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Abstract. We analyze the multi-user (mu) security of a family of nonce-based
authentication encryption (nAE) schemes based on a tweakable block cipher (TBC).
The starting point of our work is an analysis of the mu security of the SCT-2 mode
which underlies the nAE scheme Deoxys-II, winner of the CAESAR competition for
the defense-in-depth category. We extend this analysis in two directions, as we detail
now.
First, we investigate the mu security of several TBC-based variants of the counter
encryption mode (including CTRT, the encryption mode used within SCT-2) that
differ by the way a nonce, a random value, and a counter are combined as tweak
and plaintext inputs to the TBC to produce the keystream blocks that will mask
the plaintext blocks. Then, we consider the authentication part of SCT-2 and study
the mu security of the nonce-based MAC Nonce-as-Tweak (NaT) built from a TBC
and an almost universal (AU) hash function. We also observe that the standard
construction of an AU hash function from a (T)BC can be proven secure under the
assumption that the underlying TBC is unpredictable rather than pseudorandom,
allowing much better conjectures on the concrete AU advantage. This allows us to
derive the mu security of the family of nAE modes obtained by combining these
encryption/MAC building blocks through the NSIV composition method (including
SCT-2).
These modes require an underlying TBC with a larger tweak length than what is
usually available for existing ones. We then show the practicality of these modes by
instantiating them with two new TBC constructions, Deoxys-TBC-512 and Deoxys-
TBC-640, which can be seen as natural extensions of the Deoxys-TBC family to larger
tweak lengths. Designing such TBCs with unusually large tweaks is prone to pitfalls:
Indeed, we show that a large-tweak proposal for SKINNY published at EUROCRYPT
2020 presents an inherent construction flaw. We therefore provide a sound design
strategy to construct large-tweak TBCs within the Superposition Tweakey (STK)
framework, leading to new Deoxys-TBC and SKINNY variants. We provide software
benchmarks indicating that while ensuring a very high security level, the performances
of our proposals remain very competitive.
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1 Introduction
1.1 Background
Multi-user Security for AE. Authenticated Encryption (AE), providing confidential-
ity and integrity in a single primitive, is arguably among the most widely used components
in applied cryptography. Its usage is widespread to protect all modern communication
protocols, such as TLS, IPSec, SSH, etc. Traditionally, designers considered mainly single-
user security, where an attacker is restrained to target only a single key. However, one
can witness a growing concern towards large-scale adversaries, like state actors, which can
potentially try to attack a large number of users at the same time, for example for mass-
surveillance purpose. We observe more efforts conducted recently on multi-user security
research and increased attention to these threats in standardization bodies discussions.

Multi-user (mu) security (sometimes called multi-key security) was first formally
introduced for PRFs (as a technical tool) by Bellare, Canetti, and Krawczyk [BCK96]
and later for public-key encryption (as a full-fledged security goal) by Bellare, Boldyreva,
and Micali [BBM00]. In the mu setting, the attacker can distribute its resources to
attack multiple users (all having independent keys) and is considered successful if it
compromises at least one of them. In symmetric cryptography, multi-user attacks have
been studied for block ciphers [Bih02,FJM14] and for stream ciphers [PPS15], and provable
security results have been obtained for block ciphers [ML15,Tes15,HT16,HT17,GW18]
and MACs [ADMA15, BBT16, SWGW21]. The study of the mu setting for AE has
been first explored in [BT16] for the “randomized nonce” mechanism proposed for the
Galois Counter-Mode with AES (AES-GCM) in TLS 1.3, an analysis later improved with
tighter bounds in [LMP17,HTT18]. Results have also been obtained for the keyed duplex
construction [DMA17] and AES-GCM-SIV [BHT18].

Single-user (su) security implies multi-user security, however the best generic reduction
implies a security loss of u, where u is the number of users that the adversary can
simultaneously attack. Sometimes this loss is unavoidable, meaning there exists a matching
attack, for example in the case of key-recovery attacks against block ciphers [Bih02].
However, for some schemes it can be shown that security does not degrade substantially
when going from the su to the mu setting [ML15,Tes15,BBT16,HT16,HT17,LMP17]. In
other words, in such a case, the adversary does not gain much from having the opportunity
to allocate its attack resources (such as the total number of queries to oracles available in
the security game) across multiple users.

Tweakable Block Ciphers. Tweakable block ciphers (TBC) are block ciphers with
an extra public input, the tweak, that can be used to randomize the family of permutations
defined. The first published TBC was the AES competition candidate Hasty Pudding
Cipher [Sch98], but the first formal treatment of TBCs was due to Liskov et al. [LRW11].
We can generally observe two main strategies to build a TBC: either from an existing
BC or directly with a dedicated design [Cro01, JNP14, BJK+16, Ava17, BLLS22]. Since
their emergence, TBCs have proven to be very flexible and attractive primitives, leading
to efficient AE operating modes with stronger security guarantees than classical BC-based
ones [RBBK01,KR11,PS16, IMPS17,NS19, IKMP20,NSS20a,NSS20b]. Indeed, a recurrent
issue with BC-based AE operating modes is that security is usually only guaranteed up to
the birthday bound [Fer02], i.e., up to 2n/2 queries for a n-bit block cipher. While this
might be sufficient for most practical cases using a 128-bit cipher such as AES, future
applications might suffer from such limitation. This problem is even more present when
multiple users are considered, which can further reduce the security guarantees. TBC-based
AE modes, in contrary, would usually provide beyond-birthday bound (BBB) security,
while retaining very good performances. It is therefore natural to consider the usage of
TBCs to try to tackle efficiently the problem of multi-user security as well.
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1.2 Our Contributions
Our contributions are two-fold. On one hand, we analyze the multi-user security of a
family of nonce-based authenticated encryption (nAE) modes of operation for TBCs that
follow the SCT-2 blueprint. On the other hand, we design new TBCs for instantiating
these modes which require a large tweak length.

Multi-user Analysis of nAE Modes for TBCs. We consider a family of nAE
modes called GNSIV that follow the NSIV composition paradigm [PS16] which combines
a nonce-based PRF/MAC and a nonce and IV-based encryption scheme to obtain a
nonce-misuse resistant nAE scheme [RS06]. Nonce-misuse resistance (meaning security
does not break dramatically if a nonce is mistakenly repeated) has become an important
security goal, as shown by a number of recent attacks [BZD+16,VP17,VP18]. The family
of nAE modes we consider includes in particular the SCT-2 mode which underlies the nAE
scheme Deoxys-II, selected as first choice in the portfolio of the CAESAR competition for
the defense-in-depth category, and whose only existing security analysis is in the single-user
setting [JNPS21,ABPV21]. For the encryption part, we consider a family of TBC-based
variants of the counter encryption mode (including the CTRT [PS16] mode used in SCT-2)
called GCTR combining a nonce, a random IV (to be generated pseudorandomly by the
PRF applied to the inputs of the nAE mode once embedded in the NSIV construction), and
a counter to define the tweak and plaintext inputs to the TBC to produce the keystream
blocks. Our analysis can be seen as an extension of the recent work of Andreeva et
al. [ABPV21], who carried out a similar investigation of TBC-based counter-like encryption
modes, albeit limited to the single-user setting. Our proof is in the ideal (tweakable) cipher
model, which is customary for multi-user analysis [BT16, BHT18, HTT18] as it allows
to capture the offline computations performed by the adversary. For a TBC with key
length k and block length n, our security bounds show that some variants ensure security
up to roughly 2k ideal cipher queries and 2n encryption queries in the nonce-respecting
setting, with graceful security degradation as nonces are repeated (meaning security does
not collapse at the first nonce repetition but instead deteriorates continuously as a function
of the number of nonce repetitions), independently from the number of users. In other
words, security does not suffer from collisions between user keys, something that can only
be achieved for randomized cryptographic schemes.

Then, we consider the authentication part, for which we focus on the Nonce-as-Tweak
(NaT) scheme [CLS17], a simple nonce-based PRF/MAC constructed from an almost
universal (AU) hash function H and a TBC E and that follows the classical “Hash-then-
PRF” paradigm. Again, our findings (in the ideal cipher model for E) indicate that NaT
security does not degrade in the multi-user setting and that it provides security up to
roughly 2k ideal cipher queries and 2n tag/verification queries in the nonce-respecting
setting, with graceful security degradation as nonces are repeated.

By combining NaT and any instance of the GCTR encryption mode through the NSIV
composition method, we obtain an instance of the GNSIV family of nAE schemes (see
Figure 1 for a high-level view of the mode). Note that this analysis assumes a generic
AU hash function H. We then turn to the problem of instantiating H from the same
underlying TBC as the other components.

Universal Hashing from Unpredictable TBCs. Equipped with our results regard-
ing NaT with a generic AU hash function, we consider the question of how to instantiate it
from a TBC.1 The standard construction consists in concatenating the input blocks with a
counter, applying the TBC (or more generally any keyed function), and xoring the outputs,

1We could use statistical AU hash functions based for example on polynomial hashing, but we aim at a
purely TBC-based design.
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Figure 1: High-level overview of the GNSIV mode family (encryption only) based on a TBC
E. The inputs to the scheme are the associated data A, the nonce N , and the message M .
The pair (A, M) is first hashed with the AU hash function H and the output is encrypted
with a call to the TBC with N as tweak (which together forms the NaT nonce-based
PRF applied to the tuple (N, A, M)). This yields a tag V which is then converted to
a pseudorandom IV R through a regular function Conv (usually simply the identity or
truncation). The tuple (N, R, M) is then given as input to the GCTR encryption mode to
produce the ciphertext C. The output of the scheme is the pair (V, C). The superscripts
to E indicate the tweak prefixes used in each component for domain separation. Each
instance of the GCTR encryption mode defines a different instance of the GNSIV nAE
mode.

something we refer informally to as the Xor-Hash construction, and whose origin can be
traced back to Bellare et al. [BGR95]. Slight variants of this construction are the basis of
multiple “Hash-then-PRF” MACs such as Protected Counter Sum [Ber99], PMAC [BR02],
or LightMAC [LPTY16]. Usually, these constructions are proven secure under the as-
sumption that the underlying primitive is pseudorandom. Indeed, it is not hard to prove
that Xor-Hash is δ-AU (i.e., for any pair of distinct inputs X and X ′, HK(X) = HK′(K)
with probability at most δ) for δ = 2−n + εprp (see for example [BS20], Section 7.2.3).
However, we face the problem that the NaT security bound contains a term µqδ, where µ
is the maximal number of repetitions of nonces for any user and q is the total number of
tag/verification queries made by the adversary. Yet for a TBC (or any keyed deterministic
function) with a k-bit key, there exist non-uniform attacks that can distinguish it from
random with advantage 2−k/2 in constant time and queries [DTT10,BL13]. As a result,
provable security for NaT caps at q ≃ 2k/2 even in the nonce-respecting setting, short of
our objectives to deliver k-bit security.

We overcome this hurdle by proving that Xor-Hash is almost universal assuming that the
underlying TBC is only unpredictable, a much weaker assumption than pseudorandomness.
In particular, no attacks better than key recovery or random guessing seems to be known
against unpredictability, even in the non-uniform case. See [DS09, Section 7] for a discussion
of unpredictability versus pseudorandomness.

A similar observation has previously been maid by Datta and Yasuda [DY15]: they
showed that a two-key variant of PMAC [BR02] can be proven PRF-secure assuming the
“internal” block cipher (used for hashing the message) is only a secure MAC (rather than
a PRP/PRF as in previous work about PMAC), which for a block cipher is equivalent
to unpredictability. The proof proceeds by showing that the block cipher-based hash
function underlying PMAC is (computationally) almost universal assuming the underlying
block cipher is unpredictable. While we consider a slightly different TBC-based hash
function relying on a counter rather than masks as in PMAC, our proof is very similar. We
observe though that computational almost universality might not be strong enough for a
H-coefficients-based proof of security of NaT and extend the approach to statistical almost
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Table 1: Summary of the nAE schemes from the GNSIV family considered in this paper.
The second column shows the corresponding variant of the GCTR encryption mode family
and the third column gives the corresponding tweak input for TBC calls in the GCTR
variant, where N is the nonce, R is the random IV, and ⟨j⟩c is the encoding of the block
counter j over c bits. The last column gives the required length ℓ for the tweakey (which
combines the key and the tweak) for |N | = |R| = c = 128 (we neglect here the tweak prefix
required for domain separation) depending on the size of the key K2 used in the encryption
mode (ℓ is simply the sum of |K2| and the tweak length as per the third column).

GNSIV variant GCTR variant tweak input tweakey length
(|K2| = 128/256)

SCT-2 CTRT R + ⟨j⟩c 256/384
GNSIV-N GCTR-N R∥⟨j⟩c 384/512
GNSIV-R GCTR-R N∥⟨j⟩c 384/512
GNSIV-C GCTR-C N∥R 384/512
GNSIV-Z GCTR-Z N∥R∥⟨j⟩c 512/640

universality. We also discuss concrete conjectures for the unpredictability of a secure TBC
and derive a corresponding concrete bound for NaT.

Large-Tweak TBC Proposals. While our new nAE modes are clean and simple,
they require a larger tweak length than what is usually available from existing TBCs such
as Deoxys-TBC [JNP14,JNPS16,JNPS21] or SKINNY [BJK+16]. Our second contribution
is therefore to propose new TBC designs achieving larger tweak lengths. This is not a
trivial task: we first show that SKINNYe-64/256, a recent large-tweak variant of SKINNY
proposed at EUROCRYPT 2020 [NSS20a] (64-bit block with 256-bit tweakey) presents
some structural design flaws. Indeed, the STK construction extension proposed by the
authors does not follow the actual STK design paradigm and allows many unwanted
cancellations in the subtweakeys throughout the round when the attacker inserts well-
chosen differences in the tweak input. As the number of difference cancellations is directly
used in the corresponding MILP model, our finding implies that the proven bounds on the
number of active Sboxes for this primitive are actually wrong.2

We therefore provide a sound design strategy to construct large-tweak TBCs using
the STK paradigm [JNP14], leading to new Deoxys-TBC variants. More specifically, we
propose Deoxys-TBC-512 and Deoxys-TBC-640, which can be seen as natural extensions
of the Deoxys-TBC family to larger tweakey lengths (512 and 640 bits, respectively). We
also propose a patch for the SKINNYe-64/256 variant. Finally, we produced software
benchmarks for our modes when instantiated with Deoxys-TBC-512 and Deoxys-TBC-640.
They indicate that while ensuring an extremely high security level, even in the multi-user
setting, the performance remains competitive. We believe these new large-tweak TBCs
might find further applications such as TBC-based hashing.

We provide a summary of the modes of the GNSIV family and the corresponding
instantiations of Deoxys-TBC in Table 1.

Comparison with AES-GCM-SIV. To finish, we compare the security bound of our new
modes with the one proven for AES-GCM-SIV in [BHT18]. Their bound is dominated by

2This flaw was communicated to the authors of [NSS20a] in October 2020, who updated the ePrint
version of their paper. Subsequently, Qin et al. [QDW+22] used this flaw to devise a full-fledged attack
against SKINNYe-64/256.
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σB/2n + d(σ + qic)/2k, where σ is the total number of blocks in encryption and decryption
queries, B is an upper bound on the number of blocks encrypted for any user, d is an
upper bound on the number of users that re-use a particular nonce value, and qic is the
number of ideal cipher queries. In comparison, the bound for our new AE mode with the
best variant of the counter encryption mode (namely GCTR-Z, see Table 2) is dominated
by

nqic/2k + µσ/2k + µq/2n + min{µℓenc
maxqver/2k, Bqver/2k},

where q is the total number of encryption and decryption queries, µ is the maximal
number of repetitions of any nonce for any user, and ℓenc

max is the maximal number of
blocks in any encryption query. This calls for some comments. First, note that even in
the nonce-respecting setting, d can be as large as the number of encryption queries qenc,
e.g. if all users rely on a counter with the same initial value to generate nonces. Hence,
AES-GCM-SIV can only achieve beyond-birthday security if some small upper bound on
d can be enforced (e.g. when all users generate nonces randomly), or by increasing the
key length of the underlying block cipher. Second, since one always has µ ≤ B, assuming
k ≥ n, the terms µσ/2k, µq/2n, and min{µℓenc

maxqver/2k, Bqver/2k} are always smaller than
σB/2n, and in fact much smaller when µ≪ B and qver ≪ σ, a common situation when
nonces are only “mildly” misused and a large number of blocks are encrypted/decrypted
per user and in total.

2 Preliminaries
2.1 General Notation and Definitions
Given a finite non-empty set X , we let X ←$ X denote the draw of an element X from
X uniformly at random. Given a positive integer n, we let {0, 1}n denote the set of all
bit strings of length n, {0, 1}≤n denote the set of all bit strings of length at most n, and
{0, 1}∗ denote the set of all bit strings. The empty string is denoted ϵ and the all-zero
string of length n ≥ 1 is denoted 0n. The length of a bit string X is denoted |X|. The
concatenation of two bit strings X and Y is denoted X∥Y . Given a bit string X and an
integer n > 0, we define |X|n = ⌈|X|/n⌉ and for X ̸= ϵ we write the parsing operation of
X into n-bit blocks as X0∥ · · · ∥Xℓ−1

n←−− X, where ℓ = |X|n, |Xi| = n for i = 0, . . . , ℓ− 2
and |Xℓ−1| ≤ |n|. Given an integer n > 0, we let ozpn (or ozp when the parameter n is
implicit) denote the padding function defined for X ̸= ϵ as

ozp(X) :=
{

X if |X| = n

X∥1∥0n−|X|−1 if |X| < n.

Given a bit string X of length i or larger, the i leftmost bits of X are denoted ⌈X⌉i and
the i rightmost bits of X are denoted ⌊X⌋i. We let X ≪ a denote the bit string X rotated
by a positions to the left. Given two integers b > 0 and i ≥ 0 such that i < 2b, we let
⟨i⟩b denote the b-bit binary representation of i. We simply write ⟨i⟩ when the length b
is clear from the context or unspecified. Given integers a ≤ b, we let Ja, bK denote the
set {a, . . . , b}. We say that a function F : X → Y is regular if all Y ∈ Y have the same
number of preimages by F . We say that a function H : K × X → Y is γ-uniform if for
every X ∈ X and every Y ∈ Y, Pr[K ←$ K : H(K, X) = Y ] ≤ γ.

Almost Universal Hashing. Let K, X and Y be two non-empty sets with K and Y
finite. A keyed hash function with key space K, domain X , and range Y is a function
H : K×X → Y . We write HK(X) for H(K, X). We defined two notions of almost universal
(AU) hashing, namely computational AU (cAU) hashing and statistical AU (sAU) hashing.
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Definition 1 (AU hash function). Let K, X and Y be two non-empty sets with K and Y
finite and let len : X → N be some function measuring the “length” of an element of X
(e.g., the number of n-bit blocks when X consists of bit strings). Let H : K ×X → Y be a
keyed hash function and A be an adversary. The advantage of A against the AU security
of H is defined as

Advau
H (A) = Pr[(X, X ′)← A(), K ←$ K : X ̸= X ′ ∧HK(X) = HK(X ′)].

Let δ : N→ [0, 1] be some function. We say that H is a (ζ, δ)-cAU hash function (w.r.t len)
if for any adversary A running in time at most ζ and returning X and X ′ of length at most ℓ
(i.e., max{len(X), len(X ′)} ≤ ℓ), Advau

H (A) ≤ δ(ℓ). We say that H is a δ-sAU hash function
if for any adversary A (even computationally unbounded) returning X and X ′ of length at
most ℓ, Advau

H (A) ≤ δ(ℓ). Equivalently, H is δ-sAU if and only if for every (X, X ′) ∈ X 2

with X ̸= X ′ and max{len(X), len(X ′)} ≤ ℓ, Pr[K ←$ K : HK(X) = HK(X ′)] ≤ δ(ℓ).
The last equivalence is easily proven: the if direction is trivial; for the only if direc-

tion, assume towards a contradiction that there exists (X, X ′) ∈ X 2 with X ̸= X ′ and
max{len(X), len(X ′)} ≤ ℓ such that Pr[K ←$ K : HK(X) = HK(X ′)] > δ(ℓ) and consider
the adversary A which computes the collision probability for every pair of messages of
length at most ℓ and returns (X, X ′); then A has AU advantage strictly larger than δ(ℓ),
contradicting the assumption that H is δ-sAU.

2.2 Tweakable Block Ciphers
A tweakable block cipher (TBC) with key space K, tweak space T , and domain X is a
mapping E : K × T × X → X such that for any key K ∈ K and any tweak T ∈ T , the
mapping E(K, T, ·) is a permutation of X . The set of all such TBCs will be denoted
TBC(K, T ,X ). Slightly abusing the notation, given positive integers k, t, and n, we
also let TBC(k, t, n) denote TBC({0, 1}k, {0, 1}t, {0, 1}n) and we often write EK(T, X) or
ET

K(X) in place of E(K, T, X). A tweakable permutation with tweak space T and domain
X is a mapping P : T × X → X such that for any tweak T ∈ T , the mapping P (T, ·)
is a permutation of X . The set of all tweakable permutations with tweak space T and
domain X will be written TP(T ,X ). We consider two security notions for TBCs, namely
pseudorandomness and unpredictability.
Definition 2 (TPRP and UNP security). Let E ∈ TBC(K, T ,X ) and A be an adversary.
Consider games Realtprp

E (A) and Idealtprp
E (A) defined in Figure 2 (left). The advantage of

A in breaking the TPRP security of E is defined as

Advtprp
E (A) =

∣∣Pr
[
1← Realtprp

E (A)
]
− Pr

[
1← Idealtprp

E (A)
]∣∣ .

Consider game Gameunp
E (A) defined in Figure 2 (right). The advantage of A in breaking

the UNP security of E is defined as

Advunp
E (A) = Pr[true← Gameunp

E (A)].

