
PECO: methods to enhance the privacy of DECO protocol
Manuel B. Santos

manuel.batalha.dos.santos@ist.utl.pt

Instituto de Telecomunicações

Lisboa, Portugal

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa

Lisboa, Portugal

ABSTRACT
The DECentralized Oracle (DECO) protocol enables the verifiable

provenance of data from Transport Layer Security (TLS) connec-

tions through secure two-party computation and zero-knowledge

proofs. In this paper, we present PECO, an extension of DECO

that enhances privacy features through the integration of two new

private three-party handshake protocols (P3P-HS). PECO allows

any web user to prove to a verifier the properties of data from TLS

connections without disclosing the identity of the servers. Like

DECO’s three-party handshake protocol, PECO’s P3P-HS methods

do not require any changes on the server side. PECO offers two op-

tions: one that provides 𝑘−anonymity for the server’s identity, and

another that completely masks the server’s identity from the veri-

fier. PECO is based on three main protocols: (a) commit-and-proof

zero-knowledge proofs (CP-ZKP) that enable the proof of relations

under committed values in zero-knowledge, (b) verification of Ellip-

tic Curve Digital Signature Algorithm (ECDSA) signatures under a

committed public key without revealing the key (zkAttest), and (c) a

proof of membership to verify that a committed key belongs to a set

of keys. We estimate the performance of both P3P-HS protocols and

compare it to TLS timeout using state-of-the-art implementations.

KEYWORDS
privacy, web attestation, zero-knowledge, TLS

1 INTRODUCTION
The Transport Layer Security (TLS) protocol is essential for pro-

viding secure communication between users and servers, ensuring

the confidentiality and integrity of data. However, it does not allow

third parties to verify the source of TLS data. The DECentralized

Database (DECO) protocol [22] addresses this issue by enabling

the ability to prove statements about data from TLS connections,

without requiring permission from a central server. This allows for

the provenance of data to be traced back to central points while

maintaining the privacy of the data. For example, the DECO pro-

tocol is crucial for oracles in smart contracts, as it enables them

to use data from other sources without any changes on the server

side.

While DECO allows the data being accessed to be hidden, it

does not conceal metadata such as the identity of the servers being

accessed. This can be problematic in some cases, as the disclosure

of server identities may reveal browsing habits and search pat-

terns that raise significant privacy concerns [19, 14]. In other cases,

however, the identification of data sources may be necessary.

This research aims to develop protocols that enable any user to

prove statements about TLS data to any verifier, without revealing

the identity of the server being accessed to the verifier. To this end,

we present two protocols based on DECO: the 𝑘-anonymous Pri-

vate dECentralized Oracle (𝑘-PECO) and the Private dECentralized

Oracle (PECO). The 𝑘-PECO protocol allows the user to hide the

identity of the server from a set of 𝑘 possible servers, while the

PECO protocol enables the complete concealment of the server’s

identity. In certain situations, the 𝑘-PECO protocol may be most

suitable for achieving the desired outcome, as it enables the demon-

stration that the data originates from a set of certified or qualified

servers while preserving the privacy of the user’s browsing activ-

ity. These systems could be used as privacy-preserving attestation

mechanisms for browsing behavior, replacing current CAPTCHA

systems with a zero-knowledge proof-of-behavior.

The main contributions of this paper are:

(1) The design of a protocol that enables users to prove state-

ments about TLS data without revealing their browsing be-

havior by hiding the identity of the server;

(2) The evaluation of the proposed protocols using state-of-the-

art implementation tools to estimate their performance.

2 BUILDING BLOCKS
2.1 Preliminaries
We write as G the set of elements, denoted by capital letters such

as 𝐺 and 𝐻 , that form a group on an elliptic curve. G has an order

of 𝑞 and is generated by a point 𝐺 ∈ G over the finite field Z𝑝 of

integers modulo a prime 𝑝 .

The notation com(𝑠) represents the commitment of a secret

value 𝑠 . This is an important building block in PECO and, through-

out our exposition, we do not instantiate the type of commitment

scheme. However, in practice, we use the Pedersen commitment

scheme, which is a type of commitment scheme that is uncondition-

ally hiding, computationally binding, and additively holomorphic

[18]. The Pedersen commitment scheme also has a specific protocol

for proving knowledge about the opening of a commitment without

disclosing the opening to the verifier.

The PECO protocol includes a signature algorithm, which is a

mathematical method used to verify the authenticity and integrity

of a message𝑚. The signature algorithm consists of two algorithms:

Sign and Verify. The Sign algorithm is used to create a digital sig-

nature for a message by inputting the message and a secret key,

sk, known only to the sender into the algorithm. The resulting

signature value is attached to the message. We write:

DS = Sign(𝑚, sk) .

The verification algorithm, Verify, is used by the recipient of the

message to check the validity of the signature by inputting the

https://orcid.org/1234-5678-9012

message, signature, and the sender’s public key into the algorithm.

We write:

v = Verify(𝑚,DS, pk).
If the signature is valid (v = 1), it confirms that the message has not

been tampered with and was indeed sent by the owner of the secret

key. We assume the hash function used in the signature scheme to

be SHA256. This means the both Sign and Verify algorithms start

by hashing the message 𝑚 before signing or verifying the hash

value h𝑚 = SHA256(𝑚).

2.2 X.509 certificates
X.509 certificates are a widely used tool for ensuring authenticity

and confidentiality on the Internet. They work by establishing a

chain of trust, where the validity of each certificate is attested by

the next in the chain.

