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Abstract. This paper introduces structure to key, in the related-key
attack settings. While the idea of structure has been long used in key-
recovery attacks against block ciphers to enjoy the birthday effect, the
same had not been applied to key materials due to the fact that key
structure results in uncontrolled differences in key and hence affects the
validity or probabilities of the differential trails. We apply this simple
idea to improve the related-key boomerang attack against AES-256 by
Biryukov and Khovratovich in 2009. Surprisingly, it turns out to be
effective, i.e., both data and time complexities are reduced by a factor
of about 28, to 292 and 291 respectively, at the cost of the amount of
required keys increased from 4 to 219. There exist some tradeoffs between
the data/time complexity and the number of keys. To the best of our
knowledge, this is the first essential improvement of the attack against
the full AES-256 since 2009. It will be interesting to see if the structure
technique can be applied to other AES-like block ciphers, and to tweaks
rather than keys of tweakable block ciphers so the amount of required
keys of the attack will not be affected.

Keywords: AES, differential, boomerang, key structure, related
key

1 Introduction

The Birth of AES. After the Data Encryption Standard (DES) was attacked
by differential cryptanalysis due to Biham and Shamir [7, 8] and later by linear
cryptanalysis due to Matsui [29, 30], the U.S. National Institute of Standards
and Technology (NIST) initiated the public AES competition (1997 – 2000), out
of which Rijndael [16] designed by Daemen and Rijmen won the competition and
became officially the Advanced Encryption Standard in 2001. There are three
variants, i.e., AES-k with k ∈ {128, 192, 256} denoting the key sizes in bits. AES
became de facto the most popular and important block cipher in the world now
for data protection, widely adopted by both industry and government agencies.



The computation power nowadays is still far from breaking AES by bruteforce,
even against the smallest variant AES-128, and due to the existence of AES-256,
it will remain sound even under attack by the future quantum computers. Hence,
a much longer lifespan is expected if no security flaw is discovered.

The Security. Since the design of Rijndael, AES has attracted tremendous efforts
from the research community in security analysis. One of the most important
security features of AES is its proven resistance against differential and linear
cryptanalysis, which were applied to its predecessor — DES. It achieved this
by the so-called wide trail strategy [15], e.g., the minimum number of active
S-boxes (those with non-zero differences) in 4 consecutive AES rounds for any
differential characteristic in the single-key setting is 25. It has been analyzed by
many cryptanalysis techniques4, just to name a few here. Biryukov, Khovratovich,
and Nikolić gave the first key-recovery attack against AES-256 by differentials [11]
in 2009, the complexity of which was later improved in [10] by using related-
key boomerang attack. In [28], Lu et al. gave 7-round attacks against AES-128
and AES-192, and 8-round against AES-256 by using impossible differentials.
Leveraging integral cryptanalysis, Ferguson et al. [20] gave a practical attack
against 6-round AES and then the first attack against 7-round AES. In terms of
complexities of the key-recovery attacks in the single-key setting, the best attacks
up to date are due to the Demirci-Selçuk meet-in-the-middle attack [17,18,19].
The meet-in-the-middle attack, which was previously known to be powerful for
finding preimages of hash functions, led to attacks against 7-round AES in some
hashing modes [31]. Many more attacks were found under other attack settings
e.g., single-key, related-key, hashing modes, for various security aspects, e.g.,
key-recovery, collision/preimage finding in hashing modes, distinguisher, etc. Up
to date, the most successful key-recovery5 attack against AES-128/192/256 is for
7, 9, and 9 out of 10, 12, and 14 rounds respectively in the single-key setting, due
to Derbez et al. [18] and an improvement by Li et al. [27].

The Boomerang Attack. To the best of our knowledge, the best attack against
AES, in terms of number of attacked rounds, is due to Biryukov et al. [10, 11]
which dates back to 2009, where the key of the full version of AES-256 and AES-
192 can be recovered under the related (sub-)key setting. While the bound given
by the wide trail strategy could not be overcome in the differential attack under
the single-key setting, differential characteristics with much higher probability
exist in the related-key settings, where the differences from round keys and the
data path can be cancelled out. Also, the boomerang attack is able to utilize
two high-probability differential characteristics for small number of rounds. The
attack succeeds due to these two properties.

Our Contributions. Biryukov et al.’s works remain as the best publicly known
key-recovery attack against the full version of AES-256, and there exists no

4 Only a few papers are cited here as examples since there are simply too many results.
5 Besides those optimized brute-force style attacks, such as [12].
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essential improvement since 2009. In this paper, we try to improve their attack, in
terms of data and time complexities, under the same related-subkey boomerang
attack framework. The core idea comes from the observation that, while structure
has been used in plaintext to enjoy the birthday effect and improve cryptanalysis,
the same could potentially be applied to key material as well, even though this
has not been tried yet. It is necessary to note that similar expressions to “key
structure” already existed in some papers before, such as [6]. Their purpose is to
generate some required subkey differences from key structure, due to non-linear
key schedule of their targeted ciphers. However, our aim in this paper is to make
further improvement by enjoying birthday effect of a key structure. There are
many technical difficulties to overcome in the key structure boomerang attack
framework, before the idea can eventually work out.
– Firstly, when structure rather than a fixed or chosen difference is introduced

in the key material, one has to ensure that the uncontrollable difference in
the key will not affect the validity of the two differential characteristics in
the data path of the boomerang attack.