The Ideal Tweakable Cipher Model. Our proofs will use the ideal (tweakable)
cipher model, where the TBC underlying a specific construction is drawn uniformly at
random from the set of all TBCs with the adequate key, tweak, and message spaces,
and given as a black box that can be queried in the forward and backward direction
by the adversary. More formally, given a cryptographic scheme Π based on a TBC
E ∈ TBC(k, t, n), the game defining the security of Π is modified as follows: at the
beginning of the game, a random TBC Eic is drawn uniformly at random from TBC(k, t, n)
and the adversary is given access to encryption and decryption oracles IC and IC−1

such that a query IC(K, T, X) returns Eic(K, T, X) and a query IC−1(K, T, Y ) returns
E−1

ic (K, T, Y ).
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Realtprp
E (A) Idealtprp

E (A)

P ←$ TP(T ,X )

K ←$ K

b← AEnc()
return b

Oracle Enc(T, X)
return P (T, X)

return EK(T, X)

Gameunp
E (A)

K ←$ K
Q ← ∅

((T, X), Y )← AEnc()
return (T, X) /∈ Q ∧ EK(T, X) = Y

Oracle Enc(T, X)
Q ← Q∪ {(T, X)}
return EK(T, X)

Figure 2: The TPRP and UNP security games for a TBC E ∈ TBC(K, T ,X ). Here and
in all subsequent figures, the real game does not include the boxed statements which are
only included in the ideal game.

2.3 Multi-user Security Notions
Below we specify the multi-user (mu) security notions for encryption, authentication, and
authenticated encryption used in this paper.

Nonce and IV-based Encryption Scheme. The notion of combined nonce and IV-
based encryption (nivE) scheme was introduced in [PS16]. Syntactically, an nivE scheme
is a tuple Π = (K,N ,R,M, C, Enc, Dec) where K is the key space, N is the nonce space,
R the random value3 space, M the message space, and C is the ciphertext space, all being
non-empty sets of bit strings with K, N , and R finite, and Enc and Dec are algorithms
such that:

• the encryption algorithm Enc takes as input a tuple (K, N, R, M) ∈ K×N ×R×M
and outputs a ciphertext C ∈ C;

• the decryption algorithm takes as input a tuple (K, N, R, C) ∈ K ×N ×R× C and
outputs a plaintext M ∈M.

We require that for all tuples (K, N, R, M) ∈ K ×N ×R×M, one has

Dec(K, N, R, Enc(K, N, R, M)) = M.

We also require that if M contains a bit string of length m, then it contains all bit strings
of length m, and that |Enc(K, N, R, M)| = |M | for all (K, N, R, M) ∈ K×N ×R×M. We
write EncK(N, R, M) for Enc(K, N, R, M) and similarly for Dec. The multi-user security
of an nivE scheme is defined as follows.

Definition 3 (mu-nivE security). Let Π = (K,N ,R,M, C, Enc, Dec) be an nivE scheme
and let A be an adversary. Consider games Realmu-nive

Π (A) and Idealmu-nive
Π (A) defined

in Figure 3. The advantage of A in breaking the mu-nivE security of Π is defined as

Advmu-nive
Π (A) =

∣∣Pr
[
1← Realmu-nive

Π (A)
]
− Pr

[
1← Idealmu-nive

Π (A)
]∣∣ .

3Although we keep the security notion name “nivE” for historical reasons, we deliberately avoid calling
this input an initial value (IV) as it is not used to initialize the counter, and prefer the more neutral term
“random value”.
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Realmu-nive
Π (A) Idealmu-nive

Π (A)

u := 0

b← ANew,Enc()
return b

Oracle New()
u := u + 1
Ku ←$ K
return ϵ

Oracle Enc(i, N, M)
if i /∈ J1, uK then

return ⊥
R←$R
C ← EncKi (N, R, M)

(R, C)←$R× {0, 1}|M|

return (R, C)

Figure 3: The mu-nivE security games for a nivE scheme Π = (K,N ,R,M, C, Enc, Dec).

Realmu-nprmac
Π (A) Idealmu-nprmac

Π (A)

u := 0 ; Q := ∅ ; Q′ := ∅

b← ANew,Tag,Ver()
return b

Oracle Tag(i, N, U)
if i /∈ J1, uK ∨ (i, N, U) ∈ Q then

return ⊥

V ← TagKi
(N, U) V ←$ V

Q ← Q∪ {(i, N, U)}
Q′ ← Q′ ∪ {(i, N, U, V )}
return V

Oracle New()
u := u + 1
Ku ←$ K
return ϵ

Oracle Ver(i, N, U, V )
if i /∈ J1, uK ∨ (i, N, U, V ) ∈ Q′ then

return ⊥

return ⊥
return (TagKi

(N, U) = V )

Figure 4: The mu-nPRMAC security games for a nonce-based pseudorandom MAC
Π = (K,N ,U ,V, Tag).

Nonce-based Pseudorandom MACs. A nonce-based pseudorandom MAC (nPRMAC
for short) is a tuple Π = (K,N ,U ,V, Tag), where K is the key space, N is the nonce space,
U is the domain, and V is the tag space, all being non-empty sets with K, N , and V finite,
and Tag is a deterministic algorithm which takes as input a tuple (K, N, U) ∈ K ×N × U
and returns a tag V ∈ V. We write TagK(N, X) for Tag(K, N, X). The following security
notion introduced in [JNPS21] combines the (nonce-based) PRF and MAC security notions.

Definition 4 (mu-nPRMAC security). Let Π = (K,N ,U ,V, Tag) be a nonce-based pseudo-
random MAC and A be an adversary. Let games Realmu-nprmac

Π (A) and Idealmu-nprmac
Π (A)

be as defined in Figure 4. The advantage of A in breaking the mu-nPRMAC security of Π
is defined as

Advmu-nprmac
Π (A) = |Pr[1← Realmu-nprmac

Π (A)]− Pr[1← Idealmu-nprmac
Π (A)]| .

Nonce-based Authenticated Encryption. A nonce-based authenticated encryption
scheme with associated data (nAE scheme for short) is a tuple Π = (K,N ,A,M, C,V, Enc,
Dec) where K,N ,A,M, C, and V are non-empty sets of bit strings with K, N , and V
finite and Enc and Dec are deterministic algorithms such that:
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Realmu-nae
Π (A) Idealmu-nae

Π (A)

u := 0 ; Q := ∅ ; Q′ := ∅

b← ANew,Enc,Dec()
return b

Oracle New()
u := u + 1
Ku ←$ K
return ϵ

Oracle Enc(i, N, A, M)
if i /∈ J1, uK ∨ (i, N, A, M) ∈ Q then

return ⊥
(C, V )← EncKi (N, A, M)

(C, V )←$ {0, 1}|M| × V

Q ← Q∪ {(i, N, A, M)}
Q′ ← Q′ ∪ {(i, N, A, C, V )}
return (C, V )

Oracle Dec(i, N, A, C, V )
if i /∈ J1, uK ∨ (i, N, A, C, V ) ∈ Q′ then

return ⊥

return ⊥ return DecKi (N, A, C, V )

Figure 5: The mu-nAE security games for a nAE scheme Π = (K,N ,A,M, C,V, Enc, Dec).

• the encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N , associated
data A ∈ A, and a message M ∈ M and outputs a ciphertext C ∈ C and a tag
V ∈ V;

• the decryption algorithm Dec takes as input a key K ∈ K, a nonce N ∈ N , associated
data A ∈ A, a ciphertext C ∈ C and a tag V ∈ V, and outputs either a message
M ∈M or a special symbol ⊥ that indicates that decryption failed.

We require that for all tuples (K, N, A, M) ∈ K ×N ×A×M, one has

Dec(K, N, A, Enc(K, N, A, M)) = M.

We also require that if M contains a bit string of length m, then it contains all bit
strings of length m, and that for all (K, N, A, M) ∈ K × N ×A ×M, |C| = |M | where
(C, V ) = Enc(K, N, A, M). We write EncK(N, A, M) and DecK(N, A, C, V ) in place of
Enc(K, N, A, M) and Dec(K, N, A, C, V ). The multi-user security of an nAE scheme is
defined as follows.

Definition 5 (mu-nAE security). Let Π = (K,N ,A,M, C,V, Enc, Dec) be an nAE scheme
and A be an adversary. Consider games Realmu-nae

Π (A) and Idealmu-nae
Π (A) defined in Fig-

ure 5. The advantage of A in breaking the mu-nAE security of Π is defined as

Advmu-nae
Π (A) = |Pr[1← Realmu-nae

Π (A)]− Pr[1← Idealmu-nae
Π (A)]| .

2.4 The H-coefficients Technique
Let us fix a deterministic adversary A trying to break a cryptographic scheme Π whose
security is defined via a distinguishing experiment specified by two games RealΠ(A) and
IdealΠ(A). We summarize the attack in a queries transcript τ encoding all queries made
by the adversary to the oracles available in the games together with their answer. Let Λre
and Λid be two random variables sampled according to the probability distribution of τ
in the real and in the ideal world respectively. We let Θ denote the set of all attainable
queries transcripts, i.e. transcripts τ such that Pr[Λid = τ ] > 0. One has the following
result, the proof of which can be found for example in [CS14].
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GCTR[E, fT , fX ].EncK(N, R, M)

if M = ϵ then return ϵ

M0∥ · · · ∥Mℓ−1
n←−−M

for j := 0 . . . ℓ− 1 do
Tj := fT (N, R, j)
Xj := fX(N, R, j)

for j := 0 . . . ℓ− 2 do

Cj := Mj ⊕ E
Tj

K (Xj)
// last block might be incomplete

Cℓ−1 := Mℓ−1 ⊕
⌈

E
Tℓ−1
K (Xℓ−1)

⌉
|Mℓ−1|

return C0∥ · · · ∥Cℓ−1

GCTR[E, fT , fX ].DecK(N, R, C)

if C = ϵ then return ϵ

C0∥ · · · ∥Cℓ−1
n←−− C

for j := 0 . . . ℓ− 1 do
Tj := fT (N, R, j)
Xj := fX(N, R, j)

for j := 0 . . . ℓ− 2 do

Mj := Cj ⊕ E
Tj

K (Xj)
// last block might be incomplete

Mℓ−1 := Cℓ−1 ⊕
⌈

E
Tℓ−1
K (Xℓ−1)

⌉
|Cℓ−1|

return M0∥ · · · ∥Mℓ−1

Figure 6: The encryption and decryption algorithms of the GCTR[E, fT , fX ] nivE scheme
based on a TBC E ∈ TBC(k, t, n).

Theorem 1 (H-coefficients technique [Pat09]). Fix a deterministic adversary A. Let Θbad
and Θgood be two disjoint subsets of Θ such that Θ = Θbad ∪Θgood. Assume that there
exists β ≥ 0 such that, for every τ ∈ Θgood,

Pr[Λre = τ ]
Pr[Λid = τ ] ≥ 1− β.

Then one has

AdvΠ(A) := |Pr[1← RealΠ(A)]− Pr[1← IdealΠ(A)]| ≤ Pr[Λid ∈ Θbad] + β.

3 Multi-user Security of GCTR Encryption
In this section, we focus on the encryption part of the AE scheme and consider several
variants of the counter encryption mode. Our goal is to fit three strings (a nonce N , a
random value R, and a counter j) into the tweak and the plaintext inputs of a tweakable
block cipher. Following Andreeva et al. [ABPV21], we define a family of nivE schemes
called generic CTR (GCTR) based on a TBC E.4 For the remainder of this section, we fix
positive integers k, t, and n and a TBC E ∈ TBC(k, t, n). The schemes are parameterized
by positive integers ν, r, and c that denote respectively the nonce length, the random
value length, and the counter length, all expressed in bits, and two functions fT and fX

taking as input a tuple (N, R, j) ∈ {0, 1}ν ×{0, 1}r × J0, 2c− 1K and returning respectively
an element of the tweak space and of the plaintext space of E. Given E, fT , and fX , the
nivE scheme GCTR[E, fT , fX ] has key space {0, 1}k, nonce space {0, 1}ν , random value
space {0, 1}r, message and ciphertext spaces {0, 1}≤2cn, and algorithms Enc and Dec as
defined in Figure 6. A specific instantiation of the GCTR family is obtained by picking up
two functions fT and fX .

Andreeva et al. [ABPV21] performed a systematic analysis of GCTR in the single user
setting, identifying 22 secure variants named GCTR-1 to GCTR-22. Here, in addition to
CTRT (GCTR-3), we focus on two simple and natural options:

4We note that our results should easily be generalizable to forkciphers [ALP+19] and multi-forkciphers
as done in [ABPV21].
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Table 2: Variants of the GCTR nivE schemes family considered in this paper. For CTRT,
+ is addition mod 2t.

name in this paper name in [ABPV21] fT (N, R, j) fX(N, R, j)
CTRT 3 R + ⟨j⟩c N

GCTR-N 1 R∥⟨j⟩c N

GCTR-R 7 N∥⟨j⟩c R

GCTR-C 5 N∥R ⟨j⟩c
GCTR-Z — N∥R∥⟨j⟩c ⟨0⟩n

• two strings are concatenated and used as the tweak, while the third one is used as
the plaintext block (GCTR-1, -5, and -7 in [ABPV21]);

• the three strings are concatenated and used as the tweak while the plaintext is a
constant: in this case, the TBC is simply used as a PRF applied to the three strings
(not analyzed in [ABPV21]).

This yields five variants in total which are listed in Table 2. Except for CTRT, we refer to
a specific variant using a suffix reflecting the block input fX as indicated in the table (e.g.
GCTR-N refers to the variant such that fT (N, R, j) = R∥⟨j⟩c and fX(N, R, j) = N). We
establish the multi-user security of GCTR in the ideal cipher model for E in the following
theorem. The proof is deferred to Appendix B.

Theorem 2 (mu security of GCTR). Let k, t, and n be positive integers and E ∈
TBC(k, t, n) be a tweakable block cipher modeled as an ideal tweakable cipher (IC, IC−1).
Let ν, r, and c be positive integers and let (fT , fX) be one of the pairs of functions from
Table 2. Let qic, qenc, ℓmax, σ and µ be positive integers such that qenc ≤ min{2k, 2r},
ℓmax ≤ 2c, and σ ≤ min{2n, 2r}. Then, for any adversary A making at most qic queries in
total to IC or IC−1 and qenc queries to Enc of maximal length (in number of n-bit blocks)
at most ℓmax and of total length (in number of n-bit blocks) at most σ, and such that any
(user, nonce) pair (i, N) appears at most µ times in Enc queries, one has

Advmu-nive
GCTR[E,fT ,fX ](A) ≤ 1

2r
+ 1

2n
+ 2(r + n)qic

2k
+ g(qic, qenc, ℓmax, σ, µ),

where

g(qic, qenc, ℓmax, σ, µ) :=



(4µ+1)σ
2r+1 for CTRT,

µqenc
2r+1 + σ

2n+1 for GCTR-N,
µqenc
2r+1 + µσ

2n for GCTR-R,
(2µ−1)qenc

2r+1 + σℓmax
2n+1 + σ2

2k+n+1 for GCTR-C,
µqenc
2r+1 for GCTR-Z.

Discussion. The common part of the bound is negligible as long as qic is small compared
to 2k−log2 n (assuming r ≃ n). Omitting constant factors, one can note that the bound for
all variants except CTRT have a µqenc/2r term but differ in how σ shows up: the security
bound for GCTR-Z is always better than the one for GCTR-N, which is always better than
the one for GCTR-R and GCTR-C, whose relation depend on µ and ℓmax. Note also that
the bound for GCTR-Z does not depend on σ. The bound for CTRT has a term µσ/2r and
hence is always worse than the bound of GCTR-Z and GCTR-N (for r = n).
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4 Multi-user Security of NaT Authentication
In this section, we focus on the authentication part of the AE scheme. In Section 4.1,
we consider the nonce-based pseudorandom MAC called Nonce-as-Tweak (NaT) [CLS17]
based on a TBC E and a generic AU hash function H and study its mu-nPRMAC security.
In Section 4.2, we study how to instantiate H from an unpredictable TBC.

4.1 NaT Based on a Generic AU Hash Function
Let k, t, and n be positive integers, Kin and U be non-empty sets with Kin finite, and
len : U → N be some length function. Let E ∈ TBC(k, t, n) be a tweakable block cipher
and H : Kin × U → {0, 1}n be a keyed hash function. Let also ν be an integer with ν ≤ t.
We define the nonce-based pseudorandom MAC NaT[H, E] with key space Kin × {0, 1}k,
nonce space {0, 1}ν , domain U , and tag space {0, 1}n as

NaT[H, E].TagKin,Kout(N, U) := E
0t−ν∥N
Kout

(HKin(U)) .

We establish the multi-user security of NaT in the ideal cipher model for E and
assuming that H is a sAU hash function in the following theorem using the H-coefficients
technique. The proof is deferred to Appendix C. We conjecture that a similar result
can be proven assuming H is a cAU hash function. However, as far as we can tell, the
proof of this conjecture cannot use the H-coefficients technique if H is only assumed
computationally secure as there does not seem to be a way to replace it with a statistically
secure counterpart as a first step in the reasoning. Hence, a game-based proof would be
required instead, allowing to construct a reduction to the cAU security of H. We leave this
for future work as we are able to prove that the TBC-based instantiation of H[Ein] defined
in Section 4.2 is sAU under a plausible unpredictability assumption on the underlying
TBC Ein. We will also justify the specific form we assume for δ(ℓ) and γ(ℓ).

Theorem 3 (mu security of NaT). Let k, t, and n be positive integers, Kin and U be
non-empty sets with Kin finite, len : U → N be some length function (below, the length of an
element U ∈ U refers to len(U)), E ∈ TBC(k, t, n) be a tweakable block cipher modeled as
an ideal tweakable cipher (IC, IC−1), and H : Kin × U → {0, 1}n be a keyed hash function.
Let ν be an integer such that ν ≤ t. Assume that H is δ-sAU and γ-uniform (w.r.t len)
for δ(ℓ) = γ(ℓ) = αℓ/2k + β/2n with β ≥ 1 (and hence δ ≥ 2−n and γ ≥ 2−n). Let qic,
qtag, σtag, qver, σver, ℓtag

max, and µ be positive integers such that qtag ≤ 2n, 2qtag + qic ≤ 2k,
and qic + µ ≤ 2n/2. Then, for any (computationally unbounded) adversary A against the
mu-nPRMAC security of NaT[H, E] making at most qic queries in total to IC or IC−1,
qtag queries to Tag of maximal length ℓtag

max and of total length at most σtag, qver queries
to Ver of total length at most σver, and such that any (user, nonce) pair (i, N) appears at
most µ times in its Tag queries, one has

Advmu-nprmac
NaT[H,E] (A) ≤ 2nqic

2k
+ αµσtag

2k
+ α(µ + 1)σver

2k
+ αµℓtag

maxqver

2k

+ 1
2n

+ βµqtag

2n
+ β(µ + 3)qver

2n
.

Moreover, if the total length of all Tag queries for any user is at most B, then the term
αµℓtag

maxqver/2k can be replaced by αBqver/2k.

Discussion. We will justify in Section 4.2 that α and β can be conjectured to be small
absolute constant, hence we let α = β = 1 for the sake of discussion. Then as long as µ
remains small, all terms are negligible as long as σtag and σver are small compared to 2k,
qtag is small compared to 2n, qverℓ

tag
max is small compared to 2n, and qic is small compared
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to 2k−log2 n. Note that in many situations, ℓtag
max can be reasonably upper bounded to

provide beyond-birthday security with respect to qver (e.g., for n = 128 and ℓtag
max = 232,

security is ensured up to 296 verification queries). When µ is allowed to grow as large as
qtag, we hit the birthday bound and security vanishes at 2n/2 tag/verification queries.

4.2 TBC-based Almost Universal Hashing
Warm-up. Let n and c be positive integers and K and X be finite non-empty sets. Let
F : K ×X × {0, 1}c → {0, 1}n be a keyed function with key space K, domain X × {0, 1}c,
and range {0, 1}n. Consider the keyed hash function F⊕ with key space K, domain X≤2c

(the set of all sequences of elements of X of length at most 2c equipped with the length
function len returning the length of a sequence), and range {0, 1}n defined for K ∈ K and
X = (X0, . . . , Xa−1) ∈ X≤2c (with a = len(X) = 0 if X is empty) as

F⊕K (X1, . . . , Xa) :=
{

0n if a = 0,⊕a−1
j=0 FK(Xj , ⟨j⟩c) if a ≥ 1.

Construction F⊕ is a simplified variant of the keyed hash function used for example in
PMAC [BR02,Rog04]. The standard proof that F⊕ is AU relies on the assumption that F
is a PRF (see for example [BS20], Section 7.2.3). Here we show that F⊕ is a cAU hash
function assuming F is unpredictable,5 as captured by the following theorem.

Theorem 4. Let F : K × X × {0, 1}c → {0, 1}n be a keyed function with key space K,
domain X ×{0, 1}c, and range {0, 1}n. Then, for any adversary A against the AU security
of F⊕ running in time at most ζ and returning messages of length at most ℓ, there exists an
adversary B against the UNP security of F making at most 2ℓ oracle queries and running
in time at most ζ + αℓ for some small constant α that only depends on the computation
model (but not on F ), such that

Advau
F ⊕(A) ≤ Advunp

F (B).