We represent a certificate chain as a tuple

cert = (c0, c1, . . . , c𝑛),

where c0 is the certificate of some server S and c𝑛 is the root cer-

tificate authority certificate. The public key of the entity that signs

the certificate c𝑖−1 is denoted as pk𝑖 . Therefore, pk1 is the public
key of the entity that signs the server’s certificate c0 and pk0 is the
public key of the server S.

Each certificate has amessage𝑚 and a digital signatureDS𝑚 . The

message𝑚 is divided into various fields, such as the organization

name, the server’s email, public key, expiration duration, signature

and public key algorithms, among others. Some of these fields, such

as the server’s email, can be sensitive and reveal the identity of the

server being accessed. While this is generally acceptable, it can pose

a privacy issue in the context of CAPTCHAs, where the user may

unknowingly disclose the website they are accessing by sending

the server’s certificate to the verifier. Consequently, masking the

identity of the server being accessed is an important step in the

PECO protocol.

2.3 DECO
We start by providing an overview of the DECentralized Database

[22] (DECO) protocol. Then, we highlight the steps in DECO that

disclose the server’s identity.

Structure and goal. The DECO protocol involves three parties: a

prover P, a verifier V, and a website server S. It enables P to prove to

V that some TLS data originated from S (proof of provenance) and

statements about the data in a zero-knowledge manner, without

revealing the data itself. The functionality of DECO is summarized

in Figure 1.

Protocol. The DECO protocol consists of three phases:

(1) Three-party handshake phase: During this phase, the parties

generate session keys in a way that prevents P from forging

TLS sessions with S. This phase is further divided into two

steps: key exchange step and key derivation step. In the key

exchange step, P and V begin by verifying S’s certificate
and the corresponding signature of the exchanged key (we

refer to this as the attestation phase). Then, P and V generate

additive shares of the symmetric pre-master key shared with

F
Oracle

Functionality between V, P and S

P input: Θ𝑠 .

V input: query templateQuery and a statement stmt.

(1) If at any point during the session, a message

(sid, receiver,𝑚) with receiver ∈ {S, P,V} is re-

ceived from A, forward (sid,𝑚) to receiver and for-

ward any responses to A.
(2) Upon receiving input (sid,Query, stmt) from V,

send (sid,Query, stmt) to P. Wait for P to reply with

“ok” and Θ𝑠 .

(3) Compute Q = Query(Θ𝑠) and send (sid,Q), to S
and record its response (sid,R). Send (sid, |Q|, |R |)
to A.

(4) Send (sid,Q,R) to P and (sid, stmt(R), S) to V.

Figure 1: The oracle functionality [22].

S. In the key derivation step, the parties derive the session

keys (MAC and encryption keys). Note that during this last

step, V does not communicate with S;
(2) Query phase: During this phase, P builds the queries together

with V using secure two-party computation, and P sends

them to S.;
(3) Proof generation phase: During this phase, P proves that the

query was correctly generated and that the response from S
satisfies some statement.

In the key exchange step of the three-party handshake phase,

we notice that the identity of S is only revealed to V during the

attestation phase, where V verifies the certificate sent by S to P.
Our main goal in this paper is to replace this attestation phase with

a privacy-preserving version, in which V can verify that the data

comes from a certified S but does not know which one specifically.

2.4 Secure multiparty computation
In secure multiparty computation (SMC), multiple parties, each

with their own input, can jointly compute a function without dis-

closing their inputs to one another. This can be thought of as each

party sending their input to a trusted third party, who then com-

putes the function and returns the output to each party. The first

solution to SMC was proposed by Yao in 1982 [20], who introduced

the concept of garbled circuits, a key element in secure computa-

tion. While initially limited to only two parties, the protocol was

later generalized to more parties by GMW[11], BGW [3] and BMR

[2]. In order to improve performance, several implementation op-

timizations, including point-and-permute [2], row reduction [17],

FreeXOR [15] and half gates [21], have been developed for the Yao’s

garbled circuit protocol.

2.5 Zero-knowledge proofs
Zero-knowledge proof (ZKP) systems were first introduced by Gold-

wasser, Micali, and Rachoff in 1985 [12], and later extended by Blum,

2

Feldman, and Micali to the non-interactive case in 1988 [6], under

the assumption that the parties shared a common random string

(CRS model). Since then, numerous protocols have been developed,

with more efficient versions being introduced. One particularly

important ZKP system from a practical perspective is the zero-

knowledge succinct non-interactive argument of knowledge (zk-

SNARK) [5]. Informally, zk-SNARK has the following properties:

(1) Completeness: The verifier always validates the prover’s

proof if both parties follow the protocol;

(2) Soundness (argument of knowledge): The prover can only

convince the verifier if the proof holds.;

(3) Zero-knowledge: The verifier receives no information other

than the validity of the statement being proved.

(4) Non-interactive: The prover sends a single message to the

verifier.

(5) Succinctness: The proof is very short compared to the input,

and it has a fast verification procedure.

More importantly for this work, zk-SNARKs can be extended

to commit-and-prove zkSNARKs (CP-SNARKs) [8], which allow a

prover to demonstrate knowledge of a certain relation with respect

to a committed witness. This is useful because it allows multiple

proofs to be composed based on the same committed input. In

other words, the CP property ensures that the prover, denoted as

P, uses the same input value to prove different statements to the

verifier, denoted as V. Without this commitment, a malicious prover

could potentially cheat the verifier. We will see in Section 3.2 that

a malicious P can cheat V in case he is not committed to using the

same input to prove two different statements.

We use the standard notation introduced by Camenisch-Stadler

[7] to describe the general goal of zero-knowledge proofs:

ZK − PoK𝑥 {𝑤 : L(𝑤, 𝑥)} ,

where the statement 𝑥 is public information, the witness𝑤 is pri-

vate information known only to the prover and the language L
represents the condition that the statement and witness must sat-

isfy. In cases where it is clear from context, the under-script 𝑥 may

be omitted from ZK − PoK𝑥 .

