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Abstract. Introduced by von Ahn et al. (STOC’05), covert two-party
computation is an appealing cryptographic primitive that allows Al-
ice and Bob to securely evaluate a function on their secret inputs in
a steganographic manner, i.e., even the existence of a computation is
oblivious to each party - unless the output of the function is favourable
to both. A prominent form of covert computation is covert authentica-
tion, where Alice and Bob want to authenticate each other based on their
credentials, in a way such that the party who does not hold the appro-
priate credentials cannot pass the authentication and is even unable to
distinguish a protocol instance from random noise. Jarecki (PKC’14) put
forward a blueprint for designing covert authentication protocols, which
relies on a covert conditional key-encapsulation mechanism, an identity
escrow scheme, a covert commitment scheme and a Σ-protocol satisfying
several specific properties. He also proposed an instantiation based on
the Strong RSA, the Decisional Quadratic Residuosity and the Decisional
Diffie-Hellman assumptions. Despite being very efficient, Jarecki’s con-
struction is vulnerable against quantum adversaries. In fact, designing
covert authentication protocols from post-quantum assumptions remains
an open problem.

In this work, we present several contributions to the study of covert
authentication protocols. First, we identify several technical obstacles in
realizing Jarecki’s blueprint under lattice assumptions. To remedy, we
then provide a new generic construction of covert Mutual Authentica-
tion (MA) protocol, that departs from given blueprint and that requires
somewhat weaker properties regarding the employed cryptographic ingre-
dients. Next, we instantiate our generic construction based on commonly
used lattice assumptions. The protocol is proven secure in the random
oracle model, assuming the hardness of the Module Learning With Errors
(M-LWE) and Module Short Integer Solution (M-SIS) and the NTRU
problems, and hence, is potentially quantum-safe. In the process, we also
develop an approximate smooth projective hashing function associated
with a covert commitment, based on the M-LWE assumption. We then
demonstrate that this new ingredient can be smoothly combined with
existing lattice-based techniques to yield a secure covert MA scheme.

Keywords. Covert authentication, commitments, zero-knowledge proofs,
conditional KEM, approximate SPH, lattices, M-LWE, M-SIS



1 Introduction

The major goal of cryptography is to protect the security of the computation and
communication over insecure networks. Steganography, on the other hand, aims
to hide the very fact that some computation or communication has taken place.
Covert cryptography is the research area that aims to simultaneously achieve
the goals of both cryptography and steganography, i.e., to ensure the security of
cryptographic protocols and to hide their existence from adversaries at the same
time. A secure protocol is said to be covert if the communications between two
parties can not be distinguished from the message flows in the public channel.
Note that this is only possible when the public channel is steganographic, namely,
it contains sufficient min-entropy. An example of a steganographic channel is the
random channel, where channel messages are uniformly random over some finite
ranges.

The study of covert cryptography was initiated by von Ahn et al. [45], who
introduced the notion of covert two-party computation. Chandran et al. [10]
subsequently generalized this notion to the multi-party setting. In these proto-
cols, participants can compute any functionality of their inputs in a way such
that no observer can distinguish the exchanged messages from random flows in
the public channel, and, even protocol participants cannot determine whether
the other party is following the protocol. In both constructions from [45,10], the
protocols require a linear number of rounds in the circuit representations of the
desired functions. In fact, Goyal and Jain [25] later showed that maliciously-
secure covert computations could not be done in a constant number of rounds if
there is no access to trusted parameters. However, this impossibility result can
be by-passed if one assumes the existence of trusted parameters or public keys -
which are mostly available in practical applications.

A prominent sub-area of covert cryptography is the study of covert authen-
tication. In such protocols, two parties aim to mutually authenticate each other
using verifiable certificates in a covert manner: a dishonest party who does not
possess a valid certificate is not only unable to succeed in the authentication
but also cannot distinguish a protocol instance from a random channel mes-
sage. Jarecki [27] gave the first constant-round construction of covert mutual
authentication (consisting of 5 rounds - which can be reduced to 3 rounds in
the random oracle model). His protocol additionally supports the revocations
of group membership, and is proven secure under the strong RSA, the DQR,
and the DDH assumptions. The protocol is practically efficient, but it is vulner-
able against quantum adversaries. To date, the design of covert authentication
protocols based on post-quantum assumptions remains an open problem.

In this work, we aim to tackle the above discussed open question. Specif-
ically, we study the plausibility of constructing covert authentication proto-
cols based on lattice-based assumptions - which are among the most prominent
foundations for cryptography in the post-quantum era. Lattice-based cryptogra-
phy [1,43,22,21,24,42] is an emerging research direction that receives significant
attention from the community. Lattices have enabled virtually any cryptographic
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primitives one can think of. It would be quite natural to think that it is tech-
nically straightforward to obtain a lattice-based covert authentication scheme.
However, we observe that there are non-trivial challenges on the way.

In [27], Jarecki gave a blueprint to construct a covert mutual authentication
(MA) protocol, based on an identity escrow scheme [31] (namely, an interac-
tive form of group signatures [11]) and a covert conditional key encapsulation
mechanism (CKEM) scheme. The latter ingredient, i.e., CKEM, can be seen as
an encryption counterpart of zero-knowledge proofs (ZKP) [23] or as a general-
ization of smooth projective hash (SPH) functions [14] to interactive protocols.
Jarecki designed a covert CKEM with the witness-extraction property (so that
it would be possible to extract a group certificate in case of a forgery) via a
combination of an SPH, a covert commitment scheme (i.e., one that produces
uniformly random commitment values) and a Σ-protocol [12] with some special
properties. The main idea is to let the prover covertly commit to his first mes-
sage a as com, send response z to the challenge c from the verifier and then
execute an SPH with the verifier on the statement that a, which is supposed to
be recoverable based on (x, c, z), is indeed contained in com. We refer the reader
to the original paper [27] for details on this generic construction.

While Jarecki’s blueprint [27] can be efficiently instantiated from traditional
number-theoretic assumptions, we note that there are 3 distinctions in the lattice
setting: (i) Lattice-based primitives typically have to deal with noises [43], and as
a consequence, it is notoriously hard to obtain exact versions of smooth projec-
tive hashing [29,48,5,28]; (ii) Existing efficient lattice-based Σ-protocols [38,7,19]
normally admit a gap in soundness, namely, the language for which soundness
can be achieved is a strict superset of the one used for defining zero-knowledge-
ness 3; (iii) Protocol messages in the lattices setting are not always uniformly
random, e.g., they can be samples from discrete Gaussian distributions. These
aspects make it challenging to realize covert MA protocols from lattice assump-
tions. These obstacles also inspire us to revisit Jarecki’s generic construction:
Can we achieve covert MA based on somewhat weaker assumptions on the un-
derlying cryptographic ingredients?

Our results and techniques. This work provides several contributions to
the study of covert mutual authentication protocols. First, we revisit the notion
of covertness defined in [27]. Instead of specifically requiring a uniformly ran-
dom channel, we suggest a generalized formulation by assuming that the public
channel messages are distributed according to a probability distribution that is
efficiently and publicly sampleable. We then say that an interactive protocol is
covert if its transcript can be efficiently simulated by a simulator that only has
access to the public information. Second, we provide a new generic construction
of covert mutual authentication, that relies on an approximate smooth projective
hashing (ASPH) scheme with associated covert commitment, a key reconcilia-
tion scheme and a group authentication scheme. The first two ingredients can
handle the noises as well as the soundness gap, that occur in the lattice setting,

3 There exist exact lattice-based zero-knowledge proof systems with no soundness gap,
e.g., [36,8,18], however, they tend to be relatively less efficient.
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as discussed above. Meanwhile, the third ingredient can be seen as an interactive
version of group signatures, where there is no opening authority that can break
users’ anonymity4. Hence, while our construction does not support user revo-
cation, it can achieve a stronger security notion than the one from [27], which
we call external covertness. This robust property guarantees that any adversary
having access to all the public and private information of the protocol will not
be able to distinguish between an actual protocol transcript and a simulated
transcript sampled according to a given distribution.

Our next contribution is to instantiate the new generic construction from
lattice assumptions. To this end, we provide a construction of ASPH based on
module lattices. An ASPH scheme with covert commitment aims to compute two
“nearby” hash values of the message. The first hash value is obtained by using
the hashing key and the commitment, while the second one is computed using
the projective key and randomness used in the commitment. Our construction
is adapted from the Katz-Vaikuntanathan construction [29] that operates in
general lattices. We observe that the encryption scheme used for ASPH in [29]
can be replaced by a commitment scheme. The scheme’s public information
consists of random matrices A1 and A2 that are “tall”, i.e., their numbers of rows
are significantly greater than their numbers of columns. In this way, matrices
A1,A2 do represent sparse random lattices. A commitment to a message is then
a Learning-With-Errors (LWE) instance [43] of the form

com(m; r) := A1m+A2r + e,

for which the LWE secret is the message m concatenated with a random vec-
tor r . The hiding property of the scheme follows from the Module-LWE assump-
tion [9,34]. As in [7,3], we consider a relaxed notion of binding for the employed
commitment scheme, in which the set of acceptable openings could be a superset
of set of honestly generated (message, randomness) pairs. More specifically, we
consider the set containing the tuple (com,m, r) for which there exists a ring
element z such that ‖z(com−A1m)−A2r‖ is small. Using a technical lemma
about the length of the shortest vector in the lattice generated by the random
matrix, we can prove the relaxed binding property of the scheme. In the ASPH
scheme to compute the first hash value h, we sample a vector f from discrete
Gaussian distribution. Then, the hash value h is fT (com−A1m) and the pro-
jection key pk is fTA2. The second hash value h′ is pk · r. It is easy to show
the correctness of the ASPH protocol. The main challenge here is to prove the
Soundness, for which we need to show that when the given commitment to a
message is not contained in the relaxed set then (pk, h) is statistically close to
uniform over the respective domain. For this end, we use a theorem from [28]
about the distribution of a matrix multiplied by a vector sampled from a Gaus-
sian distribution. Suppose the lattice generated by the matrix has a significantly
large shortest vector. In that case, the distribution of the matrix multiplied by
a vector sampled from Gaussian distribution is indistinguishable from a uniform

4 Alternatively, one can view group authentication as an interactive form of ring signa-
tures [44], where there is a centralized authority who is in charge of user enrolments.
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distribution. As the commitment is not contained in the relaxed set, we know
that the lattice generated by the matrix

[
(com−A1m) A2

]
has a significantly

large shortest vector, and by using the property, we can demonstrate the sound-
ness of the ASPH scheme. This technical step is indeed the biggest hurdle that
prevented us from directly using any of the previous lattice-based commitment
schemes, such as [30,46,7,3,20,15].