– Secondly, when structure is applied to the key, one has to ensure that the
two differentials are neutral to each other in two halves of the key schedule,
i.e., the differential characteristics in the key schedule in one half will not
affect the other half regardless of the actual key difference chosen from the
structure.

– Thirdly, one has to ensure that the key difference will not affect the probability
of the differential characteristics. Note that Biryukov et al. chose the high
probability difference transition of the S-box (those with 2−6, rather than
the 2−7 ones for the AES S-box) in order to increase the overall probability of
the differential characteristics. In our case of structure, we only utilize those
2−6 difference pairs to achieve the same optimization. Although this only
happens once in every 28 difference pairs (so we lose most of the pairs), we
gain back by enforcing the high probability 2−6 transition once, and re-use it
multiple times in the differential characteristics.

The final result, presented in Section 4, turns out to improve both the time
and data complexities of Biyukov et al. attack by a factor of about 28, at the
expense of the number of required keys being increased from 4 to 219. A detailed
comparison is provided in Table 1.

Organization. The rest of the paper is organized as follows. Section 2 gives
the necessary preliminaries for understanding the attack, and Section 3 explains
the ideas behind key structures. The details of the improved attack are given in
Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Description of AES

The Advanced Encryption Standard(AES) [16] is an iterated block cipher which
encrypts 128-bit plaintext with secret key of sizes 128, 192, and 256 bits. Its
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Table 1. Comparison with previous key-recovery attacks on full AES-256

Attack Time Data Memory # keys Reference
Related-Key

2131 2131 265 235 [11]Differential
Related-Key

299.5 299.5 277 4 [10]Boomerang

Key-Structure 292.5+s 292+s 289−s 217−s

Ours
Boomerang 292+s 291+s 289−s 219−s

Note: 0 ≤ s ≤ 7.5

internal state can be represented as a 4× 4 matrix whose elements are byte value
(8 bits) in a finite field of GF (28). The round function consists of four basic
transformations in the following order:

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

- ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column with a Maximum
Distance Separable (MDS) matrix over GF (28).

- AddRoundKey (AK) is an exclusive-or with the round key.

SB
0
1
2
3

0 1 2 3

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC AK

Figure 1. AES round function

At the very beginning of the encryption, an additional whitening key addition
is performed, and the last round does not contain MixColumns. AES-128, AES-192,
and AES-256 share the same round function with different number of rounds: 10,
12, and 14, respectively.

The key schedule of AES transforms the master key into subkeys which are
used in each of the rounds. Here, we describe the key schedule of AES-256. The
256-bit master key is divided into 8 32-bit words (W [0],W [1], ...,W [7]), then
W [i] for i > 8 is computed as

W [i] =


W [i− 8]⊕ SB(RotByte(W [i− 1]))⊕Rcon[i/8] i ≡ 0 mod 8,

W [i− 8]⊕ SB(W [i− 1]) i ≡ 4 mod 8,

W [i− 8]⊕W [i− 1] otherwise
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The i-th subkey is of size 256-bit denoted by Ki, K0 is the master key.
RotByte is a cyclic shift by one byte to the left, and Rcon is the round constant.
The key schedule of AES-128 and AES-192 is slightly different due to the different
key sizes, since this paper does not focus on these two variants, we refer to [16]
for details.

Property of the AES S-box. The details of the S-box and the Difference
Distribution Table (DDT) could be found in [16]. For any input difference
∆in 6= 0, there exists exactly one ∆out such that DDT(∆in, ∆out) = 4 (this results
in the highest probability 2−6 for the AES S-box transition), 126 values of ∆out

such that DDT(∆in, ∆out) = 2 (i.e., probability 2−7), and the rest 129 values of
∆out with DDT(∆in, ∆out) = 0. Those (∆in, ∆out)’s with DDT(∆in, ∆out) 6= 0 are
called compatible, and others are incompatible. These statistics will be used in
our attack later.

2.2 Boomerang Attack

The boomerang attack was introduced in [33]. It regards the target cipher as
a composition of two sub-ciphers E0 and E1. The first sub-cipher is supposed
to have a differential α → β, and the second one to have a differential γ → δ,
with probabilities p and q, respectively. The basic boomerang attack requires
an adaptive chosen plaintext/ciphertext scenario, and plaintext pairs result in a
right quartet with probability p2q2. It works with four plaintext/ciphertext pairs
(P1, C1), (P2, C2), (P3, C3), (P4, C4), and the basic attack procedure is as follows.
The attacker queries the encryption oracle with the input P1 and P2 = P1 ⊕ α to
obtain C1 and C2, and calculate C3 = C1⊕ δ and C4 = C2⊕ δ, which are sent to
the decryption oracle to obtain P3 and P4. Later, Kelsey et al. [24] developed the
amplified boomerang which is pure chosen-plaintext attack and a right quartet is
obtained with probability p2q22−n. Further, it was pointed out in [4,5, 33] that
any value of β and γ is allowed as long as β 6= γ. As a result, the probability

of the right quartet is increased to 2−np̂2q̂2, where p̂ =
√
ΣiPr

2(α −→ βi) and

q̂ =
√
ΣjPr

2(γj −→ δ). This improved attack framework is named the rectangle
attack.

