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1 Introduction

The Unbalanced Oil and Vinegar (UOV) signature scheme [26] is a slight
modification of the Oil and Vinegar (OV) [35] signature scheme, proposed
by Patarin in 1997.

The UOV signature scheme has been studied and analyzed for a long time.
To this day, it is still believed to be a secure scheme. However, as a multivari-
ate signature scheme, it still suffers from the problem of having excessively
large public keys. In the literature, many related variants have been pro-
posed, which try to address the issue of large public keys while retaining the
advantages of UOV [42, 14, 5].

On the other hand, fundamental public key compression methods have been
proposed. A. Petzoldt [36, 37] and Rainbow [13] of the third-round of NIST
proposal showed that part of the randomness of the private key can be trans-
ferred to the public key and then a large part of public key can be generated
by a PRNG (Pseudorandom Number Generator) which we called “random-
ness alignment” technique here. This reduces the public key size of UOV to
the order O(m3 · log q) where m is number of equations and q is the order
of finite field in UOV scheme. For the modern parameters of UOV which
aiming at NIST security level I [32], the public key sizes are about 40KB to
60KB. However, these sizes of the public key of UOV scheme are still too
large.

To alleviate the problem, new possibilities have come into our view. By
generalizing the UOV scheme to noncommutative rings, we can further reduce
the size of the public key. Through some appropriate modifications, the
public key compression techniques of UOV remain applicable to our new
signature scheme on noncommutative rings.

Our contribution. In this paper, we propose a new UOV variant over
noncommutative rings called SNOVA.

In SNOVA, we see several advantages:

- By building on noncommutative rings, we can reduce the size of the
public key while still maintaining the advantage of short signatures.

- The randomness alignment key-compression technique of Petzoldt [36]
can be successfully adapted to SNOVA without being affected by non-
commutativity.
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- There is an intuitive connection between SNOVA and UOV. In the
case that l = 1 of the underlying matrix ring, SNOVA reduces to UOV
scheme.

We propose parameter sets aiming for NIST security levels I, III, and V. For
security level I, one of our parameter sets results in a public key size of 1000
bytes and a signature size of 232 bytes. With these performance, we be-
lieve that the SNOVA scheme has strong competitiveness compared to other
post-quantum signature schemes. Additionally, through the generalization
of UOV to noncommutative rings, we hope to open up new possibilities for
designing signature schemes.

2 Preliminaries

The following Tables 1 and 2 are tables that list symbols fixed with specific
meaning and conventions on notations, respectively.

Table 1: The table of conventions on notations in this paper.

Description The font denoted
with

Example

Integers and elements
in finite field Fq

lower case letters n, m and l

Elements in ring R upper case letters A, S and Q

Variables over R upper case letters X1, · · · , Xn

Variables over Fq lower case letters x1, · · · , xn

Vectors of any
dimension

boldface letters with an
arrow on top

#—

X and #—x

Vector spaces and rings calligraphic font O and R

The (j, k)-th entry of
the matrix [Fi], [T ] and
[Pi], respectively

subscript j, k Fi,jk, Tjk and Pi,jk
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Table 2: The table of symbols fixed with specific meaning in this paper.

Symbol Description
Fq finite field of order q

R Matl×l(Fq), matrix ring consisting of l × l matrices over
Fq

v, o numbers of vinegar and oil variables, respectively
S symmetric matrix in R with its characteristic

polynomial irreducible over Fq

n = v + o,m = o numbers of variables and equations, respectively
F = [F1, . . . , Fm] central map of the ring UOV scheme

[Fi] matrix corresponding to Fi in F

F̃ =
[
F̃1, . . . , F̃m

]
central map of the SNOVA scheme

T invertible linear map in signature scheme
[T ] matrix corresponding to T

P = [P1, . . . , Pm] public map of the ring UOV scheme
[Pi] matrix corresponding to Pi in P

P̃ =
[
P̃1, . . . , P̃m

]
public map of the SNOVA scheme

O oil space
MQ(N,M, q) complexity of an MQ system of M equations in N

variables over Fq

2.1 Basic Notions

MQ problem. Let Fq be a finite field of order q. Given a multivariate
quadratic map P ( #—x ) = [P1(

#—x ), . . . , PM( #—x )] of M components in N variables
#—x = (x1, . . . , xN) and a vector #—y ∈ FM

q , to find a vector #—u ∈ FN
q such that

P ( #—u) = [P1(
#—u), . . . , PM( #—u)] = #—y . This problem is known to be NP-hard

[21].

In this paper, we use MQ(N,M, q) to denote the complexity of solving
such an MQ problem. There are several algorithms to solve a multivari-
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ate quadratic system of M equations in N variables over Fq such as F4 [17],
F5 [18] and XL variants [12, 43].

Polar forms. The polar form of a homogeneous multivariate quadratic map
P ( #—x ) = [P1(

#—x ), . . . , PM( #—x )] is defined to be the map

P ′( #—x , #—y ) = [P ′
1(

#—x , #—y ), . . . , P ′
M( #—x , #—y )] (2.1)

where for each i ∈ {1, . . . ,M} the polar form of Pi(
#—x ) is defined by

P ′
i (

#—x , #—y ) = Pi(
#—x + #—y )− Pi(

#—x )− Pi(
#—y ). (2.2)

If we write Pi(
#—x ) = #—x t [Pi]

#—x where [Pi] is the matrix representation of Pi

then the matrix representation of P ′
i is symmetric and

[P ′
i ] = [Pi] + [Pi]

t . (2.3)

2.2 Unbalanced Oil and Vinegar Signature Scheme

A (v, o, q) UOV signature scheme with v > o is defined with a triple of
positive integers so that the number of variables n = v + o, the number of
equations m = o, and the scheme is over Fq.

Central map. The central map of UOV scheme is F = [F1, . . . , Fm] : Fn
q →

Fm
q where each Fi is of the form

Fi(x1, . . . , xn) =
v∑

j=1

n∑
k=j

fi,jkxjxk. (2.4)

The coefficients fi,jk’s are chosen randomly from Fq. Note that each Fi is a
homogeneous quadratic polynomials in n variables which has no terms xjxk

for j, k ∈ {v + 1, . . . , n} over Fq.

