
Compact FE for Unbounded Attribute-Weighted Sums

for Logspace from SXDH?

Pratish Datta1, Tapas Pal2 and Katsuyuki Takashima3

1 NTT Research, Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com,

2 NTT Social Informatics Laboratories, Musashino-shi, Tokyo, Japan 180-8585
tapas.pal.wh@hco.ntt.co.jp,

3 Waseda University, Shinjuku-ku, Tokyo, Japan 169-8050
ktakashima@waseda.jp

Abstract.

This paper presents the first functional encryption (FE) scheme for the attribute-weighted sum (AWS)
functionality that supports the uniform model of computation. In such an FE scheme, encryption takes as
input a pair of attributes (x, z) where the attribute x is public while the attribute z is private. A secret key
corresponds to some weight function f , and decryption recovers the weighted sum f(x)z. This is an important
functionality with a wide range of potential real life applications, many of which require the attribute lengths
to be flexible rather than being fixed at system setup. In the proposed scheme, the public attributes are
considered as binary strings while the private attributes are considered as vectors over some finite field, both
having arbitrary polynomial lengths that are not fixed at system setup. The weight functions are modeled as
Logspace Turing machines.

Prior schemes [Abdalla, Gong, and Wee, CRYPTO 2020 and Datta and Pal, ASIACRYPT 2021] could
only support non-uniform Logspace. The proposed scheme is built in asymmetric prime-order bilinear groups
and is proven adaptively simulation secure under the well-studied symmetric external Diffie-Hellman (SXDH)
assumption against an arbitrary polynomial number of secret key queries both before and after the challenge
ciphertext. This is the best possible level of security for FE as noted in the literature. As a special case of the
proposed FE scheme, we also obtain the first adaptively simulation secure inner-product FE (IPFE) for vectors
of arbitrary length that is not fixed at system setup.

On the technical side, our contributions lie in extending the techniques of Lin and Luo [EUROCRYPT 2020]
devised for payload hiding attribute-based encryption (ABE) for uniform Logspace access policies avoiding
the so-called “one-use” restriction in the indistinguishability-based security model as well as the “three-slot
reduction” technique for simulation-secure attribute-hiding FE for non-uniform Logspace devised by Datta and
Pal [ASIACRYPT 2021] to the context of simulation-secure attribute-hiding FE for uniform Logspace.

? This is the full version of an extended abstract that will appear in ASIACRYPT 2022.

Table of Contents

Page
1 Introduction . 3
2 Technical Overview . 6

2.1 From All-or-Nothing to Functional Encryption . 8
3 Preliminaries . 15

3.1 Bilinear Groups and Hardness Assumptions . 16
3.2 Turing Machine Formulation . 17
3.3 Functional Encryption for Unbounded Attribute-Weighted Sum for

Turing machines . 18
3.4 Function-Hiding Slotted Inner Product Functional Encryption 19
3.5 Arithmetic Key Garbling Scheme for Turing machines . 20

4 Construction of AKGS for the function class F . 23
5 (1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L . 27

5.1 The Construction . 28
5.2 Security Analysis . 31

6 1-Slot FE for Unbounded AWS for L . 53
6.1 The Construction . 53
6.2 Security Analysis . 57

1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by Boneh et al.
[BSW11] and O’Neill [O’N10], redefines the classical encryption procedure with the motivation
to overcome the limitation of the “all-or-nothing” paradigm of decryption. In a traditional
encryption system, there is a single secret key such that a user given a ciphertext can either
recover the whole message or learns nothing about it, depending on the availability of the secret
key. FE in contrast provides fine grained access control over encrypted data by generating
artistic secret keys according to the desired functions of the encrypted data to be disclosed.
More specifically, in a public-key FE scheme for a function class F , there is a setup authority
which produces a master secret key and publishes a master public key. Using the master secret
key, the setup authority can derive secret keys or functional decryption keys SKf associated
with functions f ∈ F . Anyone can encrypt messages msg belonging to a specified message
space msg ∈ M using the master public key to produce a ciphertext CT. The ciphertext
CT along with a secret key SKf recovers the function of the message f(msg) at the time of
decryption, while unable to extract any other information about msg. More specifically, the
security of FE requires collusion resistance meaning that any polynomial number of secret
keys together cannot gather more information about an encrypted message except the union
of what each of the secret keys can learn individually.

By this time, we have a plethora of exciting works on fe. These works can be broadly
classified in two categories. The first line of works attempted to build FE for general func-
tionalities [GVW12,CKZ13,GKP+13b,GKP+13a,GGG+14,ABSV15,BLR+15,GJKS15,IŻ15,
Wat15,AS16,BGJS16,BKS16,CIO16,GGHZ16,GGH+16,GS16,AR17,BCG+17,AM18,BS18,
KSY18,AV19,LŢ19,AMVY21,JLS21,GGLW22,JLS22]. However, those constructions were ei-
ther only secure against bounded collusion and/or extremely inefficient. With the motivation to
overcome these limitations, a second line of work attempted to design efficient FE schemes sup-
porting arbitrary collusion of users for practically relevant functionalities, e.g., linear/quadratic
functions [ABDCP15, ALS16, DDM16, LV16, TAO16, AGRW17, BCFG17, Lin17, LT17, Wee17,
ACF+18,CLT18,CDSG+18,KLM+18,ABKW19,ABG19,DSP19,WFL19,ACGU20,ABM+20,
AGW20,ALMT20,CDSG+20,TT20,Wee20,AGT21,CSW21,DP21,LLW21,LLHG22,MKMS22].
In this work, we advance the state of the art along the latter research direction.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [AGW20] and Datta
and Pal [DP21] studied FE schemes for a new class of functionalities termed as “attribute-
weighted sums” (AWS). This is a generalization of the inner product functional encryption
(IPFE) [ABDCP15, ALS16]. In such a scheme, an attribute pair (x, z) is encrypted using the
master public key of the scheme, where x is a public attribute (e.g., demographic data) and z is
a private attribute containing sensitive information (e.g., salary, medical condition, loans, col-
lege admission outcomes). A recipient having a secret key corresponding to a weight function f
can learn the attribute-weighted sum f(x)z. The attribute-weighted sum functionality appears
naturally in several real life applications. For instance, as discussed by Abdalla et al. [AGW20]
if we consider the weight function f as a boolean predicate, then the attribute-weighted sum
functionality f(x) would correspond to the average z over all users whose attribute x satis-
fies the predicate f . Important practical scenarios include average salaries of minority groups
holding a particular job (z = salary) and approval ratings of an election candidate amongst
specific demographic groups in a particular state (z = rating).

3

The works of [AGW20, DP21] considered a more general case of the notion where the
domain and range of the weight functions are vectors, in particular, the attribute pair of
public/private attribute vectors (x, z), which is encrypted to a ciphertext CT. A secret key
SKf generated for a weight function f allows a recipient to learn f(x)>z from CT without
leaking any information about the private attribute z.

The FE schemes of [AGW20, DP21] support an expressive function class of arithmetic
branching programs (ABPs) which captures non-uniform Logspace computations. Both schemes
were built in asymmetric bilinear groups of prime order and are proven secure in the simulation-
based security model, which is known to be the desirable security model for FE [O’N10,
BSW11], under the (bilateral) k-Linear (k-Lin)/ (bilateral) Matrix Diffie-Hellman (MDDH)
assumption. The FE scheme of [AGW20] achieves semi-adaptive security, where the adversary
is restricted to making secret key queries only after making the ciphertext queries, whereas
the FE scheme of [DP21] achieves adaptive security, where the adversary is allowed to make
secret key queries both before and after the ciphertext queries.

However, as mentioned above, ABP is a non-uniform computational model. As such, in
both the FE schemes [AGW20, DP21], the length of the public and private attribute vec-
tors must be fixed at system setup. This is clearly a bottleneck in several applications of
this primitive especially when the computation is done over attributes whose lengths vary
widely among ciphertexts and are not fixed at system setup. For instance, suppose a gov-
ernment hires an external audit service to perform a survey on average salary of employ-
ees working under different job categories in various companies to resolve salary discrep-
ancy.The companies create salary databases (X,Z) where X = (xi)i contains public at-
tributes xi = (job title, department, company name) and Z = (zi)i includes private attribute
zi = salary. To facilitate this auditing process without revealing individual salaries (private at-
tribute) to the auditor, the companies encrypt their own database (X,Z) using an FE scheme
for AWS. The government provides the auditor a functional secret key SKf for a function f that
takes input a public attribute X and outputs 1 for xi’s for which the “job title” matches with a
particular job, say manager. The auditor decrypts ciphertexts of the various companies using
SKf and calculates the average salaries of employees working under that job category in those
companies. Now, if the existing FE schemes for AWS [AGW20,DP21] supporting non-uniform
computations are employed then to make the system sustainable the government would have
to fix a probable size (an upper bound) of the number of employees in all the companies.
Also, the size of all ciphertexts ever generated would scale with that upper bound even if the
number of employees in some companies, at the time of encryption, are much smaller than
that upper bound. This motivates us to consider the following problem.

Open Problem Can we construct an FE scheme for AWS in some uniform computational
model capable of handling public/private attributes of arbitrary length?

Our Results. This work resolves the above open problem. For the first time in the literature,
we formally define and construct a FE scheme for unbounded AWS (UAWS) functionality where
the setup only depends on the security parameter of the system and the weight functions are
modeled as Turing machines. The proposed FE scheme supports both public and private at-
tributes of arbitrary lengths. In particular, the public parameters of the system are completely
independent of the lengths of attribute pairs. Moreover, the ciphertext size is compact mean-
ing that it does not grow with the number of occurrences of a specific attribute in the weight

4

functions which are represented as Logspace Turing machines. The scheme is adaptively sim-
ulation secure against the release of an unbounded (polynomial) number of secret keys both
before and after the challenge ciphertext. As noted in [BSW11,O’N10], simulation security is
the best possible and the most desirable model for FE. Moreover, simulation-based security
also captures indistinguishability-based security but the converse does not hold in general.

Our FE for UAWS is proven secure in the standard model based on the symmetric external
Diffie-Hellman (SXDH) assumption in the asymmetric prime-order pairing groups. Our main
result in the paper is summarized as follows.

Theorem 1.1 (Informal) Assuming the SXDH assumption holds in asymmetric pairing groups
of prime-order, there exists an adaptively simulation secure FE scheme for the attribute weighted
sum functionality with the weight functions modeled as Logspace Turing machines such that
the lengths of public and private attributes are unbounded and can be chosen at the time of
encryption, the ciphertexts are compact with respect to the multiple occurrences of attributes
in the weight functions.

Viewing IPFE as a special case of FE for AWS, we also obtain the first adaptively simulation
secure IPFE scheme for unbounded length vectors (UIPFE), i.e., the length of the vectors is
not fixed in setup. Observe that all prior simulation secure IPFE [Wee17, AGW20, ALMT20,
DP21] could only support bounded length vectors, i.e., the lengths must be fixed in the setup.
On the other hand, the only known construction of UIPFE [TT20] is proven secure in the
indistinguishability-based model.

The proposed FE construction is semi-generic and extends the frameworks of the works
of Lin and Luo [LL20] and Datta and Pal [DP21]. Lin and Luo [LL20] develop an adap-
tively secure attribute-based encryption (ABE) scheme for Logspace Turing machines proven
secure in the indistinguishability-based model. Although the input length of their ABE is un-
bounded, but an ABE is an “all-or-nothing” type primitive which fully discloses the message
to a secret key generated for accepting policies. Further, the ABE of [LL20] is only pay-
load hiding secure meaning that the ciphertexts themselves can leak sensitive information
about the associated attributes. In contrast, our FE for UAWS provides more fine grained
encryption methodologies where the ciphertexts reveal nothing about the private part of as-
sociated attributes but their weighted sums. Our FE construction depends on two building
blocks, an arithmetic key garbling scheme (AKGS) for Logspace Turing machines which is an
information-theoretic tool and a function hiding (bounded) slotted IPFE scheme which is a
computational primitive. An important motivation of [LL20] is to achieve compact cipher-
texts for ABEs. In other words, they get rid of the so-called one-use restriction from prior
adaptively secure ABEs [LW10,LOS+10,OT10,LW11,OT12,Wee14,CGW15,Att16,CGKW18]
by replacing the core information-theoretic step with the computational primitive of func-
tion hiding slotted IPFE. The FE of [DP21] is able to accomplish this property for non-
uniform computations by developing a three-slot encryption technique. Specifically, three slots
are utilized to simulate the label functions obtained from the underlying AKGS garbling for
pre-ciphertext secret keys. Note that, the three-slot encryption technique is an extension of
dual system encryption methodologies [Wat09,LW10,LOS+10]. In this work, we extend their
frameworks [LL20, DP21] to avoid the one-use restriction in the case of FE for UAWS that
computes weights via Logspace Turing machines. It is non-trivial to implement such three-
slot techniques in the uniform model. The main reason behind this fact is that in case of
ABPs [DP21] the garbling randomness can be sampled knowing the size of ABPs, and hence

5

the garbling algorithm is possible to run while generating secret keys. However, in the case
of AKGS for Logspace Turing machines, the garbling randomness depends on the size of the
Turing machine as well as its input lengths. Consequently, it is not possible to execute the
garbling in the key generation or encryption algorithms as the information about the garbling
randomness is distributed between these two algorithms. We tackle this by developing a more
advanced three-slot encryption technique with distributed randomness which enables us to
carry out such a sophisticated procedure for Logspace Turing machines.

Our FE for UAWS is a one-slot scheme. This means one pair of public-private attribute
can be processed in a single encryption. An unbounded-slot FE for UAWS [AGW20] enables
us to encrypt unbounded many such pairs in a single encryption. Abdalla et al. [AGW20]
devise a generic transformation for bootstrapping from one-slot to unbounded-slot scheme.
However, this transformation only works if the underlying one-slot scheme is semi-adaptively
secure [DP21]. Thus, if we restrict our scheme to semi-adaptive security then using such trans-
formations [AGW20,DP21] our one-slot FE scheme can be bootstrapped to support unbounded
slots.

Organization. We discuss a detailed technical overview of our results in Section 2. We
provide useful notations, related definitions, and complexity assumptions in Section 3. We
give a description of AKGS construction for evaluating Turing machines via a sequence of
matrix multiplications in Section 4. Our construction of a single key and single ciphertext
secure FE scheme for UAWS along with its security analysis are described in Section 5. Next,
we build our full fledge 1-slot FE scheme for UAWS and prove its security in Section 6.

2 Technical Overview

We now present an overview of our techniques for achieving a FE scheme for AWS functionality
which supports the uniform model of computations. We consider prime-order bilinear pairing
groups (G1,G2,GT, g1, g2, e) with a generator gT = e(g1, g2) of GT and denote [[a]]i by an
element gai ∈ Gi for i ∈ {1, 2,T}. For any vector z, the k-th entry is denoted by z[k] and [n]
denotes the set {1, . . . , n}.

The unbounded AWS Functionality. In this work, we consider an unbounded FE scheme
for the AWS functionality for Logspace Turing machines (or the class of L), in shorthand it
is written as UAWSL. More specifically, the setup only takes input the security parameter of
the system and is independent of any other parameter, e.g., the lengths of the public and
private attributes. UAWSL generates secret keys SK(M ,IM) for a tuple of Turing machines
denoted by M = {Mk}k∈IM such that the index set IM contains any arbitrary number of
Turing machines Mk ∈ L. The ciphertexts are computed for a pair of public-private attributes
(x, z) whose lengths are arbitrary and are decided at the time of encryption. Precisely, the
public attribute x of length N comes with a polynomial time bound T = poly(N) and a
logarithmic space bound S, and the private attribute z is an integer vector of length n.
At the time of decryption, if IM ⊆ [n] then it reveals an integer value

∑
k∈IM Mk(x)z[k].

Since Mk(x) is binary, we observe that the summation selects and adds the entries of z for
which the corresponding Turing machine accepts the public attribute x. An appealing feature
of the functionality is that the secret key SK(M ,IM) can decrypt ciphertexts of unbounded
length attributes in unbounded time/ (logarithmic) space bounds. In contrast, existing FE for
AWSs [AGW20,DP21] are designed to handle non-uniform computations that can only handle

6

attributes of bounded lengths and the public parameters grows linearly with the lengths. Next,
we describe the formulation of Turing machines in L considered in UAWSL.

Turing machines Formulation. We introduce the notations for Logspace Turning machines
(TM) over binary alphabets. A Turing machine M = (Q,yacc, δ) consists of Q states with
the initial state being 1 and a characteristic vector yacc ∈ {0, 1}Q of accepting states and
a transition function δ. When an input (x, N, T, S) with length N and time, space bounds
T, S is provided, the computation of M |N,T,S(x) is performed in T steps passing through
configurations (x, (i, j,W , q)) where i ∈ [N] is the input tape pointer, j ∈ [S] is the work tape
pointer, W ∈ {0, 1}S the content of work tape, and q ∈ [Q] the state under consideration. The
initial internal configuration is (1, 1,0S, 1) and the transition function δ determines whether,
on input x, it is possible to move from one internal configuration (i, j,W , q) to the next
((i′, j′,W ′, q′)), namely if δ(q,x[i],W [j]) = (q′, w′,∆i,∆j). In other words, the transition
function δ on input state q, an input bit x[i] and an work tape bit W [j], outputs the next
state q′, the new bit w′ overwriting w = W [j] by w′ = W ′[j] (keeping W [j′′] = W ′[j′′] for all
j 6= j′′), and the directions ∆i,∆j ∈ {0,±1} to move the input and work tape pointers.

Our construction of adaptively simulation secure UAWSL depends on two building blocks:
AKGS for Logspace Turing machines, an information-theoretic tool and slotted IPFE, a com-
putation tool. We only need a bounded slotted IPFE, meaning that the length of vectors of
the slotted IPFE is fixed in the setup, and we only require the primitive to satisfy adaptive
indistinguishability based security. Hence, our work shows how to (semi-)generically bootstrap
a bounded IPFE to an unbounded FE scheme beyond the inner product functionality. Before
going to describe the UAWSL, we briefly discuss about these two building blocks.

AKGS for Logspace Turing machines. In [LL20], the authors present an ABE scheme for
Logspace Turing machines by constructing an efficient AKGS for sequence of matrix multipli-
cations over Zp. Thus, their core idea was to represent a Turing machine computation through
a sequence of matrix multiplications. An internal configuration (i, j,W , q) is represented as
a basis vector e(i,j,W ,q) of dimension NS2SQ with a single 1 at the position (i, j,W , q). We
define a transition matrix given by

M(x)[(i, j,W , q), (i′, j′,W ′, q′)] =


1, if δ(q,x[i],W [j]) = (q′,W ′[j], i′ − i, j′ − j)

and W ′[j′′] = W [j′′] for all j′′ 6= j;

0, otherwise;

such that e>(i,j,W ,q)M(x) = e>(i′,j′,W ′,q′). This holds because the ((i, j,W , q),

(i′, j′,W ′, q′))-th entry of M(x) is 1 if and only if there is a valid transition from (q,x[i],W [j])
to (q′,W ′[j], i′− i, j′− j). Therefore, one can write the Turing machine computation by right
multiplying the matrix M(x) for T times with the initial configuration e>(1,1,0S ,1) to reach of

one of the final configurations 1[N]×[S]×{0,1}S ⊗yacc. In other words, the function M |N,T,S(x) is
written as

M |N,T,S(x) = e>(1,1,0S ,1)(MN,S(x))T (1[N]×[S]×{0,1}S ⊗ yacc) (2.1)

Thus, [LL20] constructs an AKGS for the the sequence of matrix multiplications as in Equa-
tion (2.1). Their AKGS is inspired from the randomized encoding scheme of [AIK11] and
homomorphic evaluation procedure of [BGG+14]. Given the function M |N,T,S over Zp and two

7

secrets z, β, the garbling procedure computes the label functions

Linit(x) = β + e>(1,1,0S ,1)r0,

for t ∈ [T] : (Lt,θ)θ = −rt−1 + MN,S(x)rt,
(LT+1,θ)θ = −rT + z1[N]×[S]×{0,1}S ⊗ yacc.

and outputs the coefficients of these label functions `init, `t = (`t,θ)θ where θ = (i, j,W , q)

and rt ← Z[N]×[S]×{0,1}S×[Q]
p . To compute the functional value for an input x, the evalua-

tion procedure add `init with a telescoping sum e>(1,1,0S ,1) ·
∑T

t=1(MN,S(x))t−1`t and outputs

zM |N,T,S(x) + β. More precisely, it uses the fact that

e>it+1,jt+1,Wt+1,qt+1
rt+1 = e>it,jt,Wt,qtrt + e>it,jt,Wt,qt(−rt + M(x)rt+1︸ ︷︷ ︸

`t+1

)

A crucial and essential property that the AKGS have is the linearity of evaluation procedure,
meaning that the procedure is linear in the label function values `s and, hence can be performed
even if `s are available in the exponent of a group. Lin and Luo identify two important security
notions of AKGS, jointly called piecewise security. Firstly, `init can be reversely sampled given
a functional value and all other label values, which is known as the reverse sampleability.
Secondly, `t is random with respect to the subsequent label functions Lt′,θ for all t′ > t and z,
which is called the marginal randomness.

Function Hiding Slotted IPFE. A normal IPFE computes inner product between two
vectors v and u using a secret key IPFE.SKv and a ciphertext IPFE.CTu. The IPFE is said
to satisfy indistinguishability-based security if an adversary having received many functional
secret keys {IPFE.SKv} remains incapable to extract any information about the message vector
u except the inner products {v · u}. It is easy to observe that if encryption is done publicly
then no security can be ensured about v from the secret key IPFE.SKv [DDM16] due to the
linear functionality. However, if the encryption algorithm is private then IPFE.SKv can be
produced in a fashion to hide sensitive information about v. This is termed as function hiding
security notion for private key IPFE. Slotted IPFE [LV16] is a hybrid of public and private IPFE
where vectors are divided into public and private slots, and function hiding is only guaranteed
for the entries in the private slots. Further, Slotted IPFEs of [LV16,LL20] generate secret keys
and ciphertexts even when the vectors are given in the exponent of source groups whereas
decryption recovers the inner product in the target group.

2.1 From All-or-Nothing to Functional Encryption

We are all set to describe our approach to extend the framework of [LL20] from all-or-nothing
to functional encryption for the uniform model of computations. In a previous work of Datta
and Pal [DP21], an adaptively secure FE for AWS functionality was built for the non-uniform
model of computations, ABPs to be precise. Their idea was to garble a function fk(x)z[k]+βk
during key generation (keeping z[k] and x as variables) and compute IPFE secret keys to
encode the m labels, and a ciphertext associated to a tuple (x, z) consists of a collection of
IPFE ciphertexts which encode the attributes:

SKf = {IPFE.SKvk,t<m , ˜IPFE.SKṽk,m}k,m :
vk,t<m = `k,t, ṽk,m = `k,m where

(`k,t)t ← Garble(fk(x)z[k] + βk) s.t.
∑

k βk = 0

CTx = (IPFE.CTu, { ˜IPFE.CTũk}k) : u = (1,x), ũk = (1, z[k])

8

Therefore, using the inner product functionality, decryption computes the actual label values
with x, z[k] as inputs and recovers fk(x)z[k] + βk for each k, and hence finally

∑
k fk(x)z[k].

However, this approach fails to build UAWSL because we can not execute the AKGS garbling for
the function Mk|N,T,S(x)z[k]+βk at the time of generating keys. More specifically, the garbling
randomness depends on parameters N, T, S, n that are unknown to the key generator. Note
that, in contrast to the ABE of [LL20] where z can be viewed as a payload (hence n = 1), the
UAWS functionality has an additional parameter n (length of z) the value of which is chosen
at the time of encryption. Moreover, the compactness of UAWSL necessitates the secret key
size |SK(M ,IM)| = O(|IM |Q) to be linear in the number of states Q and the ciphertext size
|CT(x,T,S)| = O(nTNS2S) be linear in TNS2S.

The obstacle is circumvented by the randomness distribution technique used in [LL20]. In-
stead of computing the AKGS garblings in key generation or encryption phase, the label values
are produced by a joint effort of both the secret key and ciphertext. To do so, the garbling is
executed under the hood of IPFE using pseudorandomness, instead of true randomness. That
is, some part of the garbling randomness is sampled in key generation whereas the rest is
sampled in encryption. More specifically, every true random value rt[(i, j,W , q)] is written
as a product rx[(t, i, j,W)]rk,f [q] where rx[(t, i, j,W)] is used in the ciphertext and rk,f [q] is
utilized to encode the transition blocks of Mk in the secret key. To enable this, the transition
matrix associated to Mk is represented as follows:

M(x)[(i, j,W , q), (i′, j′,W ′, q′)] = δ(?)((i, j,W , q), (i′, j′,W ′, q′))×
Mx[i],W [j],W ′[j],i′−i,j′−j[q, q

′]

where δ(?)((i, j,W , q), (i′, j′,W ′, q′)) is 1 if there is a valid transition from the configuration
(i, j,W , q) to (i′, j′,W ′, q′), otherwise 0. Therefore, every block of M(x)[(i, j,W , q), (i′, j′,W ′, q′)]
is either a Q×Q zero matrix or a transition block that belongs to a small set

T = {Mτ | τ = (x,w,w′,∆i,∆j) ∈ {0, 1}3 × {0,±1}2}
The (i, j,W , q)-th block row Mτ = Mx,w,w′,∆i,∆j appears at MN,S(x)[(i, j,W ,),
(i′, j′,W ′,)] if x = x[i], w = W [j],∆i = i′ − i,∆j = j′ − j, and W ′ is W with j-th
entry changed to w′. Thus, every label `k,t[i, q] with i = (i, j,W) can be decomposed as inner
product vk,q · uk,t,i,j,W . More precisely,
`k,t[i, q] = −rt−1[i, q] + Mk,N,S(x)[(i, q), (, , ,)]rt

= −rt−1[i, q] +
∑

w′,∆i,∆j

(Mk,x[i],W [j],w′,∆i,∆jrt[i
′,])[q] (i′ = (i+ ∆i, j + ∆j,W ′))

= rx[t− 1, i]rk,f [q] +
∑

w′,∆i,∆j

rx[t, i′](Mk,x[i],W [j],w′,∆i,∆jrk,f)[q]

= rx[t− 1, i]rk,f [q] +
∑

w′,∆i,∆j

rx[t, i′](Mk,τrk,f)[q] = vk,q · uk,t,i,j,W

so that one can set the vectors

vk,q = (−rk,f [q], 0, (Mk,τrk,f)[q] ‖ 0),
ut,i = (rx[t− 1, i], 0, cτ (x; rx) ‖ 0)

where cτ (x; rx) (a shorthand of the notation cτ (x, t, i, j,W ; rx) [LL20]) is given by

cτ (x; rx) =

{
rx[t, i′], if x = x[i], w = W [j];

0, otherwise.

9

Similarly, the other labels can be decomposed: `k,init = (rk,f [1], βk, 0) · (rx[(0, 1, 1,
0S)], 1, 0) = βk + e>(1,1,0S ,1)r0 and `k,T+1[(i, q)] = ṽk,q · ũk,T+1,i,j,W = −rT [(i, q)] + z[k]yk,acc[q]
where

ṽk,q = (−rk,f [q], yk,acc[q] ‖ 0),
ũT+1,i = (rx[T, i], z[k] ‖ 0)

A First Attempt. Armed with this, we now present the first candidate UAWSL construction
in the secret key setting and it supports a single key. We consider two independent master
keys imsk and ˜imsk of IPFE. For simplicity, we assume the length of private attribute z is the
same as the number of Turing machines present in M = (Mk)k∈IM , i.e., n = |IM |. We also
assume that each Turing machine in the secret key share the same set of states.

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM :

[[vk,init]]2 = [[(−rk,f [1], βk, 0, ‖ 0)]]2,
[[vk,q]]2 = [[(−rk,f [q], 0, (Mk,τrk,f)[q] ‖ 0)]]2,
[[ṽk,q]]2 = [[(−rk,f [q], yk,acc[q] ‖ 0)]]2

CTx = (IPFE.CTuinit
, IPFE.CTu, { ˜IPFE.CTũk}k) :

[[uinit]]1 = [[(rx[(0, 1, 1,0S)], 1, 0, ‖ 0)]]1,
[[ut<T,i]]1 = [[(rx[t− 1, i], 0, cτ (x; rx) ‖ 0)]]1,

[[ũk,T+1,i]]1 = [[(rx[T, i], z[k] ‖ 0)]]1
Observe that the inner products between the ciphertext and secret key vectors yield the

label values [[`k,init]]T, [[`k,t]]T = [[(`k,t,θ)θ]]T for θ = (i, j,W , q). Now, the evaluation procedure
of AKGS is applied to obtain the partial values [[z[k]Mk|N,T,S(x) + βk]]T. Combining all this
values gives the required attribute weighted sum

∑
kMk|N,T,S(x)z[k] Since

∑
k βk = 0.

However, this scheme is not fully unbounded, in particular, the setup needs to know the
length of the private attribute. To realise this, let us try to prove the security of the scheme.
The main idea of the proof would be to make all the label values (`k,t,θ)θ truly random and
simulated except the initial labels `k,init so that one can reversely sample `k,init hardcoded with
a desired functional value. Suppose, for instance, the single secret key is queried before the
challenge ciphertext. In this case, the honest label values are first hardwired in the ciphertext
vectors and then the labels are transformed into their simulated version. This is because the
ciphertext vectors are computed after the secret key. So, the first step is to hardwire the initial
label values `k,init into the ciphertext vector uinit and hence it indicates that the length of uinit

must grow with respect to the number of `k,init’s. The same situation arises while simulating
the other label values through ut,i. In other word, we need to know the size of IM or the
length of z in setup, which is against our desired functionality.