Related-Key Boomerang Attack. Boomerang and rectangle attacks under
related-key setting were formulated in [6, 25, 26]. Let ∆K and ∇K be the key
differences for E0 and E1, respectively. The attacker needs to access four related-
key oracles with K1 ∈ K, where K is the key space, K2 = K1 ⊕ ∆K, K3 =
K1 ⊕ ∇K and K4 = K1 ⊕ ∆K ⊕ ∇K. In the related-key boomerang attack,
paired plaintexts P1, P2 such that P1 ⊕ P2 = α are queried to K1 encryption
oracle and K2 encryption oracle, and the attacker receives ciphertexts C1 and
C2. Then C3 and C4 are calculated by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and then
queried to K3 decryption oracle and K4 decryption oracle. The resulting plaintext
difference P3⊕P4 equals to α with probability p2q2. Related-key rectangle attacks
can be similarly formulated.
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Boomerang Switch and Boomerang Connectivity Table. The boomerang
switch was used to gain free rounds in the middle of the cipher in the attacks
against the full AES-192 and AES-256 [10]. The idea was to optimize the transition
between the differential characteristics of E0 and E1 in order to minimize the
overall complexity of the distinguisher. In [10], three types of switch were intro-
duced which are the Feistel switch, the ladder switch and the S-box switch. These
switches were further generalized in the boomerang connectivity table (BCT) [14].

In this paper, we utilize the ladder switch to optimize our attack. The idea
of the ladder switch is to realize that a cipher can be decomposed into smaller
parallel transformations instead of rounds by default. The principle can be
explained in the framework of BCT, see Figure 2 with the case when ∆ 6= 0 and
∇ = 0. For any values of x1 and x2, with difference ∆, their outputs after S-box
application are y1 and y2, respectively. Since the boomerang shift happens when
∇ = 0, we have y3 = y1⊕∇ = y1 and y4 = y2⊕∇ = y2. Thus, after the inversed
S-box is applied, the paired values (x3, x4) is equal to (x1, x2) with probability 1,
i.e., the returned pair will always have difference ∆. The same also holds when
∆ = 0 and ∇ 6= 0.

∆ ∆

∇=0

∇=0

S S

S S

x1

y1

x2

y2

x3(=x1)

y3(=y1)

x4(=x2)

y4(=y2)

Figure 2. The ladder switch on a single S-box

2.3 Notations

The byte at i-th row, j-th column of an internal state a is denoted by ai,j , as
illustrated in Figure 1, where i and j start from 0. We refer to the byte of plaintext
by pi,j , the byte of the r-th subkey by kri,j , and the byte of the r-th internal
state after SubBytes by xri,j . For the differential characteristics of boomerang
distinguisher, we denote the difference used in E0 by ∆ and the difference in E1

by ∇.

3 Key Structures

In differential cryptanalysis as [8], the attacker tries to find a distinguisher of a
cipher so that he can distinguish the cipher from a random permutation. Then,
key recovery attacks can be mounted based on the distinguisher directly, or with
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additional rounds added before and/or after the distinguisher. In this paper, we
focus on the latter one.

We assume that there is a distinguisher which consists of a differential α→ β
with probability p covering the last r1 rounds of the target cipher. In order to
launch a full-round attack (r rounds), (r − r1) rounds should be prepended to
the distinguisher. The aim of the attacker is to obtain enough ciphertext pairs
with difference β by querying the encryption oracle with pre-chosen plaintexts.
We define V to be the space spanned by all the plaintext differences that may
lead to the difference α after the first (r − r1) rounds, and let m = log2|V |.

Structure from Plaintext. The first step of the attack is to generate pairs of
plaintexts whose output differences after the first (r−r1) rounds are the expected
input difference α of the differential. The way to improve the efficiency of this
step is to build a structure of plaintexts which consists of P ⊕ vi, where P is
chosen randomly and vi ∈ V . The XOR difference between any two elements
of the structure belongs to V . In this way, at most 22m−1 unordered plaintext
pairs (Pi, Pj) (the order of i, j does not matter) can be composed from a single
structure, while the data and time complexity to prepare this structure is only
2m. We refer to the ratio between the number of pairs generated and the size of
structure as gain (this is also called birthday effect in other places), quantitatively
it is 2(2m−1)−m = 2m−1 here. If more plaintext pairs are needed for the attack,
another new structure can be constructed in the same way by selecting another
random value of P . However, this would not increase the overall gain. As can
be seen, the gain only depends on the structure size. Thus, if the structure size
could be increased, the attack complexity would be reduced accordingly.

Structure from Key. In the related-key setting [3], the attacker is allowed
to choose a desired relation between keys. The most common form is: for an
unknown key K1, the attacker uses a XOR difference D to produce another
key K2 = K1 ⊕D. Then, the subkey additions in round functions can be used
to cancel some differences in the differential attack in order to obtain better
differential characteristics. Compared with the single-key setting, the related-key
setting provides additional freedom in choosing the key difference D. In our case,
this fact enlightens us that a key structure utilizing the key difference could be
used to improve the attack.

For a related-key differential characteristic with key difference D, we can
build a key structure from the original secret key K1, and let {K1⊕ vi | vi ∈ VD}
be the set of keys inside the structure, where VD is the space consisting of the
differences that have the same truncated difference as that of D. Similarly, we
define mk = log2|VD|. Together with a plaintext structure, at most a total of
22(m+mk)−1 unordered pairs of ((Pi,Ki), (Pj ,Kj)) can be obtained, while only
2m+mk data/queries are used. Thus, the gain increases to 22(m+mk)−1−(m+mk) =
2m+mk−1, compared to the use of plaintext structure alone.
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The Use of Key Structure. Key structure should be applied together with
plaintext structure to provide additional advantage. However, compared to plain-
text structure, key structure has more constraints in its application. Due to the
fact that each plaintext in the plaintext structure will be encrypted with each key
in the key structure during an attack, the difference between the pairs of keys
will not be fixed, thus the subkey differences in the whole rounds are difficult to
control and are unlikely to match the exact differential characteristic α→ β.