An additional lattice-based technical ingredient employed in our construction
is a relatively efficient group authentication (GA) scheme. A GA scheme aims to
assign a certificate to group members, and enable the latter to prove their legiti-
mate group membership via an interactive proof system. To this end, we extract
a GA scheme from the lattice-based group signature of [16], which is arguably
the most efficient option available to date5. As per Jarecki’s blueprint, we need a
Σ-protocol satisfying special properties for proving the relation capturing group
certificate validity. However, due to the soundness gap of the protocol in [16], we
are unable to prove the special soundness property on the same relation. Never-
theless, we demonstrate that special soundness holds in a relaxed manner, i.e.,
it holds for a superset of the relation corresponding to certificate validity, and
then show that this relaxation is sufficient for our application. We note that the
security notion we achieve here is stronger than the notion of certificate unforge-
ability considered in [27] - we refer to this property as strong unforgeability. Yet,
the security of our construction relies on the same computational assumptions
as in [16], namely, Module-LWE, Module-SIS, and NTRU.

As a summary, the generic construction and the lattice-based realization we
suggest here considerably depart from the specifications of Jarecki’s blueprint.
We generalize the ideas of [27] and show that our modifications are sufficient
to achieve covert mutual authentication in general and in the lattice setting,
despite relying on somewhat weaker cryptographic ingredients. Our lattice-based
protocol consists of 5 rounds and can be reduced to 3-round in the random oracle
model. The scheme inherits efficiency features from the employed lattice-based
building blocks [16,3,28] without a significant change in parameters.

Organization. The rest of the paper is organized as follows. In Section 2,
we provide our definitions and model of covertness and covert mutual authen-
tication (MA), as well as definitions of cryptographic ingredients needed for
our constructions: covert commitment schemes, approximate smooth projective
hashing (ASPH), key reconciliation and group authentication (GA) protocols.
In Section 3, we present our generic construction of covert MA. In Section 4, we
recall some necessary background on lattices and the computational assumptions
we will employ. Then, in Section 5, we present our lattice-based ASPH scheme
on covert commitment - which is a major technical building block for instanti-
ating our construction of covert MA based on lattices. Due to space restriction,
we defer several supporting materials to the Appendix.

5 Note that we can extract a GA scheme from other existing lattice-based group
signature systems, such as [32,33,41,37,35], but it would be much less efficient.
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2 Cryptographic Definitions and Models

2.1 Covertness and Covert Mutual Authentication

Covertness. To define the covertness of two-party protocols, we assume that
the protocol runs over a public channel with periodic message flow from some
probability distribution T , which is efficiently sampleable based on the public
information of the protocol. A protocol is said to be covert if the communication
between two parties can not be efficiently distinguished from the message flow
in the public channel. This is only possible when the public channel is stegano-
graphic, i.e., it has sufficient min-entropy. One example of steganographic chan-
nels is a random channel where messages are randomly distributed over some
finite range, as used in [27].

Covert mutual authentication. In this work, we are interested in (implicit)
mutual authentication protocols based on the membership of a given group. Such
a protocol allows two certified group members to establish a random shared key
if they both honestly follow the protocol.

A group involves a group manager (GM) and a polynomial (in security pa-
rameter τ) number of group members. A Mutual Authentication (MA) pro-
tocol is a triple of algorithms (KG,CG,Auth). Algorithm KG(1τ ) returns
(mpk,msk), where msk (master secret key) is only known to the GM and
mpk (master public key) is a public information. For group member with iden-
tity i, GM assigns a certificate ski ← CG(i,msk). For authentication be-
tween Pi and Pj , both parties run interactive protocol Auth with Pi’s input(
mpk, (ski, i)

)
and Pj ’s input

(
mpk′, (skj , j)

)
, and get keys K and K ′ respec-

tively. If mpk = mpk′ and if (ski, i) and (skj , j) are valid group certificates
under mpk, then K = K ′, Otherwise (K,K ′) are independent and uniformly
random numbers.

We say that an MA protocol is covert if it satisfies the properties of internal
covertness and external covertness, defined as follows.

1. Internal Covertness: There exists an efficiently sampleable distribution T ,
such that for any PPT adversary (excluding group manager and group mem-
bers), acting as one of the parties in the authentication protocol, it is infea-
sible for the adversary to distinguish with non-negligible advantage whether
the honest party is following the protocol or sending the messages generated
according to distribution T .

2. External Covertness: There exists an efficiently sampleable distribution T̃
such that for any PPT adversary (including the group manager and group
members), who does not have access to the randomness used in the execution
of the protocol, it is infeasible for the adversary to distinguish with non-
negligible advantage between the transcript generated by the valid execution
of the protocol and transcript sampled according to distribution T̃ .

We define security games G and G̃ for PPT adversaries A and Ã, denoted
by GA(1τ , b) and G̃Ã(1τ , b̃), respectively, where game G represents the internal
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covertness property and game G̃ represents the external covertness property.
Adversary A only has access to the public parameter of the protocol. In terms
of known information, adversary Ã is more powerful than A and has access to
msk and the certificates ski’s for all group members. Let u and ũ be sequences
of random bits sampled from some fixed, efficiently sampleable distributions T
and T̃ , respectively.

– Generate (mpk,msk)← KG(1τ ). Let N := poly(τ) be the number of group
members and compute ski ← CG(msk, i) for i ∈ [N ].

– Game GA(1τ , b):

1. Adversary A is allowed to make poly(τ) number of calls to Exec(•).
• Exec(i): Execute the Auth protocol with input (mpk, (ski, i)), in-

teracting with adversary A.
2. Adversary A return identity i∗ of a group member.
3. Adversary A is allowed to make only one call to Test(i∗).
• Test(i): If b = 1, then execute Auth protocol with input (mpk, (ski, i))

interacting with adversaryA, and send the local output K toA. Oth-
erwise, send random message u sampled from the distribution T and
send a random key to adversary A.

4. When A halts and outputs a bit b∗, the game outputs the same bit b∗.

– Game G̃Ã(1τ , b̃):

1. Ã is given the key pair (mpk,msk) and certificates ski’s for all i ∈ [N ].

2. Ã returns identities i∗ and j∗ of two group members.

3. Adversary Ã is allowed to make only one call to ExtTest(i∗, j∗).

• ExtTest(i, j): If b̃ = 1, then the challenger sends a transcript of an
authentication protocol between group members i and j. Otherwise,
the challenger sends a string ũ sampled from a distribution T̃ .

4. Ã halts and outputs a bit b̃∗. Game G̃ outputs the same bit b̃∗.

Definition 1. An MA scheme (KG,CG,Auth) is said to satisfy the internal
covertness property if for any PPT adversary A, the advantage ε = |Pr[GA(1τ , 0) =
1]− Pr[GA(1τ , 1) = 1]| is negligible in τ .

Definition 2. An MA scheme (KG,CG,Auth) is said to satisfy the external

covertness property if for any PPT adversary Ã, the advantage ε = |Pr[G̃Ã(1τ , 0) =

1]− Pr[G̃Ã(1τ , 1) = 1]| is negligible in τ .

2.2 Covert Commitment Schemes

Let Π = (Gen,Com,Verify) be a commitment scheme with message spaceM.
For security parameter λ, algorithm Gen(λ) generates the commitment public
key e. For any messagem ∈M, algorithm Com(m, e) computes the commitment
c and witness r. To open the commitment c, given witness r and message m,
verification algorithm Verify(c, r,m) outputs 1 for accept or 0 for reject.
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The standard security properties of commitment schemes are binding and
hiding, which can be defined in the perfect, statistical or computational sense.
Here, we require the covertness property, which says that for any message m ∈
M, the distribution of commitment value c over the randomness r is indis-
tinguishable from the uniform distribution over commitment space. Note that
covertness is a stronger notion than hiding, i.e., the former implies the latter.

2.3 Approximate Smooth Projective Hashing

We adapt from [29] the definitions of Approximate Smooth Projective Hash
Function (ASPH). Let Ψ and Ψ∗ be a binary relations on some sets X and W,
such that (X ,W) ⊃ Ψ∗ ⊇ Ψ . LetΠ = (Hash,PHash) be a pair of algorithms for
δ-ASPH scheme over relations Ψ and Ψ∗. Let Alice’s input be xA and Bob’s input
be (xB , w). Alice computes (pk, h) := Hash(xA; r) and sends the projection key
pk to Bob. Bob computes the hash value h′ := PHash(pk, xB , w). It is a δ-ASPH
scheme if it satisfies the following properties.

– Completeness: If (xA, w) ∈ Ψ and xA = xB then

Pr[‖h− h′‖∞ > δ] = negl.

– Soundness: If (xA, w) 6∈ Ψ∗, then (pk, h) is statistically close to uniform over
the respective domain6.

– Covertness: There exists an efficiently sampleable distribution $(Upk) such
that distribution of pk ← Hash(x) for any x is computationally indistin-
guishable from distribution $(Upk).

2.4 Key Reconciliation Schemes

The aim of a Key Reconciliation (KR) scheme is to generate a common secret
if and only if Alice and Bob have “close by” secrets. Let q ∈ Z+ and δ ∈ R+.
Suppose that Alice and Bob possess secrets d1 and d2, respectively, such that
d1 is uniformly random in Zq and |d1 − d2| ≤ δ. Then Π = (Encδ,Decδ),
where Alice and Bob run the algorithms Encδ and Decδ, respectively, is a key
reconciliation scheme if the following properties are satisfied.

– Encδ(d1; r) computes the secret η and f such that distribution of (η, f) is
indistinguishable from uniform in some given ranges of integers.

– Decδ(d2, f) computes the secret η′. If |d1 − d2| ≤ δ, then η = η′.