Private key and public key. The private key of UOV is the pair (F, T )
where T : Fn

q → Fn
q is an invertible linear map which is randomly chosen.

The public key is the map P = [P1, . . . , Pm] = F ◦ T : Fn
q → Fm

q where
Pi = Fi ◦ T .

Oil space, O. The central map F of UOV scheme vanishes on the linear
space O = { #—x ∈ Fn

q : x1 = · · · = xv = 0} called the oil space. Then
the public map P vanishes on the space T−1(O). For key recovery attacks
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against UOV, the most important task is to find a nonzero vector in T−1(O).
It is because once such a vector is found, we can use this vector and the
differential of the public map to successively get more vectors in T−1(O),
and finally to obtain a basis of T−1(O). And then such a basis can be used
to induce an equivalent key [4].

3 Ring UOV

In order to enhance the comprehension of SNOVA, we now introduce an
intermediary phase called ring UOV, which generalizes UOV to any noncom-
mutative ring R. There are other schemes involving noncommutative rings
but with different techniques been proposed [19, 47].

Similar to UOV, Let n = v+ o and m = o. However, due to the noncommu-
tativity of R we need to explicitly denote the following index set which will
be used below by

Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) : v + 1 ≤ j, k ≤ n}. (3.1)

The basic structure of ring UOV. The central map of ring UOV is the
map F = [F1, . . . , Fm] : Rn → Rm with each Fi defined by

Fi(X1, . . . , Xn) =
∑

(j,k)∈Ω

ϕ(Xj)Fi,jkXk (3.2)

where the coefficients Fi,jk are randomly chosen from R. The map ϕ is

a ring map with “factor order reversed” property, i.e., ϕ

(∑
j

CjXj

)
=∑

j

ϕ (Xj)ϕ (Cj) where Cj ∈ R. The (ring) variables X1, . . . , Xv are called

the vinegar variables and Xv+1, . . . , Xn are called the oil variables.

A concrete example of ring UOV. For the purpose of explaining SNOVA,
we now fix the noncommutative ring to be R = Matl×l(Fq) and the ring map
ϕ to be the matrix transpose. Then, we have a (v, o, q, l)-type ring UOV
scheme. And, for brevity, we will call it a (v, o, q, l) ring UOV or simply a
ring UOV. Due to these specification, the i-th component, for i ∈ {1, . . . ,m},
of the central map F = [F1, . . . , Fm] : Rn → Rm becomes

Fi(X1, . . . , Xn) =
∑

(j,k)∈Ω

X t
jFi,jkXk. (3.3)
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Note that we can write Fi into quadratic form over R. That is,

Fi(
#—

X) =
#—

Xt [Fi]
#—

X (3.4)

where #—

X = (X1, . . . , Xn)
t and the matrix representation [Fi] over R corre-

sponding to Fi is of the form

[Fi] =
[
Fi,jk

]
=

[
F 11
i F 12

i

F 21
i 0

]
, (3.5)

F 11
i , F 12

i and F 21
i are matrices over R of size v×v, v×o and o×v, respectively.

Similar to UOV scheme, the public map P = [P1, · · · , Pm] is the composition
of central map F and an invertible ring linear map T : Rn → Rn, i.e.,
P (

#—

U) = (F ◦ T )( #—

U) where Pi(
#—

U) = (Fi ◦ T )(
#—

U) for each i ∈ {1, 2, . . . ,m}.
The map T is defined by its matrix representation

[T ] =

[
I11 T 12

0 I22

]
(3.6)

where T 12 is a v× o random matrix over R and I11, I22 are identity matrices
over R of size v × v and o× o, respectively.

Public key and private key. For each i ∈ {1, . . . ,m}, we have

Pi(
#—

U) = (Fi ◦ T )(
#—

U) =
#—

Ut ·
(
[T ]t [Fi] [T ]

)
· #—

U. (3.7)

Therefore, the public key consists of the corresponding matrices generated
by the following congruence relation, for i ∈ {1, · · · ,m},

[Pi] =
[
Pi,djdk

]
= [T ]t [Fi] [T ] (3.8)

and the private key is (F, T ), i.e., the matrix [T ] and the matrices [Fi].

4 SNOVA: A Simple Noncommutative UOV
Scheme

In this section, we introduce SNOVA signature scheme whose central map is
a modified ring UOV map. In order to eliminate the sparsity of ring UOV
map (when we regard it as a UOV map over field), some specific matrices
will be introduced into the ring UOV map. And we will see that, through
appropriate design, these introduced matrices will not affect the process of
SNOVA public key generation. The key generation will be almost identical
to the case of the ring UOV scheme, which will be explained below.
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4.1 Description

Let v, o be positive integers with v > o and Fq be of characteristic 2. For
example, we choose Fq = GF(16) for our implementation. Let n = v+ o and
m = o. Next, we will proceed to introduce the subring of the matrix ring R,
Fq[S]. Then, we will define a (v, o, q, l) SNOVA scheme.

The subring Fq[S]. Let S be an l×l symmetric matrix with its characteristic
polynomial irreducible over Fq. The subring Fq[S] of R is defined to be

Fq[S] = {a0 + a1S + · · ·+ al−1S
l−1 : a0, a1, · · · , al−1 ∈ Fq} (4.1)

and note that the elements in Fq[S] are also symmetric and they all commute.

Central map and its core part. let Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) :
v+1 ≤ j, k ≤ n}. The central map of SNOVA scheme is F̃ =

[
F̃1, · · · , F̃m

]
:

Rn → Rm and, for i ∈ {1, · · · ,m}, Fi is defined to be

F̃i(X1, . . . , Xn) =
l2∑

α=1

Aα ·

 ∑
(j,k)∈Ω

X t
j (Qα1Fi,jkQα2)Xk

 · Bα (4.2)

where Fi,jk’s are randomly chosen from R, Aα and Bα are invertible elements
randomly chosen from R, and Qα1, Qα2 are invertible matrices randomly
chosen from Fq[S].

