
Demystifying the comments made on “A
Practical Full Key Recovery Attack on TFHE
and FHEW by Inducing Decryption Errors”

Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chatterjee, and
Debdeep Mukhopadhyay

Indian Institute of Technology, Kharagpur
bhuvneshchaturvedi2512, ch.anirban00727, cayantika,

debdeep.mukhopadhyay@gmail.com

18 December 2022

Abstract. Fully Homomorphic Encryption (FHE) allows computations
on encrypted data without the need for decryption. Therefore, in the
world of cloud computing, FHE provides an essential means for users
to garner different computational services from potentially untrusted
servers while keeping sensitive data private. In such a context, the secu-
rity and privacy guarantees of well-known FHE schemes become paramount.
In a research article, we (Chaturvedi et al., ePrint 2022/1563) have shown
that popular FHE schemes like TFHE and FHEW are vulnerable to CVO
(Ciphertext Verification Oracle) attacks, which belong to the family of
“reaction attacks” [6]. We show, for the first time, that feedback from the
client (user) can be craftily used by the server to extract the error (noise)
associated with each computed ciphertext. Once the errors for some m
ciphertext (m > n, where n = key size) are retrieved, the original se-
cret key can be trivially leaked using the standard Gaussian Elimination
method. The results in the paper (Chaturvedi et al., ePrint 2022/1563)
show that FHE schemes should be subjected to further security evalu-
ations, specifically in the context of system-wide implementation, such
that CVO-based attacks can be eliminated. Quite recently, Michael Wal-
ter published a document (ePrint 2022/1722), claiming that the timing
channel we used in our work (Chaturvedi et al., ePrint 2022/1563) “are
false”. In this document, we debunk this claim and explain how we use
the timing channel to improve the CVO attack. We explain that the
CVO-based attack technique we proposed in the paper (Chaturvedi et
al., ePrint 2022/1563) is a result of careful selection of perturbation val-
ues and the first work in literature that showed reaction based attacks
are possible in the context of present FHE schemes in a realistic cloud
setting. We further argue that for an attacker, any additional informa-
tion that can aid a particular attack shall be considered as leakage and
must be dealt with due importance to stymie the attack.

Keywords: FHE · TFHE · FHEW · CVO attack.



2 B. Chaturvedi et al.

1 Introduction

Fully Homomorphic Schemes (FHE) are a class of encryption schemes that allow
arbitrary computations on encrypted data without the need to decrypt it first,
while also ensuring that the output remains encrypted as well. Such schemes are
helpful in the construction of privacy-preserving protocols in the cloud compu-
tation scenario that allows a user (client) to offload its confidential data onto the
remote cloud, which can also perform arbitrary computations on it on behalf of
the user without revealing the original data. The basic assumption of FHE is
that the server is untrusted, and thus it should not know any information about
the client data. This stems from the fact that the data stored on the server
is encrypted under the client’s key which the server does not possess. On the
other hand, the server is free to perform any computations on the encrypted
data as it is not under the client’s control. Therefore, considering the underlying
crypto-primitive to be mathematically strong, an untrusted or malicious server
may start undertaking spurious activities including, but not limited to, manip-
ulating client’s data in order to extract private information. In short, the aim of
such a server is to retrieve private information about the client’s data while also
ensuring that the attack remains undetected, so as not to lose trust of the client.
As such a scenario is totally valid under the assumptions of FHE, it becomes
necessary to evaluate the security of well-known FHE schemes from the practical
aspect as well, apart from primitive and implementation levels.

In the research article [2], published on 2022-11-18 (https://ia.cr/2022/
1563), we showed a practical end-to-end attack on two FHE schemes, TFHE [3]
and FHEW [5], using the assumptions that a malicious server can introduce
calculated perturbations in the computed ciphertext and on receiving feedback
from the client, can effectively retrieve the underlying error terms for each cor-
responding ciphertext. This led to complete recovery of the secret key for both
TFHE and FHEW, in realistic timeframe. As correctly pointed out by Michael
Walter in [9], “Considering the typical usecase of FHE, this seems devastating.”
In the next section, we briefly discuss about the attack procedure and the clever
use of “timing channel” for both the libraries.