In this work, we employ the key reconciliation scheme from [28]. Let t :=
blog qc and b := dlog δe. The scheme proceeds as follows.

– Encδ(d1; r): Let rb = 1 and rb+1 = 0. For all j ∈ [t] \ {b, b + 1}, sample

rj ← {0, 1}. Then compute f = d1+
t−1∑
j=0

2jrj mod q and η =
t−1∑
j=b+2

2j−b−2rj .

6 In this work we use a relaxed soundness condition. We show that the Soundness
property holds over the overwhelming proportion of instances.
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– Decδ(d2, f): Compute η′ = b f−d2 mod q
2b+2 c.

By construction, the distribution of the pair (f, η) is indistinguishable from uni-
formly random integers in

(
[q], [2t−b−2 − 1]

)
. We refer to [28, Section 3.2] for

more details.

2.5 Group Authentication Protocols

Group Authentication (GA) can be viewed as an interactive form of group sig-
natures, in which there is no opening authority who can break group members’
anonymity. A GA protocol allows Alice to convince Bob that she is a valid group
member without revealing any additional information.

A GA scheme is a tuple of algorithms (KG,CG,Ver,Ver∗,Com, Σ). Let C
be the challenge set and C := {c1− c2|c1 6= c2 ∈ C} . Algorithm KG(λ), where λ
is the security parameter, generates the group public key gpk and group secret
key gsk, where gpk is a public information and gsk is the private information
of the Group Manager (GM). Let S be the set of identities of group members.
For any identity i ∈ S, algorithm CG(i, gsk) generates a certificate ski for
group member with identity i, such that Ver(gpk, (ski, i)) = 1. Let ΨGA be the
committed certificate validity relation,

ΨGA =
{

((gpk, C), (sk, i, r)) | Ver(gpk, (sk, i)) = 1 and C = Com(i; r)
}
.

Let Ver∗ be a relaxed verification check, associated with a set C. Let Ψ̃GA ⊃ ΨGA
be the relaxed certificate validity relation,

Ψ̃GA =
{

(gpk, (sk, i, c)) | Ver∗(gpk, (sk, i, c)) = 1
}
.

We call a GA scheme on relations ΨGA and Ψ̃GA secure if it satisfies the
following properties.

1. Strong Unforgeablity: For any PPT adversary A, the probability that given
gpk as input to A, can output (sk, i, c)← A(gpk) such that (gpk, (sk, i, c)) ∈
Ψ̃GA, is negligible in λ.

2. Special-Σ Protocol: The relations (ΨGA, Ψ̃GA) admits a Special-Σ-protocol.
3. Covertness of Commitment: The commitment scheme Com is covert.

3 Covert Mutual Authentication: Generic Constructions

In this section, we first describe a generic construction for covert Mutual Authen-
tication (MA) schemes. To this end, we start with a Group Authentication (GA)
scheme, then convert it into a covert MA scheme using an Approximate Smooth
Projective Hashing (ASPH) with an associated covert commitment scheme and a
Key Reconciliation (KR) scheme. Recall that Jarecki’s generic construction [27]
uses an exact smooth projective hashing. Here, in contrast, we show that ASPH
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is sufficient for the design of covert MA. We note that our construction does not
support the revocation of group membership, but it enjoys a stronger security
guarantee than the MA protocol proposed in [27], namely, external covertness.
We then instantiate our construction under lattice-based assumptions, using the
technical ingredients we developed in the previous sections.

3.1 Our Generic Construction of Covert MA

Our generic construction employs the following ingredients.

– A GA scheme ΠGA = (KGGA,CGGA,Ver,Ver∗,ComGA, Σ) with Spe-

cial Σ-protocol Σ = (P1,P2,V) on relations ΨGA and Ψ̃GA defined upon
certificates generated by CGGA;

– A δ-ASPH system ΠASPH = (PG,Com,Hash,PHash) with associated
covert commitment scheme on relations Ψ and Ψ∗;

– A KR scheme ΠKR = (Encδ,Decδ);

– A collision-resistant hash function H.

The scheme ΠMA = (KG,CG,Auth) then works as follows.

– KG: Given the security parameter λ, and the set of identities of group
members S, compute (gpk, gsk) ← KGGA(λ) and π ← PG(λ). Set mpk =
(gpk, π) and msk = gsk.

– CG(gsk, i): Generate a certificate (ski)← CGGA(gsk, i) for the group mem-
ber with identity i ∈ S.

– Auth(i, j): Pi and Pj follow the authentication protocol with inputs (ski, i)
and

(
skj , j

)
, respectively.

1. Pi computes Ci ← ComGA(i, ski; ri) and sends Ci to Pj .
2. Let xi = (mpk,Ci) and wi = (ski, i, ri). Pi runs Special Σ-protocol
Σ = (P1,P2,V) with input (xi, wi) and Pj with input xi.
(a) Pi computes ai ← P1(xi, wi; r1) - the first message of the Σ-protocol.

Then, it computes a commitment toH(ai) as (bi)← Com(H(ai), r2)
and sends bi to Pj .

(b) When Pj sends back a challenge ci, Pi computes the second message
zi ← P2(xi, wi, r1, ci) and sends zi to Pj .

(c) Pj computes a′i = fV(xi, ci, zi), (hi, pki) ← Hash(bi,H(a′i); r3) and
(ηi, fi) = Encδ(hi; r4). It sends (pki, fi) to Pi and sets Kj = ηi.

(d) Pi computes h′i = PHash(pki,H(ai), r2) and sets K ′i = Decδ(fi, h
′
i).

3. Pj computes Cj ← ComGA(j, skj ; rj) and sends Cj to Pi.
4. Let xj = (mpk,Cj) and wj = (skj , j, rj). Pj runs Special Σ-protocol
Σ = (P1,P2,V) with input (xj , wj) and Pi with input (xj).
(a) Pj computes aj ← P1(xj , wj ; r5) - the first message of theΣ-protocol.

Then, it computes a commitment toH(aj) as (bj)← Com(H(aj), r6)
and sends bj to Pi.

(b) Receiving challenge cj from Pi, it computes the second message zj ←
P2(xj , wj , r5, cj) and sends zj to Pi.
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(c) Pi computes a′j = fV(xj , cj , zj), (hj , pkj)← Hash(bj ,H(a′j); r7) and
(ηj , fj) = Encδ(hj ; r8). It sends (pkj , fj) to Pj and sets Ki = η.

(d) Pj computes h′j = PHash(pkj ,H(aj), r6) and setsK ′j = Decδ(fj , h
′
j).

– The final secret key for Pi is Ki ⊕K ′i and for Pj is Kj ⊕K ′j .

Correctness. Assume that both Pi and Pj have valid group membership certifi-
cates. First, by the special simulation property of the Special Σ-protocol, we get
a′i = ai. Next, by the correctness of the ASPH scheme, we have ‖hi − h′i‖ ≤ δ.
Then, by the correctness of the KR scheme, we obtain that K ′i = Kj . Similarly,
we can show that K ′j = Ki. Hence, in the end of the protocol, Pi and Pj share
the same secret key.

Theorem 1 (Internal Covertness). The scheme ΠMA = (KG,CG,Auth)
satisfies the internal covertness property if ΠGA = (KGGA,CGGA,Ver,Ver∗,
ComGA) is a covert GA scheme, ΠASPH = (PG, Com,Hash,PHash) is a
δ-ASPH with associated covert commitment scheme and ΠKR = (Encδ,Decδ)
is a KR scheme.

In the proof, we let $(ComGA) be the distribution for the covertness of the
commitment scheme ComGA and $(Com) be the distribution for the covertness
of commitment scheme Com. Let $(Uf ) be the uniform distribution over the
range of f from Encδ. The distribution $(Upk) and $(Σ) are as defined in Sections
2.3 and A.1, respectively.

Proof. As there is a symmetry in the authentication protocol, we assume that
the adversary A plays the role of Pj . Suppose that A can distinguish between
GA(1τ , 0) and GA(1τ , 1) with advantage ε. Let GA(1τ , b, i∗) be a game which
follows GA(1τ , b) but if adversary queries Test(i) for i 6= i∗ then it halts and
outputs 1. It is easy to see that there exists an identity i∗ for which adversary A
distinguishes between G0 = GA(1τ , 0, i∗) and G1 = GA(1τ , 1, i∗) with advantage
at least ε/N where N is the group size. In the rest of the proof, we will show
that the distinguishing advantage between G0 and G1 is negligible by the games’
succession.

Game G2: Let G2 be the game which follows G1, except in all Auth(i, j)
instances of Exec(i) and Test(i) queries, we modify by replacing Pi’s message
zi in step (2)(b) by a message sampled from distribution $(Σ). Let G1(t) be
the game that follows G2 in the first t Exec queries while the remaining ones
are as in G1. The only difference in G1(t) and G1(t− 1) is in the message (zi),
and the covertness of Special Σ-protocol ensures that G1(t) and G1(t − 1) are
indistinguishable. Hence G2 and G1 are indistinguishable.

Game G3: Let G3 be the game which follows G2, except in all Auth(i, j)
instances of Exec(i) and Test(i) queries, we modify by replacing Pi’s message
bi in step (2)(a) by a message sampled from distribution $(Com). Similarly, the
covertness of Com implies that G3 and G2 are indistinguishable.

Game G4: Let G4 be the game which follows G3, except in all Auth(i, j)
instances of Exec(i) and Test(i) queries, we modify by replacing Pi’s message
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Ci in step (1) by a message sampled from distribution $(ComGA). Similarly, the
covertness of ComGA implies that G4 and G3 are indistinguishable.

Note that, in game G4, the response to Auth(i, j) instance of Exec(i) and
Test(i) queries is sampled by $(ComGA) in step (1), $(Com) in step (2)(a), and
$(Σ) in step (2)(b), and steps (3)-(4) depend only on the adversary’s response.
Hence, game G4 can be easily simulated using the public information.