2.6 zkAttest
The zkAttest protocol, introduced in the paper [10], allows a prover

to prove the validity of an Elliptic Curve Digital Signature Algo-

rithm (ECDSA) signature to a verifier, without revealing the actual

public key used to create the signature. This is achieved through the

use of a special made

∑−protocol, rather than the more commonly

used SNARK-based approach.

One key feature of the zkAttest protocol is that the public key
is committed, which means that the prover can prove additional

properties about the key to the verifier. This allows for the creation

of more complex and robust zero-knowledge proofs (ZKPs) that

can be composed with other ZKPs. This is particularly useful in the

context of the PECO protocols, which are presented in Section 3

of the paper. We refer to this protocol as ΠzkAttest. In summary,

zkAttest allows for the following proof:

ZK − PoK {pk : com(pk) = 𝒄 ∧ Verify(pk, 𝜎,𝑚) = 1} ,

where 𝜎 is the signature received and𝑚 is the message signed.

Overall, the zkAttest protocol offers a powerful and flexible

tool for proving the validity of ECDSA signatures in a privacy-

preserving manner. It has the potential to be used in a variety of

applications where the ability to prove the authenticity of digital sig-

natures is important, such as in the realm of secure authentication

and authorization.

2.7 Proof of membership
Groth and Kohlweiss [13] recently proposed a

∑−protocol that
allows a prover to demonstrate to a verifier that, from a set of public

commitments, he knows the opening of one of the commitments

to the value zero. This protocol has various potential applications,

including demonstrating that a committed value is part of a publicly

known set of values. In particular, a prover can use this protocol

to prove to a verifier that his key belongs to a particular public set

of keys. In summary, the proof of membership protocol allows the

following proof:

ZK − PoK {pk : com(pk) = 𝒄 ∧ pk ∈ S} ,

where 𝒄 is the public committed value and S is the public set of

keys. We denote by Πpm the protocol that achieves such a proof.

One notable aspect of the Πpm protocol is its relatively low com-

munication complexity, which is logarithmic. In terms of computa-

tion, the protocol requires O(𝑁 log𝑁) and O(𝑁) multiplications

in Z𝑞 for the prover and verifier, which is more efficient compared

to other protocols such as the one proposed by Bayer and Groth in

[1], which requires𝑂 (𝑁 log
2 𝑁) multiplications for both the prover

and verifier.

The combination of the protocols Πpm and ΠzkAttest is a straight-

forward process due to the shared use of Pedersen commitments.

This allows both protocols to use the same commitment value 𝒄 and
prove statements about it independently. The composition of these

protocols was first introduced and implemented in the original

zkAttest article [10], and it serves as a crucial building block for

one of the privatization approaches of the DECO protocol.

3 PRIVATE DECO
The main goal of the Private DECO (PECO) functionality is to allow

a user to verify statements about certified data without revealing

its source. In this section, we will introduce two protocols that

achieve this goal while offering different levels of anonymity. The

𝑘−anonymous PECO (𝑘−PECO) obscures the identity of the server

with𝑘−anonymity, meaning it can be proven that the server belongs

to a set of 𝑘 servers without disclosing its specific identity. The

PECO protocol completely hides the identity of the server.

We will begin by defining the 𝑘−PECO and PECO functionalities.

Then, we present a prototype protocol that fails to realize PECO

but serves as a motivation for the development of both 𝑘−PECO
and PECO protocols.

3.1 Functionality definition
Like the DECO protocol, both 𝑘−PECO and PECO protocols involve

three parties: a prover (P), a verifier (V) and a website server (S).
These protocols allow P to prove some statement stmt to V about a

queryQuery sent to S, without fully disclosing S identity to V. The
DECO functionality is formally described in Figure 1. The 𝑘−PECO

3

functionality is denoted by F
kp-Oracle

and the PECO functionality

by F
p-Oracle

.

The difference between the two proposed functionalities (F
kp-Oracle

andF
p-Oracle

) and theDECO functionality (F
Oracle

) is thatF
kp-Oracle

and F
p-Oracle

functionalities do not send the identity S to V (Step 4

in Figure 1). Instead, we have that:

• F
kp-Oracle

sends (sid, stmt(R),S) where S is a set of identi-

ties with size 𝑘 ;

• F
p-Oracle

only sends (sid, stmt(R)).

3.2 Strawman protocol
The following strawman protocol serves as a starting point for the

development of two robust protocols that aim to protect the identity

of S from being revealed to V. To achieve this goal, we will need to

make modifications to DECO so that the identity of S is effectively

concealed from V.
In DECO, the identity of S is only revealed to V during the

key exchange phase (Step 1) of the three-party handshake (3P-

HS) protocol. In the original 3P-HS protocol, P first receives a

certificate, the server nounce 𝑟𝑆 , and a signed ephemeral DH public

key 𝑌𝑆 = 𝑠𝑆 · 𝐺 from S. After verifying the certificate and the

signature, P forwards them toV, who performs the same verification

process. The certificate contains the identity of S, and V uses the

server’s public key to verify the signature of 𝑌𝑆 . As a result, at this

point in the protocol, V knows the identity of S.
To conceal the identity of S from V, we propose a new private

3P-HS (P3P-HS) protocol which modifies the original 3P-HS pro-

tocol to allow V to verify the certificate and the signature of 𝑌𝑆
without accessing identity-sensitive information or knowing S’s
public key. This privacy-preserving attestation mechanism is essen-

tial for ensuring the privacy of P while still allowing V to verify the

authenticity of the certificate and the signature. When integrated

into DECO, this new P3P-HS protocol forms the basis for 𝑘−PECO
and PECO.

