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Abstract—Federated learning (FL) is an increasingly popular
approach for machine learning (ML) in cases where the train-
ing dataset is highly distributed. Clients perform local training
on their datasets and the updates are then aggregated into
the global model. Existing protocols for aggregation are either
inefficient, or don’t consider the case of malicious actors in the
system. This is a major barrier in making FL an ideal solution
for privacy-sensitive ML applications. We present ELSA, a
secure aggregation protocol for FL, which breaks this barrier -
it is efficient and addresses the existence of malicious actors at
the core of its design. Similar to prior work on Prio and Prio+,
ELSA provides a novel secure aggregation protocol built out of
distributed trust across two servers that keeps individual client
updates private as long as one server is honest, defends against
malicious clients and is efficient end-to-end. Compared to prior
works, the distinguishing theme in ELSA is that instead of the
servers generating cryptographic correlations interactively, the
clients act as untrusted dealers of these correlations without
compromising the protocol’s security. This leads to a much
faster protocol while also achieving stronger security at that ef-
ficiency compared to prior work. We introduce new techniques
that retain privacy even when a server is malicious at a small
added cost of 7-25% in runtime with negligible increase in
communication over the case of semi-honest server. Our work
improves end-to-end runtime over prior work with similar
security guarantees by big margins - single-aggregator RoFL
by up to 305x (for the models we consider), and distributed
trust Prio by up to 8x.

1. Introduction
Federated learning (FL) [9, 83] is an emerging approach

in privacy-conscious machine learning (ML) that enables
efficient training over large and highly distributed datasets.
In a typical workflow, the application developer runs a server
to maintain a global ML model; the server iteratively up-
dates this model by computing an aggregate of the gradient
updates sent by the clients after local training [9].

In a utopian world with no bad actors, FL allows the
clients to retain full ownership of their data and the appli-
cation developer to efficiently train high-quality ML models.
However, both the clients and the servers can be corrupted
by adversaries leading to a range of attacks [24, 96, 97, 99]
against the system. Recently, governments have been incen-
tivizing research in building robust and private FL solutions

for tasks like financial crime prevention [11], and pandemic
response and forecast [12] with prizes worth $800,000.
Over the years, a rich line of work [19, 21, 22, 26, 35, 37, 40,
57, 62, 66, 70, 82, 84, 102, 104, 107, 114] has identified two
security properties as desirable:

• Privacy of individual gradients. It is well-known that
the gradients submitted by the clients leak informa-
tion about their local datasets [19, 24, 26, 34, 83, 105].
Therefore, to be usable in privacy-sensitive applica-
tions, it is imperative that FL preserves the privacy of
individual gradients (and thereby of the datasets)1.

• Filtering out boosted gradients from malicious clients.
Aggregation, which is at the heart of FL, is quite sensi-
tive to out-of-proportion values. Without any defenses
in place, even a single malformed gradient (e.g., with a
very high norm) can arbitrarily bias the global model.
Malicious clients can boost their gradients (scale up to
a large norm) to corrupt the global model, and many
model poisoning attacks [17, 53, 98, 99] rely on this
strategy. An effective FL solution must defend against
boosted gradients. Recent prior work [99, 104] has
shown that filtering gradients based on their ℓ2 norm
(a.k.a. ℓ2 defense) is effective against a large number
of sophisticated poisoning attacks under realistic threat
models for production FL2.

Most existing research either provides privacy [19, 21,
26, 35, 57, 62, 66, 70, 82, 102, 107] or defends against mal-
formed gradients [22, 37, 84, 104, 114]. Some attempts have
since been made to achieve both the properties, but they
are either quite inefficient [34, 40, 41, 101] or resort to weak
threat models [13, 61, 64, 88]. These protocols can be di-
vided based on whether they operate in the single-aggregator
model where a central server facilitates gradient aggregation
(RoFL [34], EIFFeL [40], [88, 101]), or if they distribute the
trust of the central aggregator into two servers hosted behind
separate trust domains (Prio [41], Prio+ [13], [61, 64]).

We present ELSA (Efficient Learning with Secure
Aggregation), a secure aggregation protocol for FL which
uses distributed trust and guarantees (Table 1):

1. The global update computed after aggregation of the submitted gradi-
ent updates has to be revealed, but individual updates should stay hidden.

2. No defenses are powerful enough to completely stop all poisoning
attacks, and all existing defenses [99] rely on some heuristics.
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Federated Learning Efficient Malicious Poisoning Trust
Protocols Parties Privacy Resilience Model

FedAvg [83] ✓ ✗ ✗ ◦
SecAgg [19, 26] ✓ ✓ ✗ ◦

Defence [37, 104, 114] ✓ ✗ ✓ ◦
RoFL*[34], [40] ✗ ✓ ✓ ◦

Prio [41] ✗ ✓ ✓ ◦ •
Prio+ [13], [61, 64] ✓ ✗ ✓ ◦ •
ELSA (This work) ✓ ✓ ✓ ◦ •

* It appears that RoFL should provide malicious privacy (not considered
in their paper); we give them the advantage here.

TABLE 1: Qualitative comparison of FL protocols. Only
representative works are shown. Single-aggregator model is
represented by ◦, and ◦ • refers to distributed trust with two
servers behind separate trust domains. Poisoning resilience
refers to some defense against malformed gradients.

• Malicious privacy. Honest clients’ gradients stay pri-
vate even in the face of a strong collusion between
malicious clients and at most one malicious server. As
long as one server is honest, privacy is guaranteed.

• Resilient to boosted gradients. We employ the com-
monly used ℓ2 defense [1, 104] to filter out boosted
gradients. Alongside its efficacy [99], the relative sim-
plicity of this defense makes it ideal for privacy-
preserving systems. In this defense, gradient updates
with ℓ2 norms much larger than usual are discarded.

• Efficiency through lightweight protocols. Our server
and client-side protocols are lightweight, and free of ex-
pensive cryptographic and public-key operations. This
translates to a simpler implementation and highly effi-
cient end-to-end secure FL. In terms of total runtime,
we outperform the single-aggregator and the distributed
trust state-of-the-art by 146-305x and 6-8x (with up to
16x improvement in servers), respectively, while also
requiring lower communication from the clients.

In addition, ELSA has a number of other desirable
properties. Unlike RoFL [34], EIFFeL [40] and Prio [41]
who can’t support bandwidth-constrained clients, ELSA
stays efficient even when a subset of clients have strict
bandwidth constraints. In ELSA, a few malicious clients
cannot block output delivery (RoFL lacks this property),
and it can withstand client dropouts without runtime degra-
dation (unlike [19, 26, 70, 102]). ELSA can use an input-
independent offline phase to significantly boost end-to-end
runtimes for when the gradients become available. Unlike
many single-aggregator prior works [19, 26, 40, 70, 102], in
our protocol, clients don’t need to talk to each other; this
makes communication for clients much simper. Moreover,
the communication from client to server is one-shot (single
message) after which clients don’t need to be online.

Other applications. Our techniques are more generally
applicable to realizing other defences in FL as long as
they operate independently on each client’s submission (e.g.
ℓ∞ defense [34]), and also achieving malicious privacy in
applications like privacy-preserving telemetry [13, 41].

1.1. Technical Overview
In the single-aggregator setting, RoFL [34] simultane-

ously achieves malicious privacy and enforces norm-based
defenses (ℓ2 and ℓ∞) by using expensive zero-knowledge
proofs (Bulletproofs [33]) which makes them quite ineffi-
cient. We don’t see a way to circumvent this limitation in
their setting, and therefore, focus on distributed trust instead.

Prio+ overview. We start with the design of Prio+ [13]
which operates in the distributed trust setting with two
servers. Their design yields an efficient protocol which
(heuristically) weeds out malformed updates by a “relaxed”
ℓ∞ defense, but doesn’t guarantee privacy in the presence
of a malicious server. The high-level idea behind their con-
struction is to have each client send Boolean secret shares
of its gradient update to the servers, and the servers use the
bit-length of the shares as a proxy to enforce a weaker form
of ℓ∞ defense. For example, restricting the magnitude of
values in the update to be at most 7 can be enforced by al-
lowing bit-lengths of 3. This prevents malicious clients from
sending boosted updates [104] which have large magnitudes
to overpower honest updates and poison the model. Servers
then engage in interactive 2-party computation (2PC) using
oblivious transfer (OT) [68, 86] to convert Boolean shares
to arithmetic, so they can be aggregated.

Malicious privacy challenge in Prio+. If one of the two
servers in Prio+ is malicious, privacy of individual gradients
can’t be preserved. An example malicious strategy would
be that errors introduced in OT messages propagate as a
function of the secret. A direct use of techniques from prior
works on malicious-secure Boolean to arithmetic conver-
sion [44, 51, 93] might seem promising3, but such protocols
are more than an order of magnitude more expensive in
communication than their semi-honest counterparts.

New insights for almost free malicious privacy. We un-
cover new insights into this problem and build a solution
which provides malicious privacy, essentially for free. Our
idea relies on two important observations. First, to ensure
the privacy of gradients, we only need to safeguard the steps
that servers execute on each client’s input shares excluding
the final aggregation step where gradients of all clients are
added together; let’s call them “client-specific steps”. This
is because the aggregation step only admits additive errors
which don’t depend on individual honest gradients [39],
and therefore, don’t affect privacy. Second, for a client c,
knowing the servers’ internal state beforehand for c’s client-
specific steps neither gives it any advantage in successfully
mounting a poisoning attack, nor reveals any information
about other clients’ gradients. Therefore, each client can
share random tapes with the servers which, along with the
clients input shares, makes the messages exchanged between
the servers totally deterministic. This enables clients to lo-
cally generate a digest of the transcript of server interaction,
and send it to the servers helping the honest server catch any

3. Each client generates its own MAC key and uses that to send authen-
ticated Boolean shares of its gradient. Servers use separate instances of
malicious-secure 2PC to process shares of each client.
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malicious behavior that could violate privacy. We formally
define malicious privacy in Definition 1.

Extending to ℓ2 defense. Stemming from Prio+, the cur-
rent design only supports the relaxed ℓ∞ defense. A more
commonly used and better studied [1, 34, 99, 104] defense
enforces an upper bound on the ℓ2 value of gradient updates.
This can be supported by using Beaver triples [18] to
compute the sum of squares of values within each gradient
vector. However, as a consequence of operating over finite
rings, the ℓ2 defense needs to be paired with a component-
wise upper bound within each gradient vector to maintain
soundness [34]; there should be no overflows in the ℓ2
computation. We refer to this augmented ℓ2 defense as
ℓ⊓2 . To address this, servers first convert Boolean shares to
arithmetic (ensures component-wise upper bound similar to
relaxed ℓ∞ in Prio+), and then use beaver triples to compute
shares of ℓ2.

Tapping into cheaper untrusted randomness. To make our
end-to-end protocol more efficient, we realize that clients
can serve as cheap untrusted sources of the cryptographic
material (correlations) needed by the servers. This material,
which is interactively generated by the servers by engaging
in expensive 2PC, can be locally generated by the client.
The client just samples some random numbers subject to
simple constraints. Once generated, these correlations can
be secret shared between the servers to provide them with
a significant boost. However, malicious clients can’t be
trusted with generating correct correlations, so the servers
need an efficient way to verify these correlations. In our
protocol, servers need OT correlations for Boolean to arith-
metic conversions and Beaver triples for computing shares
of ℓ2. We use ideas from Keller et al. [72] to efficiently
verify all OT correlations while just communicating two
field elements, and for Beaver triples, we use the SPDZ
sacrifice technique [43, 45, 73, 74]. This approach greatly
reduces the total communication and the entire workload
of servers, while also easing the computational effort of
clients (transcript emulation becomes simpler). The only
downside is the increase in communication from clients,
and therefore, we let heavily bandwidth-constrained clients
to individually opt out of this optimization, and still largely
retain our end-to-end efficiency. Note that all the clients
(including regular ones) in our protocol communicate less
than the three prior works (RoFL, EIFFeL and Prio) which
provide similar security guarantees, and none of these prior
works support bandwidth-constrained clients.

Achieving one-shot clients. By using clients as untrusted
correlation sources, there is a part of the random tape of
the servers which can’t be known apriori to the clients.
One can think of this as corresponding to the “random
challenge” which needs to be hidden from the client until
it sends its correlations to the servers (for soundness of the
defense against malformed gradients). This leaves us with
a two-round client because the transcript for a part of the
server-server interaction can’t be generated by the client
until it submits the correlations and receives the random
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Figure 1: ELSA FL pipeline. S0, S1 denotes servers in
different trust domains who each hold a copy of the current
global model. Ci represents the ith client who performs
local training before using its cryptography module to enable
secure aggregation. Numbers in boxes represent steps.

challenge. Casting our protocol as a public-coin interactive
protocol and using the distributed variant of the Fiat-Shamir
transform [27, 54], we achieve single-round clients.

2. Preliminaries
ELSA’s design considers two types of actors - servers

and clients. Clients, who can be users running mobile de-
vices (cross-device) or large organizations (cross-silo), have
personalized datasets which they don’t want to reveal to
anyone else, and the servers wish to train an ML model on
this large distributed dataset. Typical to FL, this is achieved
by choosing a subset of clients during each training iteration,
and having them contribute to updating the global model by
training it on their local datasets and sending the updates
back to the servers. Our design considers the distributed
trust setup where two servers deployed in separate trust
domains collectively and securely emulate the task of the
central coordinating server [9, 26], i.e., collecting all updates
and integrating them into the global model.