Game G5: Let G5 be the game that follows G4 but in all Auth(i∗, j) instance
triggered by Test(i∗), we replace Pi’s message (pkj , fj) in step (4)(c) by uni-
formly random elements from respective domains. Let ε1 be the advantage by
which the adversary can distinguish between G5 and G4. The only difference in
these two games is in (fj , pkj) and from the property of KR scheme we know
that if (hj , pkj) is uniformly random then (fj , pkj) is uniformly random. So, ad-
versary A can distinguish between (fj , pkj) from G5 and G4 only if (hj , pkj) is
not uniformly random distributed in game G4. For bj , zj and cj from game G4, if(

(bj ,H(a′j)), •
)
6∈ Ψ∗ where a′j = fV(xj , cj , zj), then by the soundness property

of the ASPH scheme, (hj , pkj) in game G4 is statistically indistinguishable from
uniformly random string and (fj , pkj) is also statistically indistinguishable from
uniformly random string. Let εASPH be the negligible advantage adversary can
have in this. Hence with probability ε2 = ε1 − εASPH , a random interaction in

game G4 with adversary yields (bj , cj , zj) such that
(

(bj ,H(a′j)), •
)
∈ Ψ∗. We fix

the adversary initial randomness and run the interaction twice until adversary
outputs bj creates a fork. With atleast ε22/2 probability, we get two transcripts
(bj , cj , zj , c̃j , z̃j) such that a′ = fV(xj , cj , zj), ã

′ = fV(xj , c̃j , z̃j) and there exists
r and r̃ satisfy ((bj ,H(a′)), r) ∈ Ψ∗ and ((bj ,H(ã′)), r̃) ∈ Ψ∗. With probability at
least (1− ε3) (over public parameter of scheme Com), the commitment scheme
is perfectly binding over relation Ψ∗, and it thus implies that H(a′) = H(ã′). Let
εcol be the upper bound on the probability that the hash values of different a′ and

ã′ produce a collision. Hence with probability ε4 =
ε22
2 − ε3− εcol, adversary gets

(xj , a
′, cj , c̃j , zj , z̃j) such that cj 6= c̃j and V(xj , a

′, cj , zj) = V(xj , a
′, c̃j , z̃j) = 1.

By the special soundness property of Special Σ protocol, the adversary can ex-
tract w such that (xj , w) ∈ Ψ̃GA. If ε4 is non-negligible, then it breaks the Strong
Unforgeability of the scheme ΠGA. Hence, ε4 is negligible, implying that ε1 is
also negligible, because εASPH , εcol and ε3 are negligible.

Game G6: For each Auth(i, j) query triggered by Exec(i) in game G5, samples
Ci are as from $(ComGA). Game G6 exactly follows G5, except that we revert
this change by replacing Ci ← Com(i, ski) and by a similar argument used
between G4 and G3, we get that G5 and G6 are indistinguishable.

Game G7: For each Auth(i, j) query triggered by Exec(i) in game G6 in step
(2)(a), we sample bi from the distribution $(Com). In game G7, we revert this
change by replacing bi ← Com(H(ai)). By a similar argument as used between
G3 and G2, we get that G6 and G7 are indistinguishable.

Game G8: For each Auth(i, j) query triggered by Exec(i) in game G7 in step
(2)(b), we sample zi from the distribution $(Σ). In game G8, we revert this
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change by replacing zi ← P2(xi, wi, r1, ci). By a similar argument as used be-
tween G2 and G1, we get that G7 and G8 are indistinguishable. Note that game
G8 is the same as G0 and by succession of games we have shown that game G0

and G1 are indistinguishable. ut

Theorem 2 (External Covertness). The given scheme ΠMA = (KG,CG,
Auth) satisfies the external covertness property if ΠGA = (KGGA,CGGA,Ver,
Ver∗,ComGA) is a covert GA scheme, ΠASPH = (PG,Com,Hash,PHash)
is a δ-ASPH with associated covert commitment scheme and ΠKR = (Encδ,Decδ)
is a KR scheme.

Due to space constraint, we defer the proof of External covertness to Ap-
pendix D.

Round Complexity. It is easy to see that step 1 and step 2(a) can be combined in
one round. Similarly step 3 and step 4(a) can be combined. The Auth protocol
can be executed in 5 rounds. In the first round, Pi sends Ci and bi to Pj . In the
second round, Pj sends ci, Cj and bj to Pi. In third round, Pi sends cj and zi
to Pj . In the fourth round, Pj sends zi and (pki, fi) to Pi. In the fifth round,
Pi sends (pkj , fj) to Pj . In the Random Oracle Model (ROM), the protocol
can be executed in three rounds if ci and cj are computed as ci = H′(xi, bi)
and cj = H′(xj , bj) for a hash function H′ onto {0, 1}τ modeled as random
oracle. The only issue comes in Game G5 of Theorem 1 (Internal Covertness)
where adversary fork two transcript with same commitment. By using the general
forking lemma from [4], if adversary make atmost qH′ hash queries then we
get an algorithm that create the same two transcript with probability at least

ε2 ·
(
ε2
qH′
− 1

2τ

)
. The rest of the proof of internal covertness follows as it is.

4 Some Background on Lattices

Let d > 0 be a power of 2 and q be a prime. Define the rings R := Z[X]/(Xd+1)

and Rq := Zq[X]/(Xd + 1). For any element z =
∑d−1
i=0 ziX

i ∈ R, the `p norm

of z, for 1 ≤ p < ∞, is defined as ‖z‖p :=
(∑

i |zi|p
)1/p

, while its `∞ norm is

defined as ‖z‖∞ := max
i

{
|zi|
}

. To compute the norm of an element z ∈ Rq, we

use the unique representation where zi ∈
[
− q−12 , q−12

]
for each coefficient of z.

The norm definition can be naturally extended to vectors over Rkq .
We use lowercase bold letters to denote a column vector over Rq and upper-

case bold letters to denote a matrix over Rq. For a vector x, its ith coordinate
is denoted by xi. For a matrix M , we denote by Mj its jth column and by Mi,j

the element at its ith row and jth column. For any probability distribution D, we
use notation x ← D to denote that x is sampled with probability D(x). When

S is a finite set, we use notation x
$←− S to denote that x is sampled uniformly

at random from S. For probability distributions X and Y over a countable set
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S, we use ∆(X ,Y) to denote the statistical distance between X and Y which is
defined as

∆(X ,Y) =
1

2

∑
x∈S
|Pr[X = x]− Pr[Y = x]|.

For any β ∈ R>0, we use Sβ to denote the set of ring elements with infinity
norm less than or equal to β, i.e., Sβ = {a ∈ R

∣∣ ‖a‖∞ ≤ β}. We will use the
following bounds [40,3]

– If ‖f‖∞ ≤ β and ‖g‖1 ≤ γ then ‖f · g‖∞ ≤ βγ.
– If ‖f‖2 ≤ β and ‖g‖2 ≤ γ then ‖f · g‖∞ ≤ βγ.

We will use the following result about the factorization of a cyclotomic polyno-
mial modulo a prime number.

Theorem 3. [39, Corollary 1.2] Let d ≥ k > 1 be a power of 2 and q = 2k + 1
mod 4k is a prime. Then the polynomial Xd + 1 factors as

Xd + 1 =

k∏
j=1

(Xd/k − rj) mod q

for distinct rj ∈ Zq \ {0}, where Xd/k − rj is irreducible in Zq[X]. Furthermore

any y ∈ Zq[X]/(Xd + 1) that satisfies 0 < ‖y‖∞ ≤ q1/k√
k

has an inverse in

Zq[X]/(Xd + 1).

Discrete Gaussian: For any σ > 0, k ∈ Z>0 and y ∈ Rk, for all x ∈ Rk, define

ρσ,y(x) := exp
(
−‖x−y‖22

2σ2

)
. For any discrete set S ⊆ Rk, we extend the definition

as ρσ,y(S) :=
∑

x∈S exp
(
−‖x−y‖22

2σ2

)
. We use x← Dkσ,y to denote that

Pr
U∼Dkσ,y

[x = U ] :=
ρσ,y(x)

ρσ,y(Rk)
,

namely, x is sampled from Rk with probability proportional to ρσ,y(x). We omit
the parameter y when y = 0. We will use the following lemma from [2,38,3].

Lemma 1. For any δ, σ ∈ R+,k, d ∈ Z+,

Pr
[
‖x‖2 > δσ

√
kd | x← Dkσ

]
< δkd · exp

(
kd(1− δ2)

2

)
.

Computational Assumptions: We will work with a ring Rq = Zq[X]/(Xd + 1)
(where d is a power of 2), and security of our construction is based on the
hardness of module variants [9,34] of the Short Integer Solution (SIS) problem [1]
and the Learning With Errors (LWE) problem [43], as well as on the hardness
of the NTRU problem [26]. For convenience, we define the M-SIS problem in
the `2 and the `∞ norm, and the M-LWE problem only in the `∞ norm.
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Definition 3. For any n,m, q ∈ Z+, p ∈ {2,∞} and β ∈ R+, the M-SISpn,m,q,β

problem is defined as follows: Given A
$←− Rn×mq , find z ∈ Rn+mq such that[

In A
]
z = 0 and β ≥ ‖z‖p > 0.

Due to space constraint, we move the reminder on other used computational
assumptions and rejection sampling techniques to Appendix B.

5 Approximate Smooth Projective Hashing from M-LWE

In this section, we construct an Approximate Smooth Projective Hashing (ASPH)
scheme with a covert commitment. We adapt the ideas used in the PAKE scheme
by Katz and Vaikuntanathan [29], whose security relies on the LWE assump-
tion. We observe that the encryption method used in [29] can also be seen as a
commitment mechanism.

In Section 5.1, we provide several technical lemmas. Using them, we construct
an M-LWE-based covert commitment scheme in Section 5.2 and a δ-ASPH
scheme in Section 5.3.

5.1 Supporting Lemmas

In this section, we assume that q is a prime satisfying q = 5 mod 8. We follow
the technique from [34] to prove the following two lemmas.

Lemma 2. Let q be a prime satisfying q = 5 mod 8. For B
$←− Rm×kq with

probability at most qkd−dm/2(1 + 4−md), we have:

min
s∈Rkq \{0}

‖Bs‖∞ <

√
q

4
.

Proof. First we calculate the probability of 0 < mins∈Rkq \{0} ‖Bs‖∞ <
√
q

4 . By

the union bound, we get∑
t∈Rmq ,

0<‖t‖∞<
√
q/4

∑
s∈Rkq

Pr
B

$←−Rm×kq

(Bs = t) =
∑

t∈Rmq ,
0<‖t‖∞<

√
q/4

∑
s∈Rkq

∏
i≤m

Pr
bi

$←−Rkq

(
bTi s = ti

)
.