Proof. Let A be an adversary against the AU security of F⊕. We construct adversary
B against the UNP security of F as follows. (Recall that B has oracle access to FK for
some random key K and must return a pair (x, FK(x)) for some x that it did not query
to its oracle). It runs A() which returns two messages X = (X0, . . . , Xa−1) and X ′ =
(X ′0, . . . , X ′a′−1) in X≤ℓ. Assuming A is successful, then X ̸= X ′ and F⊕K (X) = F⊕K (X ′),
where K is the key drawn at random by the UNP challenger. Assume wlog that a ≤ a′, and
let J denote the set of integers j ∈ J0, a− 1K such that Xj ̸= X ′j . Then F⊕K (X) = F⊕K (X ′)
is equivalent to⊕

j∈J

FK(Xj , ⟨j⟩c)⊕ FK(X ′j , ⟨j⟩c)

⊕ a′−1⊕
j=a

FK(X ′j , ⟨j⟩c) = 0n, (1)

where the second summation is empty if a = a′. Note that all F inputs appearing in (1)
are distinct. Then B proceeds as follows. If a < a′, then it queries all inputs appearing in
(1) except (X ′a′−1, ⟨a′ − 1⟩c) and returns⊕

j∈J

FK(Xj , ⟨j⟩c)⊕ FK(X ′j , ⟨j⟩c)

⊕ a′−2⊕
j=a

FK(X ′j , ⟨j⟩c)

5To avoid confusion, we warn that in his security proof of Protected Counter Sum, Bernstein uses
“unpredictable” to mean pseudorandom, see beginning of [Ber99, Section 2].
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as its guess for FK(X ′a′−1, ⟨a′ − 1⟩c). (Note that this expression equals 0n if J = ∅ and
a′ = a + 1.) If a = a′, then J ̸= ∅ as otherwise this would imply X = X ′. Let j0 = max(J).
Then B queries all inputs appearing in (1) except (X ′j0

, ⟨j0⟩c) and returns ⊕
j∈J\{j0}

FK(Xj , ⟨j⟩c)⊕ FK(X ′j , ⟨j⟩c)

⊕ FK(Xj0 , ⟨j0⟩c)

as its guess for FK(X ′j0
, ⟨j0⟩c).

Clearly, B succeeds when A succeeds, makes at most 2ℓ oracle queries, and runs in time
at most ζ + αℓ for some small constant α. B’s additional computations besides running A
only consist in equality checking and xoring on n-bit blocks, hence α only depends on the
computation model but not on F .

Theorem 4 establishes that F⊕ is a computational AU in a constructive way: given
an AU adversary A against F⊕, the proof describes an explicit UNP adversary B against
F using A as a black box. On the other hand, one can easily adapt the proof to show
that F⊕ is a statistical AU in a non-constructive way, as shown in the following theorem.
A similar constructive/non-constructive dichotomy for cAU/sAU security was proved by
Bellare for the cascade construction applied to a PRF [Bel06, Lemma 3.1].

Theorem 5. Let F : K × X × {0, 1}c → {0, 1}n be a keyed function with key space K,
domain X ×{0, 1}c, and range {0, 1}n. Let δ(ℓ) := maxA{Advunp

F (A)}, where the maximum
is over all adversaries making at most 2ℓ oracle queries and running in time at most αℓ
for some small constant α that only depends on the computation model (but not on F ).
Then F⊕ is δ-sAU.

Proof. Assume towards a contradiction that F⊕ is not δ-sAU, i.e., there exists ℓ and
(X, X ′) ∈ (X≤ℓ)2 such that X ̸= X ′ and

δ′ := Pr
[
K ←$ K : F⊕K (X) = F⊕K (X ′)

]
> δ(ℓ).

Define B′ as the UNP adversary having X and X ′ hardwired in its code6 and behaving
exactly as B from the proof of Theorem 4 (except it does not have to run any AU adversary
A to obtain X and X ′). Then B′ makes at most 2ℓ oracle queries, runs in time αℓ for
some small constant α, and wins the UNP game with probability δ′ > δ(ℓ), contradicting
the definition of δ.

The Construction. We now turn to the actual TBC-based hash function used to
instantiate NaT in our nAE modes. Let k, t, and n be positive integers and E ∈ TBC(k, t, n)
be a tweakable block cipher. Let c be a positive integer such that c ≤ t − 3 and let
m := t− c− 3 and L := 2c · (m + n).7 We define the keyed hash function H[E] with key
space {0, 1}k, domain {0, 1}≤L × {0, 1}≤L, and range {0, 1}n as

H[E]K(A, M) :=

E
⟨4⟩3∥0t−3

K (0n) if (A, M) = (ϵ, ϵ),

H[E]0K(A)⊕H[E]2K(M) otherwise,
(2)

6Note that one cannot construct adversary B′ above by running an sAU-adversary A against F ⊕ and
waiting for it to output (X, X′) since it would be impossible to upper bound the running time of B′ (hence
the non-constructiveness).

7As usual, c denotes the counter length, while m denotes the number of message input bits that can fit
in the tweak in addition to the counter and a 3-bit prefix.
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where for i ∈ {0, 2} and X ∈ {0, 1}≤L parsed as X0∥ · · · ∥Xℓ−1
m+n←−−−− X,

H[E]iK(X) :=



0n if X = ϵ,⊕ℓ−1
j=0 E

⟨i⟩3∥⟨j⟩c∥⌈Xj⌉m
K (⌊Xj⌋n) if X ̸= ϵ, |Xℓ−1| = n,⊕ℓ−2

j=0 E
⟨i⟩3∥⟨j⟩c∥⌈Xj⌉m
K (⌊Xj⌋n)

⊕E
⟨i+1⟩3∥⟨ℓ−1⟩c∥⌈X∗

ℓ−1⌉m

K (
⌊
X∗ℓ−1

⌋
n
) if X ̸= ϵ, |Xℓ−1| < n,

where X∗ℓ−1 = ozpm+n(Xℓ−1). Define the length function for (A, M) ∈ {0, 1}≤L×{0, 1}≤L

as len(A, M) := |A|n+m + |M |n+m.
We establish that H is a sAU hash function in the following theorem. The proof follows

the one of Theorem 4 and Theorem 5 and is deferred to Appendix D.

Theorem 6 (sAU security of H). Let k, t, and n be positive integers, E ∈ TBC(k, t, n)
be a tweakable block cipher, and c and m be integers such that t = m + c + 3. Let
δ(ℓ) := maxA{Advunp

E (A)}, where the maximum is over all adversaries making at most 2ℓ
oracle queries and running in time at most αℓ for some small constant α that only depends
on the computation model (but not on E). Then H[E] is δ-sAU.

Conjectured Unpredictability of TBCs. In view of Theorem 6, it is interesting
to contrast unpredictability and pseudorandomness in order to see if anything has been
gained compared to previous proofs of AU-security for H[E] and variants based on (T)PRP
assumptions. As mentioned in the introduction, there exist non-uniform attacks against any
pseudorandom function with key length k achieving advantage 2−k/2 in constant time and
queries [DTT10,BL13]. On the other hand, no such attack is known for unpredictability.
For adversaries running in time at most αℓ and making at most 2ℓ queries, a reasonable
conjecture is that maxA{Advunp

E (A)} is close to αℓ/2k + 1/(2n − 2ℓ), where the first term
captures the success probability of exhaustive key search and the second term the success
probability of a random guess among the unqueried values. In our specific case, this can
even be pushed to ℓ/2k + 1/(2n − 2) as it can be noted that adversaries constructed in the
proof of Theorem 6 make at most 2 queries per tweak. Combined with Theorem 6, we
obtain the following conjecture justifying the assumption regarding δ in Theorem 3.

Conjecture 1. Let E ∈ TBC(k, t, n) be a “secure” tweakable block cipher. Then there
exists small absolute constants α and β such that H[E] is δ-sAU with δ(ℓ) = αℓ/2k + β/2n.

Uniformity of H. We note that the proof of Theorem 6 can easily be adapted to prove
that H[E] restricted to inputs of length at most ℓ is γ-uniform for γ = maxA{Advunp

E (A)}
where the maximum is over all adversaries making at most ℓ oracle queries and running in
time at most αℓ for some small constant α. Note that we cannot simply let H[E]K(ϵ, ϵ) = 0n

as this would break the uniformity property required for the proof of Theorem 3. In
particular, the adversary could provoke bad condition (C-3) with probability close to 1 by
making 2k/2 queries Tag(i, N, (ϵ, ϵ)) for distinct users i and some fixed nonce N and 2k/2

queries IC(K, 0t−ν∥N, 0n).

5 Authenticated Encryption Modes
Given an nPRMAC and an nivE scheme, one can obtain an nAE scheme by combining them
through the NSIV composition method [PS16], a variant of SIV [RS06]. Formally, given an
AD space A and a message space M, let Πmac = (K1,N ,U ,V, Tag) be an nPRMAC with
U = A×M and let Πenc = (K2,R,M, C, Enc, Dec) be an nivE scheme. Let Conv : V → R
be a regular function. We define the nAE scheme NSIV[Πmac, Πenc] with key space K1×K2,
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Enc(K1,K2)(N, A, M)

V := TagK1 (N, (A, M))
R := Conv(Y )
C := Πenc.EncK2 (N, R, M)
return (C, V )

Dec(K1,K2)(N, A, C, V )

R := Conv(V )
M := Πenc.DecK2 (N, R, C)
V ′ := TagK1 (N, (A, M))
if V = V ′ then return M else return ⊥

Figure 7: The encryption and decryption algorithms for the NSIV construction, combining
an nPRMAC Πmac and an nivE scheme Πenc into an nAE scheme NSIV[Πmac, Πenc].

nonce space N , AD space A, message space M, ciphertext space C, and tag space V as
specified in Figure 7. As shown in [PS16,JNPS21] for the single user setting, assuming
Πmac is nPRMAC-secure and Πenc is nivE-secure, then NSIV[Πmac, Πenc] is nAE-secure.

Given three TBCs Ein, Eout, and Eenc with respective key spaces Kin, Kout, and Kenc,
any encryption scheme from the GCTR family (Section 3) based on Eenc can be combined
through the NSIV composition method with the NaT MAC scheme (Section 4) based on
Ein for hashing and Eout for encrypting the hash in order to obtain a TBC-based nAE
scheme with key space Kin ×Kout ×Kenc. However, using tweak domain separation, one
can save on key material by letting Eout = Eenc and using the same key both for tag
finalization (i.e., encrypting the hash) in NaT and in the encryption mode, separating the
two types of calls by using a different tweak prefix. Moreover, it is possible to use a single
TBC E = Ein = Eenc, again by using tweak domain separation, as long as the hashing key
and the encryption key are independent. This way, we obtain a family of nAE schemes
that we call generic NSIV (GNSIV) based on a TBC E (or two TBCs Ein and Eenc) and
parameterized by the pair of functions (fT , fX) used to instantiate the encryption part as
GCTR[E/Eenc, fT , fX ].

We now describe the GNSIV family more formally, focusing on the single-TBC case
for simplicity and study its nAE security. Let k, t, and n be positive integers and let
E ∈ TBC(k, t, n). Let ν and c be positive integers8 and let fT and fX be two functions from
{0, 1}ν × {0, 1}n × J0, 2c − 1K to {0, 1}t2−3 and {0, 1}n respectively.9 We use a 3-bit prefix
for tweak domain separation, with prefixes 0 to 4 used for hashing (see definition of H[E]
in Section 4.2), prefix 5 used to encrypt the hash, and prefix 6 used for message encryption.
Given E, fT , and fX , the nAE scheme GNSIV[E, fT , fX ] has key space {0, 1}k × {0, 1}k,
nonce space {0, 1}ν , AD, message, and ciphertext spaces {0, 1}≤2cn, tag space {0, 1}n, and
algorithms Enc and Dec as defined in Figure 8 (see also Figure 1 in Section 1).

Unfortunately, the generic composition theorem from [PS16,JNPS21] no longer applies
due to key reuse for both tag finalization and encryption and our use of the ideal cipher
model. However, in Appendix E, we show that the security bound for GNSIV[E, fT , fX ]
(with a generic hash function in place of H[E]) is essentially the sum of the bounds of NaT
and the specific GCTR variant.

6 TBC Instantiations
In this section, we propose new tweakable block ciphers with large tweak length that can
be used in the modes described previously. Our analysis will focus on TBCs derived from
the Superposition Tweakey (STK) framework [JNP14] that we recall in Section 6.1. In
Section 6.2, we first discuss the SKINNYe-64/256 proposal from [NSS20a], a variant of the

8We use the same counter length both for hashing and encryption for simplicity, but we could use two
different lengths if needed.

9The random value length r is equal to n here as R is the output of NaT[H[E1], E2] which is n-bit.
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GNSIV[E, fT , fX ].EncK1,K2(N, A, M)
W ← H[E]K1 (A, M)

V ← E
⟨5⟩3∥0t−3−ν ∥N

K2
(W )

if M = ϵ then return (ϵ, V )
R← V

M0∥ · · · ∥Mℓ−1
n←−−M

for j := 0 . . . ℓ− 1 do
Tj := fT (N, R, j)
Xj := fX (N, R, j)

for j := 0 . . . ℓ− 2 do

Cj := Mj ⊕ E
⟨6⟩3∥Tj
K2

(Xj)

// last block might be incomplete

Cℓ−1 := Mℓ−1 ⊕
⌈

E
⟨6⟩3∥Tℓ−1
K2

(Xℓ−1)
⌉

|Mℓ−1|

return (C0∥ · · · ∥Cℓ−1, V )

GNSIV[E, fT , fX ].DecK1,K2(N, A, C, V )
if C ̸= ϵ then

R← V

C0∥ · · · ∥Cℓ−1
n←−− C

for j := 0 . . . ℓ− 1 do
Tj := fT (N, R, j)
Xj := fX (N, R, j)

for j := 0 . . . ℓ− 2 do

Mj := Cj ⊕ E
⟨6⟩3∥Tj
K2

(Xj)

// last block might be incomplete

Mℓ−1 := Cℓ−1 ⊕
⌈

E
⟨6⟩3∥Tℓ−1
K2

(Xℓ−1)
⌉

|Cℓ−1|

M ←M0∥ · · · ∥Mℓ−1

else M ← ϵ

W ← H[E]K1 (A, M)

V
′ ← E

⟨5⟩3∥0t−3−ν ∥N

K2
(W )

if V = V
′ then return M else return ⊥

Figure 8: The encryption and decryption algorithms of the GNSIV[E, fT , fX ] nAE scheme
based on a TBC E with H[E] as defined by (2) in Section 4.2.

original SKINNY family of TBCs [BJK+16] with a 256-bit long tweakey (4 times larger than
the block length), and explain why this variant is flawed. Then, we propose in Section 6.3
new instantiations of tweakable block ciphers with wide tweak spaces based on Deoxys-
TBC [JNPS16], and discuss similar extensions for SKINNY-64 and SKINNY-128 [BJK+16].
We give security arguments for these new constructions in Section 6.4.

6.1 The STK Framework
The TWEAKEY framework was put forward in 2014 by Jean et al. [JNP14]. It blends
together the key and the tweak input of a TBC in a so-called tweakey, allowing to
design “tweakey schedules” for key-alternating ciphers using tools from related-key attacks
against (traditional) block ciphers. A more specialized version of TWEAKEY, called the
Superposition Tweakey (STK) framework, consists in splitting the p× n bits of tweakey
material into p words of n bits, and update each word linearly and independently. The
class of tweakable block ciphers following this construction having a ratio tweakey size
to block size equals to p are said to belong to TKp. Concrete instantiations were given
in [JNP14] for p = 2 (TK2) and p = 3 (TK3) in the forms of two submissions to the
CAESAR competition: Deoxys-TBC and Joltik-TBC.

The STK construction moreover specifies the type of update: in each n-bit word, the
16 elementary c-bit cells are permuted with the same permutation h, and then, each
cell from the i-th word is seen as an element of F2c and gets multiplied by a constant
αi, i ∈ J0, p − 1K (see Figure 9). Finally, each n-bit subtweakey to be integrated in the
key-alternating structure is simply taken as the XOR of the n-bit words.

The important consequence of this design that will matter for the rest of the section
is that each fixed position i ∈ J0, 15K in the p tweakey words, seen as a p-element vector
xi = (xi

0, . . . , xi
p−1), is extended by the tweakey schedule to an (r + 1)-element vector

yi = (yi
0, . . . , yi

r), containing the r + 1 elements to be integrated in one position of the
internal state by the r + 1 subtweakey additions over r rounds.

With a small generalization, we can replace the multiplications by α0, . . . , αp−1 ∈ F2c
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h

h

...

h

⊗
α0

⊗
α1

⊗
αp−1

tweakey

⊕
stk0

h

h

...

h

⊗
α0

⊗
α1

⊗
αp−1

⊕
stk1

h

h

...

h

. . .

. . .

. . .

⊕
stk2

⊕
stkr−1

h

h

...

h

⊗
α0

⊗
α1

⊗
αp−1

⊕
stkr

Figure 9: The original STK construction from [JNP14].

by linear functions f0, . . . , fp−1 over F2 so that for k ∈ J0, rK, one has yi
k =

⊕p−1
j=0 fk

j (xi
j).

The number of differences cancellations on a nibble position i for r rounds is then defined
as the number of zero-difference elements in yi = (yi

0, . . . , yi
r−1), given a non-zero difference

is inserted in xi.
This simple construction allows to analyze the linear expansion xi → yi to find a lower

bound on the element-wise Hamming weight of the expanded vector yi. One can then feed
this bound to MILP solvers to help them assess resistance against linear or differential
cryptanalysis, regardless of the number of TK words.

6.2 SKINNYe-64/256: a Flawed TK4 Extension of SKINNY
Several tweakable block ciphers have been designed following the STK framework, notably
SKINNY [BJK+16]. SKINNY is now considered a well-studied primitive, yet only TK1,
TK2 and TK3 variants have been proposed by the designers. To address the need for a
TK4 variant, Naito, Sasaki and Sugawara [NSS20a] proposed a TK4 variant of SKINNY-64
with lightweight applications in mind. They named their proposal SKINNYe-64/256.

Mimicking the TK3 design of SKINNY-64/192, the authors naturally extended the
tweakey size by n = 64 bits by choosing a new 4-bit function f3 and increasing the number
of rounds to 44. While in SKINNY-64/192 f0 is the identity function and f1, f2 are two
4-bit LFSRs, in SKINNYe-64/256 the chosen transformation10 f3, although being a linear
permutation over F2, is not an LFSR (as claimed in [NSS20a])

However, we claim that this transformation fails to meet the assumptions required by
the security analysis performed in [BJK+16] and reused in [NSS20a]. Namely, to allow
a computer-aided security evaluation of STK-based ciphers like SKINNY with respect to
differential cryptanalysis, its tweakey schedule must verify specific linear properties. More
precisely, abstracting the inner workings of the tweakey schedule away, one must guarantee
that the incoming round subtweakeys skti (see Figure 9) have a (lower) bounded number
of active differences; or stated differently, that the number of differences cancellations made
possible by the linearity of the tweakey schedule are (upper) bounded. In the original
SKINNY paper, the MILP models correctly represent the cipher when the number of
cancellations does not exceed p− 1 for each nibble position in the tweakey state for TKp,
p ∈ {2, 3}, and when the number of rounds covered does not exceed 30.

By analyzing the effect of f3 on that number of cancellations for SKINNYe-64/256
(TK4, p = 4), we discover that it can be far higher than p − 1 = 3 for a well-chosen
tweakey difference. For instance, the difference (0x1, 0x4, 0x0, 0x5) applied to the same
position in the four tweakey words yields subtweakeys where only 7 are nonzero across 14
rounds (see Table 3). More surprisingly, the joint effect of the linear transformations is
such that each of the 7 active subtweakeys contain a single active nibble with difference
equals to 1.

As a consequence, one can conclude that the security bounds computed in [NSS20a,

10The transformation is f3 : (x3 ∥ x2 ∥ x1 ∥ x0) −→ (x2 ∥ x1 ∥ x2 ⊕ x0 ∥ x3 ⊕ x2 ⊕ x1).
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Table 3: For starting difference (0x1, 0x4, 0x0, 0x5), the tweakey schedule of SKINNYe-
64/256 outputs very sparse binary subtweakey differences.

Round TK1 TK2 TK3 TK4 stk Round TK1 TK2 TK3 TK4 stk
0 0x1 0x4 0x0 0x5 0x0 8 0x01 0x7 0x0 0x6 0x0
1 0x1 0x9 0x0 0x9 0x1 9 0x01 0xf 0x0 0xe 0x0
2 0x1 0x3 0x0 0x3 0x1 10 0x01 0xe 0x0 0xf 0x0
3 0x1 0x6 0x0 0x7 0x0 11 0x01 0xc 0x0 0xd 0x0
4 0x1 0xd 0x0 0xc 0x0 12 0x01 0x8 0x0 0x8 0x1
5 0x1 0xa 0x0 0xa 0x1 13 0x01 0x1 0x0 0x1 0x1
6 0x1 0x5 0x0 0x4 0x0 14 0x01 0x2 0x0 0x2 0x1
7 0x1 0xb 0x0 0xb 0x1 15 0x01 0x4 0x0 0x5 0x0

Table 2] from MILP optimization are incorrect: much sparser differential characteristics
are likely to exist. We leave finding such characteristics and possible matching differential
attacks out of the scope of this paper.

6.3 Extensions to TK4 and TK5

We now address the problem of designing a TBC with a large tweakey space within the
STK framework. From a high-level point of view, what we want to design shares a lot of
similarities with a linear code with bounded minimal distance. Indeed, an input vector of
differences should expand to a vector containing as many nonzero differences as possible.
Getting back to the original design, we show below that we can take advantage of results
from coding theory to construct, under some assumptions, structured linear codes over
F2c that can directly be used as tweakey schedules. Another option that we also consider
below are transformations linear over F2.

Linear code over F2c . In the original STK construction, the authors suggested to use
linear functions fj : x→ αj x over F2c , for constants αi ∈ F2c . We revisit the approach
and show that we can easily derive TBC with almost arbitrarily large tweakey space.

To build a TBC with p words of tweakey, we can rely on a Reed-Solomon linear code
constructed using a Vandermonde matrix

V(β0, . . . , βp−1) =


1 · · · 1 · · · 1
β0 · · · βk · · · βr

...
...

...
βp−1

0 · · · βp−1
k · · · βp−1

r


as generator matrix for distinct β0, . . . , βp−1 ∈ F2c . Indeed, the code generated by the
p×(r+1) generator matrix is known to be MDS. Hence, its minimal distance is (r+1)−p+1,
which means that the number of cancellations in the r + 1 outputs elements (r rounds) is
upper bounded by p− 1.