Hence, in order to have as many valid key pairs as possible, the key schedule
is better to be linear or the proportion of the non-linear part is small, and
the key difference should not have strong impact on the truncated differential
characteristic, which means that the truncated differential characteristic should
be able to be instantiated with many differences. Otherwise, if the differential
characteristic is valid with only a small proportion of key pairs, smaller than
2−mk , the use of key structure will only weaken the attack. On the other hand, the
distinguisher obtained with key structure might not be as good as the original one
without key structure, because the probability of the differential characteristic
will vary according to key difference since the propagation of non-linear part in
the internal state will be different. All in all, in order to make good use of key
structure, the extra data and time consumption of it should be lower than the
gain it offers.

Last but not least, it is necessary to mention that at most one key structure
can be constructed in an attack as the key structure is created from the original
secret key which is fixed.

4 Improved Boomerang Attack on AES-256

In this section, we apply key structure to the related-key boomerang attack on
AES-256, which is based on the attack in [10]. We will first give an overview of
the boomerang distinguisher, then describe the construction of the key structure,
and finally explain the details of the attack.

The differential characteristics used in our boomerang attack are depicted
in Figure 3. The differential characteristic of E1 is fixed, while the differential
characteristic of E0 has a lot of candidates. In Figure 3, different colors refer
to different values. The differentials for all the active S-boxes of the differential
characteristic of E1 are set to be (0x01, 0x1f), which holds with probability 2−6.
For the differential characteristic of E0, the red and blue hashed cells are not fixed
but always pass the S-box differential with the maximal probability 2−6, and the
green cells are unknown. The switching position of the boomerang distinguisher
is pointed by the green ovals.

The differences in the key schedule are given in Table 2. Since the differential
characteristic of E0 is not fixed, we use the variables R, B and Gi to represent
its truncated pattern, i = 1, 2, 3, 4. Given the value of R, B is then derived from
the table DDT with the requirement that DDT(R,B) = 4, lastly the value of Gi is
uniquely determined by B through the MixColumns transformation:
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
0
B
0
0

 MixColumns
======⇒


G1

G2

G3

G4

 .

Table 2. Key schedule difference for the boomerang attack on AES-256. The values are
given in hexadecimal notation.

∆Ki

0

? 00 00 00 G1 G1 G1 G1

1

00 00 00 00 G1 00 G1 00

2

00 00 00 00 G1 G1 00 00
? R R R ? G2 G2 G2 00 R 00 R G2 00 G2 00 00 R R 00 G2 G2 00 00
? 00 00 00 G3 G3 G3 G3 00 00 00 00 G3 00 G3 00 00 00 00 00 G3 G3 00 00
? 00 00 00 G4 G4 G4 G4 00 00 00 00 G4 00 G4 00 00 00 00 00 G4 G4 00 00

3

00 00 00 00 G1 00 00 00

4

00 00 00 00 G1 G1 G1 G1
00 R 00 00 G2 00 00 00 00 R R R ? ? ? ?
00 00 00 00 G3 00 00 00 00 00 00 00 G3 G3 G3 G3
00 00 00 00 G4 00 00 00 00 00 00 00 G4 G4 G4 G4

∇Ki

0

? ? ? ? ? 00 ? 00

1

? 01 ? 00 ? ? 00 00

2

? ? 00 00 ? 00 00 00
X X X X 1f 00 1f 00 X 00 X 00 1f 1f 00 00 X X 00 00 1f 00 00 00
? ? ? ? 1f 00 1f 00 ? 00 ? 00 1f 1f 00 00 ? ? 00 00 1f 00 00 00
? ? ? ? 21 00 21 00 ? 00 ? 00 21 21 00 00 ? ? 00 00 21 00 00 00

3

? 01 01 01 3e 3e 3e 3e

4

01 00 01 00 3e 00 3e 00

5

01 01 00 00 3e 3e 00 00
X 00 00 00 1f 1f 1f 1f 00 00 00 00 1f 00 1f 00 00 00 00 00 1f 1f 00 00
? 00 00 00 1f 1f 1f 1f 00 00 00 00 1f 00 1f 00 00 00 00 00 1f 1f 00 00
? 00 00 00 21 21 21 21 00 00 00 00 21 00 21 00 00 00 00 00 21 21 00 00

6

01 00 00 00 3e 00 00 00

7

01 01 01 01 ? ? ? ?
00 00 00 00 1f 00 00 00 00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 00 00 00 00 00 00 00 1f 1f 1f 1f
00 00 00 00 21 00 00 00 00 00 00 00 21 21 21 21

4.1 Construction of the Key Structure

The key relation used in our attack is a complex form that allows the attacker to
choose a desired XOR difference of a subkey at any round. This setting is also
defined as the related-subkey setting in [9].