We present our pipeline in Fig. 1. Each training iter-
ation starts with S0 and S1 selecting a common subset
of clients (round participants) and broadcasting the current
global model to each of them (each server knows the global
model in clear). These clients then use their datasets to train
the global model for a few epochs locally, and then use
the cryptography module to securely share the generated
gradient update between the two servers such that each
server individually receives some “random-looking” update.
Servers then engage in an interactive protocol between
themselves to aggregate the updates and finally, integrate
them into the global model.

2.1. Problem Setup
In this work, we primarily focus on constructing the

cryptography module that is run on each client, and the se-
cure aggregation protocol that servers engage in. We assume
that clients generate gradient updates using an ML black-
box, and consider its specifics tangential to our work.
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The computation of interest in secure FL is the fol-
lowing: we have a set of clients C chosen for the current
iteration, where client i holds a gradient vector xi of size
m (a.k.a parameter size or #params), and the goal is to
compute the average of these gradient vectors4 [25, 71, 83],
i.e., ∇ = 1

|C|
∑|C|

i=1 xi. We simply refer to this computation
as aggregation, ignoring division by |C| as this is a public
constant in our system.

Sensitive gradients. It has long been established [19, 24, 26,
34, 83, 105] that gradients often leak sensitive information
about clients’ local datasets, and therefore, there is a need
to keep them individually private. To achieve this goal in
ELSA, we use techniques from secure multi-party compu-
tation [13, 48] to ensure that all computation done by the
servers happens in a privacy-preserving fashion, such that
only the final aggregated update is learned by the servers.

Utility of the service. The utility of an FL service relies on
the quality of the gradients xi. A single ill-formed gradient,
if left unchecked, can totally alter ∇. Malicious clients can
boost their gradients to bias the training process [26, 34, 79,
104, 109]. Therefore, to limit the scope of such attacks, it
is imperative to check for ill-formed gradient updates. An
effective strategy that is used by prior FL protocols [1, 13,
34, 41, 99, 104] is for the servers to enforce a norm bound
on the gradients before accepting them. We consider the
problem of selecting an appropriate bound orthogonal to our
work and refer the reader to prior work [34]. Additionally,
we make the common assumption that the chosen bound is
publicly known to everyone.

2.2. Security Guarantees and Threat Model
We consider a strong threat model where corrupted

clients are assumed to be malicious and up to one server is
corrupt. We distill corruption of server into two cases (with
different guarantees): the corrupt server is semi-honest or
malicious. Malicious parties can arbitrarily deviate from the
protocol specification in an attempt to break its guarantees,
while semi-honest parties follow the protocol specification,
but can try to infer as much private information as pos-
sible from the transcript. Like prior works on distributed
trust [13, 41, 42, 46, 47, 108], we assume that both servers
aren’t simultaneously compromised, and therefore, at most
one of them is corrupt. Informally, ELSA guarantees:

• For semi-honest server (with malicious clients). In-
dividual gradients of honest clients maintain privacy
(not revealed to anyone other than the source client
itself), and the computation done by the servers, i.e.,
ℓ⊓2 checks and aggregation, is correct (thus both privacy
and correctness are maintained).

• For malicious server (with malicious clients). Honest
clients’ gradients enjoy privacy, but the computation at
servers can be incorrect (thus only privacy is guaran-
teed). By incorrect computation, we mean no guaran-
tees for both - the final aggregate and the ℓ⊓2 defense.

4. For the ease of exposition, we consider all clients are assigned equal
weight. Our techniques straightforwardly extend to the general case.

Since the malicious server can censor all-but-one hon-
est client in an attempt to recover its private gradient
(from the final aggregate), we maintain a threshold
parameter τ which denotes the minimum number of
gradients that need to be aggregated before the final
result is revealed; τ can be appropriately set from an
estimated upper bound (can be adjusted for confidence)
on the relative prevalence of malicious clients to thwart
this privacy attack (w.h.p.). The other honest server
ensures τ is met and aborts otherwise.

We formally prove these properties in theorems A.1
and B.1. Similar to prior work [19, 26, 34, 70, 102] on secure
FL, we consider it a meaningful use of our system when
there are at least two honest clients so that the output of
aggregation doesn’t trivially reveal the honest gradient.

Setting up distributed trust. There has been an ex-
plosion in recent privacy-preserving systems which are
based on distributed trust. Apart from the numerous aca-
demic works [13, 28, 41, 42, 46, 47, 52, 60, 89, 108], it has
been adopted in many real-world deployments including
Firefox telemetry [2], COVID-19 exposure notification an-
alytics [8], oblivious DNS [3], and cryptocurrency wal-
lets [4, 5]. In ELSA, the application developer is responsible
for setting up distributed trust5, and we refer the reader to
prior work (e.g., [2, 8]) on how to do this properly. Given our
security guarantees, this ensures that honest clients no longer
have to put their entire trust in one server for privacy; as long
as the other server is working fine, privacy is guaranteed.

2.3. Building Blocks
Notation. We denote the servers (a.k.a. aggregators) by Sb

for b ∈ {0, 1} and the set of all participating clients by C.
[n] denotes the set {0, 1, . . . , n − 1}. The set (or vector)
{x0, x1, . . . , xn−1} is denoted by {xi}n−1

i=0 . When it is clear
from the context, we will drop n from {xi}n−1

i=0 and repre-
sent it as {xi}i for brevity. We use ⊕,∧ for bitwise XOR
and AND, respectively. Our protocols support aggregations
over ZL, where L = 2ℓ. x $←− ZL denotes that x is uniformly
randomly sampled from ZL. For a vector y, we denote its
entries by yi for i ∈ [|y|] and all operations performed on
vectors are component-wise. We use ← to set a variable. ||
denotes string concatenation. λ, κ are the computational and
statistical security parameters, respectively.

Vector norms and defenses. The Euclidean norm,
or ℓ2 norm, of a vector (x1, . . . , xn) is defined as√

x2
1 + · · ·+ x2

n, and forms the main defence in our work
against boosted gradients. When working with cryptographic
primitives over finite rings, an upper bound on the ℓ2
norm of a vector is ineffective in containing the magnitudes
of individual components because overflowed values wrap
around the modulus (as observed in RoFL [34]). Therefore,
we augment the ℓ2 bound with a component-wise upper

5. Compared to works like RoFL in the single-aggregator model which
base their security on the hardness of solving discrete log, distributed trust
(theoretically) is a somewhat weaker notion of security, but leads to much
more practical solutions.
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bound (using bitlength) which works similarly to a relaxed
ℓ∞ bound; we refer to this additional bound as ℓ⊓ and the
combined defense as ℓ⊓2 . ℓ∞ norm of a vector (x1, . . . , xn)
is defined as maxi |xi|, and an ℓ⊓ bound allows this value
to be at most 2w − 1 for some w ∈ N. For our case, ℓ2 is
faithful as long as ℓ⊓ is set such that n·(ℓ⊓)2 ⩽ L′ (implying
no overflows), where L′ is the ring modulus under which ℓ2
computation happens [34]. In our ℓ⊓2 defense, we typically
choose a large ℓ⊓ (L′ can be appropriately adjusted) to leave
enough slack for honest gradients; setting it to be close to
the ℓ2 bound (say µ) is ideal6 because the definition of ℓ2
norm implicitly restricts the magnitude of any individual
value in the vector to be at most µ. Moreover, rather than
bounding ℓ2, we bound ℓ2

2 (with the bound value denoted
by µ2), but for notational simplicity refer to it as ℓ2. Note
that imposing an ℓ⊓ bound already implies an ℓ2 bound of
n · (ℓ⊓)2, but that is quite coarse-grained and therefore, an
explicit bound (µ2) on the ℓ2 norms is required.

Arithmetic/Boolean secret sharing. In arithmetic secret
sharing [95], a value x ∈ ZL is split into a pair of shares
x(0), x(1) such that x(0)+x(1) = x (mod L). In our setting,
typically, the client who owns the value x creates its shares
as: x(0) $←− ZL and x(1) ≡ x−x(0) (mod L), and sends x(0)

to S0 and x(1) to S1. Given shares of two secret values x and
y, shares of z ≡ x+y (mod L) can be locally computed by
each server Sb setting z(b) ← x(b) + y(b) (mod L). When
L = 2, we get Boolean secret sharing.

Oblivious Transfer (OT). An ℓ-bit “t-choose-1” OT compu-
tation [15, 68, 75], denoted by

(
t
1

)
-OTℓ, allows the receiver

(OTRc) holding a “choice” input j ∈ [t] to receive the
message mj from a set of ℓ-bit messages {mi}t−1

i=0 held
by the sender (OTSn). The sender learns nothing during the
protocol and receiver learns no message other than mj . For
this work, the case of t = 2 is the most relevant. Correlated
OT (COT) [16, 91] is a variant of OT where the sender has
an input m, receiver has a choice bit j, and the protocol
outputs (r, r+m) to the sender and (r+j ·m) to the receiver,
where r $←− {0, 1}ℓ. OT extension [30, 68] protocols generate
polynomially many OTs given λ base OTs.

Beaver triples. Given secret shares of values x, y ∈ ZL,
computing the shares of x · y requires interaction. A com-
monly used approach for this secure multiplication is using a
Beaver triple [18] which consists of three elements (α, β, γ)
such that γ ← α · β, and α, β

$←− ZL. Secret shares of a
beaver triple can be used to compute shares of z ← x·y with
each party only communicating 2 ring elements [18, 48, 91].

3. ELSA: Secure Federated Learning
In this section, we describe our protocol for secure FL.

We begin by constructing a simple protocol that enforces
ℓ2 bounds, but is neither efficient nor guarantees malicious
privacy. We then show how to address each of these issues
sequentially, and finally arrive at ELSA.

6. Larger than this would waste protocol resources.

3.1. Norm Bounding with Semi-Honest Privacy
In Prio+ [13], clients use Boolean secret sharing to share

their gradient updates between the two servers, and the
servers then engage in an interactive protocol to convert
Boolean shares to arithmetic shares which can then be
locally aggregated. This allows the servers to efficiently
enforce an ℓ⊓ bound on client submissions. In this work,
we follow a similar strategy. Let’s consider the aggregation
task at hand is to compute sum over the ring ZL and we
want to ensure that each individual value is at most 2w − 1
(= ℓ⊓) in magnitude, for w ⩽ ℓ. Each client locally bit
decomposes the values in its gradient vector and sends
Boolean secret shares to the servers. The servers reject
all client submissions which have more than w bit-shares
per component of the gradient update, thereby retaining
only the shares of values which are bounded by 2w (refer
to Appendix C for a discussion on negative values). These
bit-shares are then converted back to arithmetic shares of
the original values by using an COT-based bit composition
protocol [13, 48, 91] (opposite of bit decomposition), and
finally aggregated locally by the servers to get shares of the
final aggregate. This result is opened by the servers through
reconstruction (exchanging arithmetic share with each other)
to yield the output.

As the first step towards building ELSA, we focus
on ℓ2 norm bounding [1, 104] to filter out boosted gradi-
ents from malicious clients. RoFL [34], the state-of-the-
art single-aggregator protocol for secure FL, also considers
ℓ2 bounding as one of their prime defenses. The relative
simplicity of this defence compared to others [22, 84, 114]
makes it suitable when working over secret shares. To
realize this defense over arithmetic secret-shared gradients
(post bit composition), two secure computations need to be
performed. First, arithmetic secret shares of the ℓ2 value
needs to be computed, and second, this value needs to be
securely compared against the upper bound such that the
only information that is revealed is the comparison output,
i.e., whether the ℓ2 value is within bound or not. We refer
to the first step as “ℓ2 computation”, and the second one as
“ℓ2 enforcement”. We now describe how both steps can be
performed, and later in this section, optimize this solution.
Note that when working over finite rings, ℓ2 defense needs
to be paired with a per-component bound, like ℓ⊓, to ensure
soundness (see Section 2.3). In our case, the two steps of ℓ2
defense are only performed after the bit composition step,
ensuring that each value7 is individually bounded by 2w.

ℓ2 computation. To compute shares of the ℓ2 value, all we
need is to perform secure multiplication of arithmetic shares
of each component in the gradient update with itself, and
finally add the resulting shares locally. This can be achieved
using Beaver triples; one triple for each value in the vector.
The ring over which aggregation happens (ZL) need not be
the same as the one over which ℓ2 is computed. The ℓ2
ring, Z2u , can be larger than ZL. Since shares of a value

7. We consider the same bound on each value for simplicity of exposi-
tion. Our protocol straightforwardly extends to the general case.
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less than L over the ring Z2u can be converted to shares
over ZL by local modulo reduction with L [90], servers can
perform bit composition to output shares over the larger
Z2u , perform ℓ2 computation and checks, and then during
aggregation convert them back to ZL. Shares of the required
Beaver triples can be generated between the two servers
using either COT (requires 2u instances of

(
2
1

)
-COTu per

triple) or homomorphic encryption [48].

