PEReDi: Privacy-Enhanced, Regulated and Distributed
Central Bank Digital Currencies

Amirreza Sarencheh, Aggelos Kiayias, and Markulf Kohlweiss*

The University of Edinburgh, and IOG
Edinburgh, UK
firstname.lastname@ed.ac.uk

Abstract. Central Bank Digital Currencies (CBDCs) aspire to offer a digital re-
placement for physical cash and as such need to tackle two fundamental requirements
that are in conflict. On the one hand, it is desired they are private so that a finan-
cial “panopticon” is avoided, while on the other, they should be regulation friendly
in the sense of facilitating any threshold-limiting, tracing, and counterparty auditing
functionality that is necessary to comply with regulations such as Know Your Cus-
tomer (KYC), Anti Money Laundering (AML) and Combating Financing of Terrorism
(CFT) as well as financial stability considerations.

In this work, we put forth a new asynchronous model for CBDCs and an efficient con-
struction that, for the first time, fully addresses these issues simultaneously. Moreover,
recognizing the importance of avoiding a single point of failure, our construction is dis-
tributed so that all its properties can withstand a suitably bounded entities getting
corrupted by an adversary. Achieving all the above properties efficiently is techni-
cally involved; among others, our construction uses suitable cryptographic tools to
thwart man-in-the-middle attacks, it showcases a novel traceability mechanism with
significant performance gains compared to previously known techniques and, perhaps
surprisingly, shows how to obviate Byzantine agreement or broadcast from the opti-
mistic execution path of a payment, something that results in an essentially optimal
communication pattern and communication overhead. We demonstrate the efficiency
of our payment system by presenting detailed computation and communication costs.
Going beyond “simple” payments, we also discuss how our scheme can facilitate one-
off large transfers complying with Know Your Transaction (KYT) disclosure require-
ments. Our CBDC concept is expressed and realized in the Universal Composition
(UC) framework providing in this way a modular and secure way to embed it within
a larger financial ecosystem.

Keywords: Privacy, Regulatory Compliance, CBDC, Cryptography, KYC, AML, CFT,
Universal Composition.

1 Introduction

The development of cryptocurrencies provided a strong motivation for the development of
“central bank digital currency” (CBDC) systems. A CBDC is central bank money but more
widely accessible and transferable than central bank reserves and banknotes (see e.g., Bank
of England [44] for an overview of the basic principles of such systems). This type of money
can also be interest bearing (with a different rate than that on reserves) [I5] and has a
different operational structure than other forms of central bank money [60]. It was early on
observed that CBDCs solve a different problem than general cryptocurrencies such as Bitcoin
and/or Ethereum. The first construction that exploited this distinction is RSCoin [35] which
was followed by designs explored by a number of central banks [II32/T4]. In such systems the
verification of transactions relies on a distributed set of independent authorities (we call them
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“maintainers”). Such entities are empowered to enforce the monetary and regulatory policies
of the system that are dictated by the central bank and regulatory entities. A distinguishing
characteristic of CBDC systems compared to cryptocurrencies is that the monetary policy
is decoupled from the monetary exchange system. The integrity and soundness of the former
remains in the purview of the central bank, while the integrity of the latter is distributed
across a set of entities. Therefore, the CBDC system’s state is maintained in a distributed
manner by the maintainers such that the central bank as well as any regulatory entities can
be offline during the time users transact.

A common concern expressed in the context of CBDCs is that, contrary to other forms
of central bank money, a CBDC may transform the central bank into a “panopticon” that
is continuously aware of all transactional data. Such concerns have also been highlighted
in the context of cryptocurrencies. First generation cryptocurrencies such as Bitcoin and
Ethereum are only pseudonymous in the sense that a user’s transactions are linkable to a
(set of) pseudonym(s) that the user can generate. Privacy enhanced cryptocurrencies (e.g.,
Zerocash [I2] or Monero [49]) were developed to hide the value of transactions and offer
unlinkable transactions to a certain degree or under plausible assumptions. Note that such
systems enjoy a level of anonymity that does not reveal directly any information about
payment counterparties and transaction values and, hence, may be attractive and be used
for illegal activities such as money laundering, financing terrorism, and so on. As a result,
privacy-preserving systems using such techniques can be problematic in settings where com-
prehensive regulatory compliance is required. CBDCs constitute such setting and hence it is
imperative to have built-in features by which, while full anonymity can be offered for most
circumstances, at the same time conditional disclosure to regulators and law enforcement in
case of misbehavior can be facilitated, cf. [5].