Let αj ∈ F2c be the multiplication constants in the j-th tweakey word. To map the
Vandermonde matrix structure to the STK construction, we can set αj = αj for an element
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α ∈ F2c with order at least r. Indeed, we then have the p× (r + 1) Vandermonde matrix

V(α0, . . . , αp−1) =


1 · · · 1 · · · 1
1 · · · αk−1 · · · αr

1 · · · α2(k−1) · · · α2r

...
...

...
1 · · · α(p−1)(k−1) · · · α(p−1)r

 (3)

describing the tweakey schedule, with all αk being distinct, k ∈ J0, rK, thanks to the
condition on the order of α.

This construction therefore allows to construct a TKp TBC with security arguments
for maxe∈F2c (ord(e)) − 1 rounds, which can be as high as 2c − 2 rounds by using any
primitive element as α.

As concrete instantiations, we propose Deoxys-TBC-512 (TK4) with α = x ∈ F28

defined by the AES polynomial x8+x4+x3+x+1. Informally, this results in multiplications
by 1, 2, 4, and 8 for the four tweakey words. Similarly, we naturally propose Deoxys-TBC-
640 (TK5) with multiplications by 1, 2, 4, 8 and 16 for the five words. We follow the
rationale for the number of rounds of 10 + 2p used in Deoxys-TBC for TKp, so we use
18 rounds for Deoxys-TBC-512 and 20 rounds for Deoxys-TBC-640. The round function is
left unchanged.

We note that the order of the chosen α ∈ F28 in both cases is not maximal and equals
51. We could have chosen x + 1 which is primitive, but first, we do not need security
guarantees for more than 50 rounds (as Deoxys primitives stop at 20 rounds), and second,
implementation-wise, it is more efficient to multiply by 2 than by 3.

About SKINNY, we do not formally propose new variants, but we note that the same
reasoning would apply to extend the tweakey space.
Remark 1. When c = 4 (for instance SKINNY-64), we note that the maximal order of the
field elements is 2c − 1 = 15. Consequently, if ones relies on the Vandermonde structure
with field multiplications to build the tweakey schedule, one cannot bound the number of
cancellations for more than 14 rounds (i.e., 15 consecutive subtweakeys).

Linear over F2. To avoid the field multiplications described before, we can choose the
functions fj as being linear over F2. In practice, the original Deoxys variants as well as all
SKINNY TBCs use this strategy, with LFSRs with cheap update functions (a few XORs).

Theoretically, one could describe the multiplications in F2c as linear permutations over
F2, but there are potentially more interesting F2-linear mappings (LFSRs being a subset
of them) than multiplications in F2c . However, one significant drawback is the absence of
constructive method: one cannot rely anymore on a structured linear code to theoretically
bound the number of cancellations. What has been done in Deoxys and SKINNY is an
exhaustive search to derive this bound experimentally, but this can only work for low
values of p.

To extend SKINNY-64 to get a TK4 variant, we can for instance use the 4-bit linear
permutation: (x3 ∥x2 ∥x1 ∥x0)→ (x1 ∥x0 ∥x2 ⊕ x3 ∥x1 ⊕ x2). Using this transformation
as f3 instead of the one used in SKINNYe-64/256 would patch the mistake from [NSS20a].
We indeed verified experimentally that the number of cancellations match the requirements
of the STK approach applied to SKINNY.

6.4 Security Claims and Analysis
Security claims. For Deoxys-TBC-512 and Deoxys-TBC-640, our two new versions of
Deoxys-TBC, even though the tweakey material has increased and could accommodate
larger keys, we only claim security up to 256 bits with regards to key recovery in the
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single key model. Namely, for a usage of one of these two tweakable block ciphers with a
t-bit tweak and k-bit key, we expect no key recovery attack with complexity lower than
2min(256,k) operations (up to a small constant). Thus, our security claims are actually the
same as for Deoxys-TBC-256 (the smallest version of Deoxys-TBC) and lower than that
of Deoxys-TBC-384. We believe this is justified by the fact that we do not foresee any
application where a key larger than 256 bits would be needed, even in the post-quantum
scenario. We emphasize that we do not claim any security in the related-, known-, or
chosen-key models.

Security rationale. When proposing Deoxys-TBC versions with larger tweakey size,
we naturally leverage the extensive security analysis previously performed on Deoxys-TBC-
256 and Deoxys-TBC-384 by the original designers [JNPS16] as well as by third-party
teams [CHP+17,Sas18,MMS18,ZDW19,WP19,ZDJ19,ZDJM19,ZDJ19,DQSW22,HSE23,
SYC+24]. In other words, Deoxys-TBC-512 and Deoxys-TBC-640 are new instances of a
generic design framework that has already been extensively analyzed and previous results
generally apply to these new instances (ignoring that most of them are in the related-key
model and that many have a complexity higher than 2256, thus outside our security claims).
The only difference is the potential impact of the addition of more tweak material.

As our security claims do not surpass those of the small Deoxys-TBC version, potential
issues that could arise from having very large keys and corresponding security claims
can be safely discarded. Note that, on this aspect, Deoxys-TBC-640 is actually much
harder to attack than Deoxys-TBC-384, implicitly leading to a few extra rounds of security
margin (for example the best attack up to 2384 complexity on Deoxys-TBC-384 reaches
14 rounds [ZDJ19], while when limiting Deoxys-TBC-384 to 128/256-bit keys it can only
reach 12/13 rounds respectively).

The crucial point to check with respect to larger tweaks is how it affects the probabilities
of the best related-tweakey differential paths, which is exactly what we will study in details
in this section. In particular, we would like to verify the trend for long paths, but also for
short ones as all best attacks on Deoxys-TBC are boomerang/rectangle-type of attacks. We
will observe that generally, in the Deoxys-TBC design framework, adding one tweakey word
will lead to one extra free round for short differential trails and two extra free rounds for
long differential trails (see Table 4). Thus, adding 2 rounds to maintain the security margin
when increasing tweak size by one word seems adequate: classical differential cryptanalysis
directly benefits from two free rounds, while boomerang/rectangle cryptanalysis benefits
from a single round twice (once for each upper/bottom differential sub-trails). Therefore,
it is natural that the number of rounds of Deoxys-TBC-512 and Deoxys-TBC-640 (18 and
20 respectively) has been chosen following the Deoxys-TBC rationale 10 + 2p (where p is
the number of 128-bit tweakey words).

Meet-in-the-middle attacks are currently far from being a threat to Deoxys-TBC ci-
phers [LJ19] (reaching only 8 and 10 rounds for Deoxys-TBC-256 and Deoxys-TBC-384
respectively), but they remain the best in the single-key scenario. We argue that, from a
designer’s perspective, the same round increase reasoning applies. As full diffusion takes
two rounds with AES, we estimate that it will be very difficult for the adversary to use
one extra tweakey word to control more than two rounds within a full meet-in-the-middle
attack. This is confirmed by observing that 2 rounds separate the best Deoxys-TBC-256
and Deoxys-TBC-384 meet-in-the-middle attacks.

Differential analysis. As noted previously, a MILP-based analysis of the STK
construction abstracts the actual tweakey schedule away and simply relies on the number
of cancellations in the incoming subtweakeys for r rounds. Depending on the type of the
update, r can vary: it can for instance be as large at 50 for Deoxys for field multiplications
in F28 , or lower when LFSRs are used.
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Table 4: Lower bounds for the number of differentially active Sboxes for the structure
used in Deoxys-TBC. We report the two original designs from [JNPS16] as well as our new
TK4 and TK5 variants, with two types of linear update in the tweakey schedule: either
an LFSR or a field multiplication in F28 (“mul”).

Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ref.

TK2 LFSR 0 0 1 5 9 12 16 19 23 26 29 32 35 38 - - - - - - [JNPS16]
TK3 LFSR 0 0 0 1 4 8 10 14 18 21 24 28 31 35 37 41† - - - - [JNPS16]

TK4 LFSR 0 0 0 0 1 3 6 10 12 14 19 23 26 30 33 37 38 39 - - this paper
TK4 mul 0 0 0 0 1 3 6 10 12 14 19 23 26 30 33 37 39 43 - - this paper
TK5 LFSR 0 0 0 0 0 1 2 6 8 12 14 17 21 25 28 31 33 34 36 38 this paper
TK5 mul 0 0 0 0 0 1 2 6 8 12 14 17 21 25 28 31 35 38 42 45 this paper
† [CHP+17] indicated 45.

By looking at the actual 8-bit LFSRs used in Deoxys, we remark that they have cycles
of length 15 (even though most of the cycles are of length 30). Consequently, it is sufficient
to study the element-wise Hamming weight of the expanded vector over one cycle, for
r − 1 = 14 consecutive rounds so that there are r = 15 expanded elements (before they
cycle).

However, in most of the security analyses of Deoxys we are aware of, e.g., [JNPS16,
CHP+17], the authors encode in the MILP model a lower bound of the number of
cancellations for r = 15 rounds. Due to this short cycle, considering 15 rounds introduces
an off-by-one error as one counts twice one element in the sequence of 16 elements.11

Consequently, the number of cancellations of p − 1 for TKp over 15 rounds claimed
in [JNPS16] should be p−1 for 14 rounds (or the looser bound p for 15 rounds). The MILP
model from [CHP+17] suffers from this off-by-one error, however, by chance, the Deoxys
variants studied by the authors only uses up to 16 rounds (17 consecutive subtweakeys),
which makes only the results on 16 rounds incorrect.

To accommodate this, and to be able to model more than 14 consecutive rounds, we
slightly tweak the MILP model used for Deoxys based on LFSRs. In our model for TKp, for
r ≤ 14 rounds, if the Boolean variable stkj [i] represents the activity of the i-th byte of the j-
th subtweakey, i, j ∈ J0, 14K×J0, rK, the linear inequality

∑
j stkj [i] ≥ min(r+1, 15)−(p−1)

is added to the MILP model for each window of 14 consecutive rounds.12 For instance,
to model 18 rounds, we introduce five inequalities, starting at Rounds 0, 1, 2, 3 and 4.
This ensures that for any 15 consecutive subtweakeys, the linear property of the tweakey
schedule is included in the MILP model.

In the case of the field multiplications in F28 , the length of the cycle depends on
the order of the element used to construct the Vandermonde matrix (3). In our case,
for Deoxys-TBC-512 and Deoxys-TBC-640, we use an element with order 51, so as long
as we model r ≤ 50 rounds, we can keep a single inequality per position i, namely:∑r

j=0 stkj [i] ≥ (r + 1)− (p− 1).
We report in Table 4 the results of the MILP optimizations for the different cases.

Recall that Deoxys-TBC-512 corresponds to TK4 of “mul” type, and Deoxys-TBC-640
corresponds to TK5 of “mul” type. We include the other cases to emphasize the influence
of the bounds on the modelization.

11We note that the situation is the same as described in the remark on the field multiplication in F24

due to the size of its multiplicative subgroup.
12The inequality given is simplified, as all stkj [i] can be zero.
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7 Implementations
In order to assess the performance of our new modes, we first make a general study on
the expected computational cost when using Deoxys-TBC instances, focusing on GNSIV-N
and GNSIV-Z. Then, we concentrate on the important case of Intel processors with
AESNI instructions set. We compare our candidates with popular nonce-misuse resistant
modes, such as AES-GCM-SIV [GLL17], ZAE [IMPS17] and SCT-2 [JNPS16,JNPS21]. For
simplicity, we measure long messages, even though we note that GNSIV-N and GNSIV-Z,
similarly to SCT-2, have a minimal overhead for small messages.

7.1 General Theoretical Performances
The encryption part of GNSIV-N and GNSIV-Z requires one TBC call per message block and
this is independent of the Deoxys-TBC version used. Thus, we better use the smallest-tweak
version of Deoxys-TBC (since it will use lesser AES rounds) as long as the tweak input
is large enough to accommodate the mode inputs. Thus, considering an encryption key
K2, a nonce N , and a random value R of 128 bits each and a counter of 125 bits (recall
that we reserve 3 bits for tweak domain separation), the encryption part of GNSIV-N and
GNSIV-Z can use Deoxys-TBC-384 and Deoxys-TBC-512 respectively. We note that we
could consider increasing the encryption key length to 256 bits by using Deoxys-TBC-512
and Deoxys-TBC-640 instead.

Regarding the authentication part, using the same parameters, GNSIV-N and GNSIV-Z
can rely on Deoxys-TBC-256 since only the counter is inserted in the tweak input of the
TBC. However, using larger tweak instances of Deoxys-TBC could be useful as this extra
input can directly take more associated data or message for a higher throughput. This is
of course a trade-off as these Deoxys-TBC instances will use more AES rounds on the other
hand.

As already observed in [IMPS17], in software with AESNI computing one Deoxys-TBC
tweakey schedule line roughly represents a cost of 0.4 of an entire AES encryption, thus
about 4 AES rounds. This is of course a very rough and relatively pessimistic estimation
that is highly dependent on the actual platform on which the algorithm will be run, but
it has the merit to take into account the extra cost coming from the tweakey schedule.
Moreover, when measuring performances for long messages, if a tweak input in one TK
position remains unchanged for many messages blocks (typically the key, the nonce, etc.)
the cost for this TK is amortized since all TK parts can be computed independently in
Deoxys-TBC. The same applies to a counter since its evolution is predictable and thus
updating the TK values from a counter increment is very cheap.

We summarize the theoretical cost in terms of AES rounds for various GNSIV-N and
GNSIV-Z instantiations in Table 5. We note that GNSIV-N instantiated with Deoxys-TBC-
384 for both authentication and encryption part would correspond to the recent Deoxys-AE2
mode [JNPS21] (proposed without security proof). We further note that while our modes
require two passes on the plaintext input for encryption, the decryption can be done online
with a single pass. Finally, we emphasize that our instances allow a counter with a size of
almost 128 bits, in contrary to modes like AES-GCM-SIV that only handles inputs of size
264 or less. Thus, for more accurate comparison, 64 bits of this counter could be traded
for further authentication throughput improvement.

7.2 Software Performances with AESNI

As Deoxys-TBC is based on the AES round function and since our modes allow parallelization,
they allow very efficient software implementations on the processors that support AES-
accelerated instructions, and in particular AESNI.
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Table 5: Theoretical performance in number of AES rounds (for one 128-bit AD block
and one 128-bit M block) for various GNSIV-N and GNSIV-Z modes instantiations with
Deoxys-TBC versions. Notation x (y) means that x rounds of AES are required when not
considering potential extra tweakey schedule cost, while y takes into account the 1.4 factor
that might occur depending on the platform. For AES-GCM-SIV, we consider that one
POLYVAL evaluation is equivalent to 5 AES rounds [GLL17].

Mode Deoxys-TBC instance AES round cost
Hash Enc per AD per M

GNSIV-N (|K2| = 128) Deoxys-TBC-256 Deoxys-TBC-384 14 30

Deoxys-TBC-384 8 (11.2) 24 (27.2)

GNSIV-N (|K2| = 256) Deoxys-TBC-256 Deoxys-TBC-512 14 32

Deoxys-TBC-512 6 (11.8) 24 (29.8)

GNSIV-Z (|K2| = 128) Deoxys-TBC-256 Deoxys-TBC-512 14 32

Deoxys-TBC-512 6 (11.8) 24 (29.8)

GNSIV-Z (|K2| = 256) Deoxys-TBC-256 Deoxys-TBC-640 14 34

Deoxys-TBC-640 5 (13.7) 25 (33.7)

SCT-2 [JNPS21] Deoxys-TBC-256 Deoxys-TBC-256 14 28

ZAE [IMPS17] Deoxys-TBC-384 Deoxys-TBC-256 8 (11.2) 22 (25.2)

AES-GCM-SIV-128 [GLL17] - - 5 15

We have implemented GNSIV-N and GNSIV-Z using Intel Intrinsics and we provide
in Table 6 performance measurements on Intel Haswell processor. For completeness, we
also measured performances of AES-GCM-SIV implementation13 (“Instrinsics” ones), taking
into account the key schedule.

Having to perform an update of one TKp word, when p ≥ 2, would be too costly using
AESNI, because the shifts/XORs involved in the LFSR would require too many operations
in comparison to nicely pipelined AESNI instructions.

Our modes perform quite well: they are generally slower of a factor around 1.6 than
AES-GCM-SIV for very long messages, but closer when the message gets smaller (actually on
par for 64-byte messages). However, we recall that the Internet Mix is generally composed
of mostly very small (smaller than 100 bytes) packets, then some medium size (around
500 bytes) packets and finally a low proportion of maximum-size (maximum Ethernet
packet payload size is 1536 bytes). Considering the added security guarantees when
compared to AES-GCM-SIV, we believe our modes represent a very competitive trade-off.

In addition, we remark that our benchmarks were performed in the most possible
advantageous situation for AES-GCM-SIV: a processor that has the PCLMULQDQ hardware
accelerated instruction that allows efficient GF(2128) multiplication on a different execution
pipe than AESNI. Of course, our designs do not benefit from this advantage (for example
having an hardware accelerated instruction to perform the tweakey schedule). On relatively
cheap micro-controllers or, more importantly, in hardware, the situation will be very
different. The GF(2128) multiplication requires a large area (or alternatively many cycles).

13Taken from https://github.com/Shay-Gueron/AES-GCM-SIV.

https://github.com/Shay-Gueron/AES-GCM-SIV
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Table 6: Encryption benchmarks for GNSIV-N and GNSIV-Z (with Deoxys-TBC-384 in
the authentication part), with comparison with AES-GCM-SIV-128, expressed in cycles
per byte on AESNI enabled platforms (with Turbo Boost disabled) for increasing numbers
of processed bytes. The key schedule is computed at each call and the loading of the
bytes from the memory and storing them back to memory are included. The reported
speed was taken as an average over multiple executions of the code with the same fixed
message length. Naturally, smaller message or associated data sizes will lead to slower c/B
performances, due to the various initialization overhead.

Intel Haswell (gcc v9.2)

AD bytes 0 0 0 64 576 1.5k 64 576 1.5k 0 65k 65k
M bytes 64 576 1.5k 0 0 0 64 576 1.5k 65k 0 65k

GNSIV-N (|K2| = 128) 10.10 3.17 2.55 8.49 1.95 1.36 6.13 2.21 1.82 2.23 1.03 1.64
GNSIV-N (|K2| = 256) 10.12 3.25 2.68 8.49 1.95 1.36 6.14 2.24 1.89 2.38 1.03 1.71
GNSIV-Z (|K2| = 128) 10.12 3.25 2.68 8.49 1.95 1.36 6.14 2.24 1.89 2.38 1.03 1.71
GNSIV-Z (|K2| = 256) 10.15 3.33 2.82 8.49 1.95 1.36 6.15 2.28 1.95 2.53 1.03 1.78

AES-GCM-SIV-128 10.00 2.62 1.77 8.87 1.90 1.14 6.29 1.68 1.23 1.34 0.71 1.02

In our modes, no specific operation is used in addition to the TBC calls; they would
therefore largely outperform AES-GCM-SIV even when instantiated with Deoxys-TBC. If
we consider using a lightweight cipher as internal primitive, the contrast would be even
clearer: our modes with SKINNY-128/512 variant would remain lightweight, while GCM-SIV
with a lightweight cipher would be very large (see for example Fig. 8 of [KMY18], where
AES-GCM is the worst mode for area).

Acknowledgments.

We would like to thank the authors of [NSS20a] who provided us their MILP models
generator for computing the number of active Sboxes in SKINNYe-64/256. We are grateful
to the anonymous reviewers for their comments that improved the quality of this article.

Benoît Cogliati carried out this work in the framework of the French-German-Center
for Cybersecurity, a collaboration of CISPA and LORIA. Thomas Peyrin was supported by
the NRF-ANR project SELECT and the Singapore NRF Investigatorship research grant.
Yannick Seurin carried out this work while at ANSSI.

References
[ABPV21] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1, 2, 3,

fork: Counter mode variants based on a generalized forkcipher. IACR Trans.
Symm. Cryptol., 2021(3):1–35, 2021. doi:10.46586/tosc.v2021.i3.1-35.

[ADMA15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of keyed sponge constructions using a modular proof approach. In Gregor
Leander, editor, FSE 2015, volume 9054 of LNCS, pages 364–384. Springer,
Heidelberg, March 2015. doi:10.1007/978-3-662-48116-5_18.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A new primitive for authenticated
encryption of very short messages. In Steven D. Galbraith and Shiho Moriai,

https://doi.org/10.46586/tosc.v2021.i3.1-35
https://doi.org/10.1007/978-3-662-48116-5_18


Benoît Cogliati, Jérémy Jean, Thomas Peyrin, Yannick Seurin 27

editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 153–182.
Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-34621-8_6.

[Ava17] Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm.
Cryptol., 2017(1):4–44, 2017. doi:10.13154/tosc.v2017.i1.4-44.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption
in a multi-user setting: Security proofs and improvements. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer,
Heidelberg, May 2000. doi:10.1007/3-540-45539-6_18.

[BBT16] Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based
PRFs: AMAC and its multi-user security. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 566–
595. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49890-3_22.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions
revisited: The cascade construction and its concrete security. In 37th FOCS,
pages 514–523. IEEE Computer Society Press, October 1996. doi:10.1109/
SFCS.1996.548510.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 602–619. Springer, Heidelberg, August 2006. doi:10.1007/11818175
_36.

[Ber99] Daniel J. Bernstein. How to stretch random functions: The security of
protected counter sums. Journal of Cryptology, 12(3):185–192, June 1999.
doi:10.1007/s001459900051.

[BGR95] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New methods
for message authentication using finite pseudorandom functions. In Don
Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 15–28. Springer,
Heidelberg, August 1995. doi:10.1007/3-540-44750-4_2.

[BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-
GCM-SIV: Multi-user security, faster key derivation, and better bounds. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 468–499. Springer, Heidelberg, April / May
2018. doi:10.1007/978-3-319-78381-9_18.

