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Abstract. We distill a simple information-theoretic model for random-
ness extraction motivated by the task of generating publicly verifiable
randomness in blockchain settings and which is closely related to You-
Only-Speak-Once (YOSO) protocols (CRYPTO 2021). With the goal of
avoiding denial-of-service attacks, parties speak only once and in se-
quence by broadcasting a public value and forwarding secret values to
future parties. Additionally, an unbounded adversary can corrupt any
chosen subset of at most t parties. In contrast, existing YOSO proto-
cols only handle random corruptions. As a notable example, considering
worst-case corruptions allows us to reduce trust in the role assignment
mechanism, which is assumed to be perfectly random in YOSO.

We study the maximum corruption threshold t which allows for uncon-
ditional randomness extraction in our model:

– With respect to feasibility, we give protocols for t corruptions and
n = 6t + 1 or n = 5t parties depending on whether the adversary
learns secret values forwarded to corrupted parties immediately once
they are sent or only once the corrupted party is executed, respec-
tively. Both settings are motivated by practical implementations of
secret value forwarding. To design such protocols, we go beyond the
committee-based approach that is sufficient for random corruptions
in YOSO but turns out to be sub-optimal for chosen corruptions.

– To complement our protocols, we show that low-error randomness
extraction is impossible with corruption threshold t and n ≤ 4t in
the stronger adversarial network model.

Update (May 29, 2024): A previous version of this work claimed an impos-
sibility result for n ≤ 4t parties in what we call the “execution-leaks” model.
However, the presented proof only works in the stronger “sending-leaks” model,
and it is not clear whether this claim for the execution-leaks model is true. The
paper has been updated accordingly.

? The author ordering is randomized. A certificate of the randomization procedure can
be found here.

https://www.aeaweb.org/journals/policies/random-author-order/search?RandomAuthorsSearch%5Bsearch%5D=EeAiKcnZwZ5o
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1 Introduction

Publicly verifiable randomness is a fundamental resource for many tasks, in-
cluding contract signing, electronic voting, and anonymous communication and
browsing [7,10]. However, such sources of randomness are hard to come by in
the wild, and so it is imperative to develop protocols which allow multiple mutu-
ally distrusting parties, each with access to their own source of randomness, to
agree on a public string of nearly unbiased random bits even under adversarial
behavior. We propose and study a simple information theoretic model for ex-
tracting randomness which is inspired by the problem of generating publicly ver-
ifiable randomness in blockchain settings, sometimes also known as blockchain
randomness beacons. Our model is in particular motivated by the notions of
player-replacable protocols as introduced by Micali [16] and You-Only-Speak-
Once (YOSO) protocols as introduced by Gentry, Halevi, Krawczyk, Magri,
Nielsen, Rabin, and Yakoubov [11]. In these classes of protocols, each party
only sends messages once, and therefore need not have a mutable secret state.
This gives high resilience to Denial-of-Service (DoS) attacks as often desirable
in blockchain settings.
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Fig. 1. Illustration of the model. Each party sends a public message and secret messages
to future parties. The extracted value r depends deterministically on the public values.

More precisely, we consider a multiparty computation model where n parties
P1, . . . , Pn are activated sequentially, with each party having access to an internal
source of randomness. To begin with, P1 is executed and it outputs a public value
x1 which we think of as being shown to all parties, including the adversary.
Moreover, P1 also gets to send secret values s1,j to each future party Pj . When
a future Pj is executed it receives all previous public values xi for i < j along
with all secret values intended for Pj . We can think of Pi as being described by
a distribution Di defining the conditional probabilities

PrDi [xi, si,i+1, . . . , si,n |x1, . . . xi−1, s1,i, . . . , si−1,i] .
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After all parties speak, the goal is to deterministically extract nearly unbiased
public randomness from the public values (x1, . . . , xn). The model is illustrated
in Fig. 1. We interpret these parties P1, . . . , Pn as ephemeral roles. In a practical
setting there would be a ground set of N parties, usually with N � n, and
executing each of the n roles entails sampling a party in some manner from
the ground set to follow the instructions. This is discussed in more detail in
Section 1.1.

We study threshold static worst-case corruptions: The adversary is allowed
to corrupt an arbitrary unknown subset of up to t parties before the start of
the protocol, where we call t the corruption threshold. The adversary sees all
public outputs when they are produced. Additionally, it also sees all secret in-
puts for corrupted parties and can determine their outputs. I.e., when a cor-
rupted party Pi is about to be executed, it is the adversary who receives inputs
(x1, . . . xi−1, s1,i, . . . , si−1,i) and determines the outputs (xi, si,i+1, . . . , si,n). Note
that the adversary also has access to information it gathered in the past. For
example, it also has access to the secret values sent to past corrupted parties Pi′

with i′ < i.
Information may be revealed to the adversary in different ways. We consider

two scenarios, which we term the sending-leaks and execution-leaks settings.
In the sending-leaks setting, if party Pi is honest and sends the secret value
si,j to a corrupted party Pj during its execution, then the adversary learns
si,j immediately. In contrast, in the execution-leaks setting the secret value si,j
would only be revealed to the adversary later when the corrupted party Pj is
executed. The motivation behind these settings is related to how the forwarding
of the secret values is implemented in practice. We discuss this in more detail in
Section 1.1.

We consider unconditional security only. More precisely, after the protocol
ends and some randomness r has been extracted from (x1, . . . , xn), we require
that r is statistically close to uniform over {0, 1} given the view of the adversary.
Note that this view includes all secret messages sent or received by corrupted
parties. Furthermore, we may generate more random bits by running the protocol
several times in parallel. The following general question arises naturally:

What is the maximum corruption threshold that allows unconditional
randomness extraction in each of the corruption models?