Recall that cert = (c0, c1, . . . , c𝑛) represents the certificate hierar-
chy, where c0 is the certificate of the server S and c𝑛 is the root cer-

tificate authority certificate. We denote by cert[1 :] = (c1, . . . , c𝑛)
a slice of cert without the first certificate c0. The public key of the

entity that signs the server’s certificate, c0, is denoted as pk
1
, and

the digital signature in c0 is denoted as DS. The public key of the

server S is denoted as pk
0
.

Strawman protocol. A strawman protocol for PECO is presented

in Figure 2 and is denoted by ΠP3P−HS
straw . As previously mentioned,

S’s identity is only revealed during the 3P-HS phase while attesting
both the certificate and 𝑌𝑆 ’s signature.

It’s important to note that in the certification chain, we only

need to conceal the message (m) in the first certificate, as the other

certificates do not reveal the identity of the server. Therefore, the

certificates up to the server’s certificate can be checked in the clear

without compromising the privacy of S. This is achieved in steps

4 and 5 of the ΠP3P−HS
straw protocol (Figure 2). During these steps, P

only sends the required material to V for verifying the validity of

the digital signature DS present in 𝑐0. This material includes the

certificates cert[1 :], the signature DS, and the hash value hm. V
can then use the public key pk

1
from c1 to verify the signature DS

ΠP3P−HS
straw protocol

Initialization:
(1) Same as DECO protocol. P samples nounce 𝑟𝑐 and

sends ClientHello(𝑟𝑐) to S to start a standard TLS

handshake.

Step 1: key exchange:
(2) The prover P receives the server’s nounce 𝑟𝑆 , the

server’s ephemeral DH public key 𝑌𝑆 , its signature

𝜎 and its certificate cert.
(3) P verifies that cert is a valid certificate and that 𝜎 is

a valid signature under 𝑌𝑆 and pk
0
, the public key

contained in c0.
(4) P sends to V the following tuple:

(𝑟𝑐 , 𝑟𝑆 , cert[1 :],DS, hm, 𝑌𝑆 , 𝜎),
where cert[1 :]) = (c1, . . . , c𝑛), DS is the digital

signature in the server’s certificate c0 and hm =

SHA256(m), for m to be the message of c0.
(5) V checks the validity of the chain cert[1 :] and the

digital signature DS against pk
1
and hm.

(6) To check the validity of the signed ephemeral DH

public key 𝑌𝑆 , V and P undergo a two-party secure

protocol that computes Verify(𝑌𝑆 , 𝜎, pk0) under se-
cret input pk

0
.

Step 2: key derivation:
(7) Same as DECO protocol.

P output: kEnc, kMAC

𝑃
.

V output: kMAC

𝑉
.

S output: kEnc.

Figure 2: The strawman protocol.

against the hash value hm. This masks the identity of the server

because the hash value hm does not reveal any information about

the messagem, which contains S’s identity. In step 6 of theΠP3P−HS
straw

protocol, we aim to hide the public key pk
0
of the server from V

while still allowing V to verify the signature of 𝑌𝑆 using pk
0
. This is

achieved with secure two-party computation. This helps to protect

the server’s unique public key from being revealed to V.
The privacy-preserving attestation phase of the ΠP3P−HS

straw pro-

tocol, which includes steps 4-6, allows for the verification of the

certificate and the signature of 𝑌𝑆 without compromising the pri-

vacy of S. The remaining steps of the protocol are identical to the

DECO protocol.

Security issue. The strawman ΠP3P−HS
straw protocol addresses the two

privacy issues of the DECO protocol by separately handling the

verification of the certificate and the signature of 𝑌𝑆 . However, this

separation leaves the protocol vulnerable to attacks by a malicious

prover P𝑓 . Specifically, P𝑓 can forge TLS communication with

4

c

ZK − PoK
{
pk

0
: Verify

(
pk

0
, 𝜎, 𝑌𝑆

)
= 1 ∧ com

(
pk

0

)
= c

}ΠzkA

ZK − PoK
{
pk

0
: pk

0
∈ S ∧ com

(
pk

0

)
= c

}Πpm

Figure 3: Flow of the attestation phase of 𝑘−PECO protocol.

the server S by generating a private key 𝑠
𝑓

𝑆
, forging a different

ephemeral DH public key

𝑌
𝑓

𝑆
= 𝑠

𝑓

𝑆
·𝐺,

and signing it with a random private key to generate 𝜎 𝑓
. The ma-

licious prover can then use the corresponding public key as his

private input in the secure two-party computation and convince V

that 𝜎 𝑓
is a valid signature of 𝑌

𝑓

𝑆
. With knowledge of 𝑠

𝑓

𝑆
, the prover

can then find the MAC key, kMAC
, and include the encryption

of arbitrary messages in the transcript, proving zero-knowledge

statements about the transcript.

The security issue of the strawman protocol stems from the fact

that V does not check that the public key of the valid certificate ver-

ifies the signature 𝜎 of 𝑌𝑆 . As a result, P𝑓 can exploit this weakness

to corrupt the protocol and forge TLS communication.

3.3 𝑘−PECO
Aswe have discussed, the strawmanΠP3P−HS

straw protocol is vulnerable

to attacks by a malicious prover P𝑓 , who can forge TLS communi-

cation with the server S by finding the MAC key. This weakness

occurs because the verifier V does not check that the public key of

the valid certificate verifies the signature 𝜎 of 𝑌𝑆 . To address this

issue, we need to ensure that the prover P is not able to sign the

ephemeral DH public key 𝑌𝑆 sent to the verifier V. In other words,

V must confirm that the public key of the valid certificate is the

one that verifies the signature 𝜎 of 𝑌𝑆 . This helps to prevent P from

finding the MAC key, kMAC
, before the proof generation phase of

the DECO protocol.