For the central map F̃ of SNOVA, we define its core part to be the corre-
sponding ring UOV map. That is, for i ∈ {1, . . . ,m}, we define

core(F̃i) := Fi =
∑

(j,k)∈Ω

X t
jFi,jkXk. (4.3)

Note that the central map defined by 4.3 can be interpreted as an (l2v, l2o, q)-
UOV central map over Fq with sparse central polynomials. The sparsity
comes from the structure of matrix multiplication. Consequently, the cor-
responding public polynomial will exhibit sparsity, potentially leading to a
reduction in the system’s degree of regularity when confronted with forgery
attacks. To solve this issue, we introduce l2 copies with different Aα, Bα, Qα1

and Qα2 in our central map 4.2. By modifying this way, our experiment
results on toy examples indicate that the system of SNOVA behaves like a
random system when we are considering the forgery attacks. For further
discussion, please refer to Sec. 5.3.1.
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On the other hand, from the randomness viewpoint, the number of randomly
chosen coefficients in an (l2v, l2o, q)-UOV central map over Fq is of order O(m·
(l2n)2). In the definition 4.2, each copies Qα1Fi,jkQα2 provide us O(l2n2).
Therefore, with l2 copies, the randomness of the central map F̃ and the
central map of an (l2v, l2o, q)-UOV are in the same magnitude. This provides
another perspective to understand the design of SNOVA central map.

From the above definition, we can observe that for a central map of SNOVA,
there always exists a corresponding ring UOV map. Through the core part,
even if the central map of SNOVA can not be represented as a quadratic
form over ring (due to matrices Aα, Bα, Qα1 and Qα2), its ring coefficients
can still be recorded by the matrix representation of its core part, i.e., the
matrices [

core(F̃i)
]
:= [Fi] =

[
Fi,jk

]
=

[
F 11
i F 12

i

F 21
i 0

]
(4.4)

where [Fi] is the matrix representation of the ring UOV map corresponding
to core(F̃i).

Invertible linear map. The invertible linear map in SNOVA scheme is the
map T : Rn → Rn corresponding to the matrix

[T ] = [Tij] =

[
I11 T 12

0 I22

]
, (4.5)

where T 12 is a v×o matrix consisting of nonzero entries Tij chosen randomly
in Fq[S]. Note that Tij is symmetric and commutes with other elements in
Fq[S]. In particular, Tij commutes with Qα1 and Qα2. The matrices I11 and
I22 are identity matrices over R. Therefore, [T ] is invertible and hence T .
Note that since Fq is of characteristic 2, the matrix [T−1] = [T ].

Public map. Let P̃ = F̃ ◦ T be the public map of SNOVA scheme. For
i ∈ {1, 2, . . . ,m}, P̃i = F̃i ◦ T . The relation #—

X = [T ] · #—

U where #—

U =
(U1, · · · , Un) ∈ Rn implies that

P̃i(
#—

U) = F̃i(T (
#—

U)) =
l2∑

α=1

n∑
dj=1

n∑
dk=1

Aα · U t
dj
(Qα1Pi,djdkQα2)Udk · Bα (4.6)

where Pi,djdk =
∑
Ω

Tj,dj · Fi,jk · Tk,dk by the commutativity of Fq[S] and that

all elements in Fq[S] are symmetric. Similarly, we define the core part of the
public map P̃ by

core(P̃i) := Pi = core(F̃i) ◦ T = Fi ◦ T. (4.7)
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Therefore, the matrix representation of the map core(P̃i) consists of the
corresponding matrices[

core(P̃i)
]
:= [Pi] =

[
Pi,djdk

]
= [T ]t [Fi] [T ] (4.8)

for i ∈ {1, . . . ,m}. By introducing the matrices Aα, Bα, Qα1, Qα2, the public
map P̃ is not a sparse UOV map when we regard it as over Fq.

Public key and private key. The public key is the matrices
[
core(P̃i)

]
that records the ring coefficients of core(P̃i) and the matrices Aα, Bα, Qα1

and Qα2 for α = 1, 2, . . . , l2, or simply the seed spublic which generates them.
By utilizing matrices

[
core(P̃i)

]
and the seed spublic, the verifier is capable

to obtain the public map P̃ and subsequently verify the received signature.

The private key of SNOVA is (F, T ), i.e., the matrix [T ] and the matrices [Fi]
for i = 1, 2, . . . ,m. Note that we can use the private seed sprivate to generate
T .

Signature. Let D be the document to be signed and Hash(D) =
#—

Y =

(Y1, · · · , Ym) ∈ Rm be its hash value. We compute the signature #—

U step by
step. First, We assign values to vinegar variables X1, · · · , Xv randomly and
the resulting system can be seen as a linear system over the Fq-entries of
oil variables Xv+1, · · · , Xn. The remaining is the same as in UOV scheme
by regarding SNOVA as a UOV over Fq. Secondly, the signature is #—

U =

T−1(
#—

X) ∈ Rn.

Verification. Let #—

U = (U1, · · · , Un) ∈ Rn be the signature to be verified.
If Hash(D) = P̃ (

#—

U), then the signature is accepted, otherwise rejected.

4.2 Key generation process of SNOVA

In this section, we give the standard key generation process of SNOVA and
the key generation process with randomness alignment key-compression tech-
nique [36]. Note that, in SNOVA scheme, Fq is of the characteristic 2.

Standard key generation process. For i ∈ {1, . . . ,m}, the matrix [Pi] is
obtained by relation

[Pi] = [T ]t [Fi] [T ] . (4.9)
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Then, we have the following

P 11
i = F 11

i (4.10)
P 12
i = F 11

i T 12 + F 12
i (4.11)

P 21
i = (T 12)tF 11

i + F 21
i (4.12)

P 22
i = (T 12)t ·

(
F 11
i T 12 + F 12

i

)
+ F 21

i T 12. (4.13)

Therefore, to get [Pi], we generate the matrices [Fi], [T ] from a seed sprivate
at first and then compute [Pi] for i ∈ {1, . . . ,m} with the formulas above.