Privacy in payment systems can interfere with three main regulatory obligations: (i) Know-
Your-Customer (KYC), which requires the positive identification of counterparties before
they are able to transact. (ii) Anti-Money Laundering (AML), which requires that sources
of funds should be legitimate. (iii) Combating Financing of Terrorism (CFT), which requires
that the recipients of funds should not engage in terrorism. To appreciate the way such re-
quirements interfere with privacy, it helps to imagine the set of all payments as a hidden
directed graph where vertices correspond to counterparties and edges to payments between
them weighted by their value. Using this abstraction, it follows that introducing vertices in
the graph should be subject to KYC, while it should be possible to reveal the incoming or
outgoing edges to any vertex which is suspected for illicit or terrorism activity, as well as
trace selectively particular paths in the graph from source to destination and vice versa to
address AML and CFT considerations. Beyond these opening and tracing operations it is
widely recognized in the CBDC context, cf. [IJ9I14], that it is desirable to restrict both the
volume of payments that a particular vertex can make (so that “hoarding” CBDC currency
is tempered) as well as limit the amount of value that can be transferred between two coun-
terparties in a single transaction, without triggering additional auditing regarding the funds
of the sender (what is referred to as KYT - know your transaction, cf. [3]). Unfortunately,
currently no existing CBDC design offers privacy combined with such “regulation friendly”
capabilities.

Our Results. We put forth a model and construction that for the first time addresses all
the issues identified above simultaneously. In PEReDi each user has an account which is ap-
proved during onboarding (i.e., it undergoes KYC) and can subsequently be issued currency
by the central bank (following its monetary policy) as well as receive or transmit funds
to other users. Our design approach applies a novel combination of cryptographic primi-
tives and distributed organization that, perhaps surprisingly, shows how we can remove the
requirement for (byzantine) agreement or broadcast from the optimistic path of payment
execution. PEReDi features an encrypted ledger maintained separately by each maintainer,
transactions are identified by transaction identifiers and leave encrypted fingerprints in the
ledger of each maintainer that under normal circumstances are completely opaque. Trans-
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action senders and receivers independently update their private accounts, leaving the above
traces, while only in the case of a transaction abort the maintainers need to engage in an
agreement protocol to ensure consistency. In this way, PEReDi offers a digital equivalent of
physical cash: payments do take place with double-spending prevention without anyone in
the system becoming aware of the precise value transferred or the counterparties involved.
Moreover, both sender and receiver need to engage for the payment, something that prevents
“dusting” attacksﬂ At the same time (and contrary to physical cash) the transaction value
is subject to constraints in terms of sending and receiving limits of the two counterparties
and maximum transaction size, while the counterparties themselves are preconditioned to
proper KYC onboarding. Tracing and opening operations are accommodated by the design
elements of the encrypted ledgers. Given adequate evidence about suspicious activities of
a specific user or a particular transaction (indexed by its unique transaction identifier),
the authorities can trace transactions made by that user or reveal the metadata of a given
transaction by unlocking the real world identities of the counterparties or the total value
transferred. Combining these opening and tracing operations, authorities can identify the
labels of specific vertices in the payment graph as well as trace paths of payment from source
to destination and vice-versa. We stress that such operations require a quorum of entities to
agree and hence cannot be unilaterally invoked by any individual entity hence precluding a
single point of failure.
To summarize, our contributions are as follows:

1. To the best of our knowledge, this is the first time that a fully privacy-preserving and
comprehensively regulation friendly CBDC is modeled formally. Our formal model is in
the Universal Composition (UC) setting [25]. This modeling enables the composition of
the system as payment infrastructure within larger systems.

2. We review the regulatory compliance in the context of payment systems (KYC, AML,
CFT, auditing, etc.) and argue how our ideal functionality for CBDCs captures such
requirements in a privacy preserving setting.