A Naive First Approach via Standard Multiparty Computation. Our
setting is closely related to previous multiparty computation (MPC) models.
In particular, it can be seen as a special case of information theoretic MPC
of a random string in the models of [8,2]. There is, however, one significant
difference: In standard MPC a party can have identity over time, while in our
case each party speaks only once. This is also related to the notion of proactive
security [13] where refreshment is used to decouple future states of a party from
previous states.

Naively, a standard r-round MPC protocol tolerating that t out of m par-
ties can be corrupted immediately yields a protocol in our model where t out
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of n = rm parties P1,1, . . . , P1,m, . . . , Pr,1, . . . , Pr,m can be corrupted. This is
accomplished by implementing the behavior of the i-th party over the r rounds
using r distinct parties P1,m, . . . , Pr,m in our model. Then, we use the secret val-
ues to pass the current state of Pi,ρ to Pi,ρ+1, and consider party Pi corrupted
if at least one of the parties Pi,1, . . . , Pi,r is corrupted.

In particular, one can generate unbiased randomness using this approach by
having all parties run a verifiable secret sharing protocol of a random value,
and then reconstruct all values and XOR them. Using, for instance, the protocol
from [9] with 2-round sharing and 1-round reconstruction procedures tolerating
t < m/3 corruptions, we immediately obtain a randomness extraction protocol
in our model tolerating t < n/9 corruptions. However, this is not very satisfac-
tory. In fact, this approach implies a reduction by a factor of r in the tolerated
corruption threshold. This is inevitable because, in our model, the adversary
can concentrate all t corruptions wherever it wishes (and this also applies to
proactively secure protocols). Therefore, if the original protocol has some no-
tion of “rounds”, then the adversary can concentrate all corruptions in a single
round. We find it interesting to understand how the ability to “concentrate”
corruptions affects the feasibility of MPC. This is in particular interesting in
player-replaceable and YOSO style protocols where there is no identity.

The naive approach above does show that we can withstand some constant
threshold of corruptions. On the other hand, it is easy to see that we cannot
tolerate t ≥ n/2 corruptions. With this in mind along with the loss incurred
by translating a round-based protocol to our setting, we are interested in the
following concrete question:

Can we improve the lower and upper bounds on the exact maximum
corruption threshold that allows for public randomness generation in our
model?

1.1 The Motivation behind our Setting

Our model is very closely related to the You Only Speak Once (YOSO) model
proposed in [11], which was in turn inspired by the model from [3] and is related
to the fluid MPC model in [9]. The YOSO model is also related to the notion
of a player-replacable protocol as introduced by Micali [16]. The main differ-
ence between player-replaceable and YOSO protocols is that player-replaceable
protocols only allow public messages and YOSO protocols allow secret messages.

The YOSO model considers information theoretic MPC where each party
speaks only once and has secure channels to future parties. Therefore, our model
is a specialisation of the YOSO model to public randomness extraction. The
YOSO model is inspired by the problem of doing MPC in an open blockchain set-
ting. In such a setting, once someone sends a message, their IP address becomes
known and they are subject to DoS attacks. To mitigate this issue, blockchain
protocols are often designed such that each party speaks only once and does not
have to keep state.
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For instance, in Bitcoin the next block is produced by a random miner, and
so the adversary cannot target a DoS attack on the next party to act. However,
there are two additional issues to keep in mind when performing MPC in this
model: First, how does a party send a secret value to an unknown future speaker?
Second, how impartial is the selection of speakers?

The Motivation behind the Sending-Leaks and Execution-Leaks Mod-
els. In [3] and [12] so called role assignment protocols are proposed to solve the
first problem above. In these protocols an ephemeral public key pk for a future
role R is made public and at the same time some random party P learns the
secret key sk. A role is simply the description of some future part of the proto-
col, such as “execute the code of party P42”. In order to send a secret message
s to P , one can then simply broadcast an encryption of s. In the context of a
blockchain, the broadcast could for instance be done by posting the ciphertext
on the blockchain along with the public value. When it is P ’s turn to execute the
role R in the protocol, it will decrypt the incoming values, compute its outgoing
values, and then post them all on the blockchain in one flow. In particular, P
speaks only once and does not have to reveal its identity until it sends its values.

A different approach to role assignment is given in [5]. Values to role R are
encrypted to identity R in a threshold identity-based encryption scheme, and
a rolling committee holds a secret sharing of the master secret key. Once R is
about to be executed, the secret key for role R is reconstructed to a random
hidden party P which then executes the role.

A role assignment protocol can also be used to implement our model on
top of a blockchain to yield public randomness extraction in the YOSO model.
Note that the role assignment protocols in [3,12] corresponds roughly to what
we call the sending-leaks model. If P is corrupted, then it learns sk once the
ephemeral keys pk has been made public. So the adversary learns the secret
values forwarded to P as soon as they are sent. The role assignment protocol
in [5] corresponds roughly to the execution-leaks model, as P does not learn the
identity secret key until execution time. Therefore, both of our models can be
motivated by practical settings.

Another important motivation for our model is that it is a clean setting for
studying public randomness extraction techniques. This model is simple and
detached from its blockchain motivation, and can therefore hopefully draw in
researchers from other areas which are not necessarily interested in the nitty-
gritty practical details of blockchains. At the same time, it is close enough to its
motivating setting that new insights in the model hopefully can lead to better
protocols for practical generation of randomness on public blockchains.

Worst-Case vs. Random Corruptions. The YOSO paper [11] studies mainly
random corruptions (i.e., each party is independently corrupted with some con-
stant probability). The motivation behind this is that, since roles R are assumed
to be mapped uniformly to parties P by some perfectly random role assignment
mechanism and the adversary in practice can do chosen corruptions of parties,
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then the adversary is de facto restricted to random corruptions of roles. As a
result, one can morally restrict attention to protocols secure against random
corruptions only, and then compile them to practice using role assignment.