Now, we describe how to construct the key structure, denoted by Sk. The key
structure is generated from the second subkey K1. One can observe in Figure 3
that the difference of the second 256-bit subkey has 10 active bytes, but the
difference cannot be chosen randomly. The differential characteristic of E0, as
well as the one of E1, is constructed following the idea of local collision [13],
that is, once a subkey difference is added to the internal state, the next subkey
difference will try to cancel it in the next round. Therefore, in order to generate
such a differential characteristic for E0, the two active bytes in the first half of
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8
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Figure 3. The differential characteristics of the boomerang attack against AES-256
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∆K1 must take the same difference value, thus it can choose 28 values at most.
Besides, for the second half of ∆K1, the differences of the two active columns are
also required to be the same value, because the two active columns are supposed
to cancel the two active columns in the internal state according to the differential
characteristic of E0, and each active column in the internal state is computed
from a single active byte through MixColumns and the two active bytes are equal.
Furthermore, this relation also implies that the two active columns of ∆K1 can
only choose 28 values at most. To sum up, there are 216 valid values for ∆K1,
each of which is denoted by ∆K1

i , 1 ≤ i ≤ 216.
For a secret key K0, the key structure Sk is generated by adding the non-zero

difference ∆K1
i to the second subkey of K0, from which a new secret key Ki can

be uniquely determined, see Figure 4(a). Finally, the key structure consists of
216 keys, from which 231 unordered key pairs can be composed.

Note that the keys in the key structure are used in the encryption side of
the boomerang attack. For the key K ′i used in the decryption side, they are
computed by adding the fixed difference ∇K to the jointed state of the second
half of K3

i and the first half of K4
i , then the full K ′i can be uniquely determined

by the obtained eight consecutive columns, see Figure 4(b). By doing so, the
differential characteristic of E1 will be fixed. The actual value of ∇K can be
found in Table 2, it will make sure that the differential characteristic of E1 is the
optimal one i.e., all S-box transitions happen with probability 2−6.

Given a pair of keys (KA,KB) chosen from the key structure Sk, together
with the corresponding key pair (K ′A,K

′
B) used in the decryption side, the four

keys form a key quartet. For a key quartet, the differences in the key schedule
for both the differential characteristics of E0 and E1 can be found in Table 2. In
particular, for the differential characteristic of E1 (where the key pair (KA,K

′
A)

or (KB ,K
′
B) is applied), some byte in ∇Ki for i = 1, 2, 3 can even be determined

due to the slow diffusion of the key schedule. These values will play an important
role in the following key recovery attack. Last but not least, we note that only
one key structure is used in our attack.

4.2 Boomerang Distinguisher

Let us compute the probability of the boomerang distinguisher covering rounds
2–14. For the differential characteristic of E0 which covers rounds 2–8, there
are 5 active S-boxes and the differentials (∆in, ∆out) for all of them are the
same. Because of the use of key structure, the values for both ∆in and ∆out

are not fixed, but they are directly related to the subkey differences, which are
determined by the key pair used in the differential characteristic. Among the
total of 231 key pairs that can be composed from the key structure, (27 − 2)/28

of it will make the differential (∆in, ∆out) happen with probability 2−7, while
a proportion of 1/28 will lead the probability to 2−6. Accordingly, the 5 active
S-boxes in rounds 2–8 are passed with probability 2−7×5 = 2−35 for the first case
and 2−6×5 = 2−30 for the second case.

The boomerang is switched in round 9. Although the differential characteristic
of E0 is not fixed, its truncated pattern is uniquely determined. Accordingly,
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K0

∆K1
i

Ki

K0 K1 K2 K3 K4 K5

(a) Generating key structure Sk

Ki

∇K

K′
i

K0 K1 K2 K3 K4 K5

(b) Computing K′i from Ki

Figure 4. Key generation

we can ensure that there is no overlapped active S-box in round 9 between the
differential characteristics of E0 and E1. Thus, according to the BCT, the two
differential characteristics are compatible for the boomerang attack and the
switching probability is 1. Besides, it was reported recently that the boomerang
switch can actually happen in multiple rounds in [32,34], so we have also verified
the switching effect in rounds 8–10, and it matches our evaluation.

For the differential characteristic of E1, there are 3 active S-boxes in rounds
10–14. Note that only one differential characteristic is used for E1 and the
differentials for all the active S-boxes are optimal with probability 2−6, thus the
probability of the differential characteristic of E1 of rounds 10–14 is 2−6×3 = 2−18.

Finally, the probability of the boomerang distinguisher is either 22×(−35−18) =
2−106 or 22×(−30−18) = 2−96, depending on the key pair from the key structure.

4.3 A Detailed Description of the Attack

One round is added at the beginning of the boomerang distinguisher to launch
the full-round attack. The plaintext difference pattern, as show in Figure 3, is
deduced from both the first subkey difference and the internal state difference in
the second round. The attack procedure is described in Algorithm 1.

For each key pair, we can compose 2144 plaintext pairs from 1 plaintext
structure, out of which 2144−72 = 272 will pass through the first round with
the desired input difference of the boomerang distinguisher. In total, 2103 pairs
pass the first round for all the 231 key pairs. The probability of the boomerang
distinguisher is 2−106 for a proportion of (27 − 2)/28 key pairs, thus around
2103 · (27 − 2)/28 · 2−106 ≈ 2−4 right quartets are expected. On the other hand,
2103 · 1/28 · 2−96 = 2−1 right quartets are expected when the probability of the
boomerang distinguisher is 2−96 for 1/28 of key pairs. Compared to the first case,

12



Algorithm 1: Related-key boomerang attack on AES-256 using key
structure
Prepare a plaintext structure consisting of 272 plaintexts, which traverses all

values of the 9 gray cells in , and takes arbitrary constants in the others.