ℓ2 enforcement. Once the ℓ2 computation is done, the next
step is to check whether the value obeys the upper bound
µ2. Opening the ℓ2 value directly, and locally comparing
with µ2 would leak extra information than needed, i.e., the
precise ℓ2 value. Therefore, this comparison needs to happen
using a secure sub-protocol which only reveals whether the
bound is violated or not. In this work, we perform this step
by having the servers first locally compute arithmetic shares
of z ← y − µ2 mod 2u, where y is the ℓ2

2 value, and then
extract its most-significant bit (MSB) by evaluating a secure
adder [48]; secure adders can be computed using COTs [48,
91] with each AND gate requiring two

(
2
1

)
-COT1. The adder

outputs Boolean shares of the sum, and the MSB is then
opened to reveal the output; zero implies bound violation.

3.2. Designing an Efficient Protocol
To achieve an efficient end-to-end protocol, we propose

a novel redistribution of secure computation across parties.

3.2.1. Cheaper Sources of Correlations
We now analyze the current construction, identify the

bottleneck, and propose a technique that completely dis-
solves this bottleneck. For this analysis, we focus on OT-
based primitives instead of homomorphic encryption (HE),
and use the IKNP OT extension (with its derivatives) [16,
68]. Recent PCG-based OT extension protocols [30, 112]
and HE trade-off lower communication for much higher
computation compared to IKNP which makes them trickier
to theoretically analyze. Moreover, as long as the servers
have a good bandwidth connection with each other, these
solutions aren’t too different in end-to-end performance [92,
112], and therefore, IKNP suffices for our analysis.

Bit composition and ℓ2 computation are the only two
phases where the communication between the servers grows
linearly with the size of the gradient updates and the number
of participating clients; all the other phases require only a
small fraction of this communication. Of these two, ℓ2 com-
putation is more heavy because generating Beaver triples is
quite expensive. In particular, the communication cost of ℓ2
computation is dominated by m · 2u · (λ + u), while bit
composition incurs m · w · (λ + u) bits. Since u is at least
2w + logm, there is > 4x difference in communication.
This difference is even more pronounced when a commonly
used technique called probabilistic quantization [76] is used
to reduce client communication8. Hence, ℓ2 computation is
the bottleneck in our current protocol, and now we make
this phase significantly cheaper.

8. This reduces w, while u stays the same. Boolean shares of gradients
are compressed during transit, and unpacked at the servers to their full size.

More efficient sources of triples and OTs. Generation of
Beaver triples between the servers makes ℓ2 computation
quite expensive. If we could find cheaper ways to source
Beaver triples, then the cost of this phase can be brought
down significantly to the point that it no longer is the bot-
tleneck. To this end, we realize that each client can act as an
“untrusted” (clients can be malicious) source of triples corre-
sponding to the ℓ2 computation that servers need to do for its
gradient update. Since the soundness of the ℓ2 computation
relies on the correctness of these triples, servers need to
first validate them before they can be used. For verification,
we use the well-known sacrifice technique [43, 45, 73, 74]
from SPDZ2k [43] which sacrifices one triple to verify
the correctness (statistically) of the other. For gradient up-
dates of m elements, each client prepares 2m triples and
secret shares them between the servers, where each triple
(αi, βi, γi) is generated by sampling αi, βi

$←− Z2u and set-
ting γi ← αi·βi. The servers then sacrifice m of these triples
to verify the other m, and finally use the surviving triples
for ℓ2 computation phase. The computational work of both
clients and servers is minimal. In terms of communication,
each client sends 6mu bits to each server, and each server
communicates 2mu bits for verification9, followed by 2mu
bits for computing the squares. The communication cost
from clients to the servers can be further reduced to just
2mu bits (total) by using a shared pseudo-random generator
(PRG) seed [78] to generate both shares of αi, βi, and one
share of γi such that the other share of γi is appropriately
set by the client to ensure that the relation γi = αi ·βi holds,
and is the only value that needs to be communicated. Talking
about the end-to-end protocol, this approach increases client
communication10 (mw to mw + 2mu) by almost the same
multiplicative factor as it reduces server communication
(m · (2u + w) · (λ + u) to about mw · (λ + u)), however,
given that the clients communicate only a small fraction of
what servers communicate, we gain substantially in overall
efficiency of the protocol.

Having clients generate Beaver triples not only makes
our protocol significantly more efficient, but also makes it
much simpler (requiring no OT extensions for generating
triples). We now extend this idea to the COTs used in the
bit composition phase. Although unlike ℓ2 computation, this
won’t improve the efficiency of our end-to-end protocol by
a big margin, it still makes it simpler, and further reduces
the communication and computational load of the servers
while increasing client communication. We default to this
arrangement for a better distribution of work across parties,
and later in this section, discuss the case of bandwidth-
constrained clients.

Recall that the bit composition phase relies on OTs to
convert Boolean shares of gradient updates to arithmetic
shares. If clients generate random OTs (ROTs), i.e., OTs
of the form (m0,m1)

$←− Z2u given to the server acting

9. Performing the zero-check as a part of triple verification can be
batched across all m checks by using a collision-resistant hash function.

10. For communicating Boolean shares of gradient update, the PRG trick
can be used.

6



Algorithm 1 Bit Multiplication Πk
BitMultUA

Input: Bit shares x(0), x(1) ∈ Z2 to multiply. If participating
as the sender (OTSn role), then additional inputs include
(m0,m1) ∈ Z2k . If participating as the receiver (OTRc
role), additional inputs include (j,mj), where j ∈ {0, 1}.
Output: y(b) ∈ Z2k s.t. x(0) ∧ x(1) = y(0) + y(1) (mod 2k)

Protocol: Between Servers (Assuming S0 is OTSn)
1: S1 sends d← j ⊕ x(1) to S0.
2: S0 computes the pair (v0, v1)← (u0− r, u1− r+x(0))

and sends it to S1, where r
$←− 2k, and (u0, u1) ←

(m0,m1) if d is 0 (swapped otherwise).
3: S0 sets y(0) ← r, S1 sets y(1) ← vx(1) −mj (mod 2k).

as OTSn and (j
$←− {0, 1},mj) to OTRc, then servers can

use them to do bit composition. Consider a bit x that the
servers want to convert from its Boolean shares (x(0), x(1))
to arithmetic form. We make use of the following equation:

(Arithmetic) x = x(0) ⊕ x(1) = x(0) + x(1) − 2(x(0) ∧ x(1))

where additions and subtractions are in the arithmetic do-
main. Notice that the only non-local operation needed is to
compute x(0) ∧ x(1), called bit multiplication. We describe
the protocol ΠBitMultUA to do bit multiplication x(0) ∧ x(1),
where Sb holds x(b) for b ∈ {0, 1}, in Algo. 1; this consumes
an ROT in a straightforward way. This provides a way for
the servers to use client-supplied OTs for bit composition,
but leaves an issue wide-open - how do the servers verify
if the OTs are correct? ROTs cannot be efficiently verified
by the servers, so we rather have clients send a special kind
of COTs, called ∆-COTs, which admit a batch-verification
procedure [72], and convert them back to ROTs at the
servers. In a ∆-COT, every pair of messages held by OTSn
satisfies the constraint m0⊕m1 = ∆ for a fixed but random
∆ ∈ {0, 1}λ. A batch of ∆-COTs {(mi,mi⊕∆), (ji,mji)}i
can be verified by checking their random linear combination
for the ∆-offset property [72], and each of them can then be
converted to ROTs at the servers by the local operation of a
hash function [72] which breaks the correlation and makes
the two messages in each OT look random (just like an
ROT). To reduce the communication from clients to servers,
we again use shared PRG seeds to only communicate mji
to OTRc, and all other values mi,∆, ji are generated by
expanding the PRG at respective parties. When servers gen-
erate the OTs themselves (on the fly), they incur a commu-
nication of mw(λ+u) bits for bit composition which is now
reduced to mw(2u+1), and clients now communicate mwλ
additional bits. We present an optimization in Section 3.2.2
which further cuts the server communication by half, thereby
achieving the same total communication for bit composition
as on-the-fly OT case.

Bandwidth-constrained clients. In situations where clients
are mobile or edge devices who might be bandwidth-
constrained (because of their geographic location, for ex-
ample), sending ∆-COTs for bit composition can be quite

demanding; each client needs to send m(w+2u+wλ) bits
which is completely dominated by mwλ from ∆-COTs. In
these cases, clients can opt out of sending ∆-COTs and have
the servers generate them on the fly as mentioned in Sec-
tion 3.1. This frees up their bandwidth burden significantly
while mostly maintaining the end-to-end efficiency of our
protocol, and should be enough for most cases. In the very
rare situation where clients can only communicate the bare
minimum, we let them opt out of even sending the Beaver
triples. This however, comes at the cost of increased work
(computation and communication) at the servers. As long
as only a small fraction of clients are severely bandwidth-
constraint, our protocol still largely maintains its efficiency
guarantees. We experimentally confirm this in Section 4.3.
We next discuss an approach to reduce client communication
without increasing server communication, but at the cost of
increased computation for both roles.

Using Pseudorandom Correlation Generators. Two-party
pseudorandom correlation generators (PCGs) [30, 31, 94]
are defined by two algorithms - Gen and Expand. The
former generates a pair of succinct seeds (k0, k1) which
are distributed between the two servers (Sb gets kb). The
servers use the Expand algorithm to locally expand their
seeds to generate a large number of correlations. Prior
work [30, 31, 94] has presented PCG constructions for both
∆-COTs and beaver triple11 correlations. In our setting, each
client can generate PCG seeds for the correlations it wants
to send, and the servers can then expand them out and
validate them as they would validate regular correlations.
This reduces client communication significantly. Taking ∆-
COT as an example which currently forms the communica-
tion bottleneck of the clients, with Boyle et al.’s [30] (resp.
Schoppmann et al. [94]) silent-OT seeds, clients would com-
municate less than a bit (resp. 6-7 bits) per COT compared
to λ (e.g. 128) bits otherwise. Schoppmann et al. [94] has
higher communication than Boyle et al. [30], but requires
much smaller computation, and computation is what matters
more for our setting because clients generate the seeds
locally. We leave it to future work to develop more efficient
PCG-based OT extension protocols (like Ferret [112]) in the
trusted dealer model [29] like ours.

3.2.2. Optimizing Correlation Usage

We saw how servers can benefit from getting correlations
like Beaver triples and OTs from the clients. We now pro-
pose further optimizations for using both these correlations
which reduces server communication by another 2×.

Pre-aligned ∆-COTs. Bit multiplication using ∆-COTs
(hashed to ROTs) of k bits (Algo. 1) requires 2k + 1
bits of communication across 2 rounds. We can bring this
down to k bits and a single round by proposing the use of
pre-aligned ∆-COT correlations. In a pre-aligned ∆-COT,
the client sets the choice bit to be same as OTRc’s bit-
share which consumes that COT during bit multiplication. In
particular, by setting j ← x(1), the first message d is always

11. Servers can also use OTs to generate beaver triples [48].
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Algorithm 2 Aligned Bit Multiplication Πj
BitMult

Input: Bit shares x(0), x(1) ∈ Z2 to multiply. If participating
as the Sender (OTSn role) then additional inputs include
∆, q ∈ F2λ . If participating as the Receiver (OTRc role)
additional inputs include t ∈ F2λ . Let H : [ℓ]× F2λ → Z2λ

be a hash [72] in the random-oracle model.
Output: y(b) ∈ Z2j s.t. x(0) ∧ x(1) = y(0) + y(1) (mod 2j)

Protocol: Between Servers (Assuming S0 is OTSn)
1: S0 computes v0 ← H(c||q) and v1 ← H(c||q+∆) and

sets y(0) ← −v0 (mod 2j), where c is a global counter.
2: S0 sends u← v0 + v1 + x(0) (mod 2j) to S1.
3: S1 computes v ← H(c||t).
4: S1 sets y(1) ← x(1)u+ (−1)x(1)

v (mod 2j)

Algorithm 3 Local OT Correlation Generation LocalOT

Input: Choice bits x ∈ Zn
2 and an offset ∆ ∈ F2λ .

Output: Q and T s.t. Q = T + x ·∆ ∈ Fn
2λ

Protocol: Locally performed at each Client c ∈ C
1: for j ∈ [n] do
2: Sample qj ∈ F2λ . Let xj ∈ F2 be the jth bit of x.
3: Set tj ← qj + xj ·∆ ∈ F2λ

4: end for
5: Set Q← {q0, . . . , qn−1} and T ← {t0, . . . , tn−1}.

zero, and therefore, doesn’t need to be sent. Moreover, the
two messages (v0, v1) sent by OTSn can also be reduced
to a single message by using ideas from COT extension
protocols [16, 72]. We refer to such ∆-COT correlations
as being pre-aligned, and the optimized bit multiplication
which uses them to be aligned bit multiplication, ΠBitMult,
presented in Algo. 2. For completeness, in Algo. 2, we
assume ∆-COTs as input and include hashing to ROTs as
part of the protocol.

Square correlations. Beaver triples allow multiplication
of any pair of secret-shared values x, y. For our protocol,
we only require computation of squares of secret-shared
values, i.e., when x = y, and therefore, using Beaver
triples is sub-optimal12. We introduce square correlations
as the optimized alternative for computing squares (part of
ℓ2 computation). A pair of values (α, γ) form a square
correlation over Z2u if γ = α2 and α

$←− Z2u . Square
correlations can be used in a straightforward way (similar to
Beaver triples) to compute squares over secret-shared values.
However, the tricky part is their verification. Following
an approach similar to SPDZ sacrifice [43, 45, 73, 74] for
Beaver triples, soundness boils down to the distribution of
quadratic residues in the finite ring. We prove in Lemma 2
that using an odd value as the random challenge in the
verification step can provide soundness with just a 3-bit loss

12. When PCG-based OTs are used to generate Beaver triples, triple
generation becomes the bottleneck step. Replacing triples with square
correlations improves the efficiency of this step by 2x.