To tackle this, we increase the number of uinit and ut<T,i in the above system. More
specifically, each of these vectors are now computed for all k ∈ [n], just like ũk,T+1,i. Although
this fix the requirement of unboundedness of the system, there is another issue related to the
security that must be solved. Note that, in the current structure, there is a possibility of mix-
and-match attack since, for example, ũk1,T+1,i can be paired with ṽk2,q and this results in some
unwanted attribute weighted sum of the form

∑
k 6=k1,k2

Mk(x)z[k]+Mk1(x)z[k2]+Mk2(x)z[k1].
We employ the index encoding technique used in previous works achieving unbounded ABE or
IPFE [OT12,TT20] to overcome the attack. In particular, we add two extra dimension ρk(−k, 1)
in the ciphertext and πk(1, k) in the secret key for encoding the index k in each of the vectors

10

of the system. Observe that for each Turing machine Mk an independent randomness πk is
sampled. It ensures that an adversary can only recover the desired attribute weighted sum
and whenever vectors from different indices are paired only a garbage value is obtained.

Combining the Ideas. After combining the above ideas, we describe our UAWSL supporting
a single key as follows.

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM :

[[vk,init]]2 = [[(πk(1, k), −rk,f [1], βk, 0, ‖ 0)]]2,
[[vk,q]]2 = [[(πk(1, k), −rk,f [q], 0, (Mk,τrk,f)[q] ‖ 0)]]2,
[[ṽk,q]]2 = [[(πk(1, k), −rk,f [q], yk,acc[q] ‖ 0)]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T,i , ˜IPFE.CTũk,T+1,i
}k :

[[uk,init]]1 = [[(ρk(−k, 1), rx[(0, 1, 1,0S)], 1, 0, ‖ 0)]]1,
[[uk,t<T,i]]1 = [[(ρk(−k, 1), rx[t− 1, i], 0, cτ (x; rx) ‖ 0)]]1,
[[ũk,T+1,i]]1 = [[(ρk(−k, 1), rx[T, i], z[k] ‖ 0)]]1

Although the above construction satisfies our desired functionality, preserves the compactness
of ciphertexts and resists the aforementioned attack, we face multiple challenges in adapting
the proof ideas of previous works [TT20,LL20,DP21].

Security Challenges and Solutions. Next, we discuss the challenges in proving the adap-
tive simulation security of the scheme. Firstly, the unbounded IPFE scheme of Tomida and
Takashima [TT20] is proved in the indistinguishability-based model whereas we aim to prove
simulation security that is much more challenging. The work closer to ours is the FE for AWS
of Datta and Pal [DP21], but it only supports a non-uniform model of computation and the
inner product functionality is bounded. Moreover, since the garbling randomness is distributed
in the secret key and ciphertext vectors, we can not adapt their proof techniques [TT20,DP21]
in a straightforward manner. Although the ABE scheme of Lin and Luo [LL20] handles a uni-
form model of computation, they only consider all-or-nothing type encryptions and hence the
adversary is allowed to query secret keys which always fail to decrypt the challenge cipher-
text. In contrast, we construct a more advanced encryption mechanism which overcomes all
the above constraints of prior works, i.e., our UAWSL is an adaptively simulation secure func-
tional encryption scheme that supports unbounded inner product functionality with a uniform
model of computations over the public attributes.

Our proof technique is inspired by that of [LL20, DP21]. One of the core technical chal-
lenges is involved in the case where the secret key is queried before the challenge cipher-
text. Thus, we focus more on “sk queried before ct” in this overview. As noted above, in
the security analysis of [LL20] the adversary A is not allowed to decrypt the challenge ci-
phertext and hence they completely randomize the ciphertext in the final game. However,
since we are building a FE scheme any secret key queried by A should be able to decrypt
the challenge ciphertext. For this, we use the pre-image sampleability technique from prior
works [DOT18, DP21]. In particular, the reduction samples a dummy vector d ∈ Znp satis-
fying

∑
kMk|N,T,S(x)z[k] =

∑
kMk|N,T,S(x)d[k] where M = (Mk)k is a pre-challenge secret

key. To plant the dummy vector into the ciphertext, we first need to make all label values
{`k,t,i,q} truly random depending on the terms rk,f [q]rx[t − 1, i]’s and then turn them into

11

their simulated forms, and finally traverse in the reverse path to get back the original form
of the ciphertext with d taking place of the private attribute z. In order to make all these
labels truly random, the honest label values are needed to be hardwired into the ciphertext
vectors (since these are computed later) so that we can apply the DDH assumption in G1 to
randomize the term rk,f [q]rx[t−1, i] (hence the label values). However, this step is much more
complicated than [LL20] since there are two independent IPFE systems in our construction
and rk,f [q] appears in both vk,q and ṽk,q (i.e., in both the IPFE systems). We design a two-level
nested loop running over q and t for relocating rk,f [q] from v’s and ṽk,q to u’s and ũk,T+1,i.
To this end, we note that the case of “sk queried after ct” is simpler where we embed the
reversely sampled initial label values into the secret key. Before going to discuss the hybrids,
we first present the simulator of the ideal world.

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM : (sk queried before ct)
[[vk,init]]2 = [[(πk(1, k),−rk,f [1], βk, 0 ‖ 0)]]2,

[[vk,q]]2 = [[(πk(1, k), −rk,f [q], 0, (Mk,τrk,f)[q] ‖ 0)]]2,
[[ṽk,q]]2 = [[(πk(1, k), −rk,f [q], yk,acc[q] ‖ 0)]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T,i , ˜IPFE.CTũk,T+1,i
}k :

[[uk,init]]1 = [[(ρk(−k, 1), rx[(0, 1, 1,0S)], 1, 0, ‖ 1, 0)]]1,
[[uk,t<T,i]]1 = [[(ρk(−k, 1), rx[t− 1, i], 0, cτ (x; rx) ‖ sx[t, i], 0)]]1,
[[ũk,T+1,i]]1 = [[(ρk(−k, 1), rx[T, i], d[k] ‖ sx[T + 1, i], 0)]]1

SKM ,IM = {IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM : (sk queried after ct)
[[vk,init]]2 = [[(πk(1, k), 0, 0, 0 ‖ `k,init, 0)]]2,

[[vk,q]]2 = [[(πk(1, k), 0, 0, 0 ‖ sk,f [q], 0)]]2,
[[ṽk,q]]2 = [[(πk(1, k), 0, 0 ‖ sk,f [q], 0)]]2

where `k,init ← RevSamp((Mk,x,Mk[x]z[k] + βk, {`k,t,i,q}) s.t.∑
k∈IM βk = 0 if IM ⊆ [n]; otherwise βk ← Zp.

Security Analysis. We use a three-step approach and each step consists of a group of hybrid
sequence. At a very high level, we discuss the case of “sk queried before ct”. In this overview,
for simplicity, we assume that the challenger knows the length of z while it generates the
secret key.
First group of Hybrids: The reduction starts with the real scheme. In the first step, the
label function `k,init is reversely sampled with the value Mk[x]z[k] + βk which is hardwired in
uk,init.

vk,init = (· · · , 1 , 0 , 0 ‖ 0, 0),

vk,q = (· · · ,−rk,f [q], 0, (Mk,τrk,f)[q] ‖ sk,f [q] , 0),

ṽk,q = (· · · ,−rk,f [q], yk,acc[q] ‖ 0, 0)

uk,init = (· · · , `k,init , 0 , 0, ‖ 0, 0),

uk,t<T,i = (· · · , rx[t− 1, i], 0, cτ (x; rx) ‖ 0, 0),

ũk,T+1,i = (· · · , rx[T, i], z[k] ‖ sx[T + 1, i] , 0)

12

where `k,init ← RevSamp((Mk,x,Mk[x]z[k] + βk, {`k,t,i,q}) and `k,t,i,q’s are computed honestly.
Note that, the secret values {βk} are sampled depending on whether the queried key is eligible
for decryption. More specifically, if IM ⊆ [n], then βk’s are sampled as in the original key
generation algorithm, i.e.,

∑
k βk = 0. On the other hand, if maxIM > n then βk’s are

sampled uniformly at random, i.e., they do not necessarily be secret shares of zero. This
can be done by the function hiding property of IPFE which ensures that the distributions
{{IPFE.SK

v
(b)
k
}k∈[n+1,|IM |], {IPFE.CTuk′}k′∈[n]} for b ∈ {0, 1} are indistinguishable where

v
(b)
k = (πk, k · πk, 0, βk + b · rk, 0) for k ∈ [n+ 1, |IM |], rk ← Zp
uk′ = (−k′ · ρk′ , ρk′ , 0, 1, 0) for k′ ∈ [n]

Thus, the indistinguishability between the group of hybrids can be guaranteed by the piecewise
security of AKGS and the function hiding security of IPFE.

Second group of Hybrids: The second step is a loop. The purpose of the loop is to change
all the honest label values `k,t,i,q to simulated ones that take the form `k,t,i,q = sx[t, i]sk,f [q]
where sx[t, i] is hardwired in uk,t,i or ũk,T+1,i and sk,f [q] is hardwired in vk,q or ṽk,q.

The whole procedure is executed in via a two-level loop with outer loop running over t and
inner loop running over q (both in increasing order). In each iteration of the loop, we move all
occurrences of rk,f [q] into the u’s in one shot and hardwire the honest labels `k,t,i,q into uk,t,i
for all i. Below we present two crucial intermediate hybrids of the loop when t ≤ T .

vk,q = (· · · ,− 7rk,f [q] − ‖ 0 , 1 , 0),

ṽk,q = (· · · , − 0 − ‖ 0, 1 , 0),

uk,t<T,i = (· · · , − 3rk,f [q] − ‖ sx[t, i] ,
honest `k,t,i,q
= −rx[t− 1, i]rk,f [q] +· · · , 0),

ũk,T+1,i = (· · · , rx[T, i], z[k] ‖ sx[T + 1, i],
honest `k,T+1,i,q

= −rx[T, i]rk,f [q] +· · · , 0)

where 7rk,f [q] and 3rk,f [q] indicate the presence of rk,f [q] in their respective positions. The
indistinguishability can be argued using the function hiding security of IPFE. Next, by invoking
DDH in G1, we first make rx[t− 1, i]rk,f [q] truly random for all i and then transform the label
values into their simulated form `k,i,q = sx[t, i]sk,f [q] again by using DDH in G1 for all i. We
emphasize that the labels `k,T+1,i,q are kept as honest and hardwired when the loop runs for
t ≤ T . Finally, the terms sk,f [q] are shifted back to vk,q or ṽk,q.

vk,q = (· · · , −rk,f [q] , 0, (Mk,τrk,f)[q] ‖ sk,f [q] , 0 , 0),

ṽk,q = (· · · , −rk,f [q] , yk,acc[q] ‖ 0, 0 , 0),

uk,t<T,i = (· · · , − 0 − ‖ sx[t, i], 0 , 0),

ũk,T+1,i = (· · · , rx[T, i], z[k] ‖ sx[T + 1, i], 0 , 0)
After the two-label loop finishes, the reduction run an additional loop over q with t fixed

at T +1 to make the last few label values `k,T+1,i,q simulated. The indistinguishability between
the hybrids follows from a similar argument as in the two-level loop.

13

vk,q = (· · · ,−rk,f [q], 0, (Mk,τrk,f)[q] ‖ sk,f [q], 0, 0),

ṽk,q = (· · · ,−rk,f [q], yk,acc[q] ‖ sk,f [q] , 0, 0),

uk,t<T,i = (· · · , −0− ‖ sx[t, i], 0, 0),

ũk,T+1,i = (· · · ,− 0 − ‖ sx[T + 1, i], 0, 0)

Third group of Hybrids: After all the label values `k,t,i,q are simulated, the third step
uses a few more hybrids to reversely sample `1,init and `k,init|k>1 with the hardcoded values
M (x)>z+β1 and βk|k>1 respectively. This can be achieved through a statistical transformation
on {βk|

∑
k βk = 0}. Finally, we are all set to insert the dummy vector d in place of z keeping

A’s view identical.

vk,init = (· · · , 1, 0, 0 ‖ 0, 0, 0),

vk,q = (· · · ,− 0 − ‖ sk,f [q], 0, 0),

ṽk,q = (· · · ,− 0 − ‖ sk,f [q], 0, 0),

uk,init = (· · · , `k,init , 0, 0, ‖ 0, 0, 0),

uk,t<T,i = (· · · , −0− ‖ sx[t, i], 0, 0),

ũk,T+1,i = (· · · , −0− ‖ sx[T + 1, i], 0, 0)

where all the label values {`k,t,i,q} are simulated and the initial label values are computed as
follows

`1,init ← RevSamp(M1,x,M(x)>d+ β1, {`k,t,i,q}),
`k,init ← RevSamp(Mk,x, βk, {`k,t,i,q}), for all k > 1

From this hybrid we can traverse in the reverse direction all the way to the very first hybrid
while keeping the private attribute as d. We also rearrange the elements using the security
of IPFE so that the distribution of the ciphertext does not change with the occurrence of the
secret key whether it comes before or after the ciphertext. This is important for the public
key UAWSL. The formal security is discussed in Theorem 5.1.

From Single Key to Full-Fledge UAWSL. The next and final goal is to bootstrap the
single key, single ciphertext secure UAWSL to a public key UAWSL scheme that supports
releasing many secret keys and ciphertexts. Observe that our secret key UAWSL already sup-
ports multiple keys and single ciphertext. However, it fails to remain secure if two cipher-
texts are published. This is because the piecewise security of AKGS can not be guaranteed
if the label functions are reused. Our bootstrapping procedure takes inspiration from prior
works [LL20,DP21], that is to sample a random multiplier s← Zp at the time of encryption,
which will randomize the label values in the exponent of G2. In particular, using IPFE security
the random multiplier s is moved to the secret key vectors where the DDH assumption ensures
that s`k,t,i,q’s are pseudorandom in the exponent of G2. To upgrade the scheme into public
key setting, we employ the Slotted IPFE that enables encrypting into the public slots using
the public key whereas the function hiding security still holds in the private slots. We describe
below our public key UAWSL scheme.

14

SKM ,IM = {IPFE.SKvpad IPFE.SKvk,init , IPFE.SKvk,q , ˜IPFE.SKṽk,q}k∈IM : α← Zp
[[vk,init]]2 = [[(0, α, 0, 0, 0, ‖ 0)]]2,
[[vk,init]]2 = [[(πk(1, k), 0, −rk,f [1], βk, 0, ‖ 0)]]2,

[[vk,q]]2 = [[(πk(1, k), 0, −rk,f [q], 0, (Mk,τrk,f)[q] ‖ 0)]]2,
[[ṽk,q]]2 = [[(πk(1, k), 0, −rk,f [q], αyk,acc[q] ‖ 0)]]2

CTx = {IPFE.CTuk,init , IPFE.CTuk,t<T,i , ˜IPFE.CTũk,T+1,i
}k : s← Zp

[[upad]]1 = [[(0, s, 0, 0, 0, ‖ ⊥)]]1,
[[uk,init]]1 = [[(ρk(−k, 1), 0, s · rx[(0, 1, 1,0S)], s, 0, ‖ ⊥)]]1,

[[uk,t<T,i]]1 = [[(ρk(−k, 1), 0, s · rx[t− 1, i], 0, s · cτ (x; rx) ‖ ⊥)]]1,
[[ũk,T+1,i]]1 = [[(ρk(−k, 1), 0, s · rx[T, i], s · z[k] ‖ ⊥)]]1

The slots at the left/right of “ ‖ ” are public/private. The ciphertexts are computed using
only the public slots and the private slots are utilized only in the security analysis. At a very
high level, we utilize the triple-slot encryption technique devised in [DP21] to simulate the
pre-challenge secret keys with a dummy vector encoded into the ciphertext and hardwire the
functional value into the post-challenge secret keys. As mentioned earlier that the triple-slot
encryption technique [DP21] was devised for non-uniform model which crucially uses the fact
that the garbling randomness can be (fully) sampled in the key generation process. It does
not hold in our setting. Thus, we design a more advanced three-slot encryption technique
that is compatible with distributed randomness of AKGS garbling procedure. More specifically,
we add one additional hidden subspace in order to realize such sophisticated mechanism for
Logspace Turing machines. This additional subspace enables us to simulate the post-ciphertext
secret keys with distributed randomness. However, shuttle technical challenges still remain to
be overcome due to the structure of AKGS for Logspace Turing machines. We prove the security
of the scheme in Theorem 6.1.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will be used in the
sequence.

Notations. We denote by λ the security parameter that belongs to the set of natural number
N and 1λ denotes its unary representation. We use the notation s← S to indicate the fact that
s is sampled uniformly at random from the finite set S. For a distribution X , we write x← X
to denote that x is sampled at random according to distribution X . A function negl : N→ R
is said to be a negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for
all λ > λc, |negl(λ)| < λ−c.

Let Expt be an interactive security experiment played between a challenger and an adver-
sary, which always outputs a single bit. We assume that ExptCA is a function of λ and it is
parametrized by an adversary A and a cryptographic protocol C. Let ExptC,0A and ExptC,1A be
two such experiment. The experiments are computationally/statistically indistinguishable if
for any PPT/computationally unbounded adversary A there exists a negligible function negl
such that for all λ ∈ N,

AdvCA(λ) = |Pr[1← ExptC,0A (1λ)]− Pr[1← ExptC,1A (1λ)]| < negl(λ)

15

We write ExptC,0A
c
≈ ExptC,1A if they are computationally indistinguishable (or simply indis-

tinguishable). Similarly, ExptC,0A
s
≈ ExptC,1A means statistically indistinguishable and ExptC,0A ≡

ExptC,1A means they are identically distributed.

Sets and Indexing. For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈ N with
n < m, we denote [n,m] be the set {n, n + 1, . . . ,m}. We use lowercase boldface, e.g., v, to
denote column vectors in Znp and uppercase boldface, e.g., M, to denote matrices in Zn×mp for
p, n,m ∈ N. The i-th component of a vector v ∈ Znp is written as v[i] and the (i, j)-th element

of a matrix M ∈ Zn×mp is denoted by M[i, j]. The transpose of a matrix M is denoted by M>

such that M>[i, j] = M[j, i]. To write a vector of length n with all zero elements, we write 0n
or simply 0 when the length is clear from the context. Let u,v ∈ Znp , then the inner product
between the vectors is denoted as u · v = u>v =

∑
i∈[n] u[i]v[i] ∈ Zp. We define generalized

inner product between two vectors u ∈ ZI1p ,v ∈ ZI2p by u · v =
∑

i∈I1∩I2 u[i]v[i].

Tensor Products. Let u ∈ ZI1p and v ∈ ZI2p be two vectors, their tensor product w = u⊗v
is a vector in ZI1×I2p with entries defined by w[(i, j)] = u[i]v[j]. For two matrices M1 ∈ ZI1×I2p

and M1 ∈ ZI
′
1×I′2
p ,their tensor product M = M = M1 ⊗M2 is a matrix in Z(I1×I′1)×I2×I′2

p with
entries defined by M[(i1, i

′
1), (i2, i

′
2)] = M1[i1, i2]M2[i′1, i

′
2].

Currying. Currying is the product of partially applying a function or specifying part of the
indices of a vector/matrices, which yields another function with fewer arguments or another
vector/matrix with fewer indices. We use the usual syntax for evaluating a function or indexing
into a vector/matrix, except that unspecified variables are represented by “ ”. For example, let

M ∈ Z([I1]×[I2])×([J1]×[J2])
p and i1 ∈ I1, j2 ∈ J2, then M[(i1,), (, j2)] is a matrix N ∈ Z[I2]×[J2]

p

such that N[i2, j1] = M[(i1, i2), (j1, j2)] for all i2 ∈ I2, j1 ∈ J1.

Coefficient Vector: Let f : ZIp → Zp be an affine function with coefficient vector f ∈ ZSp for
S = {const}∪{coefi| i ∈ I}. Then for any x ∈ ZIp , we have f(x) = f [const]+

∑
i∈I f [coefi]x[i].

3.1 Bilinear Groups and Hardness Assumptions

We use a pairing group generator G that takes as input 1λ and outputs a tuple G = (G1,G2,GT,
g1, g2, e) where G1,G2,GT are groups of prime order p = p(λ) and gi is a generator of the group
Gi for i ∈ {1, 2}. The map e : G1 ×G2 → GT satisfies the following properties:

– bilinear : e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Zp.

– non-degenerate: e(g1, g2) generates GT.

The group operations in Gi for i ∈ {1, 2,T} and the map e are efficiently computable in deter-
ministic polynomial time in the security parameter λ. For a matrix A and each i ∈ {1, 2,T}, we
use the notation [[A]]i to denote gAi where the exponentiation is element-wise. The group oper-
ation is written additively while using the bracket notation, i.e. [[A+B]]i = [[A]]i+[[B]]i for ma-
trices A and B. Observe that, given A and [[B]]i, we can efficiently compute [[AB]]i = A · [[B]]i.
We write the pairing operation multiplicatively, i.e. e([[A]]1, [[B]]2) = [[A]]1[[B]]2 = [[AB]]T.

Assumption 3.1 (Symmetric External Diffie-Hellman Assumption) We say that the
SXDH assumption holds in a pairing group G = (G1,G2,GT, g1, g2, e) of order p, if the DDH
assumption holds in Gi, i.e., {[[a]]i, [[b]]i, [[ab]]i} ≈ {[[a]]i, [[b]]i, [[c]]i} for i ∈ {1, 2,T} and a, b, c←
Zp.

16

3.2 Turing Machine Formulation

In this subsection, we describe the main computational model of this work, which is Turing
machines with a read-only input and a read-write work tape. This type of Turing machines
are used to handle decision problems belonging to space-bounded complexity classes such as
Logspace predicates. We define below Turing machines with time complexity T and space
complexity S. The Turing machine can either accept or reject an input string within this
time/space bound. We also stick to the binary alphabet for the shake of simplicity.

Definition 3.1 (Turing machine with time/space bound computation)
[LL20] A (deterministic) Turing machine over {0, 1} is a tuple M = (Q,yacc, δ), where Q ≥ 1
is the number of states (we use [Q] as the set of states and 1 as the initial state), yacc ∈ {0, 1}Q
indicates whether each state is accepting, and

δ : [Q]× {0, 1} × {0, 1} → [Q]× {0, 1} × {0,±1} × {0,±1},
(q, x, w) 7→ (q′, w′,∆i,∆j)

is the state transition function, which, given the current state q, the symbol x on the input
tape under scan, and the symbol w on the work tape under scan, specifies the new state q′,
the symbol w′ overwriting w, the direction ∆i to which the input tape pointer moves, and the
direction ∆j to which the work tape pointer moves. The machine is required to hang (instead
of halting) once it reaches on the accepting state, i.e., for all q ∈ [Q] such that yacc[q] = 1 and
all x,w ∈ {0, 1}, it holds that δ(q, x, w) = (q, w, 0, 0).

For input length N ≥ 1 and space complexity bound S ≥ 1, the set of internal configura-
tions of M is

CM,N,S = [N]× [S]× {0, 1}S × [Q],

where (i, j,W , q) ∈ CM,N,S specifies the input tape pointer i ∈ [N], the work tape pointer
j ∈ [S], the content of the work tape W ∈ {0, 1}S and the machine state q ∈ [Q].

For any bit-string x ∈ {0, 1}N for N ≥ 1 and time/space complexity bounds T, S ≥ 1,
the machine M accepts x within time T and space S if there exists a sequence of internal
configurations (computation path of T steps) c0, . . . , cT ∈ CM,N,S with ct = (it, jt,Wt, qt) such
that

i0 = 1, j0 = 1,W0 = 0S, q0 = 1(initial configuration),

for 0 ≤ t < T

{
δ(qt,x[it],Wt[jt]) = (qt+1,Wt+1[jt], it+1 − it, jt+1 − jt),

Wt+1[j] = Wt[j] for all j 6= jt (valid transitions);
yacc[qT] = 1 (accepting).

Denote by M |N,T,S the function {0, 1}N → {0, 1}mapping x to whether M accepts x in time T
and space S. Define TM = {M | M is a Turing machine} to be the set of all Turing machines.

Note that,the above definition does not allow the Turing machines moving off the in-
put/work tape. For instance, if δ specifies moving the input pointer to the left/right when
it is already at the leftmost/rightmost position, there is no valid next internal configuration.
This type of situation can be handled by encoding the input string described in [LL20]. The
problem of moving off the work tape to the left can be managed similarly, however, moving
off the work tape to the right is undetectable by the machine, and this is intended due to the
space bound. That is, when the space bound is violated, the input is silently rejected.

17

3.3 Functional Encryption for Unbounded Attribute-Weighted Sum for
Turing machines

We formally present the syntax of FE for unbounded attribute-weighted sum (AWS) and
define adaptive simulation security of the primitive. We consider the set of all Turing machines
TM = {M | M is a Turing machine} with time bound T and space bound S.

Definition 3.2 (The AWS Functionality for Turing machines) For any n,N ∈ N, the
class of attribute-weighted sum functionalities is defined as{

((x ∈ {0, 1}N , 1T , 12S), z ∈ Znp) 7→M (x)>z =
∑
k∈IM

z[k] ·Mk(x)

∣∣∣∣∣
N, T, S ≥ 1,

Mk ∈ TM ∀k ∈ [n],
IM ⊆ [n] with |IM | ≥ 1

}

Definition 3.3 (Functional Encryption for Attribute-Weighted Sum) An unbounded-
slot FE for unbounded attribute-weighted sum associated to the set of Turing machines TM
and the message space M consists of four PPT algorithms defined as follows:

Setup(1λ): The setup algorithm takes as input a security parameter and outputs the master
secret-key MSK and the master public-key MPK.

KeyGen(MSK, (M,IM)): The key generation algorithm takes as input MSK and a tuple
of Turing machines M = (Mk)k∈IM . It outputs a secret-key SK(M ,IM) and make (M , IM)
available publicly.

Enc(MPK, ((xi, 1Ti, 1Si), zi)i∈[N]): The encryption algorithm takes as input MPK and a
message consisting of N number of public-private pair of attributes (xi, zi) ∈M such that the
public attribute xi ∈ {0, 1}Ni for some Ni ≥ 1 with time and space bounds given by Ti, Si ≥ 1,
and the private attribute zi ∈ Znip . It outputs a ciphertext CT(xi,Ti,Si) and make (xi, Ti, Si)i∈[N]

available publicly.

Dec((SK(M,IM), (M,IM)), (CT(xi,Ti,Si), (xi, Ti, Si)i∈[N])): The decryption algorithm takes
as input SK(M ,IM) along with the tuple of Turing machines and index sets (M , IM), and a
ciphertext CT(xi,Ti,Si) along with a collection of associated public attributes (xi, Ti, Si)i∈[N]. It
outputs a value in Zp or ⊥.

Correctness: The unbounded-slot FE for unbounded attribute-weighted sum is said to be
correct if for all ((xi ∈ {0, 1}Ni , 1Ti , 1Si), zi ∈ Znip)i∈[N] and for all (M = (Mk)k∈IM , IM), we
get

Pr


Dec((SK(M ,IM), (M , IM)), (CT(xi,Ti,Si), (xi, Ti, Si)i∈[N])) =

∑
i∈N

∑
k∈IM

Mk(xi)zi[k] :

(MSK,MPK)← Setup(1λ), SK(M ,IM) ← KeyGen(MSK, (M , IM)),
CT(xi,Ti,Si) ← Enc(MPK, ((xi, 1

Ti , 1Si), zi)i∈[N]), IM ⊆ [ni] ∀i ∈ N

 = 1

We now define the adaptively simulation-based security of FE for unbounded attribute-weighted
sum for Turing machines.

Definition 3.4 (Adaptive Simulation Security) Let (Setup,KeyGen,Enc,Dec) be an
unbounded-slot FE for unbounded attribute-weighted sum for TM and message space M. The
scheme is said to be (Φpre,ΦCT,Φpost)-adaptively simulation secure if for any PPT adversary A

18

making at most ΦCT ciphertext queries and Φpre,Φpost secret key queries before and after the

ciphertext queries respectively, we have ExptUAWS
A,real (1

λ)
c
≈ ExptUAWS

A,ideal(1
λ), where the experiments

are defined as follows. Also, an unbounded-slot FE for attribute-weighted sums is said to be
(poly,ΦCT, poly)-adaptively simulation secure if it is (Φpre,ΦCT,Φpost)-adaptively simulation
secure as well as Φpre and Φpost are unbounded polynomials in the security parameter λ.