Create a hash table H of size 288.

for each of the 216 keys K in the key structure SK do
for each of the 272 plaintexts P in the plaintext structure do

Encrypt P under key K, denote the ciphertext as C.
Compute C′ = C ⊕∆C.
Decrypt C′ with K′, K′ being computed from the corresponding K,
and denote the new plaintext by P ′.

Insert the plaintext pair (P, P ′) into the hash table H, indexed by the 7
bytes of P ′ where constants of the plaintext structure fall and 2 bytes
of P ⊕ P ′ at positions (2, 0) and (3, 0).

end

end

the boomerang distinguisher in the second case is much better, so we will only
adopt the second one in our attack. Therefore, in order to obtain 4 right quartets,
23 plaintext structures are required. We need to repeat Algorithm 1 23 times
with different plaintext structures and the same key structure.

In the following, we will explain how to gradually filter out wrong quartets
and recover key bits. Let us compute the number of quartet candidates after
Algorithm 1. Firstly, there is a 56-bit filter at the output of the boomerang. Then,
observe in Table 2 that ∇k0i,7 = 0 for i > 1, so ∆k0i,0 should be equal for both
pairs (KA,KB) and (K ′A,K

′
B) in a key quartet, which implies that ∆pi,0 should

be equal for both plaintext pairs (P1, P2) and (P ′1, P
′
2) for the right quartet as

well, because ∆k0i,0 is equal to ∆pi,0 according to the differential characteristic of
E0. This is a 16-bit filter. So there are on average 272+16−56−16 = 216 collisions
for each index of the hash table H, from which 231 quartets can be composed. In
total, 231+72 = 2103 quartet candidates are left for all the 272 indices of the hash
table, and thus 2106 quartet candidates for all the 23 plaintext structures. These
candidates are further filtered by the following steps. The key bytes that can be
recovered are listed in Figure 5.

Step I. Note that the key pairs of a right quartet must meet the requirement
that the active S-boxes in the differential characteristic of E0 are passed with
probability 2−6. The requirement is satisfied with probability 2−8, thus 2106−8 =
298 quartet candidates are eligible. Now we explain how to obtain the 298 quartet
candidates. The differential of the active S-boxes can be deduced by the difference
in the key schedule. For example, ∆k11,1 is the input difference of the S-box at
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Figure 5. The AES-256 key state with key information obtained at each step. Digits
stand for the sub-steps in step II, “D” means difference.

the position (1, 1) in the third round, and ∆k12,4 is the corresponding output
difference due to the ShiftRows and MixColumns. Thus, we can simply check
whether the differential (∆k11,1, ∆k12,4) is optimal for the AES S-box. Once it is
confirmed, the differentials of the 5 active S-boxes will also be determined. Note
that the differential characteristics of E0 used in both sides of the boomerang are
the same, thus we only need to check the encryption side, the details are given in
Algorithm 2.

Algorithm 2: Filtration in Step I
for each index of the hash table H do

Insert the 216 collisions into a new hash table H ′ indexed by the difference
of k11,1 between the current key and the original key K0.
for each index i of H ′ do

Insert the 216−8 = 28 collisions (on average) into a new hash table H ′′i
indexed by the difference of k12,4 between the current key and the
original key K0.

end
for index i of H ′ from 0 to 28 − 2 do

for index j of H ′ from i+1 to 28 − 1 do
Compute ∆k11,1 = i⊕ j, and find the value of ∆k12,4 such that
DDT(∆k11,1,∆k12,4) = 4.
for each index s of H ′′i do

Compute t = s⊕∆k12,4. Check whether t is in H ′′j . If yes, the
pairs of H ′′i and H ′′j compose quartet candidates.

end
end

end
end

Step II. There are 231−8 = 223 key quartets remaining after Step I, and each
has on average 298−23 = 275 quartet candidates. In the following steps, we will
proceed with each key quartet independently, and use KA, KB , K ′A and K ′B to
denote the four keys.
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1) There is a 2-bit filter at ∆p1,2 and ∆p1,3 due to the S-box compatibility, thus
4-bit at both sides of the boomerang in total. Besides, there is also a 2-bit
filter at ∆p2,0 and ∆p3,0 due the the S-box compatibility in the key schedule.
Thus, the number of quartets is reduced to 275−6 = 269.

2) Each quartet proposes 22 candidates of k01,2 and k01,3 for KA and K ′A each,
thus there are in total 24 candidates. As can be seen from Table 2 , the four
“X” of ∇K0 are equal and take only 27 values. Hence, the differences ∆k01,2
and ∆k01,3 between KA and K ′A have to be equal to X, which is a 16-bit filter
for the key candidates. Thus, 269+4+7−16 = 264 quartet candidates are left,
and the values of k01,2 and k01,3 are suggested.