2 CVO attack on TFHE and FHEW

In this section, we provide a short summary of the attack presented in [2]. For
a more detailed understanding, please refer to the original document at https:
//ia.cr/2022/1563.

At first let us clarify the security assumptions we considered in our attack.
FHE schemes are assumed to be IND-CPA secure, which means an attacker
may obtain encryptions on arbitrarily chosen plaintext. However, they are nei-
ther IND-CCA nor IND-CCA2 secure, meaning that availability of decryption
oracle will essentially break the FHE schemes. Our attack [2] operates under the
notion of IND-CVA (Indistinguishability against Ciphertext Verification Attack)
security [4], which is based on the idea of “reaction” attack from [6]. Under this
premise, it is assumed that an adversary has access to an oracle that accepts a
ciphertext as input and returns as output whether the decryption was successful



Title Suppressed Due to Excessive Length 3

or not. This oracle, which we refer to as Ciphertext Verification Oracle or CVO,
is essentially the client itself in a “pay per running times model”, where client
pays for each correct computation [4]. In such a model, the client could ask for
a free re-computation in case the result returned by the cloud is incorrect. The
client before using the FHE cloud services would typically have a verification
phase, wherein it will check the correctness of the homomorphic ciphertexts.
In case of decryption failures the client would need to report the same to the
cloud, to avoid payments for erroneous service of the cloud. Therefore, contrary
to the claim made by Michael Walter [9], CVO access is not a CCA2-style at-
tack 1. Moreover, applicability of IND-CVA approach on FHE schemes has been
reported earlier in literature [4, 7, 8, 10].

The author in [9] provides an over-simplified view of the entire attack, which
we feel, does not properly highlight or justifies the intricacies of the attack and
the challenges faced for executing the attack in a practical scenario. We will
provide a detailed explanation of the attack in this document. The premise of
the attack is that a ciphertext can be decrypted correctly at the client’s end
only if the error lies within the error threshold. Therefore, if the server is able
to carefully perturb the ciphertext with additional errors, it can “invert” the
decrypted bit. While the malicious server could perturb the ciphertext outputs to
instigate reaction from the client, there exist two major challenges that the server
needs to deal with. 1○ the knowledge of the plaintext value for the corresponding
ciphertext and 2○ the sign of the actual error. In our paper [2] (section 5.2,
page 6), we explain how the server can manipulate the induced perturbations
in order to first recover the error sign and then the original plaintext message.
One must also note that, the procedure for recovering of the plaintext message
is different for TFHE and FHEW. For TFHE we subtract 2µ, where µ = 229,
from the ciphertext, to invert the plaintext message and determine the original
value from the reaction of the client. For FHEW, the plaintext recovery process
involves additional gate operations on the originally computed ciphertext such
that the resultant output always decrypts to a 0. It must be mentioned that this
is the first work in literature that provides a complete step-by-step methodology
to recover the underlying error values for both TFHE and FHEW. Once the sign
and plaintext message are obtained, the exact error value can be recovered using
the CVO by craftily manufacturing perturbations and implementing a binary
search-based algorithm. A detailed explanation and step-by-step procedure can
be found in the original paper. We have also provided links to the publicly
available codes to test and verify the attack.

3 Timing Channel in both TFHE and FHEW

In our preliminary report (ePrint 2022/685) [1], we found out that the computa-
tion time for homomorphic gate operations in TFHE has a relationship with the
error values in the computed ciphertext. Therefore, given a timing range (t1, t2),

1 We have provided a subsection in [2] (section5, page 5) where we discuss Why De-
cryption Verification Oracle is not a Decryption Oracle? . Interested readers
are encouraged to peruse the arguments presented in that section.



4 B. Chaturvedi et al.

Fig. 1. Plot of timing values of 10k ci-
phertexts. The shaded region highlights
the timing values that correspond to the
timing bucket containing most number of
errors.

Fig. 2. Plot of count of errors in each
timing bucket. The bucket with the high-
est count is our bucket of interest, which
corresponds to timing values between
5200 and 5800.