ExptUAWS
A,real (1

λ)

1. 1N ← A(1λ);
2. (MSK,MPK)← Setup(1λ);
3. (((xi, 1

Ti , 1Si), zi ∈ Znip)i∈[N])← AOKeyGen(MSK,·)(MPK);
4. CT(xi,Ti,Si) ← Enc(MPK, ((xi, 1

Ti , 1Si), zi)i∈[N]);
5. return AOKeyGen(MSK,·)(MPK,CT)

ExptUAWS
A,ideal(1

λ)

1. 1N ← A(1λ);
2. (MSK∗,MPK)← Setup∗(1λ, 1N);

3. (((xi, 1
Ti , 1Si), zi ∈ Znip)i∈[N])← A

OKeyGen∗0(MSK∗,·)(MPK)
4. CT(xi,Ti,Si) ← Enc∗(MPK,MSK∗, (xi, 1

Ti , 1Si , ni)i∈[N],V);

5. return A
O

KeyGen∗1(MSK∗,(xi,1
Ti ,1Si)i∈[N],·,·)(MPK,CT(xi,Ti,Si))

OKeyGen(MSK,·)

1. input: (M , IM)
2. output: SK(M ,IM)

OKeyGen∗0(MSK∗,·)

1. input: (Mφ, IMφ
) for φ ∈ [Φpre]

2. output: SK(Mφ,IMφ
)

Enc∗(MPK,MSK∗, (xi, 1
Ti , 1Si , ni)i∈[N], ·)

1. input: V = {(Mφ, IMφ
),
∑

i∈[N]Mφ(xi)
>zi

: φ ∈ [Φpre]}
2. output: CT(xi,Ti,Si)

OKeyGen∗1(MSK∗,(x∗i)i∈[N],·,·)

1. input: (Mφ, IMφ
),
∑

i∈NMφ(xi)
>zi for φ ∈

[Φpost]
2. output: SK(Mφ,IMφ

)

3.4 Function-Hiding Slotted Inner Product Functional Encryption

Definition 3.5 (Slotted Inner Product Functional Encryption) [LL20] Let G = (G1,G2,
GT, g1, g2, e) be a tuple of pairing groups of prime order p. A slotted inner product functional
encryption (IPFE) scheme based on G consists of 5 efficient algorithms:

IPFE.Setup(1λ, Spub, Spriv): The setup algorithm takes as input a security parameter λ and
two disjoint index sets, the public slot Spub and the private slot Spriv. It outputs the master
secret-key IPFE.MSK and the master public-key IPFE.MPK. Let S = Spub ∪ Spriv be the whole
index set and |S|, |Spub|, |Spriv| denote the number of indices in S, Spub and Spriv respectively.

IPFE.KeyGen(IPFE.MSK, [[v]]2): The key generation algorithm takes as input IPFE.MSK

and a vector [[v]]2 ∈ G|S|2 . It outputs a secret-key IPFE.SK for v ∈ Z|S|p .

IPFE.Enc(IPFE.MSK, [[u]]1): The encryption algorithm takes as input IPFE.MSK and a vec-

tor [[u]]1 ∈ G|S|1 . It outputs a ciphertext IPFE.CT for u ∈ Z|S|p .

IPFE.Dec(IPFE.SK, IPFE.CT): The decryption algorithm takes as input a secret-key IPFE.SK
and a ciphertext IPFE.CT. It outputs an element from GT.

IPFE.SlotEnc(IPFE.MPK, [[u]]1): The slot encryption algorithm takes as input IPFE.MPK

and a vector [[u]]1 ∈ G|Spub|
1 . It outputs a ciphertext IPFE.CT for (u||0|Spriv|) ∈ Z|S|p .

19

Correctness: The correctness of a slotted IPFE scheme requires the following two properties.

– Decryption Correctness: The slotted IPFE is said to satisfy decryption correctness if for all
u,v ∈ Z|S|p , we have

Pr

Dec(IPFE.SK, IPFE.CT) = [[v · u]]T :
(IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv),
IPFE.SK← KeyGen(IPFE.MSK, [[v]]2),
IPFE.CT← Enc(IPFE.MSK, [[u]]1)

 = 1

– Slot-Mode Correctness: The slotted IPFE is said to satisfy the slot-mode correctness if for

all vectors u ∈ Z|Spub|
p , we have{

(IPFE.MSK, IPFE.MPK, IPFE.CT) :
(IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv),
IPFE.CT← Enc(IPFE.MSK, [[u||0|Spriv|]]1)

}
,

≡

{
(IPFE.MSK, IPFE.MPK, IPFE.CT) :

(IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv),
IPFE.CT← SlotEnc(IPFE.MPK, [[u]]1)

}

Security: Let (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec, IPFE.SlotEnc) be a slotted IPFE.
The scheme is said to be adaptively function-hiding secure if for all PPT adversary A, we have

ExptFH-IPFE
A (1λ, 0)

c
≈ ExptFH-IPFEA (1λ, 1), where the experiment ExptFH-IPFEA (1λ, b) for b ∈ {0, 1} is

defined as follows:

ExptFH-IPFE
A (1λ, b)

1. (Spub, Spriv)← A(1λ);
2. (IPFE.MSK, IPFE.MPK)← Setup(1λ, Spub, Spriv);
3. return AOKeyGenb

(·,·),OEncb
(·,·)(IPFE.MPK) if

v0
j |Spub

= v1
j |Spub

and v0
j · u0

i = v1
j · u1

i for
all {[[v0

j]]2, [[v
1
j]]2}j, {[[u0

i]]1, [[u
1
i]]1}i queried by A to

OKeyGenb(·, ·) and OEncb(·, ·) respectively.

OKeyGenb(·, ·):
1. input: [[v0

j]]2, [[v
1
j]]2 ∈ G|S|2

2. output
IPFE.SKj ← KeyGen(IPFE.MSK, [[vbj]]2)

OEncb(·, ·):
1. input: [[u0

i]]1, [[u
1
i]]1 ∈ G|S|1

2. output
IPFE.CTi ← Enc(IPFE.MSK, [[ubi]]1)

where vj|Spub
represents the elements of vj sitting at the indices in Spub.

Lemma 3.1 ([Lin17,LL20]) Let G = (G1,G2,GT, g1, g2, e) be a tuple of pairing groups of
prime order p and k ≥ 1 an integer constant. If MDDHk holds in both groups G1,G2, then
there is an adaptively function-hiding secure IPFE scheme based on G.

3.5 Arithmetic Key Garbling Scheme for Turing machines

Lin and Luo [LL20] introduced arithmetic key garbling scheme (AKGS). The notion of AKGS
is an information theoretic primitive, inspired by randomized encodings [AIK11] and partial
garbling schemes [IW14]. It garbles a function f : Znp → Zp (possibly of size (m + 1)) along
with two secrets z, β ∈ Zp and produces affine label functions L1, . . . , Lm+1 : Znp → Zp. Given
f , an input x ∈ Znp and the values L1(x), . . . , Lm+1(x), there is an efficient algorithm which
computes zf(x) + β without revealing any information about z and β. Lin and Luo [LL20]
additionally design AKGS for Turing machines with time/space bounds. Many parts of this
section is verbatim to the sections 5 and 7.1 of [LL20]. Thus, the reader familiar with the

20

notion of AKGS for Turing machines can skip this section. We define AKGS for the function
class

F = {M |N,T,S : ZNp → Zp, N, T, S ≥ 1, p prime}
for the set of all time/space bounded Turing machine computations. We refer to [LL20] for a
detailed discussion on the computation of Turing machines as a sequence of matrix multipli-
cations, and the construction of AKGS for matrix multiplication.

Definition 3.6 (Arithmetic Key Garbling Scheme (AKGS), [LL20]) An arithmetic gar-
bling scheme (AKGS) for the function class F , consists of two efficient algorithms:

Garble((M, 1N , 1T , 1S, p), z, β): The garbling is a randomized algorithm that takes as input
a tuple of a functionM |N,T,S over Zp from F , an input lengthN , a time bound T , a space bound
S with N, T, S ≥ 1, a prime p, and two secret integers z, β ∈ Zp. It outputs a set of affine func-
tions Linit, (Lt,θ)t∈[T+1],θ∈CM,N,S : ZNp → Zp which are called label functions that specifies how
an input of length N is encoded as labels. Pragmatically, it outputs the coefficient vectors `init,
(`t,θ)t∈[T+1],θ∈CM,N,S .

Eval((M, 1N , 1T , 1S, p), x, `init, (`t,θ)t∈[T+1],θ∈CM,N,S): The evaluation is a deterministic al-
gorithm that takes as input a function M |N,T,S over Zp from F , an input vector x ∈ ZNp and
the integers `init, (`t,θ)t∈[T+1],θ∈CM,N,S ∈ Zp which are supposed to be the values of the label
functions at x ∈ ZNp . It outputs a value in Zp.

Correctness: The AKGS is said to be correct if for all tuple (M, 1N , 1T , 1S, p), integers z, β ∈
Zp and x ∈ ZNp , we have

Pr

 Eval((M, 1N , 1T , 1S, p),x, `init, (`t,θ)t∈[T+1],θ∈CM,N,S) = zM |N,T,S(x) + β :
(`init, (`t,θ)t∈[T+1],θ∈CM,N,S)← Garble((M, 1N , 1T , 1S, p), z, β),where `← L(x)

 = 1

The scheme have deterministic shape, meaning that the number of label functions, m =
1 + (T + 1)NS2SQ, is determined solely by the tuple (M, 1N , 1T , 1S, p), independent of z, β
and the randomness in Garble. The number of label functions m is called the garbling size of
M |N,T,S under this scheme. For the shake of simpler representation, let us number the label
values (or functions) as 1, . . . ,m in the lexicographical order where the first two label values
are `init, `(1,1,1,0S ,1) and the last label value is `(T+1,N,S,1S ,Q).

Linearity: The AKGS is said to be linear if the following conditions hold:

– Garble((M, 1N , 1T , 1S, p), z, β) uses a uniformly random vector r ← Zmp as its randomness,
where m is determined solely by (M, 1N , 1T , 1S, p), independent of z, β.

– The coefficient vectors `1, . . . , `m produced by Garble((M, 1N , 1T , 1S, p), z, β) are linear in
(z, β, r).

– Eval((M, 1N , 1T , 1S, p),x, `1, . . . , `m) is linear in `1, . . . , `m.

For our UAWS, we consider the piecewise security notion of AKGS defined by Lin and
Luo [LL20]4.

4 The usual simulation-based security considered in previous works [IW14,DP21] follows from the piecewise security
of AKGS.

21

Definition 3.7 (Piecewise Security of AKGS, [LL20]) An AKGS = (Garble,Eval) for the
function class F is piecewise secure if the following conditions hold:

– The first label value is reversely sampleable from the other labels together with (M, 1N , 1T , 1S,
p) and x. This reconstruction is perfect even given all the other label functions. Formally,
there exists an efficient algorithm RevSamp such that for all M |N,T,S ∈ F , z, β ∈ Zp and
x ∈ ZNp , the following distributions are identical:{

(`1, `2, . . . , `m) :
(`1, . . . , `m)← Garble((M, 1N , 1T , 1S, p), z, β),
`1 ← L1(x)

}
,(`1, `2, . . . , `m) :

(`1, . . . , `m)← Garble((M, 1N , 1T , 1S, p), z, β),
`j ← Lj(x) for j ∈ [2,m],
`1 ← RevSamp((M, 1N , 1T , 1S, p),x, zM |N,T,S(x) + β, `2, . . . , `m)


– For the other labels, each is marginally random even given all the label functions after it.

Formally, this means for all M |N,T,S ∈ F , z, β ∈ Zp,x ∈ Znp and all j ∈ [2,m], the following
distributions are identical:{

(`j, `j+1, . . . , `m) :
(`1, . . . , `m)← Garble((M, 1N , 1T , 1S, p), z, β),
`j ← Lj(x)

}
,{

(`j, `j+1, . . . , `m) :
(`1, . . . , `m)← Garble((M, 1N , 1T , 1S, p), z, β),
`j ← Zp

}
We now define special structural properties of AKGS as given in [LL20], related to the piecewise
security of it.

Definition 3.8 (Special Piecewise Security of AKGS, [LL20]) An AKGS = (Garble,Eval)
for a function class F is special piecewise secure if for any (M, 1N , 1T , 1S, p) ∈ F , z, β ∈ Zp
and x ∈ ZNp , it has the following special form:

– The first label value `1 is always non-zero, i.e., Eval((M, 1N , 1T , 1S, p),x, 1, 0,
. . . , 0) 6= 0 where we take `1 = 1 and `j = 0 for 1 < j ≤ m.

– Let r ← Zmp be the randomness used in Garble((M, 1N , 1T , 1S, p), z, β). For all j ∈ [2,m].
the label function Lj produced by Garble((M, 1N , 1T , 1S, p), z, β; r) can be written as

Lj(x) = kjr[j − 1] + L′j(x; z, β, r[j], r[j + 1], . . . , r[m])

where kj ∈ Zp is a non-zero constant (not depending on x, z, β, r) and L′j is an affine func-
tion of x whose coefficient vector is linear in (z, β, r[j], r[j+ 1], . . . , r[m]). The component
r[j − 1] is called the randomizer of Lj and `j.

Lemma 3.2 ([LL20]) A special piecewise secure AKGS = (Garble,Eval) for a function class
F is also piecewise secure. The RevSamp algorithm (required in piecewise security) obtained
for a special piecewise secure AKGS is linear in γ, `2, . . . , `m+1 and perfectly recovers `1 even if
the randomness of Garble is not uniformly sampled. More specifically, we have the following:

Eval((M, 1N , 1T , 1S, p),x, `1, . . . , `m)

22

= `1Eval((M, 1N , 1T , 1S, p),x, 1, 0, . . . , 0) + Eval((M, 1N , 1T , 1S, p),x, 0, `2, . . . , `m) (3.1)

RevSamp((M, 1N , 1T , 1S, p),x, γ, `2, . . . , `m)

= (Eval((M, 1N , 1T , 1S, p),x, 1, 0, . . . , 0))−1(γ − Eval((M, 1N , 1T , 1S, p),x, 0, `2, . . . , `m))
(3.2)

Note that, Equation (3.1) follows from the linearity of Eval and Equation (3.2) ensures
that RevSamp perfectly computes `1 (which can be verified by Equation (3.1) with γ =
zM |N,T,S(x) + β).

Lemma 3.3 ([LL20]) A piecewise secure AKGS = (Garble,Eval) is also special piecewise
secure after an appropriate change of variable for the randomness used by Garble.

4 Construction of AKGS for the function class F
We now describe the AKGS construction for the function class F given by Lin and Luo [LL20].
Before going to the actual construction, we first represent the computation of Turing machines
as a sequence of matrix multiplications.
Transition Matrix. Given a Turing machine M = (Q,yacc, δ), upper bounds of time and
space T, S ≥ 1 and an input x ∈ {0, 1}N for some N ≥ 1, we consider the length-T computation
path of M with input x and space bound S. Recall that the set of internal configuration is
CM,N,S = [N]× [S]×{0, 1}S× [Q]. An internal configuration θ = (i, j,W , q) ∈ CM,N,S specifies
that the input and work tape pointers are at position i and j respectively, the work tape has
content W , an the current state is q. In particular, the initial configuration is (1, 1,0S, 1): the
input/work tape pointers point to the first cell, the work tape is all-0, and the state is the
initial state 1. An accepting configuration satisfies that yacc[q] = 1.

We construct a transition matrix MN,S(x) ∈ {0, 1}CM,N,S×CM,N,S such that MN,S(x)[θ, θ′] =
1 if and only if the internal configuration of M is θ′ after 1 step of computation starting
from internal configuration θ. According to how the Turing machine operates in each step
depending on the transition function δ, the entries of MN,S(x) are defined as follows:

MN,S(x)[(i, j,W , q), (i′, j′,W ′, q′)]

=


1, if δ(q,x[i],W [j]) = (q′,W ′[j], i′ − i, j′ − j)

and W ′[j′′] = W [j′′] for all j′′ 6= j;

0, otherwise;

= x[i]×


1, if δ(q, 1,W [j]) = (q′,W ′[j], i′ − i, j′ − j)

and W ′[j′′] = W [j′′] for all j′′ 6= j;

0, otherwise;

= (1− x[i])×


1, if δ(q, 0,W [j]) = (q′,W ′[j], i′ − i, j′ − j)

and W ′[j′′] = W [j′′] for all j′′ 6= j;

0, otherwise;

With the transition matrix, we can now write the computation of Turing machines as a se-
quence of matrix multiplication. We represent initial configurations using one-hot encoding –

23

the internal configuration θ is represented by the basis vector eθ ∈ {0, 1}CM,N,S whose θ-entry
is 1 and the other entries are 0. Observe that multiplying e>θ on the right by the transition
matrix MN,S(x) produces exactly the next internal configuration: if there is no valid internal
configuration of M after 1 step of computation starting from θ, we have e>θ MN,S(x) = 0;
otherwise, the next internal configuration θ′ is unique and e>θ MN,S(x) = e>θ′ . The function
M |N,T,S(x) can be written as

M |N,T,S(x) = e>(1,1,0S ,1)(MN,S(x))T (1[N]×[S]×{0,1}S ⊗ yacc)

where e(1,1,0S ,1) represents the initial internal configuration. The sequence of multiplication
advances the computation by T steps and test whether the final internal configuration is an
accepting state. We elaborate on the last step: The tensor product 1[N]×[S]×{0,1}S ⊗ yacc is a
vector in {0, 1}CM,N,S such that its (i, j,W , q)-the entry is 1 if and only if yacc[q] = 1, i.e., q
is an accepting state. Therefore, taking the inner product of e>(1,1,0S ,1)(MN,S(x))T = e>θ′ (θ′ is

the final internal configuration) or 0 with the tensor product indicates whether M accepts x
within time T and space S.
Transition Blocks. We observe that the transition matrix has the following two useful
properties:

– MN,S(x) is affine in x when regarded as an integer matrix.
– MN,S(x) has the following block structure. There is a finite set {Mτ}τ of Q×Q matrices

defined by the transition function δ, called transition blocks, such that for every (i, j,W , q)
and (i′, j′,W ′, q′) in [N]× [S]× {0, 1}S, the submatrix MN,S(x)[(i, j,W ,), (i′, j′,W ′,)]
is either some Mτ or 0.

Below we define the transition blocks.

Definition 4.1 Let M = (Q,yacc, δ) be a Turing machine and T = {0, 1}3 × {0,±1}2 the
set of transition types. The transition blocks of M consists of 72 transition matrices Mτ ∈
{0, 1}Q×Q for τ = (x,w,w′,∆i,∆j) ∈ T , each encoding the possible transitions among the
states given the following information: the input tape symbol x under scan, the work tape
symbol w under scan, the symbol w′ overwriting w, the direction Di to which the input tape
pointer moves, and the direction Dj to which the work tape pointer moves. Formally,

Mx,w,′,∆i,∆j[q, q
′] =

{
1, if δ(q, x, w) = (q′, w′,∆i,∆j);

0, otherwise

In MN,S(x), each Q×Q block is either one of the transition blocks or 0:

MN,S(x)[(i, j,W ,), (i′, j′,W ′,)] =


Mx[i],W [j],W ′[j],i′−i,j′−j, if i′ − i, j′ − j ∈ {0,±1} and

W [j′′] = W ′[j′′] for all j′′ 6= j;

0, otherwise

Observe further that in MN,S(x)[(i, j,W ,), (, , ,)], each transition block appears at most
once.

AKGS for Turing machines. Above, we have represented the Turing machine computation
as a sequence of matrix multiplication over the integers :

M |N,T,S(x) = e>(1,1,0S ,1)(MN,S(x))T (1[N]×[S]×{0,1}S ⊗ yacc) for x ∈ {0, 1}N

24

We can formally extend M |N,T,S : {0, 1}N → {0, 1} to a ZNp → Zp function using the same
matrix multiplication formula, preserving its behavior when the input comes from {0, 1}N .
When p is clear from the context, we use M |N,T,S to represent its extension over Zp. We now
describe the construction of AKGS [LL20] for the Turing machine computations.

We consider the function class

F = {M |N,T,S : ZNp → Zp, N, T, S ≥ 1, p prime}

which is the set of time/space bounded Turing machine computations. The AKGS = (Garble,Eval)
for the function class works as follows:

Garble((M, 1N , 1T , 1S, p), z, β): It takes a function M |N,T,S over Zp from F and two secrets
z, β ∈ Zp as input. Suppose M = (Q,yacc, δ), the algorithm samples r as the randomness by

for t ∈ [0, T] : rt ← ZCM,N,Sp (CM,N,S = [N]× [S]× {0, 1}S × [Q]),

r ← Z[0,T]×CM,N,S
p , r[t, i, j,W, q] = rt[(i, j,W , q)].

It computes the transition matrix MN,S(x) as a function of x and defines the label functions
by

Linit(x) = β + e>(1,1,0S ,1)r0,

for t ∈ [T] : (Lt,θ)θ∈CM,N,S = −rt−1 + MN,S(x)rt,
(LT+1,θ)θ∈CM,N,S = −rT + z1[N]×[S]×{0,1}S ⊗ yacc.

It collects the coefficients of these label functions and returns them as (`init, (`t,θ)t∈[T+1],θ∈CM,N,S).
Note: We show that Garble satisfies the required properties of a linear AKGS:

– The label functions are affine in x: Linit and LT+1,θ for all θ ∈ CM,N,S are constant with
respect to x. The rest are Lt,θ(x) = (−rt−1 + MN,S(x)rt)[θ]. Since MN,S(x) is affine in x
and rt−1, rt are constant with respect to x, these label functions are also affine in x.

– Shape determinism holds: The garbling size of M |N,T,S is 1 + (T + 1)NS2SQ.
– Garble is linear in z, β,x: The coefficients of the label functions are linear in (z, β,x). Ob-

serve that MN,S(x), e(1,1,0S ,1) and yacc are constant with respect to (z, β, r), and z, β and
rt for all t ∈ [0, T] are linear in (z, β,x). By the definition of the label functions, their
coefficients are linear in (z, β,x).

Eval((M, 1N , 1T , 1S, p), x, `1, . . . , `m): It takes a function M |N,T,S over Zp from F , an
input string x ∈ ZNp and the labels as input. It first computes the transition matrix MN,S(x)
with x substituted into it and sets `t = (`t,θ)θ∈CM,N,S for t ∈ [T + 1]. The algorithm computes
and returns

`init + e>(1,1,0S ,1)

T+1∑
t=1

(MN,S(x))t−1`t

Correctness: Plugging `t,θ = Lt,θ(x) and the formula for M |N,T,S into the simulation, we
find that it is a telescoping sum:

25

e>(1,1,0S ,1)

T+1∑
t=1

(MN,S(x))t−1`t = e>(1,1,0S ,1)

T+1∑
t=1

(MN,S(x))t−1(−rt−1 + MN,S(x)rt)

+ e>(1,1,0S ,1)(MN,S(x))T (−rT + z1[N]×[S]×{0,1}S ⊗ yacc)

= e>(1,1,0S ,1)

T∑
t=1

(−(MN,S(x))t−1rt−1 + (MN,S(x))trt)

− e>(1,1,0S ,1)(MN,S(x))TrT + zM |N,T,S(x)

= −e>(1,1,0S ,1)r0 + zM |N,T,S(x)

The value returned by Eval is

`init + e>(1,1,0S ,1)

T+1∑
t=1

(MN,S(x))t−1`t = (β + e>(1,1,0S ,1)r0) + (−e>(1,1,0S ,1)r0 + zM |N,T,S(x))

= β + zM |N,T,S(x).

Therefore, the scheme is correct. Moreover, Eval is linear in the labels, as seen from the formula
of Eval.

Theorem 4.1 ([LL20]) The above construction of AKGS is piecewise secure. More pre-
cisely, the label functions are ordered as Linit, (L1,θ)θ∈CM,N,S , (L2,θ)θ∈CM,N,S , . . . , (LT+1,θ)θ∈CM,N,S ,
the randomness is ordered as r0, r1, . . . , rT , and the randomizer of Lt,θ is rt−1[θ]. For each
t ∈ [T + 1], the ordering of the components in (Li,θ)θ∈CM,N,S and rt−1 can be arbitrary, as long
as the two are consistent.

An Exercise of Algebra: We note that the above construction of AKGS for the function

class F requires to sample r ← Z[0,T]×CM,N,S
p . We will use ”structured“ element r = rx ⊗ rf

for rx ← Z[0,T]×[N]×[S]×{0,1}S
p and rf ← ZQp as the randomness for the AKGS garbling. We show

that MN,S(x)rt (a central part of the label functions) can be expressed as a bilinear function
of x, rx,x⊗ rx (known at encryption time) and Mτrf , rf ’s (known at key generation time),
and hence can be computed as the inner products of vectors depending on these two groups
of variables separately.

By our choice of randomness, rt = r[t, , , ,] is a block vector with each block being a
multiple of rf . More precisely, rt[i, j,W ,] = rx[(k, t, i, j,W)]rf . We compute each block of
the product MN,S(x)rt:

(MN,S(x)rt)[(i, j,W ,)](
row r of AB is

row r of A times B

)
= MN,S(x)[(i, j,W ,), (, , ,)]rt(

block matrix
multiplication

)
=

∑
i′∈[N],j′∈[S]

W ′∈{0,1}S

MN,S(x)[(i, j,W ,), (i′, j′,W ′,)]rt[(i
′, j′,W ′,)]

=
∑

i′∈[N],j′∈[S]

W ′∈{0,1}S

MN,S(x)[(i, j,W ,), (i′, j′,W ′,)]rx[(t, i′, j′,W ′)]rf

26

Recall that in MN,S(x)[(i, j,W ,), (, , ,)], each transition block appears at most once, and
the other Q×Q blocks are 0. More specifically, Mx,w,w′,∆i,∆j appears at MN,S(x)[(i, j,W ,),
(i′, j′,W ′,)] if x = x[i], w = W [j],∆i = i′ − i,∆j = j′ − j, and W ′ is W with j-th entry
changed to w′. Therefore, we have

(MN,S(x)rt)[(i, j,W ,)] =
∑

w′∈{0,1}
∆i,∆j∈{0,±1}

i+∆i∈[N],j+∆j∈[S]

Mx[i],W [j],w′,∆i,∆jrx[(t, i+ ∆i, j + ∆j,W ′)]rf

=
∑

x,w,w′∈{0,1}
∆i,∆j∈{0,±1}

Mx,w,w′,∆i,∆jrf ×


rx[(t, i+ ∆i, j + ∆j,W ′)], if x = x[i], i+ ∆i ∈ [N],

w = W [j], j + ∆j ∈ [S];

0, otherwise

(4.1)

Here,W ′[j] = w′ andW ′[j′′] = W [j′′] for all j′′ 6= j. Note that in the last summation formula,
there are exactly 72 summands. Moreover, each summand is Mx,w,w′,∆i,∆jrf (depending only
on rf and the transition blocks) multiplied by an entry in rx or 0 (depending only on x, rx).
To simplify notations, we define transition coefficients:

Definition 4.2 Let T = {0, 1}3 × {0,±1}2 be the set of transition types. For all τ =
(x,w,w′,∆i,∆j) ∈ T , N, T, S ≥ 1, and x ∈ {0, 1}N , t ∈ [T], i ∈ [N], j ∈ [S],W ∈ {0, 1}S, rx ∈
Z[0,T]×[N]×[S]×{0,1}S
p , define the transition coefficient as

cx,w,w′,∆i,∆j(x; t, i, j,W ; rx) =


rx[(t, i+ ∆i, j + ∆j,W ′)], if x = x[i], i+ ∆i ∈ [N],

w = W [j], j + ∆j ∈ [S];

0, otherwise

where W ′ ∈ {0, 1}S,W ′[j] = w′, and W ′[j′′] = W [j′′] for all j′′ 6= j.

With the above definition, Equation (4.1) can be restated as

(MN,S(x)rt)[(i, j,W ,)] =
∑
τ∈T

cτ (x, t, i, j,W ; rx)Mτrf . (4.2)

5 (1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L

In this section, we build a secret-key, 1-slot FE scheme for the unbounded attribute-weighted
sum functionality in L. At a high level, the scheme satisfies the following properties:
– The setup is independent of any parameters, other than the security parameter λ. Specif-

ically, the length of vectors and attributes, number of Turing machines and their sizes are
not fixed a-priori during setup. These parameters are flexible and can be chosen at the
time of key generation or encryption.

– A secret key is associated with a tuple (M , IM), where M = (Mk)k∈IM is a tuple of
Turing machines with indices k from an index set IM . For each k ∈ IM ,Mk ∈ L, i.e.,
Mk is represented by a deterministic log-space bounded Turing machine (with an arbitrary
number of states).

27

– Each ciphertext encodes a tuple of public-private attributes (x, z) of lengths N and n
respectively. The runtime T and space bound S for all the machines in M are associated
with x which is the input of each machine Mk.

– Finally, decrypting a ciphertext CTx that encodes (x, z) with a secret key SKM ,IM that is
tied to (M , IM) reveals the value

∑
k∈IM z[k] ·Mk(x) whenever IM ⊆ [n].

We build an FE scheme for the functionality sketched above (also described in Definition 3.2)
and prove it to be simulation secure against a single ciphertext and secret key query, where
the key can be asked either before or after the ciphertext query. Accordingly, we denote the
scheme as SK-UAWSL

(1,1,1) = (Setup,KeyGen,Enc,Dec), where the index (1, 1, 1) represents in
order the number of secret keys, ciphertexts and slots supported. Below, we list the ingredients
for our scheme.

1. IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec): a secret-key, function-hiding IPFE
based on G, where G = (G1,G2,GT, g1, g2, e) is pairing group tuple of prime order p. We
can instantiate this from [LL20].

2. AKGS = (Garble,Eval): a special piecewise-secure AKGS for the function class M =
{M |N,T,S : ZNp → Zp | M ∈ TM, N, T, S ≥ 1, p prime} describing the set of time/space
bounded Turing machines. In our construction, the Garble algorithm would run implicitly
under the hood of IPFE and thus, it is not invoked directly in the scheme.

5.1 The Construction

We are now ready to describe the SK-UAWSL
(1,1,1) = (Setup,KeyGen,Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and define the slots
for two IPFE master secret keys as follows:

S1-UAWS =
{
index1, index2, init, rand, rand

temp, randcomp, randtemp,comp, acc, sim, simtemp, simcomp
}⋃{

tbτ , tb
temp
τ , tbcomp

τ , tbtemp,comp
τ

∣∣ τ ∈ T },
S̃1-UAWS =

{
index1, index2, init, rand, rand

temp, randtemp,comp, acc, acctemp, sim, simtemp
}
.