3) Observe that the value of ∆k01,0 is determined by k02,7 and ∇k02,7 = 0 from
Table 2, the values of ∆k01,0 should be the same for both the key pairs
(KA,KB) and (K ′A,K

′
B). Since ∆k

0
2,7 is known, ∆k01,0 can take 27 values. For

each guess of ∆k01,0, it has to be compatible with ∆p1,0 and ∆x01,0 through
the S-box, which is a 2-bit filter for both sides of the boomerang. After that,
each quartet proposes two candidates of k01,0 for KA and K ′A, respectively.
Moreover, there is an 8-bit filter because the difference ∇k01,0 between KA

and K ′A should be equal to X. In the end, the number of quartet candidates
is reduced to 264+7−2+2−8 = 263, and the value of k01,0 is suggested.

4) Notice that ∇k11,3 = 0, a reasoning similar to the one above can be applied
to ∆k01,4, which can take 27 values. For each guess of ∆k01,4, the values
of ∆x00,0, ∆x01,1, ∆x02,2, ∆x03,3 can be uniquely computed by inverting the
MixColumns transformation. There is a 1-bit filter on ∆x01,1, ∆x

0
2,2, ∆x

0
3,3

each due to the S-box compatibility, then 6-bit filter in total on both sides of
the boomerang. Each quartet proposes two candidates of k01,1, k02,2, k03,3 for
KA and K ′A, respectively. However, the difference ∇k01,1 between KA and
K ′A is restricted to X, which results in an 8-bit filter. To summarize, the
number of quartets is reduced to 263+7−6+6−8 = 262 and the values of k01,1,
k02,2, k03,3 as well as ∆k01,4 are suggested.

5) Since ∆k01,0, ∆k02,0 and ∆k03,0 are known, it will provide 2 guesses for each
of k02,7, k03,7 and k00,7. However, these guesses for KA and K ′A are the same
because the differences ∇k02,7, ∇k03,7 and ∇k00,7 between KA and K ′A are all 0.
Thus, in this step, the number of key candidates is increased to 262+3 = 265,
and the values of k02,7, k03,7 and k00,7 are suggested.

6) Note that the key bytes k02,7, k01,0, k01,1, k01,2, k01,3 and the difference ∆k01,4
have been derived in the above steps. On the other hand, we notice that
∆k01,4 can be computed from k02,7, k01,0, k01,1, k01,2 and k01,3 according to the
key schedule. This constraint can provide an 8-bit filter, and thus the number
of key proposals is reduced to 257.

7) Make a guess of k01,7 of KA, which has 28 choices, then k01,7 will be known for
all the four keys and ∆k00,0 can be computed. After that, for each side of the
boomerang there is a 1-bit filter on ∆k00,0 due to the S-box compatibility, then
each quartet will propose 2 candidates of k00,0 for KA and K ′A, respectively.
Thus 257+8−2+2 = 265 key proposals are obtained.

In the end, 265 key candidates are proposed and 11 key bytes for each of
KA, KB , K ′A and K ′B are suggested. However, many bytes are strongly related
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according to Table 2. Among them, at least k00,0, k01,1, k02,2 and k03,3 of KA and
K ′A are independent, so we can recover 15 bytes with 265 proposals for each
key quartet, and thus 288 proposals for all the 223 key quartets. Additionally,
differences of 3 bytes are recovered: ∆k01,4, ∆k02,0, ∆k03,0, where ∆k02,0 and ∆k03,0
can be directly obtained from plaintext difference, but they can not be used to
derive the corresponding key bytes.

Recover the Key. Recall that 4 right quartets are expected for the attack,
which are supposed to be distinguishable from other wrong quartets. However,
the 4 right quartets are very likely to be combined with different key pairs due
to the key structure, thus the correct key bytes proposed by them will belong to
different keys, which is hard to be distinguished. So we have to deduce all the
proposed key bytes to the original keys K0 and K ′0. Looking at Table 2, we can
see that most bytes of the first subkey difference between K0 and all the other
keys are known, except ∆k01,4 and ∆k0i,0 where 0 ≤ i ≤ 3. Hence, for those key
bytes whose differences are known, all the proposals can be deduced to K0. The
same reasoning applies to K ′0. As for the two unknown differences ∆k00,0 and
∆k01,0, since the value of k01,7 was derived and the difference of ∆k01,7 is known,
the difference ∆k00,0 can be easily computed through the key schedule. Same trick
holds for ∆k01,0, it can be computed from k02,7 and ∆k02,7. Then, we can deduce
the proposals of the two bytes to K0 and K ′0.

In the end, all the proposed key bytes can be deduced to K0 and K ′0. We
have 288 proposals for 120 key bits, and the correct proposal is supposed to
appear 4 times. The probability that a wrong key is suggested 4 times is

(
288

4

)
·

(2−120)4 · (1 − 2−120)2
88−4 ≈ 2−138.5, thus the expect number of such a key is

2120−138.5 = 2−18.5, while the 4 right quartets would always vote for the correct
one. Therefore, no wrong key will survive and the correct 120 key bits will be
recovered. With the knowledge of the recovered key bits, the remaining part of
the key can be found with many approaches, which will not dominate the cost of
the whole attack.

Complexity. In our attack, a total of 292 plaintexts and ciphertexts are generated,
thus the data complexity is 292. In Algorithm 1, there are 288 encryption oracle
calls, 288 XOR operations, and 288 decryption oracle calls. As the plaintexts
are added into the hash table, each plaintext requires one memory access, thus
288 memory accesses in total. Thus, for the 23 plaintext structures, the total
time complexity of Algorithm 1 is 292 encryption/decryption oracle calls and 291

memory accesses.