[Bih02] Eli Biham. How to decrypt or even substitute des-encrypted messages in 228
steps. Inf. Process. Lett., 84(3):117–124, 2002. doi:10.1016/S0020-0190(02
)00269-7.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.
doi:10.1007/978-3-662-53008-5_5.

[BL13] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete:
The power of free precomputation. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 321–340. Springer,
Heidelberg, December 2013. doi:10.1007/978-3-642-42045-0_17.

https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/s001459900051
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1016/S0020-0190(02)00269-7
https://doi.org/10.1016/S0020-0190(02)00269-7
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-42045-0_17


28 High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers

[BLLS22] Jannis Bossert, Eik List, Stefan Lucks, and Sebastian Schmitz. Pholkos -
efficient large-state tweakable block ciphers from the AES round function. In
Steven D. Galbraith, editor, CT-RSA 2022, volume 13161 of LNCS, pages
511–536. Springer, Heidelberg, March 2022. doi:10.1007/978-3-030-95312
-6_21.

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for
parallelizable message authentication. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 384–397. Springer, Heidelberg,
April / May 2002. doi:10.1007/3-540-46035-7_25.

[BS20] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography,
v0.5. 2020. Available at http://toc.cryptobook.us/book.pdf.

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 247–276.
Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53018-4_10.

[BZD+16] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp
Jovanovic. Nonce-disrespecting adversaries: Practical forgery attacks on GCM
in TLS. In WOOT. USENIX Association, 2016.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Trans.
Symm. Cryptol., 2017(3):73–107, 2017. doi:10.13154/tosc.v2017.i3.73-1
07.

[CLS17] Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New constructions of macs
from (tweakable) block ciphers. IACR Trans. Symm. Cryptol., 2017(2):27–58,
2017. doi:10.13154/tosc.v2017.i2.27-58.

[Cro01] Paul Crowley. Mercy: A fast large block cipher for disk sector encryption.
In Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 49–63.
Springer, Heidelberg, April 2001. doi:10.1007/3-540-44706-7_4.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer, Heidelberg,
May 2014. doi:10.1007/978-3-642-55220-5_19.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex
with built-in multi-user support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 606–637.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70697-9_2
1.

[DQSW22] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing
strategies for linear key-schedule algorithms in rectangle attacks. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III,
volume 13277 of LNCS, pages 3–33. Springer, Heidelberg, May / June 2022.
doi:10.1007/978-3-031-07082-2_1.

[DS09] Yevgeniy Dodis and John P. Steinberger. Message authentication codes
from unpredictable block ciphers. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 267–285. Springer, Heidelberg, August 2009.
doi:10.1007/978-3-642-03356-8_16.

https://doi.org/10.1007/978-3-030-95312-6_21
https://doi.org/10.1007/978-3-030-95312-6_21
https://doi.org/10.1007/3-540-46035-7_25
http://toc.cryptobook.us/book.pdf
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://doi.org/10.13154/tosc.v2017.i2.27-58
https://doi.org/10.1007/3-540-44706-7_4
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-642-03356-8_16


Benoît Cogliati, Jérémy Jean, Thomas Peyrin, Yannick Seurin 29

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs
for attacks against one-way functions and PRGs. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer, Heidelberg,
August 2010. doi:10.1007/978-3-642-14623-7_35.

[DY15] Nilanjan Datta and Kan Yasuda. Generalizing PMAC under weaker as-
sumptions. In Ernest Foo and Douglas Stebila, editors, ACISP 15, vol-
ume 9144 of LNCS, pages 433–450. Springer, Heidelberg, June / July 2015.
doi:10.1007/978-3-319-19962-7_25.

[Fer02] Niels Ferguson. Collision attacks on OCB, 2002.

[FJM14] Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user
collisions: Applications to discrete logarithm, Even-Mansour and PRINCE.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 420–438. Springer, Heidelberg, December 2014. doi:
10.1007/978-3-662-45611-8_22.

[GLL17] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Spec-
ification and analysis. Cryptology ePrint Archive, Report 2017/168, 2017.
https://eprint.iacr.org/2017/168.

[GW18] Chun Guo and Lei Wang. Revisiting key-alternating Feistel ciphers for shorter
keys and multi-user security. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages 213–243. Springer,
Heidelberg, December 2018. doi:10.1007/978-3-030-03326-2_8.

[HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the im-
possible: Automated search for full impossible-differential, zero-correlation,
and integral attacks. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part IV, volume 14007 of LNCS, pages 128–157. Springer,
Heidelberg, April 2023. doi:10.1007/978-3-031-30634-1_5.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length
extension: Exact bounds and multi-user security. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 3–
32. Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53018-4_1.

[HT17] Viet Tung Hoang and Stefano Tessaro. The multi-user security of double
encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part II, volume 10211 of LNCS, pages 381–411. Springer,
Heidelberg, April / May 2017. doi:10.1007/978-3-319-56614-6_13.

[HTT18] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The
multi-user security of GCM, revisited: Tight bounds for nonce randomization.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 1429–1440. ACM Press, October 2018. doi:
10.1145/3243734.3243816.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The Romulus and Remus families of lightweight AEAD
algorithms. IACR Trans. Symm. Cryptol., 2020(1):43–120, 2020. doi:10.131
54/tosc.v2020.i1.43-120.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A fast tweakable block cipher mode for highly secure message au-
thentication. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,

https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-319-19962-7_25
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-662-45611-8_22
https://eprint.iacr.org/2017/168
https://doi.org/10.1007/978-3-030-03326-2_8
https://doi.org/10.1007/978-3-031-30634-1_5
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1145/3243734.3243816
https://doi.org/10.1145/3243734.3243816
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.13154/tosc.v2020.i1.43-120


30 High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers

Part III, volume 10403 of LNCS, pages 34–65. Springer, Heidelberg, August
2017. doi:10.1007/978-3-319-63697-9_2.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 274–288.
Springer, Heidelberg, December 2014. doi:10.1007/978-3-662-45608-8_1
5.

[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys
v1.43. Submitted to CAESAR AE competition, 2016.

[JNPS21] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. Journal of Cryptology, 34(3):31, July 2021. doi:10.1007/s0
0145-021-09397-w.

[KMY18] Elif Bilge Kavun, Hristina Mihajloska, and Tolga Yalçin. A survey on au-
thenticated encryption-asic designer’s perspective. ACM Comput. Surv.,
50(6):88:1–88:21, 2018. doi:10.1145/3131276.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS,
pages 306–327. Springer, Heidelberg, February 2011. doi:10.1007/978-3-6
42-21702-9_18.

[LJ19] Rongjia Li and Chenhui Jin. Meet-in-the-middle attacks on round-reduced
tweakable block cipher Deoxys-BC. IET Inf. Secur., 13(1):70–75, 2019. doi:
10.1049/iet-ifs.2018.5091.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-
key security degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 575–605. Springer,
Heidelberg, December 2017. doi:10.1007/978-3-319-70697-9_20.

[LPTY16] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC
mode for lightweight block ciphers. In Thomas Peyrin, editor, FSE 2016,
volume 9783 of LNCS, pages 43–59. Springer, Heidelberg, March 2016. doi:
10.1007/978-3-662-52993-5_3.

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
Journal of Cryptology, 24(3):588–613, July 2011. doi:10.1007/s00145-010
-9073-y.

[ML15] Nicky Mouha and Atul Luykx. Multi-key security: The Even-Mansour con-
struction revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 209–223. Springer,
Heidelberg, August 2015. doi:10.1007/978-3-662-47989-6_10.

[MMS18] Farokhlagha Moazami, Alireza Mehrdad, and Hadi Soleimany. Impossible
Differential Cryptanalysis on Deoxys-BC-256. ISC Int. J. Inf. Secur., 10(2):93–
105, 2018. doi:10.22042/isecure.2018.114245.405.

[NS19] Yusuke Naito and Takeshi Sugawara. Lightweight authenticated encryption
mode of operation for tweakable block ciphers. IACR TCHES, 2020(1):66–94,
2019. https://tches.iacr.org/index.php/TCHES/article/view/8393.
doi:10.13154/tches.v2020.i1.66-94.

https://doi.org/10.1007/978-3-319-63697-9_2
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/s00145-021-09397-w
https://doi.org/10.1007/s00145-021-09397-w
https://doi.org/10.1145/3131276
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1049/iet-ifs.2018.5091
https://doi.org/10.1049/iet-ifs.2018.5091
https://doi.org/10.1007/978-3-319-70697-9_20
https://doi.org/10.1007/978-3-662-52993-5_3
https://doi.org/10.1007/978-3-662-52993-5_3
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/978-3-662-47989-6_10
https://doi.org/10.22042/isecure.2018.114245.405
https://tches.iacr.org/index.php/TCHES/article/view/8393
https://doi.org/10.13154/tches.v2020.i1.66-94


Benoît Cogliati, Jérémy Jean, Thomas Peyrin, Yannick Seurin 31

[NSS20a] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenticated
encryption mode suitable for threshold implementation. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS,
pages 705–735. Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-4
5724-2_24.

[NSS20b] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. LM-DAE: Low-memory
deterministic authenticated encryption for 128-bit security. IACR Trans.
Symm. Cryptol., 2020(4):1–38, 2020. doi:10.46586/tosc.v2020.i4.1-38.

[Pat09] Jacques Patarin. The “coefficients H” technique (invited talk). In
Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008,
volume 5381 of LNCS, pages 328–345. Springer, Heidelberg, August 2009.
doi:10.1007/978-3-642-04159-4_21.

[PPS15] Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Plaintext
recovery attacks against WPA/TKIP. In Carlos Cid and Christian Rechberger,
editors, FSE 2014, volume 8540 of LNCS, pages 325–349. Springer, Heidelberg,
March 2015. doi:10.1007/978-3-662-46706-0_17.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated encryp-
tion modes for tweakable block ciphers. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 33–63.
Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53018-4_2.

[QDW+22] Lingyue Qin, Xiaoyang Dong, Anyu Wang, Jialiang Hua, and Xiaoyun Wang.
Mind the TWEAKEY schedule: Cryptanalysis on SKINNYe-64-256. In
Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume
13791 of LNCS, pages 287–317. Springer, Heidelberg, December 2022. doi:
10.1007/978-3-031-22963-3_10.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 196–205.
ACM Press, November 2001. doi:10.1145/501983.502011.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004,
volume 3329 of LNCS, pages 16–31. Springer, Heidelberg, December 2004.
doi:10.1007/978-3-540-30539-2_2.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment
of the key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.
doi:10.1007/11761679_23.

[Sas18] Yu Sasaki. Improved related-tweakey boomerang attacks on deoxys-BC.
In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18, volume 10831 of LNCS, pages 87–106. Springer, Heidel-
berg, May 2018. doi:10.1007/978-3-319-89339-6_6.

[Sch98] R. Schroeppel. Hasty pudding cipher. http://www.cs.arizona.edu/rcs/hpc,
1998.

[SWGW21] Yaobin Shen, Lei Wang, Dawu Gu, and Jian Weng. Revisiting the security
of DbHtS MACs: Beyond-birthday-bound in the multi-user setting. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827

https://doi.org/10.1007/978-3-030-45724-2_24
https://doi.org/10.1007/978-3-030-45724-2_24
https://doi.org/10.46586/tosc.v2020.i4.1-38
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-662-46706-0_17
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-031-22963-3_10
https://doi.org/10.1007/978-3-031-22963-3_10
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-319-89339-6_6


32 High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers

of LNCS, pages 309–336, Virtual Event, August 2021. Springer, Heidelberg.
doi:10.1007/978-3-030-84252-9_11.

[SYC+24] Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, and Jian Weng. Probabilistic
extensions: A one-step framework for finding rectangle attacks and beyond.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part I,
volume 14651 of LNCS, pages 339–367. Springer, Heidelberg, May 2024.
doi:10.1007/978-3-031-58716-0_12.

[Tes15] Stefano Tessaro. Optimally secure block ciphers from ideal primitives. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume
9453 of LNCS, pages 437–462. Springer, Heidelberg, November / December
2015. doi:10.1007/978-3-662-48800-3_18.

[VP17] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing nonce
reuse in WPA2. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1313–1328. ACM Press,
October / November 2017. doi:10.1145/3133956.3134027.

[VP18] Mathy Vanhoef and Frank Piessens. Release the kraken: New KRACKs in
the 802.11 standard. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 299–314. ACM Press,
October 2018. doi:10.1145/3243734.3243807.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
IACR Trans. Symm. Cryptol., 2019(1):142–169, 2019. doi:10.13154/tosc.
v2019.i1.142-169.

[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang
and rectangle attacks on deoxys-bc including BDT effect. IACR Trans. Symm.
Cryptol., 2019(3):121–151, 2019. doi:10.13154/tosc.v2019.i3.121-151.

[ZDJM19] Boxin Zhao, Xiaoyang Dong, Keting Jia, and Willi Meier. Improved related-
tweakey rectangle attacks on reduced-round Deoxys-BC-384 and Deoxys-I-
256-128. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, IN-
DOCRYPT 2019, volume 11898 of LNCS, pages 139–159. Springer, Heidelberg,
December 2019. doi:10.1007/978-3-030-35423-7_7.

[ZDW19] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Related-tweakey impossible
differential attack on reduced-round Deoxys-BC-256. Sci. China Inf. Sci.,
62(3):32102:1–32102:12, 2019. doi:10.1007/s11432-017-9382-2.

A Balls-into-bins Lemmas
We will repeatedly appeal to the following classical result for the proof of Theorem 2 and
Theorem 3.

Lemma 1. Assume we throw M balls uniformly at random and independently into N bins
with 8 ≤M ≤ N . Then, with probability larger than 1− 1/N , the maximal number of balls
in any bin is 2 log2(M).

Proof. Let Xi, 1 ≤ i ≤ N , denote the load of the i-th bin and let Yi,j , 1 ≤ i ≤ N and
1 ≤ j ≤ M , be the indicator variable which is 1 if ball j lands in bin i and 0 otherwise.
Then Xi =

∑M
j=1 Yi,j and Pr[Yi,j = 1] = 1/N . Let µ be the expected value of Xi. By

https://doi.org/10.1007/978-3-030-84252-9_11
https://doi.org/10.1007/978-3-031-58716-0_12
https://doi.org/10.1007/978-3-662-48800-3_18
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1145/3243734.3243807
https://doi.org/10.13154/tosc.v2019.i1.142-169
https://doi.org/10.13154/tosc.v2019.i1.142-169
https://doi.org/10.13154/tosc.v2019.i3.121-151
https://doi.org/10.1007/978-3-030-35423-7_7
https://doi.org/10.1007/s11432-017-9382-2


Benoît Cogliati, Jérémy Jean, Thomas Peyrin, Yannick Seurin 33

linearity of the expectation, µ = M/N . Since Xi is the sum of independent Bernoulli
trials, by the multiplicative Chernoff bound, we have that for any δ > 0,

Pr[Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

Letting α = 1 + δ, we obtain

Pr[Xi ≥ αµ] ≤
(

eα−1

αδ

)µ

<
( e

α

)αµ

.

Taking α = 2N log2(M)/M yields (note that α > 1)

Pr[Xi ≥ 2 log2(M)] ≤
(

eM

2N log2(M)

)2 log2(M)

= M2

N2

(
e

2 log2(M)

)2 log2(M)(
M

N

)2 log2(M)−2

≤ M2

N2

(
1
2

)2 log2(M)(
M

N

)2 log2(M)−2
(M ≥ 8)

= 1
N2

(
M

N

)2 log2(M)−2

≤ 1
N2 (M ≤ N).

By the union bound over all bins, the probability that there is a bin with 2 log2(M) balls
or more is at most 1/N .

We will also need the following variant.

Lemma 2. Consider N bins numbered from 0 to N − 1. Fix some integer q, 1 ≤ q ≤M ,
and a sequence of integers (ℓ1, . . . , ℓq) with 1 ≤ ℓj ≤M and

∑q
j=1 ℓj = M . Consider the

following random process: for j = 1, . . . , q, an initial bin xj is drawn uniformly at random
and a ball is thrown in each bin xj, xj + 1, . . . , xj + ℓj − 1, where bin numbers are taken
mod N . (Hence, at the end of the process, M balls have been thrown in total.) Then, with
probability larger than 1− 1/N , the maximal number of balls in any bin is 2 log2(M).

Proof. The proof is similar to the proof of Lemma 1. Let Xi, 1 ≤ i ≤ N , denote the load
of the i-th bin and let Yi,j , 1 ≤ i ≤ N and 1 ≤ j ≤ q, be the indicator variable which is 1
if some ball of the j-th throw lands in bin i and 0 otherwise. Then Xi =

∑q
j=1 Yi,j (as for

each throw, at most one ball can land in any bin) and Pr[Yi,j = 1] = ℓj/N . Let µ be the
expected value of Xi. By linearity of the expectation, µ =

∑q
j=1 ℓj/N = M/N . Since Xi

is the sum of independent Poisson trials, the multiplicative Chernoff bound applies as in
the proof of Lemma 1 with exactly the same parameters.

B Proof of Theorem 2
The proof of Theorem 2 relies on the H-coefficients method. Fix a deterministic adversary
A and assume without loss of generality that A makes exactly qic queries in total to IC or
IC−1 and exactly qenc queries to Enc of total length (in number of n-bit blocks) exactly
σ and that it never makes a pointless query, where a pointless query is either:

• a repeated query to IC, IC−1, or Enc,
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• a query IC(K, T, X) if there was a previous query IC−1(K, T, Y ) that returned X or
a query IC−1(K, T, Y ) if there was a previous query IC(K, T, X) that returned Y ,

• a query Enc(i, N, M) such that M = ϵ or i > u, where u is the current value of the
counter keeping track of New queries.

The transcript consists of queries to the ideal cipher that we record as a list τic containing
tuples (K, T, X, Y ) such that A made either a query IC(K, T, X) that returned Y or a
query IC−1(K, T, Y ) that returned X and queries to Enc that we record as a list τenc
containing tuples (i, N, M, (R, C)) such that A made a query Enc(i, N, M) that returned
(R, C). If an Enc query is such that the message length is not a multiple of n, we assume
that the last block is padded with enough zeros so that it has length n before returning the
oracle answer (this is wlog as this can only increase the adversary’s advantage). With this
convention, the length of messages and ciphertexts in encryption query/answer pairs is
always a multiple of n, and we write such a pair (i, N, M0∥ · · · ∥Mℓ−1, (R, C0∥ · · · ∥Cℓ−1))
where ℓ = |M |n and |Mj | = |Cj | = n for every j ∈ J0, ℓ − 1K. Queries to New are not
explicitly recorded, but after the adversary has finished interacting with the oracles, we
reveal the keys K = (K1, . . . , Ku) generated by New calls, where u is the final value of the
counter keeping track of New queries (note that unlike qenc, u is not fixed and depends on
the transcript) and add K to the transcript. (Again, this is wlog as this can only increase
the adversary’s advantage; note that these keys are also generated in the ideal world, but
never used afterwards.) We let Λre, resp. Λid denote the probability distribution of the
transcript when A interacts with game Realmu-nive

GCTR[E,fT ,fX ](A), resp. Idealmu-nive
GCTR[E,fT ,fX ](A)

(see Figure 3).
From the transcript of encryption queries τenc, we define the split transcript τenc as

follows. For a query Q = (i, N, M0∥ · · · ∥Mℓ−1, (R, C0∥ · · · ∥Cℓ−1)) ∈ τenc, we define the
list

S(Q) :=
(
(i, N, R, j, Mj , Cj)

)
j∈J0,ℓ−1K.

Then τenc := ∥Q∈τencS(Q), the concatenation of all lists S(Q) for Q ∈ τenc. In all the
following, we call a tuple (i, N, R, j, M, C) ∈ τenc a split encryption query, or simply split
query for short. Note that τenc contains exactly σ split queries and that each split query
(i, N, R, j, M, C) ∈ τenc is associated with an evaluation of IC for which it allows to recover
the corresponding key Ki, tweak fT (N, R, j), plaintext fX(N, R, j), and output M ⊕ C.

We say that a transcript τ = (τic, τenc, K) is bad if one of the following conditions is
satisfied:

(C-1) There exist two distinct14 split encryption queries (i, N, R, j, M, C) ∈ τenc and
(i′, N ′, R′, j′, M ′, C ′) ∈ τenc such that

Ki = Ki′

fT (N, R, j) = fT (N ′, R′, j′)
fX(N, R, j) = fX(N ′, R′, j′).

(C-2) There exist two distinct split encryption queries (i, N, R, j, M, C) ∈ τenc and (i′, N ′,
R′, j′, M ′, C ′) ∈ τenc such that

Ki = Ki′

fT (N, R, j) = fT (N ′, R′, j′)
M ⊕ C = M ′ ⊕ C ′.

14By distinct, we mean at different positions in the list τenc, but the two tuples might be equal.
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(C-3) There exist (i, N, R, j, M, C) ∈ τenc and (K, T, X, Y ) ∈ τic such that


Ki = K

fT (N, R, j) = T

fX(N, R, j) = X.

(C-4) There exist (i, N, R, j, M, C) ∈ τenc and (K, T, X, Y ) ∈ τic such that


Ki = K

fT (N, R, j) = T

M ⊕ C = Y.

Otherwise, we say that τ is good and let Θbad, resp. Θgood denote the set of bad, resp.
good transcripts.

Probability of bad transcripts. First, we upper bound the probability of bad
transcripts in the ideal world. This depends on the specific choice of functions fT and
fX . We consider each condition in turn, letting Θi denote the set of transcripts satisfying
condition (C-i), i ∈ J1, 4K.