Finally, it returns MSK = (IPFE.MSK, IPFE.M̃SK).
KeyGen(MSK, (M , IM)): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK) and a function tuple M = (Mk)k∈IM indexed w.r.t. an index set IM ⊂ N
of arbitrary size, parse Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM and sample the set of elements{

βk ← Zp |
∑
k

βk = 0 mod p

}
k∈IM

For all k ∈ IM , do the following:
1. For Mk = (Qk,yk, δk), compute its transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,
∀τ ∈ T .

2. Sample independent random vectors rk,f ← ZQkp and a random element πk ∈ Zp.
3. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen

(IPFE.MSK, [[vk,init]]2):

vector index1 index2 init rand acc tbτ the other
indices

vk,init πk k · πk rk,f [1] 0 βk 0 0

28

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2),

where the vectors vk,q, ṽk,q are defined as follows:

vector index1 index2 init rand acc tbτ the other
indices

vk,q πk k · πk 0 −rk,f [q] 0 (Mk,τrk,f) [q] 0

vector index1 index2 rand acc the other
indices

ṽk,q πk k · πk −rk,f [q] yk[q] 0

Finally, it returns the secret key as

SK(M ,IM) =

(
(M , IM),

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
.

Enc(MSK, (x, 1T , 12S), z): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with time and space
complexity bounds given by T, S ≥ 1 (as 1T , 12S) respectively, and the private attribute
z ∈ Znp for some arbitrary n ≥ 1, it does the following:

1. Sample a random vector rx ← Z[0,T]×[N]×[S]×{0,1}S
p .

2. For each k ∈ [n], do the following:

(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.Enc(IPFE.MSK, [[uk,init]]1) for the vector

uk,init:

vector index1 index2 init rand acc tbτ the other
indices

uk,init −k · ρk ρk rx[(0, 1, 1,0S)] 0 1 0 0

(c) For all t ∈ [T], i ∈ [N], j ∈ [S],W ∈ {0, 1}S, do the following:

(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx.
(ii) Compute the ciphertext IPFE.CTk,t,i,j,W ← IPFE.Enc(IPFE.MSK,

[[uk,t,i,j,W]]1) for the vector uk,t,i,j,W :

vector index1 index2 init rand acc tbτ the other
indices

uk,t,i,j,W −k · ρk ρk 0 rx[(t− 1, i, j,W)] 0 cτ (x; t, i, j,W ; rx) 0

(d) For t = T + 1, compute the ciphertext ˜IPFE.CTk,T+1,i,j,W ← ĨPFE.Enc

(IPFE.M̃SK, [[ũk,T+1,i,j,W]]1) for the vector ũk,T+1,i,j,W :

vector index1 index2 rand acc the other
indices

ũk,T+1,i,j,W −k · ρk ρk rx[(T, i, j,W)] z[k] 0

29

3. Finally, it returns the ciphertext as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

Dec(SK(M ,IM),CT(x,T,S)): On input a secret key SK(M ,IM) and a ciphertext CT(x,T,S), do the
following:
1. Parse SK(M ,IM) and CT(x,T,S) as follows:

SK(M ,IM) =

(
((Mk)k∈IM , IM) ,

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
,

Mk = (Qk,yk, δk),

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
,x ∈ {0, 1}N .

2. Output ⊥, if IM 6⊆ [n]. Else, select the sequence of ciphertexts for the indices k ∈ IM
as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈IM ,i∈[N],j∈[S],W∈{0,1}S

)
3. Recall that ∀k ∈ IM , CMk,N,S = [N] × [S] × {0, 1}S × [Qk], and that we denote any

element in it as θk = (i, j,W , q) ∈ CMk,N,S where the only component in the tuple θk
depending on k is q ∈ [Qk]

5. Invoke the IPFE decryption to compute all label values as:
∀k ∈ IM : [[`k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)

∀k ∈ IM , t ∈ [T], θk = (i, j,W , q) ∈ CMk,N,S :
[[`k,t,θk]]T = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,t,i,j,W)

∀k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S :

[[`k,T+1,θk]]T = IPFE.Dec(˜IPFE.SKk,q, ˜IPFE.CTk,T+1,i,j,W)
4. Next, invoke the AKGS evaluation and obtain the combined value

[[µ]]T =
∏
k∈IM

Eval

((
Mk, 1

N , 1T , 12S , p
)
,x, [[`k,init]]T,

{
[[`k,t,θk]]T

}
t∈[T+1],θk∈CMk,N,S

)
5. Finally, it returns µ = DLoggT

([[µ]]T), where gT = e(g1, g2). Similar to [AGW20], we
assume that the desired attribute-weighted sum lies within a specified polynomial-sized
domain so that discrete logarithm can be solved via brute-force.

5 For simplicity of notations, we enumerate the states of each Mk as 1, . . . , q, i.e., [Qk] = [Q] for some Q ∈ N.

30

Correctness: Correctness follows from that of IPFE and AKGS. The first step is to observe
that all the AKGS label values are correctly computed as functions of the input x. This holds by
the correctness of IPFE and AKGS encoding of the iterated matrix-vector product representing
any TM computation. The next (and final) correctness follows from the linearity of AKGS.Eval.

In more detail, for all k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S, let Lk,init, Lk,t,θk be the label
functions corresponding to the AKGS garbling of Mk = (Qk,yk, δk). By the definitions of
vectors vk,init,uinit and the correctness of IPFE, we have

`k,init = (−kρkπk + kπkρk) + rx[(0, 1, 1,0S)]rk,f [1] + βk

= r0[(1, 1,0S, 1)] + βk = eT(1,1,0S ,1)r0 + βk = Lk,init(x).

Next, ∀k ∈ IM , t ∈ [T], q ∈ [Qk], the structures of vk,q,ut,i,j,W and the correctness of IPFE
yields

`k,t,i,j,W ,q = (−kρkπk + kπkρk)− rx[(t− 1, i, j,W)]rk,f [q] +
∑
τ∈T

cτ (x; t, i, j,W ; rx)(Mk,τrk,f)[q]

= −rt−1[(i, j,W , q)] +
∑
τ∈T

cτ (x; t, i, j,W ; rx)(Mk,τrk,f)[q] = Lk,t,i,j,W ,q(x)

Finally, ∀k ∈ IM , q ∈ [Qk], the vectors ṽk,q, ũk,T+1,i,j,W and the ĨPFE correctness again
yields

`k,T+1,i,j,W ,q = (−kρkπk + kπkρk)− rx[(T, i, j,W)]rk,f [q] + z[k]yk[q]

= −rT [(i, j,W , q)] + z[k]
(
1[N]×[S]×{0,1}S ⊗ yk

)
[(i, j,W , q)]

= Lk,T+1,i,j,W ,q(x).
The above label values are computed in the exponent of the target group GT. Once all

these are generated correctly, the linearity of Eval implies that the garbling can be evaluated
in the exponent of GT. Thus, this yields

[[µ]]T =
∏
k∈IM

Eval

((
Mk, 1

N , 1T , 12S , p
)
,x, [[`k,init]]T,

{
[[`k,t,θk]]T

}
t∈[T+1],θk∈CMk,N,S

)
= [[

∑
k∈IM

Eval((Mk, 1
N , 1T , 12S , p),x, `k,init, {`k,t,θk}t∈[T+1],θk∈CMk,N,S)]]T

= [[
∑
k∈IM

(z[k] ·Mk|N,T,S(x) + βk)]]T = [[
∑
k∈IM

z[k] ·Mk|N,T,S(x)]]T = [[M(x)>z]]T

5.2 Security Analysis

We describe the simulator of our (1-SK, 1-CT, 1-Slot)-FE for UAWS. The simulated setup Setup∗

operates exactly the same way as the honest setup works. The simulated master secret key is

MSK∗ = (IPFE.MSK, ĨPFE.MSK). The simulated key generation algorithm KeyGen∗0 also works
in the same fashion as the honest key generation proceeds. We now describe the simulated
encryption Enc∗ and the simulated key generation KeyGen∗1 below.

Enc∗(MSK∗, (x, 1T , 12S), (M,IM ,M(x)>z), n): On input the simulated master secret
key MSK∗, the challenge public attribute x with associated parameters T, 2S in unary, (if
there is a secret key query before the challenge ciphertext is generated then) the secret key-
functional value tuple (M = (Mk)k∈IM , IM ,M (x)>z =

∑
k∈IM Mk(x)z[k]) with IM ⊆ [n]

and the length of the private attribute n, the encryption proceeds as follows:

31

1. It samples a dummy vector d← Znp such that

M (x)>z = M (x)>d =
∑
k∈[n]

Mk(x)d[k].

Note that, it can always set Mk(x) = 0 for k 6∈ [n] \ IM . If there is no secret key query
before the challenge ciphertext then it chooses a random vector ν ∈ Znp in place of d.

2. Sample a random vector rx ← Z[0,T]×[N]×[S]×{0,1}S
p and sx ← Z[T+1]×[N]×[S]×{0,1}S

p .
3. For each k ∈ [n], do the following:

(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.Enc(IPFE.MSK, [[uk,init]]1) for the vector

uk,init:

vector index1 index2 init acc sim the other
indices

uk,init −k · ρk ρk rx[(0, 1, 1,0S)] 1 1 0

(c) For all t ∈ [T], i ∈ [N], j ∈ [S],W ∈ {0, 1}S, do the following:
(i) Compute the coefficients cτ (x; t, i, j,W ; rx), ∀τ ∈ T using rx.

(ii) Compute the ciphertext IPFE.CTk,t,i,j,W ← IPFE.Enc(IPFE.MSK, [[uk,t,i,j,W]]1) for the
vector uk,t,i,j,W :

vector index1 index2 rand tbτ sim the other
indices

uk,t,i,j,W −k · ρk ρk rx[(t− 1, i, j,W)] cτ (x; t, i, j,W ; rx) sx[(t, i, j,W)] 0

(d) For t = T + 1, compute ˜IPFE.CTk,T+1,i,j,W ← IPFE.Enc(IPFE.M̃SK, [[ũk,T+1,i,j,W]]1) for
the vector ũk,T+1,i,j,W :

vector index1 index2 rand acc sim the other
indices

ũk,T+1,i,j,W −k · ρk ρk rx[(T, i, j,W)] ν[k] or d[k] sx[(T + 1, i, j,W)] 0

4. Finally, it returns the ciphertext as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

KeyGen∗1(MSK∗, (M,IM ,M(x)>z)):: On input the master secret key MSK∗ and the secret
key-functional value tuple (M = (Mk)k∈IM , IM ,M (x)>z =

∑
k∈IM Mk(x)z[k]) w.r.t. an

index set IM ⊂ N, the key generation process works as follows:

1. It parses Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM and sample elements β′k ∈ Zp for k ∈ IM as
follows:

if IM ⊆ [n] : β′k ← Zp and
∑

k β
′
k = 0 mod p

if (max IM > n) ∧ (min IM ≤ n) : β′k ← Zp

32

2. For Mk = (Qk,yk, δk), compute transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,∀τ ∈ Tk.
3. It reversely sample the label function values as

`1,init ← RevSamp((M1, 1
N , 1T , 12S),x,M (x)>z + β′1, (`k,t,θk)t∈[T+1],θk∈CMk,N,S)

`k,init ← RevSamp((Mk, 1
N , 1T , 12S),x, β′k, (`k,t,θk)t∈[T+1],θk∈CMk,N,S), for all k > 1

where all the other label values `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] are simulated (and known
to the simulator).

4. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen(IPFE.MSK,
[[vk,init]]2):

vector index1 index2 sim the other
indices

vk,init πk k · πk `k,init 0

5. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2), and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2),

where the vectors vk,q, ṽk,q are defined as follows:

vector index1 index2 sim the other
indices

vk,q πk k · πk sx[(t, i, j,W)] 0

vector index1 index2 sim the other
indices

ṽk,q k k · πk sx[(T + 1, i, j,W)] 0

Note that, the random vector sx has already been sampled during encryption.

Finally, it returns the simulated secret key as

SK(M ,IM) =

(
(M , IM),

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
.

We will use the following lemmas in our security analysis.

Lemma 5.1. Let IPFE = (Setup,KeyGen,Enc,Dec) be a function hiding inner product encryp-
tion scheme. For any polynomial m = m(λ) and n = n(λ) with m > n, define the following
vectors

πk, ρk, rk, r̂k ← Zp; b← {0, 1}
vk = (πk, k · πk, 0, 0, 0) for k ∈ [n]

v
(b)
k = (πk, k · πk, 0, rk + b · r̂k, 0) for k ∈ [n+ 1,m]
uk′ = (−k′ · ρk′ , ρk′ , 0, 1, 0) for k′ ∈ [n]

Then, for any IPFE.MSK ← IPFE.Setup(1λ, 1∗), the distributions {{IPFE.SKk}k∈[n],

{IPFE.SK(b)
k }k∈[n+1,m], {IPFE.CTk′}k′∈[n]} for b ∈ {0, 1} are indistinguishable where

33

IPFE.SKk← IPFE.KeyGen(IPFE.MSK,vk) for k ∈ [n]

IPFE.SK
(b)
k ← IPFE.KeyGen(IPFE.MSK,v

(b)
k) for k ∈ [n+ 1,m]

IPFE.CTk← IPFE.Enc(IPFE.MSK,uk′) for k ∈ [n]

Proof. We prove this lemma by the transformation π̂k = πk − r̂k
ρk′ (k−k′)

for k 6= k′. Note that

π̂k is uniform over Zp since πk ← Zp. The lemma follows from the function hiding security of
IPFE since

v(0) · uk′ = πkρk′ · (k − k′) + rk

= (π̂k +
r̂k

ρk′(k − k′)
)ρk′ · (k − k′) + rk

= π̂kρk′ · (k − k′) + rk + r̂k = v(1) · uk′

ut

Theorem 5.1 Assuming the SXDH assumption holds in G and the IPFE is function hiding
secure, the above construction of (1-SK, 1-CT, 1-Slot)-FE for UAWS is adaptively simulation
secure.

Proof Idea: Before going for a formal proof, we discuss a high level overview of the proof.
We use a three-step approach and each step consists of a group of hybrid sequence.

– In the first step, the label function `k,init is reversely sampled with the value z[k]Mk[x]+βk
and it is hardwired in either uk,init or vk,init, whichever is computed later.

– The second step is a loop. The purpose of the loop is to change all the honest label values
`k,t,i,j,W ,q to simulated ones that take the form `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] where
sx[(t, i, j,W)] is hardwired in uk,t,i,j,W or ũk,T+1,i,j,W and sk,f [q] is hardwired in vk,q or
ṽk,q. The procedure depends on the order of adversary’s queries.

– After all the label values `k,t,i,j,W ,q are simulated, the third step uses a few more hybrids
to reversely sample `1,init and `k,init|k>1 with the hardcoded values M (x)>z+β1 and βk|k>1

respectively. We also rearrange the elements so that the distribution of the ciphertext does
not change with the occurrence of the secret key whether it comes before or after the
ciphertext.

Recall that the adversary is allowed to query only a single secret key either before (SK before
CT) or after (CT before SK) the challenge ciphertext. Accordingly, we consider two different
cases depending on the occurrence of the single secret key query.

Case 1 (CT before SK): In this case, we place the reversely sampled `k,init in the vk,init in
the exponent of G2. The loop of the second step runs over (k, t, i, j,W) in lexicographi-
cal order. In each iteration, we clean uk,t,i,j,W and shift everything to vk,q in one shot and
truly randomize the label values using DDH in G2 and then change these to their simu-
lated form `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] by again using DDH in G2. Finally, the terms
{sx[(t, i, j,W)]}t∈[T+1] are shifted back to uk,t,i,j,W or ũk,T+1,i,j,W .

Case 2 (SK before CT): In this case, we place the reversely sampled `k,init in the uk,init in the
exponent of G1. The second step involves a two-level loop with outer loop running over t in

34

increasing order and inner loop running over q in increasing order. In each iteration of the
loop, we move all occurrences of rk,f [q] and sk,f [q] into all uk,t′,i′,j′,W ′ in one shot and hardwire
the honest labels `k,t,i,j,W ,q into uk,t,i,j,W for all i, j,W . Next, by invoking DDH in G1, we first
make the honest labels `k,t,i,j,W ,q truly random for all i, j,W and then transform these into
their simulated form `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] again by using DDH in G1 for all i, j,W .
Finally, the terms sk,f [q] are shifted back to vk,q or ṽk,q.

We start the formal proof with the first step where both the cases can be handled together.
The next two steps are managed separately according to the occurrence of the secret key.

Proof. Let A be a PPT adversary in the security experiment of UAWS. We show that the ad-
vantage of A in distinguishing between the experiments Expt1-UAWS

A,real (1λ) and Expt1-UAWS
A,ideal (1λ) is

negligible. In this security analysis, we additionally assume that the adversary can query
only a single secret key for (M , IM) either before or after the challenge ciphertext. Let
((x, 1T , 12S), z) be the challenge message and z ∈ Znp . We also assume that the single key
queried by the adversary cover all the indices of the ciphertexts, i.e., IM ⊇ [n] which is nat-
ural as the adversary gets maximum information about the ciphertext in such case. Without
loss of generality and for the simplicity of exposition, we assume that the number of states in
all Turing machines is the same and it is Q.

The first few hybrids are the same for both the cases: CT before SK and SK before CT. The
indistinguishability arguments remain unchanged in such hybrids. In Table 5.1, we represent
the first/last few hybrids. Let nmax be the maximum value of n, the length of z, i.e., A can
choose the private attribute whose maximum length can be nmax.

Hybrid H0: This is the real experiment Expt1-UAWS
A,real (1λ) (= Hreal in Table 5.1) where the ci-

phertext vectors contains the challenge message (x, z) and the secret key vectors are computed
using (M , IM).

Hybrid H0.1: This is exactly the real experiment except the challenger aborts the experiment
immediately if the vector length of z is not n′, i.e., n 6= n′. Suppose A outputs ⊥ when the
experiment is aborted. Thus, it is easy to see that the advantage of A in H0.1 is 1

nmax
times the

advantage in H0. Thus, if the advantage of A is negligible in H0, then it is so in H0.1. Hence,
in the remaining hybrids we simply write n′ = n.

Hybrid H0.2: It proceeds exactly the same as H0.1 except that if the queried key (M , IM)

is such that (max IM > n) ∧ (min IM ≤ n), then βk = vk,init[acc] is replaced with β̂k ← Zp
for each k ∈ IM . Thus, with high probability it holds that

∑
k∈IM β̂k 6= 0. The hybrids H0.1

and H0.2 are indistinguishable by the function hiding security of IPFE via the Lemma 5.1.
Note that in this hybrid, we crucially use the randomness of the positions vk,init[index1] and
vk,init[index2] (encoding the indices which are not available in the ciphertext vectors) to sample

β̂k independently from other indices of the secret key.

Hybrid H1: It proceeds exactly the same as H0.2 except `k,init is hardwired in vk,init or uk,init,

and sk,f ← ZQp , sx ← Z[T+1]×[N]×[S]×{0,1}S
p are embedded in vk,q, ũk,T+1,i,j,W respectively. The

first change sets the stage for `k,init to be reversely sampled in the next hybrid and the second
change prepares the `k,t,i,j,W ,q|t≤T , `k,T+1,i,j,W ,q to be simulated as pseudorandom values in the
loop hybrids. More specifically, the changes are implemented as follows:

35

– For CT before SK, uk,init is set to 1 during encryption and vk,init is set to rx[(0, 1, 1,0S)]rk,f [1]
during key generation.

– For SK before CT, vk,init is set to 1 during key generation and uk,init is set to rx[(0, 1, 1,0S)]
rk,f [1] during encryption. Note that, rk,f [1]s are known only for k ∈ IM . Thus, uk,init[init]
is unchanged in this and in the rest of the hybrids for k ∈ [n] \ IM .

– Also, vk,q[sim] is set to sk,f [q] and ũk,T+1,i,j,W [sim] is set to sx[(T + 1, i, j,W)].

Note that, the inner products between v’s and u’s remain unchanged. Therefore, the function
hiding property of IPFE ensures that H0 and H1 are indistinguishable.

Hybrid H2: It proceeds identically to H1 except that `k,init is reversely sampled from the
other labels. By the piecewise security of AKGS, the hybrids H1 and H2 are indistinguishable.

Hybrid H4: It proceeds identically to H2 except the inner products uk,t,i,j,W · vk,q and
ũk,T+1,i,j,W · ṽk,q change from the honest to simulated labels sx[(t, i, j,W)]sk,f [q] and sx[(T +
1, i, j,W)]sk,f [q] respectively. This is implemented by clearing the values at rand, acc, tbτ of the
vectors uk,t,i,j,W , ũk,T+1,i,j,W and embedding sk,f [q], sx[(t, i, j,W)] at ṽk,q[sim],uk,t,i,j,W [sim]
respectively. We show the indistinguishability between the hybrids H2 and H3 in two separate
claims:

Claim 5.1 In the case of CT before SK, H2 ≈ H4.

Claim 5.2 In the case of SK before CT, H2 ≈ H4.

Hybrid H5: It proceeds exactly the same as H4 except the values at rand, acc, tbτ of the
vectors vk,q, ṽk,q are cleared and uk,init[sim] is set to 1. Also, for the case of CT before SK,
`k,init is shifted from vk,init[init] to vk,init[sim]. While the former change is common for both
cases, the later prepares the ideal game for the case of CT before SK. Note that, the inner
products between v’s and u’s remain unchanged. Therefore, the function hiding property of
IPFE ensures that H4 and H5 are indistinguishable.

Hybrid H6: It is the same as H5 except the hardcoded values used in the reverse sampling
procedure while computing `k,init (for both the cases). It computes `k,init as follows:

`1,init ← RevSamp((M1, 1
N , 1T , 12S),x,M (x)>z + β1, (`k,t,θk)t∈[T+1],θk∈CMk,N,S)

`k,init ← RevSamp((Mk, 1
N , 1T , 12S),x, βk, (`k,t,θk)t∈[T+1],θk∈CMk,N,S), for all k > 1

where all the other label values `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] are already simulated. If
the queried key satisfies the permissiveness, i.e., IM ⊆ [n], then this is accomplished by a
statistical transformation on {βk : βk ← Zp,

∑
k∈IM βk = 0}. We replace βk by newly sampled

βk:

β1 = β′1 − z[1]M1(x) +M (x)>z

βk = β′k − z[k]Mk(x) for all k > 1

36

37

hybrid vector init rand, acc, tbτ sim

H0.2

vk,init rk,f [1] normal 0

vk,q normal 0

ṽk,q normal 0

uk,init rx[(0, 1, 1,0S)] normal 0

uk,t,i,j,W normal 0

ũk,T+1,i,j,W normal 0

H1

vk,init 1 or rx[(0, 1, 1,0S)]rk,f [1] + βk(or β̂k) 0, 0, 0 0

vk,q normal sk,f [q]

ṽk,q normal 0

uk,init rx[(0, 1, 1,0S)]rk,f [1] + βk(or β̂k) or 1 0, 0, 0 0

uk,t,i,j,W normal 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)]

H2

vk,init 1 or `k,init ← RevSamp(z[k]Mk(x) + βk(or β̂k)) 0, 0, 0 0

vk,q normal sk,f [q]

ṽk,q normal 0

uk,init `k,init ← RevSamp(z[k]Mk(x) + βk(or β̂k)) or 1 0, 0, 0 0

uk,t,i,j,W normal 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)]

loop · · · · · · · · · · · ·

H4

vk,init 1 or `k,init ← RevSamp(z[k]Mk(x) + βk(or β̂k)) 0, 0, 0 0

vk,q normal sk,f [q]

ṽk,q normal sk,f [q]

uk,init `k,init ← RevSamp(z[k]Mk(x) + βk(or β̂k)) or 1 0, 0, 0 0

uk,t,i,j,W 0, 0, 0 sx[(t, i, j,W)]

ũk,T+1,i,j,W 0, 0,− sx[(T + 1, i, j,W)]

H5

vk,init 1 or 0 0, 0, 0 0 or `k,init ← RevSamp(z[k]Mk(x) + βk(or β̂k))

vk,q 0, 0, 0 sk,f [q]

ṽk,q 0, 0,− sk,f [q]

uk,init `k,init ← RevSamp(z[k]Mk(x) + βk(or β̂k)) or 1 0, 0, 0 1

uk,t,i,j,W 0, 0, 0 sx[(t, i, j,W)]

ũk,T+1,i,j,W 0, 0,− sx[(T + 1, i, j,W)]

H6

v1,init 1 or 0 0, 0, 0 0 or `1,init ← RevSamp(M(x)>z + β′1)

vk>1,init 1 or 0 0, 0, 0 0 or `k,init ← RevSamp(β′k)

vk,q 0, 0, 0 sk,f [q]

ṽk,q 0, 0,− sk,f [q]

u1,init `1,init ← RevSamp(M(x)>z + β′1) or 1 0, 0, 0 1

uk>1,init `k,init ← RevSamp(β′k) or 1 0, 0, 0 1

uk,t,i,j,W 0, 0, 0 sx[(t, i, j,W)]

ũk,T+1,i,j,W 0, 0,− sx[(T + 1, i, j,W)]

The table is continued to the next page...

38

hybrid vector init rand, acc, tbτ sim

Hideal

v1,init 0 0, 0, 0 `1,init ← RevSamp(M(x)>z + β′1)

vk>1,init 0 0, 0, 0 `k,init ← RevSamp(β′k)

vk,q 0, 0, 0 sk,f [q]

ṽk,q 0, 0,− sk,f [q]

uk,init rx[(0, 1, 1,0S)] normal 1

uk,t,i,j,W normal sx[(t, i, j,W)]

ũk,T+1,i,j,W normal(ν) sx[(T + 1, i, j,W)]

for CT before SK the sequence of hybrids ends here, i.e., Hideal is the ideal world

H7

vk,init 1 0, 0, 0 0

vk,q 0, 0, 0 sk,f [q]

ṽk,q 0, 0,− sk,f [q]

u1,init `1,init ← RevSamp(M(x)>d+ β′1) 0, 0, 0 1

uk>1,init `k,init ← RevSamp(β′k) 0, 0, 0 1

uk,t,i,j,W 0, 0, 0 sx[(t, i, j,W)]

ũk,T+1,i,j,W 0, 0,− sx[(T + 1, i, j,W)]

for SK before CT traverse in reverse direction until H0 with d in place of z

H(7→0)

vk,init rk,f [1] normal 0

vk,q normal 0

ṽk,q normal 0

uk,init rx[(0, 1, 1,0S)] normal 0

uk,t,i,j,W normal 0

ũk,T+1,i,j,W normal(d) 0

Hideal

vk,init rk,f [1] normal 0

vk,q normal 0

ṽk,q normal 0

uk,init rx[(0, 1, 1,0S)] normal 1

uk,t,i,j,W normal sx[(t, i, j,W)]

ũk,T+1,i,j,W normal(d) sx[(T + 1, i, j,W)]

for SK before CT, Hideal is the ideal world

The ”normal“ in rand acc tbτ

vk,init : 0 βk 0

vk,q : −rk,f [q] 0 (Mk,τrk,f)[q]

ṽk,q : −rk,f [q] yk[q] −
uk,init : 0 1 0

t ≤ T, uk,t,i,j,W : rx[(t− 1, i, j,W)] 0 cτ (x, t, i, j,W ; rx)

if normal, ũk,T+1,i,j,W : rx[(T, i, j,W)] z[k] −
if normal(ω), ũk,T+1,i,j,W : rx[(T, i, j,W)] ω[k] −

The note is continued to the next page...

In H1, SK before CT CT before SK In H2,H4, SK before CT CT before SK

vk,init[init] = 1 rx[(0, 1, 1,0S)]rk,f [1] vk,init[init] = 1 RevSamp(α)

uk,init[init] = rx[(0, 1, 1,0S)]rk,f [1] 1 uk,init[init] = RevSamp(α) 1

In H5, SK before CT CT before SK In H5, SK before CT CT before SK

vk,init[init] = 1 0 vk,init[sim] = 0 RevSamp(α)

uk,init[init] = RevSamp(α) 1 uk,init[sim] = 1 1

The “RevSamp(α)” means: `k,init ← RevSamp((Mk, 1
N , 1T , 12S),x, α, (`k,t,θk)t∈[T+1],θk∈CMk,N,S

)

In H2, Hideal, `k,t,i,j,W ,q = Lk,t,i,j,W ,q(x) are computed honestly using IPFE.

In H4,H5,H6, Hideal, `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] are simulated and computed using IPFE.

In Hideal, the positions rand, acc, tbτ of uk,init,uk,t,i,j,W , ũk,T+1,i,j,W are kept either normal or normal(ν),

for an arbitrary vector ν, due to security proof of PK-UAWS. These entries have no effect in this simulation.

In Hideal, the position sim of uk,init,uk,t,i,j,W , ũk,T+1,i,j,W are kept 1, sx[(t, i, j,W)], sx[(T + 1, i, j,W)] respectively

due to security proof of PK-UAWS. These entries have no effect in this simulation.

Table 5.1: The first/last few hybrids in the security proof of 1-UAWS.

where β′k ← Zp. Observe that it still holds that
∑

k∈IM βk = 0. On the other hand, if the key
under consideration does not satisfy the permissiveness, i.e., (max IM > n)∧ (min IM < n),

then we know that β̂k are uniform over Zp. Thus, we can replace β̂k by new β̂k:

β̂1 = β′1 − z[1]M1(x) +M(x)>z

β̂k = β′k − z[k]Mk(x) for all k > 1

where β′k ← Zp. Note that, the distributions of new βk or β̂k are statistically close to their old
versions and hence the two hybrids H5 and H6 are indistinguishable.