In Algorithm 2, the plaintext pairs (P, P ′) in H are added into many new
hash tables, which requires 272× (216 +216) = 289 memory accesses. The lookups
in DDT require 272+15 = 287 memory accesses. The lookups in the hash table
H ′′i require 272+23 = 295 memory accesses, which dominates the algorithm. In
sum, for the entire 23 plaintext structures, Step I requires 295+3 = 298 memory
accesses.
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For Step II 1), it requires 1 memory access for each quartet to check whether
these bytes are compatible. Therefore, the time complexity of this step is 298

memory accesses.

After Step II 1), the number of remaining quartets is 292, and the number is
continuously decreasing in the following steps, thus the following computation
will not dominate the cost of the whole attack.

Following the idea from [5,9, 20], where memory access can be converted to
equivalent amount of encryption/decryption oracle calls, one AES-256 encryp-
tion/decryption is equivalent to roughly 28 memory accesses by counting the
number of S-box lookups. Therefore, the 298 memory accesses to the hash table
H ′′i in Step I can be converted to 290 encryptions/decryptions, and the same can
be done for the 298 memory accesses in Step II 1). Finally, we conclude that the
whole attack requires 292 plaintexts and ciphertexts, the time complexity being
equivalent to 292.5 encryptions (292 encryptions/decryptions and 299 memory
accesses ≈ 291 encryptions), and the memory complexity is 289.

Further Improvement. In the attack, the key structure is only added in KA

and KB in E0, the same idea could be extended to the K ′A and K ′B in E1.
However, this attempt could not work. For a right quartet, the differentials of E0

in both sides of the boomerang should be the same, which determines that the
differential characteristic in the key schedule of (K ′A,K

′
B) must be the same as

that of (KA,KB). In order to meet this condition, the switch in the key schedule
should be the same for a quartet, i.e., the differences ∇K added to KA and KB

at the middle of the fourth and fifth subkey should be the same. Even if we use
a structure of ∇K, we still need to find right quartets for each value of ∇K
separately. Thus, this method does not provide additional improvement to the
attack.

Although the potential key structure is a failure, it can also be used to improve
the attack slightly. As discussed above, the functionality of the key structure is
equivalent to plaintext structure: using a different ∇K leads to a different set of
(P ′1, P ′2). In our attack, 23 plaintext structures are required to produce 4 right
quartets. Instead of choosing 23 plaintext structures, we could also choose 23 ∇K
(There are 28 − 1 values of ∇K to produce the optimal differential characteristic
of E1). In this way, 288 encryptions and 288+3 = 291 decryptions are needed,
thus the number of decryptions dominates the complexity. The time and data
complexity is reduced to 292 and 291, respectively. The number of keys will
increase to 216+3 = 219.

More Tradeoffs. One key structure consists of 216, and hence the total number
of keys required in this attack is 217 (216 for the encryption and decryption
oracles each). There is a tradeoff between the number of keys required, and the
time and data complexities, by reducing the size of the key structure, i.e., with a
216−s key structures, the resulted complexities of the attack will be: Time 292+s,
Data 291+s, and # Keys 217−s, for 0 ≤ s ≤ 16. Further to note, when s ≥ 7.5
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the time complexity becomes higher than that in [10], and our attack offers no
more advantage, so the tradeoff makes sense only for 0 ≤ s ≤ 7.5.

5 Conclusion

In this paper, we brought the idea of structures to key materials, and successfully
applied it to the related-key boomerang attack against AES-256. This improved
the best known attack against AES-256 by reducing the data/time complexities by
a factor of about 28, at the cost of more required keys. While the general principle
is simple, its deployment contains many details and it is important to ensure
that the introduction of key structure will not invalidate or significantly reduce
the probability of the differential characteristics. More tradeoffs are provided
between time/data complexity and the number of required keys.

Other Potential Applications. We note that our structure technique was
applied to key material, and hence increases the number of required keys for
the attack to succeed. However, this may be avoided when the attack is applied
to AES-based tweakable block ciphers so that the structure is applied to tweak,
rather than keys. There are two such cases: TAES [1] and the TBCs following
TWEAKEY framework [22]. TAES is basically AES-256 with the concatenation of
a 128-bit secret key and a 128-bit tweak as the 256-bit key input. The TWEAKEY
framework treats the key and tweak in the same way and names the combined
input “tweakey”. Following it, there are several dedicated AES-like proposals such
as the Deoxys-BC in the Deoxys AE design [23], SKINNY [2], and Kiasu [21].
Users will have the choice to decide which are the bits to be used as key or
tweak material. The potential application of our technique is that, when the
structure is applied to the tweak of either TAES or AES-based TWEAKEY
designs, the increased requirement applies to the tweak only, and that of keys
remains un-affected.

Inapplicability to AES-192 [10] and Differential Attack [11]. The boomerang
attack was applied to AES-192 as well in [10], so the idea of key structure naturally
applies. However, looking into the details, the key bytes recovered in the AES-
192 attack falls in two different locations, in both the pre- and post-whitening
keys. Note that in our improved attack on AES-256, we are able to deduce the
count of key suggestions of all keys to the original key K0 and K ′0, however this
becomes impossible for both pre- and post-whitening keys simultaneously in case
of AES-192. The direct application of the idea of key structure to the differential
attack in [11] seems difficult, as the probability of the differentials will drop
significantly, which overrules the potential gain key structures might brings. It
will be interesting to see if these technical difficulties could be overcome and find
more applications of key structures.
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