Condition (C-1). We must distinguish CTRT and the four other modes. Before that,
we define two subsets Θ1,1 and Θ1,2 of Θ1. Subset Θ1,1 consists of transcripts such that
there exist distinct split queries (i, N, R, j, M, C) and (i, N ′, R′, j′, M ′, C ′) in τenc such
that fT (N, R, j) = fT (N ′, R′, j′) and fX(N, R, j) = fX(N ′, R′, j′). (Note the equality of
the first component of the two split queries.) Subset Θ1,2 consists of transcripts such that
there exist distinct split queries (i, N, R, j, M, C) ∈ τenc and (i′, N ′, R′, j′, M ′, C ′) ∈ τenc
such that i ̸= i′, Ki = Ki′ , fT (N, R, j) = fT (N ′, R′, j′), and fX(N, R, j) = fX(N ′, R′, j′).

CTRT: The condition is equivalent to (Ki, R + ⟨j⟩c, N) = (Ki′ , R′ + ⟨j′⟩c, N ′). The
two split queries cannot originate from the same encryption query as otherwise
R = R′ and hence ⟨j⟩c = ⟨j′⟩c, which would imply that these two split queries
are the same. First, we introduce some additional notation. For any (user, nonce)
pair (i, N) appearing in the encryption queries, let qenc(i, N) denote the number of
encryption queries for this pair (i, N), let ℓι(i, N), 1 ≤ ι ≤ qenc(i, N), denote the
length of the ι-th encryption query (for some arbitrary ordering) for pair (i, N),
and let σ(i, N) =

∑qenc(i,N)
ι=1 ℓι(i, N). Note that qenc(i, N) ≤ µ for any pair (i, N)

and
∑

(i,N) σ(i, N) = σ. We start with Θ1,1 (i.e., the two split queries are for the
same user, so that the equality of the keys is automatically satisfied). Fix some
pair (i, N) and consider two distinct encryption queries for this (user, nonce) pair
(i, N, M, (R, C)) and (i, N, M ′, (R′, C ′)) of length respectively ℓ and ℓ′. Then, the
probability over the random draw of R and R′ that R + ⟨j⟩c = R′ + ⟨j′⟩c for some
j ∈ J0, ℓ− 1K and j′ ∈ J0, ℓ′ − 1K is (ℓ + ℓ′ − 1)/2r. Summing over all pairs of queries
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and all pairs (i, N), we have

Pr[Λid ∈ Θ1,1] ≤
∑

(i,N)

qenc(i,N)−1∑
ι=1

qenc(i,N)∑
ι′=ι+1

ℓι(i, N) + ℓι′(i, N)− 1
2r

≤
∑

(i,N)

qenc(i,N)−1∑
ι=1

(qenc(i, N)− 1)ℓι(i, N) + σ(i, N)
2r

≤
∑

(i,N)

2(qenc(i, N)− 1)σ(i, N)
2r

≤
∑

(i,N)

2(µ− 1)σ(i, N)
2r

= 2(µ− 1)σ
2r

.

Consider now Θ1,2. Let ℓι, 1 ≤ ι ≤ qenc, denote the length of the ι-th encryption
query (for some arbitrary ordering). Consider two distinct encryption queries
(i, N, M, (R, C)) and (i′, N ′, M ′, (R′, C ′)) with i ̸= i′ of length respectively ℓ and ℓ′.
Then Ki = Ki′ with probability 2−k and, as before, the probability over the random
draw of R and R′ that R + ⟨j⟩c = R′+ ⟨j′⟩c for some j ∈ J0, ℓ−1K and j′ ∈ J0, ℓ′−1K
is (ℓ + ℓ′ − 1)/2r. Summing over all pairs of queries, we have

Pr[Λid ∈ Θ1,2] ≤
qenc−1∑

ι=1

qenc∑
ι′=ι+1

ℓι + ℓι′ − 1
2k+r

≤
qenc−1∑

ι=1

(qenc − 1)ℓι + σ

2k+r

≤ 2(qenc − 1)σ
2k+r

.

All in all,
Pr[Λid ∈ Θ1] ≤ 2(µ− 1)σ

2r
+ 2qencσ

2k+r
≤ 2µσ

2r
,

where we used qenc/2k ≤ 1 for the last inequality.

GCTR-N, R, C, Z: One can easily check that for all four variants, condition (C-1) is equiva-
lent to

(Ki, N, R, ⟨j⟩c) = (Ki′ , N ′, R′, ⟨j′⟩c).

Two split queries (i, N, R, j, M, C) ∈ τenc and (i′, N ′, R′, j′, M ′, C ′) ∈ τenc satisfying
(C-1) cannot originate from the same encryption query as otherwise ⟨j⟩c = ⟨j′⟩c
would imply that these two split queries are the same. Hence, condition (C-1) is
satisfied iff there exist two distinct encryption queries (i, N, M, (R, C)) ∈ τenc and
(i′, N ′, M ′, (R′, C ′)) ∈ τenc such that (Ki, N, R) = (Ki′ , N ′, R′). We start with Θ1,1.
Since R and R′ are independently distributed for two distinct encryption queries,
R = R′ is satisfied with probability 2−r. Moreover, N = N ′ implies that we only
need to apply the union bound on the at most (µ − 1)qenc/2 unordered pairs of
encryption queries sharing the same nonce. (In details: fix an encryption query; then
there are at most µ− 1 other encryption queries with the same nonce; summing over
the qenc queries and dividing by two as each pair is counted twice yields the result.)
Hence, Pr[Λid ∈ Θ1,1] ≤ (µ− 1)qenc/2r+1. Consider now Θ1,2. Then Ki = Ki′ with
probability 2−k and R = R′ with probability 2−r (on the other hand, the adversary
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can set N = N ′ at will). Summing over the qenc(qenc − 1)/2 unordered pairs of
encryption queries, we obtain Pr[Λid ∈ Θ1,2] ≤ q2

enc/2k+r+1. All in all,

Pr[Λid ∈ Θ1] ≤ (µ− 1)qenc

2r+1 + q2
enc

2k+r+1 ≤
µqenc

2r+1 ,

where we used qenc/2k ≤ 1 for the last inequality.

Condition (C-2). Here we must distinguish the five variants. Before that, we define
two subsets Θ2,1 and Θ2,2 of Θ2. Subset Θ2,1 consists of transcripts such that there
exist distinct split queries (i, N, R, j, M, C) and (i, N ′, R′, j′, M ′, C ′) in τenc such that
fT (N, R, j) = fT (N ′, R′, j′) and M⊕C = M ′⊕C ′. Subset Θ2,2 consists of transcripts such
that there exist distinct split queries (i, N, R, j, M, C) ∈ τenc and (i′, N ′, R′, j′, M ′, C ′) ∈
τenc such that i ≠ i′, Ki = Ki′ , fT (N, R, j) = fT (N ′, R′, j′), and M ⊕C = M ′⊕C ′. In the
following, we fix two split queries (i, N, R, j, M, C) ∈ τenc and (i′, N ′, R′, j′, M ′, C ′) ∈ τenc
(with either i = i′ for Θ2,1 or i ̸= i′ for Θ2,2), upper bound the probability that conditions
are satisfied, and then apply the union bound.

CTRT: Then fT (N, R, j) = fT (N ′, R′, j′) translates to R + ⟨j⟩c = R′ + ⟨j′⟩c. We upper
bound directly the probability that Λid ∈ Θ2 without distinguishing whether Λid ∈
Θ2,1 or Λid ∈ Θ2,2. The two split queries cannot originate from the same encryption
query as otherwise R = R′ and hence ⟨j⟩c = ⟨j′⟩c, which would imply that these two
split queries are the same. Hence R and R′ are uniformly random and independent
and R + ⟨j⟩c = R′ + ⟨j′⟩c holds with probability 2−r. Moreover, C and C ′ are
uniformly random and independent, hence M ⊕ C = M ′ ⊕ C ′ holds with probability
2−n. Summing over the σ(σ − 1)/2 unordered pairs of split encryption queries, one
has

Pr[Λid ∈ Θ2] ≤ σ2

2r+n+1 .

GCTR-N: Then fT (N, R, j) = fT (N ′, R′, j′) translates to (R, ⟨j⟩c) = (R′, ⟨j′⟩c). We
upper bound directly the probability that Λid ∈ Θ2 without distinguishing whether
Λid ∈ Θ2,1 or Λid ∈ Θ2,2. The two split queries cannot originate from the same
encryption query as otherwise ⟨j⟩c = ⟨j′⟩c would imply that these two split queries are
the same. Hence R and R′ are uniformly random and independent and R = R′ holds
with probability 2−r. Moreover, C and C ′ are uniformly random and independent,
hence M ⊕C = M ′⊕C ′ holds with probability 2−n. There are σ possible choices for
the first split query (i, N, R, j, M, C); then there are at most qenc other split queries
(i′, N ′, R′, j′, M ′, C ′) with ⟨j′⟩c = ⟨j⟩c; dividing by two as each pair is counted twice,
one has

Pr[Λid ∈ Θ2] ≤ σqenc

2r+n+1 .

GCTR-R: Then fT (N, R, j) = fT (N ′, R′, j′) translates to (N, ⟨j⟩c) = (N ′, ⟨j′⟩c). The
two split queries cannot originate from the same encryption query as otherwise
⟨j⟩c = ⟨j′⟩c would imply that these two split queries are the same. We start with
Θ2,1. One has M ⊕C = M ′ ⊕C ′ with probability 2−n. There are σ possible choices
for the first split query (i, N, R, j, M, C); then there are at most µ − 1 other split
queries (i, N ′, R′, j′, M ′, C ′) with (N ′, ⟨j′⟩c) = (N, ⟨j⟩c); dividing by two as each pair
is counted twice, one has Pr[Λid ∈ Θ2,1] ≤ (µ− 1)σ/2n. Consider now Θ2,2. Then
Ki = Ki′ with probability 2−k and M ⊕ C = M ′ ⊕ C ′ with probability 2−n. There
are σ possible choices for the first split query (i, N, R, j, M, C); then there are at
most qenc other split queries (i′, N ′, R′, j′, M ′, C ′) with ⟨j′⟩c = ⟨j⟩c; dividing by two
as each pair is counted twice, one has Pr[Λid ∈ Θ2,2] ≤ σqenc/2k+n+1. All in all,

Pr[Λid ∈ Θ2] ≤ (µ− 1)σ
2n

+ σqenc

2k+n+1 .
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GCTR-C: Then fT (N, R, j) = fT (N ′, R′, j′) translates to (N, R) = (N ′, R′). Note that
here the two split queries may originate from the same encryption query. We start
with Θ2,1. One has M ⊕ C = M ′ ⊕ C ′ with probability 2−n. Let F denote the
event that there exist two distinct encryption queries for the same pair (i, N) such
that the resulting R values collide. Then Pr[F ] ≤ (µ − 1)qenc/2r+1. Conditioned
on ¬F , we can count the number of pairs of split queries on which we must sum as
follows: there are σ possible choices for the first split query (i, N, R, j, M, C); then
there are at most ℓmax − 1 other split queries (i, N ′, R′, j′, M ′, C ′) with (N ′, R′) =
(N, R); dividing by two as each pair is counted twice, one has Pr[Λid ∈ Θ2,1] ≤
(µ− 1)qenc/2r+1 + σℓmax/2n+1. Consider now Θ2,2. Then Ki = Ki′ with probability
2−k and M ⊕ C = M ′ ⊕ C ′ with probability 2−n. Summing over the σ(σ − 1)
unordered pairs of distinct split queries, one has Pr[Λid ∈ Θ2,2] ≤ σ2/2k+n+1. All in
all,

Pr[Λid ∈ Θ2] ≤ (µ− 1)qenc

2r+1 + σℓmax

2n+1 + σ2

2k+n+1 .

GCTR-Z: Here we can observe that if τ /∈ Θ1, then necessarily τ /∈ Θ2. Indeed, since condi-
tion fX(N, R, j) = fX(N ′, R′, j′) always vacuously holds, τ /∈ Θ1 means that for every
distinct split encryption queries (i, N, R, j, M, C) ∈ τenc and (i′, N ′, R′, j′, M ′, C ′) ∈
τenc, either Ki ̸= Ki′ or (N, R, ⟨j⟩c) ̸= (N ′, R′, ⟨j′⟩c), which implies that τ /∈ Θ2.

Pr[Λid ∈ Θ2 |Λid /∈ Θ1 ] = 0.

Condition (C-3). We must distinguish CTRT and the four other modes.

CTRT: We can view each encryption query (i, N, M, (R, C)) ∈ τenc as throwing ℓ balls
R + ⟨j⟩c into 2r bins (where ℓ is the length of M in n-bit blocks), the first bin
being chosen uniformly at random and the balls are thrown in consecutive bins.
In total, we throw σ ≤ 2r balls. Hence, by Lemma 2, each bin contains at most
2 log2(σ) ≤ 2r balls, except with probability at most 2−r. Assume this is the case
and fix an ideal cipher query (K, T, X, Y ) ∈ τic. Then there are at most 2r split
queries (i, N, R, j, M, C) ∈ τenc such that R + ⟨j⟩c = T and the probability that
Ki = K for one of those split queries is at most 2r/2k. Summing over all qic ideal
cipher queries, one has

Pr[Λid ∈ Θ3] ≤ 1
2r

+ 2rqic

2k
.

GCTR-N, R, C, Z: We can view each encryption query (i, N, M, (R, C)) ∈ τenc as throwing
a ball R uniformly at random into 2r bins. In total, we throw qenc ≤ 2r balls and by
Lemma 1 each bin contains at most 2 log2(qenc) ≤ 2r balls, except with probability
at most 2−r. Assume this is the case and fix a query (K, T, X, Y ) ∈ τic. Then, for
all four modes, there are at most 2r split queries (i, N, R, j, M, C) ∈ τenc such that
fT (N, R, j) = T and fX(N, R, j) = X (since these two equations uniquely fix R and
⟨j⟩c) and the probability that Ki = K for one of those split queries is at most 2r/2k.
Summing over all qic ideal cipher queries, one has

Pr[Λid ∈ Θ3] ≤ 1
2r

+ 2rqic

2k
.

Condition (C-4). The reasoning is the same for the five modes. We can view each
split query (i, N, R, j, M, C) ∈ τenc as throwing a ball M ⊕C uniformly at random into 2n

bins. In total, we throw σ balls and by Lemma 1 each bin contains at most 2 log2(σ) ≤ 2n
balls, except with probability at most 2−n. Assume this is the case and fix a query
(K, T, X, Y ) ∈ τic. Then, there are at most 2n split queries (i, N, R, j, M, C) ∈ τenc such
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that M ⊕C = Y and the probability that Ki = K for one of those split queries is at most
2n/2k. Summing over all qic ideal cipher queries, one has

Pr[Λid ∈ Θ4] ≤ 1
2n

+ 2nqic

2k
.

We can obtain an upper bound on Pr[Λid ∈ Θbad] by adding probabilities Pr[Λid ∈ Θi]
above for i ∈ J1, 4K.

Good transcripts probability ratio. We now prove that for every good transcript
τ , Pr[Λre = τ ] ≥ Pr[Λid = τ ] (meaning we can use Theorem 1 with β = 0). Fix a good
transcript τ = (τic, τenc, K) and let u be the length of K. Let also ℓi, i ∈ J1, qencK, denote
the length (in n-bit blocks) of the message (and hence the ciphertext) in the i-th encryption
query. Note that

∑
i∈J1,qencK ℓi = σ. For any (K, T ) ∈ {0, 1}k×{0, 1}t, let Xic(K, T ) denote

the set of inputs X ∈ {0, 1}n such that there exists Y with (K, T, X, Y ) ∈ τic and Yic(K, T )
denote the set of outputs Y ∈ {0, 1}n such that there exists X with (K, T, X, Y ) ∈ τic.
Note that since τ is good, for any (K, T, X) ∈ {0, 1}k × {0, 1}t × {0, 1}n, there is at
most one split query (i, N, R, j, M, C) ∈ τenc such that K = Ki, T = fT (N, R, j), and
X = fX(N, R, j) as otherwise condition (C-1) would be satisfied. With this in mind, let
Xenc(K, T ) denote the set of X ∈ {0, 1}n such that IC was evaluated on (K, T, X) in some
encryption query, i.e.,

Xenc(K, T ) := {X ∈ {0, 1}n : ∃(i, N, R, j, M, C) ∈ τenc :
K = Ki ∧ T = fT (N, R, j) ∧X = fX(N, R, j)}.

Note that by the previous observation, one has
∑

(K,T ) |Xenc(K, T )| = σ. Similarly, for any
(K, T, Y ) ∈ {0, 1}k × {0, 1}t × {0, 1}n, there is at most one split query (i, N, R, j, M, C) ∈
τenc such that K = Ki, T = fT (N, R, j), and Y = M ⊕ C (as otherwise condition (C-2)
would be satisfied). Let Yenc be the set defined as

Yenc(K, T ) := {Y ∈ {0, 1}n : ∃(i, N, R, j, M, C) ∈ τenc :
K = Ki ∧ T = fT (N, R, j) ∧ Y = M ⊕ C}.

Because τ is good, for any (K, T ), Xic(K, T ) ∩ Xenc(K, T ) = ∅ (as otherwise condition
(C-3) would be satisfied) and Yic(K, T ) ∩ Yenc(K, T ) = ∅ (as otherwise condition (C-4)
would be satisfied). Hence, for each pair (K, T ), τic and τenc together impose a set of
|Xic(K, T )| + |Xenc(K, T )| equations on the random permutation Eic(K, T, ·) internally
sampled by the ideal cipher of the form Eic(K, T, X) = Y where all X’s are distinct and
all Y ’s are distinct. From this it follows that

Pr[Λre = τ ] = 1
2uk
· 1

2rqenc
·

 ∏
K∈{0,1}k

T∈{0,1}t

|Xic(K,T )|+|Xenc(K,T )|−1∏
i=0

1
2n − i

 ,

where the first term accounts for the random choice of keys, the second term for the
random choice of R values, and the third term for the probability that Eic satisfies the
constraints imposed by the transcripts τic and τenc. On the other hand, since in the ideal
world the σ ciphertext blocks are uniformly random and independent, one has

Pr[Λid = τ ] = 1
2uk
· 1

2rqenc
· 1

2σn
·

 ∏
K∈{0,1}k

T∈{0,1}t

|Xic(K,T )|−1∏
i=0

1
2n − i

 .
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Hence,

Pr[Λre = τ ]
Pr[Λid = τ ] = 2σn ·

 ∏
K∈{0,1}k

T∈{0,1}t

|Xenc(K,T )|−1∏
i=0

1
2n − |Xic(K, T )| − i


=

∏
K∈{0,1}k

T∈{0,1}t

|Xenc(K,T )|−1∏
i=0

2n

2n − |Xic(K, T )| − i
≥ 1,

where we used that
∑

(K,T ) |Xenc(K, T )| = σ.

Concluding. The theorem follows from Theorem 1 with β = 0 by collecting all cases
from the bad transcripts analysis and simplifying the bounds using qenc/2r ≤ 1, qenc/2k ≤ 1,
and σ/2n ≤ 1 as follows:

CTRT:

Advmu-nive
CTRT (A) ≤ 2µσ

2r
+ σ2

2r+n+1︸ ︷︷ ︸
≤σ/2r+1

+ 1
2r

+ 2rqic

2k
+ 1

2n
+ 2nqic

2k

≤ 1
2r

+ 1
2n

+ 2(r + n)qic

2k
+ (4µ + 1)σ

2r+1

GCTR-N:

Advmu-nive
GCTR-N(A) ≤ µqenc

2r+1 + σqenc

2r+n+1︸ ︷︷ ︸
≤σ/2n+1

+ 1
2r

+ 2rqic

2k
+ 1

2n
+ 2nqic

2k

≤ 1
2r

+ 1
2n

+ 2(r + n)qic

2k
+ µqenc

2r+1 + σ

2n+1

GCTR-R:

Advmu-nive
GCTR-R(A) ≤ µqenc

2r+1 + (µ− 1)σ
2n

+ σqenc

2k+n+1︸ ︷︷ ︸
≤σ/2n+1

+ 1
2r

+ 2rqic

2k
+ 1

2n
+ 2nqic

2k

≤ 1
2r

+ 1
2n

+ 2(r + n)qic

2k
+ µqenc

2r+1 + µσ

2n

GCTR-C:

Advmu-nive
GCTR-C(A) ≤ µqenc

2r+1 + (µ− 1)qenc

2r+1 + σℓmax

2n+1 + σ2

2k+n+1

+ 1
2r

+ 2rqic

2k
+ 1

2n
+ 2nqic

2k

≤ 1
2r

+ 1
2n

+ 2(r + n)qic

2k
+ (2µ− 1)qenc

2r+1 + σℓmax

2n+1 + σ2

2k+n+1

GCTR-Z:

Advmu-nive
GCTR-Z (A) ≤ µqenc

2r+1 + 1
2r

+ 2rqic

2k
+ 1

2n
+ 2nqic

2k

≤ 1
2r

+ 1
2n

+ 2(r + n)qic

2k
+ µqenc

2r+1 .
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C Proof of Theorem 3
The proof uses the H-coefficients technique. Fix a deterministic adversary A and assume
without loss of generality that A makes exactly qic queries in total to IC or IC−1, exactly
qtag queries to Tag of total length at most σtag, exactly qver queries to Ver of total length
at most σver, and that it never makes a pointless query, where a pointless query is either:

• a repeated query to IC, IC−1, Tag, or Ver,

• a query IC(K, T, X) if there was a previous query IC−1(K, T, Y ) that returned X or
a query IC−1(K, T, Y ) if there was a previous query IC(K, T, X) that returned Y ,

• a query Tag(i, N, U) or Ver(i, N, U, V ) such that i > u, where u is the current
value of the counter keeping track of New queries,

• a query Ver(i, N, U, V ) if there was a previous query Tag(i, N, U) that returned V .

The transcript consists of three types of queries:

• queries to the ideal cipher that we record as a list τic containing tuples (K, T, X, Y )
such that A made either a query IC(K, T, X) that returned Y or IC−1(K, T, Y ) that
returned X;

• queries to Tag that we record as a list τtag containing tuples (i, N, U, V ) such that
A made a query Tag(i, N, U) that returned V ;

• queries to Ver that we record as a list τver containing all tuples (i, N, U, V ) that
were queried to Ver (we do not keep track of the answers since we are interested
in attainable transcripts, i.e., transcripts that can be obtained in the ideal world in
which all queries to Ver return ⊥).

