decen-
tralized multi-client functional encryption for inner product. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 703-732. Springer, 2018.

Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Dy-
namic decentralized functional encryption. In Annual International Cryptology Conference, pages T47-775.
Springer, 2020.

Jie Chen, Junqging Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via bilinear entropy
expansion, revisited. In EUROCRYPT 2018, pages 503—-534. Springer, 2018.

Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via predicate
encodings. In EUROCRYPT 2015, pages 595-624. Springer, 2015.

Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. Deniable functional encryption. In Public-Key
Cryptography—PKC' 2016, pages 196-222. Springer, 2016.

Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from (small) hardware
tokens. In International Conference on the Theory and Application of Cryptology and Information Security,
pages 120-139. Springer, 2013.

Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 733-764. Springer, 2018.

Michele Ciampi, Luisa Siniscalchi, and Hendrik Waldner. Multi-client functional encryption for separable
functions. In TACR International Conference on Public-Key Cryptography, pages 724-753. Springer, 2021.
Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product with
full function privacy. In PKC 2016, pages 164-195. Springer, 2016.

Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Adaptively simulation-secure attribute-
hiding predicate encryption. In ASTACRYPT 2018, pages 640-672. Springer, 2018.

Pratish Datta and Tapas Pal. (compact) adaptively secure fe for attribute-weighted sums from k-lin. In
International Conference on the Theory and Application of Cryptology and Information Security, pages
434-467. Springer, 2021.

Edouard Dufour-Sans and David Pointcheval. Unbounded inner-product functional encryption with suc-
cinct keys. In ACNS 2019, pages 426-441. Springer, 2019.

Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai,
Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 578-602. Springer, 2014.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882-929, 2016.

Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without obfuscation.
In Theory of Cryptography Conference, pages 480-511. Springer, 2016.

Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryp-
tion from identity-based encryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 736-763. Springer, 2022.

Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption for randomized
functionalities. In Theory of Cryptography Conference, pages 325-351. Springer, 2015.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC 2013, pages 555-564. ACM, 2013.

Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
How to run turing machines on encrypted data. In Annual Cryptology Conference, pages 536—553. Springer,
2013.

Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption with polynomial
loss. In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, volume 9986 of Lecture
Notes in Computer Science, pages 419-442, 2016.

74

GVW12.
IW14.

1715.

JLS21.

JLS22.

KLM™18.
KSY18.
Lin17.
LL20.
LLHG22.

LLW21.

LOS™10.

LT17.

LT19.

LV1e6.
Lwi1o.
LW11.

MKMS22.

O’N10.
OT1o0.
OT12.
TAO16.
TT20.
Wat09.
Wat15.
Weeld.

WeelT7.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collu-
sions via multi-party computation. In CRYPTO 2012, pages 162-179. Springer, 2012.

Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In ICALP 2014, pages
650-662. Springer, 2014.

Vincenzo Iovino and Karol Zebroski. Simulation-based secure functional encryption in the random oracle
model. In International Conference on Cryptology and Information Security in Latin America, pages 21-39.
Springer, 2015.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 60-73, 2021.
Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn over, dlin, and prgs
in nc. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 670-699. Springer, 2022.

Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J Wu. Function-hiding
inner product encryption is practical. In SCN 2018, pages 544-562. Springer, 2018.

Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized functionalities in
the private-key setting from minimal assumptions. Journal of Cryptology, 31(1):60-100, 2018.

Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 prgs. In CRYPTO
2017, pages 599-629. Springer, 2017.

Huijia Lin and Ji Luo. Compact adaptively secure abe from k-Lin: Beyond NC' and towards NL. In
EUROCRYPT 2020, pages 247-277. Springer, 2020.

Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu. Tightly cca-secure inner product functional encryption
scheme. Theoretical Computer Science, 898:1-19, 2022.

Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. New lattice two-stage sampling technique and its applications
to functional encryption—stronger security and smaller ciphertexts. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 498-527. Springer, 2021.

Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In EURO-
CRYPT 2010, pages 62-91. Springer, 2010.

Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local
prgs. In Annual International Cryptology Conference, pages 630—-660. Springer, 2017.

Benoit Libert and Radu Titiu. Multi-client functional encryption for linear functions in the standard
model from Iwe. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 520-551. Springer, 2019.

Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on
constant-degree graded encodings. In FOCS 2016, pages 11-20. IEEE, 2016.

Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE
with short ciphertexts. In TCC 2010, pages 455-479. Springer, 2010.

Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In EUROCRYPT
2011, pages 547-567. Springer, 2011.

Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian. Efficient lattice-
based inner-product functional encryption. In JACR International Conference on Public-Key Cryptography,
pages 163-193. Springer, 2022.

Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report
2010/556, 2010.

Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO 2010, pages 191-208. Springer, 2010.

Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In ASTACRYPT 2012, pages 349-366. Springer, 2012.

Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional encryption for inner-product
values with full-hiding security. In ICS 2016, pages 408-425. Springer, 2016.

Junichi Tomida and Katsuyuki Takashima. Unbounded inner product functional encryption from bilinear
maps. Japan Journal of Industrial and Applied Mathematics, 37(3):723-779, 2020.

Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
CRYPTO 2009, pages 619-636. Springer, 2009.

Brent Waters. A punctured programming approach to adaptively secure functional encryption. In Annual
Cryptology Conference, pages 678-697. Springer, 2015.

Hoeteck Wee. Dual system encryption via predicate encodings. In T'CC 2014, pages 616-637. Springer,
2014.

Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In TCC 2017, pages
206—233. Springer, 2017.

5

Wee20. Hoeteck Wee. Functional encryption for quadratic functions from k-Lin, revisited. In TCC 2020, pages
210-228. Springer, 2020.

WFL19. Zhedong Wang, Xiong Fan, and Feng-Hao Liu. FE for inner products and its application to decentralized
ABE. In PKC 2019, pages 97-127. Springer, 2019.

76

	Introduction
	Technical Overview
	From All-or-Nothing to Functional Encryption

	Preliminaries
	Bilinear Groups and Hardness Assumptions
	Turing Machine Formulation
	Functional Encryption for Unbounded Attribute-Weighted Sum for Turing machines
	Function-Hiding Slotted Inner Product Functional Encryption
	Arithmetic Key Garbling Scheme for Turing machines

	Construction of AKGS for the function class F
	(1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L
	The Construction
	Security Analysis

	 1-Slot FE for Unbounded AWS for L
	The Construction
	Security Analysis