Key generation with randomness alignment. The following are steps
of key generation process of SNOVA with key randomness alignment.

First Step: Generate S, P 11
i , P 12

i and P 21
i for i ∈ {1, . . . ,m} , and [T ] from

two seeds spublic and sprivate respectively. We also generate the matrices Aα,
Bα, Qα1 and Qα2 for α = 1, 2, . . . , l2 from spublic.

Second Step: Compute the matrix F 11
i , F 12

i , F 21
i , P 22

i for i ∈ {1, . . . ,m} as
below.

For i ∈ {1, . . . ,m}, we have

[Fi] =
[
T−1

]t
[Pi]

[
T−1

]
. (4.14)

Therefore, the following equations hold

F 11
i = P 11

i (4.15)
F 12
i = P 11

i T 12 + P 12
i (4.16)

F 21
i = (T 12)tP 11

i + P 21
i (4.17)

0 = F 22
i = (T 12)t ·

(
P 11
i T 12 + P 12

i

)
+ P 21

i T 12 + P 22
i . (4.18)

In other words, we then have

P 22
i =

(
T 12
)t · (P 11

i T 12 + P 12
i

)
+ P 21

i T 12. (4.19)

Note that the elements in P 22
i are in ring R due to the elements of P 11

i , P 12
i

and P 21
i been randomly chosen in R, although elements in T 12 are in Fq[S].

Compressed public key size. From above, the compressed public key
of SNOVA is consisting by P 22

i for i = 1, · · · ,m and each P 22
i has m2 ring
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elements. Therefore, the reduced size of the public key of SNOVA using
alignment is

SizeSNOVA = m ·m2 · l2 · log2 q
8

(4.20)

bytes. Note that the key size here does not include the size of the public seed
spublic which is negligible in comparison to P 22

i ’s.

Uncompressed public key size. As a comparison, the uncompressed
public key of SNOVA consists of a list of m public matrices [Pi]. Each
[Pi] has n2 ring elements. Thus, the uncompressed SNOVA public key size
requires

m · n2 · l2 · log2 q
8

(4.21)

bytes.

5 Security Analysis

The SNOVA scheme can be considered as both a UOV-like signature scheme
over the matrix ring R and a UOV over Fq. The security analysis are pre-
sented from two different aspects: over the ring R and over the finite field
Fq.The target of this section is to explore various methods of attacking the
SNOVA and to assess their feasibility.

For forgery attacks, the security analysis of SNOVA mainly based on the
public map of SNOVA. Since the public keys of SNOVA and the ring UOV
corresponding to its core part both are generated by the congruence relation
[Pi] = [T ]t [Fi] [T ], they share the same private key [T ]. For key recovery
attacks, the security of SNOVA will be evaluated by analyzing the complexity
of such attacks against the ring UOV scheme corresponding to core(F̃i) which
has a much simpler structure.

5.1 Solving MQ systems and Complexity Estimation

There are several algorithms to solve a quadratic system of M equations in N
variables over finite fields such as F4 [17], F5 [18] and XL variants [9, 12, 43].

Solving MQ problem. The complexity of solving M homogeneous quadratic
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equations in N variables [9] can be estimated by

MQ(N,M, q) = 3 ·
(
N − 1 + dreg

dreg

)2

·
(
N + 1

2

)
(5.1)

field multiplications. The term dreg, degree of regularity of a semi-regular
polynomial system [1], equals to the smallest positive integer d such that the
coefficient of td term in the series generated by

(1− t2)M

(1− t)N
(5.2)

is non-positive.

Hybrid approach. The hybrid approach [2] randomly guesses k variables
before solving the MQ system and the corresponding complexity is

HMQ(N,M, q) := min
k

qk ·MQ(N − k + 1,M, q) (5.3)

field multiplications for the classical case and

min
k

qk/2 ·MQ(N − k + 1,M, q) (5.4)

field multiplications when applying Grover’s algorithm [22] for the quantum
case.

Methods solving underdetermined MQ. On the other hand, several
methods [20, 23, 41] have been proposed to solve underdetermined MQ more
efficiently. These methods can transform an underdetermined MQ(N,M, q)
problem to an MQ(M − k − αk,M − αk, q) problem where the value of αk

depends on the approach utilized in each method. (Generally, the attack in
[23] would be the sharpest among [20, 23, 41].) Hence, the main term of
complexity of solving MQ system under this technique is given by

min
k

qk ·MQ(M − k − αk + 1,M − αk, q) (5.5)

field multiplications in the classical case and

min
k

qk/2 ·MQ(M − k − αk + 1,M − αk, q) (5.6)

in the quantum case with different optimal values αk corresponding to dif-
ferent methods.
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Recently, the algorithm in [23] has been revised. The updated algorithm
has become more efficient. It reduces the complexity of direct attack on the
MAYO scheme with the latest parameters in the submission of the addi-
tional NIST PQC standardization [6], making it unable to meet NIST secu-
rity levels. When solving an underdetermined MQ system, our complexity
estimations consider the method with the lowest complexity.

Algorithms for super-underdetermined MQ. Note that, [10, 11, 27, 30]
indicate that when the number of variables N is sufficiently larger than the
number of equations M in an MQ problem then we can solve this MQ in
polynomial time. Please refer to the table in [23] for more information. Note
that these four algorithms are not applicable to the parameter sets of SNOVA.

5.2 To Attain EUF-CMA Security

For practical considerations, we use a random binary vector, called salt in
order to achieve Existential Unforgeability under Chosen Message Attack
(EUF-CMA) Security [33].

Signature. Let D be the document to be signed, we randomly choose salt
and then generate a signature for the hash value #—

Y = Hash(Hash(D)||salt).
Therefore, the corresponding signature is of the form #—σ = (

#—

U||salt) where
#—

U is the signature of #—

Y generated by the SNOVA signer. Note that we want
almost no salt is used for more than one signature. Therefore, the length of
salt is chosen to be 16 Bytes under the assumption of up to 264 signatures
being generated with the system.