Hybrid Hideal: This hybrid is equivalent to the ideal experiment Expt1-UAWS
A,ideal (1λ) for the case

of CT before SK. Thus, one should omit this hybrid in the case of SK before CT. In Hideal,
the positions init, rand, acc, tbτ of the vectors uk,init,uk,t,i,j,W , ũk,T+1,i,j,W are changed back to
their normal form as they were in H0 except we use an arbitrary vector ν ← Znp in place
of z (for ũk,T+1,i,j,W). This change has no effect in the inner products between u’s and v’s
since the corresponding terms in v’s are zero. The purpose of this change is to maintain
the distribution of the ciphertext vectors consistent with the case of SK before CT. Finally,
Hideal is indistinguishable from H6 by the function hiding property of IPFE, and hence H0 =
Expt1-UAWS

A,real (1λ) ≈ Hideal.
The sequence of hybrids for the case of CT before SK ends here and the rest of the hybrids

are required only to handle the case of SK before CT.

Hybrid H7: It proceeds exactly the same as H6 except it samples a dummy vector d ← Znp
such that

M(x)>z = M(x)>d =
∑
k∈[n]

Mk(x)d[k].

and reversely sample `1,init with the hardcoded value M (x)>d+ β1 instead of M(x)>z + β1.
Note that, this is statistical change to the computation of `1,init, and hence the hybrids H6 and
H7 are indistinguishable to the adversary.

39

Hybrid H(7→0): Next, for the case of SK before CT, we traverse in the reverse direction from
H7 to all the way to H0 with the dummy vector d in place of z. This step is inspired from the
proof technique used by Datta and Pal [DP21]. We skip the descriptions of these hybrids as
the indistinguishability arguments would be exactly similar to what we used for reaching H7

from H0. We denote the new H0 as H(7→0) and the hybrids H7 and H(7→0) are indistinguishable
by the function hiding security of IPFE and the piecewise security of AKGS. After this hybrid,
observe that the reduction do not need to guess n which enables the final simulator to generate
the pre-ciphertext secret key without any information about the length of private attribute z.

Hybrid Hideal: It is exactly the same as H(7→0) except the position sim of the vectors uk,init,
uk,t,i,j,W and ũk,T+1,i,j,W are set as 1, sx[(t, i, j,W)] and sx[(T + 1, i, j,W)] respectively. Ob-
serve that this change has no effect in the inner product computation of these vectors with
their corresponding vectors in the secret key as the positions in the secret key vectors are zero.
This, however, keeps the ciphertext distribution consistent with the case of CT before SK.
Therefore, Hideal and H(7→0) are indistinguishable by the function hiding security of the IPFE.

We also note that Hideal is the ideal experiment Expt1-UAWS
A,ideal (1λ) for the case of SK before CT,

and hence H0 = Expt1-UAWS
A,real (1λ) ≈ Hideal. This completes the proof. ut

Proof of Claim 5.1: For the case of CT before SK, we prove H2 ≈ H4 using a sequence of
hybrids H3,t,i,j,W ,1, . . . ,H3,t,i,j,W ,5 for (t, i, j,W) ∈ [T]× [N]× [S]× {0, 1}S in lexicographical
order. These hybrids are described in Table 5.2. Then, we use another sequence of hybrids
(dedicated for the second IPFE) H̃3, H̃3,i,j,W ,1, . . . , H̃3,i,j,W ,5 for (i, j,W) ∈ [T] × [N] × [S] ×
{0, 1}S in lexicographical order. These hybrids are illustrated in Table 5.3. We denote by
(t, i, j,W) + 1 the next tuple of indices in increasing order. We observe that u’s are listed
before v’s since in the case of CT before SK the ciphertext appears before the secret key.

Hybrid H3,t,i,j,W ,1: It proceeds identically to H2 except that for all (t′, i′, j′,W ′)
< (t, i, j,W), uk,t′,i′,j′,W ′ has its values in rand and tbτ ’s cleared, and that a random value
sx[(t′, i′, j′,W ′)] is embedded in uk,t′,i′,j′,W ′ [sim]. This means that all the labels for (t′, i′, j′,W ′)
< (t, i, j,W) are simulated, the first label `k,init is reversely sampled and the rest are honestly
computed.

Hybrid H3,t,i,j,W ,2: It proceeds exactly the same way as H3,t,i,j,W ,1 except that the values in
uk,t,i,j,W are set to zero and its inner product with vk,q’s, i.e. the labels `k,t,i,j,W ,q for all k, q,
are hardcoded into vk,q’s as follows:

– The positions rand and tbτ of uk,t,i,j,W are set to 0.
– The value at uk,t,i,j,W [simtemp] is set to 1.
– The honest labels `k,t,i,j,W ,q = −rx[(t−1, i, j,W)]rk,f [q] +· · · are embedded in vk,q[sim

temp]
for each q ∈ [Q] and k ∈ IM where ”· · ·“ represents

∑
τ∈T cτ (x; t, i, j,W ; rx)(Mk,τrk,f)[q].

As one can verify that the inner products between the vectors are unchanged, the indistin-
guishability between the hybrids H3,t,i,j,W ,1 and H3,t,i,j,W ,2 is guaranteed by the function hiding
security of IPFE.

Hybrid H3,t,i,j,W ,3: It proceeds similar to H3,t,i,j,W ,2 except that the labels `k,t,i,j,W ,q are
changed to truly randomized values. We can invoke DDH assumption in G2 between the
hybrids since the random values rx[(t− 1, i, j,W)] and rk,f [q]’s only appear in the exponent
of G2: for each k ∈ IM , given an MDDH1,q challenge

40

hybrid vector rand tbτ sim simtemp

H3,t,i,j,W ,1

u
k, t′, i′, j′,W ′

< (t, i, j,W)

0 0 sx[(t′, i′, j′,W ′)] 0

uk,t,i,j,W rx[(t− 1, i, j,W)] cτ (x, t, i, j,W ; rx) 0 0

u
k, t′, i′, j′,W ′

> (t, i, j,W)

rx[(t′ − 1, i′, j′,W ′)] cτ (x, t′, i′, j′,W ′; rx) 0 0

vk,q −rk,f [q] (Mk,τrk,f)[q] sk,f [q] 0

H3,t,i,j,W ,2
uk,t,i,j,W 0 0 0 1

vk,q −rk,f [q] (Mk,τrk,f)[q] sk,f [q]
honest `k,t,i,j,W ,q =
−rx[(t− 1, i, j,W)]rk,f [q] +· · ·

H3,t,i,j,W ,3
uk,t,i,j,W 0 0 0 1

vk,q −rk,f [q] (Mk,τrk,f)[q] sk,f [q] `k,t,i,j,W ,q
$←− Zp

H3,t,i,j,W ,4
uk,t,i,j,W 0 0 0 1

vk,q −rk,f [q] (Mk,τrk,f)[q] sk,f [q]
simulated `k,t,i,j,W ,q

= sx[(t, i, j,W)]sk,f [q]

H3,t,i,j,W ,5

≡
H3,t′,i′,j′,W ′,1

for
(t′, i′, j′,W ′)

=
(t, i, j,W) + 1

u
k, t′, i′, j′,W ′

< (t, i, j,W)

0 0 sx[(t′, i′, j′,W ′)] 0

uk,t,i,j,W 0 0 sx[(t, i, j,W)] 0

u
k, t′, i′, j′,W ′

> (t, i, j,W)

rx[(t′ − 1, i′, j′,W ′)] cτ (x, t′, i′, j′,W ′; rx) 0 0

vk,q −rk,f [q] (Mk,τrk,f)[q] sk,f [q] 0

For brevity, uinit,vinit, ṽk,q , ũk,T+1,i,j,W ,vk,q [acc] = 0,uk,t≤T,i,j,W [acc] = 0 are suppressed.

The reversely sampled `k,init is hardwired in uk,init, and is only needed (and can only be computed so by

the reduction) in the exponent of G2:

[[`k,init]]2 ← RevSamp((Mk, 1
N , 1T , 12S),x, [[z[k]Mk(x) + βk]]2, ([[`k,t,θk]]2)t∈[T+1],θk∈CMk,N,S

).

In the intermediate hybrids, uk,t′,i′,j′,W ′ ’s are suppressed. They remain unchanged in this iteration.

The omitted term “· · · ” at vk,q [sim
temp] is

∑
τ∈T cτ (x; t, i, j,W ; rx)(Mk,τrk,f)[q].

In this iteration, the labels `k,t′,i′,j′,W ′,q with (t′, i′, j′,W ′) are computed as:

(t′, i′, j′,W ′) < (t, i, j,W) : simulated as sx[(t′, i′, j′,W ′)]sk,f [q] and computed using IPFE

(t′, i′, j′,W ′) = (t, i, j,W) : computed honestly using IPFE in H3,k,t,i,j,W ,1

computed honestly and hardwired in SK in H3,k,t,i,j,W ,2

simulated as random and hardwired in SK in H3,k,t,i,j,W ,3

simulated as sx[(t, i, j,W)]sk,f [q] and hardwired in SK in H3,k,t,i,j,W ,4

simulated as sx[(t, i, j,W)]sk,f [q] and computed using IPFE in H3,k,t,i,j,W ,5

(t′, i′, j′,W ′) > (t, i, j,W) : computed honestly using IPFE

The net effect is that `k,t≤T,i,j,W ,q ’s change from honest to simulated.

Note that, in this iteration, `k,T+1,i,j,W ,q ’s are honestly computed for all (k, T + 1, i, j,W , q).

Table 5.2: The loop hybrids for t ≤ T in the security proof of 1-UAWS for the case where the
ciphertext challenge comes before the secret key query.

[[rk,f [1], . . . , rk,f [Q];∆k,1, . . . , ∆k,Q]]2 : ∆k,q

{
= rx[(t− 1, i, j,W)]rk,f [q], if DDH tuple

← Zp, if truly random tuple

we compute the labels as `k,t,i,j,W ,q = −∆k,q+· · ·. If a DDH tuple is received, the labels use pseu-
dorandom randomizers rt−1[(i, j,W ,)] = rx[(t− 1, i, j,W)]rk,f [q] as in H3,t,i,j,W ,2. If a truly
random tuple is received, these label values are truly random randomizers rt−1[(i, j,W ,)]←
ZQp as in H3,t,i,j,W ,3 due to the special piecewise security of AKGS. Note that, the values
[[`k,init]]2 ← RevSamp(· · ·) can be efficiently computed in the exponent of G2.

41

42

hybrid vector rand acc sim simtemp

H̃3
ũk,T+1,i,j,W rx[(T, i, j,W)] z[k] 0 0

ṽk,q −rk,f [q] yk[q] sk,f [q] 0

H̃3,i,j,W ,1

ũ
k, T + 1, i′, j′,W ′

< (i, j,W)

0 0 sx[(T + 1, i′, j′,W ′)] 0

ũk,T+1,i,j,W rx[(T, i, j,W)] z[k] 0 0

ũ
k, T + 1, i′, j′,W ′

> (i, j,W)

rx[(T, i′, j′,W ′)] z[k] 0 0

ṽk,q −rk,f [q] yk[q] sk,f [q] 0

H̃3,i,j,W ,2

ũk,T+1,i,j,W 0 0 0 1

ṽk,q −rk,f [q] yk[q] sk,f [q]
honest `k,T+1,i,j,W ,q

= −rx[(T, i, j,W)]rk,f [q] +· · ·

H̃3,i,j,W ,3

ũk,T+1,i,j,W 0 0 0 1

ṽk,q −rk,f [q] yk[q] sk,f [q] `k,T+1,i,j,W ,q
$←− Zp

H̃3,i,j,W ,4

ũk,T+1,i,j,W 0 0 0 1

ṽk,q −rk,f [q] yk[q] sk,f [q]
simulated `k,t,i,j,W ,q

= sx[(T + 1, i, j,W)]sk,f [q]

H̃3,i,j,W ,5

≡
H̃3,i′,j′,W ′,1

for
(i′, j′,W ′)

=
(i, j,W) + 1

ũ
k, T + 1, i′, j′,W ′

< (i, j,W)

0 0 sx[(T + 1, i′, j′,W ′)] 0

ũk,T+1,i,j,W 0 0 sx[(T + 1, i, j,W)] 0

ũ
k, T + 1, i′, j′,W ′

> (i, j,W)

rx[(T, i′, j′,W ′)] z[k] 0 0

ṽk,q −rk,f [q] yk[q] sk,f [q] 0

For brevity, uinit,vinit,vk,q ,uk,T+1,i,j,W are suppressed.

The reversely sampled `k,init is hardwired in uk,init, and is only needed (and can only be computed so by

the reduction) in the exponent of G2:

[[`k,init]]2 ← RevSamp((Mk, 1
N , 1T , 12S),x, [[z[k]Mk(x) + βk]]2, ([[`k,t,θk]]2)t∈[T+1],θk∈CMk,N,S

).

In the intermediate hybrids, ũk,T+1,i′,j′,W ′ ’s are suppressed. They remain unchanged in this iteration.

The omitted term “· · · ” at ṽk,q [sim
temp] is yk[q]z[k].

In this iteration, the labels `k,T+1,i′,j′,W ′,q with (i′, j′,W ′) are computed as:

(i′, j′,W ′) < (i, j,W) : simulated as sx[(T + 1, i′, j′,W ′)]sk,f [q] and computed using IPFE

(i′, j′,W ′) = (i, j,W) : computed honestly using IPFE in H̃3,i,j,W ,1

computed honestly and hardwired in SK in H̃3,i,j,W ,2

simulated as random and hardwired in SK in H3,i,j,W ,3

simulated as sx[(T + 1, i, j,W)]sk,f [q] and hardwired in the SK in H3,i,j,W ,4

simulated as sx[(T + 1, i, j,W)]sk,f [q] and computed using IPFE in H3,i,j,W ,5

(i′, j′,W ′) > (i, j,W) : computed honestly using IPFE

The net effect is that `k,T+1,i,j,W ,q ’s change from honest to simulated.

Note that, in this iteration, `k,t≤T,i,j,W ,q ’s are unchanged for all (k, t, i, j,W , q) and are already simulated.

The hybrid H̃3 starts after the loop of Table 5.2 finishes, i.e. after the hybrid H3,T,N,S,1S ,5 and the hybrid

H̃3,N,S,1S ,5 is identical to the hybrid H4 (c.f. Table 5.1).

Table 5.3: The hybrid H̃3 followed by the loop hybrids in the security proof of 1-UAWS for the
case where the ciphertext challenge comes before the secret key query.

Hybrid H3,t,i,j,W ,4: It proceeds identical to H3,t,i,j,W ,3 except the truly random labels `k,t,i,j,W ,q

for all q ∈ [Q], k ∈ IM are replaced by pseudorandom values sx[(t, i, j,W)]sk,f [q] with
sx[(t, i, j,W)] ← Zp. The hybrids H3,t,i,j,W ,3 and H3,t,i,j,W ,4 are indistinguishable due to the
DDH assumption in G2 (the argument is similar to that of in the previous hybrid).

Hybrid H3,t,i,j,W ,5: It proceeds exactly the same way as H3,t,i,j,W ,4 except the pseudorandom
labels `k,t,i,j,W ,q = sx[(t, i, j,W)]sk,f [q] hardwired in vk,q[sim

temp]’s are split into uk,t,i,j,W [sim]
(embedding the factor sx[(t, i, j,W)]) and vk,q[sim]’s (embedding the factor sk,f [q]). The inner
products in the hybrids H3,t,i,j,W ,4 and H3,t,i,j,W ,5 are unchanged and hence the these two
hybrids are indistinguishable due to the function hiding security of IPFE. Moreover, it can be
observed that H3,t,i,j,W ,5 ≡ H3,t′,i′,j′,W ′,3 for (t′, i′, j′,W ′) = (t, i, j,W) + 1.

Therefore, in this sequence of hybrids for t ≤ T , we have H3,1,1,1,0S ,1 ≈ H3,T,N,S,1S ,5. Now,
we move to the next sequence of hybrids for t = T + 1 as depicted in Table 5.3.

Hybrid H̃3: It is identical to H3,T,N,S,1S ,5 except the position sim of ũk,T+1,i,j,W is zeroed
out and ṽk,q[sim] is set to sk,f [q] for all k ∈ IM . The inner products between the vectors are

unchanged in H3,T,N,S,1S ,5 and H̃3. Thus, the indistinguishability between these two hybrids is
ensured by the function security of IPFE.

Hybrid H̃3,i,j,W ,1: It proceeds identically to H̃3 except that for all (i′, j′,W ′) < (i, j,W),
ũk,T+1,i′,j′,W ′ has its values in rand and acc’s cleared, and that a random value sx[(T +
1, i′, j′,W ′)] is embedded in ũk,T+1,i′,j′,W ′ [sim].

Hybrid H̃3,i,j,W ,2: It proceeds exactly the same way as H̃3,i,j,W ,1 except that the values in
ũk,t,i,j,W are set to zero and its inner product with ṽk,q’s, i.e. the labels `k,T+1,i,j,W ,q for all
k, q, are hardcoded into ṽk,q’s as follows:

– The positions rand and acc of ũk,T+1,i,j,W are set to 0.
– The value at ũk,T+1,i,j,W [simtemp] is set to 1.
– The honest labels `k,T+1,i,j,W ,q = −rx[(T, i, j,W)]rk,f [q] +· · · are embedded in ṽk,q[sim

temp]
for each q ∈ [Q] and k ∈ IM where ”· · ·“ represents the term yk[q]z[k].

The inner products between the vectors are unchanged, and hence the indistinguishability
between the hybrids H̃3,i,j,W ,1 and H̃3,i,j,W ,2 is guaranteed by the function hiding security of
IPFE.

Hybrid H̃3,i,j,W ,3: It proceeds similar to H̃3,i,j,W ,2 except that the labels `k,T+1,i,j,W ,q are
changed to truly randomized values. We can invoke DDH assumption in G2 as before to show
the indistinguishability between the hybrids H̃3,i,j,W ,2 and H̃3,i,j,W ,3 since the random values
rx[(T, i, j,W)] and rk,f [q]’s only appear in the exponent of G2 and hence the label functions
can be truly randomized due to the special piecewise security of AKGS. Note that, the values
[[`k,init]]2 ← RevSamp(· · ·) can be efficiently computed in the exponent of G2.

Hybrid H̃3,i,j,W ,4: It proceeds identical to H̃3,i,j,W ,3 except the truly random labels `k,T+1,i,j,W ,q

for all q ∈ [Q], k ∈ IM are replaced by pseudorandom values sx[(T + 1, i, j,W)]sk,f [q]. The

hybrids H̃3,i,j,W ,3 and H̃3,i,j,W ,4 are indistinguishable due to the DDH assumption in G2.

43

Hybrid H̃3,i,j,W ,5: It proceeds exactly the same way as H̃3,i,j,W ,4 except the pseudoran-
dom labels `k,T+1,i,j,W ,q = sx[(T + 1, i, j,W)]sk,f [q] hardwired in ṽk,q[sim

temp]’s are split into
ũk,T+1,i,j,W [sim] (embedding the factor sx[(T + 1, i, j,W)]) and ṽk,q[sim]’s (embedding the

factor sk,f [q]). The inner products in the hybrids H̃3,i,j,W ,4 and H̃3,i,j,W ,5 are unchanged and
hence the these two hybrids are indistinguishable due to the function hiding security of IPFE.
Moreover, it can be observed that H̃3,i,j,W ,5 ≡ H̃3,i′,j′,W ′,3 for (i′, j′,W ′) = (i, j,W) + 1.

Therefore, in this sequence of hybrids for t = T + 1, we have H̃3,1,1,0S ,1 ≈ H̃3,N,S,1S ,5. Lastly,

we observe that H̃3,N,S,1S ,5 ≡ H4 and hence H2 ≈ H4 for the case of CT before SK. ut

Proof of Claim 5.2: The case of SK before CT for showing H2 ≈ H4 is more involved and
further difficulties arises since we have two independent IPFEs for each Turing machine in
contrast to the security analysis of [LL20] where only a single IPFE was sufficient.

The overall goal of the claim is to make all the label values `k,t,i,j,W ,q simulated by invoking
DDH similar to the case of CT before SK. However, since the secret key comes before the
challenge ciphertext and `k,init ← RevSamp(· · ·) is computed while encryption, we can only
apply DDH into the ciphertext vectors which are computed in the exponent of G1. Thus, we
have to move rk,f [q] into the ciphertext vectors. But, in this case, rk,f [q] of vk,q may appear
in (Mk,τrk,f)[q

′] of any vk,q′ depending on the transition block. Moreover, rk,f [q] also presents
in ṽk,q which are associated to second IPFE. Hence, in the security analysis, we must take care
of the following facts:

– The special piecewise security can only be applied in the increasing order of t for changing
`k,t,i,j,W ,q’s to their simulated form.

– More importantly, to simulate `k,t,i,j,W ,q for t ≤ T , all occurrence of rk,f [q] must be in the
ciphertext of both the IPFE. Also, we can not simulate `k,T+1,i,j,W ,q (in the second IPFE)
while simulating `k,t′,i,j,W ,q (in the first IPFE).

– There is not enough space in the ciphertext to embed all the rk,f [q]’s at the same time for
each k ∈ IM .

– The values rk,f [q] must not go away until all `k,t,i,j,W ,q’s are simulated. Indeed, rk,f [q] still
resides in vk,q′ ’s in H4, the end hybrid of the claim.

To deal with all these facts, we employ a strategy inspired from the proof technique of [LL20]
where they use a two-level loop over t, q with t ≤ T and switch, in the increasing order
of t, q, batches of NS2S label functions. That is, for fixed t, q and all i, j,W and for all
k ∈ IM , the batches of label values `k,t,i,j,W ,q are simulated by moving rk,f [q]’s back and
forth in each iteration. More precisely, in each iteration of t, q, when moving rk,f [q] into the
ciphertext vectors, we erase all its occurrence in the secret key vectors of both the IPFE and
must compensate some `t′,i,j,W ,q′ ’s for their loss of rk,f [q] using the indices with superscript
comp in the case of t′ ≤ T . Observe that, rk,f [q] only appears in the position rand of ṽk,q of the
second IPFE. Thus, it is not required to compensate the loss of rk,f [q] in any other `T+1,i,j,W ,q′ ’s.
However, rk,f [q] is still required to shift into the ciphertext vectors of the second IPFE. We
use the indices with superscript temp to hardcode the honest label values of `T+1,i,j,W ,q while
running the loop over t, q with t ≤ T . Finally, after the two-level loop running over t, q with
t ≤ T ends, we erase rk,f [q] from vk,q and run a separate loop over q in the increasing order
to simulate the labels `T+1,i,j,W ,q’s using the the indices with superscript temp in the second
IPFE.

44

We define modes of a label `t′,i,j,W ,q′ for ease of understanding the loops used in this claim.
The definitions of modes are similar to what used by [LL20]. There are three orthogonal group
of nodes:

– The first group is about the value of the label. A label is honest if its value Lt′,i,j,W ,q′(x) is
computed using the garbling randomness r = rx ⊗ rf . It is random if its value is sampled
uniformly at random. It is simulated if its value is sx[(t′, i, j,W)]sk,f [q

′].

– The second group is about where the terms rf and sf are placed while computing the labels
using the IPFEs. A label is normal (this is the default) if rf , sf are placed in the secret key.
It is compensated if rf [q], sf [q] are placed in the ciphertext with the other components of
rf , sf are still in the secret key (for simplicity, we note that this mode only appears in the
first IPFE). It is hardwired if the value (in its entirety) is hardwired in the ciphertext (for
simplicity, we note that this mode only appears to the labels with t′ = t, q′ = q).

– In the last group, a label is normal (default) if it is computed without indices with super-
script temp. It is temporary if it is computed with indices having superscript temp.

As discussed above, the first loop of this claim is a two-level loop with outer loop running
over t = 1, . . . , T (provided in Table 5.4) and the inner loop running over q = 1, . . . , Q (given in
Table 5.5). We call this part 1 of the proof. The second loop runs over q = 1, . . . , Q (described
in Table 5.6) and it is dedicated for simulating the label values `k,T+1,i,j,W ,q for all k ∈ IM .We
call this part 2 of the proof. In this hybrids, the secret key vectors v’s appear before the
ciphertext vectors u’s.

Part 1: The sequence of hybrids in the two-level loop (with t ≤ T, q ≤ Q) and their indistin-
guishability arguments.

Hybrid H3,t,1: It proceeds identically to H2 except that for all t′ < t ≤ T and all i, j,W ,
the vectors uk,t′,i,j,W have their values at rand and tbτ ’s cleared, and that a random value
sx[(t′, i, j,W)] is embedded in uk,t′,i,j,W [sim]. This means that all the labels for (t < t′ ≤
T, i, j,W) are simulated, the first label `k,init is reversely sampled and the rest are honestly
computed.

Hybrid H3,t,2: It proceeds exactly the same way as H3,t,1 except that the modes of `k,t,i,j,W ,q’s
(for all i, j,W , q with t ≤ T) are changed to honest and temporary, and that a random value
sx[(t, i, j,W)] is embedded in uk,t,i,j,W [simtemp] for all i, j,W . The change is implemented as
follows:

– The positions rand and tbτ of uk,t,i,j,W are copied to the positions randtemp and tbtemp
τ

respectively, and then the positions rand and tbτ are set to 0.

– The value at uk,t,i,j,W [simtemp] is set to sx[(t, i, j,W)]. It sets the stage for the inner loop
which will make the label values `k,t,i,j,W ,q’s as simulated and temporary.

– The positions rand and tbτ of vk,q are copied to the positions randtemp and tbtemp
τ respectively.

As one can verify that the inner products between the vectors are unchanged, the indistin-
guishability between the hybrids H3,t,1 and H3,t,2 is guaranteed by the function hiding security
of IPFE.

45

hybrid vector rand, tbτ randtemp, tbtemp
τ sim simtemp

H3,t,1

vk,q normal 0, 0 sk,f [q] 0

uk,t′<t,i,j,W 0, 0 0, 0 sx[(t′, i, j,W)] 0

uk,t,i,j,W normal 0, 0 0 0

uk,t′>t,i,j,W normal 0, 0 0 0

H3,t,2

≡
H3,t,3,1,,1

vk,q normal normal sk,f [q] 0

uk,t′<t,i,j,W 0, 0 0, 0 sx[(t′, i, j,W)] 0

uk,t,i,j,W 0, 0 normal 0 sx[(t, i, j,W)]

uk,t′>t,i,j,W normal 0, 0 0 0

H3,t,3,1∼Q,1∼5 · · · · · · · · · · · · · · ·

H3,t,4

≡
H3,t,3,Q,5

vk,q normal 0, 0 sk,f [q] sk,f [q]

uk,t′<t,i,j,W 0, 0 0, 0 sx[(t′, i, j,W)] 0

uk,t,i,j,W 0, 0 normal 0 sx[(t, i, j,W)]

uk,t′>t,i,j,W normal 0, 0 0 0

H3,t,5

≡
H3,t+1,1

vk,q normal 0, 0 sk,f [q] 0

uk,t′<t,i,j,W 0, 0 0, 0 sx[(t′, i, j,W)] 0

uk,t,i,j,W 0, 0 0, 0 sx[(t, i, j,W)] 0

uk,t′>t,i,j,W normal 0, 0 0 0

For brevity, uinit,vinit, ũk,T+1,i,j,W , ṽk,q,vk,q[acc] = 0,uk,t≤T,i,j,W [acc] = 0 are suppressed.

The reversely sampled `k,init is hardwired in uk,init:

`k,init ← RevSamp((Mk, 1
N , 1T , 12S),x,z[k]Mk(x) + βk, (`k,t,θk)t∈[T+1],θk∈CMk,N,S

)

The ”normal“ in rand, randtemp tbτ , tb
temp
τ

vk,q : −rk,f [q] (Mk,τrk,f)[q]

t ≤ T, uk,t,i,j,W : rx[(t− 1, i, j,W)] cτ (x, t, i, j,W ; rx)

In this iteration, the labels `k,t,i,j,W ,q with t are computed as:

t < t′ : simulated as sx[(t′, i, j,W)]sk,f [q] and computed using the slot sim

t = t′ : computed honestly using IPFE in H̃3,t,1

computed honestly via temporary slots randtemp, tbtemp
τ in H̃3,t,2

simulated and computed using the slot simtemp in H3,t,4

simulated and computed using the slot sim in H3,t,5

t′ > t : computed honestly using IPFE

Table 5.4: The outer loop hybrids running from t = 1 to T in the security proof of 1-UAWS
for the case where the ciphertext challenge comes after the secret key query.

Hybrid H3,t,4: It proceeds identical to H̃3,t,2 except that the modes of `k,t,i,j,W ,q’s (for all
i, j,W , q with t ≤ T) are changed from honest and temporary to simulated and temporary.
This is implemented by vk,q’s have their values cleared at randtemp, tbtemp

τ , and vk,q[sim
temp] is

set to sk,f [q]. We show that H3,t,2 ≈ H3,t,4 by a sequence of hybrids used by the inner loop.

Hybrid H3,t,5: It proceeds identical to H̃3,t,4 except that the modes of `k,t,i,j,W ,q’s (for all
i, j,W , q with t ≤ T) are changed from simulated and temporary to simulated. Moreover,
some clean-up work is done in preparation of the next iteration. The change is implemented
as follows:

46

– The positions randtemp, tbtemp
τ and simtemp of uk,t,i,j,W are set to 0.