𝑘−PECO protocol. In this section, we introduce a new protocol

called 𝑘−anonymous private DECO (𝑘−PECO), which is based on

a private three-party handshake (P3P-HS) protocol referred to as

the ΠP3P−HS
𝑘−PECO protocol. The details of ΠP3P−HS

𝑘−PECO are presented in

Figure 4. 𝑘−PECO is achieved by replacing the DECO 3P-HS phase

by the P3P-HS phase presented. The other two phases are the same

as in DECO.

The private attestation mechanism of the ΠP3P−HS
𝑘−PECO protocol

prevents a malicious prover from exploiting the weakness discussed

previously. It requires the prover P to prove to the verifier V that

the signature of 𝑌𝑆 is verified by a public key belonging to a set of

accepted public keys. This enables P to conceal the identity of S
within a set of 𝑘 accepted servers, S, while also ensuring that P has

not forged 𝑌𝑆 . As a result, the privacy and security of the protocol

is enhanced.

The private attestation mechanism of the ΠP3P−HS
𝑘−PECO protocol

is composed of two building blocks: the zkAttest protocol [10]
and a proof of membership [13]. As previously mentioned, the

ΠP3P−HS
𝑘−PECO protocol

Initialization:
(1) Same as DECO protocol. P samples nounce 𝑟𝑐 and

sends ClientHello(𝑟𝑐) to S to start a standard TLS

handshake.

Step 1: key exchange:
(2) The prover P receives the server’s nounce 𝑟𝑆 , the

server’s ephemeral DH public key 𝑌𝑆 , its signature

𝜎 and its certificate cert.
(3) P verifies that cert is a valid certificate and that 𝜎

is a valid signature signed by pk
0
, the public key

contained in c0.
(4) P sends to V the following tuple:

(𝑟𝑐 , 𝑟𝑆 , 𝑌𝑆 , 𝜎) .
(5) P commits to pk

0
, c = com

(
pk

0

)
.

(6) V and P run the ΠzkA protocol on 𝜎 and 𝑌𝑆 , with

c. This proves that under the commitment c, the
public key pk

0
verifies the signature 𝜎 of 𝑌𝑆 .

(7) V and P run the Πpm protocol on c and public S.
This proves that under the commitment c, pk

0
is in

S, without disclosing pk
0
to V.

Step 2: key derivation:
(8) Same as DECO protocol.

P output: kEnc, kMAC

𝑃
.

V output: kMAC

𝑉
.

S output: kEnc.

Figure 4: The 𝑘−PECO protocol.

zkAttest protocol is a
∑−protocol that allows a verifier to verify

an ECDSA signature on a message using a committed public key,

without revealing the actual public key. We refer to this protocol

as ΠzkA and, formally, we have that it proves in zero-knowledge

the following statement:

ZK − PoK
{
pk

0
: Verify

(
pk

0
, 𝜎, 𝑌𝑆

)
= 1 ∧ com

(
pk

0

)
= c

}
.

The proof of membership protocol, on the other hand, allows a

prover to prove in zero-knowledge that a committed public key

belongs to a given set of public keys, S. We refer to this protocol

as Πpm and, formally, we have it proves in zero-knowledge the

5

c

ZK − PoK
{
pk

0
: Verify

(
pk

0
, 𝜎, 𝑌𝑆

)
= 1 ∧ com

(
pk

0

)
= c

}ΠzkA

ZK − PoK
{
pk

0
,𝑚 : pk

0
is a substring of m ∧ com

(
pk

0

)
= c

}Πcp

Figure 5: Flow of the attestation phase of PECO protocol.𝑚 is the message present in the certificate c0.

following statement:

ZK − PoK
{
pk

0
: pk

0
∈ S ∧ com

(
pk

0

)
= c

}
.

When these two protocols are composed on the same public key

commitment, the public key used to verify the signature of 𝑌𝑆 can

be confirmed to belong to the set of accepted keys. This prevents

the prover P from forging a signature 𝜎 𝑓
for a different DH key

𝑌
𝑓

𝑆
. The flow of the attestation phase of the ΠP3P−HS

𝑘−PECO protocol is

shown in Figure 3.

Security. The 𝑘−PECO protocol presented above addresses the

security flaw present in the strawman protocol. Specifically, the

prover P is unable to forge a signature 𝜎 𝑓
for a generated ephemeral

DH public key 𝑌
𝑓

𝑆
. Steps 5 and 6 of the ΠP3P−HS

𝑘−PECO protocol ensure

that the public key used to sign 𝑌𝑆 belongs to a set of accepted

public keys, thereby ensuring that P does not have access to the

corresponding secret key. As a result, the security of the protocol

is improved.

3.4 PECO
In the previous section, we presented the 𝑘−anonymous private

DECO protocol, ΠP3P−HS
𝑘−PECO, which allows the prover P to hide the

identity of the server S from the verifier V with 𝑘−anonymity.

While 𝑘−PECO provides a level of privacy by disclosing only a set

of possible identities for S, it also ensures that the data being proven
comes from a set of certified (or allowed) servers.

On the other hand, in this section we will present a protocol that

fully hides the identity of S from V, while still allowing P to prove

statements about TLS data. Each protocol has its own trade-offs

and each may be more suitable for different use-cases.