Algorithm 4 Bit Composition Πw,ℓ
BitComp

Input: Bit shares x(b) ∈ Zw
2 to convert, where b ∈ {0, 1}.

If participating as the Sender (OTSn role) then additional
inputs include ∆, Q ∈ Fw

2λ . If participating as the Receiver
(OTRc role) additional inputs include T ∈ Fw

2λ .
Output: z(b) ∈ ZL where L = 2ℓ such that

z(0) + z(1) =

w−1∑
i=0

2i(x
(0)
i ⊕ x

(1)
i )

Protocol: Between Servers (Assuming S0 is OTSn)
1: Sb sets z(b) ← 0 ∈ ZL, where b ∈ {0, 1}.
2: for i ∈ {0, . . . , w − 1} do.
3: Let ℓ′ = ℓ− (i+ 1).
4: S0 sets y(0) ← Πℓ′

BitMult(x
(0)
i ,∆, Qi).

S1 sets y(1) ← Πℓ′

BitMult(x
(1)
i , Ti).

5: Set z(b) ← z(b) + 2i(x
(b)
i − 2y(b)) mod L, where

x(b), y(b) are considered as elements of ZL.
6: end for

in statistical security.

End-to-end protocol. We present our end-to-end semi-
honest private protocol for FL in Algo. 5. Details about
the round complexity of our protocol are deferred to Ap-
pendix D.

Algorithm 5 Secure Aggregation for FL (ΠAgg)

Input: Gradient vectors of size m. Let n = m·w+2u+λ+κ.
τ denotes the minimum no. of clients whose gradients need
to be aggregated each round. For the ℓ⊓2 defense, µ (resp.
2w − 1) is the ℓ2 (resp. ℓ⊓) bound to enforce. We assume
that Server S0 is the OTSn and S1 is the OTRc.
Output: Global aggregate vector with m values, where co-
positioned w-bit values across clients’ vectors are aggre-
gated over ZL.

Input Sharing Phase: (Locally at each Client)
1: For each client c ∈ C, let x denote the data of this client

(clipped to the current ℓ2 bound, µ) which consists of a
vector of size m with w-bit values. Let xi,j ∈ Z2 where
i refers to the vector index and i ∈ {1, 2, · · · ,m} and
j ∈ [w] is the bit-index.

2: Generate shares x(0), x(1) of x over Zm×w
2 and send

x(b) to server b.

OT Generation: (Locally at each Client)

1: Each client c ∈ C samples ∆ $←− F2λ and r
$←− Z2u+λ+κ

2 .
2: Each client generates OT correlations Q,T and Q′, T ′

using the LocalOT sub-routine on inputs x(1) ∈ Zm×w
2

(flattened) and ∆ and r,∆ respectively:

(Q,T ) ←− LocalOT(x(1),∆)

(Q′, T ′)←− LocalOT(r,∆)
(1)

3: Each client sends ∆ and Q← (Q||Q′) to the S0 (OTSn
Server), and r and T ← (T ||T ′) to S1.
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Square Correlation Generation: (Locally at each Client)
1: Set v ← u+ κ+ 313.
2: Each client c ∈ C samples {ai}2mi=1

$←− Z2v .
3: Each client generates arithmetic shares W (0),W (1) of
{(ai, di)}2mi=1, where di = a2i mod 2v and sends them
to the respective server.

OT Verification: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: Servers S0, S1 collectively sample random values
{χ1, . . . , χn} ∈ Fn

2λ . S1 (OTRc role) parses x̂ ←−
(x(1)||r) ∈ Fn

2 and computes:

x̃←
n∑

j=1

x̂j · χj and t̃←
n∑

j=1

Tj · χj (2)

where Tj ∈ F2λ is the jth correlation in T .
2: S1 sends x̃, t̃ to S0 and S0 computes

q̃ ←
n∑

j=1

Qj · χj (3)

where Qj ∈ F2λ is the jth correlation in Q.
3: S0 checks if t̃ = q̃+ x̃ ·∆ and reject the client if it fails.
4: S0, S1 discard the last (λ+ κ)14 OT correlations. They

further split the remaining correlations into two sets
(QA, TA), (QB , TB) with mw in the first set. They
parse QA, TA to their folded form ∈ Fm×w

2λ
.

Square Correlation Verification: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: Sb sets Ŵ (b) ← {}.
2: for each pair of correlations (a(b), d(b)), (â(b), d̂(b)) ∈

W (b) do
3: Collectively sample an random odd value t ∈ Z2v

4: Servers open e← ta− â.
5: S0 computes t2d(0) − d̂(0) − 2tea(0) + e2

S1 computes t2d(1) − d̂(1) − 2tea(1)

6: Servers check that they computed shares of zero; If
yes, Ŵ (b) ← Ŵ (b)||(a(b), d(b)) else reject client.

7: end for
8: Servers parse Ŵ (b) as {(a(b)i , d

(b)
i )}i.

Bit Composition Phase: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: for i ∈ [m] do
2: S0 sets z

(0)
i ← Πw,u

BitComp(x
(0)
i ,∆, QA

i )

S1 sets z
(1)
i ← Πw,u

BitComp(x
(1)
i , TA

i )
3: end for

13. Square correlations are generated over v bits by the clients, then
verified over v bits by the servers, and finally, upper κ+3 bits are locally
dropped to yield validated correlations over u bits. Refer to Lemma 2 for
more details.

14. Extra λ + κ random OTs were needed to prevent any private
information leakage from x̃. This follows from lemma 2 [72] which states
(informally) that a random (λ+κ)×λ matrix over F2 is full rank except
negligible probability in κ.

ℓ2 Computation Phase: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: Sb sets z(b) ← 0 ∈ Z2u , where b ∈ {0, 1} and i ∈ [m].
2: for i ∈ [m] do
3: Servers open e← zi − ai.
4: S0 sets z(0) ← z(0) + d

(0)
i + 2ez

(0)
i − e2 mod 2u

S1 sets z(1) ← z(1) + d
(1)
i + 2ez

(1)
i mod 2u

5: end for

ℓ2 Enforcement Phase: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: S0 sets z(0) ← z(0) − µ2.
2: S0, S1 extract the sign bit of z by evaluating an adder

securely ([48]) with inputs z(b). For AND computations,
S0 uses QB ,∆ and S1 uses r, TB . Each AND uses two
Π1

BitMultUA invocations (Algo. 6).
3: If the sign bit is zero, reject the client.

Aggregation Phase: (Between Servers)
1: For i ∈ [m] and b ∈ {0, 1}, Sb adds the z

(b)
i values of

all the clients together into y
(b)
i .

2: Reconstruct yis from shares if inputs from more than τ
fraction of clients got aggregated. Otherwise output ⊥.

3.3. Achieving Malicious Privacy
The protocol that we have built so far is efficient,

supports ℓ⊓2 defense, and guarantees privacy against a semi-
honest server. In this section, we present new ideas for
guaranteeing privacy in the face of a maliciously corrupt
server while incurring an extremely low overhead compared
to our semi-honest protocol. Unlike a semi-honest server,
a malicious server can send malformed protocol messages
to violate privacy of individual gradients. As an example,
consider aligned bit multiplication (Algo. 2) where S0 is
malicious. To ensure privacy, we require that S0 learns
nothing about the bit x(1) held by S1. Since a malicious S0

can send malformed messages, it can construct its message
as u ← v0 + v1 + x(0) + δ, where δ is some error that
it introduces. Now, δ will contribute to the final aggregate
only if x(1) was one because this is only when u is used
by S1. Therefore, the final result (which is opened to both
servers) reveals x(1) to S0. This is just one way in which a
malicious server may compromise gradient privacy. We need
to eliminate these attacks to reach our goal of malicious
privacy. We start by looking at existing MPC techniques
which are commonly used to achieve malicious security.

A naı̈ve way to achieve malicious privacy would be to
directly use a malicious-secure arithmetic black box [43,
44, 51] for all the operations that we need in our protocol.
However, this will require all clients in C and the two servers
to act as (full) parties in the MPC protocol, making this
solution completely impractical for many reasons - MPC
protocols don’t scale well with so many parties, each client’s
communication becomes too high, and they have to interact
with each other and the servers across multiple rounds for
just one invocation of secure aggregation. Additionally, this
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solution assumes that each client is as resource-capable as
the servers, which doesn’t hold for many setups like cross-
device FL. A better solution would be to do malicious-secure
2PC between the two servers, and have the clients send au-
thenticated bit-shares of their gradients to the servers. If we
ignore collusion between the malicious server and a subset
of clients for a moment, then a global authentication key
(MAC key [43, 51, 87]) can be kept secret-shared between
the servers, while the clients can know the key in clear.
This allows the clients to generate authenticated Boolean
shares of their gradients locally. However, under collusion,
this approach breaks down because the malicious server
can easily learn the key through any corrupted client. To
withstand this, clients can be allowed to interact with the
servers to authenticate their Boolean shares, but this is quite
inefficient, and moreover, gives a single malicious client the
power to abort the entire protocol by adding inconsistencies
during authentication. Although servers can introduce more
steps to check for valid authentication, this approach has a
big overhead over semi-honest.

Distilling privacy-sensitive steps. To build a satisfactory
solution, we observe that not all steps in the protocol need to
be maliciously secure; the final aggregation phase (Algo. 5)
is a step which doesn’t need to be malicious secure. This
is because any error δ introduced by the malicious server
during reconstruction of the final aggregate is uncondition-
ally reflected in the output, and therefore, doesn’t leak any
private information. In other words, the aggregation phase
only admits an additive error attack [39] which doesn’t
affect privacy. However, it does affect correctness of the
output, and that is why, we don’t guarantee correctness of
aggregation when a server is malicious. Given this insight,
if we consider using information-theoretic MACs for mali-
cious privacy, then we can have each client generate its own
MAC key, use it to locally generate authenticated Boolean
shares of its gradient update, and send them to the server
along with arithmetic shares of the MAC key. The servers
can then use malicious-secure 2-party Boolean-to-arithmetic
conversion protocols [44, 51] and secure multiplication using
authenticated Beaver triples [43] to perform the ℓ⊓2 defense.
The final step of aggregation can ignore the MACs because,
firstly, they vary across clients and can’t be aggregated, and
secondly, we don’t need to catch malicious tampering in
this phase. Despite being the most efficient solution that
uses MACs which we have drafted so far, it still puts a
communication overhead of more than an order of magni-
tude over the semi-honest base owing to the Boolean-to-
arithmetic conversion step [51].

In this work, we take a different direction for guarantee-
ing malicious privacy. We observe that all the steps (Algo. 5)
run by the servers which require malicious protection (OT
verification, square correlation verification, bit composition,
ℓ2 computation, and ℓ2 enforcement) are run independently
for each client; the aggregation phase, on the other hand,
doesn’t have this independence property, but can be safely
ignored for malicious protection. It will be convenient to
think of it this way - the servers start |C| separate and

independent instances implementing the ℓ⊓2 defense where
each instance is dedicated to a specific client. As long as
we can guarantee that for each instance, the corresponding
client can know apriori all the messages that the servers
send to each other without affecting soundness of the ℓ⊓2
defense, then we can achieve malicious privacy by transcript
emulation. For each instance, we let the corresponding client
emulate the entire transcript of server interaction, and send it
to both the servers. The honest server can now cross-check
the transcript it observes while interacting with the other
server against the transcript from the client, and easily detect
malicious tampering. If tampering is detected, we stop any
further processing (censor the client) on the inputs of the
concerned client to maintain their privacy and carry on with
the rest of the protocol. If the fraction of censored clients
go beyond a configured threshold τ (e.g., all but one clients
get censored), the honest server aborts the protocol.

Coming back to the assumption we made above that
knowing protocol messages doesn’t affect soundness of the
defense, we now argue why this holds. Consider the ℓ⊓2
defense outside the secure computation context. It takes
bits as inputs, converts them to elements of a larger ring,
computes sum of their squares and checks if they obey an
upper bound. Nowhere in this process do we rely on any
secret value (like a random challenge) which needs to be
hidden from the client. The computation being done by the
servers is deterministic from the client’s perspective. As we
shift to secure computation, the only change that happens
is that all these operations are replaced by their secure
counterparts which consume cryptographic correlations like
∆-COTs and square correlations. If these correlations are
valid, we have soundness. In our protocol, since we get these
correlations from the clients, their validity is questionable,
and therefore, servers need to perform validity checks on
them. Unlike the ℓ⊓2 defense, these validity checks base their
soundness on a random challenge (χi in OT verification, and
t in square correlation verification) being hidden from the
client until it submits the correlations. Therefore, we split
the client protocol into two rounds - in the first round, clients
send Boolean shares and cryptographic correlations to the
servers, and on receiving the random challenge back from
the servers, in the second round, clients send the transcript
of server-server interaction for all steps except the final
aggregation phase.