We do not keep track explicitly of New queries, but when A has finished interacting with
the oracles, we reveal all keys K = ((K1

in, K1
out), . . . , (Ku

in, Ku
out)) generated by calls to

New, where u is the final value of the counter keeping track of New queries (note that
u is transcript-dependent) and add them to the transcript (this is wlog as this can only
increase the adversary’s advantage; note that these keys are also generated in the ideal
world but never used afterwards). We let Λre, resp. Λid denote the probability distribution
of the transcript when A interacts with game Realmu-nprmac

NaT[H,E] (A), resp. Idealmu-nprmac
NaT[H,E] (A)

(see Figure 4).
We say that a transcript τ = (τic, τtag, τver, K) is bad if one of the following conditions

is satisfied:

(C-1) There exist two distinct queries (i, N, U, V ) ∈ τtag and (i′, N ′, U ′, V ′) ∈ τtag such
that 

Ki
out = Ki′

out

N = N ′

HKi
in

(U) = HKi′
in

(U ′).

(C-2) There exist two distinct queries (i, N, U, V ) ∈ τtag and (i′, N ′, U ′, V ′) ∈ τtag such
that 

Ki
out = Ki′

out

N = N ′

V = V ′.
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(C-3) There exist queries (i, N, U, V ) ∈ τtag and (K, T, X, Y ) ∈ τic such that
Ki

out = K

0t−ν∥N = T

HKi
in

(U) = X.

(C-4) There exist queries (i, N, U, V ) ∈ τtag and (K, T, X, Y ) ∈ τic such that
Ki

out = K

0t−ν∥N = T

V = Y.

(C-5) There exist queries (i, N, U, V ) ∈ τtag and (i′, N ′, U ′, V ′) ∈ τver such that
Ki

out = Ki′

out

N = N ′

HKi
in

(U) = HKi′
in

(U ′)

V = V ′.

(C-6) There exist queries (i, N, U, V ) ∈ τver and (K, T, X, Y ) ∈ τic such that
Ki

out = K

0t−ν∥N = T

HKi
in

(U) = X

V = Y.

Otherwise, we say that τ is good and let Θbad, resp. Θgood denote the set of bad, resp.
good transcripts.

Probability of bad transcripts. First, we upper bound the probability of bad
transcripts in the ideal world. We consider each condition in turn, letting Θi denote
the set of transcripts satisfying condition (C-i), i ∈ J1, 6K. For conditions (C-1), (C-3),
(C-5), and (C-6), we assume wlog that the queries transcript (τic, τtag, τver) is fixed as
we can upper bound the probability using only the randomness of keys K. We assume
that it involves u users, and for every i ∈ J1, uK and N ∈ {0, 1}ν we let qi,N denote the
number of Tag queries involving user i and nonce N (with qi,N = 0 if there were no such
queries). When qi,N ≥ 1, we also let ℓi,N,j , 1 ≤ j ≤ qi,N , denote the length of the j-th
Tag query for user i with nonce N and we assume that queries are reordered such that
ℓi,N,1 ≤ ℓi,N,2 ≤ · · · ≤ ℓi,N,qi,N

. Note that by our assumptions, we have

qi,N ≤ µ for every (i, N), (4)
u∑

i=1

∑
N∈{0,1}ν

qi,N = qtag, (5)

and
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

ℓi,N,j ≤ σtag. (6)

Similarly, for every i ∈ J1, uK and N ∈ {0, 1}ν we let q′i,N denote the number of Ver
queries involving user i and nonce N (with q′i,N = 0 if there were no such queries) and when
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q′i,N ≥ 1, we let ℓ′i,N,j , 1 ≤ j ≤ q′i,N , denote the length of the j-th Ver query for user i with
nonce N and we assume that queries are reordered such that ℓ′i,N,1 ≤ ℓ′i,N,2 ≤ · · · ≤ ℓ′i,N,q′

i,N
.

Then
u∑

i=1

∑
N∈{0,1}ν

q′i,N = qver (7)

and
u∑

i=1

∑
N∈{0,1}ν

q′
i,N∑

j=1
ℓ′i,N,j ≤ σver. (8)

In the following, for (U, U ′) ∈ U2, we let

δU,U ′ := max{δ(len(U)), δ(len(U ′))} = α max{len(U), len(U ′)}/2k + β/2n

γU,U ′ := min{γ(len(U)), γ(len(U ′))} = α min{len(U), len(U ′)}/2k + β/2n.

Condition (C-1). We define two subsets Θ1,1 and Θ1,2 of Θ1. Subset Θ1,1 consists
of transcripts τ such that there exist distinct queries (i, N, U, V ) and (i, N ′, U ′, V ′) in
τtag such that N = N ′ and HKi

in
(U) = HKi

in
(U ′). Subset Θ1,2 consists of transcripts τ

such that there exists (i, N, U, V ) and (i′, N ′, U ′, V ′) in τtag such that i ≠ i′, Ki
out = Ki′

out,
N = N ′, and HKi

in
(U) = HKi′

in
(U ′).

We start with Θ1,1. For any two distinct (i, N, U, V ) and (i, N ′, U ′, V ′) in τtag such
that N = N ′, one has U ̸= U ′ by the assumption that A never repeats queries. Hence, by
the assumption that H is δ-sAU, HKi

in
(U) = HKi

in
(U ′) with probability at most δU,U ′ . By

the union bound over users i ∈ J1, uK, nonces N ∈ {0, 1}ν , and pairs of queries involving
(i, N) and using our assumption that queries are ordered according to their lengths, one
has

Pr[Λid ∈ Θ1,1] ≤
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

j−1∑
j′=1

(
αℓi,N,j

2k
+ β

2n

)

=
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

(j − 1)
(

αℓi,N,j

2k
+ β

2n

)

≤ α

2k

u∑
i=1

∑
N∈{0,1}ν

qi,N∑
j=1

(qi,N − 1)ℓi,N,j

+ β

2n

u∑
i=1

∑
N∈{0,1}ν

qi,N (qi,N − 1)
2

≤ α

2k

u∑
i=1

∑
N∈{0,1}ν

qi,N∑
j=1

(µ− 1)ℓi,N,j + β

2n

u∑
i=1

∑
N∈{0,1}ν

qi,N (µ− 1)
2

≤ α(µ− 1)σtag

2k
+ β(µ− 1)qtag

2n+1 ,

where we used (4) for the penultimate inequality and (5) and (6) for the last inequality.
Consider now Θ1,2. For any two distinct (i, N, U, V ) and (i′, N ′, U ′, V ′) in τtag such

that i ̸= i′, Ki
out = Ki′

out with probability 2−k and HKi
in

(U) = HKi′
in

(U ′) with probability
at most γU,U ′ by γ-uniformity of H. (Indeed, assume wlog that len(U) ≤ len(U ′); then
for any Ki′

in, HKi
in

(U) = HKi′
in

(U ′) with probability at most γ(len(U)) over the draw of
Ki

in.) Consider the j-th query for user i and nonce N . Then, by the union bound, the
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probability that this query satisfies the condition with any other Tag query is at most
qtag(αℓi,N,j/22k + β/2k+n). By the union bound over all queries, we have

Pr[Λid ∈ Θ1,2] ≤
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

qtag

(
αℓi,N,j

22k
+ β

2k+n

)

≤ αqtagσtag

22k
+

βq2
tag

2k+n
.

All in all,

Pr[Λid ∈ Θ1] ≤ α(µ− 1)σtag

2k
+ β(µ− 1)qtag

2n+1 + αqtagσtag

22k
+

βq2
tag

2k+n
.

Condition (C-2). We define two subsets Θ2,1 and Θ2,2 of Θ2. Subset Θ2,1 consists of
transcripts τ such that there exist distinct queries (i, N, U, V ) and (i, N ′, U ′, V ′) in τtag
such that N = N ′ and V = V ′. Subset Θ2,2 consists of transcripts τ such that there exists
(i, N, U, V ) and (i′, N ′, U ′, V ′) in τtag such that i ≠ i′, Ki

out = Ki′

out, N = N ′, and V = V ′.
We start with Θ2,1. For any two distinct (i, N, U, V ) and (i, N ′, U ′, V ′) in τtag, one has
V = V ′ with probability 2−n since tags are uniformly random and independent in the
ideal world. There are at most (µ− 1)qtag/2 unordered pairs of queries sharing the same
nonce, hence by the union bound Pr[Λid ∈ Θ2,1] ≤ (µ− 1)qtag/2n+1. Consider now Θ2,2.
For any two distinct (i, N, U, V ) and (i′, N ′, U ′, V ′) in τtag such that i ̸= i′, Ki

out = Ki′

out
with probability 2−k and V = V ′ with probability 2−n. Summing over the qtag(qtag − 1)/2
unordered pairs of queries, one has Pr[Λid ∈ Θ2,2] ≤ q2

tag/2k+n+1. All in all,

Pr[Λid ∈ Θ2] ≤ (µ− 1)qtag

2n+1 +
q2

tag

2k+n+1 .

Condition (C-3). For any (i, N, U, V ) ∈ τtag and (K, T, X, Y ) ∈ τic, the probability
that Ki

out = K is 2−k and the probability that HKi
in

(U) = X is at most γ(len(U)) =
αlen(U)/2k + β/2n. Summing over all pairs of queries, one has

Pr[Λid ∈ Θ3] ≤ qic

u∑
i=1

∑
N∈{0,1}ν

qi,N∑
j=1

(
αℓi,N,j

22k
+ β

2k+n

)
≤ αqicσtag

22k
+ βqicqtag

2k+n
.

Condition (C-4). We can view each query (i, N, U, V ) ∈ τtag as throwing a ball V
uniformly at random into 2n bins. In total, we throw qtag ≤ 2n balls and by Lemma 1
each bin contains at most 2n balls, except with probability at most 2−n. Then, for each
query (K, T, X, Y ) ∈ τic, there are at most 2n queries (i, N, U, V ) ∈ τtag such that V = Y
and the probability that Ki

out = K for one of those 2n queries is at most 2n/2k. Summing
over all qic ideal cipher queries yields

Pr[Λid ∈ Θ4] ≤ 1
2n

+ 2nqic

2k
.

Condition (C-5). We define two subsets Θ5,1 and Θ5,2 of Θ5. Subset Θ5,1 consists of
transcripts τ such that there exist (i, N, U, V ) ∈ τtag and (i, N ′, U ′, V ′) ∈ τver such that
N = N ′, HKi

in
(U) = HKi

in
(U ′), and V = V ′. Subset Θ5,2 consists of transcripts τ such

that there exist (i, N, U, V ) ∈ τtag and (i′, N ′, U ′, V ′) ∈ τver such that i ≠ i′, Ki
out = Ki′

out,
N = N ′, HKi

in
(U) = HKi′

in
(U ′), and V = V ′.

We start with Θ5,1. We fix any queries (i, N, U, V ) ∈ τtag and (i, N ′, U ′, V ′) ∈ τver
and distinguish two cases. If the verification query Ver(i, N ′, U ′, V ′) was made after the
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tag query Tag(i, N, U), then since we assumed that A does not make pointless queries,
either U ̸= U ′ or V ̸= V ′ (otherwise we would have (i, N ′, U ′, V ′) = (i, N, U, V )). In the
former case, HKi

in
(U) = HKi

in
(U ′) with probability at most δU,U ′ , while in the latter case

the condition cannot be satisfied. If the verification query Ver(i, N ′, U ′, V ′) was made
before the tag query Tag(i, N, U), then V is uniformly random and independent from V ′

and hence V = V ′ with probability 2−n. In both cases, the condition is satisfied with
probability at most max{δU,U ′ , 2−n} = δU,U ′ by our assumption that δ ≥ 2−n. Fix some
user i and nonce N and consider the j-th tag query and the j′-th verification query for
(i, N). Then the condition is satisfied for this pair of queries with probability at most

α max{ℓi,N,j , ℓ′i,N,j′}
2k

+ β

2n
≤

α(ℓi,N,j + ℓ′i,N,j′)
2k

+ β

2n
≤

α(ℓtag
max + ℓ′i,N,j′)

2k
+ β

2n
.

By the union bound over all users i, nonces N , and pairs of tag and verification queries
for (i, N), we have

Pr[Λid ∈ Θ5,1] ≤
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

q′
i,N∑

j′=1

(
α(ℓtag

max + ℓ′i,N,j′)
2k

+ β

2n

)

≤ αµℓtag
max

2k

u∑
i=1

∑
N∈{0,1}ν

q′i,N + αµ

2k

u∑
i=1

∑
N∈{0,1}ν

q′
i,N∑

j′=1
ℓ′i,N,j

+ βµ

2n

u∑
i=1

∑
N∈{0,1}ν

q′i,N

≤ αµℓtag
maxqver

2k
+ αµσver

2k
+ βµqver

2n
.

Consider now Θ5,2. For any (i, N, U, V ) ∈ τtag and (i′, N ′, U ′, V ′) ∈ τver such that
i ≠ i′, Ki

out = Ki′

out with probability 2−k and HKi
in

(U) = HKi′
in

(U ′) with probability at
most γU,U ′ . Summing over all pairs of queries, we have

Pr[Λid ∈ Θ5,2] ≤
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

u∑
i′=1

∑
N ′∈{0,1}ν

q′
i′,N′∑
j′=1

(
αℓ′i′,N ′,j′

22k
+ β

2k+n

)

≤ αqtagσver

22k
+ βqtagqver

2k+n
.

All in all,

Pr[Λid ∈ Θ5] ≤ αµℓtag
maxqver

2k
+ αµσver

2k
+ βµqver

2n
+ αqtagσver

22k
+ βqtagqver

2k+n
.

Condition (C-6). For any (i, N, U, V ) ∈ τver and (K, T, X, Y ) ∈ τic, Ki
out = K with

probability 2−k and HKi
in

(U) = X with probability at most γ(len(U)). By summing over
all pairs, one has

Pr[Λid ∈ Θ6] ≤ qic

u∑
i=1

∑
N∈{0,1}ν

q′
i,N∑

j=1

(
αℓ′i,N,j

22k
+ β

2k+n

)
≤ αqicσver

22k
+ βqicqver

2k+n
.
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Collecting all probabilities, we obtain

Pr[Λid ∈ Θ] ≤ α(µ− 1)σtag

2k
+ β(µ− 1)qtag

2n+1 + αqtagσtag

22k
+

βq2
tag

2k+n︸ ︷︷ ︸
Θ1

+ (µ− 1)qtag

2n+1 +
q2

tag

2k+n+1︸ ︷︷ ︸
Θ2

+ αqicσtag

22k
+ βqicqtag

2k+n︸ ︷︷ ︸
Θ3

+ 1
2n

+ 2nqic

2k︸ ︷︷ ︸
Θ4

+ αµℓtag
maxqver

2k
+ αµσver

2k
+ βµqver

2n
+ αqtagσver

22k
+ βqtagqver

2k+n︸ ︷︷ ︸
Θ5

+ αqicσver

22k
+ βqicqver

2k+n︸ ︷︷ ︸
Θ6

≤ 2nqic

2k
+ α(µ− 1)σtag

2k
+ αµσver

2k
+ αµℓtag

maxqver

2k

+ 1
2n

+ β(µ− 1)qtag

2n
+ βµqver

2n

+ α(qtag + qic)(σtag + σver)
22k

+ β(2qtag + qic)(qtag + qver)
2k+n

.

≤ 2nqic

2k
+ αµσtag

2k
+ α(µ + 1)σver

2k
+ αµℓtag

maxqver

2k

+ 1
2n

+ βµqtag

2n
+ β(µ + 1)qver

2n
,

(9)

where for the first transition we used β ≥ 1 and for the second one we used 2qtag + qic ≤ 2k.

Good transcripts probability ratio. Let τ = (τic, τtag, τver, K) be a good transcript
and let u be the length of K. For any (K, T ) ∈ {0, 1}k × {0, 1}t, let Xic(K, T ) denote the
set of inputs X ∈ {0, 1}n such that there exists Y with (K, T, X, Y ) ∈ τic and Yic(K, T )
denote the set of outputs Y ∈ {0, 1}n such that there exists X with (K, T, X, Y ) ∈ τic.
Note that since τ is good, for any (K, T, X) ∈ {0, 1}k × {0, 1}t × {0, 1}n, there is at most
one query (i, N, U, V ) ∈ τtag such that K = Ki

out, T = 0t−ν |N , and X = HKi
in

(U) as
otherwise condition (C-1) would be satisfied. For any (K, T ) ∈ {0, 1}k × {0, 1}t, define

Xtag(K, T ) := {X ∈ {0, 1}n : ∃(i, N, U, V ) ∈ τtag :
K = Ki

out ∧ T = 0t−ν∥N ∧X = HKi
in

(U)}.

Note that by the previous observation, one has
∑

(K,T ) |Xtag(K, T )| = qtag. Similarly, for
any (K, T, Y ) ∈ {0, 1}k × {0, 1}t × {0, 1}n, there is at most one query (i, N, U, V ) ∈ τtag
such that K = Ki

out, T = 0t−ν |N , and Y = V as otherwise condition (C-2) would be
satisfied. For any (K, T ) ∈ {0, 1}k × {0, 1}t, define

Ytag(K, T ) := {Y ∈ {0, 1}n : ∃(i, N, U, V ) ∈ τtag :
K = Ki

out ∧ T = 0t−ν∥N ∧ Y = V }.

Because τ is good, for any (K, T ), Xic(K, T ) ∩ Xtag(K, T ) = ∅ (as otherwise condition
(C-3) would be satisfied) and Yic(K, T ) ∩ Ytag(K, T ) = ∅ (as otherwise condition (C-4)
would be satisfied). Hence, for each pair (K, T ), τic and τtag together impose a set of
|Xic(K, T )| + |Xenc(K, T )| equations on the random permutation Eic(K, T, ·) internally
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sampled by the ideal cipher of the form Eic(K, T, X) = Y where all X’s are distinct
and all Y ’s are distinct. On the other hand, τver imposes a set of qver inequalities on
Eic of the form Eic(K ′, T ′, X ′) ̸= Y ′ (namely, every query (i, N, U, V ) ∈ τver translate to
inequality Eic(Ki

out, 0t−ν |N, HKi
in

(U)) ̸= V that are “consistent” with previous equalities
in the sense that for any equality Eic(K, T, X, Y ) and inequality Eic(K ′, T,′ , X ′) ̸= Y ′,
if (K, T ) = (K ′, T ′), then either X ̸= X ′ or Y ̸= Y ′ (otherwise condition (C-5) or (C-6)
would be satisfied, depending on whether the equality stems from a Tag query or an IC
query).

We say that a TBC E ∈ TBC(k, t, n) is compatible with τic, τtag, and τver if

• for every (K, T, X, Y ) ∈ τic, E(K, T, X) = Y ,

• for every (I, N, U, V ) ∈ τtag, E(Ki
out, 0t−ν∥N, HKi

in
(U)) = V ,

• for every (i, N, U, V ) ∈ τver, E(Ki
out, 0t−ν∥N, HKi

in
(U)) ̸= V ,

and we let Comp(τic, τtag, τver) denote the set of such TBCs and

p(τic, τtag, τver) := Pr[E ←$ TBC(k, t, n) : E ∈ Comp(τic, τtag, τver)].

Then, according to Lemma 3 from [CLS17], one has

p(τic, τtag, τver) ≥

 ∏
K∈{0,1}k

T∈{0,1}t

q(K,T )−1∏
i=0

1
2n − i

 ·
(

1− qver

2n −max{q(K, T )}

)

≥

 ∏
K∈{0,1}k

T∈{0,1}t

q(K,T )−1∏
i=0

1
2n − i

 ·
(

1− qver

2n − qic − µ

)

where q(K, T ) := |Xic(K, T )| + |Xtag(K, T )| and for the second inequality we used that
max{q(K, T )} ≤ qic + µ. From this it follows that

Pr[Λre = τ ] ≥ 1
|Kin|u

· 1
2uk
· p(τic, τtag, τver),

where the first term accounts for the random choice of keys (Kin, Kout) and the second
term for the probability that Eic satisfies the constraints imposed by the transcripts τic,
τtag, and τver. On the other hand, since in the ideal world the qtag tags are uniformly
random and independent, one has

Pr[Λid = τ ] = 1
|Kin|u

· 1
2uk
· 1

2qtagn
·

 ∏
K∈{0,1}k

T∈{0,1}t

|Xic(K,T )|−1∏
i=0

1
2n − i
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Hence,

Pr[Λre = τ ]
Pr[Λid = τ ]

= 2qtagn ·

 ∏
K∈{0,1}k

T∈{0,1}t

|Xtag(K,T )|−1∏
i=0

1
2n − |Xic(K, T )| − i


(

1− qver

2n − qic − µ

)

=
(

1− qver

2n − qic − µ

)
·

∏
K∈{0,1}k

T∈{0,1}t

|Xtag(K,T )|−1∏
i=0

2n

2n − |Xic(K, T )| − i

≥ 1− qver

2n − qic − µ
, (10)

where for the last inequality we used that
∑

(K,T ) |Xtag(K, T )| = qtag.

Concluding. The theorem follows by combining Theorem 1 with Equations (9) and
(10) and using qic + µ ≤ 2n/2 and β ≥ 1 which implies qver/(2n − qic − µ) ≤ 2βqver/2n.

Improved Bound when Bounding the per-user data complexity. Finally, we
prove the “Moreover” part of the theorem. Assume that the total length of all Tag queries
for any user is at most B. We modify how we upper bound Pr[Λid ∈ Θ5,1]. Indeed, since
for any (i, N),

∑qi,N

j=1 ℓi,N,j ≤ B, one has

Pr[Λid ∈ Θ5,1] ≤
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

q′
i,N∑

j′=1

(
α(ℓi,N,j + ℓ′i,N,j′)

2k
+ β

2n

)

≤ αB

2k

u∑
i=1

∑
N∈{0,1}ν

q′i,N + αµ

2k

u∑
i=1

∑
N∈{0,1}ν

q′
i,N∑

j′=1
ℓ′i,N,j

+ βµ

2n

u∑
i=1

∑
N∈{0,1}ν

q′i,N

≤ αBqver

2k
+ αµσver

2k
+ βµqver

2n
.