– The value at uk,t,i,j,W [sim] is changed from 0 to sx[(t, i, j,W)].
– The positions simtemp of vk,q is set to 0.

Since the inner products between the vectors u’s and v’s are unchanged, the indistinguisha-
bility between the hybrids H3,t,4 and H3,t,4 is ensured by the function hiding security of IPFE.
We observe that H3,1,1 ≡ H2 and H3,t,5 ≡ H3,t+1,1.

Now, we discuss the hybrids of the inner loop running over q = 1, . . . , Q, which switches
the mode of `k,t,i,j,W ,q from honest and temporary to simulated and temporary.

Hybrid H3,t,3,q,1: It proceeds identical to H3,t,2, except that for q′ < q, all the vk,q′ have their
values at randtemp, tbtemp

τ ’s cleared, and the value sk,f [q
′] is embedded at vk,q′ [sim

temp]. This
means that the labels `k,t,i,j,W ,q′ for all i, j,W with t ≤ T and q′ < q have been changed from
honest and temporary to simulated and temporary.

Hybrid H3,t,3,q,2: It proceeds identical to H3,t,3,q,1 except that all occurrence of rk,f [q] and
sk,f [q] are moved from vk,q′ ’s to uk,t′,i,j,W ,q’s using the compensation identity (Notes of Ta-
ble 5.5, Equation (5.1)), for all q′ 6= q. Further, to make ṽk,q free of rk,f [q], it’s positions
rand, acc are set to zero and simtemp is set to 1, and the labels `k,T+1,i,j,W ,q’s are hardwired at
simtemp of ũk,T+1,i,j,W (hence they are in honest and hardwired mode). Thus, the labels with
q′ = q or (T ≥)t′ > t or q′ > q are computed using the compensation identity on top of their
existing mode, and the labels `k,t,i,j,W ,q for all i, j,W become honest and hardwired (more
specifically, hardwired in uk,t,i,j,W [simcomp]). The inner products between u, ũ’s and v, ṽ’s are
unchanged due to these modifications. Hence, the indistinguishability between the hybrids
H3,t,3,q,1 and H3,t,3,q,2 follows from the function hiding security of IPFE.

Hybrid H3,t,3,q,3: It proceeds identical to H3,t,3,q,2 except the labels `k,t,i,j,W ,q (for all i, j,W
with t ≤ T) hardwired in uk,t,i,j,W [simcomp] become random and hardwired. The hybrids H3,t,3,q,2

and H3,t,3,q,3 are indistinguishable by the DDH assumption in G1.

Hybrid H3,t,3,q,4: It proceeds identical to H3,t,3,q,3 except the labels `k,t,i,j,W ,q (for all i, j,W
with t ≤ T) hardwired in uk,t,i,j,W [simcomp] become simulated and hardwired, i.e. `k,t,i,j,W ,q =
sx[(t, i, j,W)]sk,f [q]. The hybrids H3,t,3,q,3 and H3,t,3,q,4 are again indistinguishable by the DDH
assumption in G1.

Hybrid H3,t,3,q,5: It proceeds identical to H3,t,3,q,4 except that all occurrences of rk,f [q] and
sk,f [q] are moved back to vk,q’s, and in the second IPFE, all the vectors are restored back to
their initial form, i.e. rk,f [q] is moved back to ṽk,q. Further, some clean-up work is done in order
to prepare the vectors for the next iteration. The values at the position simcomp of the vectors
vk,q and uk,t,i,j,W are cleared, which means that the labels lose their compensation mode and
the labels `k,t,i,j,W ,q (for all i, j,W with t ≤ T) become simulated and temporary. Also, the
values at the position simtemp of ṽk,q and ũk,T+1,i,j,W are cleared, which in turn ensures that the
labels `k,T+1,i,j,W ,q’s are changed from honest hardwired to honest mode. It is easy to see that
inner products between u, ũ’s and v, ṽ’s are unchanged, and hence the indistinguishability
between the hybrids H3,t,3,q,4 and H3,t,3,q,5 follows from the function hiding security of IPFE.
We observe that H3,t,3,q,5 ≡ H3,t,3,q+1,1, and hence H3,t,2 ≈ H3,t,4 in the outer loop hybrids of
Table 5.4.

47

48

hybrid vector
rand, randcomp

tbτ , tb
comp
τ

randtemp, randtemp,comp,
tbtemp
τ , tbtemp,comp

τ
sim simtemp simcomp

H3,t,3,q,1

vk,q′<q normal 0, 0, 0, 0 sk,f [q′] sk,f [q′] 0

vk,q normal normal sk,f [q] 0 0

vk,q′>q normal normal sk,f [q′] 0 0

uk,t′<t,i,j,W 0, 0, 0, 0 0, 0, 0, 0 sx[(t′, i, j,W)] 0 0

uk,t,i,j,W 0, 0, 0, 0 normal 0 sx[(t, i, j,W)] 0

uk,t′>t,i,j,W normal 0, 0, 0, 0 0 0 0

rand, acc sim simtemp

ṽk,q′<q normal 0 0

ṽk,q normal 0 0

ṽk,q′>q normal 0 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)] 0

H3,t,3,q,2

vk,q′<q 7rk,f [q] 0, 0, 0, 0 sk,f [q′] sk,f [q′] 0

vk,q 7rk,f [q] 0, 0, 0, 0 0 0 1

vk,q′>q 7rk,f [q] 7rk,f [q] sk,f [q′] 0 0

uk,t′<t,i,j,W 0, 0, 0, 0 0, 0, 0, 0 sx[(t′, i, j,W)] 0 sx[(t′, i, j,W)]sk,f [q]

uk,t,i,j,W 0, 0, 0, 0 3rk,f [q] 0 sx[(t, i, j,W)]
honest `k,t,i,j,W ,q

= −rx[(t− 1, i, j,W)]rk,f [q] +· · ·

uk,t′>t,i,j,W 3rk,f [q] 0, 0, 0, 0 0 0 0

rand, acc sim simtemp

ṽk,q′<q normal 0 0

ṽk,q 0, 0 0 1

ṽk,q′>q normal 0 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)]
honest `k,T+1,i,j,W ,q

= −rx[(T, i, j,W)]rk,f [q] +· · ·

H3,t,3,q,3

vk,q′<q 7rk,f [q] 0, 0, 0, 0 sk,f [q′] sk,f [q′] 0

vk,q 7rk,f [q] 0, 0, 0, 0 0 0 1

vk,q′>q 7rk,f [q] 7rk,f [q] sk,f [q′] 0 0

uk,t′<t,i,j,W 0, 0, 0, 0 0, 0, 0, 0 sx[(t′, i, j,W)] 0 sx[(t′, i, j,W)]sk,f [q]

uk,t,i,j,W 0, 0, 0, 0 3rk,f [q] 0 sx[(t, i, j,W)] `k,t,i,j,W ,q
$←− Zp

uk,t′>t,i,j,W 3rk,f [q] 0, 0, 0, 0 0 0 0

rand, acc sim simtemp

ṽk,q′<q normal 0 0

ṽk,q 0, 0 0 1

ṽk,q′>q normal 0 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)]
honest `k,T+1,i,j,W ,q

= −rx[(T, i, j,W)]rk,f [q] +· · ·
The table is continued to the next page...

49

hybrid vector
rand, randcomp

tbτ , tb
comp
τ

randtemp, randtemp,comp,
tbtemp
τ , tbtemp,comp

τ
sim simtemp simcomp

H3,t,3,q,4

vk,q′<q 7rk,f [q] 0, 0, 0, 0 sk,f [q′] sk,f [q′] 0

vk,q 7rk,f [q] 0, 0, 0, 0 0 0 1

vk,q′>q 7rk,f [q] 7rk,f [q] sk,f [q′] 0 0

uk,t′<t,i,j,W 0, 0, 0, 0 0, 0, 0, 0 sx[(t′, i, j,W)] 0 sx[(t′, i, j,W)]sk,f [q]

uk,t,i,j,W 0, 0, 0, 0 3rk,f [q] 0 sx[(t, i, j,W)]
simulated `k,t,i,j,W ,q

= sx[(t, i, j,W)]sk,f [q]

uk,t′>t,i,j,W 3rk,f [q] 0, 0, 0, 0 0 0 0

rand, acc sim simtemp

ṽk,q′<q normal 0 0

ṽk,q 0, 0 0 1

ṽk,q′>q normal 0 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)]
honest `k,T+1,i,j,W ,q

= −rx[(T, i, j,W)]rk,f [q] +· · ·

H3,t,3,q,5

≡
H3,t,3,q+1,1

vk,q′<q normal 0, 0, 0, 0 sk,f [q′] sk,f [q′] 0

vk,q normal 0, 0, 0, 0 sk,f [q] sk,f [q] 0

vk,q′>q normal normal sk,f [q′] 0 0

uk,t′<t,i,j,W 0, 0, 0, 0 0, 0, 0, 0 sx[(t′, i, j,W)] 0 0

uk,t,i,j,W 0, 0, 0, 0 normal 0 sx[(t, i, j,W)] 0

uk,t′>t,i,j,W normal 0, 0, 0, 0 0 0 0

rand, acc sim simtemp

ṽk,q′<q normal 0 0

ṽk,q normal 0 0

ṽk,q′>q normal 0 0

ũk,T+1,i,j,W normal sx[(T + 1, i, j,W)] 0

For brevity, uinit,vinit,vk,q[acc] = 0,uk,t≤T,i,j,W [acc] = 0 are suppressed.

For brevity, uinit,vinit,vk,q[acc] = 0,uk,t≤T,i,j,W [acc] = 0 are suppressed. The reversely sampled `k,init is

hardwired in uk,init, and is only needed (and can only be computed so by the reduction) in the

exponent of G1:

[[`k,init]]1 ← RevSamp((Mk, 1
N , 1T , 12S),x, [[z[k]Mk(x) + βk]]1, ([[`k,t,θk]]1)t∈[T+1],θk∈CMk,N,S

).

The omitted term “· · · ”: uk,t,i,j,W [simcomp] = (Mk,τrk,f)[q] and ũk,T+1,i,j,W [simtemp] = yk[q]z[k].

The ”normal“ in rand, randtemp tbτ , tb
temp
τ

randcomp, randtemp,comp,
tbcomp
τ , tbtemp,comp

τ

vk,q : −rk,f [q] (Mk,τrk,f)[q] 0

t′ ≤ T, uk,t′,i,j,W : rx[(t′ − 1, i, j,W)] cτ (x, t′, i, j,W ; rx) 0

The ”normal“ in ṽk,q[rand] = −rk,f [q], ũk,T+1,i,j,W [rand] = rx[(T, i, j,W)]

ṽk,q[acc] = yk[q], ũk,T+1,i,j,W [acc] = z[k]

Table 5.5: The inner loop hybrids in the security proof of 1-UAWS for the case where the
ciphertext challenge comes after the secret key query (the note continues to the next page).

The compensation (7rk,f [q],3rk,f [q]) components in ...

rand? rand?,comp tb?
τ tb?,comp

τ

q′ 6= q, vk,q′ : −rk,f [q′] 0 (Mk,τ (rk,f − rk,f [q]eq))[q′] (Mk,τeq)[q′]

vk,q : 0 −1 (Mk,τ (rk,f − rk,f [q]eq))[q] (Mk,τeq)[q]

t′ < t, uk,t′,i,j,W : rx[(t′ − 1, i, j,W)] rx[(t′ − 1, i, j,W)]rk,f [q] cτ (x, t′, i, j,W ; rx) cτ (x, t′, i, j,W ; rx)rk,f [q]

t ≤ T, uk,t,i,j,W : rx[(t′ − 1, i, j,W)] 0 cτ (x, t, i, j,W ; rx) cτ (x, t, i, j,W ; rx)rk,f [q]

In the above table, “?” is either nothing or “temp”, i.e., if the values are set in both non-temporary and

temporary slots, they are the same. Note that, rk,f − rk,f [q]eq is simply rk,f with its qth entry changed

to 0, whence rk,f [q] does not appear. The compensation is governed by the following identity for t′ ≤ T :

`t′,i,j,W ,q′ = rx[(t′ − 1, i, j,W)]rk,f [q′] +
∑
τ∈T cτ (x, t′, i, j,W ; rx)(Mk,τ (rk,f − rk,f [q]eq + rk,f [q]eq))[q]

= rx[(t′ − 1, i, j,W)]rk,f [q′] +
∑
τ∈T cτ (x, t′, i, j,W ; rx)(Mk,τ (rk,f − rk,f [q]eq)[q]

+
∑
τ∈T

cτ (x, t′, i, j,W ; rx)rk,f [q] · (Mk,τeq)[q
′] (5.1)

In this iteration, the labels `k,t′,i,j,W ,q′ with (t′, q′) are computed as:

q′ < q q′ = q q′ > q

t′ < t ≤ T : S S→ SC→ S S

t′ = t ≤ T : ST HT→ HW→ RW→ SW→ ST HT→ HCT→ HT

T ≥ t′ > t : H→ HC→ H H→ HC→ H H→ HC→ H

t′ = T + 1 : H H→ HW→ HW→ HW→ H H

The shorthands are Honest, Random, Simulated, Compensated, hardWired, Temporary.

The net effect is that `k,t≤T,i,j,W ,q’s change from honest and temporary to simulated and temporary.

Note that, in this iteration, `k,T+1,i,j,W ,q′ ’s are unchanged for all q′.

The value `k,T+1,i,j,W ,q′=q is honest and hard wired in the intermediate hybrids H3,t,3,q,2∼4.

Table 5: The remaining notes.

Note that, the two-level loop ends with the hybrid H3,T,5 where the labels `k,t,i,j,W ,q for all
t ≤ T and for all i, j,W are simulated. We now go to the part 2 of the proof.

Part 2: The sequence of hybrids in the second loop running over q = 1, . . . , Q (for simulating
the labels associated to t = T + 1) with two additional hybrids and their indistinguishability
arguments.

Hybrid H̃3: It identical to H3,T,5 except the positions rand, tbτ of vk,q are set to zero (in the
first IPFE), and the positions rand, acc of the vectors ṽk,q’s and ũk,T+1,i,j,W ’s are copied to
their counterparts with superscript temp. Moreover, the positions rand, acc of ũk,T+1,i,j,W ’s are
cleared, which means that the labels `k,T+1,i,j,W ,q’s are in honest and temporary mode. The
inner products between u, ũ’s and v, ṽ’s are unchanged, and hence the indistinguishability
between the hybrids H3,T,5 and H̃3 is guaranteed by the function hiding security of IPFE.

Hybrid H̃3,q,1: It proceeds identical to H̃3 except that for q′ < q, all the ṽk,q′ have their values
at randtemp, acctemp’s cleared, and the value sk,f [q

′] is embedded at ṽk,q′ [sim]. This means that
the labels `k,T+1,i,j,W ,q′ for all i, j,W and q′ < q have been changed from honest and temporary
to simulated.

Hybrid H̃3,q,2: It proceeds identical to H̃3,q,1 except that the positions rand, acc,
randtemp, acctemp of ṽk,q are cleared and ṽk,q[sim

temp] is set to 1. Further, the labels `k,T+1,i,j,W ,q

50

hybrid vector rand, tbτ randtemp, tbtemp
τ sim simtemp

H̃3

vk,q 0, 0 0, 0 sk,f [q] 0

uk,t≤T,i,j,W 0, 0 0, 0 sx[(t, i, j,W)] 0

rand, acc randtemp, acctemp sim simtemp

ṽk,q normal normal 0 0

ũk,T+1,i,j,W 0, 0 normal sx[(T + 1, i, j,W)] 0

rand, acc randtemp, acctemp sim simtemp

H̃3,q,1

ṽk,q′<q normal 0, 0 sk,f [q′] 0

ṽk,q normal normal 0 0

ṽk,q′>q normal normal 0 0

ũk,T+1,i,j,W 0, 0 normal sx[(T + 1, i, j,W)] 0

H̃3,q,2

ṽk,q′<q normal 0, 0 sk,f [q′] 0

ṽk,q 0, 0 0, 0 0 1

ṽk,q′>q normal normal 0 0

ũk,T+1,i,j,W 0, 0 normal sx[(T + 1, i, j,W)]
honest `k,T+1,i,j,W ,q

= −rx[(T, i, j,W)]rk,f [q] +· · ·

H̃3,q,3

ṽk,q′<q normal 0, 0 sk,f [q′] 0

ṽk,q 0, 0 0, 0 0 1

ṽk,q′>q normal normal 0 0

ũk,T+1,i,j,W 0, 0 normal sx[(T + 1, i, j,W)] `k,T+1,i,j,W ,q
$←− Zp

H̃3,q,4

ṽk,q′<q normal 0, 0 sk,f [q′] 0

ṽk,q 0, 0 0, 0 0 1

ṽk,q′>q normal normal 0 0

ũk,T+1,i,j,W 0, 0 normal sx[(T + 1, i, j,W)]
simulated `k,T+1,i,j,W ,q

= sx[(T + 1, i, j,W)]sk,f [q]

H̃3,q,5

≡
H̃3,q+1,1

ṽk,q′<q normal 0, 0 sk,f [q′] 0

ṽk,q normal 0, 0 sk,f [q] 0

ṽk,q′>q normal normal 0 0

ũk,T+1,i,j,W 0, 0 normal sx[(T + 1, i, j,W)] 0

hybrid vector rand, tbτ randtemp, tbtemp
τ sim simtemp

H̃4

vk,q normal 0, 0 sk,f [q] 0

uk,t≤T,i,j,W 0, 0 0, 0 sx[(t, i, j,W)] 0

rand, acc randtemp, acctemp sim simtemp

ṽk,q normal 0, 0 sk,f [q] 0

ũk,T+1,i,j,W 0, 0 0, 0 sx[(T + 1, i, j,W)] 0

Table 5.6: The hybrid H̃3 followed by the loop hybrids and H̃4 in the security proof of 1-UAWS
for the case where the ciphertext challenge comes after the secret key query.

(for all i, j,W) are hardwired at simtemp of ũk,T+1,i,j,W , which means the labels are in honest
and hardwired mode. The inner products between ũ’s and ṽ’s are unchanged due to these
modifications. Hence, the indistinguishability between the hybrids H̃3,q,1 and H̃3,q,2 follows
from the function hiding security of IPFE.

51

For brevity, uinit,vinit,vk,q,uk,t≤T,i,j,W are suppressed.

The reversely sampled `k,init is hardwired in uk,init, and is only needed (and can only be computed

so by the reduction) in the exponent of G1:

[[`k,init]]1 ← RevSamp((Mk, 1
N , 1T , 12S),x, [[z[k]Mk(x) + βk]]1, ([[`k,t,θk]]1)t∈[T+1],θk∈CMk,N,S

).

The omitted term “· · · ”: ũk,T+1,i,j,W [simtemp] = yk[q]z[k].

The ”normal“ in rand, randtemp acc, acctemp

ṽk,q : −rk,f [q] yk[q]

uk,T+1,i,j,W : rx[(T, i, j,W)] z[k]

In this iteration, the labels `k,T+1,i,j,W ,q′ with q′ are computed as:

q′ < q q′ = q q′ > q

H̃3 : HT HT HT

H̃3,q,1∼5 : S HT→ HW→ RW→ SW→ S HT

H̃4 : S S S

The shorthands are Honest, Random, Simulated, hardWired, Temporary.

The net effect is that `k,T+1,i,j,W ,q’s change from honest and temporary to simulated.

Note that, in this iteration, `k,t≤T,i,j,W ,q’s are unchanged for all q and are already simulated.

The hybrid H̃3 starts after the outer loop of Table 5.4 finishes, i.e. after the hybrid H3,T,5 and the

hybrid H̃4 is identical to the hybrid H4 (c.f.Table 5.1).

The notes of Table 5.6.

Hybrid H̃3,q,3: It proceeds identical to H̃3,q,2 except the labels `k,T+1,i,j,W ,q (for all i, j,W)

hardwired in ũk,T+1,i,j,W [simtemp] become random and hardwired. The hybrids H̃3,q,2 and H̃3,q,3

are indistinguishable by the DDH assumption in G1.

Hybrid H̃3,q,4: It proceeds identical to H̃3,q,3 except the labels `k,T+1,i,j,W ,q (for all i, j,W)
hardwired in ũk,T+1,i,j,W [simtemp] become simulated and hardwired, i.e. `k,T+1,i,j,W ,q = sx[(T +

1, i, j,W)]sk,f [q]. The hybrids H̃3,q,3 and H̃3,q,4 are again indistinguishable by the DDH as-
sumption in G1.

Hybrid H̃3,q,5: It proceeds identical to H̃3,q,4 except that all occurrences of rk,f [q] and sk,f [q]
are moved back to ṽk,q’s, and some clean-up work is done in order to prepare the vectors for the
next iteration. The values at the position simtemp of the vectors ṽk,q and ũk,T+1,i,j,W are cleared,
which means that the labels `k,T+1,i,j,W ,q (for all i, j,W) become simulated. It is easy to see
that inner products between ũ’s and ṽ’s are unchanged, and hence the indistinguishability
between the hybrids H̃3,q,4 and H̃3,q,5 follows from the function hiding security of IPFE. We

observe that H̃3,q,5 ≡ H̃3,q+1,1.

Hybrid H̃4: It is identical to H̃3,Q,5 except rk,f [q]’s are put back to vk,q’s and the positions
randtemp, acctemp of ũk,T+1,i,j,W are set to zero. The inner products between u, ũ’s and v, ṽ’s are

unchanged, and hence the indistinguishability between the hybrids H̃3,Q,5 and H̃4 is guaranteed
by the function hiding security of IPFE.

Lastly, we note that H3,1,1 ≡ H2 and H̃4 ≡ H4 (cf. Table 5.1). Therefore, H2 ≈ H4 in the
case of SK before CT. ut

52

6 1-Slot FE for Unbounded AWS for L

In this section, we construct a public key 1-slot FE scheme for the unbounded attribute-weighted
sum functionality for L. The scheme satisfies the same properties as of the SK-UAWSL

(1,1,1).
However, the public key scheme supports releasing polynomially many secret keys and a single
challenge ciphertext, hence we denote the scheme as PK-UAWSL

(poly,1,1).
Along with the AKGS for Logspace Turing machines we require a function-hiding slotted

IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec) based on G, where G =
(G1,G2,GT, g1, g2, e) is pairing group tuple of prime order p.

6.1 The Construction

We now describe the PK-UAWSL
(poly,1,1) = (Setup,KeyGen,Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and define the slots
for generating two pair of IPFE master keys as follows:

Spub =
{
index1, index2, pad, init

pub, randpub, accpub
}
∪ {tbpubτ |τ ∈ T },

Scopy = {initcopy, randcopy} ∪ {tbcopyτ |τ ∈ T },
Spriv = Scopy ∪ S1-UAWS ∪ {padcopy, padtemp, accperm, simcopy},
S̃pub ={index1, index2, rand

pub, accpub},
S̃1,copy ={randcopy1 , acccopy1 }, S̃2,copy = {randcopy2 , acccopy2 },
S̃priv = S̃1,copy ∪ S̃2,copy ∪ S̃1-UAWS ∪ {simcopy}

It generates (IPFE.MPK, IPFE.MSK)← IPFE.Setup(Spub,Spriv) and (IPFE.M̃PK, IPFE.M̃SK)←
IPFE.Setup(S̃pub, S̃priv) and returns MSK = (IPFE.MSK, IPFE.M̃SK) and MPK = (IPFE.MPK,

IPFE.M̃PK).

KeyGen(MSK, (M , IM)): On input the master secret key MSK = (IPFE.MSK, IPFE.M̃SK)
and a function tuple M = (Mk)k∈IM indexed w.r.t. an index set IM ⊂ N of arbitrary size,
it parses Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM and samples the set of elements{

α, βk ← Zp | k ∈ IM ,
∑
k

βk = 0 mod p

}
.

It computes a secret key IPFE.SKpad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the following
vector vpad:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vpad 0 0 α 0 0 0 0 0

For all k ∈ IM , do the following:
1. For Mk = (Qk,yk, δk), compute transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,∀τ ∈ Tk.
2. Sample independent random vector rk,f ← ZQkp and a random element πk ∈ Zp.
3. For the following vector vk,init, compute a secret key IPFE.SKk,init ← IPFE.KeyGen(

IPFE.MSK, [[vk,init]]2):

53

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vk,init πk k · πk 0 rk,f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2)

where the vectors vk,q, ṽk,q are defined as follows:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
vk,q πk k · πk 0 0 −rk,f [q] 0 (Mk,τrk,f)[q] 0

vector index1 index2 randpub accpub in S̃priv
ṽk,q k k · πk −rk,f [q] α · yk[q] 0

Finally, it returns the secret key as

SK(M ,IM) =

(
(M , IM), IPFE.SKpad,

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
.

Enc(MPK, (x, 1T , 12S), z): On input the master public key MPK = (IPFE.MPK,

IPFE.M̃PK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with time and
space complexity bounds given by T, S ≥ 1 (as 1T , 12S) respectively, and the private at-
tribute z ∈ Znp for some arbitrary n ≥ 1, it samples s ← Zp and compute a ciphertext
IPFE.CTpad ← IPFE.Enc(IPFE.MPK, [[upad]]1) for the vector upad :

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
upad 0 0 s 0 0 0 0 0

Next, it does the following:

1. Sample a random vector rx ← Z[0,T]×[N]×[S]×{0,1}S
p .

2. For each k ∈ [n], do the following:
(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK, [[uk,init]]1) for the vec-

tor uk,init:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
uk,init −k · ρk ρk 0 s · rx[(0, 1, 1,0S)] 0 s 0 ⊥

(c) For all t ∈ [T], i ∈ [N], j ∈ [S],W ∈ {0, 1}S, do the following:

(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx.
(ii) Compute IPFE.CTk,t,i,j,W ← IPFE.SlotEnc(IPFE.MPK, [[uk,t,i,j,W]]1) for the vector

uk,t,i,j,W :

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv
uk,t,i,j,W −k · ρk ρk 0 0 s · rx[(t− 1, i, j,W)] 0 s · cτ (x; t, i, j,W ; rx) ⊥

54

(d) For t = T+1, and for all i ∈ [N], j ∈ [S],W ∈ {0, 1}S, compute ˜IPFE.CTk,T+1,i,j,W ←
IPFE.SlotEnc(IPFE.M̃PK, [[ũk,T+1,i,j,W]]1) for the vector ũk,T+1,i,j,W :

vector index1 index2 randpub accpub in S̃priv
ũk,T+1,i,j,W −k · ρk ρk s · rx[(T, i, j,W)] s · z[k] ⊥

3. Finally, it returns the ciphertext as

CT(x,T,S) =

(
(x, T, S) , n, IPFE.CTpad,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

Dec(SK(M ,IM),CT(x,T,S)): On input a secret key SK(M ,IM) and a ciphertext CT(x,T,S), do the
following:
1. Parse SK(M ,IM) and CT(x,T,S) as follows:

SK(M ,IM) =

(
((Mk)k∈IM , IM) , IPFE.SKpad,

{
IPFE.SKk,init,{

IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}
k∈IM

)
,Mk = (Qk,yk, δk),

CT(x,T,S) =

(
(x, T, S) , n, IPFE.CTpad,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

2. Output ⊥, if IM 6⊂ [n]. Else, select the sequence of ciphertexts for the indices k ∈ IM
as

CT(x,T,S) =

(
(x, T, S) ,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈IM ,i∈[N],j∈[S],W∈{0,1}S

)
.

3. Use the IPFE decryption to obtain [[µpad]]T ← IPFE.Dec(IPFE.SKpad, IPFE.CTpad).
4. Recall that ∀k ∈ IM , CMk,N,S = [N] × [S] × {0, 1}S × [Qk], and that we denote any

element in it as θk = (i, j,W , q) ∈ CMk,N,S where the only component in the tuple θk
depending on k is q ∈ [Qk]. Invoke the IPFE decryption to compute all label values as:

∀k ∈ IM : [[`k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)
∀k ∈ IM , t ∈ [T], θk = (i, j,W , q) ∈ CMk,N,S :

[[`k,t,θk]]T = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,t,i,j,W)
∀k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S :

[[`k,T+1,θk]]T = IPFE.Dec(˜IPFE.SKk,q, ˜IPFE.CTk,T+1,i,j,W)

5. Next, invoke the AKGS evaluation procedure and obtain the combined value

[[µ]]T =
∏
k∈IM

Eval

((
Mk, 1

N , 1T , 12S , p
)
,x, [[`k,init]]T,

{
[[`k,t,θk]]T

}
t∈[T+1],θk∈CMk,N,S

)

55

6. Finally, it returns µ′ such that [[µ]]T = ([[µpad]]T)µ
′
, where gT = e(g1, g2). Similar to

[AGW20], we assume that the desired attribute-weighted sum lies within a specified
polynomial-sized domain so that µ′ can be searched via brute-force.

The correctness of our PK-UAWSL
(poly,1,1) can be shown similarly to our secret key scheme of

the previous section.

Correctness: The first step is to observe that all the AKGS label values are correctly com-
puted for the Turing machines Mk with the fixed input x. This holds by the correctness of IPFE
and AKGS encoding of the iterated matrix-vector product representing any TM computation.
The next (and final) correctness follows from the linearity of AKGS.Eval.

First, by the correctness of IPFE, the decryption recovers [[µpad]]T = [[sα]]T from IPFE.SKpad

and IPFE.CTpad. Next, for all k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S, let Lk,init, Lk,t,θk be the
label functions corresponding to the AKGS garbling of Mk = (Qk,yk, δk). By the definitions
of vectors vk,init,uinit and the correctness of IPFE, we have

`k,init = (−kρkπk + kπkρk) + s · rx[(0, 1, 1,0S)]rk,f [1] + s · βk
= s · (r0[(1, 1,0S, 1)] + βk)

= s · (eT(1,1,0S ,1)r0 + βk) = s · Lk,init(x).