From Theorem 3, we know that Xd + 1 factors into two irreducible polynomials
f1 = Xd/2 − r1 and f2 = Xd/2 − r2 in Rq. Hence by the Chinese Reminder

Theorem (CRT), we have Rq ' Fqd/2 × Fqd/2 . The equality bTi s = ti holds iff it
holds for both the CRT components. If s is nonzero in a CRT component then
the equation holds with probability at most q−d/2 in that component. Notice
that, if ti is non-zero then Theorem 3 implies that ti is also non-zero in both
the CRT components as ‖ti‖∞ ≤

√
q/4. As t 6= 0, it implies that s should be
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non-zero on both CRT components to satisfy bTi s = ti for i where ti 6= 0. So the
probability can be upper bounded by

∑
t∈Rmq ,

0<‖t‖∞<
√
q/4

∑
s∈Rkq

∏
i≤m

q−d <

(√
q

4

)dm
qkdq−md.

Now we only need to bound the probability of mins∈Rkq \{0} ‖Bs‖∞ = 0. Notice

that, s is non-zero in at least one of the CRT component. By a simple proba-
bilistic argument, we can also bound this probability by qkdq−md/2. Hence the
result follows. ut

Lemma 3. Let q be a prime satisfying q = 5 mod 8. Given B ∈ Rm×kq , for

a
$←− Rmq with atmost q(k+1)d−dm/24−md probability, we have

min
z∈Rq \{0},s∈Rkq

‖((za+Bs)T , z)T ‖∞ <

√
q

4
.

Due to space restriction, we defer the proof of Lemma 3 to Appendix E.
We additionally need the following result from [28].

Theorem 4. [28, Theorem 3] Let χ ∈ N, ε > 0, B ∈ Rm×kq and

σ >
q
√

log(2d(1+1/ε))/π

χ . If mins∈Rkq \{0} ‖Bs‖∞ ≥ χ then ∆(fTB,U) ≤ 2ε where

f ←
(
DR,σ

)m
and U is uniform distribution over R1×k

q .

Let M :=
(

Zq [X]

〈Xd/2−1〉

)n
⊂ Rnq . We will require the following lemma to prove

the binding property of our commitment scheme.

Lemma 4. For all but an at most 2−md fraction of (a0,A1,A2) over (Rmq ×R
m×n
q ×Rm×kq ),

there does not exist (c,m, r, z,m∗, r∗, z∗) ∈ (Rmq ×M×R
k
q ×Rq ×M×R

k
q ×Rq)

such that m 6= m∗, and

max
{
‖z‖∞, ‖z(c− a0 −A1m)−A2r‖∞

}
≤
√
q

4

and

max
{
‖z∗‖∞, ‖z∗(c− a0 −A1m

∗)−A2r
∗‖∞

}
≤
√
q

4
.

Proof. Let A′ :=
[
a0 A1

]
. Fix some c,m,m∗ such that m 6= m∗, and let

y := c− a0 −A1m = c−A′
[

1
m

]
and

y∗ := c− a0 −A1m
∗ = c−A′

[
1
m∗

]
.
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Let f1 =
Zq [X]

〈Xd/2−r1〉
, f2 =

Zq [X]

〈Xd/2−r2〉
, where Xd/2−r1 and Xd/2−r2 are irreducible

factors of Xd−1 over Zp as stated in Theorem 3. From the description of message
space M, we get that m 6= m′ mod f1 and m 6= m′ mod f2.

Asm 6= m∗, we get that

[
1
m

]
and

[
1
m∗

]
are linearly independent. Therefore,

for a uniformly random choice of a0 andA1, we have that y and y∗ are uniformly
random and independent.

Let E1 be the event that min s∈Rkq ,z∈Rq
s.t. 0<‖z‖<√q/4

‖yz + A2s‖∞ ≤
√
q/4 and E2

be the event that min s∈Rkq ,z
∗∈Rq

s.t. 0<‖z∗‖<√q/4

‖[y∗z +A2s‖∞ ≤
√
q/4. From Lemma 3,

we get Pra0,A1
[E1 and E2] ≤ q2(k+1)d−md · 2−4md.

Now, using the union bound over c,m,m∗, we deduce that, with at most

qmd+nd · q2(k+1)d−md · 2−4md < q(k+n+1)2d · 2−4md < 2−md,

probability over the uniform choice of (a0,A1,A2) over (Rmq ×R
m×n
q ×Rm×kq ),

there exists (c,m, r, z,m∗, r∗, z∗) such that m 6= m∗ and

‖z(c− a0 −A1m)−A2r‖∞ ≤
√
q

4
, 0 < ‖z‖∞ ≤

√
q

4

and

‖z∗(c− a0 −A1m
∗)−A2r

∗‖∞ ≤
√
q

4
, 0 < ‖z∗‖∞ ≤

√
q

4
.

ut

5.2 Covert Commitments from M-LWE

Let us first describe the commitment scheme.

– PG(λ): Given the security parameter λ, choose k, n ∈ Z+, m > (k + n +

1) log q ∈ Z, β <
√
q/4 ∈ R+, a0

$←− Rmq , A1
$←− Rm×nq , and A2

$←− Rm×kq .

Let M :=
(

Zq [X]

〈Xd/2−1〉

)n
⊂ Rnq 7 .

– Com(m; r, e): For a message m ∈M, sample vectors r
$←− Rkq and e← Smβ .

Output the commitment

Com(m; r, e) = c = a0 +A1m+A2r + e.

– Ver(c,m, r, z): Output 1 if ‖z(c − a0 − A1m) − A2r‖∞ ≤
√
q

4 , z ∈ Rq,
0 < ‖z‖∞ ≤

√
q/4, and m ∈M, otherwise output 0.

7 We choose such a message spaceM to make sure that there does not exist m,m′ ∈
M such that m 6= m′ but either m = m′ mod f1 or m = m′ mod f2 where

f1 =
Zq [X]

〈Xd/2−r1〉
, f2 =

Zq [X]

〈Xd/2−r2〉
. Here Xd/2 − r1 and Xd/2 − r2 are irreducible

factors of Xd − 1 over Zp as stated in Theorem 3. We are using this condition in
Lemma 4.
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Covertness of the commitment (which implies the computational hiding prop-
erty) directly relies on the M-LWEm,k,q,β assumption. We get the statistical
binding property as a corollary of Lemma 4.

5.3 δ-ASPH Scheme

We construct a δ-ASPH scheme on relations

Ψ :=
{(

(c,m), r, 1
)
| c ∈ Rmq ,m ∈M, r ∈ Rkq , ‖c− a0 −A1m−A2r‖ ≤ β

}
8

and

Ψ∗ :=
{(

(c,m), r, z
)
| c ∈ Rmq ,m ∈M, r ∈ Rkq ,Ver(c,m, r, z) = 1

}
.

– The public parameters consist of β ∈ R+, σ ≥ 4
√
q log(2d(1 + 1/ε))/π and

δ := β(m+ 1) · σ
√

2d.
– Hash(c,m;f): Given commitment c and message m, first sample f ←
Dm+1
σ , then compute the hash value h = fT

(
(c− a0 −A1m)T , 1

)T
and

output the projection key pk :=
(
fT (AT

2 0)T
)T

.

– PHash(pk,m, r): Given the projection key pk, message m and witness r
for commitment c, compute the hash value as h′ = pkT · r.

Correctness. Assume that we are given c, a commitment to message m with
witness r, i.e., ‖c− a0 −A1m−A2r‖∞ ≤ β. This implies that

h− h′ = fT
(

(c− a0 −A1m)T , 1
)T
− fT (AT

2 0)Tr

= fT
(

(c− a0 −A1m−A2r)T , 1
)T

.

Let fT = (f1, . . . , fm+1). As vector f is from a Gaussian distribution, by
Lemma 1 with probability at least (1 − 2−d/7)m+1 ≥ 1 − (m + 1) · 2−d/7, we
have ∀i ∈ [m + 1], ‖fi‖2 ≤ σ

√
2d. It implies that, with probability at least

(1−m · 2−d/7), it holds that ‖h− h′‖∞ ≤ β(m+ 1) · σ
√

2d = δ.

Soundness. Let c be a commitment and let message m be such that there does
not exist (r, z) such that Ver(c,m, r, z) = 1 i.e.

∀(r, z) ∈ Rk+1
q : ‖z(c−a0−A1m)−A2r‖∞ >

√
q/4 or ‖z‖∞ 6∈ (0,

√
q/4]. (1)

We want to show that (h,pk) =
(
fT
(
(c− a0 −A1m)T , 1

)T
, (fT (AT

2 0)T )T
)

is statistically indistinguishable from Rk+1
q . Let B :=

[
A′2 t

]
∈ Rm×(k+1)

q where

8 Set of commitment, message and witness generated by an honest party.
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A′2 = [AT
2 0]T and t =

(
(c− a0 −A1m)T 1

)T
. Lemma 2 implies that with

probability at least
(
1− 2−d

)
, we have

∀s ∈ Rkq \{0}, ‖A2s‖∞ ≥
√
q/4 i.e. ∀s ∈ Rkq \{0}, ‖A

′
2s‖∞ ≥

√
q/4. (2)

Therefore, from Equation 1 and 2, we get the ∀s ∈ Rk+1
q \{0}, ‖Bs‖∞ ≥

√
q/4.

Hence Theorem 4 implies that ∆(fTB,U) ≤ 2ε, where U $←− Rk+1
q .

Covertness. From Equation 2 and Theorem 4, we get that ∆(fTA′2,U) ≤ 2ε

where U $←− Rkq . Hence, the covertness property follows.
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A Additional Definitions

A.1 Special Σ-Protocols

A Σ-protocol [13,12] is a 3-move interactive protocol between a prover and a
verifier. Let Π = (P1,P2,V) be a triple of algorithms for a Σ-protocol for
relation Ψ = {(x,w)}. Let prover’s input be a statement-witness pair (x,w), and
verifier’s input be statement x.

– Prover executes algorithm P1(x,w; r) and outputs the first message a using
randomness r.