Fig. 3. Plot of frequency of errors in intervals of 100. The shaded regions highlights
the bound of errors in the targeted bucket, the left region (highlighted in yellow) is for
the negative errors while the right region (highlighted in blue) is for the positive errors.

the range of error values can be predicted with a high probability. We created
templates of the error values by running the gate operations 100k times. Using
these templates, we found that the overall range of the possible error values could
be reduced to 221. This was a preliminary result and did not contain a full attack.
We published the full attack in [2], assuming a CVO access to the server where
we used active perturbations to the computed ciphertext to entice the client
to send feedback when the decryption goes wrong. It must be mentioned that
this “reaction-based attack” does not require the use of timing information. In
the Github repository (https://github.com/SEAL-IIT-KGP/CVO-TFHE) avail-
able in the paper [2], we have provided source code where the full end-to-end
attack works, without the use of timing channel. The codes were made public on
11 November 2022 (a month before the report by Walter [9] was published).

We use the timing information (templates or bins or buckets, as one might call
them) to effectively filter out the error values that are very less likely to appear.
As pointed out in [9], in TFHE, the error is sampled from a “Gaussian-like”
distribution with standard deviation σ = 217 and centered around 0. Therefore,
the error values towards the tails of the Gaussian distribution are less likely to



Title Suppressed Due to Excessive Length 5

appear when randomly drawn. We essentially use this information to choose the
perturbation error values. In our attack [2], we perturb the output ciphertext
such that the plaintext message will always be 1 for both TFHE and FHEW
and the error +ve for all the perturbed samples. Without the help of timing
information, if we consider emin as 0 and emax as 231, we require 36 queries per
ciphertext. However, using the timing information, we are able to reduce that
number to 22 queries. It’s a significant improvement as it reduces the total number
of queries for the entire key retrieval by almost 10k. It must be mentioned here
that we utilize the timing information to make the attack efficient and converge
faster. The timing information is not a necessity but rather an optimization
technique, in this case.

Let us understand how and why the timing channel works. The timing dis-
tribution in Fig. 1 (in blue) shows the frequency of each timing value obtained
while running homomorphic NAND operation 10k times on two ciphertexts in
TFHE. The highlighted portion shows the range of timing values that fell in the
highest bucket (bucket with the most error values). Fig.2 shows the distribution
of error values in each timing bucket. One can note that only one bucket contains
the maximum number of error values while others contain considerably lesser.
Finally, Fig. 3 shows the frequency of errors in the overall sample (10k runs)
in blue. The two highlighted section shows the error ranges (-emax, -emin) (in
yellow) and (+emin, +emax) (in cyan), as ascertained from the highest bucket.
One can clearly observe that the highlighted portions reduce the search space for
the error, aided by the timing information. We have explained this phenomenon
to answer one of the questions from a reviewer in a respected security conference
a couple of months back. The exact answer provided during the rebuttal phase
(October 24 - November 7, 2022) is provided below.

We perform templating by generating 10k ciphertext pairs with

arbitrarily chosen key (s) and recording their execution time

for NAND-operation. We observed that, given Gaussian nature of

the timing distribution, the median range (5100 - 5600 cycles for

our case) contains >75% errors, while others contain the rest. We

choose the least and highest error-values as emin and emax. During

the attack phase using an unknown key and random ciphertext, we

record the time and observe that most ciphertexts fall into the

median bucket. As errors are randomly-sampled from a Gaussian

distribution, most of the errors during the attack-phase lie

within the range (emin, emax) that we determined during templating.

In case an error lies outside the given range, our binary-search

algorithm would not be able to ascertain the correct value of

the error, as it doesn’t converge and eventually, we ignore such

ciphertexts. Templates formed are independent of the secret key

due to stochastic equivalence wrt. keys. Therefore, the template

building can be done using a randomly chosen secret key ‘s’ while

the same templates can be used to mount attacks on ciphertexts

generated using any random key.