Next, ∀k ∈ IM , t ∈ [T], q ∈ [Qk], the structures of vk,q,ut,i,j,W and the correctness of IPFE
yields

`k,t,i,j,W ,q =(−kρkπk + kπkρk)− s · rx[(t− 1, i, j,W)]rk,f [q]

+
∑
τ∈T

s · cτ (x; t, i, j,W ; rx)(Mk,τrk,f)[q]

=− s · rt−1[(i, j,W , q)] + s ·

(∑
τ∈T

cτ (x; t, i, j,W ; rx)Mk,τrk,f

)
[q]

=s · Lk,t,i,j,W ,q(x)

When t = T + 1, ∀k ∈ IM , q ∈ [Qk], the vectors ṽk,q, ũk,T+1,i,j,W and the ĨPFE correctness
again yields

`k,T+1,i,j,W ,q = (−kρkπk + kπkρk)− s · rx[(T, i, j,W)]rk,f [q] + αs · z[k]yk[q]

= −s · (rT [(i, j,W , q)] + αz[k]
(
1[N]×[S]×{0,1}S ⊗ yk

)
[(i, j,W , q)])

= s · Lk,T+1,i,j,W ,q(x).

The above label values are computed in the exponent of the target group GT. Once all these
are generated correctly, the linearity of Eval implies that the garbling can be evaluated in the
exponent of GT. Thus, this yields

[[µ]]T =
∏
k∈IM

Eval

((
Mk, 1

N , 1T , 12S , p
)
,x, [[`k,init]]T,

{
[[`k,t,θk]]T

}
t∈[T+1],θk∈CMk,N,S

)
= [[

∑
k∈IM

Eval((Mk, 1
N , 1T , 12S , p),x, `k,init, {`k,t,θk}t∈[T+1],θk∈CMk,N,S)]]T

56

= [[s ·
∑
k∈IM

(αz[k] ·Mk|N,T,S(x) + βk)]]T

= [[sα ·
∑
k∈IM

z[k] ·Mk|N,T,S(x)]]T = [[sα ·M (x)>z]]T

Finally, sinceM (x)>z is in polynomial range the decryption recovers it by solving the equation
[[µ]]T = ([[µpad]]T)µ

′
for µ′ through exhaustive search over the specified range.

6.2 Security Analysis

We first describe the simulator of our public key 1-slot UAWS scheme. The Setup∗ works
exactly the same as honest Setup in the original scheme. Let the simulated master keys are

MSK∗ = (IPFE.MSK∗, IPFE.M̃SK
∗
) and MPK∗ = (IPFE.MPK∗, IPFE.M̃PK

∗
). We assume that

there are total Φ number of secret key queries and Φpre be the number of secret keys appears
before the challenge ciphertext is computed. Without loss of generality, we assume that the
number of states is the same for all the Turing machine in a particular secret key. Let nmax

be the maximum length of z allowed to the adversary A. We assume nmax = polyλ as A
is a polynomial time algorithm. The simulator guesses n which is the length of the private
attribute z. The remaining algorithms are as follows:

KeyGen∗0(MSK∗, (Mφ,IMφ
)): On input the simulated master secret key MSK∗ = (IPFE.MSK∗,

IPFE.M̃SK
∗
) and a function tuple Mφ = (Mφ,k)k∈IMφ

indexed w.r.t. an index set IMφ
⊂ N of

arbitrary size, it parses Mφ,k = (Qφ,yk, δk) ∈ TM ∀k ∈ IM and proceeds as follows:

1. Sample the set of elements{
αφ, α̂φ, βφ,k, β̂φ,k ← Zp | k ∈ IM ,

∑
k

βφ,k = 0 mod p,
∑
k

β̂φ,k = 0 mod p

}
2. Compute IPFE.SKφ,pad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the vector vφ,pad defined as

vector pad padcopy
other

indices

vpad αφ α̂φ 0

3. For each k ∈ IM , do the following:

3.1 For Mφ,k = (Qφ,yk, δk), compute its transition blocks Mφ,k,τ ∈ {0, 1}Qφ×Qφ ,∀τ ∈ Tk.
3.2 Sample independent random vector rφ,k,f ← ZQφp and a random element πk ∈ Zp.
3.3 Compute IPFE.SKφ,k,init ← IPFE.KeyGen(IPFE.MSK, [[vk,init]]2) for the vector vφ,k,init de-

fined as

vector index1 index2 initpub accpub initcopy acccopy
other

indices

vφ,k,init πφ,k k · πφ,k rφ,k,f [1] βφ,k r̂φ,k,f1 β̂φ,k 0

3.4 For each q ∈ [Qφ], compute IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.MSK, [[vφ,k,q]]2) and

˜IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽφ,k,q]]2) where the vectors vφ,k,q, ṽφ,k,q are de-
fined as

57

vector index1 index2 randpub tbpubτ randcopy tbcopyτ

other
indices

vφ,k,q πk k · πφ,k rφ,k,f [q] (Mφ,k,τrφ,k,f)[q] r̂φ,k,f [q] (Mφ,k,τ r̂φ,k,f)[q] 0

vector index1 index2 randpub accpub randcopy2 acccopy2

other
indices

ṽφ,k,q k k · πφ,k −rφ,k,f [q] αφ · yk[q] −r̂φ,k,f [q] α̂φ · yk[q] 0

Finally, it returns the secret key as

SK(Mφ,IMφ
) =

(
(Mφ, IMφ

), IPFE.SKφ,pad,
{
IPFE.SKφ,k,init,

{
IPFE.SKφ,k,q, ˜IPFE.SKφ,k,q}q∈[Qφ]

}
k∈IMφ

)
.

Enc∗(MPK∗,MSK∗, (x, 1T , 12S),V, n): On input the master public key MPK = (IPFE.MPK,

IPFE.M̃PK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with time and space com-
plexity bounds given by T, S ≥ 1 (as 1T , 12S) respectively, a set V = {(Mφ, IMφ

),Mφ(x)>z}φ∈Φpre

and the length of the private arbitrary n ∈ N, it proceeds as follows:

1. samples s← Zp and compute a ciphertext IPFE.CTpad ← IPFE.Enc(IPFE.MPK, [[upad]]1) for
the vector upad :

vector in Spub padcopy
other

indices

upad 0 1 0

2. Sample random vectors rx,← Z[0,T]×[N]×[S]×{0,1}S
p and sx ← Z[T+1]×[N]×[S]×{0,1}S

p .
3. For each k ∈ [n], do the following:

(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK, [[uk,init]]1) for the vector

uk,init:

vector index1 index2 initcopy acccopy simcopy other
indices

uk,init −k · ρk ρk rx[(0, 1, 1,0S)] 1 1 0

(c) For all t ∈ [T], i ∈ [N], j ∈ [S],W ∈ {0, 1}S, do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T using rx.

(ii) Compute the ciphertext IPFE.CTk,t,i,j,W ← IPFE.SlotEnc(IPFE.MPK, [[uk,t,i,j,W]]1) for
the vector uk,t,i,j,W :

vector index1 index2 randcopy tbcopyτ simcopy other
indices

uk,t,i,j,W −k · ρk ρk
rx[(t−

1, i, j,W)]
cτ (x; t, i, j,W ; rx) sx[(t, i, j,W)] 0

(d) It finds a dummy vector d ∈ Znp such that

Mφ(x)>z =
∑

k∈IMφ

Mφ,k(x)z[k] = Mφ(x)>d =
∑

k∈IMφ

Mφ,k(x)d[k]

holds for all φ ∈ [Φpre].

58

(e) For t = T + 1, and for all i ∈ [N], j ∈ [S],W ∈ {0, 1}S, compute the ciphertext
˜IPFE.CTk,T+1,i,j,W ← IPFE.SlotEnc(IPFE.M̃PK, [[ũk,T+1,i,j,W]]1) for the vector ũk,T+1,i,j,W :

vector index1 index2 randcopy2 acccopy2 simcopy other
indices

ũk,T+1,i,j,W −k · ρk ρk rx[(T, i, j,W)] d[k]
sx[(T +

1, i, j,W)]
0

4. Finally, it returns the ciphertext as

CT(x,T,S) =

(
(x, T, S) , n, IPFE.CTpad,

{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T],

˜IPFE.CTk,T+1,i,j,W

}
k∈[n],i∈[N],j∈[S],W∈{0,1}S

)
.

KeyGen∗1(MSK∗, (Mφ,IMφ
,Mφ(x)>z)): On input the simulated master secret key MSK∗ =

(IPFE.MSK∗, IPFE.M̃SK
∗
) and a function tuple Mφ = (Mφ,k)k∈IMφ

indexed w.r.t. an index set

IMφ
⊂ N of arbitrary size and it’s functional value Mφ(x)>z, it parses Mφ,k = (Qφ,yk, δk) ∈

TM ∀k ∈ IM and proceeds as follows:

1. Sample the set of elements{
αφ, α̂φ, βφ,k, β̂φ,k ← Zp | k ∈ IM ,

∑
k

βφ,k = 0 mod p, β̂φ,k satisfies (∗)
}

where the condition (∗) is given by

if IMφ
⊆ [n] :

∑
k β̂φ,k = 0 mod p

if (max IMφ
> n) ∧ (min IMφ

≤ n) : β̂φ,k ← Zp
2. Compute IPFE.SKφ,pad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for the vector vφ,pad defined as

vector pad padcopy
other

indices

vpad αφ α̂φ 0

3. For all k ∈ IM , do the following:

3.1 For Mφ,k = (Qφ,yk, δk), compute its transition blocks Mφ,k,τ ∈ {0, 1}Qφ×Qφ ,∀τ ∈ Tk.
3.2 Sample independent random vectors rφ,k,f , sφ,k,f ← ZQφp and a random element πk ∈ Zp.
3.3 Compute IPFE.SKφ,k,init ← IPFE.KeyGen(IPFE.MSK, [[vk,init]]2) for the vector vφ,k,init de-

fined as

vector index1 index2 initpub accpub simcopy other
indices

vφ,k,init πφ,k k · πφ,k rφ,k,f [1] βφ,k `φ,k,init 0

3.4 For each q ∈ [Qφ], compute IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.MSK, [[vφ,k,q]]2) and

˜IPFE.SKφ,k,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽφ,k,q]]2) where the vectors vφ,k,q, ṽφ,k,q are de-
fined as

59

vector index1 index2 randpub tbpubτ simcopy other
indices

vφ,k,q πk k · πφ,k rφ,k,f [q] (Mφ,k,τrφ,k,f)[q] sφ,k,f [q] 0

vector index1 index2 randpub accpub simcopy other
indices

ṽφ,k,q k k · πφ,k −rφ,k,f [q] αφ · yk[q] sφ,k,f [q] 0

where `φ,k,init for φ > Φpre are computed as

`φ,1,init ← RevSamp((Mk, 1
N , 1T , 12S),x, α̂φMφ(x)>z + β̂φ,1, (`φ,k,t,θk)t∈[T+1],θk∈CMk,N,S)

`φ,k,init ← RevSamp((Mk, 1
N , 1T , 12S),x, β̂φ,k, (`φ,k,t,θk)t∈[T+1],θk∈CMk,N,S)

and the other label values (`k,t,θk)t∈[T+1],θk∈CMk,N,S are given by `k,t,θk = sx[(t, i, j,W)]sφ,k,f [q].

Finally, it returns the secret key as

SK(Mφ,IMφ
) =

(
(Mφ, IMφ

), IPFE.SKφ,pad,
{
IPFE.SKφ,k,init,

{
IPFE.SKφ,k,q, ˜IPFE.SKφ,k,q}q∈[Qφ]

}
k∈IMφ

)
.

Theorem 6.1 Assuming the SXDH assumption holds in G and the IPFE is function hiding
secure, the above construction of 1-Slot FE for UAWS is adaptively simulation secure.

Proof Idea: We discuss a high level idea of the proof. We use a two-step approach to show
the indistinguishability between the real and the ideal world. Let Φ be the total number of
secret keys queried by the adversary.

– In the first step, we move everything from the ciphertext vectors from Spub, S̃pub to the

private slots Spriv, S̃priv. Specifically, we use the Scopy to compute the inner products between
the secret key and ciphertext vectors. To enable this computation, the entries of secret key
vectors copied to Scopy. Note that, the slots of Spub, S̃pub of the secret key vectors must be
kept as it is as this will felicitates the decryption of adversarially computed ciphertexts.

– The second step is more technically involved and challenging. We go through a loop of Φ
iteration similar to the proof technique of [LL20], however, unlike their work we can not
fully randomize the ciphertext since it should lead to a successful decryption by all the
queried keys. We crucially apply the three slot encryption technique used by [DP21,LL20].
To handle all the pre-ciphertext secret key queries, we first embed a dummy vector into
the ciphertext and then restore it to its original form (copied in S̃2,copy) with the dummy
vector in place of the challenge (private) attribute. Additionally, we use the private slot
simcopy to handle the post-ciphertext secret key queries where we embed the functional
values directly into the secret keys. In a nutshell, each iteration of the loop takes care of
one particular key and use two independent randomness – r̂x in S1-UAWS, which interacts
with that particular key and rx in Scopy, S̃1,copy, S̃2,copy, which interacts with all other keys
– so that the security of (1-SK, 1-CT, 1-Slot)-FE can be invoked for each key one-by-one in
the loop.

We now illustrate the formal indistinguishability arguments of all the hybrids in the proof
below.

60

Proof. LetA be a PPT adversary in the security experiment of UAWS. We show that the advan-
tage of A in distinguishing between the experiments Expt1-Slot-UAWS

A,real (1λ) and Expt1-Slot-UAWS
A,ideal (1λ)

is negligible by a sequence of hybrid games played between A and the challenger. Let ((x, 1T ,
12S), z) be the challenge message and z ∈ Znp . Suppose A makes Φ number of secret key
queries and out of which first Φpre are the pre-ciphertext queries. Let nmax be the maximum
value of n, the length of z, i.e., A can choose the private attribute whose maximum length
can be nmax. We assume that ∪φ∈[Φ]IMφ

⊇ [n], i.e., the union of all the index sets associated
to the the secret key queries of A covers the indices of the ciphertext vectors. This natural to
assume since A would always want to have maximum information about the encoded message.

In the reduction, we use the shorthand ”∝ a“ to indicate that such components there are
linear in a and efficiently computable given a in the exponent, and that there is only one
natural way of computing them. We now proceed to describe the hybrids.

Hybrid H0: It is identical to the real experiment Expt1-Slot-UAWS
A,real (1λ) of 1-Slot−UAWS scheme

where the ciphertexts are generated using SlotEnc of IPFE.

Hybrid H0.1: This is exactly the real experiment except the challenger aborts the experiment
immediately if the vector length of z is not n′, i.e., n 6= n′. Suppose A outputs ⊥ when the
experiment is aborted. Thus, it is easy to see that the advantage of A in H0.1 is 1

nmax
times the

advantage in H0. Thus, if the advantage of A is negligible in H0, then it is so in H0.1. Hence,
in the remaining hybrids we simply write n′ = n.

Hybrid H1: It is identical to H0.1 except the vectors of ciphertext are encrypted using normal
Enc of IPFE, i.e. using the master secret key and the positions u|Spriv , ũ|S̃priv of the vectors u’s,

ũ’s are changed from ⊥ to zero. More specifically, all slots of Spriv for upad,uk,init,uk,t,i,j,W
and all slots of S̃priv for ũk,T+1,i,j,W are changed from ⊥ to zero. The hybrids H0 and H1 are
indistinguishable by slot-mode correctness of the slotted IPFE.

Hybrid H2: It is identical to H1 except the way we compute the inner products between the
secret key and ciphertext vectors. Specifically, the ciphertext randomness s is moved to the
secret key, and 1 is placed into the ciphertext vectors in the positions of s. We implement this
as follows:

– The ciphertext and secret key vector elements are first copied to padcopy and the indices
initcopy, randcopy, tbcopyτ , acccopy of Scopy and S̃1,copy.

– Then, the randomness s is shifted from the ciphertext to the secret key vectors. In partic-
ular, the position padcopy of vφ,pad and upad are set to sαφ and 1 respectively. Similarly, the
randomness s is moved to all the indices such as initcopy, tbcopyτ , randcopy, acccopy of the secret
key vectors.

The hybrids are depicted in Table 6.1. Since the inner product between the secret key and ci-
phertext vectors are unchanged, the indistinguishability between the hybrids H1 and H2 follows
from the function hiding security of IPFE. This change prepares the secret key randomness to
randomized in the next hybrid.

Hybrid H3: It proceeds identical to H2 except that the private slots of the secret key vectors
are generated with an independent set of randomnesses: random pad α̂φ, garbling randomness

61

hybrid vector pad
initpub, randpub

accpub, tbpubτ
padcopy in Scopy simcopy

H0.1

vφ,pad αφ 0

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) 0 0

upad s ⊥
uk,init,uk,t,i,j,W ∝ (s, srx) ⊥ ⊥

randpub, accpub in S̃1,copy in S̃2,copy simcopy

ṽφ,k,q ∝ (rφ,k,f , αφ) 0 0 0

ũk,T+1,i,j,W ∝ (srx, sz) ⊥ ⊥ ⊥

H1

vφ,pad αφ 0

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) 0 0

upad s 0

uk,init,uk,t,i,j,W ∝ (s, srx) 0 0

randpub, accpub in S̃1,copy in S̃2,copy simcopy

ṽφ,k,q ∝ (rφ,k,f , αφ) 0 0 0

ũk,T+1,i,j,W ∝ (srx, sz) 0 0 0

H2

vφ,pad αφ sαφ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) ∝ (srφ,k,f , sβφ,k) 0

upad 0 1

uk,init,uk,t,i,j,W 0 ∝ (1, rx) 0

randpub, accpub in S̃1,copy in S̃2,copy simcopy

ṽφ,k,q ∝ (rφ,k,f , αφ) ∝ (srφ,k,f , αφs) 0 0

ũk,T+1,i,j,W 0 ∝ (rx,z) 0 0

H3

vφ,pad αφ α̂φ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) ∝ (r̂φ,k,f , β̂φ,k) 0

upad 0 1

uk,init,uk,t,i,j,W 0 ∝ (1, rx) 0

randpub, accpub in S̃1,copy in S̃2,copy simcopy

ṽφ,k,q ∝ (rφ,k,f , αφ) ∝ (r̂φ,k,f , α̂φ) 0 0

ũk,T+1,i,j,W 0 ∝ (rx,z) 0 0

H4 ≡ H5,1

vφ,pad αφ α̂φ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) ∝ (r̂φ,k,f , β̂φ,k) 0

upad 0 1

uk,init,uk,t,i,j,W 0 ∝ (1, rx) 1 or sx[(t, i, j,W)]

randpub, accpub in S̃1,copy in S̃2,copy simcopy

ṽφ,k,q ∝ (rφ,k,f , αφ) ∝ (r̂φ,k,f , α̂φ) 0 0

ũk,T+1,i,j,W 0 ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)]

H5,1∼Φ,1∼15 · · · · · · · · · · · · · · ·
The table is continued to the next page...

62

hybrid vector pad
initpub, randpub

accpub, tbpubτ
padcopy in Scopy simcopy

H6 ≡ H5,Q,15

φ ≤ Φpre

{
vφ,pad αφ α̂φ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) ∝ (r̂φ,k,f , β̂φ,k) 0

upad 0 1

uk,init,uk,t,i,j,W 0 ∝ (1, rx) 1 or sx[(t, i, j,W)]

φ > Φpre

{
vφ,pad αφ α̂φ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) 0 `φ,k,init or sφ,k,f [q]

randpub, accpub in S̃1,copy in S̃2,copy simcopy

φ ≤ Φpre : ṽφ,k,q ∝ (rφ,k,f , αφ) 0 ∝ (r̂φ,k,f , α̂φ) 0

ũk,T+1,i,j,W 0 ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)]

φ > Φpre : ṽφ,k,q ∝ (rφ,k,f , αφ) 0 0 sφ,k,f [q]

H7

φ ≤ Φpre

{
vφ,pad αφ α̂φ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) ∝ (r̂φ,k,f , β̂φ,k) 0

upad 0 1

uk,init,uk,t,i,j,W 0 ∝ (1, rx) 1 or sx[(t, i, j,W)]

φ > Φpre

{
vφ,pad αφ α̂φ

vφ,k,init,vφ,k,q ∝ (rφ,k,f , βφ,k) 0 `φ,k,init or sφ,k,f [q]

randpub, accpub in S̃1,copy in S̃2,copy simcopy

φ ≤ Φpre : ṽφ,k,q ∝ (rφ,k,f , αφ) 0 ∝ (r̂φ,k,f , α̂φ) 0

ũk,T+1,i,j,W 0 0 ∝ (rx,d) sx[(T + 1, i, j,W)]

φ > Φpre : ṽφ,k,q ∝ (rφ,k,f , αφ) 0 0 sφ,k,f [q]

For brevity, the vectors for computing the labels are not spelled out. The shorthand ”∝ a“ means that the

components there are linear in a and efficiently computable given a in the exponent, and that there is only

one natural way of computing them (cf. construction of 1-slot UAWS described in the Section 6).

In H6 and H7, uk,init[sim
copy] = 1,uk,t,i,j,W [simcopy] = sx[(t, i, j,W)] and vφ,k,init[sim

copy] = `φ,k,init,vφ,k,q = sφ,k,f [q]

where `φ,k,init for φ > Φpre are computed as follows:

`φ,1,init ← RevSamp((Mk, 1
N , 1T , 12S),x, α̂φMφ(x)>z + β̂φ,1, (`k,t,θk)t∈[T+1],θk∈CMk,N,S

)

`φ,k,init ← RevSamp((Mk, 1
N , 1T , 12S),x, β̂φ,k, (`k,t,θk)t∈[T+1],θk∈CMk,N,S

)

and the other label values (`k,t,θk)t∈[T+1],θk∈CMk,N,S
are all simulated such that `k,t,θk = sx[(t, i, j,W)]sφ,k,f [q].

Table 6.1: The first/last few hybrids in the proof of IND-CPA security of our 1-slot UAWS
scheme for L.

r̂k,f [φ, k, f] and random secret shares β̂φ,k of zero. The main difference is that in H2, the
randomnesses used in the secret key vectors at Spub and Spriv are the same, but in H3, the
slots of Spub and Spriv are filled with independent set of randomnesses. We can invoke DDH
assumption in G2:

{[[αφ, βφ,k, rφ,k,f ; sαφ, sβφ,k, srφ,k,f]]2︸ ︷︷ ︸
DDH tuple

}φ∈[Φ],k∈IMφ
≈ {[[αφ, βφ,k, rφ,k,f ; α̂φ, β̂φ,k, r̂φ,k,f]]2︸ ︷︷ ︸

random tuple

}φ∈[Φ],k∈IMφ

63

If the DDH tuples is used to compute the secret key vectors, then H2 is simulated, and if the
random tuples are used to compute the secret key vectors then H3 is simulated. Therefore, the
indistinguishability between the hybrids H2 and H3 is ensured by the DDH assumption in G2.

Hybrid H4: It is identical to the hybrid H3 except we change the ciphertext vectors to
prepare for the second step of the loop. More specifically, the changes are implemented using
the following steps:

– Sample a random vector sx ← Z[T+1]×[N]×[S]×{0,1}S
p and set the simcopy position of the vectors

uk,init,uk,t,i,j,W as 1, sx[(t, i, j,W)] respectively.
– The position simcopy of ũk,T+1,i,j,W is set as sx[(T + 1, i, j,W)].
– The reduction finds a dummy vector d ∈ Znp such that

Mφ(x)>z = Mφ(x)>d =
∑
k∈[n]

Mφ,k(x)d[k] ∀φ ∈ [Φpre].

Then, in ũk,T+1,i,j,W , all the elements of S̃1,copy are copied to S̃2,copy with d in place of z.
We will change all the pre-ciphertext secret keys (in the second step) in such a way that

they only interact with S̃2,copy of ũk,T+1,i,j,W , instead of S̃1,copy.

Observe that, the inner products of the vectors u’s, ũ’s with the vectors v’s, ṽ’s are
unchanged due to these changes because the corresponding positions of v’s and ṽ’s are zero.
Therefore, the indistinguishability between the hybrids H3 and H4 is ensured by the function
hiding security of IPFE.

We have completed the first step of the security analysis. Now, we move toward the second
step with the hybrids H5,1∼Φ,1∼15 which is a loop (running over all secret keys) where we handle
each secret key in each iteration. Before going to the description of the loop, we present the
last hybrid of the loop and the hybrid that is equivalent to the ideal world.

Hybrid H6: It is identical to H4 except the pre-ciphertext secret keys now interacts with S2,copy

and in the post-ciphertext secret keys, the functional values are hardwired. These changes are
implemented as follows:

– In the pre-ciphertext secret keys, everything from the positions in S̃1,copy of ṽφ,k,q (for

φ ∈ [Φpre]) are copied to S̃2,copy, and then the positions in S̃1,copy are set zero.
– In the post-ciphertext secret keys, the positions in Scopy of vφ,k,init,vφ,k,q are set to zero, and

the positions vφ,k,init[sim
copy] is set as `φ,k,init and both of vφ,k,q[sim

copy], ṽφ,k,q[sim
copy] are set

as sφ,k,f [q]. The label values `φ,k,init’s are computed as follows:

`φ,1,init ← RevSamp((Mk, 1
N , 1T , 12S),x, α̂φMφ(x)>z + β̂φ,1, (`φ,k,t,θk)t∈[T+1],θk∈CMk,N,S)

`φ,k,init ← RevSamp((Mk, 1
N , 1T , 12S),x, β̂φ,k, (`φ,k,t,θk)t∈[T+1],θk∈CMk,N,S)

where φ > Φpre and the other label values (`k,t,θk)t∈[T+1],θk∈CMk,N,S are given by `k,t,θk =
sx[(t, i, j,W)]sφ,k,f [q].

Also, the reduction ignores the guessing step of all previous hybrids, meaning that it is not
required to guess the length of z. We show the indistinguishability between the hybrids in the
following claim.

Claim 6.1 The hybrids H4 and H6 are indistinguishable, i.e., H4 ≈ H6.

64

h
y
b
ri

d
v
ec

to
r

in
S p

u
b

p
ad

co
p
y

in
S c

o
p
y

si
m

co
p
y

p
ad

te
m
p

in
S 1

-U
A
W

S

H
5
,φ
,1

φ
′
<
φ
,

φ
′
≤

Φ
p
re

{
v
φ
′ ,
p
a
d

α̂
φ
′

0

v
φ
′ ,
k
,i
n
it
,v
φ
′ ,
k
,q

∝
(r̂
φ
′ ,
k
,f
,β̂
φ
′ ,
k
)

0
0

φ
′
<
φ
,

φ
′
>

Φ
p
re

{
v
φ
′ ,
p
a
d

α̂
φ
′

0

v
φ
′ ,
k
,i
n
it
,v
φ
′ ,
k
,q

0
` φ

′ ,
k
,i
n
it

o
r
s
φ
′ ,
k
,f

[q
]

0

v
φ
,p
a
d

α
φ
,r
φ
,k
,f

’s
(i

n
d
ep

en
d
en

t
o
f
α̂
φ
,r̂
φ
,k
,f

)

α̂
φ

0

v
φ
,k
,i
n
it
,v
φ
,k
,q

∝
(r̂
φ
,k
,f
,β̂
φ
,k

)
0

0

u
p
a
d

1
0

u
k
,i
n
it
,u

k
,t
,i
,j
,W

∝
(1
,r
x

)
1

o
r
s
x

[(
t,
i,
j,
W

)]
0

φ
′
>
φ
,

φ
′
≤

Φ
p
re

{
v
φ
′ ,
p
a
d

α̂
φ
′

0

v
φ
′ ,
k
,i
n
it
,v
φ
′ ,
k
,q

∝
(r̂
φ
′ ,
k
,f
,β̂
φ
′ ,
k
)

0
0

φ
′
>
φ
,

φ
>

Φ
p
re

{
v
φ
′ ,
p
a
d

α̂
φ
′

0

v
φ
′ ,
k
,i
n
it
,v
φ
′ ,
k
,q

∝
(r̂
φ
′ ,
k
,f
,β̂
φ
′ ,
k
)

0
0

in
S̃ p

u
b

in
S̃ 1
,c
o
p
y

in
S̃ 2
,c
o
p
y

si
m

co
p
y

in
S̃ 1

-U
A
W

S

φ
′
<
φ
≤

Φ
p
re

:
ṽ
φ
′ ,
k
,q

0
∝

(r̂
φ
′ ,
k
,f
,α̂

φ
′)

0
0

Φ
p
re
<
φ
′
<
φ

:
ṽ
φ
,k
,q

0
0

s
φ
′ ,
k
,f

[q
]

0

ṽ
φ
,k
,q

α
φ
,r
φ
,k
,f

’s
(i

n
d
ep

en
d
en

t
o
f
α̂
φ
,r̂
φ
,k
,f

)

∝
(r̂
φ
,k
,f
,α̂

φ
)

0
0

0

ũ
k
,T

+
1
,i
,j
,W

∝
(r
x
,z

)
∝

(r
x
,d

)
s
x

[(
T

+
1
,i
,j
,W

)]
0

Φ
p
re
≥
φ
′
>
φ

:
ṽ
φ
′ ,
k
,q

∝
(r̂
φ
′ ,
k
,f
,α̂

φ
′)

0
0

0

φ
′
>
φ
>

Φ
p
re

:
ṽ
φ
′ ,
k
,q

∝
(r̂
φ
′ ,
k
,f
,α̂

φ
′)

0
0

0

H
5
,φ
,2

v
φ
,p
a
d

α
φ
,r
φ
,k
,f

’s
ŝα̂

φ
0

v
φ
,k
,i
n
it
,v
φ
,k
,q

∝
(ŝ
r̂
φ
,k
,f
,ŝ
β̂
φ
,k

)
0

0

u
p
a
d

1
0

u
k
,i
n
it
,u

k
,t
,i
,j
,W

∝
(1
,r
x

)
1

o
r
s
x

[(
t,
i,
j,
W

)]
0

in
S̃ p

u
b

in
S̃ 1
,c
o
p
y

in
S̃ 2
,c
o
p
y

si
m

co
p
y

in
S̃ 1

-U
A
W

S

ṽ
φ
,k
,q

α
φ
,r
φ
,k
,f

’s
∝

(ŝ
r̂
φ
,k
,f
,ŝ
α̂
φ
)

0
0

0

ũ
k
,T

+
1
,i
,j
,W

∝
(r
x
,z

)
∝

(r
x
,d

)
s
x

[(
T

+
1
,i
,j
,W

)]
0

T
ab

le
6.