However, there are natural motivations for considering worst-case corruptions
in this model, as opposed to random corruptions:

1. Reducing trust in the role assignment mechanism: The first main rea-
son for considering worst-case corruptions is that the role assignment mech-
anism might not be perfectly random, in which case the YOSO protocols for
random corruptions are no longer secure. Assuming worst-case corruptions
in our protocol design allows us to withstand bias on the part of the role
assignment mechanism without losing security, and so the required level of
trust in this mechanism is greatly reduced. Furthermore, studying chosen
corruptions may also inspire more efficient techniques for the intermediate
case where role assignment is neither perfect nor extremely biased.
An example of a role assignment which is highly biased is the fluid MPC
model in [9]. Here, parties may come and go at will. One motivating setting
is parties lending their machines to MPC when they are idle. In this case,
honest parties might be seen as registering at random times, but corrupted
parties can strategically choose when they join the computation. This is
closer to chosen corruptions than random corruptions.
Another example of imperfect random role assignment is the A Practically
Appealing Weak Batch-RPIR scheme in [12]. Here, parties are put into small
buckets using a known distribution. Then, the next random role is assigned
by chosen a random unknown party from the next bucket. This gives a lot
of information on which parties could execute which roles, but it is good
enough for electing large committees with enough honest parties, which is
all that is needed for committee based protocols.

2. Randomness for small groups: Another case where it makes sense to
consider chosen corruption is when generating randomness for small groups.
For instance, this happens naturally in the player simulation technique in
secure MPC [14], where a constant sized group carries out a given task.
If enough group members are honest, we want the task to be carried out
securely. On the other hand, if too many are corrupted we simply count the
group as fully corrupted. Overall, security holds if enough groups are honest.
In such a setting, random corruptions will have all possible subsets of the
group be corrupted with constant probability, and so we might therefore
as well study chosen corruptions. We would be interested in under which
corruptions the group can generate good joint randomness.

3. Moving away from established round-based techniques: Considering
only random corruptions as in YOSO [11] ensures that one can stay mostly
within established methodologies for round-based MPC, which we have seen
do not work well in our setting with worst-case corruptions. Indeed, the
following design pattern works for random corruptions: If there is an r-
round protocol with committees of size m, then pick m large enough so that
if there are less than (1/2−δ)m corruptions, for a small constant δ > 0, then
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also among any m parties in a given committee the frequency of corruption
will be below half. Following this, design a protocol tolerating less than half
corruptions in each committee. If we assign committees to rounds, this leads
to a model with rounds where one can assume honest majority during all
rounds. This makes it easier to design protocols as one does not have to deal
with the concentration problem discussed above.
In [11] there is a YOSO protocol for public randomness generation for ran-
dom corruptions with threshold t = (1/2− δ)n for any constant δ > 0. This
protocol is obtained by first giving an MPC protocol for this setting and
then noting that randomness generation is a special case of MPC. The MPC
protocol uses a number of committees linear in the security parameter and
all committees need to have honest majority. This means that if the protocol
is cast in our model with chosen corruptions, then only a vanishing fraction
of corruptions can be tolerated since the adversary could concentrate corrup-
tions on a single committee. This gives a worse bound than the previously
discussed naive approach via verifiable secret sharing using [9].
With the above in mind, another main motivation for studying chosen cor-
ruptions, as opposed to random corruptions, is that it forces us to develop
new techniques beyond the committee-based methodology in order to min-
imize the total number of parties needed for a given task. We hope that
studying our proposed model with chosen corruptions can shed light on the
following question:

Can we develop YOSO extraction/MPC techniques qualitatively dif-
ferent from the ones developed for the committee-based methodology?

As we shall discuss in more detail in Section 1.4, we also take the committee-
based approach as a starting point for our protocols, but then make addi-
tional improvements beyond the naive approach by exploiting the structure
of the YOSO model.

1.2 Other Related Work

Some papers have also studied the generation of unbiased randomness from
a blockchain based on computational assumptions – see, for instance, ALBA-
TROSS [7] and the citations therein. This protocol again assumes rounds with
at least honest majority in each round, and therefore do not have to deal with
the concentration problem.

Other works have considered related models where parties publish public
values in sequence but future secret values are not permitted, such as Santha-
Vazirani sources [17], Bitcoin beacons [4], and SHELA sources [1]. Crucially, in
such versions it is not possible to deterministically extract uniformly random
bits.

The execution-leaks model is related to the standard model in secure MPC
where the adversary is monolithic, i.e., when a corrupted party Pi is about to
be executed, it is the adversary who receives input (x1, . . . xi−1, s1,i, . . . , si−1,i)
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and determines the outputs (xi, si,i+1, . . . , si,n), and the adversary can see what
is sent to corrupted parties as soon as the messages are sent. This is opposed to
a model where corrupted party is corrupted independently and only can com-
municate within the model. In such a model a future corrupted party could not
send information back to a previous corrupted party as there is no channel for
this. Such a model is related to the notion of a local adversary, as introduced in
[6], though there are technical differences.

1.3 Our Contributions

We obtain both feasibility and impossibility results for randomness extraction
in our models. In the context of feasibility, we improve on the naive VSS- and
committee-based approach described above, leading to the following results in
the sending-leaks and execution-leaks adversarial models. For formal definitions
of the models we consider, we refer the reader to Section 2.

Theorem 1 (Feasibility in the sending-leaks model). There is a zero-
error n-party randomness extraction protocol secure against any sending-leaks
adversary with corruption threshold t whenever n ≥ 6t+ 1.

We can improve the theorem above in the execution-leaks model.

Theorem 2 (Feasibility in the execution-leaks model). There is a zero-
error n-party randomness extraction protocol secure against any execution-leaks
adversary with corruption threshold t whenever n ≥ 5t.

To complement our feasibility results, we also prove an upper bound on the
maximum corruption threshold that allows for low-error randomness extraction
in the sending-leaks model.

Theorem 3 (Impossibility result). There is no randomness extraction pro-
tocol secure against t corruptions with n ≤ 4t parties and bias less than 1/100
in the sending-leaks model.