PECO protocol.We introduce a new protocol called private DECO

(PECO), which is designed to fully conceal the identity of the server

S from the verifier V. PECO is based on a private three-party hand-

shake (P3P-HS) protocol, referred to as the ΠP3P−HS
PECO

protocol, as

shown in Figure 6. To implement PECO, the 3P-HS phase of the

DECO protocol is replaced with the P3P-HS protocol presented

in this section, while the other two phases of DECO remain un-

changed. This allows PECO to provide stronger privacy protection

than the 𝑘−PECO protocol, as it does not disclose any possible

identities for S. Recall that, in this context, a certificate is a tuple

consisting of a message and a signature. The server’s certificate is

represented by c0 = (m,DS).
The private attestation mechanism of the ΠP3P−HS

PECO
protocol re-

lies on the interoperability of different zero-knowledge proofs

with committed values (also known as commit-and-open zero-

knowledge proofs or CP-ZKP [4]). This phase aims to verify that

ΠP3P−HS
PECO

protocol

Initialization:
(1) Same as DECO protocol. P samples nounce 𝑟𝑐 and

sends ClientHello(𝑟𝑐) to S to start a standard TLS

handshake.

Step 1: key exchange:
(2) The prover P receives the server’s nounce 𝑟𝑆 , the

server’s ephemeral DH public key 𝑌𝑆 , its signature

𝜎 and its certificate cert.
(3) P verifies that cert is a valid certificate and that 𝜎

is a valid signature signed by pk
0
, the public key

contained in c0.
(4) P sends to V the following tuple:

(𝑟𝑐 , 𝑟𝑆 , cert[1 :],DS, hm, 𝑌𝑆 , 𝜎),
where cert[1 :]) = (c1, . . . , c𝑛), DS is the digital

signature in the server’s certificate c0 and hm =

SHA256(m), for m to be the message of c0.
(5) P commits to pk

0
, c = com

(
pk

0

)
.

(6) V checks the validity of the chain cert[1 :].
(7) V and P run the ΠzkA protocol on 𝜎 and 𝑌𝑆 , with

a (Pedersen) commitment of the key pk
0
, c. This

proves that under the commitment, the public key

pk
0
verifies the signature 𝜎 of 𝑌𝑆 .

(8) V and P run the Πcp protocol on c, pk
1
, DS and hm.

This proves that under the commitment, pk
0
is a

substring of the message m that verifies against DS
and public key pk

1
, without disclosing pk

0
to V.

Step 2: key derivation:
(8) Same as DECO protocol.

P output: kEnc, kMAC

𝑃
.

V output: kMAC

𝑉
.

S output: kEnc.

Figure 6: The PECO protocol.

the committed public key pk
0
is included in the message m of the

server’s certificate c0 and that it verifies the signature 𝜎 of𝑌𝑆 . These

two checks are referred to as the certificate proof protocol (Πcp)

and the zero-knowledge attest protocol (ΠzkAttest [10]), respectively.

The Πcp protocol is presented below and the ΠzkAttest protocol is
6

ΠzkA Πpm DECO 3P-HS Total 𝑘−PECO 3P-HS TLS timeout

(s) (s) WAN Online (s) estimation (s) (s)

0.5 10 2.9 ∼ 13.4 ∼ 10 − 15

Table 1: Total estimation time for 𝑘−PECO 3P-HS protocol and comparison with standard TLS timeout.

ΠzkA Πcp DECO 3P-HS Total PECO 3P-HS TLS timeout

(s) (s) WAN Online (s) estimation (s) (s)

0.5 14.5 2.9 ∼ 18 ∼ 10 − 15

Table 2: Total estimation time for PECO 3P-HS protocol and comparison with standard TLS timeout. The estimation time for
Πcp considers the LegoAC1 protocol for the SHA256 implementation in the LegoSNARK framework [8]. We only included the
proving and verification time as the key generation step is independent of the inputs.

the same as in the 𝑘−PECO protocol. The flow of the attestation

phase of the PECO protocol is shown in Figure 5.

Certificate proof protocol. The Πcp protocol is realized with

a CP-ZKP system (LegoSNARK [8] or LegoGroth16 [16]). Since

both LegoSNARK or LegoGroth16 use Pedersen commitments, it is

feasible to compose any of them with the ΠzkAttest protocol [10] as

it also uses Pedersen commitments for the public key. Formally, the

Πcp protocol proves in zero-knowledge the following statement:

ZK − PoK
{
pk

0
,𝑚 : pk

0
is a substring of m ∧ com

(
pk

0

)
= c

}
.

The Πcp protocol goes as follows. The verifier uses the public

key pk
1
of the certificate c1 to open the signature in c0, DS, i.e. V

computes ℎ = Decpk
0

(DS). Then, P proves in zero-knowledge to V
that ℎ = SHA256(m) where pk

0
from com

(
pk

0

)
is a substring of

m.

Security. Similarly to the 𝑘−PECO protocol presented above, the

PECO 3P-HS avoids the security flaw of the strawman protocol.

Again, the prover P is not able to forge a signature 𝜎 𝑓
of a generated

ephemeral DH public key 𝑌
𝑓

𝑆
. Steps 6 and 7 ensure that the public

key used to sign 𝑌𝑆 is the same public key in the server’s certificate

c0, guaranteeing that P does not know its corresponding secret key.

4 IMPLEMENTATION
In this section, we present the implementation details and tools used

for both the 𝑘−PECO and PECO protocols. Both protocols are based

on the DECO protocol but feature a privacy-preserving version of

the 3P-HS protocol called the P3P-HS protocol. We will compare the

P3P-HS approaches used in both protocols to the standard 3P-HS

protocol proposed by DECO. For reference, in the WAN setting, the

online time for the 3P-HS protocol using TLS 1.2 is approximately

2.9 seconds.