D Proof of Theorem 6
Assume towards a contradiction that H[E] is not δ-sAU, i.e., there exists ℓ and (A, M) and
(A′, M ′) in {0, 1}≤L×{0, 1}≤L with (A, M) ̸= (A′, M ′) and max{len(A, M), len(A′, M ′)} ≤
ℓ such that

δ′ := Pr[K ←$ K : H[E]K(A, M) = H[E]K(A′, M ′)] > δ.

Let us show that there exists a non-empty set S of pairs (T, X) ∈ {0, 1}t × {0, 1}n of
size at most 2ℓ such that H[E]K(A, M) = H[E]K(A′, M ′) is equivalent to∑

(T,X)∈S

ET
K(X) = 0n.
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The theorem will follow by defining A′ as the adversary having this set S hardwired in its
code and making oracle queries Enc(T, X) for all pairs (T, X) ∈ S except an arbitrary
one (T0, X0), computing Y =

∑
(T,X)∈S\(T0,X0) Enc(T, X), and returning ((T0, X0), Y ) as

“forgery”. Then A′ makes at most 2ℓ oracle queries, runs in time at most αℓ for some
small constant α independent of E, and wins the UNP game with advantage δ′ > δ(ℓ), a
contradiction.

Let us denote S0 and S ′0 the set of pairs (T, X) such that:

H[E]K(A, M) =
∑

(T,X)∈S0

ET
K(X), and H[E]K(A′, M ′) =

∑
(T,X)∈S′

0

ET
K(X).

By definition of H[E], the tweaks involved in the computation of each hash value are
pairwise distinct, and both S0 and S ′0 are non-empty. Thus, the only way for the set S to be
empty is that one has S0 = S ′0, since the pairs that belong to S0∩S ′0 will be the only one that
will cancel each other. What remains to be shown is that there exists at least one pair (T, X)
such that either (T, X) ∈ S0 \ S ′0, or (T, X) ∈ S ′0 \ S0. To this end, we distinguish several
cases. If (A, M) = ϵ, then (A′, M ′) ̸= ϵ, and H[E]K(A, M) = E⟨4⟩3|0

t−3(0n). Moreover, no
tweak with the prefix ⟨4⟩3 can appear in S ′0, which means that (⟨4⟩3|0t−3, 0n) ∈ S0 \S ′0; the
case where (A′, M ′) = ϵ can be treated similarly. We now assume that (A, M), (A′, M ′) ̸= ϵ.
Consider the case where A ̸= A′. Let us denote ℓA (resp. ℓA′) the length of A (resp. A′)
in m + n-bit block, and denote Ai (resp. A′i) the i-th n + m-bit block of A (resp. A′).
Several subcases can occur.

• ℓA > ℓA′ (the case where ℓA < ℓA′ can be treated similarly): the pair (T, X) =
(⟨i⟩3||⟨ℓA − 1⟩c||⌈AℓA−1⌉m, ⌊AℓA−1⌋n), where i ∈ {0, 1} depending whether A was
padded or not, is the only one involving a tweak with the prefix ⟨i⟩3||⟨ℓA−1⟩c, which
means that (T, X) ∈ S0 \ S ′0.

• ℓA = ℓA′ , and there exists i ∈ {0, . . . , ℓA − 2} such that Ai ≠ A′i: in that case, one
has (⟨0⟩3||⟨i⟩c||⌈Ai⌉m, ⌊Ai⌋n) ∈ S0 \ S ′0, since otherwise we would have Ai = A′i.

• ℓA = ℓA′ , and Ai = A′i for i in {0, . . . , ℓA − 2}: either |AℓA−1| ̸= |A′ℓA′−1|, or
|AℓA−1| = |A′ℓA′−1|, and AℓA−1 ̸= A′ℓA′−1. In both cases, one necessarily has
(T, X) = (⟨i⟩3||⟨ℓA − 1⟩c||⌈AℓA−1⌉m, ⌊AℓA−1⌋n) ∈ S0 \ S ′0. Indeed, in the former
case, either both blocks are padded, in which case the padding rule implies that
ozp(AℓA−1) ̸= ozp(A′ℓA′−1), or one block is padded and the other is not, which means
that different tweak prefixes are used. In the latter case, the same tweak prefixes are
used, but (T, X) ∈ S ′0 would imply AℓA−1 = A′ℓA′−1.

Finally, if A = A′, then one necessarily has M ̸= M ′, and we can apply the same argument
to this new case, which ends the proof of Theorem 6.

E Security of GNSIV
In this section, we study the security of GNSIV in the case where two independent keys
are used (one for hashing, and a second one for tag finalization and encryption). Slightly
abusing our notation, we write GNSIV[E, fT , fX , H] for the mode of operation presented
in Figure 8, where the hash function H[E] defined in Section 4.2 is replaced by a generic
hash function H. We prove the following result.

Theorem 7 (mu security of GNSIV). Let k, t, and n be positive integers, Kin, Kout,
A and M be non-empty sets with Kin, Kout finite, len : A ×M → N be some length
function, E ∈ TBC(k, t, n) be a tweakable block cipher modeled as an ideal tweakable
cipher (IC, IC−1), and H : Kin × A × M → {0, 1}n be a keyed hash function. Let ν
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be an integer such that ν ≤ t. Assume that H is δ-sAU and γ-uniform (w.r.t len) for
δ(ℓ) = γ(ℓ) = αℓ/2k + β/2n with β ≥ 1 (and hence δ ≥ 2−n and γ ≥ 2−n). Let qic, qenc,
σenc, qdec, σdec, ℓenc

max, and µ be positive integers such that qenc ≤ 2n, 2qenc + qic ≤ 2k, and
qic + qenc + qdec ≤ 2n/2. Then, for any (computationally unbounded) adversary A against
the mu-nAE security of GNSIV[E, fT , fX , H] making at most qic queries in total to IC or
IC−1, qenc queries to Enc of total length (as measured by len) at most σenc and no query
longer than ℓenc

max, qdec queries to Dec of total length (as measured by len) at most σdec,
and such that any (user, nonce) pair (i, N) appears at most µ times in its Enc queries,
one has

Advmu-nae
GNSIV[E,fT ,fX ,H](A) ≤ Advmu-nive

GCTR[E,fT ,fX ](n)(qic, qenc, σenc, ℓenc
max, µ)

+ Advmu-nprmac
NaT[H,E] (n)(qic, qenc, σenc, qdec, σdec, ℓenc

max, µ),

where the first term is the bound from Theorem 2 with σenc and ℓenc
max substituted respectively

to σ and ℓmax and the second term is the bound from Theorem 3 with qenc, σenc, qdec, σdec,
ℓenc

max substituted respectively to qtag, σtag, qver, σver, ℓtag
max.

The proof of Theorem 7 uses the H-coefficients technique. Fix a deterministic adversary
A and assume without loss of generality that A makes exactly qic queries to IC or IC−1,
qenc queries to Enc and qdec queries to Dec, and that it never makes a pointless query,
where a pointless query is either:

• a repeated query to IC, IC−1, Enc or Dec

• a query IC(K, T, X) if there was a previous query IC−1(K, T, Y ) that returned X or
a query IC−1(K, T, Y ) if there was a previous query IC(K, T, X) that returned Y ,

• a query Enc(i, N, A, M) or Dec(i, N, A, V, C) such that i > u, where u is the current
value of the counter keeping track of New queries,

• a query Dec(i, N, A, V, C) if there was a previous query Enc(i, N, A, M) that re-
turned (V, C).

The transcript consists of three types of queries:

• queries to the ideal cipher that we record as a list τic containing tuples (K, T, X, Y )
such that A made either a query IC(K, T, X) that returned Y or IC−1(K, T, Y ) that
returned X;

• queries to Enc that we record as a list τenc containing tuples (i, N, A, M, V, C) such
that A made a query Enc(i, N, A, M) that returned the tag V and the ciphertext C;

• queries to Dec that we record as a list τdec containing all tuples (i, N, A, V, C) such
that were queried to Dec (we do not keep track of the answers since we are interested
in attainable transcripts, i.e., transcripts that can be obtained in the ideal world in
which all queries to Dec return ⊥).

We do not keep track explicitly of New queries, but when A has finished interacting with
the oracles, we reveal all keys K = ((K1

in, K1
out), . . . , (Ku

in, Ku
out)) generated by calls to

New, where u is the final value of the counter keeping track of New queries. Besides,
in the case where the length of an encryption query is not a multiple of n, we assume
that, during the encryption pass, the last block is padded with enough zeros so that it
has length n before returning the oracle answer. Before defining bad transcript, we can
remark that, for any transcript τ , we can derive a transcript τtag of the interaction of A
with the authentication pass of nAE as follows: τtag contains the tuples (i, N, A, M, V ) for
every query (i, N, A, M, V, C) in τenc. We now define the following events:
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• we say that τ is NaT-bad if (τtag, τic, K) satisfies one of the conditions (C-1) to (C-4)
from Section 4;

• we say that τ is GCTR-bad if (τenc, τic, K) satisfies any of the conditions (C-1) to
(C-4) from Section 3.

Now, assuming that τ is neither NaT-bad nor GCTR-bad, we are going to release additional
information to the attacker as follows:

• in the real world, for every (i, N, A, V, C) in τdec, we are going to release the corre-
sponding plaintext M by running the decryption algorithm of GNSIV;

• in the ideal world, we will release a dummy plaintext as follows: for every ciphertext
block, if the corresponding E(K, ⟨6⟩3∥fT (N, V, j), (fX(N, V, j)) is already known
(either from a query in τic or τenc), then the existing value is used; otherwise, we
simulate what happens in the real world by drawing, uniformly at random and
without replacement, an output in the set of values Y that do not appear as outputs
in τic or τenc for the considered (key,tweak) pair (this is possible as τ is neither
NaT-bad nor GCTR-bad)15.

Note that this sampling is possible due to the fact that τ is neither NaT-bad nor GCTR-
bad. After this step, queries from τdec will appear as tuples (i, N, A, M, V, C), where M
corresponds to the computed plaintext. If τ is NaT-bad or GCTR-bad, we simply assume
that M = ϵ for all decryption queries.

A transcript τ will be said bad if one of the following condition is satisfied:

(C-1) τ is NaT-bad;

(C-2) τ is GCTR-bad;

(C-3) There exist queries (i, N, A, M, V, C) ∈ τenc and (i′, N ′, A′, M ′, V ′, C ′) ∈ τdec such
that 

Ki
out = Ki′

out

N = N ′

HKi
in

(A, M) = HKi′
in

(A′, M ′)

V = V ′.

(C-4) There exist queries (i, N, A, M, V, C) ∈ τdec and (K, T, X, Y ) ∈ τic such that
Ki

out = K

0t−ν∥N = T

HKi
in

(A, M) = X

V = Y.

Otherwise, we say that τ is good and let Θbad, resp. Θgood denote the set of bad, resp.
good transcripts. Note that the last two conditions are well-defined thanks to the fact that
we release the plaintexts that correspond to every decryption query.

15Note that this is equivalent to sampling the output of an ideal cipher, conditioned on it being
compatible with the one from the real world.
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Probability of bad transcripts. First, we upper bound the probability of bad
transcripts in the ideal world. We consider each condition in turn, letting Θi denote the
set of transcripts satisfying condition (C-i), i ∈ J1, 4K.

We assume that the queries transcript involves u users, and for every i ∈ J1, uK and
N ∈ {0, 1}ν we let qi,N denote the number of Enc queries involving user i and nonce
N (with qi,N = 0 if there were no such queries). When qi,N ≥ 1, we also let ℓi,N,j ,
1 ≤ j ≤ qi,N , denote the length of the j-th Enc query for user i with nonce N and we
assume that queries are reordered such that ℓi,N,1 ≤ ℓi,N,2 ≤ · · · ≤ ℓi,N,qi,N

. Note that by
our assumptions, we have

qi,N ≤ µ for every (i, N), (11)
u∑

i=1

∑
N∈{0,1}ν

qi,N = qenc, (12)

and
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

ℓi,N,j ≤ σenc. (13)

Similarly, for every i ∈ J1, uK and N ∈ {0, 1}ν we let q′i,N denote the number of Dec
queries involving user i and nonce N (with q′i,N = 0 if there were no such queries) and when
q′i,N ≥ 1, we let ℓ′i,N,j , 1 ≤ j ≤ q′i,N , denote the length of the j-th Dec query for user i with
nonce N and we assume that queries are reordered such that ℓ′i,N,1 ≤ ℓ′i,N,2 ≤ · · · ≤ ℓ′i,N,q′

i,N
.

Then
u∑

i=1

∑
N∈{0,1}ν

q′i,N = qdec (14)

and
u∑

i=1

∑
N∈{0,1}ν

q′
i,N∑

j=1
ℓ′i,N,j ≤ σdec. (15)

In the following, for ((A, M), (A′, M ′)) ∈ (A×M)2, we let

δ(A,M),(A′,M ′) := max{δ(len(A, M)), δ(len(A′, M ′))}
= α max{len(A, M), len(A′, M ′)}/2k + β/2n

γ(A,M),(A′,M ′) := min{γ(len(A, M)), γ(len(A′, M ′))}
= α min{len(A, M), len(A′, M ′)}/2k + β/2n.

Conditions (C-1) and (C-2). As the random variable involved in these event have the
same probability distribution in the ideal world as in Section 4 for (C-1) and Section 3 for
(C-2), we can directly reuse the same upper bounds.

Condition (C-3). We define two subsets Θ3,1 and Θ3,2 of Θ3. Subset Θ3,1 consists of
transcripts τ such that there exist queries (i, N, A, M, V, C) in τenc and (i, N ′, A′, M ′, V ′, C ′)
in τdec such that N = N ′, V = V ′ and HKi

in
(A, M) = HKi

in
(A′, M ′). Subset Θ1,2

consists of transcripts τ such that there exist queries (i, N, A, M, V, C) in τenc and
(i′, N ′, A′, M ′, V ′, Y ′) in τdec such that i ̸= i′, Ki

out = Ki′

out, N = N ′, V = V ′ and
HKi

in
(A, M) = HKi′

in
(A′, M ′).

We start with Θ3,1. Fix (i, N, A, M, V, C) in τenc and (i, N ′, A′, M ′, V ′, C ′) in τdec such
that N = N ′. Assume that the decryption query occurred after the encryption query, and
that V ′ = V . Since A never makes pointless queries, then one has (A′, C ′) ̸= (A, C). If
A ≠ A′, the probability that HKi

in
(A, M) = HKi

in
(A′, M ′) is smaller than δ(A,M),(A′,M ′).
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If A = A′, then one necessarily has C ′ ̸= C. Since N = N ′ and V = V ′, this implies that
M ≠ M ′, as M and M ′ are the plaintexts of respectively C and C ′ under the same IV
and nonce value. Thus, the probability that HKi

in
(A, M) = HKi

in
(A′, M ′) is also smaller

than δ(A,M),(A′,M ′). Now assume that the encryption query occurred after the decryption
query. Then, the probability that V = V ′ is exactly 2−n. Then the condition is satisfied
for this pair of queries with probability at most

α max{ℓi,N,j , ℓ′i,N,j′}
2k

+ β

2n
≤

α(ℓi,N,j + ℓ′i,N,j′)
2k

+ β

2n
≤

α(ℓenc
max + ℓ′i,N,j′)

2k
+ β

2n
.

By the union bound over all users i, nonces N , and pairs of encryption and decryption
queries for (i, N), we have, like in the study of the set Θ5,1 in the proof of Theorem 3,

Pr[Λid ∈ Θ3,1] ≤
u∑

i=1

∑
N∈{0,1}ν

qi,N∑
j=1

q′
i,N∑

j′=1

(
α(ℓenc

max + ℓ′i,N,j′)
2k

+ β

2n

)

≤ αµℓenc
maxqdec

2k
+ αµσdec

2k
+ βµqdec

2n
.

We now consider Θ3,2. Fix (i, N, A, M, V, C) in τenc and (i′, N ′, A′, M ′, V ′, C ′) in τdec
such that i ̸= i′. Then one clearly has Ki

out = Ki′

out with a probability smaller than 2−k2 .
Moreover, the probability that HKi

in
(A, M) = HKi′

in
(A′, M ′) is at most γ(A,M),(A′,M ′).

Summing over the at most qencqdec pairs of queries, we get

Pr[Λid ∈ Θ3,2] ≤ αqencσdec

22k
+ βqencqdec

2k+n
.

All in all,

Pr[Λid ∈ Θ3] ≤ αµℓenc
maxqdec

2k
+ αµσdec

2k
+ βµqdec

2n
+ αqencσdec

22k
+ βqencqdec

2k+n
.

Condition (C-4). For any (i, N, A, M, V, C) ∈ τdec and (K, T, X, Y ) ∈ τic, Ki
out = K

with probability 2−k2 and HKi
in

(A, M) = X with probability at most γ(len(A, M)). By
summing over all pairs, one has

Pr[Λid ∈ Θ4] ≤ qic

u∑
i=1

∑
N∈{0,1}ν

q′
i,N∑

j=1

(
αℓ′i,N,j

22k
+ β

2k+n

)
≤ αqicσdec

22k
+ βqicqdec

2k+n
.

Collecting all probabilities, we obtain that Pr[Λid ∈ Θ] is the sum of the probabilities of
bad transcripts in the proof of Theorem 2 and Theorem 3 (with substitutions as indicated
in the theorem statement).

Good transcript probability ratio. Fix a good transcript τ . We are going to
divide the information about the ideal cipher that are contained in the transcript into
several multisets:

• for each query to the ideal cipher, add a tuple (K, T, X, Y ) to S1;

• for each encryption query (i, N, A, M, V, C), add to S2 the tuples

(Ki
out, ⟨6⟩3∥fT (N, V, j), fX(N, V, j), Mj ⊕ Cj),

where M = M1∥ · · · ∥Mℓi , C = C1∥ · · · ∥Cℓi , j = 1, . . . , ℓi, and |Mk| = |Ck| = n for
all k = 1, . . . , ℓi;
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• for each encryption query (i, N, A, M, V, C), add to S3 the tuple

(Ki
out, ⟨5⟩3∥0t−3−ν∥N, HKi

in
(A, M), V );

• for each decryption query (i, N, A, M, V, C), add to S4 the tuples

(Ki
out, ⟨6⟩3∥fT (N, V, j), fX(N, V, j), Mj ⊕ Cj),

where M = M1∥ · · · ∥Mℓi
, C = C1∥ · · · ∥Cℓi

, j = 1, . . . , ℓi, and |Mk| = |Ck| = n for
all k = 1, . . . , ℓi, and as long as the tuple did not already belong to S1 ∪ S2 ∪ S4;

• for each decryption query (i, N, A, M, V, C), add to S5 the tuple

(Ki
out, ⟨5⟩3∥0t−3−ν∥N, HKi

in
(A, M), V ),

if it did not already belong to S5.

Thanks to the fact that τ is a good transcript, the domain separation, and the way S4
and S5 are generated, then the multisets S1, . . . , S5 do not contain any duplicated entries
and are pairwise disjoint. Besides, the set S1 ∪ S2 ∪ S3 ∪ S4 does not contain any distinct
triples (K, T, X, Y ) and (K ′, T ′, X ′, Y ′) such that K = K ′, T = T ′, and either X = X ′ or
Y = Y ′.

Let us now compute the ratio Pr[Λre = τ ]/ Pr[Λid = τ ]. The event Λid = τ can be
broken down into several events:

• Key corresponds to the event where the key vector K has the correct value;

• IdealPrim corresponds to the ideal cipher that are compatible with S1 (i.e., tuple
(K, T, X, Y ) is in S1 if and only if IC(K, T, X) = Y );

• IdealEnc corresponds to the ciphertexts and authentication tags indicated by τ
being the actual values revealed (note that this corresponds to n(|S2|+ |S3|) bits);

• IdealDec corresponds to the sampled queries agreeing with S4.

Similarly, the event Λre = τ can be broken down into several events:

• Key corresponds to the event where the key vector K has the correct value;

• RealPrim corresponds to the ideal cipher being compatible with S1;

• RealEnc corresponds to the ideal cipher being compatible with S2 ∪ S3;

• RealDec corresponds to the ideal cipher being compatible with S4;

• RealVer corresponds to the ideal cipher not being compatible with any tuple in S5
(i.e. IC(K, T, X) ̸= Y for every tuple (K, T, X, Y ) in S5).

Note that the first event is common between both worlds (and independent from the
second one),

Pr[RealPrim] = Pr[IdealPrim]

and

Pr[RealDec|Key ∩ RealPrim ∩ RealEnc] =
Pr[IdealDec|Key ∩ IdealPrim ∩ IdealEnc].
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Moreover, after ordering S2 ∪ S3 (with an arbitrary ordering), one has

Pr[RealEnc|Key ∩ RealPrim]
Pr[IdealEnc|Key ∩ IdealPrim] = 2n(|S2|+|S3|)∏|S2∪S3|

i=1 (2n − ni)
≥ 1,

where ni denotes the number of occurrences of (Ki, Ti) in the first i−1 elements of S2∪S3.
Hence, one has

Pr[Λre = τ ]
Pr[Λid = τ ] ≥ Pr[RealVer|RealDec ∩ RealEnc ∩ RealPrim ∩ Key]

≥ 1− qdec

2n − qic − qenc − qdec
(16)

≥ 1− 2βqdec

2n
(17)

where for the last inequality we used qic + qenc + qdec ≤ 2n/2 and β ≥ 1. Combining the
probability of bad transcripts and Equation 17 with Theorem 1 concludes the proof of
Theorem 7.
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