It follows that n = 5 parties are both sufficient and necessary for low-error
randomness extraction with t = 1 worst-case corruptions in both models, since
there is no distinction between these models in this case.

Extracting Multiple Random Bits. Observe that in order to extract a λ-bit
string of unbiased random bits, we can just run our protocols λ times in parallel.
This incurs an extra factor of λ in the total communication complexity. We leave
it as an interesting open problem to improve on this approach.

Communication complexity and scalability. Our protocols incur commu-
nication complexity growing exponentially with n, the number of roles to be
executed. Moreover, it is also the case that any protocol in our setting requires
time and communication complexity Ω(n). This raises the question of whether
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protocols in our setting can scale as the number of users increases. We believe
this to be the case since the number of roles n is detached from the number of
users N in the ground set, and it typically holds that N � n. Nevertheless, im-
proving the concrete efficiency of protocols is very much relevant and we leave it
as an interesting future direction to improve on the communication complexity
of our protocols.

1.4 Technical Overview

Protocols for Randomness Extraction. We begin by discussing the ap-
proach behind the feasibility results in Theorems 1 and 2. Our starting point is
an elegant MPC protocol due to Maurer [15] which we modify by taking advan-
tage of the YOSO structure of our models. We present here a sub-optimal version
of the protocol for t corruptions and n = 6t+ 2 parties, and then briefly discuss
how we optimize it in the different settings. Divide the set of parties P1, . . . , Pn
into two consecutive blocks of size 3t + 1: The verifiers P1, . . . , P3t+1 and the
publishers P ′1 = P3t+2, . . . , P

′
3t+1 = P6t+2. Intuitively, the protocol proceeds as

follows:

1. Sampling and verification phases: Do as follows for each set S ⊆ [3t+1]
of size 2t+ 1 in parallel:
(a) Party Pi=minS samples a value xS uniformly at random from {0, 1} and

sends it to Pj for all j ∈ S \ {i}.
(b) Each such party Pj then forwards the value it received from Pi to all

parties Pj′ with j′ > j and j′ ∈ S.
(c) If a party in this process notices an inconsistency between received secret

values, it publicly complains about the set S. Else, it sends the consistent
value to all publishers P ′j′′ with j′′ ∈ S.

2. Publishing phase: For every set S as above which did not receive a com-
plaint, each publisher P ′j′′ with j′′ ∈ S publishes the majority of the values
it received from verifiers Pj with j ∈ S.

We show that we can obtain an unbiased random bit from this protocol simply
by XORing the public values output by all publishers for sets S which did not
receive a complaint, even in the stronger sending-leaks setting. The reasons for
this are that (i) there exists a set S? such that the parties (Pi, P

′
i )i∈S? are all

honest, since 3t + 1 − |S?| = t, and (ii) there is a strict honest majority in all
tuples (Pi)i∈S and (P ′i )i∈S for all sets S, since |S| = 2t + 1. Roughly speaking,
these two properties enforce that an adversary must commit to the final values
associated to all sets S before the publishing phase, and that at this point the
adversary has no knowledge of the value associated to S?. This ensures that the
final XOR is unbiased. In the sending-leaks setting where the adversary learns
the secret values sent to corrupted parties as soon as they are sent, we can
optimize the protocol above and reduce the number of parties from 6t + 2 to
6t+ 1, leading to Theorem 1.

In the execution-leaks setting where the adversary only learns the secret
values to a corrupted party when it is executed later in the protocol, we optimize
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the protocol above first by observing that the publishing phase is wasteful. In
fact, we can reduce the number of publishers from 3t+ 1 to 2t+ 1 and have each
verifier send its value to all publishers instead. Exploiting the structure of the
execution-leaks setting, it follows that the properties detailed above still hold and
so the final XOR is still unbiased. This yields a protocol in the execution-leaks
setting for t corruptions and n = 5t+ 2 parties, which is shy of Theorem 2.

The path towards improving on this result in the execution-leaks setting and
finally arriving at Theorem 2 is motivated by the following simple (and, as we
show, optimal) protocol for n = 5 parties and t = 1 corruptions, which does not
completely fit the steps above because the set of verifiers is too small:

1. Parties P1 and P2 sample uniformly random bits x1 and x2, respectively,
and send them to parties P3, P4, and P5.

2. Parties P3, P4, and P5 publish all secret values they receive.
3. Extract an unbiased bit by XORing the majority of the values attributed to
P1 and P2, respectively.

As our final optimization, we show that we can modify the general protocol above
and reduce the number of verifiers from 3t + 1 to 3t − 1, leading to Theorem 2
and thus obtaining this simple protocol as a natural special case. More details
can be found in Section 3.

Impossibility Result. We now discuss the approach behind our impossibility
result in Theorem 3 for the sending-leaks model. For the sake of simplicity,
consider a protocol with four parties P1, . . . , P4 and one corruption, and assume
that a (close to) final output bit is produced if all parties behave honestly. Our
proof follows a careful sequential argument where we analyze what would happen
if we corrupted parties P4 through P1. At a high level, we show that either the
behavior of parties P1, . . . , Pi−1 already fully determines the final output of the
protocol with high probability, or corrupting Pi allows an adversary to locally
control and bias the final output. Care is needed in all stages to ensure the
adversary can accurately predict the final output of the protocol locally. We
now discuss the main ideas behind each of the four cases:

1. Corrupt P4: In this case, it is easy to see that either the behavior of
P1, P2, P3 fully determines the final output with high probability, or there
is a decent probability that there are two public values P4 can publish that
would lead to final output 0 and 1, respectively. Therefore, in the latter
scenario corrupting P4 allows us to bias the final output.