– Given challenge c sent back by the verifier, prover executes the algorithm
P2(x,w, r, c) and outputs the second message z.

– Finally, the verifier runs the algorithm V(x, a, c, z) and outputs a bit indi-
cating the decision.

The typical requirements for Σ-protocols are completeness, (honest-verifier)
zero-knowledge and special soundness. In [27], Jarecki defined specialΣ-protocols
which have some additional properties that are desirable for constructing covert
authentication schemes, namely, covertness and special simulation.

Here, we generalize the definition of Special Σ-protocols from [27] so that
to capture the notion of relaxed soundness [6], in which we allow the soundness
extractor to recover a witness belonging to a somewhat larger language than the
one used for the prover’s secret. More formally, we say that Π = (P1,P2,V) is

a Special Σ-protocol with relations Ψ, Ψ̃ and efficiently sampleable distribution
$(Σ), if it satisfies the following properties.

1. Completeness: The prover knows a witness w such that (x,w) ∈ Ψ and follows
the protocol, then the verifier accepts with probability negligibly close to 1.

2. Special Soundness: There exists an efficient knowledge extractor Ext that,
on input two accepting transcripts (x, a, c, z) and (x, a, c′, z′), where c 6= c′,

outputs a witness w̃ satisfying relation Ψ̃ , i.e., w̃ = Ext(x, a, c, z, c′, z′) and

(x, w̃) ∈ Ψ̃ .
3. Simulation: There exists a simulator that, on input a statement x, outputs a

transcript that is computationally indistinguishable from a transcript of the
interaction between an honest prover and the verifier.

4. Covertness: The distribution of the prover’s second message z is computa-
tionally indistinguishable from the distribution $(Σ) (which can be efficiently
sampled via the public information).

5. Special Simulation: There exists an efficiently computable function fV such
that V (x, a, c, z) = 1 if and only if a = fV(x, c, z).
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B Additional Preliminaries on Lattices

B.1 Rejection Sampling

In our Sigma protocols, we will employ the rejection sampling theorem, (intro-
duced in [38, Theorem 4.6]) as stated in [16]. We use Rej(z, b, σ) function defined

in [16]. To compute Rej(z, b, σ), sample u
$←− [0, 1). If u > 1

3 exp
(
−2〈z,b〉+‖b‖22

2σ2

)
then output 0, otherwise output 1.

Lemma 5. [38,16] Let b ∈ Rn. Consider a procedure that samples a y ← Dnσ
and then returns the output of Rej(z := y + b, b, σ) where σ ≥ 11‖b‖. The
probability that this procedure outputs 1 is within 2−100 of 1/3. The distribution
of z, conditioned on the output being 1 is within statistical distance 2−100 of Dnσ .

B.2 Computational Assumption

Definition 4. For any n,m, q ∈ Z+ and β ∈ R+, the M-LWEn,m,q,β problem

is defined as follows: Let X be the distribution obtained by sampling A
$←− Rn×mq ,

r
$←− Rmq , and e

$←− Snβ , and outputting

(
A,
[
In A

] [e
r

])
. The problem is to

distinguish the sample from either X or U(Rn×mq )× U(Rnq ).

Remark 1. In above definition of M-LWE problem, we assumed that r is sam-

pled uniformly from Rmq , but we can also assume that r
$←− Smβ . Both these

problems have almost equivalent hardness.

Definition 5. For any σ ∈ R>0 and q ∈ Z+, the NTRUq,σ is defined as fol-
lows: Let X be the distribution obtained by sampling f, g ← D2

σ and outputting
f/g if g is invertible otherwise restart. The problem is to distinguish between the
samples from X and U(Rq).

C Lattice-Based Group Authentication

In this section, we provide a lattice-based GA protocol, that is extracted and
adapted from the group signature scheme by del Pino et al. [16]. For complete-
ness, first in Section C.1 we describe the commitment scheme from [3]. Then, in
Section C.2 we describe the GA protocol.

C.1 Lattice-Based Commitment Schemes with Companion
Zero-Knowledge Proofs

Here, for the sake of completeness, we recall the lattice-based commitment
scheme from [3], which admits an efficient companion zero-knowledge proof of a
valid opening.
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Let κ ∈ Z+, σ := 11κ
√

3d, the challenge set C be

C :=
{
c ∈ Rq | ‖c‖1 = κ and ‖c‖∞ = 1

}
(3)

and C = {c1 − c2 | c1 6= c2 ∈ C}. The public information for the commitment
scheme is

aT1 =
[
1 a1 a2

]
, aT2 =

[
0 1 a3

]
where (a1, a2, a3)

$←− (Rq)3. To commit to message m ∈M, pick a vector r
$←− S3

1

and output the commitment

Com(m; r) =

[
t1
t2

]
=

[
aT1
aT2

]
· r +

[
0
m

]
.

A natural way of opening of the commitment t1, t2 is by releasing the wit-
ness r and message m, the verifier accepts if satisfies the following conditions
‖r‖∞ ≤ 1, t1 = aT1 r and m = t2−aT2 r. However, existing zero-knowledge proofs
capturing such exact relations [36,47,8] tend to be relatively inefficient. For this
reason, Baum et al. [3] proposed a relaxed opening algorithm for the scheme,
where the opening consists of a vector r̃ ∈ R3

q and an element c ∈ C, such that

‖r̃‖2 ≤ 4σ
√
d, and

f ·
[
t1
t2

]
= f ·

[
aT1
aT2

]
· r̃ + c ·

[
0
m

]
.

Lemma 6. [3, Lemma 7] If there exists an algorithm A that breaks ε-binding
property of the commitment scheme then there also exists an algorithm A′ that
solves M-SIS2

1,2,q,16σ
√
κd

with probability at least 1/2 + ε.

Lemma 7. [3, Lemma 6] For any m,m′ ∈ M, if there exists an algorithm A
that breaks ε-hiding property of the commitment scheme then there also exists
an algorithm A′ that solves M-LWE2,1,q,1 with probability at least 1/2 + ε.

In the following, we will prove that the scheme from [3] satisfies covertness.

Lemma 8 (Covert Commitment). For any m ∈ Rq, if there exists a PPT
algorithm A that distinguish between the sample from either Com(m; r) for r ←
S3
1 or U(R2

q) with advantage ε then there also exists a PPT algorithm A′ that
solves M-LWE2,3,q,1 with advantage ε in same time.

Proof. Let

(
B =

[
b1
b2

]
, t

)
be the given M-LWE instance where b1 ∈ Rq, b2 ∈

Rq and t ∈ R2
q. The algorithm A′ generates a random element R ∈ Rq, and the

public information of the commitment scheme is[
A1

A2

]
=

[
1 R
0 1

] [
1 0 b1
0 1 b2

]
=

[
1 R b1 +Rb2
0 1 b2

]

24



and commitment of message m as[
c1
c2

]
=

[
1 R
0 1

]
t+

[
0
m

]
.

It is easy to see that the distribution of A1 and A2 is same as in the com-
mitment scheme because R, b1 and b2 are random elements.

The algorithm A′ execute the algorithm A on the commitment. If t =[
I2 B

]
s for some s ← S3

1 , then

[
c1
c2

]
is a commitment of message m with wit-

ness s and algorithm A will output with probability 1
2 + ε. Therefore algorithm

A′ will also distinguish with probability 1
2 + ε.

C.2 Group Authentication Protocol

Let S := Zq ⊂ Rq be the set of the identities of group members and let gT :=[
1
√
q
]
. Let κ be the parameter associated with the challenge set (equation 3)

and let s = 10
√
dq and r = 2.34

√
q be the widths of Gaussian distributions that

we will use in our construction. Let η := 11κ
√
d, η1 := 22κsd, and η2 := 22κ(r+

s)d. We set these parameters according to the rejection sampling techniques
(Theorem 5) that will be used later in the protocol. The scheme is as follows.

– KG: output a key pair (gpk, gsk) where gsk :=
(
R

$←− S2×2
1 , s1, s2 ←

(D2
s)

2, s3 ← D3
r

)
and gpk :=

(
r, s, (a1, a2, a3)

$←− R3
q,a1 := [1 a1 a2]T , a2 :=

[0 1 a3]T , a
$←− R2

q, b
T = aTR ∈ R1×2

q , u := aTs1 + bTs2 + aT2 s3

)
.

– CG: The GM uses gsk to generate (ski) ← CG(gsk, i) as a certificate

for group member with identity i, where skTi =
[
sTi1 s

T
i2
sTi3

]
← D4

s × D3
r ,

satisfying aTsi1 + (bT + igT )si2 = u − aT2 si3 . As bT = aTR, GM samples
si3 ←− D3

r and uses GPV trapdoor [22] to sample vectors9 si1 , si2 such that
aTsi1 + (bT + igT )si2 = u − aT2 si3 . For the details on the computation of
certificate ski, we refer the reader to [16, Section 2.6]. By Lemma 1, with
probability at least 1−O(q2−0.44d), for all i ∈ Zq, we have ‖si1‖2 ≤ 2s

√
d,

‖si2‖2 ≤ 2s
√
d, ‖si3‖2 ≤ r

√
6d.

– Ver(gpk, sk = (s1, s2, s3), i, c): Output 1 if i ∈ S,c = 1, ‖s1‖2 ≤ 2s
√
d,

‖s2‖2 ≤ 2s
√
d, ‖s3‖2 ≤ r

√
6d and aTs1+(bT +igT )s2+aT2 s3 = u, otherwise

output 0.
– Ver∗(gpk, sk = (s1, s2, s3), i, c): Output 1 if i ∈ S, c ∈ C, ‖s1‖2 ≤ 4η1

√
d,

‖s2‖2 ≤ 4η1
√
d, ‖s3‖∞ ≤ 8η1η

√
6d+ 4κη2

√
6d and aT cs1 + (bT + igT )cs2 +

aT2 s3 = c2 · u, otherwise output 0.

– Com: For i ∈ S, sample r
$←− S31 and output C :=

[
t1
t2

]
=

[
aT1
aT2

]
r +

[
0
i

]
.