4.1 𝑘−PECO
The𝑘−PECO protocol consists of the DECO protocol with a privacy-

preserving attestation mechanism in the 3P-HS protocol, referred

to as the ΠP3P−HS
𝑘−PECO protocol. This protocol is built using the proof

of membership and zkAttest protocols, which are implemented in

TypeScript. The code for these protocols can be accessed at this

repository [10].

The performance of the zkAttest protocol is as follows: the time

for verification is 0.5 seconds, and it takes approximately 10 seconds

to prove membership on a list of several thousand with no signifi-

cant slowdown. These values, along with the time for the DECO

3P-HS phase (see [22], Table 1), can be used to estimate the total

time for the 𝑘−PECO 3P-HS protocol. It is worth noting that this

state-of-the-art implementation may cause TLS handshake errors

with the server S if it exceeds the standard TLS timeout. These

details are summarized in Table 1.

4.2 PECO
Similarly to 𝑘−PECO, the PECO protocol consists of the DECO pro-

tocol with a privacy-preserving attestation mechanism in the 3P-HS

protocol, referred to as the ΠP3P−HS
PECO

protocol. This protocol is im-

plemented using the certificate proof (Πcp) and zkAttest protocols.
The zkAttest protocol is implemented in the zkp-ecdsa repository

[10]. The certificate proof protocol can be implemented using either

the LegoSNARK implementation available at this repository [8], or

the LegoGroth16 (a LegoSNARK version of the Groth16 protocol)

available at this repository [16]. A fork of the latter repository with

Circom support for LegoGroth16 is also available at this repository

[9].

The LegoSNARK protocol reports a proving time of 0.9 seconds

and a verification time of 1.8 milliseconds for SHA256 with 512-bit

inputs. Assuming that an X.509 certificate has a size of approxi-

mately 1 Kbyte, it is necessary to run SHA256 with 512-bit inputs

approximately 16 times to prove that the committed key pk
0
is part

of the pre-image of a given digest. This results in a total time of

approximately 14.5 seconds to generate and verify a single proof.

These details are summarized in Table 2. It is worth noting that

this state-of-the-art implementation is slightly above the limit of

the standard TLS timeout, which may cause TLS handshake errors

with the server S. Therefore, some optimization may be necessary

to avoid such errors.

7

https://github.com/cloudflare/zkp-ecdsa
https://github.com/imdea-software/legosnark
https://github.com/kobigurk/legogro16
https://github.com/lovesh/legogro16/tree/comm-wit/src/circom

5 CONCLUSION
The DECentralized Database (DECO) protocol is a way to verify the

provenance of data from Transport Layer Security (TLS) connec-

tions in zero-knowledge. We have developed an extension to DECO

called PECO, which includes two new private three-party hand-

shake protocols (P3P-HS) to enhance privacy features. PECO allows

web users to prove to a verifier properties of data from TLS connec-

tions without disclosing the identity of the servers. It offers two

options: one that provides 𝑘−anonymity for the server’s identity

(𝑘-PECO), and another that completely masks the server’s identity

from the verifier (PECO). PECO is based on three main protocols:

commit-and-proof zero-knowledge proofs (CP-ZKP), verification

of Elliptic Curve Digital Signature Algorithm (ECDSA) signatures

under a committed public key without revealing the key (zkAttest),

and a proof of membership to verify that a committed key belongs

to a set of keys. The main contributions of this paper are the design

of these protocols and an evaluation of their performance using

state-of-the-art implementation tools.

The authors suggest an implementation of both the 𝑘-PECO and

PECO protocols using the DECO protocol and the corresponding

P3P-HS protocols. The 𝑘-PECO protocol uses the proof of mem-

bership and zkAttest protocols, while the PECO protocol uses the

certificate proof and zkAttest protocols. The zkAttest protocol is

implemented in the zkp-ecdsa [10] repository, and the certificate

proof protocol can be implemented using either the LegoSNARK

or LegoGroth16 protocol. The 𝑘-PECO protocol has an estimated

online time of approximately 13.4 seconds, while the PECO protocol

has an estimated online time of slightly above the standard TLS

timeout of 10 − 15 seconds. These times may cause TLS handshake

errors with the server, so some optimization may be necessary to

avoid such errors.

ACKNOWLEDGMENTS
This work was funded by Fundação para a Ciência e a Tecnologia

(FCT) through National Funds under Award SFRH/BD/144806/2019,

Award UIDB/50008/2020, and Award UIDP/50008/2020; in part by

the Regional Operational Program of Lisbon; by FCT, I.P.

REFERENCES
[1] Stephanie Bayer and Jens Groth. 2013. Zero-knowledge argument for poly-

nomial evaluation with application to blacklists. In Advances in Cryptology –
EUROCRYPT 2013. Springer Berlin Heidelberg, 646–663. doi: 10.1007/978-3-64

2-38348-9_38.

[2] D. Beaver, S. Micali, and P. Rogaway. 1990. The round complexity of secure pro-

tocols. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory
of Computing (STOC ’90). Association for Computing Machinery, Baltimore,

Maryland, USA, 503–513. isbn: 0897913612. doi: 10.1145/100216.100287.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

theorems for non-cryptographic fault-tolerant distributed computation. In

Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC ’88). Association for Computing Machinery, Chicago, Illinois, USA,

1–10. isbn: 0897912640. doi: 10.1145/62212.62213.

[4] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Jihye Kim, Jiwon Lee,

HyunokOh, andAnaïs Querol. 2021. Proposal: commit-and-prove zero-knowledge

proof systems and extensions. In.