2. Corrupt P3: First, we may now assume that the final output is fully deter-
mined by P1, P2, P3 with high probability. We use this to show that either
corrupting P3 allows us to bias the final output, or the final output is not
only already fully determined by the behavior of P1 and P2, but actually
is “independent” of the secret value sent by P1 to P3 with high probability.
This stronger property will prove useful in the next step where we try to
corrupt P2.
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3. Corrupt P2: The goal here is, again, to prove that, assuming it is not useful
to bias neither P3 nor P4, either we can bias the final output by corrupting
P2 or the final output is fully determined by P1. However, a main difficulty
in this step that is not present elsewhere is that P2 does not see the secret
value sent from P1 to P3. We exploit the stronger statement we proved for
P3 to argue that this is not problematic.

4. Corrupt P1: Finally, assuming that corrupting one of P2, P3, P4 is not use-
ful, we show that P1 can locally determine the final output based on its
public and secret values with high probability. Since we assumed that an
honest execution of the protocol yields a nearly unbiased bit, we can corrupt
P1, simulate several runs of the protocol, and always choose the one that
leads to, say, final output 0 with high probability.

The above argument shows that such a protocol cannot possibly be secure,
which leads to Theorem 3. More details can be found in Section 4.

1.5 Directions for Future Research

Our work leaves open several interesting avenues for future research. We highlight
some of them here:

– It would be interesting to close the gap between the number of parties in
our protocols and the known impossibility results.

– In this work we did not focus on the efficiency of randomness extraction
protocols. Given the practical connections of our models, it would be inter-
esting to design more efficient protocols in this setting. Efficiency could be
measured in the number of secret messages and/or the total number of bits
sent.

– In line with the previous item, and as already mentioned above, it would
be interesting to improve the communication complexity necessary for ex-
tracting λ unbiased random bits beyond running our protocols λ times in
parallel.

– We considered only static corruptions. However, it also makes sense to con-
sider an active adversary in our model. We leave this as another interesting
future modification.

2 Network Models for Randomness Extraction

In this section, we formally define the network models and security notions under
which we will be working.

Suppose there are n parties P1, . . . , Pn. In the first round, party P1 outputs
a public value x1 and send secret values s1,2, . . . , s1,n to be received by parties
speaking in rounds i = 2, . . . , n, respectively. In the i-th round for 2 ≤ i ≤
n, party Pi outputs a public value xi ∈ X which depends on the previously
broadcast public values

x<i = (x1, . . . , xi−1)
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along with the secret values sent to the party speaking in the i-th round,

s<i = (s1,i, . . . , si−1,i).

Party Pi then sends secret values

s>i = (si,i+1, . . . , si,n)

to be received by parties speaking in rounds i + 1 through n, respectively. At
the end of the protocol, the goal is to deterministically extract from the public
values x1, . . . , xn a bit that is statistically close to uniform. More precisely, a
randomness extraction protocol is specified by a tuple Π = (D1, . . . , Dn,Ext),
where D1, . . . , Dn are distributions such that

(xi, s
>i)← Di(x

<i, s<i)

and Ext : Xn → {0, 1} is a deterministic function such that the final output of
the protocol is given by

r = Ext(x1, . . . , xn).

We additionally consider a computationally-unbounded adversary which is
allowed to corrupt a subset of parties C of size |C| ≤ t. We call t the corruption
threshold. The adversary is taken to be static, i.e., the set C is chosen before
the start of the protocol. For each party i ∈ C, the adversary is allowed to
replace the distributionDi by an arbitrary malicious distributionMi of its choice.
We study randomness extraction protocols in two natural models depending on
the information made available to the adversary when it chooses each Mi, as
described next.

2.1 The Sending-Leaks Adversarial Model

In the strongest adversarial model we consider, a sending-leaks adversary im-
mediately learns secret values once they are sent. More precisely, for each cor-
rupted party i ∈ C, the adversary may choose the malicious distribution Mi

above as a randomized function of the public values x1, . . . , xi−1 and all values
(sj,j′)j<i,j′∈C . In words, if the adversary corrupts Pi, then it is allowed to see
the previously broadcast public values along with all secret values sent by par-
ties 1 through i − 1 to all corrupted parties j′ ∈ C, even when j′ > i. Given
a randomness extraction protocol Π = (D1, . . . , Dn,Ext) and a sending-leaks
adversary A, we denote the output of the extractor Ext under the adversarial
corruptions imposed by A by R(Π,A). We now present the associated security
definition.

Definition 1 (Security in the sending-leaks model). We say that a ran-
domness extraction protocol Π is (ε, t)-secure in the sending-leaks model if for
all sending-leaks adversaries A corrupting at most t parties we have∣∣∣∣Pr[R(Π,A) = 1]− 1

2

∣∣∣∣ ≤ ε.
We say that the protocol is zero-error if we can take ε = 0.
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2.2 The Execution-Leaks Adversarial Model

We also consider a weaker adversarial model where secret values sent to some
corrupted party Pi are only revealed to the adversary once Pi is executed. More
precisely, an execution-leaks adversary A chooses the malicious distribution Mi

as a randomized function of the public values x1, . . . , xi−1 and only the secret
values (sj,j′)1≤j<j′≤i. As before, we denote the output of the extractor Ext
under the adversarial corruptions imposed by A by R(Π,A), and define security
as follows.

Definition 2 (Security in the execution-leaks model). We say that a ran-
domness extraction protocol Π is (ε, t)-secure in the execution-leaks model if for
all execution-leaks adversaries A corrupting at most t parties we have∣∣∣∣Pr[R(Π,A) = 1]− 1

2

∣∣∣∣ ≤ ε.
We say that the protocol is zero-error if we can take ε = 0.

3 Zero-Error Randomness Extraction Protocols

We prove our main feasibility results in this section.

3.1 Zero-Error Randomness Extraction in the Sending-Leaks Model

We prove the following feasibility result in the sending-leaks model.

Theorem 4 (Restatement of Theorem 1). There is a zero-error random-
ness extraction protocol in the sending-leaks model for corruption threshold t and
n = 6t+ 1 parties.