3. We put forth a distributed construction that realizes our CBDC ideal functionality in an
efficient manner based on standard cryptographic assumptions. Notably our construction
demonstrates that neither Byzantine broadcast nor agreement is needed in the optimistic
execution path of a payment instance, resulting in an optimal communication pattern
and message size in the case when both sender and receiver are online and willing to
finalize a payment.

4. We introduce a novel simulatable approach for tracing suspicious users in the auditing
protocol which is employed for double-spending prevention as well and may be of inde-
pendent interest as it is more efficient than previously known techniques in the broader
context of tracing users in conditionally anonymous payment systems. Moreover, the
introduced auditing mechanism does not require Byzantine agreement or broadcast.

5. We describe how our efficient CBDC construction can facilitate additional features such
as protocol support for concurrent digital currency issuance by the central bank for
different users, aborting transactions, and Know Your Transaction (KYT) operations.

It is worth noting that even though we describe our results in the context of CBDCs, it is
immediate that our system can be used to implement any “stablecoin” or more generally
fungible digital token which has a centrally managed supply. In such case, the role of the
central bank is played by the issuer of the digital token, who is capable to introduce new
tokens increasing the supply as determined by the issuer’s policy. It is also straightforward to
return such tokens to the issuer by sending them to a designated account for that purpose.

In the proceedings version of our paper [42], we assumed that the total number of main-
tainers required for the system was D = 3t + 1 where ¢ represents the maximum number of
maintainers that can be corrupted by the adversary. Upon further analysis, we identified a

! Dusting attacks were observed in 2022 after the ruling of OFAC to blacklist the anonymization
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need to revise this assumption — we describe a lower bound on D in Section [3:3] arguing
that 5¢+ 1 maintainers is necessary to prevent adversary-induced faults in the pessimistic ex-
ecution path of a payment for any efficient realization of Fcgpc in the asynchronous setting.
In Section [d] we demonstrate that 5¢ + 1 is also sufficient.

Related Work. The first system for anonymous electronic cash was introduced by Chaum [29]
and focused on sender anonymity, while disclosing the recipient’s identity and the amount
transferred. The system also required users to hold information linear in the number of
coins that they possess, a performance consideration that was addressed in follow up work
[27U2T]. Regarding the problem of revealing the transaction value to the bank, transferable
e-cash [24]] introduced a mechanism for double-spending prevention. In this mechanism,
coins can be transferred to various users without communicating with the bank. Hence, coins
expand in size depending on how frequently they are used, which might be inefficient for re-
tail payments. Additionally, in these schemes coins are distinguishable based on the number
of transfers performed. Camenisch et al. [22] proposed a token-based e-payment solution in
which the bank can enforce simple rules such as per-user payment limits. Privacy of senders
of transactions is preserved, nonetheless, the recipient identity and payment amount are
leaked.

Zerocash [12] represents a UTxO-based anonymous payment system characterized by a
full anonymity set. This set encompasses every coin within the system. Similarly, in the
context of PEReDi’s model of full anonymity, the anonymity set comprises all accounts
within the system. Notably, in both systems, the computational cost associated with the
sender’s zero knowledge proof remains unaffected by the size of the anonymity set.

Garman et al. [38] addressed how regulation rules could be enforced in constructions like
Zerocash [12]. The disadvantage of payment systems similar to the Zerocash approach is that
they result in privacy-preserving transactions that are unsuitable for resource-constrained
users. Users should prove knowledge of the path of a transaction output in a Merkle tree,
hence, they must maintain an up-to-date version of this tree. Moreover, users are supposed
to download the whole ledger and decrypt all transactions to conclude whether they are
recipients of transactions. Instead, in our construction there is no need to download the
ledger. The necessity for users to be up-to-date with the whole ledger makes distributed
blockchain-ledger based constructions less efficient than our scheme which is based on signa-
tures of distributed (known) maintainers on the updated account of each user (this technique
eliminates the need to synchronize with the ledger state, which is only necessary for audit-
ing).