9 Here we use the condition that s = 10
√
dq ≥ 2(3

√
d+ 1)

√
q + 1.
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Remark 2. To show that i ∈ S, [16] uses the property that all the elements in S
are preserved under the automorphisms of the cyclotomic ring R. Let σj : X →
Xj be the automorphisms for all odd integers j between 0 and 2d. Let σ−1j be

the automorphism such that ∀v ∈ Rq, σ−1j (σj(v)) = v. It was shown in [16] that
for any element v ∈ Rq, σ5(v) = σ−1(v) = v if and only if v ∈ S.

Let the committed certificate validity relation ΨGA be

ΨGA =
{(

(gpk, C,C ′), (ski, i, r, r
′)
)
| Ver(gpk, ski, i, c) = 1,C = Com(i; r) and

C ′ = Com(i
√
q; r′)

}
.

The relaxed certificate validity relation Ψ̃GA is defined as

Ψ̃GA =
{(

(gpk), (ski, i, c)
)
| Ver∗(gpk, ski, i, c) = 1

}
.

For the authentication of group membership, the prover first sends the com-
mitment C to his identity to the verifier and then proves that he is a valid
group member by following the Σ protocol on relation ΨGA with statement
(gpk, C). Now we describe the Special Σ-protocol on relations (ΨGA, Ψ̃GA).
Let (P1,P2,V) be the tuple of algorithms for the Σ-protocol. Prover’s input
is (gpk, (ski = (si1 , si2 , si3), i, r, r′)) and verifier’s input is (gpk, t1, t2, t

′
1, t
′
2),

where r, r′
$←−
(
S31
)2

and t1 = aT1 r, t2 = aT2 r + i, t′1 = aT1 r
′, t′2 = aT2 r

′ + i
√
q .

– P1: Prover first samples y,y′,y−1,y5 ← D3
η, and yTs := (yTs1 ,y

T
s2 ,y

T
s3) ←

D2
η1 ×D

2
η1 ×D

3
η2 . Then, compute

w1 = aT1 y, w
′
1 = aT1 y

′, w1,−1 = σ−1(a1)Ty−1, w1,5 = σ5(a1)Ty5,

w2 =
√
qaT2 y−aT2 y′, w2,−1 = aT2 y−σ−1(a2)Ty−1, w2,5 = aT2 y−σ5(a2)Ty5,

and ws =
[
aT bT + [t2 t′2] aT2

]
ys

Output a := (w1, w
′
1, w1,−1, w1,5, w2, w2,−1, w2,5, ws).

– P2: Let sT := (sT1 , s
T
2 , s

T
3 ) =

[
sTi1 s

T
i2

(si3 − [r r′]si2)T
]
. Given a challenge

c ∈ C, prover computes z = rc+y, z′ = r′c+y′, z−1 = σ−1(r)c+y−1, z5 =
σ5(r)c+ y5, z

T
s = (zTs1 , z

T
s2 , z

T
s3) = (sc+ ys)

T . Then compute (for rejection

sampling) u← Rej
(

(z
η ,

z′

η ,
z−1

η , z5

η ,
zs1
η1
,
zs2
η1
,
zs3
η2

), (rc
η ,

r′c
η ,

σ−1(r)c
η , σ−1(r)c

η , cs1

η1
, cs2

η1
, cs3

η2
), 1
)

If u = 1 then output z :=
(
z, z′, z−1, z5, zs

)
otherwise restart.

– V: Given z :=
(
z, z′, z−1, z5, zs

)
, compute

w1 = aT1 z − t1c, w′1 = aT1 z
′ − t′1c, w1,−1 = σ−1(aT1 )z−1 − σ−1(t1)c,

w1,5 = σ5(aT1 )z5 − σ5(t1)c, w2 =
√
qaT2 z − aT2 z′ − (

√
q · t2 − t′2)c,

w2,−1 = aT2 z − σ−1(a2)Tz−1 − (t2 − σ−1(t2))c,
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w2,5 = aT2 z−σ5(a2)Tz5−(t2−σ5(t2))c, ws =
[
aT bT + [t2 t′2] aT2

]
zs−cu.

Output 1 if a = (w1, w
′
1, w1,−1, w1,5, w2, w2,−1, w2,5, ws), ‖zs‖2 ≤ 4η1

√
d +

η2
√

6d, and max
{
‖z‖2, ‖z′‖2, ‖z−1‖2, ‖z5‖

}
≤ η
√

6d; otherwise output 0.

Theorem 5. (P1,P2,V) is a Special Σ-protocol for relations
(
ΨGA, Ψ̃GA

)
un-

der M-SIS2
1,2,q,16σ

√
κd

assumption.

Proof. The correctness of the protocol easily follows from the fact that σ5(i) =
σ−1(i) = i and

aTs1 + (bT + [t2 t′2])s2 + aT2 s3

= aTsi1 + bTsi2 + ([t2 t′2]si2) + aT2 si3 − aT2 [r r′]si2

= u+ i[1
√
q]si2 −

(
[t2 t′2]− aT2 [r r′]si2

)
= u.

For simulation of the protocol, we proceed as follows.

1. Sample c
$←− C, z, z′, z−1, z5 ← (D3

η)4, zs1 , zs2 ← (D2
η1)2, and zs3 ← D3

η2 .
2. Compute a = (w1, w

′
1, w1,−1, w1,5, w2, w2,−1, w2,5, ws) as done in V.

3. Output (a, c, z) with probability 1/3, otherwise repeat.

By Lemma 5, this transcript is not distinguishable with advantage more than
2−100 from a valid transcript from the interaction between a prover and a verifier.
Due to the rejection sampling step done in P2, the distribution of z depends
only on the public parameter, so it satisfies the covertness property. The special
simulation function fV is already defined in V.

To show the special-soundness property, assume that we are given two tran-
scripts trans1 = (a, c, z) and trans2 = (a, c̃, z̃) where a = (w1, w

′
1, w1,−1, w1,5, w2,

w2,−1, w2,5, ws), z = (z, z′, z−1, z5, zs), z̃ = (z̃, z̃′, z̃−1, z̃5, z̃s) and c 6= c̃.
Let c∗ = c − c̃ and z∗ = z − z̃ = (z∗, z′

∗
, z−1

∗, z5
∗, zs

∗). We get w1 =
aT1 z − t1c = aT1 z̃ − t1c̃, i.e. aT1 (z∗) = t1c

∗. Similarly, we get aT1 (z′∗) = t′1c
∗,

σ−1(aT1 )(z∗−1) = σ−1(t1)c∗, σ5(aT1 )(z∗5) = σ5(t1)c∗.
Let us assume that c∗t2 = aT2 z

∗ + c∗i∗, c∗t′2 = aT2 z
′∗ + c∗j∗, c∗σ−1(t2) =

σ−1(a2)Tz∗−1+c∗i∗−1 and c∗σ5(t2) = σ5(a2)Tz∗5+c∗i∗5 . As c∗ ∈ C is invertible, we
can compute i∗, j∗, i∗−1 and i∗5. From w2, we get

√
qaT2 (z∗)−aT2 z′∗ = c∗(

√
qt2−

t′2). Therefore j∗ = i∗
√
q. Similarly, from w2,−1 and w2,5, we get i∗ = i∗−1 = i∗5.

We then obtain the following

c∗
[
t1
t2

]
=

[
aT1
aT2

]
z∗+c∗

[
0
i∗

]
, σ−1−1(c∗)

[
t1
t2

]
=

[
aT1
aT2

]
σ−1−1(z∗−1)+σ−1−1(c∗)

[
0

σ−1−1(i∗)

]
,

and σ−15 (c∗)

[
t1
t2

]
=

[
aT1
aT2

]
σ−15 (z∗5) + σ−15 (c∗)

[
0

σ−15 (i∗)

]
.

By Lemma 1, with high probability, ‖z∗‖2, ‖z′∗‖2, ‖z∗−1‖2, ‖z∗5‖2 ≤ 2η
√

6d.
On the ring Rq, it is easy to see that automorphism preserves the `p norm. We
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get that σ−15 (c∗), σ−1−1(c∗) ∈ C and ‖σ−1−1(z∗−1)‖2 = ‖z∗−1‖2, ‖σ−15 (z∗5)‖2 = ‖z∗5‖2
. From Lemma 6, we know that the commitment scheme stasfies the binding
property under the M-SIS2

1,2,q,16σ
√
κd

assumption. From the binding property we

get that i∗ = σ−1−1(i∗) = σ−15 (i∗). Therefore i∗ ∈ S. Hence, with high probability,
we have i∗ ∈ S,

c∗
[
t1
t2

]
=

[
aT1
aT2

]
z∗ + c∗

[
0
i∗

]
& c∗

[
t′1
t′2

]
=

[
aT1
aT2

]
z′∗ + c∗

[
0

i∗
√
q

]
Let z∗Ts = (xT1 ,x

T
2 ,x

T
3 ). By ws, we get

aTx1 + bTx2 + [t2 t
′
2]x2 + aT2 x3 = c∗u

=⇒ aT c∗x1 + bT c∗x2 + c∗[t2 t
′
2]x2 + aT2 c

∗x3 = (c∗)2u

⇐⇒ aT c∗x1 + bT c∗x2 + c∗i∗[1
√
q]x2 + aT2 (c∗x3 + [z∗ z′∗]x2) = (c∗)2u

By Lemma 1, we get that ‖x1‖2 ≤ 4η1
√
d, ‖x2‖2 ≤ 4η1

√
d and ‖c∗x3 +

[z∗ z′∗]x2‖∞ ≤ 8η1η
√

6d+4κη2
√

6d. Therefore, we obtain that
(

(gpk), (s̃ki∗ , i
∗, c∗)

)
∈

Ψ̃GA where s̃k
T

i∗ =
(
xT1 ,x

T
2 , (c

∗x3 + [z∗ z′∗]x2)T
)
. ut

In the rest of the section, we show that the proposed GA scheme is secure.
To prove the strong unforgeability property, let GA∗ = (KG∗,CG∗,Ver,Ver∗)
be the scheme with the following modifications in the algorithms KG and CG.

– KG∗: Outputs (gpk, gsk) where gsk :=
(
R

$←− S2×2
1 , s1, s2 ← (D2

s)
2, s3 ←

D3
r , i
∗ $←− S

)
and gpk :=

(
r, s, (a1, a2, a3)

$←− R3
q,a1 := [1 a1 a2]T , a2 :=

[0 1 a3]T , a
$←− R2

q, b
T = aTR− i∗gT ∈ R1×2

q , u := aTs1 + bTs2 + aT2 s3

)
.