We now describe the protocol used to prove Theorem 4, which is a “YOSO-
version” of a protocol introduced by Maurer [15]. For the sake of clarity, we first
fix a corruption threshold t and n = 6t+ 2 parties, which we subdivide into con-
secutive blocks P1, P2, . . . , P3t+1, which we call the verifiers, and P ′1, . . . , P

′
3t+1,

which we call the publishers. We will then show how to optimize this argument
so that only 6t+ 1 parties are needed. First, define

S = {S ⊆ [3t+ 1] : |S| = 2t+ 1}.

The protocol proceeds as follows:

1. Sampling phase: For i = 1, . . . , t+1 and all sets S ∈ S such that minS = i,
party Pi samples xS uniformly at random from {0, 1}. We call Pi the leader
of S. Then, Pi sends xS to every party Pj such that j ∈ S.

2. For each set S ∈ S and j ∈ S, let xjS denote the value received by Pj from

the leader of S. Then, Pj sends xjS to every Pj′ such that j′ > j and j′ ∈ S.
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3. Verification phase: For each set S ∈ S and j′ ∈ S, let xj,j
′

S denote the
value received by Pj′ from Pj for j′ > j and j, j′ ∈ S. Then, every party Pj′

checks whether xj,j
′

S = xj
′

S for all j ∈ S such that j < j′. If this does not
hold, then Pj′ broadcasts the public value (COMPLAIN, S). Otherwise, the

verifier Pj′ sends xj
′

S to all publishers P ′j′′ such that j′′ ∈ S.
4. Publishing phase: For each S ∈ S which did not receive a complaint and

j′, j′′ ∈ S, let yj
′,j′′

S denote the value received by the publisher P ′j′′ from the

verifier Pj′ . Then, P ′j′′ broadcasts (S, sj
′′

S ), where

sj
′′

S = maj((yj
′,j′′

S )j′∈S)

and maj denotes the majority function with ties broken to 0.

Given the values broadcast by the protocol above, our randomness extractor
behaves as follows: First, for all S ∈ S which did not receive a complaint, set

mS = maj((sjS)j∈S).

For all sets S ∈ S which received a complaint, set mS = 0. Then, the output of
the extractor is ⊕

S∈S
mS .

The following statement holds.

Proposition 1. The value
⊕

S∈S mS is uniformly random whenever at most t
out of n = 6t+ 2 parties are corrupted.

Proof. Observe that there is a set S? ∈ S such that all verifiers Pj and publishers
P ′j with j ∈ S? are honest. In particular, this means that the value xS? sampled
by the leader of S? is uniformly random, that S? does not receive a complaint,
and that mS? = xS? . Moreover, since all associated publishers (P ′j)j∈S? are
honest, the value of xS? is not leaked to the adversary before the publishing
phase. It remains to argue that the values mS for S 6= S? are independent of
xS? , which concludes the proof.

Consider any set S 6= S? in S. Note that whether S receives a complaint or
not is independent of the value of xS? since corrupted parties only learn this value
later in the publishing phase. Therefore, it suffices to consider the case where
S did not receive a complaint. If this holds, it must be the case that all honest
parties Pj for j ∈ S received the same value x′S from the leader of S, which is
independent of xS? . Otherwise, if honest parties Pj1 and Pj2 received different
values and j1 < j2, then Pj2 would fail the check and broadcast a complaint
during the verification phase. Since a strict majority of verifiers in (Pj)j∈S is

honest, it follows that all honest publishers P ′j′ for j′ ∈ S will broadcast sj
′

S = x′S .
Therefore, we have mS = x′S since a strict majority of publishers in (P ′j′)j′∈S is
honest, which yields the desired claim. ut



YOSO Randomness Extraction with Worst-Case Corruptions 15

In order to obtain Theorem 4 from Proposition 1, it remains to describe how
to modify the protocol in order to reduce the number of parties from 6t + 2 to
6t + 1. This can be accomplished by merging parties P3t+1 and P ′3t+1 into one
party. Since the publishing phase of the protocol is insensitive to the broadcast
order and to the fact that each publisher P ′j may share a state with the verifier
Pj , the correctness of the protocol still holds.

3.2 Improved Zero-Error Randomness Extraction in the
Execution-Leaks Model

The protocol described in Section 3.1 is secure in the strong adversarial model
where values sent to corrupted parties are immediately displayed to the adver-
sary. However, we can also consider the natural execution-leaks model where
parties only learn their values when they are executed. In this model we can
optimize our protocol above and prove the following result.

Theorem 5 (Restatement of Theorem 2). There is a zero-error random-
ness extraction protocol in the execution-leaks model for corruption threshold t
and n = 5t parties.

Our starting point towards proving Theorem 5 is a protocol for n = 5t + 2
parties.

Proposition 2. There is a zero-error randomness extraction protocol in the
execution-leaks model for corruption threshold t and n = 5t+ 2 parties.

Proof. The protocol proceeds as in Section 3.1 except for the following differ-
ences:

– There are 2t+ 1 publishers P ′1, . . . , P
′
2t+1 instead of 3t+ 1;

– In the verification phase (Step 3), the verifier Pj′ sends xj
′

S to all publishers
P ′1, . . . , P

′
2t+1;

– In the publishing phase (Step 4), one takes j′ ∈ S and j′′ ∈ [2t+1] arbitrary.

The correctness of the modified protocol follows as in the proof of Proposition 1,
except that we only use the fact that there exists a set S? ∈ S such that all
verifiers (Pj)j∈S? are honest and that a strict majority of the verifiers is honest.

ut

We now show how we can improve the protocol above so that n = 5t parties
are enough, yielding Theorem 5.