Verification. If P (
#—

U) = Hash(Hash(D)||salt), the signature is accepted,
otherwise rejected.

5.3 Forgery attacks

In this section, we will give the security analysis of two main types of forgery
attacks: direct attack and collision attack. The ideas behind these two at-
tacks are straightforward. They directly ignore the structure possessed by
the central map and attack the scheme by generating fake signatures.

Finding the preimage of the public map for the hash value of a message is
what constitutes signature forgery. However, the public maps of SNOVA and
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ring UOV are only weakly connected as a result of the use of l2 copies with
different Aα, Qα1, Qα2, and Bα in F̃i of SNOVA. Consequently, solving the
equations derived from the public map of ring UOV corresponding to the
core part does not aid in solving the equations produced by the public map
of SNOVA for the purpose of forgery attacks.

Besides, one may try to directly forge valid fake signature of SNOVA over R
not returning to field level. This approach will suffer from the fact that there
is no efficient algorithm like F4, F5 and XL to solve multivariate quadratic
system over the noncommutative ring R. For some specific noncommutative
rings, there do exist some noncommutative extensions of the Gröbner basis
algorithms [7]. However, either they are not applicable or not efficient enough
for the matrix ring case. Therefore, the security of forgery attacks will be
analyzed with respect to the public map of the SNOVA scheme in the sense
that regarding the public map of SNOVA as a UOV public map over Fq.

5.3.1 Direct attack

For a quadratic multivariate polynomial system P = [P1, · · · , Pm] consisting
of m equations in n variables over Fq and an intended #—y ∈ Fm

q , an attacker
can directly try to solve the solution #—u of the system P ( #—u) = #—y algebraically
with Gröbner basis approach such as [9, 12, 17, 18, 43]. We can assign values
to n−m variables in the system P ( #—u) = #—y = Hash(digest||salt) randomly
and then obtain an MQ system of m equations in m variables which can be
solved with high probability. Once the system is solved, the solution #—u will
be a valid fake signature that satisfies P ( #—u) = #—y .

In the case of SNOVA, to produce a fake signature, an attacker need to regard
a (v, o, q, l)-SNOVA public map as an (l2v, l2o, q)-UOV public map over Fq

and then forge a signature for this UOV. Since each equation over R =
Matl×l(Fq) yields l2 equations over Fq, the system over ring R, P (

#—

U) =
#—

Y,
with m equations and n ring variables will result in an MQ system consisting
of l2m equations in l2n field variables. Table 3 gives comparison of the degree
at the first step degree falls or goes flat using F4 algorithm [17], which is
strongly connected to the degree of regularity [15], in Magma algebra system
[7] that starts to go either down or flat among all step degrees of the quadratic
system obtained by SNOVA and a random quadratic system respectively.

In random systems, the first fall step degree is generally equal to the degree of
regularity. Table 3 indicates that the first fall step degrees of SNOVA systems
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and random systems are identical for small size parameter sets. Thus, we
can expect that the degree of regularity of SNOVA systems, the first fall step
degree, and the degree of regularity of random systems are the same. For
Gröbner bases algorithms such as F4/F5 and XL, the size of the Macaulay
matrix employed in solving quadratic systems is determined by the degree of
regularity. The complexity of solving quadratic systems is determined by the
difficulty of solving the sparse Macaulay matrix using the Wiedemann solver
[44]. As a result, the complexity of a direct attack on SNOVA is estimated
by the complexity of a direct attack on random systems.

The complexity of classical direct attack is given by the estimation in [23]

CompDirect; ClassicalSNOVA (5.7)
=(l2m− α− k + 1)HMQ(α, α, q) (5.8)
+ qk

(
HMQ(α− 1, α− 1, q) +HMQ(l2m− α− k, l2m− α, q)

)
. (5.9)

provided that l2n ≥ max{(α+1)(l2m−k−α+1), α(l2m−k)− (α−1)2+k}
holds.

Note that not only do the first fall degrees of SNOVA and a random system
coincide, but the numbers of columns and ranks of Macaulay matrices also
exhibit the same correspondence.
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Table 3: Table of comparison of the degree at the first step degree falls or goes
flat between SNOVA and random systems. Our experiment shows that in the
case of small size parameter sets such a quadratic system over field induced
by SNOVA public key with m equations in n variables over R = Matl×l(Fq)
behaves like a random system consisting of l2m equations in l2n variables
over Fq.

(v, o, q, l, k) SNOVA system random system
(6, 1, 16, 2, 1) 3 3
(6, 2, 16, 2, 1) 5 5
(6, 2, 16, 2, 2) 4 4
(6, 2, 16, 2, 3) 3 3
(6, 3, 16, 2, 1) 7 7
(6, 3, 16, 2, 2) 6 6
(6, 3, 16, 2, 3) 5 5
(6, 4, 16, 2, 2) 7 7
(6, 4, 16, 2, 3) 6 6
(6, 1, 16, 3, 2) 4 4
(6, 1, 16, 3, 3) 4 4
(6, 1, 16, 3, 4) 3 3
(6, 2, 16, 3, 3) 7 7
(6, 2, 16, 3, 4) 6 6
(6, 2, 16, 3, 5) 5 5
(6, 1, 16, 4, 1) 9 9
(6, 1, 16, 4, 2) 7 7
(6, 1, 16, 4, 3) 6 6
(6, 1, 16, 4, 4) 5 5
(6, 1, 16, 4, 5) 5 5

5.3.2 Collision attack

To forge a fake signature, an attacker can also try to check M intended signa-
tures #  —

Uj where j = 1, · · · ,M , and N hash values Hash(digest||saltk) where
k = 1, · · · , N , whether there exists a collision P (

#  —

Uj) = Hash(digest||saltk).
And if it does, then the attacker has a valid fake signature. Thus, M signa-
ture computations and N hash values computations are involved. Therefore,
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according to the estimation of [8], the cost of such a collision attack would
be