Reducing transcript communication. We can reduce client
communication by having them send a short digest of
the protocol transcript; this can be implemented using a
collision-resistant hash function. However, naı̈vely using this
optimization doesn’t provide malicious privacy because the
honest server cannot cross-check the observed transcript
against the digest until the protocol has reached the end of
ℓ2 enforcement phase, and the results of intermediate checks
(OT, square correlation verification, and ℓ2 enforcement) can
reveal sensitive information. We fix this issue by deferring
the opening of result of these intermediate checks until the
ℓ2 enforcement phase is complete. We change the transcript
digest to only include the messages in the privacy-sensitive
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phases which don’t convey results of intermediate checks.
For example, in square correlation verification, all messages
until the zero-check (conveys result) are part of the digest
and the messages in zero-check are ignored for the digest15.
After receiving the digests from the clients, the servers first
cross-check the digest, and only if it passes, they execute
the opening step of intermediate checks.

We now dive deeper into how transcript emulation hap-
pens, and later discuss how we can squish the rounds of
clients from two to one, thereby achieving one-shot clients.

3.3.1. Transcript Emulation
For a client to emulate the interaction between the

servers, all we need is for the server protocol to be de-
terministic in the client’s view. Recall from Section 3.2 that
our protocol has two variants - one where clients supply
cryptographic correlations to the servers, and other where
the servers generate them on the fly. We now discuss how
clients emulate server interaction for both these cases.

Client-generated correlations. When clients supply OT and
square correlations to the servers, all privacy-sensitive steps
in the server protocol except the OT and square correlation
verification can be determined locally by the client because
there is no external randomness involved (the Boolean input
shares also come from the client). OT and square correlation
verification rely on a random challenge that is generated by
the servers and can only be known by the client once it
submits the correlations. By making the client protocol two-
round, we ensure that after the first round, the client learns
this random challenge from the servers, and therefore, it can
generate the entire transcript of the server side computation
by the second round.

Server-generated correlations. When a subset of clients
are bandwidth-constrained, a part or all of the correlations
for processing their inputs are interactively generated by
the servers. Given that this interactive sub-protocol (such
as the IKNP OT extension [68]) uses randomness unknown
to the clients, they cannot directly generate the transcript.
To address this, we maintain a unique common random
tape for each client-server pair which is used in the interac-
tive correlation-generating sub-protocol between the servers.
Each server has its own common random tape with each
client, and given this tape, all messages sent by the server are
deterministic in the client’s view. In practice, large random
tapes can be efficiently shared using PRGs.

One-Shot Clients. As a final optimization, we now make
our client protocol single-round (one-shot clients). This is
desirable in settings (like cross-device FL) where the avail-
ability of client devices is quite uncertain. Moreover, our
solution has the additional benefit of obviating the need for
a secure coin-flipping protocol to sample common random
values between S0, S1 (steps 1, 4 in Algo. 5).

Our current protocol divides the client-server interaction
into two rounds because the soundness of the correlation

15. Isolated errors in the result-conveying messages of intermediate
checks are only limited to additive attacks [39] which don’t violate privacy.

verification phases rely on the client not knowing the ran-
dom challenge sampled by the servers. Once the client has
already submitted the correlations, the random challenge
no longer needs to be hidden. If the clients can somehow
generate the random challenge locally without breaking the
soundness of our verification phases, then we get one-shot
clients. We begin by observing that this part of our protocol
can be cast as the so-called public-coin protocol [27, 106]
where the clients act as provers, and the servers collectively
act as a distributed verifier. The Fiat-Shamir transform [54]
(analyzed in the random-oracle model) provides a way for
the prover to locally generate verifier’s challenge while still
maintaining soundness. The idea behind the transform is to
generate the challenge by applying a secure hash function to
the protocol inputs and transcript observed so far. Since the
verifier in our protocol is a virtual party distributed across
the two servers, we can’t apply the Fiat-Shamir transform
directly, and appeal to the distributed variant introduced
by Boneh et al. [27]. We now describe in more detail
how we use this transform. We focus on the generation of
random challenge for OT verification, and our arguments
straightforwardly extend to square correlation verification.

The random challenge in OT verification are the χi

values which are collectively sampled by S0, S1 by invoking
a coin-flip sub-protocol. When using the Fiat-Shamir trans-
form with the hash function H : {0, 1}∗ → F2λ , we define
χ← H(χ(0), χ(1)), where χ(b) ← H(b, x(b), p, q,W (b), θb),
θb is a blinding variable sampled by the client (and commu-
nicated to Sb) to ensure that χ(b) doesn’t leak information
about Sb’s share to S1−b, and (p, q)← (∆, Q) if b is zero,
and (r, T ) otherwise. Servers can then generate χ(b) locally
and share it with the other server to get a seed χ, which
is then expanded using a PRG to yield {χi}i. Notice that
with the use of this transform, the servers no longer need
the coin-flip sub-protocol to sample {χi}i.

4. Evaluation
In our evaluation, we focus on the secure aggregation

task16, and answer the following questions:
• How does ELSA compare to state-of-the-art FL solu-

tions which consider malicious actors? (Section 4.1)
• What is the breakdown of performance of individual

components in our protocol? (Section 4.2)
• How is our performance affected when a subset of

clients are bandwidth-constrained? (Section 4.3)

Implementation. We implemented ELSA in Rust and make
our code public at https://github.com/ucbsky/
elsa. To handle a large amount of simultaneous client
sessions, we use Tokio [6] as our communication backend.
For finite field multiplication, we employ optimizations from
Keller et al. [72] and EMP Toolkit [7]. We use miTCCR [59]
as our hash function and hardware-accelerated AES for
PRG. When OTs are to be generated between the servers
(in Prio+ and for bandwidth-constrained clients in ELSA),
we use IKNP [68] OT extension. Most of our evaluation

16. We ignore local training since that is tangential to this work.
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doesn’t include our one-shot clients optimization given its
practically negligible impact on performance17 (as shown
in Section 4.2).

Experimental Setup. To emulate a realistic scenario of each
client opening a separate connection with the servers, we
implement a meta-client; it opens independent connections
per client and ensures the allocated bandwidth for each
connection stays reasonable. We deploy our meta-client on
an r5n.16xlarge AWS instance (Ohio) with 64 vCPUs, and
servers on two r5.8xlarge instances (Ohio and N. Virginia)
with 32 vCPUs and 10Gbps bandwidth. This is quite similar
to RoFL’s setup in terms of compute power and bandwidth.
We use a t2.medium instance when evaluating the compu-
tational overhead of a single client. Throughout our experi-
ments, server time is measured after all communication from
the clients for that round is finished. Unless otherwise stated,
we consider individual values in the gradients as 32 bits, and
perform aggregation and ℓ2 computation over 64 bits, i.e.,
w = 32, ℓ = u = 64, v = 128 and κ = 61.

4.1. FL with Malicious Actors
We begin our evaluation by focusing on prior systems

for FL which consider malicious parties. The rest of the
section is split into two parts depending on the trust model
of the baseline system.

Comparison with distributed trust baseline. Prio [41]
is a system for privacy-preserving collection of aggregate
statistics, and secure aggregation for FL is a subset of its
supported functionality. We use the rust crate for Prio [10]
and merge it into our framework for a similar multithreading
to ELSA. Since its implementation doesn’t directly support
the ℓ⊓2 defense, we rather perform this comparison over
only the relaxed ℓ∞ defense (using their count functionality)
with the bound as ℓ⊓. Table 2 shows the results of our
comparison. The server runtime in ELSA is about 8.5-16x
faster than Prio, and the client is 2-3.6x faster, while the
total runtime enjoys up to 8x improvement. The runtime of
clients increase when more clients are selected per round
because of the overhead associated with handling more
concurrent active connections at the receiving end (servers)
and rationing of slightly lower bandwidth per client by
our meta-client. In terms of communication, each client
in ELSA communicates a little less than Prio, but the server
communication in Prio is negligible (artifact of their proofs)
compared to our protocol. The total communication of ELSA
and Prio (all clients and servers included), on the other hand,
is still comparable with ELSA communicating about 1.5x of
Prio.

Comparison with single-aggregator baseline. Next, we
compare with RoFL [34], the state-of-the-art single-
aggregator FL protocol which is more practical than EIF-
FeL [40]18. RoFL supports ℓ⊓2 defense, and while the au-
thors don’t consider malicious privacy as a property of

17. The main benefit of this optimization is in deployment when con-
sidering unreliable client availability, and not in performance.

18. EIFFeL clients require about an order of magnitude more bandwidth.

their system, we believe their techniques should provide
this property, and give them the advantage here. Given
the similarity of our experimental setup with that consid-
ered in their paper, we use results from their evaluation
section19. We use 8-bit probabilistic quantization [76] for
gradient values to match their setup. Table 3 shows the
comparison for three parameter sizes, each corresponding
to a network evaluated by RoFL. CIFAR-10 S and CIFAR-
10 L correspond to LeNet5 [80] and ResNet-18 [63] trained
on CIFAR-10 [77], respectively, and SHAKESPEARE is an
LSTM [65] trained on the Shakespeare dataset [36]. We
achieve 146-305x end-to-end runtime improvement while
incurring about the same total communication as RoFL. In
RoFL, all communication is from clients to servers, and
clients in ELSA communicate 1.6-1.8x lower than RoFL.

#Clients #Params Prio ELSA

Client Server Client Server

50 100k 14.3 (59.1) 23.3 (0.002) 4.6 (51.6) 2.7 (640)

100 100k 14.8 (59.1) 48.9 (0.005) 7.1 (51.6) 3.8 (1280)

200 100k 16.5 (59.1) 99.5 (0.010) 8.4 (51.6) 6.1 (2560)

50 500k 63.6*(262.2) 102.9 (0.002) 17.5 (258.0) 11.2 (3200)

100 500k 67.7*(262.2) 218.4 (0.005) 23.2 (258.0) 17.3 (6400)

200 500k 78.3*(262.2) 457.9 (0.010) 38.0 (258.0) 31.4 (12800)
* Client ran out of memory. We report underestimates here.

TABLE 2: Comparison of runtime (sec) and data sent (MB
in parenthesis; per client and per server) in ELSA vs Prio
for relaxed ℓ∞ defense (with malicious privacy).

#Params RoFL ELSA

Runtime Comm. Runtime Comm.

62k (CIFAR-10 S) 278 0.8 1.9 0.9 (0.5, 0.4)
273k (CIFAR-10 L) 2229 3.8 7.3 4.0 (2.1, 1.9)

818k (SHAKESPEARE) 4742 11.4* 18.1 12.0 (6.3, 5.7)

* Corrected from what RoFL reported.

TABLE 3: Comparison of ELSA with RoFL for ℓ⊓2 defense
with malicious privacy (only secure aggregation). Values
denote end-to-end runtime (sec) and total data sent (GB).
Parenthesis show split of communication between all clients
and servers, respectively. |C| = 48, w = 8 and ℓ = 64.

4.2. Performance Breakdown of ELSA

In this section, we look into how different parts of our
protocol impact performance. First, we consider protocol-
level costs starting from our base protocol which provides
privacy only against semi-honest server and enforces ℓ⊓
bound and going up to our malicious private protocol with
ℓ2 bounds; we refer to this as the layerwise cost. Second,
we look deeper into how different phases of our protocol
affect the end-to-end runtime.

Layerwise cost. We call our first layer “ELSA SH ℓ⊓” and
it is quite similar to Prio+ with a difference that OTs are all
supplied by the clients and validated by the servers before

19. We couldn’t successfully run their code for our experiments.
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using them for bit composition. Then the second (resp. third)
layer, called “ELSA SH ℓ⊓2 ” (resp. “ELSA MP ℓ⊓2 ”), add
ℓ⊓2 defence with semi-honest (resp. malicious) privacy. We
present the runtime and communication costs of these layers
in Fig. 2. When the number of clients is large (e.g., 200)
and gradients are moderately sized (e.g., 200k), our end-
to-end runtime with malicious privacy and ℓ⊓2 defense is
comparable to Prio+ even when our defense subsumes theirs
and defends against the more powerful malicious server; this
is because moderate sized gradients have cheaper transcript
emulation than large ones, and we observe that for the same
amount of data communicated from the clients, more clients
with each sending lesser data is faster than the flip case (this
doesn’t benefit Prio+ where client communication is already
quite small). For malicious privacy, the added overhead is
very small ranging from 7-25% of the semi-honest runtime
given that it can withstand the much stronger malicious cor-
ruption. In terms of communication, our first layer protocol
has the same total communication as Prio+ (with IKNP), and
the SH ℓ⊓2 layer incurs an added cost of about 14%. With ma-
licious privacy, owing to our optimization of using transcript
digests, the additional overhead on total communication is
negligible. Note that although Prio+ can be instantiated with
the PCG-based OT extension [30, 31, 112] backends to bring
down total communication (at the cost of more compute) to
about a third of the IKNP backend, as mentioned in Sec-
tion 3.2.1, ELSA can also be used in the PCG mode to
enjoy similar benefits in total communication. Moreover,
in the PCG mode, the client communication of ELSA is
comparable to Prio+. We leave the experimental evaluation
of this mode for future work. We also compare the runtime
of our protocol with and without one-shot clients. For 200k
parameters and 200 clients (malicious privacy and ℓ⊓2 ), client
runtime changes from 19s (two-round clients) to 17s (with
one-shot), and server runtime changes from 14s to 19s.