Proof (Theorem 5). The protocol proceeds as in the proof of Proposition 2 except
for the following differences:

– There are 3t− 1 verifiers P1, . . . , P3t−1 instead of 3t+ 1;
– The family S is now defined as

S = {S ⊆ [3t− 1] : |S| = 2t− 1}.
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The correctness of the protocol follows by case analysis:

1. If t verifiers are corrupted: This implies that all publishers P ′1, . . . , P
′
2t+1

are honest. Moreover, there is a set S? ∈ S of fully honest verifiers (Pi)i∈S? .
Since the output of the extractor is fully determined after all verifiers speak
and the adversary does not observe xS? , the output of the extractor is uni-
formly random.

2. If at most t−1 verifiers are corrupted: In this case all sets S ∈ S have a
strict majority of honest parties (since 2t−1 > 2(t−1)), a strict majority of
publishers is honest, and there is a set S? ∈ S containing only honest parties.
Therefore, the argument from the proof of Proposition 2 goes through and
shows that the output of the extractor is uniformly random. ut

Combining Theorems 5 and 6 leads to the following exact characterization
of the round complexity of randomness extraction for t = 1 corruptions in both
models.

Corollary 1. A total of n = 5 parties are sufficient and necessary for low-error
randomness extraction with t = 1 corruptions (in both the sending-leaks and
execution-leaks models, since these models are equivalent when t = 1).

4 Impossibility Result for Low-Error Randomness
Extraction in the Sending-Leaks Model

We prove our impossibility result in this section.

Theorem 6. There is no (ε = 0.01, t)-secure randomness extraction protocol in
the sending-leaks model for n = 4t parties.

Proof. At a high level, we prove this result by dividing the parties into four con-
secutive blocks B1, . . . , B4 and then sequentially arguing that either the behavior
of B1, . . . , Bi−1 already fully determines the final output of the protocol with
high probability, or corrupting Bi allows an adversary to locally control and bias
the final output by consistently resampling Bi’s public value and secret values.
Care is needed in all stages to ensure the adversary can accurately predict the
final output of the protocol locally.

Fix some randomness extraction protocol Π = (D1, . . . , Dn, f) with corre-
sponding public values X1, . . . , Xn. Let f(X1, . . . , Xn) denote the output of the
YOSO extraction protocol, where f is a deterministic function and t = dn/4e
parties may be corrupted by an execution-leaks adversary. With a contradiction
in view, suppose that

|Pr[f(X1, . . . , Xn) = 1]− Pr[f(X1, . . . , Xn) = 0]| ≤ ε = 0.01, (1)

where the probability is taken over the randomness of the protocol. Partition the
set of parties [n] into four consecutive blocks B1, B2, B3, B4 each containing at
most dn/4e parties. Note that the adversary is able to corrupt all parties in one
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of these blocks. Moreover, crucially, when the adversary executes the first party
in this block, they already know all private messages sent to later corrupted
parties in the block. Let Qi denote the string of public values output by the
block Bi and Si→j denote the set of secret values sent by parties of block Bi to
parties of block Bj for i < j.

We begin by considering the case where the adversary fully corrupts the block
B4. Sample (q1, q2, q3) ← (Q1, Q2, Q3). By our assumption, it must be the case
that

Pr
[
∃q(0)4 , q

(1)
4 : f

(
q1, q2, q3, q

(b)
4

)
= b, b ∈ {0, 1}

]
≤ ε, (2)

where the probability is taken over the sampling above. In other words, the last
block of parties must have little control over the output of the extractor. To see
this, note that if (2) did not hold then we could simply have the adversary make

block B4 select q
(0)
4 as the public value (whenever such choices exist) so that (1)

is not satisfied.
We move to the case where the adversary fully corrupts B3. Suppose blocks

B1 and B2 output public and secret value sets (q1, s1→3, q2, s2→3) according
to the joint distribution (Q1, S1→3, Q2, S2→3), which the adversary sees. Set

s
(1)
1→3 = s1→3 and sample s

(2)
1→3 according to the distribution

(S1→3|Q1 = q1, Q2 = q2, S2→3 = s2→3).

Then, sample

q
(i)
3 ← (Q3|Q1 = q1, Q2 = q2, S1→3 = s

(i)
1→3, S2→3 = s2→3)

for i = 1, 2. Handling this extra sample from S1→3 will be crucial for our ar-
gument later on in the case where we corrupt B2. We define the set of good
tuples

G3 = {(q′1, q′2, q′3) : f(q′1, q
′
2, q
′
3, ·) is constant}

and claim that

Pr
[
(q1, q2, q

(1)
3 ) ∈ G3, (q1, q2, q(2)3 ) ∈ G3, f(q1, q2, q

(1)
3 , ·) ≡ f(q1, q2, q

(2)
3 , ·)

]
≥ 1− 3ε, (3)

where the probability is taken over the sampling procedures described above. To

see this, first note that both q
(1)
3 and q

(2)
3 are distributed like a correct public

value of B3 in the protocol, i.e., the tuples (q1, q2, q
(1)
3 ) and (q1, q2, q

(2)
3 ) are both

distributed according to the joint distribution (Q1, Q2, Q3). Therefore, invok-
ing (2) and the union bound shows that

Pr[(q1, q2, q
(1)
3 ) ∈ G3, (q1, q2, q(2)3 ) ∈ G3] ≥ 1− 2ε. (4)

Moreover, it must be the case that

Pr
[
(q1, q2, q

(1)
3 ) ∈ G3, (q1, q2, q(2)3 ) ∈ G3, f(q1, q2, q

(1)
3 , ·) 6≡ f(q1, q2, q

(2)
3 , ·)

]
≤ ε,

(5)
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since otherwise the adversary could sample q
(1)
3 and q

(2)
3 as above, each of which

would fully determine the output of the extractor with probability larger than
ε, and so bias the extractor appropriately, thus implying that (1) is false. Com-
bining (5) and (4) yields (3), as desired.