[5] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From

extractable collision resistance to succinct non-interactive arguments of knowl-

edge, and back again. In Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference (ITCS ’12). Association for Computing Machinery,

Cambridge, Massachusetts, 326–349. isbn: 9781450311151. doi: 10.1145/209023

6.2090263.

[6] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-interactive zero-

knowledge and its applications. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing (STOC ’88). Association for Computing

Machinery, Chicago, Illinois, USA, 103–112. isbn: 0897912640. doi: 10.1145/62

212.62222.

[7] Jan Camenisch and Markus Stadler. 1997. Efficient group signature schemes

for large groups. In Advances in Cryptology — CRYPTO ’97. Springer Berlin
Heidelberg, 410–424. doi: 10.1007/bfb0052252.

[8] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, (Nov. 2019). doi: 10.1145/3319535.3339820.

[9] Dock. 2022. Circom language integration: anonymous credentials protocol

update. Retrieved Dec. 26, 2022 from https://blog.dock.io/circom-language-int

egration/.

[10] Armando Faz-Hernández, Watson Ladd, and Deepak Maram. 2021. Zkattest:

ring and group signatures for existing ecdsa keys. In Selected Areas in Cryp-
tography. Riham AlTawy and Andreas Hülsing, (Eds.) Available at https://g

ithub.com/cloudflare/zkp-ecdsa. v0.2.5 Accessed Nov 2022. Springer Inter-

national Publishing, Cham, (Oct. 2021), 68–83. isbn: 978-3-030-99277-4. doi:

10.1007/978-3-030-99277-4_4.

[11] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to play ANY mental

game. In Proceedings of the nineteenth annual ACM conference on Theory of
computing - STOC ’87. ACM Press. doi: 10.1145/28395.28420.

[12] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The knowledge

complexity of interactive proof systems. SIAM Journal on Computing, 18, 1,
(Feb. 1989), 186–208. doi: 10.1137/0218012.

[13] Jens Groth and Markulf Kohlweiss. 2015. One-out-of-many proofs: or how to

leak a secret and spend a coin. In Advances in Cryptology - EUROCRYPT 2015.
Springer Berlin Heidelberg, 253–280. doi: 10.1007/978-3-662-46803-6_9.

[14] Michael Kan. 2020. Cloudflare dumps google’s reCAPTCHA over privacy con-

cerns, costs. Retrieved Dec. 21, 2022 from https://www.pcmag.com/news/clou

dflare-dumps-googles-recaptcha-over-privacy-concerns-costs.

[15] Vladimir Kolesnikov. 2005. Gate evaluation secret sharing and secure one-

round two-party computation. In Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 136–155. doi: 10.1007/11593447_8.

[16] Pratyush Mishra, Kobi Gurkan, and Pascal Berrang. 2021. Legogro16. https://gi

thub.com/kobigurk/legogro16. (2021).

[17] Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Privacy preserving auc-

tions and mechanism design. In Proceedings of the 1st ACM Conference on
Electronic Commerce (EC ’99). Association for Computing Machinery, Denver,

Colorado, USA, 129–139. isbn: 1581131763. doi: 10.1145/336992.337028.

[18] Torben Pryds Pedersen. [n. d.] Non-interactive and information-theoretic se-

cure verifiable secret sharing. InAdvances in Cryptology—CRYPTO ’91. Springer
Berlin Heidelberg, 129–140. doi: 10.1007/3-540-46766-1_9.

[19] Katharine Schwab. 2019. Google’s new reCAPTCHA has a dark side. Retrieved

Dec. 21, 2022 from https://www.fastcompany.com/90369697/googles-new-rec

aptcha-has-a-dark-side.

[20] Andrew C. Yao. 1982. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science (SFCS ’82). IEEE
Computer Society, USA, 160–164.

[21] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two halves make a whole.

In Advances in Cryptology - EUROCRYPT 2015. Springer Berlin Heidelberg,

220–250. doi: 10.1007/978-3-662-46803-6_8.

[22] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.

2020. DECO: liberating web data using decentralized oracles for TLS. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. ACM, (Oct. 2020). doi: 10.1145/3372297.3417239.

8

https://github.com/cloudflare/zkp-ecdsa
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/bfb0052252
https://doi.org/10.1145/3319535.3339820
https://blog.dock.io/circom-language-integration/
https://blog.dock.io/circom-language-integration/
https://github.com/cloudflare/zkp-ecdsa
https://github.com/cloudflare/zkp-ecdsa
https://doi.org/10.1007/978-3-030-99277-4_4
https://doi.org/10.1145/28395.28420
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-662-46803-6_9
https://www.pcmag.com/news/cloudflare-dumps-googles-recaptcha-over-privacy-concerns-costs
https://www.pcmag.com/news/cloudflare-dumps-googles-recaptcha-over-privacy-concerns-costs
https://doi.org/10.1007/11593447_8
https://github.com/kobigurk/legogro16
https://github.com/kobigurk/legogro16
https://doi.org/10.1145/336992.337028
https://doi.org/10.1007/3-540-46766-1_9
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1145/3372297.3417239

	Abstract
	1 Introduction
	2 Building blocks
	2.1 Preliminaries
	2.2 X.509 certificates
	2.3 DECO
	2.4 Secure multiparty computation
	2.5 Zero-knowledge proofs
	2.6 zkAttest
	2.7 Proof of membership

	3 Private DECO
	3.1 Functionality definition
	3.2 Strawman protocol
	3.3 k-PECO
	3.4 PECO

	4 Implementation
	4.1 k-PECO
	4.2 PECO

	5 Conclusion
	Acknowledgments