M · (l2m) ·
(
2(log2 q)

2 + 3 · log2 q
)
+N · 217 (5.10)

gates in the sense that regarding SNOVA as a UOV scheme over Fq. Note
that a lower bound of the complexity of collision attack is

2 ·
(
M(l2m)

(
2(log2 q)

2 + 3 · log2 q
)
·N · 217

)1/2 (5.11)

gates. If MN = ql
2m, then this lower bound turns into

2 ·
(
ql

2m(l2m)
(
2(log2 q)

2 + 3 · log2 q
)
· 217

)1/2
, (5.12)

and the collision exists with probability

1−

(
ql

2m −M

ql2m

)N

= 1−
(
MN −M

MN

)N

(5.13)

= 1−
(
1− 1

N

)N

(5.14)

≈ 1− e(
−1
N )N (5.15)

= 1− e−1. (5.16)

5.4 Key Recovery Attacks

In this subsection, we analyze the structure of ring UOV defined by the
quadratic form over R corresponding to core(F̃i) and the related (lv, lo, q)-
UOV and discuss the key recovery attacks against this (lv, lo, q)-UOV.

5.4.1 UOV Induced From the Core Part of SNOVA

To conduct a comprehensive and prudent security analysis, we start with the
following observations. Note that the structure mentioned in this section has
similar discussions in [25, 28].

Quadratic form over ring. Let #—

X =

X1
...

Xn

 where Xi =

x
(11)
i · · · x

(1l)
i... . . . ...

x
(l1)
i · · · x

(ll)
i

,
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i = 1, . . . , n, are ring variables. Then, for i ∈ {1, . . . ,m}, we have

core(F̃i)(
#—

X) := Fi(
#—

X) =
∑

(j,k)∈Ω

X t
jFi,jkXk =

#—

X t · [Fi] ·
#—

X. (5.17)

Since Matn×n(R) = Matln×ln(Fq), the n × n matrix [Fi] over R can be re-
garded as a ln × ln matrix over Fq. Hence the quadratic form 5.17 over R
can be viewed as over Fq

core(F̃i)(
#—

X) (5.18)

=
(

#—

X
)t

· [Fi] ·
(

#—

X
)

(5.19)

=

x
(11)
1 · · · x

(l1)
1 · · · x

(11)
n · · · x

(1l)
n

... ... ... ...
x
(1l)
1 · · · x

(ll)
1 · · · x

(l1)
n · · · x

(ll)
n

 · [Fi] ·



x
(11)
1 · · · x

(1l)
1

... ...
x
(l1)
1 · · · x

(ll)
1

... ...
x
(11)
n · · · x

(1l)
n

... ...
x
(l1)
n · · · x

(ll)
n


(5.20)

and [Fi]’s are viewed as ln× ln matrix over Fq in the last equality. Therefore,
if the matrices [F1] , . . . , [Fm] and [P1] , . . . , [Pm] are viewed as ln×ln matrices
over Fq, then there exists an (lv, lo, q)-UOV defined on Fq corresponding to
them. Note that the matrices [F1] , . . . , [Fm] are not symmetric when they
are regarded as ln × ln matrices over Fq. From this point of view, the core
part core(F̃i) can be related to the central map of the (lv, lo, q)-UOV which
is defined by the ln × ln matrices [Fi] over Fq. Our security analysis will
mainly focus on this (lv, lo, q)-UOV, especially for key recovery attacks.

Oil space and Oil Vector. For key recovery attacks against UOV scheme
and its variants, the most important task is to find the oil space T−1(O).
Similarly, in SNOVA case, the task is to find the oil space of the public map

T−1
({

#—

X ∈ Rn : X1 = . . . = Xv = 0
})

, (5.21)

and then it suffices to find the oil space of the (lv, lo, q)-UOV induced from
core(F̃i) according to the observation 5.20. In conclusion, once the oil space
of the related (lv, lo, q)-UOV, T−1(O) is found, then an equivalent key of
SNOVA can be recovered. Here, the space O is defined by

O = { #—x = (x1, . . . , xln) ∈ Fln
q : x1 = · · · = xlv = 0} (5.22)
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On the other hand, since the components of [T ] are in Fq[S], the private key
[T ] satisfying the identity over R

[T ] [D] = [D] [T ] (5.23)

where [D] =

S . . .
S

 = S · In is a n× n matrix over R.

If we identify [T ] , [D] as an ln× ln matrix over Fq then

[T ]−1 (O) = [T ]−1 [D] (O) = [D] [T ]−1 (O) (5.24)

Therefore, for each oil vector #—x ∈ [T ]−1 (O), we have

[D] · #—x , . . . , [D]l−1 · #—x ∈ T−1(O). (5.25)

In particular, for any #—x ∈ [T ]−1 (O) and j, k ∈ {0,…, l − 1}, we then have

#—x t · [D]j [Pi] [D]k · #—x = 0, (i = 1, . . . ,m). (5.26)

Note that the equation 5.26 directly implies that the UOV induced from
the core part of SNOVA is an (lv, lo, q)-UOV scheme with l2o equations. In
our analysis of key recovery attacks aimed at finding the oil vector through
solving the multivariate quadratic system, we consider this implication in
Sec. 5.4.3 and Sec. 5.4.4. On the other hand, this does not benefit KS
attack because KS attack is not based on solving systems of equations but
on matrices sampling.

5.4.2 Kipnis-Shamir attack (UOV attack)

The KS attack [27] is trying to find an equivalent private key by finding an
equivalent invertible linear map T and hence the corresponding matrix [T ].
Once we have an equivalent [T ], we can recover equivalent [Fi] by the relation
[Fi] = [T−1]

t
[Pi] [T

−1]. Note that [27] shows that T−1(O), the oil subspace
of the public key P of UOV, induces an equivalent key.