Finer breakdown. We provide a detailed breakdown of the
runtime costs of different parts of our protocol in Fig. 3.
Client prepare and transcript emulation refer to the local
computation at clients where the former captures everything
except generation of the transcript digest of server inter-
action (captured by the latter). This is followed by client
communication. Correlation verification refers to verifica-
tion of square correlations at the servers. Other phases are
self-explanatory. As expected, the runtimes of the prominent
phases are largely governed by the amount of communica-
tion they require. The client communication phase is most
expensive during which both clients and the servers have to
be online, and it is closely followed by bit composition that
happens between the servers. Rest of the phases take only
a fraction of the total time.

4.3. Clients with Limited Bandwidth
Our work supports bandwidth-constrained clients by

shifting the generation of correlated randomness to the
servers. We now show how this strategy affects our per-
formance as a function of the fraction of such clients and
the degree of their constraint.
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Figure 2: Comparison of different layers of ELSA with
Prio+. SH and MP denotes privacy against semi-honest and
malicious servers, respectively. Rel. ℓ∞ enforces just the ℓ⊓
bound and L2 refers to ℓ⊓2 defense. Vertical axis denotes
parameter size, number of clients.
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Figure 3: Runtime (sec) breakdown of ELSA with malicious
privacy. The phases not shown in the figure have negligible
costs. Vertical axis denotes parameter size, no. of clients.

Moderate bandwidth constraint. Clients fall in this case
when they have enough bandwidth to assist servers by
sending square correlations, and save on communication
compared to regular clients by not sending OT correlations.
For the rings we consider in our evaluation, this corresponds
to 16x reduction in bandwidth requirement for constrained
clients. Given such significant savings, most (if not all)
constrained clients should be able to fit the requirements of
this case. Fig. 4 shows that end-to-end runtime and server
communication grow very slowly with increasing fraction
of moderately bandwidth-constrained clients. When 10%
are constrained, time and server communication increase
by just 5% and 15%, respectively. Even in the hypothetical
situation where half of the clients are constrained, server
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Figure 4: Effect of increasing fraction of bandwidth-
constrained clients on performance of semi-honest private
variant of ELSA. Extreme refers to the case of severely
limited bandwidth where clients send no correlations, and
in the moderate case, they only send square correlations.
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communication increases by < 2x and total runtime by
< 1.3x. This shows that our protocol preserves its efficiency
guarantees under such circumstances.

Extreme bandwidth constraint. When clients are ex-
tremely bandwidth constrained, our protocol doesn’t require
them to send any correlations to the servers, resulting in a
137x reduction in bandwidth compared to regular clients for
the rings we consider. From Fig. 4, we observe that the effect
of increasing fraction of constrained clients on runtime and
server communication is much more pronounced in this
case. If 10% clients fall in this category, both end-to-end
runtime and server communication increase by about 2x,
and this rises to 3x for runtime and 6x for communication
when half of the clients are constrained (highly unlikely).

Remark. Note that neither of our baselines (RoFL and Prio)
work for bandwidth-constrained clients. Moreover, ELSA
can use PCGs [30, 31] as another way to support bandwidth-
constrained clients (see Section 3.2.1). We leave it to future
work to implement this mode in our code. We estimate
(through Ferret [112]) that our end-to-end runtime with
Schoppmann et al.’s [94] PCG-based OTs will be compara-
ble to our non-PCG approach.

5. Related Work
FL with single aggregator. This model has been adopted in
a large class of privacy-preserving systems which are based
on secret sharing [19, 26, 55, 70, 102, 110], homomorphic
and functional encryption [111, 115], differential privacy
(DP) [21, 57, 66], or a combination of these techniques [35,
62, 82, 107]. However, none of these works defend against
malformed gradients. Zero-knowledge proofs [20, 23, 56]
have been suggested [26, 100] to enforce norm defenses,
but at unreasonably high overheads. Recent work RoFL [34]
uses Bulletproofs [33] to enforce ℓ⊓2 and ℓ∞ defense, and
EIFFeL’s [40] defenses use SNIPs (proofs in Prio [41])
where all the clients and the central aggregator do the
verification collectively. Both of them, however, are quite
inefficient. Moreover, other works that provide both privacy
and defenses either assume unrealistic threat models [88],
or are largely theoretical (and leak pairwise gradient dis-
tances) [101]. Tangential to the privacy-preserving FL so-
lutions, Federated Averaging [83] was the first FL protocol
which was improved in subsequent work [22, 37, 84, 104,
114] by adding defenses against malformed gradients.

FL with distributed trust. In this model, existing ap-
proaches include specialized systems for FL [61, 64] as well
as systems for privacy-preserving collection of aggregate
statistics like Prio [41] and Prio+ [13]. Prio uses specialized
zero-knowledge proofs (SNIPs) to enforce arbitrary defenses
against malformed gradients, and guarantees privacy against
at most one malicious server (in the two server case). Rest
of the works [13, 61, 64] only provide privacy against a
semi-honest server, and therefore, leave much to be desired.
Recently, Boneh et al. [27] proposed improvements to the
proof size of Prio’s SNIPs when the verification circuit

has repeating substructures20. We estimate that the clients
in ELSA are close to an order of magnitude more computa-
tionally efficient than their constructions. Moreover, ELSA
can achieve significantly reduced client bandwidth (e.g.,
64x) compared to [27] by using the PCG mode or our
ideas for resource-constrained clients; their clients need
to secret share individual bits of gradients as arithmetic
shares to efficiently realize the ℓ⊓2 defense. Presently, their
implementation is limited to languages much simpler than
needed for FL, and the soundness of their most efficient
proof (FLIOP with Fiat-Shamir) isn’t well understood [32].

Other works. To provide some notion of gradient privacy,
prior work has employed techniques like encoding gradients
to higher dimensions [67] and Gaussian random projec-
tions [69]. [38] uses a pair of mixes with central aggregator,
and defends against poisoning by clients. Rappor [50] and
Privex [49] use DP, where the latter combines it with MPC
in Tor to collect stats over anonymous communication.

6. Limitations and Future Work
Our techniques for defending against malformed gradi-

ents while achieving malicious privacy are only applicable
when the defense operates independently on the gradients of
each client. This excludes defenses like trimmed mean and
median [114], Krum [22], and Bulyan [84]. Running such
complex defenses inside secure computation (2PC) would
be completely impractical, and as shown by Shejwalkar et
al. [99], ℓ2 defense performs as good against untargeted
poisoning for production FL.

In this work, our main focus has been to protect privacy
of individual gradients during aggregation. To limit what
the global aggregate might leak, the honest server(s) can
add differentially private (DP) noise to the global aggregate
before opening it; in the vein of global DP. On the other
hand, supporting local DP isn’t as straightforward when
clients are malicious and defenses are enforced.

ELSA cannot distinguish between a certain malicious
server and a malicious client and thus we can’t guarantee
“fairness”, i.e., every honest client’s inputs will be used in
the computation can’t be guaranteed. If a malicious server
frequently censors some clients, the honest server can detect
that and take action.

We only guarantee malicious privacy in this work, and
leave the exploration of malicious security (privacy with
correctness) for future work. Efficiently achieving malicious
security seems quite challenging given that standard tech-
niques aren’t compelling for the large number of parties in
our system.

Lastly, as mentioned in Section 3.2.1, in future, we
would like to explore the PCG mode in more detail and
develop PCG-based OT extension protocols in the trusted
dealer model that are specialized for our setting. As of now,
some existing efficient constructions like Ferret [112] don’t
directly extend to this model.

20. This additionally requires a 2PC comparison since doing the entire
ℓ2 check inside the proof violates the repeating substructures property.
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F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri,
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Algorithm 6 AND of Boolean Shares ΠAND

Input: Bit shares of secrets x = x(0) ⊕ x(1), y = y(0) ⊕
y(1) ∈ Z2. S0 has additional inputs ∆, q, q′ ∈ F2λ and S1

has additional inputs t, t′ ∈ F2λ , r, r
′ ∈ {0, 1}. Let H :

[ℓ] × F2λ → Z2λ be a hash function [72] in the random-
oracle model.
Output: Output z(b) ∈ Z2 such that

z(0) ⊕ z(1) = x ∧ y

Between Servers (Assuming S0 is OTSn)
1: S0 computes m0 ← H(c||q) and m1 ← H(c||q + ∆),

where c is a global counter. Similarly, m′
0 ← H(c||q′)

and m′
1 ← H(c||q′ +∆).

S1 computes mr ← H(c||t) and m′
r ← H(c||t′).

2: S0 sets s(0) ← Π1
BitMultUA(y

(0), (m0,m1)).
S1 sets s(1) ← Π1

BitMultUA(x
(1), (r,mr)).

3: S0 sets t(0) ← Π1
BitMultUA(x

(0), (m′
0,m

′
1)).

S1 sets t(1) ← Π1
BitMultUA(y

(1), (r′,m′
r)).

4: Set z(b) ← (x(b) ∧ y(b))⊕ s(b) ⊕ t(b).

Appendix A.
Semi-Honest Server

We begin by first proving some results about correctness
of our sub-protocols and verification phases.

A.1. Correctness of Sub-Protocols
Correctness of ΠBitMultUA. (Algo. 1)
Case x(1) = 0:
When j = 0,

y(0) + y(1) = r + v0 −m0

= r + (m0 − r)−m0

= 0 = x(0) ∧ x(1)

When j = 1,

y(0) + y(1) = r + v0 −m1

= r + (m1 − r)−m1

= 0 = x(0) ∧ x(1)

Case x(1) = 1:
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When j = 0,

y(0) + y(1) = r + v1 −m0

= r + (m0 − r + x(0))−m0

= 1 = x(0) ∧ x(1)

When j = 1,

y(0) + y(1) = r + v1 −m1

= r + (m1 − r + x(0))−m1

= 1 = x(0) ∧ x(1)

Correctness of ΠAND. (Algo. 6) z = x ∧ y can be written
in terms of shares of x and y as:

= (x(0) ⊕ x(1)) ∧ (y(0) ⊕ y(1))

= (x(0) ∧ y(0))⊕ (x(1) ∧ y(1))⊕ (x(0) ∧ y(1))⊕ (x(1) ∧ y(0))

Shares of the first two terms can be computed locally by
the servers given that Sb knows x(b), y(b). For the last
two terms (cross-terms), ΠBitMultUA is invoked with random
OTs (generated by hashing ∆-COTs in step 1) as input.
Correctness follows from ΠBitMultUA.

Correctness of Πj
BitMult. (Algo. 2) If x(1) = 0, then

y(0) + y(1) = −H(c||q) +H(c||t) (mod 2j)

= −H(c||t+ x(1)∆) +H(c||t) (mod 2j)

= −H(c||t) +H(c||t) (mod 2j)

= 0 = x(0) ∧ x(1)

On the contrary, if x(1) = 1, then

y(0) + y(1) = −v0 + v0 + v1 + x(0) −H(c||t) (mod 2j)

= H(c||q +∆) + x(0) −H(c||t) (mod 2j)

= H(c||t) + x(0) −H(c||t) (mod 2j)

= x(0) ∧ x(1)

Where we have used the fact that the OT correlations have
x(1) as the choice bit.

Correctness of Πw,ℓ
BitComp. (Algo. 4) This follows from the

correctness of ΠBitMult. For each index i ∈ {0, 1, · · · , w−1},
Step 4 of Algo. 4 computes y(0), y(1) such that:

y(0) + y(1) = x
(0)
i ∧ x

(1)
i (mod 2ℓ

′
) (4)

Thus, Step 5 of Algo. 4 increments the z shares by 2i

times x(0), x(1) and −2x(0) ∧ x(1) (values modulo 2ℓ
′
).

Since 2i+1 · 2ℓ′ = 2ℓ, this allows us to optimize our calls
to ΠBitMult by only calling it for ℓ′ bits instead of ℓ bits
because in the latter, the upper i+1 bits would anyways have
been removed by the mod L operation. Finally, using this
relation between XOR operation and additions/subtractions
x(0) ⊕ x(1) = x(0) + x(1) − 2x(0) ∧ x(1), we have that z is
the correct bit composition modulo 2ℓ.

Correctness of ℓ2 computation. (Algo. 5) Given a square
correlation (a, d) with shares (a(b), d(b)) for b ∈ {0, 1}, the

shares of the square y of an input value x with shares x(b)

can be computed as:

y(b) = d(b) + 2ex(b) − b · e2 where e← x− a

= d(b) + 2xx(b) − 2ax(b) − b · (x2 + a2 − 2ax)

Since d is a2 (assuming correlations are correct), y = y(0)+
y(1) = d + 2x2 − 2ax − x2 − a2 + 2ax = x2. Hence, y(b)
are shares of x2.

OT verification. We use clients as untrusted sources of
COT∆, i.e., OTs where the OT sender gets (m,∆) ∈
F2λ×F2λ and OT receiver gets (b,m+b·∆) ∈ {0, 1}×F2λ ,
where + is addition in F2λ which is the same as addition in
Fλ
2 (i.e. bitwise XOR), and · is multiplication in finite field.

Lemma 1. If the OT verification in Algo. 5 succeeds, the
COT∆ correlations sent by the client are correct except with
probability 2−λ.