6 B. Chaturvedi et al.

Improvement suggested by Walter [9]

Michael Walter suggested an improvement over the CVO attack where he showed
that the number of queries can be reduced to 22 without the timing information.
Similar to our claim, the reduction is possible due to the Gaussian nature of the
distribution from which the error values are sampled. Although he showed that
a bound of 221 can be assumed, it does not provide a concrete value on the
minimum and maximum error values that are required for the CVO attack (our
attack) to work. In contrast, we use the timing information as a first level filter
to start with a smaller search space which in turn leads to faster convergence.
If any error value, during the attack phase, lies beyond the range (emin, emax),
the corresponding ciphertext will be automatically discarded by the server by
observing the timing value. This approach helps in filtering out the outlier values
early, thereby saving a number of queries. On the other hand, using Walter’s
approach, one will end up using 21 queries but eventually won’t retrieve the
error as the error lies beyond the chosen range. We agree that Walter’s approach
can also lead to successful key retrieval using our CVO-based attack method
with 22 queries per ciphertext. However, we note that our approach using the
timing information and templating is the first attempt in known literature that
provides an end-to-end attack on both TFHE and FHEW in a realistic setting
and timeframe. As the attacker (server) uses timing information to perform
the attack, we feel the attack must be considered as a combination of both
“reaction and timing”-based attack. The approach proposed by Walter [9] can
be considered as an alternative to the timing-based attack that we presented.

4 Conclusion

In this report, we discuss the attack presented by Chaturvedi et. al. [2] on TFHE
and FHEW and their practicality in the context of cloud computing. We establish
that our proposed attack in [2] does not require the use of a timing channel for
key retrieval for both TFHE and FHEW. However, we use the timing information
to reduce the search space of the errors and hasten the key-retrieval process. This
in turn leads to much lesser number of overall queries made to the client, thereby
lowering the chances of raising suspicion by the user. An attacker does not follow
any rules or conventional path. Anything that lies within the realistic threat
model can be and will be used by an attacker to unearth the secret information.
Since the availability of the timing channel provides an advantage to the attacker,
it must be considered a potential threat and any countermeasure that is designed
must take this into effect. Therefore, as security researchers, we must consider
all the leakage sources while designing important security schemes like FHE. As
Walter correctly pointed out “This attack serves as a stark reminder that for
deployment, FHE needs to be securely embedded into a higher level protocol that
ensures the security of participants against realistic attackers”. Therefore, the
onus is on the FHE designers to provide a secure leakage-free implementation
such that these schemes can be used for the larger good.



Title Suppressed Due to Excessive Length 7

References

1. Chaturvedi, B., Chakraborty, A., Chatterjee, A., Mukhopadhyay, D.: Error leak-
age using timing channel in fhe ciphertexts from tfhe library. Cryptology ePrint
Archive, Paper 2022/685 (2022), https://eprint.iacr.org/2022/685, https:

//eprint.iacr.org/2022/685

2. Chaturvedi, B., Chakraborty, A., Chatterjee, A., Mukhopadhyay, D.: A practical
full key recovery attack on tfhe and fhew by inducing decryption errors. Cryptology
ePrint Archive, Paper 2022/1563 (2022), https://eprint.iacr.org/2022/1563,
https://eprint.iacr.org/2022/1563

3. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast
fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91
(2020). https://doi.org/10.1007/s00145-019-09319-x, https://doi.org/10.1007/
s00145-019-09319-x

4. Chillotti, I., Gama, N., Goubin, L.: Attacking fhe-based applications by software
fault injections. Cryptology ePrint Archive, Paper 2016/1164 (2016), https://
eprint.iacr.org/2016/1164, https://eprint.iacr.org/2016/1164

5. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EURO-
CRYPT 2015. pp. 617–640. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

6. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) Information and Communica-
tion Security. pp. 2–12. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

7. Hu, Z., Sun, F., Jiang, J.: Ciphertext verification security of symmetric encryption
schemes. Sci. China Ser. F Inf. Sci. 52(9), 1617–1631 (2009)

8. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On cca-secure somewhat homo-
morphic encryption. In: In Selected Areas in Cryptography. pp. 55–72 (2011)

9. Walter, M.: On side-channel and cvo attacks against tfhe and fhew. Cryptology
ePrint Archive, Paper 2022/1722 (2022), https://eprint.iacr.org/2022/1722,
https://eprint.iacr.org/2022/1722

10. Zhang, Z., Plantard, T., Susilo, W.: Reaction attack on outsourced computing with
fully homomorphic encryption schemes. In: Kim, H. (ed.) Information Security
and Cryptology - ICISC 2011. pp. 419–436. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)