2:
T

h
e

fi
rs

t
tw

o
h
y
b
ri

d
s

of
th

e
lo

op
H

5
,1
∼

Φ
,1
∼

1
5

w
h
ic

h
co

n
ti

n
u
es

to
th

e
n
ex

t
p
ag

e.
..

65

Hybrid H7: It is identical to H6 except it clears the positions in S̃1,copy of ũk,T+1,i,j,W . Since
the corresponding terms in ṽφ,k,q are already zero, the inner products are unaffected. Therefore,
the indistinguishability between the hybrids H6 and H7 is guaranteed by the function hiding
security of IPFE. We observe that H7 is the ideal experiment Expt1-Slot-UAWS

A,ideal (1λ).
The remaining is the proof of the above claim which will complete the proof of the theorem.

ut

Claim 6.1 The hybrids H4 and H6 are indistinguishable, i.e., H4 ≈ H6.

Proof. We prove the claim through a loop of hybrids H5,1∼Φ,1∼15 running over all secret keys.

Hybrid H5,φ,1: It is identical to H4 except the first φ−1 secret keys are modified so that they
either interact with the dummy vector d (if they are pre-ciphertext keys) or the functional
values are hardwired into them (if they are post-ciphertext keys). In other words, the first
φ− 1 secret keys are changed as in H6. The hybrid is shown in Table 6.2.

Hybrid H5,φ,2: It is identical to H5,φ,1 except that a random multiplier ŝ← Zp is multiplied

with the values in padcopy,Scopy, S̃1,copy. Since ŝ is uniform over Zp, the probability that ŝ = 0
is negligible. Therefore, the hybrids H5,φ,1 and H5,φ,2 are identically distributed (including the
case of ŝ = 0).

Hybrid H5,φ,3: It is identical to H5,φ,2 except that the inner product between the φ-th secret
key vectors and the ciphertext vectors are now computed via the slots in {padtemp} ∪ S1-UAWS.
This change is implemented as follows:

– The position padcopy of vφ,pad set to zero and padtemp is set to α̂φ. Also, upad[pad
temp] is set

to ŝ.
– The positions in Scopy of the vectors vφ,k,init,vφ,k,q are first copied to S1-UAWS without the

random multiplier ŝ and then Scopy is set to zero. Similarly, S̃1,copy of the vectors ṽφ,k,q are

copied to S̃1-UAWS without the random multiplier ŝ and then S̃1,copy is set to zero.
– The positions Scopy of the vectors uk,init,uk,t,i,j,W are copied to S1-UAWS and the random

multiplier ŝ is multiplied with the newly copied terms. Similarly, the positions S̃1,copy of the

vectors ũk,T+1,i,j,W are copied to S̃1-UAWS and the random multiplier ŝ is multiplied with
the newly copied terms.

We can verify from the Table 6.3 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid H5,φ,4: It is identical to H5,φ,3 except that in the ciphertext vectors, the term ŝrx
in S1-UAWS, S̃1-UAWS is replaced by an independent and uniformly chosen random vector ŝ. We
can invoke the DDH assumption in G1:

[[rx, ŝ, ŝrx]]1︸ ︷︷ ︸
DDH tuple

≈ [[rx, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

for ŝ, rx ← Z[0,T],×[N]×[S]×{0,1}S
p , ŝ← Zp

to show the indistinguishability between the hybrids H5,φ,3 and H5,φ,4.

66

Hybrid H5,φ,5: It is identical to H5,φ,4 except that in the ciphertext vectors, the term ŝ in

S1-UAWS, Ŝ1-UAWS is replaced by ŝr̂x where we note that rx of Scopy is independent of this newly
sampled r̂x. We invoke the DDH assumption in G1:

[[r̂x, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

≈ [[r̂x, ŝ, ŝr̂x]]1︸ ︷︷ ︸
DDH tuple

for ŝ, r̂x ← Z[0,T],×[N]×[S]×{0,1}S
p , ŝ← Zp

to show the indistinguishability between the hybrids H5,φ,4 and H5,φ,5.

Hybrid H5,φ,6: It is identical to H5,φ,5 except that the random multiplier ŝ is moved back to
the secret key vectors vφ’s from the ciphertext vectors u’s. The indistinguishability between
H5,φ,6 and H5,φ,5 follows from the function hiding property of IPFE.

Hybrid H5,φ,7: It is identical to H5,φ,6 except that the random multiplier ŝ is removed from
the secret key vectors. The hybrids H5,φ,6 and H5,φ,7 are identically distributed.

Hybrid H5,φ,8: It is identical to H5,φ,7 except the φ-th secret key (if it is a pre-ciphertext query,
i.e. φ ∈ [Φpre]) now interacts with the dummy vector d or the functional value is hardwired
into it (if it is a post-challenge query, i.e. φ > Φpre). This change is implemented as follows:

– If φ ∈ [Φpre], then there is no change required in the secret key, but the z is replaced by d
in the ciphertext vector ũ’s.

– Also, in the ciphertext, the position sim of the vectors uk,init,uk,t,i,j,W and ũk,T+1,i,j,W are
set to 1, sx[(t, i, j,W)] and sx[(T + 1, i, j,W)] respectively.

– If φ > Φpre, then everything in S1-UAWS and S̃1-UAWS of the secret key vectors are cleared

except the sim position. More specifically, the positions rand, acc, tbτ of S1-UAWS and S̃1-UAWS

are set to zero for v’s and ṽ’s, and vφ,k,init[sim] is set as the label values `φ,k,init, and both
of vφ,k,q[sim], ṽφ,k,q[sim] are as sφ,k,f [q].

To make the change as shown in Section 6.2, we invoke the security of (1-SK, 1-CT,
1-Slot)-FE scheme. In particular, Theorem 5.1 is applied for the φ-th key and the single chal-
lenge ciphertext. Observe that the guessing step is already done in this security proof (i.e.,
H0.1), hence this step is skipped while we apply the security of (1-SK, 1-CT, 1-Slot)-FE scheme.
This makes the reduction more efficient and reduces the security loss incurred due to guessing.
Also, we emphasize that in this hybrid we utilize the slots index1 and index2 of S1-UAWS, S̃1-UAWS

through the security reduction of (1-SK, 1-CT, 1-Slot)-FE scheme, which indeed depends on
Lemma 5.1. Thus, the hybrids H5,φ,7 and H5,φ,8 are indistinguishable.

Hybrid H5,φ,9: It is identical to the hybrid H5,φ,8 except that everything is copied from the
position sim of S1-UAWS to the corresponding position simcopy, and then the position sim is
cleared from all u’s, ũ’s and vφ’s, ṽφ’s. The hybrid is described in Section 6.2. The purpose of
this change is to compute the label values for post-ciphertext secret keys utilizing the position
simcopy instead of using the slots of S1-UAWS and prepare it for handling the next key. Note that,
if φ-th key is a pre-ciphertext secret key then there no change takes place in vφ’s and ṽφ’s,
however, the sim position of u’s and ũ’s are cleared. We observe that the inner products are
unchanged and, hence the indistinguishability between the hybrids H5,φ,8 and H5,φ,9 is ensured
by the function hiding property of IPFE.

67

68

hybrid vector in Spub padcopy in Scopy simcopy padtemp in S1-UAWS

H5,φ,3

vφ,pad
αφ, rφ,k,f ’s

0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 ŝ

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (ŝ, ŝrx)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (ŝrx, ŝz)

H5,φ,4

vφ,pad
αφ, rφ,k,f ’s

0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 ŝ

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (ŝ, s)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (s, ŝz)

H5,φ,5

vφ,pad
αφ, rφ,k,f ’s

0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 ŝ

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (ŝ, ŝr̂x)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (ŝr̂x, ŝz)

H5,φ,6

vφ,pad
αφ, rφ,k,f ’s

0 ŝα̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (ŝr̂φ,k,f , ŝβ̂φ,k)

upad 1 1

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (1, r̂x)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (ŝr̂φ,k,f , ŝα̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (r̂x,z)

H5,φ,7

vφ,pad
αφ, rφ,k,f ’s

0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 1

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (1, r̂x)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (r̂x,z)

Table 6.3: The intermediate hybrids H5,φ,3 to H5,φ,7 of the loop H5,1∼Φ,1∼15.

h
y
b
ri

d
v
ec

to
r

in
S c

o
p
y

si
m

co
p
y

in
S 1

-U
A
W

S

ra
n
d
,a
cc
,t
b
τ

si
m

H
5
,φ
,8

φ
≤

Φ
p
re

:
v
φ
,k
,i
n
it
,v
φ
,k
,q

0
0

∝
(r̂
φ
,k
,f
,β̂
φ
,k

)
0

u
k
,i
n
it
,u

k
,t
,i
,j
,W

∝
(1
,r
x

)
1

o
r
s
x

[(
t,
i,
j,
W

)]
∝

(1
,r̂
x

)
1

o
r
s
x

[(
t,
i,
j,
W

)]

φ
>

Φ
p
re

            
v
φ
,1
,i
n
it

0
0

0
` φ
,1
,i
n
it
←

R
ev
S
am

p
(α̂
φ
M

(x
)>
z

+
β̂
φ
,1

)

v
φ
,k
>

1
,i
n
it

0
0

0
` φ
,k
,i
n
it
←

R
ev
S
am

p
(β̂
φ
,k

)

v
φ
,k
,q

0
0

0
s
φ
,k
,f

[q
]

in
S̃

2
,c
o
p
y

si
m

co
p
y

in
S 1

-U
A
W

S

ra
n
d
,a
cc

si
m

φ
≤

Φ
p
re

:
ṽ
φ
,k
,q

0
0

∝
(r̂
φ
,k
,f
,α̂

φ
)

0

ũ
k
,T

+
1
,i
,j
,W

∝
(r
x
,d

)
s
x

[(
T

+
1
,i
,j
,W

)]
∝

(r̂
x
,d

)
s
x

[(
T

+
1
,i
,j
,W

)]

φ
>

Φ
p
re

:
ṽ
φ
,k
,q

0
0

0
s
φ
,k
,f

[q
]

H
5
,φ
,9

φ
≤

Φ
p
re

:
v
φ
,k
,i
n
it
,v
φ
,k
,q

0
0

∝
(r̂
φ
,k
,f
,β̂
φ
,k

)
0

u
k
,i
n
it
,u

k
,t
,i
,j
,W

∝
(1
,r
x

)
1

o
r
s
x

[(
t,
i,
j,
W

)]
∝

(1
,r̂
x

)
0

φ
>

Φ
p
re

            
v
φ
,1
,i
n
it

0
` φ
,1
,i
n
it
←

R
ev
S
am

p
(α̂
φ
M

(x
)>
z

+
β̂
φ
,1

)
0

0

v
φ
,k
>

1
,i
n
it

0
` φ
,k
,i
n
it
←

R
ev
S
am

p
(β̂
φ
,k

)
0

0

v
φ
,k
,q

0
s
φ
,k
,f

[q
]

0
0

in
S̃

2
,c
o
p
y

si
m

co
p
y

in
S 1

-U
A
W

S

ra
n
d
,a
cc

si
m

φ
≤

Φ
p
re

:
ṽ
φ
,k
,q

0
0

∝
(r̂
φ
,k
,f
,α̂

φ
)

0

ũ
k
,T

+
1
,i
,j
,W

∝
(r
x
,d

)
s
x

[(
T

+
1
,i
,j
,W

)]
∝

(r̂
x
,d

)
0

φ
>

Φ
p
re

:
ṽ
φ
,k
,q

0
s
φ
,k
,f

[q
]

0
0

T
ab

le
6.

4:
T

h
e

in
te

rm
ed

ia
te

h
y
b
ri

d
s
H

5
,φ
,8

an
d
H

5
,φ
,9

of
th

e
lo

op
H

5
,1
∼

Φ
,1
∼

1
5
.

69

Hybrid H5,φ,10: It is identical to H5,φ,9 except that a random element ŝ ← Zp is multiplied
to the secret key vectors vφ’s and ṽφ’s if φ ≤ Φpre, i.e. the φ-th key under consideration is a
pre-challenge secret key. On the other hand, if φ > Φpre then the position padtemp of vφ,pad is
first copied to padcopy and then padtemp is cleared. Since ŝ is uniform over Zp, the probability
that ŝ = 0 is negligible. The hybrid is described in Table 6.5. Therefore, the hybrids H5,φ,9 and
H5,φ,10 are identically distributed (including the case of ŝ = 0) if φ ≤ Φpre. On the other hand,
if φ > Φpre then the hybrids are indistinguishable due to function security of IPFE.

Hybrid H5,φ,11: It is identical to H5,φ,10 except that the random multiplier ŝ is moved to
the ciphertext vectors u’s, ũ’s from the secret key vectors vφ’s, ṽφ’s. The indistinguishability
between H5,φ,10 and H5,φ,11 follows from the function hiding property of IPFE.

Hybrid H5,φ,12: It is identical to H5,φ,11 except that in the ciphertext vectors, the term ŝrx
in S1-UAWS, S̃1-UAWS is replaced by an independent and uniformly chosen random vector ŝ. We
can invoke the DDH assumption in G1:

[[r̂x, ŝ, ŝr̂x]]1︸ ︷︷ ︸
DDH tuple

≈ [[r̂x, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

for ŝ, r̂x ← Z[0,T],×[N]×[S]×{0,1}S
p , ŝ← Zp

to show the indistinguishability between the hybrids H5,φ,11 and H5,φ,12.

Hybrid H5,φ,13: It is identical to H5,φ,12 except that in the ciphertext vectors, the term ŝ in

S1-UAWS, S̃1-UAWS is replaced by ŝrx where we note that the rx is the same as that of used in
the other slots such as Scopy. We invoke the DDH assumption in G1:

[[rx, ŝ, ŝ]]1︸ ︷︷ ︸
random tuple

≈ [[rx, ŝ, ŝrx]]1︸ ︷︷ ︸
DDH tuple

for ŝ, rx ← Z[0,T],×[N]×[S]×{0,1}S
p , ŝ← Zp

to show the indistinguishability between the hybrids H5,φ,12 and H5,φ,13.

Hybrid H5,φ,14: It is identical to H5,φ,13 except that the inner product between the φ-th secret
key vectors and the ciphertext vectors are now computed via the slots in {padcopy} ∪ Scopy ∪
S̃2,copy. This change is implemented as follows:

– The random multiplier ŝ is moved back to the secret key vectors, i.e. vφ’s and ṽφ’s. The
positions in S1-UAWS of the vectors vφ,k,init,vφ,k,q are first copied to Scopy, and then S1-UAWS

is set to zero. Similarly, the positions in S̃1-UAWS of the vectors ṽφ,k,q are first copied to

S̃2,copy, and then S̃1-UAWS is set to zero.
– The position padtemp of vφ,pad is copied to padcopy, and then padtemp is cleared.

– The positions padtemp, S1-UAWS and S̃1-UAWS of the ciphertext vectors u’s and ũ’s are cleared.

We can verify from the Table 6.6 that the inner products between the vectors are unchanged,
hence the indistinguishability between the hybrids holds due to the function hiding security
of IPFE.

Hybrid H5,φ,15: It is identical to H5,φ,14 except that the random multiplier ŝ is removed from
the secret key vectors. The hybrids H5,φ,6 and H5,φ,7 are identically distributed.

We observe that H5,φ,15 ≈ H5,φ+1,1. Also, the guessing of the length of z is not required from
the hybrid H5,Φpre+1,15. This is because the reduction knows the length of z while simulating
all the post-challenge secret keys. Thus, H5,Φ,15 ≡ H6. Therefore, by a hybrid argument we can
show that H4 ≡ H5,1,15 ≈ H5,Φ,15 ≡ H6. This completes the proof of the claim. ut

70

71

hybrid vector in Spub padcopy in Scopy simcopy padtemp in S1-UAWS

H5,φ,10

φ ≤ Φpre

{
vφ,pad

αφ, rφ,k,f ’s
0 ŝα̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (ŝr̂φ,k,f , ŝβ̂φ,k)

upad 1 1

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (1, r̂x)

φ > Φpre

{
vφ,pad α̂φ 0

vφ,k,init,vφ,k,q 0 `φ,k,init or sφ,k,f [q] 0

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

φ ≤ Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (ŝr̂φ,k,f , ŝα̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (r̂x,d)

φ > Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 0 sφ,k,f [q] 0

H5,φ,11

φ ≤ Φpre

{
vφ,pad

αφ, rφ,k,f ’s
0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 ŝ

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (ŝ, ŝr̂x)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

φ ≤ Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (ŝr̂x, ŝd)

H5,φ,12

φ ≤ Φpre

{
vφ,pad

αφ, rφ,k,f ’s
0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 ŝ

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (ŝ, ŝ)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

φ ≤ Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (ŝ, ŝd)

H5,φ,13

φ ≤ Φpre

{
vφ,pad

αφ, rφ,k,f ’s
0 α̂φ

vφ,k,init,vφ,k,q 0 0 ∝ (r̂φ,k,f , β̂φ,k)

upad 1 ŝ

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] ∝ (ŝ, ŝrx)

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

φ ≤ Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 0 0 ∝ (r̂φ,k,f , α̂φ)

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] ∝ (ŝrx, ŝd)

Table 6.5: The intermediate hybrids H5,φ,10 to H5,φ,13 of the loop H5,1∼Φ,1∼15.

72

hybrid vector in Spub padcopy in Scopy simcopy padtemp in S1-UAWS

H5,φ,14

φ ≤ Φpre

{
vφ,pad

αφ, rφ,k,f ’s
ŝα̂φ 0

vφ,k,init,vφ,k,q ∝ (ŝr̂φ,k,f , ŝβ̂φ,k) 0 0

upad 1 0

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] 0

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

φ ≤ Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 ∝ (ŝr̂φ,k,f , ŝα̂φ) 0 0

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] 0

H5,φ,15

≡
H5,φ+1,1

φ ≤ Φpre

{
vφ,pad

αφ, rφ,k,f ’s
α̂φ 0

vφ,k,init,vφ,k,q ∝ (r̂φ,k,f , β̂φ,k) 0 0

upad 1 0

uk,init,uk,t,i,j,W ∝ (1, rx) 1 or sx[(t, i, j,W)] 0

φ > Φpre

{
vφ,pad α̂φ 0

vφ,k,init,vφ,k,q 0 `φ,k,init or sφ,k,f [q] 0

in S̃pub in S̃1,copy in S̃2,copy simcopy in S̃1-UAWS

φ ≤ Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 ∝ (r̂φ,k,f , α̂φ) 0 0

ũk,T+1,i,j,W ∝ (rx,z) ∝ (rx,d) sx[(T + 1, i, j,W)] 0

φ > Φpre : ṽφ,k,q αφ, rφ,k,f ’s 0 0 sφ,k,f [q] 0

Table 6.6: The final two hybrids H5,φ,14 and H5,φ,15 of the loop H5,1∼Φ,1∼15.

References

ABDCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption
schemes for inner products. In PKC 2015, pages 733–751. Springer, 2015.

ABG19. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client inner-product
functional encryption. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 552–582. Springer, 2019.

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentralizing inner-
product functional encryption. In IACR International Workshop on Public Key Cryptography, pages
128–157. Springer, 2019.

ABM+20. Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam Soleimanian, and Hendrik Wald-
ner. Multi-client inner-product functional encryption in the random-oracle model. In International Con-
ference on Security and Cryptography for Networks, pages 525–545. Springer, 2020.

ABSV15. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adaptive
security in functional encryption. In Annual Cryptology Conference, pages 657–677. Springer, 2015.

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional
encryption for inner products: function-hiding realizations and constructions without pairings. In CRYPTO
2018, pages 597–627. Springer, 2018.

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional encryption
with fine-grained access control. IACR Cryptology ePrint Archive, Report 2020/577, 2020.

AGRW17. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product functional
encryption from pairings. In CRYPTO 2017, pages 601–626. Springer, 2017.

AGT21. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. In Annual International Cryptology Conference, pages 208–238. Springer, 2021.

AGW20. Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption for attribute-weighted sums from
k-Lin. In CRYPTO 2020, pages 685–716. Springer, 2020.

AIK11. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In FOCS 2011,
pages 120–129. IEEE Computer Society, 2011.

ALMT20. Shweta Agrawal, Benôıt Libert, Monosij Maitra, and Radu Titiu. Adaptive simulation security for inner
product functional encryption. In PKC 2020, pages 34–64. Springer, 2020.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In CRYPTO 2016, pages 333–362. Springer, 2016.

AM18. Shweta Agrawal and Monosij Maitra. Fe and io for turing machines from minimal assumptions. In
Theory of Cryptography: 16th International Conference, TCC 2018, Panaji, India, November 11–14, 2018,
Proceedings, Part II, page 473–512. Springer-Verlag, 2018.

AMVY21. Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Functional encryption for
turing machines with dynamic bounded collusion from LWE. In CRYPTO 2021, pages 239–269. Springer,
2021.

AR17. Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited. In Theory of
Cryptography Conference, pages 173–205. Springer, 2017.

AS16. Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In TCC 2016, pages
125–153. Springer, 2016.

Att16. Nuttapong Attrapadung. Dual system encryption framework in prime-order groups via computational pair
encodings. In ASIACRYPT 2016, pages 591–623. Springer, 2016.

AV19. Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure functional encryption.
In Theory of Cryptography Conference, pages 174–198. Springer, 2019.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In CRYPTO 2017, pages
67–98. Springer, 2017.

BCG+17. Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil Segev. Hierarchical
functional encryption. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE
and compact garbled circuits. In EUROCRYPT 2014, pages 533–556. Springer, 2014.

BGJS16. Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verifiable functional encryption.
In International Conference on the Theory and Application of Cryptology and Information Security, pages
557–587. Springer, 2016.

BKS16. Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-key
setting: Stronger security from weaker assumptions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 852–880. Springer, 2016.

73

BLR+15. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Semanti-
cally secure order-revealing encryption: Multi-input functional encryption without obfuscation. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 563–594.
Springer, 2015.

BS18. Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting. Journal
of Cryptology, 31(1):202–225, 2018.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In TCC
2011, pages 253–273. Springer, 2011.

CDSG+18. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Decen-
tralized multi-client functional encryption for inner product. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 703–732. Springer, 2018.

CDSG+20. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Dy-
namic decentralized functional encryption. In Annual International Cryptology Conference, pages 747–775.
Springer, 2020.

CGKW18. Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via bilinear entropy
expansion, revisited. In EUROCRYPT 2018, pages 503–534. Springer, 2018.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via predicate
encodings. In EUROCRYPT 2015, pages 595–624. Springer, 2015.

CIO16. Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. Deniable functional encryption. In Public-Key
Cryptography–PKC 2016, pages 196–222. Springer, 2016.

CKZ13. Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from (small) hardware
tokens. In International Conference on the Theory and Application of Cryptology and Information Security,
pages 120–139. Springer, 2013.

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 733–764. Springer, 2018.

CSW21. Michele Ciampi, Luisa Siniscalchi, and Hendrik Waldner. Multi-client functional encryption for separable
functions. In IACR International Conference on Public-Key Cryptography, pages 724–753. Springer, 2021.

DDM16. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product with
full function privacy. In PKC 2016, pages 164–195. Springer, 2016.

DOT18. Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Adaptively simulation-secure attribute-
hiding predicate encryption. In ASIACRYPT 2018, pages 640–672. Springer, 2018.

DP21. Pratish Datta and Tapas Pal. (compact) adaptively secure fe for attribute-weighted sums from k-lin. In
International Conference on the Theory and Application of Cryptology and Information Security, pages
434–467. Springer, 2021.

DSP19. Edouard Dufour-Sans and David Pointcheval. Unbounded inner-product functional encryption with suc-
cinct keys. In ACNS 2019, pages 426–441. Springer, 2019.

GGG+14. Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai,
Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 578–602. Springer, 2014.

GGH+16. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016.

GGHZ16. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without obfuscation.
In Theory of Cryptography Conference, pages 480–511. Springer, 2016.

GGLW22. Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryp-
tion from identity-based encryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 736–763. Springer, 2022.

GJKS15. Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption for randomized
functionalities. In Theory of Cryptography Conference, pages 325–351. Springer, 2015.

GKP+13a. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC 2013, pages 555–564. ACM, 2013.

GKP+13b. Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
How to run turing machines on encrypted data. In Annual Cryptology Conference, pages 536–553. Springer,
2013.

GS16. Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption with polynomial
loss. In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, volume 9986 of Lecture
Notes in Computer Science, pages 419–442, 2016.

74

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collu-
sions via multi-party computation. In CRYPTO 2012, pages 162–179. Springer, 2012.

IW14. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In ICALP 2014, pages
650–662. Springer, 2014.

IŻ15. Vincenzo Iovino and Karol Żebroski. Simulation-based secure functional encryption in the random oracle
model. In International Conference on Cryptology and Information Security in Latin America, pages 21–39.
Springer, 2015.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 60–73, 2021.

JLS22. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn over, dlin, and prgs
in nc. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 670–699. Springer, 2022.

KLM+18. Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J Wu. Function-hiding
inner product encryption is practical. In SCN 2018, pages 544–562. Springer, 2018.

KSY18. Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized functionalities in
the private-key setting from minimal assumptions. Journal of Cryptology, 31(1):60–100, 2018.

Lin17. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 prgs. In CRYPTO
2017, pages 599–629. Springer, 2017.

LL20. Huijia Lin and Ji Luo. Compact adaptively secure abe from k-Lin: Beyond NC1 and towards NL. In
EUROCRYPT 2020, pages 247–277. Springer, 2020.

LLHG22. Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu. Tightly cca-secure inner product functional encryption
scheme. Theoretical Computer Science, 898:1–19, 2022.

LLW21. Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. New lattice two-stage sampling technique and its applications
to functional encryption–stronger security and smaller ciphertexts. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 498–527. Springer, 2021.

LOS+10. Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In EURO-
CRYPT 2010, pages 62–91. Springer, 2010.

LT17. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local
prgs. In Annual International Cryptology Conference, pages 630–660. Springer, 2017.

LŢ19. Benôıt Libert and Radu Ţiţiu. Multi-client functional encryption for linear functions in the standard
model from lwe. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 520–551. Springer, 2019.

LV16. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on
constant-degree graded encodings. In FOCS 2016, pages 11–20. IEEE, 2016.

LW10. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE
with short ciphertexts. In TCC 2010, pages 455–479. Springer, 2010.

LW11. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In EUROCRYPT
2011, pages 547–567. Springer, 2011.

MKMS22. Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Soleimanian. Efficient lattice-
based inner-product functional encryption. In IACR International Conference on Public-Key Cryptography,
pages 163–193. Springer, 2022.

O’N10. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report
2010/556, 2010.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO 2010, pages 191–208. Springer, 2010.

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In ASIACRYPT 2012, pages 349–366. Springer, 2012.

TAO16. Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional encryption for inner-product
values with full-hiding security. In ICS 2016, pages 408–425. Springer, 2016.

TT20. Junichi Tomida and Katsuyuki Takashima. Unbounded inner product functional encryption from bilinear
maps. Japan Journal of Industrial and Applied Mathematics, 37(3):723–779, 2020.

Wat09. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
CRYPTO 2009, pages 619–636. Springer, 2009.

Wat15. Brent Waters. A punctured programming approach to adaptively secure functional encryption. In Annual
Cryptology Conference, pages 678–697. Springer, 2015.

Wee14. Hoeteck Wee. Dual system encryption via predicate encodings. In TCC 2014, pages 616–637. Springer,
2014.

Wee17. Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In TCC 2017, pages
206–233. Springer, 2017.

75

Wee20. Hoeteck Wee. Functional encryption for quadratic functions from k-Lin, revisited. In TCC 2020, pages
210–228. Springer, 2020.

WFL19. Zhedong Wang, Xiong Fan, and Feng-Hao Liu. FE for inner products and its application to decentralized
ABE. In PKC 2019, pages 97–127. Springer, 2019.

76

	Introduction
	Technical Overview
	From All-or-Nothing to Functional Encryption

	Preliminaries
	Bilinear Groups and Hardness Assumptions
	Turing Machine Formulation
	Functional Encryption for Unbounded Attribute-Weighted Sum for Turing machines
	Function-Hiding Slotted Inner Product Functional Encryption
	Arithmetic Key Garbling Scheme for Turing machines

	Construction of AKGS for the function class F
	(1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L
	The Construction
	Security Analysis

	 1-Slot FE for Unbounded AWS for L
	The Construction
	Security Analysis