Monero [49] which is a UTxO-based anonymous payment uses ring signatures, where the
anonymity set is constituted by a group of public keys. The sender proves the possession
of the secret key corresponding to one of the public keys within the ring (without reveal-
ing which one). Monero does not have full anonymity. It, however, could support larger
anonymity sets at the cost of sacrificing efficiency, different from PEReDi’s approach where
the underlying zero knowledge proof is independent of anonymity set size.

Danezis and Meiklejohn, [35] introduced RSCoin, a central bank currency framework
which is built around an efficient broadcast mechanism. In RSCoin, the central bank dele-
gates the responsibility of verifying transactions to a set of entities called mintettes. Different
from traditional cryptocurrency miners, in their framework mintettes are known and may
eventually be held responsible for any misconduct. RSCoin focuses on the scalability of
broadcast rather than privacy or regulatory compliance. Performance was improved further
with the Fastpay design [10], even though privacy remained unaddressed.

Wiist et al. [59] proposed an anonymous payment scheme called PRCash in which trans-
actions are verified in a distributed manner. It achieves privacy and some degree of reg-
ulatory compliance. However, the main drawbacks of PRCash are that it does not meet
full anonymity as validators can link different transactions and it does not have auditabil-
ity. Hence, the authorities cannot investigate suspicious transactions or counterparties on
demand.
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Androulaki et al. [6] introduced a privacy-preserving auditable token management sys-
tem. Their proposed scheme uses a UTxO model in a permissioned blockchain. In contrast
to our construction which is account-based, they target business-to-business scenarios, and
they do not offer a comprehensive approach to regulatory compliance as we do.

Zether, proposed by Biinz et al. [18], is a privacy-preserving payment design that hides the
user balance, transaction value, and sender and receiver identities. Zether is account-based,
where each public key holder is associated with an ElGamal encryption of its balance under
its public key. The sender generates a transaction by encrypting the value of the transaction
under the receiver’s public key and the negative value of the transaction under her public
key, and encrypts zero under some random public keys. These randomly chosen public keys,
along with the sender and receiver’s public keys, generate an anonymity set in which the
identity of the sender and receiver is hidden. The sender proves in zero knowledge that
she has done so correctly (e.g., all encryptions are well-formed). We highlight drawbacks of
Zether compared to PEReDi: i) The sender can only initiate one transaction per epoch (each
k consecutive blocks form an epoch), which reduces the speed of transaction generation by
senders. ii) In Zether, each sender, before generating their zero-knowledge proof, must query
the blockchain (at the beginning of each epoch) to obtain their most updated state. This is
necessary because, at the end of each epoch, the blockchain rolls over all pending states to
permanent ones. If other users have included the sender’s public key in their anonymity set,
the sender’s state will change at the end of the epoch.

iii) Moreover, Zether has a much smaller anonymity set (Zether is capable of supporting
a large anonymity set; however, this directly impacts the efficiency of the zero knowledge
utilized). However, the double-spending and replay attack prevention tag space does not
grow in Zether (it is set to empty at the end of each epoch). In PEReDi, the tag space grows
(one group element per transaction) however the tag serves the additional purpose of tracing,
eliminating the need for introducing new elements to manage the tracing of malicious users
(so that reducing both communication and computation costs by preventing attacks and
offering tracing via recording one group element at the same time). iv) Furthermore, there
is no mechanism to capture regulatory-related rules in their system design, for instance,
tracing malicious user functionality.

Damgard et al.’s work [34] addressed the problem of balancing accountability with pri-
vacy. Nevertheless, their work is in the identity layer for blockchain systems, and they do
not study various features necessary for a CBDC system (e.g., currency issuance, transac-
tions between users, financial and regulatory policies, and so on) in their transaction layer
framework. The tracing mechanism in [34], for each account generation, requires the account
holder to compute a pseudorandom-function PRF using its secret key. There is no concrete
implementation for tracing in their work as they use a secure multi-party computation for
PRF in a black-box manner. More importantly, the input of PRF is only restricted to be in a
range of values making tracing inherently inefficient as authorities are supposed to generate
the PRF values for all possible inputs in the range. In contrast, we achieve tracing com-
plexity, per user, proportional to the actual number of transactions issued by that specific
user.