Proof. The random coefficients {χ0, . . . , χn−1} ∈ Fn
2λ are

sampled uniformly after all the OT correlations have been
received. Therefore, the correlations were constructed by the
client without the knowledge of {χi}i. The check over F2λ

performed by S0 is (ej is error injected in Qj by the client):

t̃ = q̃ + x̃ ·∆ =

n−1∑
j=0

Qj · χj + x̂j · χj ·∆ = t̃+

n−1∑
j=0

ej · χj

For this check to pass,
∑n−1

j=0 ej ·χj has to be 0 in F2λ . In the
case of incorrect OT correlations, ∃ at least one index i such
that ei ̸= 0. Since ei·χi is uniformly random in F2λ (because
for any two field elements u, v, if ei ·u = ei ·v, then u = v),∑n−1

j=0 ej ·χj is also uniformly random, and therefore, is zero
with probability 2−λ when OTs are incorrect.

Square correlation verification.

Lemma 2. If the square correlation verification in Algo. 5
succeeds, the square correlations selected by the servers are
correct modulo 2u except with probability 2−κ.

Proof. Let us consider a pair of (potentially erroneous)
correlations (a, d), (â, d̂), where d← a2+δ and d̂← â2+δ′.
During the check, servers sacrifice the secondary corre-
lation (â, d̂) to validate the primary one (a, d). To val-
idate the correlations, the servers check if the following
is zero: t2d − d̂ − 2tea + e2 where e ← ta − â and t
is a random odd element. Replacing for e, d, d̂, we get
t2d− d̂− 2tea+ e2 = t2δ − δ′.

If the primary correlation is incorrect, i.e., δ ̸= 0 mod
2u, then we sketch an argument similar to SPDZ2k [43]. For
servers to pass the check, we require that t2δ ≡ δ′ mod 2v.
Let g be the largest power of two which divides δ. We know
that 0 < g < u given that δ ̸= 0 mod 2u. Since the lower g
bits of t2δ are zeros, if the check passes, then the upper v−g
bits of δ, δ′ follow t2 ≡ δ′

2g
δ
2g

−1
mod 2v−g, and therefore,

it would mean that the client guessed v−g bits of t2. Since
t is a randomly sampled odd element in Z2v (i.e., it is a
unit [103]), the distribution of its quadratic residues t2 mod
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2v−g is uniform and takes 2v−g−3 values [103]. Given that
we set v ← u + κ + 3, passing the check means that the
client would have guessed > κ random bits. The probability
of this happening is at most 2−κ.

A.2. Correctness and Privacy
We prove security (correctness and privacy) of our

protocol in the simulation paradigm of MPC [81] in the
(FCoinFlip,FRO)-hybrid model [81]. FCoinFlip is invoked by a
pair of parties and returns the same set of freshly sampled
random coins to both. In practice, this can be realized
by using a simple commit-and-open sub-protocol [72]. We
work in the random oracle model where the hash function
H used in our protocol is modeled as a random oracle.
The functionality FRO facilitates this by returning the output
of a randomly chosen function on requested inputs, and in
practice, SHA-2 or AES [72] can be used.

Ideal Functionality F . We define a stateful iterative ideal
functionality for FL. In each round:

• F receives gradient updates from clients selected in the
current round.

• It enforces ℓ2 and ℓ⊓ bounds (by checking the number
of received bits) on each submission. All the non-
complying submissions are rejected.

• Outputs the aggregate of surviving gradients. If fewer
than τ fraction of clients survive, output ⊥.

Theorem A.1. For every non-uniform probabilistic
polynomial-time (PPT) adversary A controlling a set of
malicious clients and having access to the view of at most
one (semi-honest) server, there exists a non-uniform PPT
adversary S in the ideal world which only interacts with
the ideal functionality F such that the distributions{

IdealF,S(z)({Xi}|C|i=1, λ, κ)
}
{Xi}|C|

i=1,z,λ,κ{
RealΠ,A(z)({Xi}|C|i=1, λ, κ)

}
{Xi}|C|

i=1,z,λ,κ

are indistinguishable except with probability O
(
|CM | ·

(2−λ + 2−κ)
)

in the (FCoinFlip,FRO)-hybrid model, where
C is the set of all clients with any inputs {Xi}|C|i=1 such
that ∀(i, j), |Xi| = |Xj |, z ∈ {0, 1}∗ is an auxil-
iary input by the adversary to capture malicious strat-
egy, CM is the set of malicious clients, and λ, κ are
computational and statistical security parameters, resp.
IdealF,S(z)({Xi}, λ, κ),RealΠ,A(z)({Xi}, λ, κ) denote the
output pairs of honest parties and the adversary in ideal
and real world, respectively, on protocol inputs {Xi} and
auxiliary input z.

Proof. To construct a simulator S in the ideal world which
can produce a distribution similar to the one in real world,
we give S black-box access to A, where it “simulates” an
interaction with A that looks like the real world, essentially
leading A to produce the same output as it would when
participating in the real protocol execution. S can then
simply output whatever A outputs.

(a) Real world interaction. (b) Ideal world interaction.

Figure 5: P and CH denote honest server and honest clients,
respectively. PS and CM denote semi-honest server and
malicious client, respectively. Parties fully under adversary’s
control, i.e. CM , are shown with dashed outline. The simula-
tor S internally maintains some state for each party shown
by S(·). Shaded parties run server protocol. Solid arrows
denote protocol interaction, dashed arrows denote transfer of
information from semi-honest server to A and interactions
within the simulator, and dotted arrows denote ideal world
interactions. X,X ′ denote honest and malicious clients’
inputs, respectively.

The real and ideal world distributions that we want to
show indistinguishability for can be boiled down to showing
that the joint distribution of 1) the output of F , and 2) the
view (all internal state, and messages sent and received) of
the semi-honest corrupt server, say PS , in the real world
and its simulated counterpart in the ideal world, are in-
distinguishable. This is because the output of F captures
the output of honest parties, and the output of A is only
additionally influenced by the view of PS . Since clients
don’t participate in any intermediate stage in the protocol,
their view (except their output) is pre-determined by A and
is indistinguishable in the real and ideal worlds. Figures 5a
and 5b show the setup. We first describe our simulator con-
struction in the (FCoinFlip,FRO)-hybrid model [81], followed
by proving indistinguishability using the hybrid argument.

Simulator S. S starts with a black-box access to A and
given that we work in the (FCoinFlip,FRO)-hybrid model, S
provides access of both of these functionalities to A. It then
proceeds as follows, where it keeps sending the view of PS

that it locally generates to A:

Input Sharing, OT and Square Correlation Generation
Phases

1) Assuming that the gradient inputs of all honest clients
(CH ) are zero vectors, S generates input shares, and
OT and square correlation shares as dictated by our
protocol to simulate the view of PS .

2) A sends shares of input, and OT and square correlations
of the malicious clients corresponding to PS and P
(server other than PS), and S receives them. If shares
of a malicious client are missing, or if A aborts early,
proceed by ignoring those clients’ participation.

OT and Square Correlation Verification, Bit Composition,
ℓ2 Computation, and ℓ2 Enforcement Phases

1) S follows our protocol description to generate the view
of PS . Invocations to the hash function H and sampling
of common random values are facilitated by FRO and
FCoinFlip, respectively, through S.
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Aggregation Phase
1) Excluding the clients in CM who failed either the OT

verification, the square correlation verification, or the
ℓ2 enforcement in generating PS’s view in the previous
steps, S reconstructs the gradient inputs of malicious
clients from the shares it initially received from A.

2) These inputs are then sent to F and S receives the final
aggregate a in response.

3) It then extracts the sum aH of honest clients’ gradients
from a by subtracting the sum aM of gradients of
malicious clients which it already knows. To compute
aM , for each gradient of a malicious client that S sends
to F , it computes the ℓ2 value as F would do, removes
the clients who violate the current bound (both ℓ2 and
ℓ⊓), and takes the sum of the remaining gradients.

4) Follows our protocol description to generate the final
message in the view of PS , but adds aH to it to correct
for the initial assumption that honest clients’ inputs are
zero vectors.

5) S outputs whatever A outputs.
Remark. One could also prove security of our protocol by
putting PS inside A and having S extract gradient inputs of
malicious clients through FRO calls made by PS . However,
as we consider in our proof, the semi-honest nature of PS

means S can run its tape for A, and therefore, inputs can
be more straightforwardly extracted.

We now proceed by defining a sequence of hybrids to
show indistinguishability of the distributions in real and
ideal worlds. Note that there are eight messages that con-
stitute server’s view (server receives these eight messages)
during protocol execution:

1) Shares of gradient vector (step 2), square correlations
(step 3) and OT correlations (step 3).

2) Server participating as OTRc sends x̃, t̃ to OTSn during
OT verification (step 2).

3) Opening e (step 4) and checking shares of zero (step 6)
during square correlation verification.

4) Server participating as OTSn sends u to OTRc in
ΠBitMult during bit composition (step 2).

5) Opening e (step 3) during ℓ2 computation phase and
opening the sign bit (step 3) during ℓ2 enforcement.

6) Messages (v0, v1) sent by OTSn in the two calls to
ΠBitMultUA made by ΠAND in ℓ2 enforcement (step 2).

7) Bit messages d sent by OTRc in the two calls to
ΠBitMultUA made by ΠAND in ℓ2 enforcement (step 2).

8) Final opening message in the aggregation phase
(step 2).

Since our protocol is asymmetric in the roles of S0, S1,
i.e., it assumes that S0 is the OTSn for OT verification,
ΠBitComp and ΠAND, for the security argument, we will
consider both the cases: when PS is P0 and when it is P1.

Case 1: PS is S0, i.e., OTSn

Hybrid 0 H0. We start with the real world as our initial
hybrid.

Hybrid 1 H1. We have honest clients send PS’s share x(0)

of the gradient vector along with ∆ directly to P . P (i.e.,
S1) assumes that the gradient vector for all honest clients is
a zero vector and samples fresh shares for each keeping the
share of PS same as x(0), i.e., the shares will be (x(0), x(1)′)
such that they reconstruct to a zero vector. Now during the
OT verification phase of the protocol execution, P uses ∆
and Tj to compute T ′

j such that it is consistent with the
choice bits in x(1)′ (recall that Tj was only consistent with
x(1)); the indices where x(1)′ and x(1) differ, ∆ can be either
added or subtracted from Tj to yield T ′

j . It then computes x̃

(resp. t̃) by using x(1)′ (resp. T ′
j) instead of x(1) (resp. Tj)

and the rest of the protocol proceeds unchanged. The only
change in the view of PS happens in the OT verification
message (x̃, t̃) it receives from P . Indistinguishability (neg-
ligible in κ) between H1 and H0 follows from the fact that
additional λ+ κ OTs are used in verification and discarded
later; formally proved by Keller et al. [72]. These OTs serve
the purpose of hiding information about the choice bits of
the remaining OTs from OTSn.
Hybrid 2 H2. In this hybrid, P replaces x(1) with x(1)′

at all steps in the protocol execution. This means that the
protocol is now essentially treating the inputs of all honest
clients as zero vectors. This would normally lead to an
incorrect output in the end, but we have P correct for this in
the final message it sends to PS during aggregation phase.
To perform the correction, it first uses x(0) (from H1) and
x(1) to locally reconstruct the original gradient vectors x
of honest clients, and x can then be added back into the
final message before sending it. PS’s view remains the same
as the previous hybrid. Messages in ℓ2 computation are
masked by randomness from square correlations, and in ℓ2
enforcement, messages to PS in ΠBitMultUA are also masked
by the random choice bits of OT correlations, while the
sign bit opens to 1 (same as clipped honest gradients in the
previous hybrid) because zero vectors always follow norm
bound. The final message in aggregation phase reconstructs
to the same output as H1. In all other phases, PS doesn’t
receive any message.
Hybrid 3 H3. This is the ideal world. The only difference
in PS’s view from the previous hybrid comes from the
soundness error of OT and square correlation verification.
In H2, the final aggregate is computed based on the OT
and square correlations submitted by the clients, while in
this hybrid, F computes the final output (doesn’t use client-
submitted correlations). Therefore, appealing to Lemmas 1
and 2, the two hybrids only differ in A’s view when either
of our verification phases are fooled leading to the use of
incorrect correlations, which happens with probability at
most |CM | · (2−λ + 2−κ).

Case 2: PS is S1, i.e., OTRc

Hybrid 0 H0. We start with the real world as our initial
hybrid.
Hybrid 1 H1. We have honest clients send PS’s share x(1)

of the gradient vector to P . P (i.e., S0) assumes that the
gradient vector for all honest clients is zero, and samples
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new shares of these zero vectors keeping one share same as
x(1), i.e., the shares will be (x(0)′, x(1)) which reconstruct
to zero. Now, P replaces x(0) with x(0)′ at all steps in the
protocol. Similar to the previous case, this translates to using
zero vectors as inputs of all honest clients, which are not
their original inputs, so a correction needs to be made to
keep the view of PS indistinguishable compared to H0.
This correction can be made by P by first reconstructing
the original inputs x of honest clients (from x(0), x(1)), and
then adding x back into the final message it sends to PS

during the aggregation phase. Since we work in the FRO-
hybrid model, the view of PS is identically distributed in this
hybrid compared to the previous because all intermediate
messages (where x(0)′ was newly introduced) received by
PS are masked by uniformly random values, sign bit opens
to 1, and the final message (aggregation phase) reconstructs
to the same output as the previous hybrid.
Hybrid 2H2. This is the ideal world. Similar to the previous
case, A’s view differs from the previous hybrid only when
the final aggregate from the protocol in H1 doesn’t match
F’s output. This happens when either malformed OTs or
square correlations fool our verification phases. The proba-
bility of such an event is bounded by |CM | · (2−λ + 2−κ).