Continuing this trend, suppose now that the adversary fully corrupts B2 and
that block B1 outputs public and secret values (q1, s1→2, s1→3). Note, however,
that the adversary only has access to q1 and s1→2. We will exploit (3) to argue
that the adversary can still adequately simulate Q3 and Q4 for a given choice
of its public value Q2 and predict the output of f with decent probability by
simulating the values from B1 to B3 locally. First, independently sample pairs

(q
(i)
2 , s

(i)
2→3)← (Q2, S2→3|Q1 = q1, S1→2 = s1→2)

for i = 1, 2. Then, independently sample simulated secret value sets

s̃
(i)
1→3 ← (S1→3|Q1 = q1, Q2 = q

(i)
2 , S2→3 = s

(i)
2→3)

and simulated public values

q̃
(i)
3 ← (Q3|Q1 = q1, Q2 = q

(i)
2 , S1→3 = s

(i)
1→3, S2→3 = s

(i)
2→3)

for i = 1, 2. Denote by
f(q′1, q

′
2, q
′
3;m′1→3,m

′
2→3)

the (possibly randomized) output of f(Q1, Q2, Q3, Q4) conditioned on the joint
event

(Q1 = q′1, Q2 = q′2, Q3 = q′3, S1→3 = m′1→3, S2→3 = m′2→3).

Then, we define the set of good tuples

G2 = {(q′1, q′2, q′3,m′1→3,m
′
2→3) : f(q′1, q

′
2, q
′
3;m′1→3,m

′
2→3) is constant}.

Suppose that q
(i)
3 is the true public value of B3 when the corrupted block B2

outputs q
(i)
2 and sends values s

(i)
2→3. For convenience, we set

v(i) = (q1, q
(i)
2 , q

(i)
3 , s1→3, s

(i)
2→3),

ṽ(i) = (q1, q
(i)
2 , q̃

(i)
3 ; s̃1→3, s

(i)
2→3),

r(i) = f(v(i)),

r̃(i) = f(ṽ(i)).

Using this notation, combining (3) with a union bound over i = 1, 2 yields

Pr[∀i ∈ {1, 2} : v(i) ∈ G2, r(i) ≡ r̃(i)] ≥ 1− 6ε. (6)

In words, the adversary can predict the final output of the protocol if he de-

cides on (q
(i)
2 , s

(i)
2→3) with high probability by locally computing r̃(i) for i = 1, 2.

Moreover, similarly to previous cases, it must be that

Pr[∀i ∈ {1, 2} : v(i) ∈ G2, r(i) ≡ r̃(i), r̃(1) 6≡ r̃(2)] ≤ ε. (7)
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In fact, if this did not hold, then the adversary could locally sample the tuples

(q
(i)
2 , s

(i)
2→3, q̃

(i)
3 , s̃

(i)
1→3), compute r̃(i), and then choose i such that r̃(i) = 0 and

behave accordingly, thus biasing the output to 0 by more than ε. Therefore,
combining (6) and (7) implies that

Pr[∀i ∈ {1, 2} : v(i) ∈ G2, r(i) ≡ r̃(i), r̃(1) ≡ r̃(2)] ≥ 1− 7ε. (8)

This means that we can predict the final output of f with high probability given
only (q1, s1→2).

Finally, we consider the case where the adversary corrupts the first block

B1. Consider two independent samples (q
(1)
1 , s

(1)
1 ) and (q

(2)
1 , s

(2)
1 ) according to

the joint distribution (Q1, S1), where S1 denotes all values sent by parties in
B1. Then, if (1) holds it must be the case that the output of f differs between

the runs of the protocol beginning with (q
(1)
1 , s

(1)
1 ) and (q

(2)
1 , s

(2)
1 ) with some

probability p > 1/2− ε2. By (2), (3), and (8), the output of f on the respective

runs of the protocol is fully determined by knowledge of (q
(1)
1 , s

(1)
1 ) and (q

(2)
1 , s

(2)
1 )

with probability at least 1− 2 · 7ε = 1− 14ε. This implies that with probability
at least

p− 14ε > 1/2− 14ε− ε2 ≥ ε

the adversary can completely bias the output of f by choosing the run which
leads to output 0, which contradicts (1). Since all steps above only involve re-
sampling the distributions of honest parties, this strategy can be implemented
by a execution-leaks adversary. ut

We also show that we cannot hope to prove a better upper bound in the
sending-leaks model using the ideas above, as formalized in the following theo-
rem.

Theorem 7. There exists a zero-error randomness extraction protocol with n =
4t + 1 parties in both the sending-leaks and execution-leaks models when the
adversary is only allowed to corrupt at most t consecutive parties.

Proof. Fix a corruption threshold t and n ≥ 4t+ 1 parties. Consider a protocol
where parties i ∈ [t+ 1] (the generators) publish 0 and send a random bit bi to
all parties in {2t + 1, . . . , n}. Parties i ∈ {t + 2, . . . , 2t} are silent (they do not
publish public values nor do they send any secret values). Let bji denote the bit
received by the j-th party from the i-th party. Then, parties j ∈ {2t+ 1, . . . , n}
(the publishers) each output bj =

⊕t+1
i=1 b

j
i . Finally, the extractor computes

maj(b2t+2, . . . , bn).

Suppose there is an adversary which corrupts a block of t consecutive parties.
Note that the adversary cannot corrupt generators and publishers simultane-
ously, since there are t − 1 silent parties in between. Moreover, the adversary
gains nothing by corrupting silent parties, since their public values and values
may just be ignored. It remains to consider two cases:
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– The adversary corrupts at most t generators: Without loss of generality, sup-
pose the first generator is honest. Then, it holds that the adversarial choice
of the bits bji for i ∈ {2, . . . , t + 1} is independent of b1, which is uniformly

random, and bj1 = b1 for all publishers j. It follows that the majority is
uniformly random as well.

– The adversary corrupts at most t publishers: Since there are 2t+1 publishers
and all generators are honest, the majority coincides with

⊕t+1
i=1 bi, which is

uniformly random.

We conclude that the protocol outputs a uniformly random bit. ut
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