– CG∗: Generates (ski) ← CGIE∗(gsk, i) certificate for group member with
identity i that satisfy

aTsi1 +
(
aTR+ (i− i∗)gT

)
si2 = aTsi1 +

(
bT + igT

)
si2 = u− aT2 si3 .

We use the following lemma from [16].

Lemma 9. [16, Lemma 6.4] For any PPT adversary A, the advantage to break
the strong unforgeability in GA scheme is at most 2(ε1 + ε2) + ε3 where ε1 is
advantage in solving NTRUq,r, ε2 is advantage in solving M-LWE1,1,q,1 and
ε3 is the advantage in breaking the strong unforgeability of GA∗ scheme.

Proof. We use the succession of games.
Game G0: The challenger B runs the GA protocol honestly and gives the gpk
to the adversary A. The goal of the adversary is to break strong unforgeability.
Game G1: B sets aT2 = [0 1 f/g] where f, g,← Dr. Game G1 is equivalent to
game G0 under the NTRUq,r assumption.

Game G2: B sets bT ← R1×2
q . Notice that now if bT 6= aTR, then to generate

the keys for user i, we can sample si1 , si2 ← D2
s and we can use NTRU trapdoor

on aT2 to sample the si3
10. This game is indistinguishable from previous game

10 Here, we use the condition that r = 2.34
√
q/ For details on this please refer to [17,16]
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under the M-LWE1,1,q,1 assumption.

Game G3: B replace bT by bT − i∗gT . As bT is uniformly random, this game is
indistinguishable from previous game.
Game G4: B sets bT = aTR − i∗gT . By M-LWE1,1,q,1 assumption this game
is indistinguishable from previous game.
Game G5: B sets aT2 = [0 1 a2] where a2 ← Rq. This game is equivalent to
previous game under NTRUq,r assumption. Notice that Game G5 is exactly the
strong unforgeability GA∗ scheme. The result follows.

Theorem 6. For any PPT adversary A the advantage to break the strong cer-
tificate unforgeability in GA∗ scheme is negligible under the M-LWE1,1,q,1 and
M-SIS∞1,3,q,γ assumption where

γ = max{8κη1d3/2 + 4
√

2sd2, 8
√

6η1ηd+ 4κη2
√

6d}.

Proof. Let vT = (v1, v2, v3, 1) be the challenge M-SIS∞1,3,q,γ instance and the

challenger’s aim to find non-zero ‖s‖ ≤ γ such that vTs = 0. Challenger samples

i∗
$←− S, R

$←− S2×2
1 , si∗1 , si∗2 ← D

4
s and si∗3 ← D

3
r . Consider aT = [v1 v2], bT =

aTR − i∗gT ,aT2 = [0 1 v3], u = aTsi∗1 + (aTR)si∗2 + aT2 si∗3 as the public infor-
mation gpk and R, i∗ be the secret to GM.

By M-LWE1,1,q,1 assumption, adversary A will not be able to compute the
value of i∗ from a and b. Let us assume that adversary finds a ((gpk), ((s1, s2, s3), j, c) ∈
Ψ̃GA. As in GA∗ scheme, i∗ is sampled uniformly at random, with probability
1/|S| = 1/q, we have i∗ = j. Let us assume for rest of the proof that i∗ = j.

Challenger generates the ski∗ independently where si∗3 is sampled from the
distribution D3

r . Then with high probability s3 − c2si∗3 6= 0. Hence challenger
computes x1 = cs1 − c2si∗1 , x2 = cs2 − c2si∗2 and x3 = s3 − c2si∗3 such that

aT (x1 +Rx2) + aT2 x3 = 0, x3 6= 0 and ‖x1 +Rx2‖∞ ≤ γ, ‖x3‖∞ ≤ γ.

It implies that, if there exists an adversary that breaks strong unforgeability
with advantage ε, then with advantage ≈ ε/q, the challenger can also solve M-
SIS∞1,3,q,γ . ut

Corollary 1. For any PPT adversary A, the advantage of A in breaking the
strong unforgeability of the provided GA scheme is negligible under the M-
SIS∞1,3,q,γ , the M-LWE1,1,q,1 and the NTRUq,r assumptions where

γ = max{8κη1d3/2 + 4
√

2sd2, 8
√

6η1ηd+ 4κη2
√

6d}.

From Theorem 5 and Corollary 1, by using the M-SIS and M-LWE hardness
results from [34], we set the parameters as, taking λ as the security parameter,

κ, d,m, n = poly(λ), 233κ4d6λ2 · ω(log2 λ) ≤ q ≤ poly(λ)

r = 2.34
√
q and s = 10

√
dq.
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D Proof of External Covertness

Proof of Theorem 2:
Let us assume that PPT adversary Ã is given the key pair (mpk,msk) and

certificate (ski) for all i ∈ [N ]. Suppose that Ã can distinguish between game

G̃Ã(1τ , 0) and G̃Ã(1τ , 1) with advantage ε. Let G̃Ã(1τ , b̃, i∗, j∗) be a game which

follows G̃Ã(1τ , b̃) except when adversary queries Ext-Test(i, j) for i 6= i∗ or
j 6= j∗, it halts and outputs 1. Hence, there exist group members with iden-
tity i∗ and j∗ such that adversary can distinguish between G̃Ã(1τ , 0, i∗, j∗) and

G̃Ã(1τ , 1, i∗, j∗) with at least ε/N2 advantage, where N is the group size. Let

G0 = G̃Ã(1τ , 0, i∗, j∗) and G1 = G̃Ã(1τ , 1, i∗, j∗). By the succession of games

we will show that adversary Ã can not distinguish between G0 and G1 with
non-negligible advantage.

Game G0: Adversary is given a transcript (C̃i, b̃i, c̃i, z̃i, p̃ki, f̃i, C̃j , b̃j , c̃j , z̃j , p̃kj , f̃j)
sampled as ci, cj ← C, Ci, Cj ← $(ComGA), bi, bj ← $(Com), zi, zj ← $(Σ), and
(pki, pkj)← $(Upk) , (fi, fj)← $(Uf ).

Game G1: Adversary is given a valid transcript of Auth protocol followed by
group member i∗ and j∗. The transcript is a tuple (Ci, bi, ci, zi, pki, fi, Cj , bj ,
cj , zj , pkj , fj), where we have

ci, cj ← C, Ci = ComGA(i, ski; ri), ai = P1(xi, wi; r1), bi = Com(H(ai), r2),

zi = P2(xi, wi, r1, ci), a
′
i = fV(xi, ci, zi), (hi, pki) = Hash(bi,H(a′i; r3)),

(ηi, fi) = Encδ(hi; r4), Cj = ComGA(j, skj ; rj), aj = P1(xj , wj ; r5),

bj = Com(H(aj), r6), zj = P2(xj , wj , r5, cj), a
′
j = fV(xj , cj , zj),

(hj , pkj) = Hash(bj ,H(a′j ; r7)), and (ηj , fj) = Encδ(hj ; r8).

Game G2: Let G2 be the game that follows G1 except fj is sampled from
distribution $(Uf ). The KR scheme ensures that fj is indistinguishable from
$(Uf ). Hence, games G2 and G1 are indistinguishable.

Game G3: Let G3 be the game that follows G2 except pkj is sampled from
distribution $(Upk). In game G2, pkj = Hash(bi,H(a′j); r7), where randomness
r7 is hidden from the adversary. From the ASPH scheme, we know that pkj ←
Hash(b,H(a)) is indistinguishable from $(Upk) for any value of b and a. Hence,
Game G3 and G2 are indistinguishable.

Game G4: Let G4 be the game that follows G3 except that zj is sampled from
$(Σ). By the covertness of the special Σ-protocol Σ, games G4 and G3 are
indistinguishable.

Game G5: Let G5 be the game that follows G4 except that bj is sampled from
$(Com). By the covertness of commitment scheme Com, games G5 and G4 are
indistinguishable.
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Game G6: Let G6 be the game that follows G5 except that Cj is sampled from
$(ComGA). By the covertness of commitment scheme ComGA, games G6 and
G5 are indistinguishable.

Game G7: Let G7 be the game that follows G6 except that fi ← $(Uf ),
pki ← $(Upk), zi ← $(Σ), bi ← $(Com), and Ci ← $(ComGA). By using a
similar arguments used between game G1 to G6, we get that game G7 and G6

are indistinguishable. Note that game G7 is the same as game G0. Hence, the
adversary Ã can not distinguish between game G0 and G1 with non-negligible
advantage. In other words, ε is negligible. ut

E Proof of Lemma 3

Proof. By the union bound, the probability of 0 ≤ min s∈Rkq ,z∈Rq
s.t. 0<‖z‖∞<

√
q/4

‖za +

Bs‖∞ <
√
q

4 is bounded by∑
t∈Rmq ,

0<‖t‖∞<
√
q/4

∑
s∈Rkq ,z∈Rq

s.t. 0<‖z‖∞<
√
q/4

Pr
a

$←−Rmq
(za+Bs = t) =

∑
t∈Rmq ,

0<‖t‖∞<
√
q/4

∑
s∈Rkq ,z∈Rq

s.t. 0<‖z‖∞<
√
q/4

∏
i≤m

Pr
ai

$←−Rq

(
zai + bTi s = ti

)
.

From Theorem 3, we know that Xd + 1 factors into f1 = Xd/2 − r1 and f2 =
Xd/2− r2 under modulo q, and f1, f2 are irreducible in Rq. Hence, by the CRT,

we have Rq ' Fqd/2 × Fqd/2 . The equality zai + bTi s = ti holds iff it holds for
both the CRT components. As 0 < ‖z‖∞ <

√
q/4, by Theorem 3, we get that z

is non-zero in both CRT components; and zai + bTi s = ti holds with probability
at most q−d. So the total probability is at most

∑
t∈Rmq ,

0<‖t‖∞<
√
q/4

∑
s∈Rkq ,

z∈Rq \{0}

∏
i≤m

q−d <

(√
q

4

)dm
q(k+1)dq−md.

ut
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