Appendix B.
Malicious Server

We now shift our focus to proving the guarantees of our
protocol against malicious corruption of at most one server.
We guarantee privacy of individual gradients in such a
situation, but not correctness of the output. We first formally
define a more general notion of malicious privacy than
previously considered [14] followed by the ideal function-
ality. At a high-level, malicious privacy is defined similar to
malicious security, but with a modified ideal functionality
that is corruptible, meaning that the adversary can control
what it outputs.

Definition 1. Let f : ({0, 1}∗)p → ({0, 1}∗)p be a p-
party functionality, and f̂ be its corruptible counterpart
which sends the evaluation of f on the inputs of parties
to the adversary and, based on that, allows it to specify
the final output. Let Π be an n-party protocol (n ⩾ p)
with p primary parties (with inputs) and n− p helpers that
correctly computes f . Π (t, s)-privately realizes f in the
presence of static malicious adversaries if for every non-
uniform probabilistic polynomial-time (PPT) adversary A
controlling at most t primary parties and s helpers in the
real world, there exists a non-uniform PPT adversary S in
the ideal world which only interacts with f̂ , such that the
distributions{

Idealf̂ ,S(z)({Xi}pi=1, λ, κ)
}
{Xi}p

i=1,z,λ,κ{
RealΠ,A(z)({Xi}pi=1, λ, κ)

}
{Xi}p

i=1,z,λ,κ

are computationally indistinguishable, where variables are
defined as in Theorem A.1.

(a) Real world interaction. (b) Ideal world interaction.

Figure 6: Most of the details same as the caption of Fig. 5.
PM denotes malicious server component of the adversary A.
Dashed arrows denote transfer of information within A and
S. F̂ denotes corruptible ideal functionality corresponding
to F . c is the censor list, Xc̄ are the inputs of clients outside
the censor list, and Y is the final corrupted output of F̂ .

Ideal Functionality F ′ and corruptible F̂ . F ′ is similar
to F from the proof of Theorem A.1 with a difference
that A specifies a censor list which includes clients whose
inputs won’t be considered in the computation. F ′ receives
the list and discards the inputs of clients present in it. The
censor list captures the ability of a malicious server to falsely
report the inputs of some clients (malicious and honest) as
malformed or incomplete. F̂ is the corruptible counterpart
of F ′ (Definition 1). For a pictorial representation of F̂ ,
refer to Fig. 6b

Theorem B.1. Our (|C| + 2)-party protocol (|C| − 1, 1)-
privately computes the |C|-party functionality F ′ in the
(FCoinFlip,FRO)-hybrid model in the presence of static ma-
licious adversaries.

Proof. Similar to the case of semi-honest server, we will
use the simulation paradigm to prove this theorem. We
assume that clients send entire transcript to the servers for
simplicity. The optimized case of using transcript digests
follows similarly, and we briefly discuss this at the end of
the proof. Setup is presented in figures 6a and 6b.

Simulator S. Given black-box access to A, S does the
following while providing access to the functionalities
FCoinFlip,FRO to A:

Input Sharing, OT and Square Correlation Generation
Phases

1) Assuming gradients of all honest clients (i.e., the set
CH ) are zero vectors, generate input shares, OT corre-
lations, and square correlations for the first round of
messages that honest clients send by following the rel-
evant steps of our protocol, and simulate the messages
to PM as if it is talking to honest clients.

2) Facilitate the calls to FCoinFlip made by PM and store
the output of the calls, i.e., values {χi}i, t used to
verify OT and square correlations. S now stores all the
random challenge values used in verification phases,
and can detect if A causes PM to send the wrong
challenge values to honest clients before the transcripts
(in second round) are submitted. If such a malicious
behaviour is found directed towards certain clients, S
stops simulating any more messages for those clients
to PM , and adds them to a censor list c.
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3) S now simulates the second round (sending transcripts)
to PM based on the previous simulation of the first
round and the random values {χi}i, t it received from
PM .

4) A prompts CM to send shares of input, OT and square
correlations, and transcripts (S simulates random val-
ues through FCoinFlip calls to CM between first and
second round). S receives them.

5) If A aborts, S outputs whatever A outputs, and sends
⊥ to F̂ as the final output.

6) If A causes some clients in CM to abort before com-
pleting the messages they are supposed to send to P ,
then S adds those clients to the censor list c.

OT and Square Correlation Verification, Bit Composition,
ℓ2 Computation, and ℓ2 Enforcement Phases

1) Follows our protocol description and simulates the
view of PM . It also answers the calls to FCoinFlip and
FRO when hash function is invoked or fresh common
random values between servers need to be sampled.

2) If at any step, transcript from previous phase doesn’t
match the protocol messages that S receives from PM ,
then it stops sending any more messages to PM con-
cerning the honest client for whom mismatch occurs,
and adds that clients to the list c. This also takes into
account situations where PM stops sending messages
for processing select clients’ data.

3) If A aborts, S outputs whatever A outputs, and sends
⊥ to F̂ as the final output.

Aggregation Phase
1) Sends zero vectors as gradients of all clients in CM to
F̂ along with the censor list c, and receives back the
aggregate of honest clients gradients, aH , who were not
in c (because malicious clients’ gradients were sent as
zeros).

2) Follows our protocol description to generate the final
message in the view of PM but corrects for the initial
assumption that gradients of all honest clients are zeros
by adding aH back into this message before sending.

3) Receives PM ’s final message and adds it into the
message sent in the previous step to reconstruct the
final output Y that A wants from F̂ .

4) If A aborts, S outputs whatever A outputs, and sends
⊥ to F̂ as the final output.

5) Sends Y to F̂ .
6) Outputs whatever A outputs.

The plan for our proof will be to first con-
struct a simpler adversary A′ in the real world such
that RealΠ′,A′(z)({Xi}pi=1, λ, κ) is always identical to
RealΠ,A(z)({Xi}pi=1, λ, κ). An important characteristic of
A′ is that it follows the protocol as dictated by the transcript,
and in the end submits a list of clients to censor and outputs
the same final message in the aggregation phase as A. With
this simpler adversary, we then use a similar sequence of
hybrids as used in the proof of Theorem A.1 until we reach
the final hybrid which represents the ideal world.

Constructing A′. Our simpler adversary runs A inside it,
and plays the role of the honest server to A. Whenever

A deviates from the transcript submitted by the clients, A′

records the client id, adds it to the censor list, and proceeds
interaction with A as an honest server would. On the other
side,A′ interacts in the real world with S0 (honest server) by
relaying the messages sent by A directly, with an exception
that whenever A deviates from the transcript of an honest
client, A′ uses the transcript to replace that message with
what the client expects. Therefore, A′ never deviates from
the protocol transcript submitted by honest clients. Before
the aggregation phase, A′ sends the censor list to P and asks
it to remove the contribution of clients in the list from the
aggregation being done (this is the only difference between
Π and Π′). A′ finally outputs whatever A outputs.

We first show that RealΠ′,A′(z)({Xi}pi=1, λ, κ) is iden-
tical to RealΠ,A(z)({Xi}pi=1, λ, κ). Both the adversaries A
and A′ have the same behavior and send the same mes-
sages out except for when A deviates from the transcript.
Whenever this happens, our protocol description says that
the party interacting with A treats this as the concerned
client’s inputs being censored, and therefore, the rest of
the interaction with A proceeds ignoring that client. Until
the final message in the aggregation phase, all messages
are sent independently to process each client’s inputs, and
therefore, after deviating, A doesn’t receive any more mes-
sages relating to the censored client. A′, on the other hand,
keeps using the transcript submitted by the client to play
these messages to S0, but asks S0 before the aggregation
phase to remove the submissions of the clients that were
censored by A. As long as the final message sent by S0

doesn’t include the censored inputs, this message is exactly
the same as to what S0 interacting with A would send. In
other words, A′ can be thought of as a middle-man which
plays some extra messages to S0, but then asks S0 to remove
all contribution from these messages in the final aggregate.
Hence, A’s interaction with A′ (in Π′) and S0 (in Π) is
identical.

We now prove indistinguishability between real and
ideal worlds using a sequence of hybrids.

Hybrid 0 H0. We start with the real world.
Hybrid 1 H1. In this hybrid, we introduce A′ by wrapping
A′ around A and moving from Π to Π′. We therefore
change P to accept a censor list from A′, remove all shares
related to the clients in the list from any local computation,
and then send the final message in the aggregation phase.
Indistinguishability follows from the construction of A′.

Case 1: PM is S0, i.e., OTSn

Hybrids 2 and 3 H2,H3. We follow the same strategy
as H1,H2 in the proof of semi-honest server case (The-
orem A.1). More concretely, we construct H2 by having
honest clients give P access to PM ’s share (x(0)) and ∆. P
uses this to generate fresh shares of zero while keeping one
share as x(0) and then plays the OT verification phase mes-
sages based on the new shares. In H3, we have P use shares
of zeros for honest clients throughout the computation, until
the final aggregation phase message where the correction is
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added back. In both these hybrids, P communicates nec-
essary changes in the transcript back to the honest clients,
so they can send a consistent transcript to the adversary.
For indistinguishability, note that the outer adversary A′

doesn’t deviate from an honest execution of the protocol
when dealing with the inputs of honest clients until the
aggregation phase where it specifies the censor list. Ignoring
the aggregation phase for now, we proved in Theorem A.1
that the view of A′ is computationally indistinguishable
from previous hybrids when following the above mentioned
strategy of using zero vectors as honest clients’ inputs.
Moreover, transcripts that are sent by the clients just contain
subset of this view, so don’t leak any additional information.
The only message (tainted with honest clients’ inputs) that
deviates from an honest execution of the protocol is during
aggregation phase; this stems from the role of the censor list
sent by A′. However, A′ taking non-negligible advantage of
this fact would imply that it could tell computationally indis-
tinguishable views apart. Therefore, the distribution formed
by the pair of the output of A′ (same as A’s output) and
honest parties is indistinguishable from previous hybrids.
Hybrid 4 H4. This is the ideal world. Unlike the semi-
honest server scenario, the output of the ideal functionality
F ′ is dictated by the adversary and the malicious clients’
inputs are dealt with entirely by S (not F ′). Therefore, in-
distinguishability from previous hybrids doesn’t rely on the
soundness of OT and square correlations (because similar
to the honest server in the previous hybrids, S uses the cor-
relations to process its part of the malicious clients’ inputs,
while in the semi-honest server scenario, F didn’t use the
correlations at all). In fact, the output ofA and honest parties
is identically distributed as the previous hybrid H3.

Case 2: PM is S1, i.e., OTRc

Hybrid 2 H2. Follow the same strategy as the semi-honest
server proof (Theorem A.1) where P uses shares of zero for
honest clients’ inputs and adds back a correction in the final
message sent during aggregation phase. Indinstinguishability
follows similar to the case 1 above.
Hybrid 3 H3. This is the ideal world.

Remark on Transcript Digests. When we use our optimiza-
tion of using transcript digests from clients instead of entire
transcripts to achieve malicious privacy, the proof above
requires a few changes. In the construction of our simpler
adversary A′, we can no longer use transcripts to “correct”
the malicious messages thatA sends when processing honest
clients’ inputs. Relying on digests means thatA′ cannot even
detect if A is sending malformed messages until the protocol
is run to the point that transcript digest can be compared
with the observed transcript; this point is right before the
results of intermediate checks are opened by the servers
as mentioned in the “Reducing transcript communication”
paragraph under Section 3.3. Once A′ has identified a digest
mismatch, it can immediately ask P to add the correspond-
ing client to the censor list and the rest of the proof can go
as it is. Now the only thing left is to analyze the interaction
between the servers until digest mismatch can be detected.

The way our protocol is designed (all checks deferred to
the end), the communication between the servers during
this period is indistinguishable from uniform. Therefore,
A doesn’t gain any non-negligible advantage in cheating
compared to the case of using full transcripts.

Appendix C.
Supplementary Material for Section 3
Negative values. Till now we have assumed that w bits are
enough to secret share all values with magnitude bounded by
2w−1. However, this doesn’t hold when negative values are
also present. In that case, Boolean shares of an extra sign
bit can be used by the servers to securely multiplex [91]
between either x or 2u − x after bit composition is per-
formed, where x is the value being processed. Using the
protocol from CrypTFlow2 [91], this requires only two calls
to

(
2
1

)
-OTu per component of the gradient vector.

Appendix D.
Round Complexity

Each client runs in a single round. For the servers, the
total rounds of server-server interaction depend on the 2PC
sub-protocol used in ℓ2 enforcement. Ignoring ℓ2 enforce-
ment for a moment, servers require 2 rounds for OT and
square correlation verification (done in parallel), 1 round for
bit composition, 1 round for ℓ2 computation, and 1 round
for aggregation phase. Coming back to ℓ2 enforcement,
in Algo. 5, we use GMW [58] sub-protocol with a ripple-
carry adder which incurs 2u+1 rounds (we set u = 64 in our
evaluation). We can significantly reduce these rounds to just
2 log u + 1 for ℓ2 enforcement using an optimized parallel
prefix adder [85] at the cost of increasing the number of
secure AND gates from u to u log u. Moreover, if achieving
constant rounds is the focus, then constant-round 2PC like
garbled circuits [113] can be used for the adder.
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