In [4, 27], it shows that T−1(O) is an invariant subspace of [P ′
i ]
−1 [P ′

j

]
. The

KS attack is trying to find a vector in T−1(O). Once one such vector is found,
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then we expect that the whole space T−1(O) can be recovered efficiently by
using method in [4]. A vector in T−1(O) can be expected to be found with
qv−o attempts. Note that if there are [P ′

i ]’s not invertible, then we can replace
[P ′

i ] with invertible linear combinations of [P ′
i ]’s randomly chosen and the

cryptanalysis of KS attack remains the same.

First of all, we discuss the feasibility of the execution of KS attack over R.
For KS attack to be executed, the consistency of multiplication over R given
by a left-module or a right-module over R is necessary. The KS attack is
difficult to execute over R due to the design of central map F of the ring
UOV corresponding to the core part of SNOVA and the noncommutativity
of R. Therefore, KS attack is not applicable to SNOVA over R. Note that
[35] also proposes two methods to find an invariant subspace: the Lineariza-
tion method and the Characteristic Polynomial method. These two methods
become invalid over R since they still suffer from the noncommutativity of
R.

On the other hand, an attacker can execute KS attack on the (lv, lo, q)-UOV
induced from the core part of SNOVA, core(F̃i). Then, the complexity is

CompKS; classicalSNOVA = qlv−lo (5.27)

field multiplications for the classical case and

CompKS; quantumSNOVA = q(lv−lo)/2 (5.28)

field multiplications for the quantum case.

5.4.3 Reconciliation Attack

The reconciliation attack proposed by [16] against UOV is trying to find a
vector #—o ∈ O by solving the system P (T−1( #—o )) = 0 and hence the basis of
T−1(O) can be recovered. This implies that P (T−1( #—o )) = 0 is a quadratic
system that having a solution space of dimension m. To expect a unique
solution, we can impose m linear constraints with respect to the components
of #—o . Hence the complexity of this attack is mainly given by that of solving
the quadratic system of m equations in v variables.

A reconciliation attack on SNOVA, if considered over field, is as an attack
on an (lv, lo, q)-UOV which trying to find a vector #—x ∈ T−1(O). Thus, we
are in the case of solving the quadratic system

#—x t · [D]j · [Pi] · [D]k · #—x = 0, (i = 1, . . . ,m) (5.29)
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where j, k ∈ {0, . . . , l − 1}, which results in l2m equations in lv + 1 = ln −
(lo− 1) variables. Hence the complexity of reconciliation attack is

CompReconciliation; classicalSNOVA = HMQ(lv + 1, l2m, q) (5.30)

field multiplications for the classical attacker.

5.4.4 Intersection attack

In [4], Beullens proposed the intersection attack to attack UOV scheme. It
uses the polar form of the public key P , that is, P ′ = [P ′

1, · · · , P ′
m] with

P ′
i (

# —u1,
# —u2) = # —u1

t [P ′
i ]

# —u2 where [P ′
i ] = [Pi] + [Pi]

t. The intersection attack
is trying to first find a vector #—y in the subspace, namely the intersection(
[P ′

i ] (T
−1O)

)
∩
( [

P ′
j

]
(T−1O)

)
where [P ′

i ] ,
[
P ′
j

]
are invertible, and then to

obtain an equivalent key by recovering the subspace T−1(O).

Since ([P ′
i ]
−1) #—y , (

[
P ′
j

]−1
) #—y ∈ T−1(O), we obtain the following system.

P
( (

[P ′
i ]
−1) #—y

)
=

#—
0

P
(
(
[
P ′
j

]−1
) #—y
)
=

#—
0

P ′
(
([P ′

i ]
−1) #—y , (

[
P ′
j

]−1
) #—y
)
=

#—
0

(5.31)

In case of intersection attack against SNOVA, due to our construction, we
can not write the public polynomial Pi of SNOVA in quadratic form, namely
# —u1

t [P ′
i ]

# —u2, when considered as over R. Thus, the implementation of inter-
section attack still face the noncommutativity, that is, there is no efficient
algorithm like F4, F5 and XL to compute. Therefore, from this perspective,
to implement intersection to attack against SNOVA, the possible strategy is
attack the (lv, lo, q)-UOV corresponding to the core part of SNOVA [25].

The attacker is trying to find a vector #—y ∈
(
[L1] (T

−1O)
)
∩
(
[L2] (T

−1O)
)

where [L1] , [L2] are two invertible linear combinations of the matrices [Pi]’s
of size ln× ln over Fq. Then, since [L1]

−1 #—y , [L2]
−1 #—y ∈ T−1(O), we have

(
[L1]

−1 #—y
)t · ([D]j [Pi] [D]k

)
·
(
[L1]

−1 #—y
)
= 0(

[L1]
−1 #—y

)t · ([D]j [Pi] [D]k
)
·
(
[L2]

−1 #—y
)
= 0(

[L2]
−1 #—y

)t · ([D]j [Pi] [D]k
)
·
(
[L1]

−1 #—y
)
= 0(

[L2]
−1 #—y

)t · ([D]j [Pi] [D]k
)
·
(
[L2]

−1 #—y
)
= 0

(5.32)
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The case v < 2o. Since dim
(
[L1] (T

−1O)
)
∩
(
[L2] (T

−1O)
)
≥ 2lo−lv > 0,

then the system 5.32 reduces to a homogeneous quadratic system of M =
4l2o− 2l equations in N = ln− (2lo− lv− 1) = 2lv− lo+1 variables. Hence
the complexity is

CompIntersectionSNOVA = HMQ(N,M, q) (5.33)

field multiplications for classical attacker.

The case v ≥ 2o. If n ≥ 3m, then there is no guarantee that the intersec-
tion

(
[P ′

i ] (T
−1O)

)
∩
( [

P ′
j

]
(T−1O)

)
will exist. Therefore, the intersection

attack becomes a probabilistic attack against SNOVA. In this case, the com-
plexity is

CompIntersectionSNOVA = min qlv−2lo+1 · qk ·MQ(N − k + 1,M, q) (5.34)

field multiplications where N = ln,M = l2o− 2l for the classical case.

6 Implementation and Parameters

In [31], NIST suggested several security levels for post-quantum cryptosystem
design. In the new call for additional digital signature scheme project, NIST
slightly modified their security level request. In this section, we propose
our parameters aiming at three security levels in the new call of NIST PQC
project [32] levels I, III and V, respectively.

6.1 NIST Security Level

Herein, We focus on levels I, III, and V. The NIST security levels I, III and
V require that a classical attacker needs 2143, 2207 and 2272 classical gates
to break the scheme, and 261, 2125 and 2189 gates for a quantum attacker,
respectively.

The number of gates required for an attack against digital signature scheme
can be computed by

♯gates = ♯field multiplication · (2 · (log2 q)2 + log2 q) (6.1)
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with the assumption that one field multiplication in the field Fq needs about
(log2 q)

2 bit multiplications and same for bit additions and, for each field
multiplication in the computation, an addition of field elements taking log2 q
bit additions.

6.2 Proposed Parameter Sets and Implementation

In this section, we give our proposed parameters and the corresponding sizes
of public key and signature respectively. Finally, the comparison table of
SNOVA with NIST finalists [24, 29, 38] is given.

The following table shows the complexity of respective attacks against our
parameters. “Dir.”, “KS.”, “Rec.”, “Int.” and “Col.” denote direct attack in
Sec. 5.3.1, KS attack in Sec. 5.4.2, Reconciliation attack in Sec. 5.4.3, inter-
section attack in Sec. 5.4.4 and the collision attack in Sec. 5.3.2, respectively.

Table 4: Table of complexity in log2(♯gates). In any pair of complexity, the
left one denotes the complexity in classical gates and the right one denotes in
quantum gates, respectively. The lowest complexity is marked in bold fonts.
The complexity of direct attack against a quantum attacker is given by the
estimation 5.6.

SL (v, o, q, l) Dir. KS. Rec. Int. Col.

I
(37, 17, 16, 2) 165/123 165/85 203 153 151
(25, 8, 16, 3) 171/126 209/107 200 221 159
(24, 5, 16, 4) 184/134 309/157 269 353 175

III
(56, 25, 16, 2) 234/173 253/129 297 221 215
(49, 11, 16, 3) 226/162 461/233 438 529 213
(37, 8, 16, 4) 287/214 469/237 387 506 271

V
(75, 33, 16, 2) 302/222 341/173 389 288 279
(66, 15, 16, 3) 302/220 617/311 574 690 285
(60, 10, 16, 4) 350/255 805/405 695 922 335

The key-size and the length of the signature are shown in Table 5.
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Table 5: Table of key-sizes and lengths of the signature for SNOVA
parameter settings. Herein, the notation Sizepk denotes the public key size
and Sizesig denotes the signature size.

Security Level (v, o, q, l) Sizepk (Bytes) Sizesig (Bytes)

I
(37, 17, 16, 2) 9826 108(+16)
(25, 8, 16, 3) 2304 148.5(+16)
(24, 5, 16, 4) 1000 232(+16)

III
(56, 25, 16, 2) 31250 162(+16)
(49, 11, 16, 3) 5989.5 270(+16)
(37, 8, 16, 4) 4096 360(+16)

V
(75, 33, 16, 2) 71874 216(+16)
(66, 15, 16, 3) 15187.5 364.5(+16)
(60, 10, 16, 4) 8000 560(+16)

Table 6 gives the comparison of SNOVA of 3 sets of parameters with those
NISTPQC signature finalists that aim at the security level I. Based on the
public key sizes and signature sizes of SNOVA, we consider SNOVA to be a
competitive signature scheme. Note that the 16 Bytes salt is also indicated
in the size of SNOVA signature.

Table 6: A comparison table of SNOVA with the NISTPQC signature finalists
aims at NIST security level I.

Signature Scheme Size of public key
(Bytes)

Size of signature
(Bytes)

Dilithium-2 [29] 1312 2420
Falcon-512 [38] 897 666
SPHINCS+-128s [24] 32 7856
SPHINCS+-128f [24] 32 17088
SNOVA(24, 5, 16, 4) 1000 232(+16)
SNOVA(25, 8, 16, 3) 2304 148.5(+16)
SNOVA(37, 17, 16, 2) 9826 108(+16)

In [45, 46], they both pointed out that the protocol TLS, which we used
to protect our web browsing, is no longer secure due to the impact of the

25



quantum computer. Making TLS post-quantum is an important task, but
such a fundamental change could take years and be quite costly if we do not
have a quantum-resistant signature that is relatively well compatible with
the existing framework. Note that [46] gives the corresponding condition: six
times signature size and two times of public key size fit in 9KB. According
to the specification of SNOVA, SNOVA could be a more practical general-
purpose signature scheme than others.

Implementation. SNOVA scheme had been made a C implementation for
the proposed parameter sets with some AVX2 optimizations. We summarize
the data in the following table.

Table 7: SNOVA performance in CPU cycles on an Intel(R) Core(TM) i7-
6700 CPU @ 3.40GHz, (Skylake) platform using AVX2-related instructions.
Results are the median of 1000 benchmark runs.

SL (v, o, q, l) KeyGen Sign Verify

I
(37, 17, 16, 2) 565731 541999 113310
(25, 8, 16, 3) 340182 578043 177292
(24, 5, 16, 4) 155385 375732 126940

III
(56, 25, 16, 2) 3276441 2542493 382052
(49, 11, 16, 3) 2024432 2868574 874884
(37, 8, 16, 4) 664509 1529137 414346

V
(75, 33, 16, 2) 9396927 7156848 863283
(66, 15, 16, 3) 6488393 7938777 2269404
(60, 10, 16, 4) 2904426 5298827 1169642

7 Conclusion

SNOVA has shown that multivariate signature schemes over noncommutative
rings could be beneficial to security and key size reduction. With tremendous
efforts on security analysis, to our best, we are confident that the SNOVA
scheme is capable of resisting all known attacks for multivariate cryptosys-
tems. By comparison with other post-quantum signature schemes, SNOVA
is a practical secure signature scheme which is relatively efficient on both
public key size and signature size.
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