Wiist et al. [58] introduced Platypus which is a privacy preserving and centralized pay-
ment system. Platypus relies on a single authority, our scheme is distributed such that it is
robust against single points of failure with respect to regulation enforcement, and can work
even if the central bank is completely offline. Furthermore, our scheme offers encrypted (dis-
tributed) ledgers which allow compliance with regulation like AML and CFT, by enabling
the set of authorities to trace a malicious user and to discover the transfer value and iden-
tities of the counterparties in any suspicious transaction. Platypus [58] does not offer such
capability. We stress that it is quite delicate to add efficient tracing and opening mechanisms
to a CBDC design as various attacks such as man-in-the-middle attacks where the sender’s
transaction information is not tied to the receiver’s identity and vice versa can take place
and should be addressed by careful design and modeling choices as we do here. Moreover,
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the security properties of a CBDC system in their work are defined via a game-based ap-
proach something which may limit the composability of their construction, cf. [26]. Finally,
another drawback of Platypus [58] is that the technical details on their regulation approach,
currency issuance by the central bank, and addressing concurrent and aborted transactions
are not formally studied within their security model.

Tomescu et al.[57] introduced a decentralized payment system called UTT. Their con-
struction rely on Byzantine fault tolerant infrastructure. However, PEReDi obviates Byzan-
tine Agreement and Byzantine Broadcast from the optimistic execution path of a transaction.
Hence, we have an essentially optimal communication pattern and communication overhead
when transaction participants are honest. In UTT, the receiver of a transaction has to scan
all transactions on a ledger similar to blockchain-ledger-based anonymous payment systems
to be able to successfully receive the currency which increases the load on users’ sides. Re-
garding regulation enforcement, the amount of money that can be anonymously sent in UTT
setting is limited by a monthly budget. PEReDi, on the other hand, allows for comprehensive
regulatory compliance, and can also enforce them from the recipient’s standpoint.

Another relevant research area is Unlinkable Policy-Compliant Signatures [7]. These sig-
natures aim to balance user privacy with accountability by allowing policy-compliant trans-
actions without disclosing user attributes or requiring continuous interaction with credential
authorities. However, the proposed construction suffers from significant performance over-
head, and the policy is not updatable.

2 CBDC Desiderata and Modeling

We abstract a CBDC system to three separate classes of entities: the central bank, a set of
maintainers (e.g., commercial banks and financial institutions), and users. Role separation
is an important element in CBDC design, cf. [I]. The description of these roles together with
the relevant assumptions made about them are as follows.

1. Central Bank: The central bank issues the digital currency and is responsible for mon-
etary policy. The monetary supply at any given time is in the purview of the central
bank. However the state of all users’ accounts is not under its control. Moreover, due
to the potential threat of mass surveillance [32], the central bank is also not trusted for
privacy, i.e. it has no ability to deanonymize the sender or recipient of a transaction or
reveal the transferred values associated with a specific transaction. Finally, the central
bank is not responsible for enforcing the regulatory rules that govern payments. We refer
to [I4], and [32] for more context on the role of central banks.

2. Maintainers: The authority of validating transactions and facilitating various auditing
operations needed for regulatory compliance is delegated to a number of approved insti-
tutions that we call the maintainers. As a result, the central bank and regulator are not
needed to be active in any of the system’s day to day operations (except for issuing cur-
rency for the former). The maintainers share the state of system and are responsible for
continuously updating it as users issue transactions. In a real world deployment, main-
tainers can be organizations with an existing connection to the central bank for instance,
commercial banks, financial institutions, and etc. Note that contrary to e.g., miners in a
cryptocurrency blockchain, the set of all maintainers is public and known to all network
participants. The basic properties of the system such as the integrity, regulatory compli-
ance and privacy of transactions emanate from the actions of the maintainers. We note
that the system’s security and liveness objectives will be met as long as the adversary
controls less than a certain threshold number of maintainers. In any financial system,
there exist various operations that are subject to regulatory rules. Examples of relevant
entities developing and/or enforcing such rules are the Financial Conduct Authority
(FCA) in the UK or the Securities and Exchange Commission (SEC) in the US. One
important aspect of regulatory compliance is KYC; in our CBDC system abstraction, we
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assume maintainers are responsible for onboarding users to the system, i.e., all accounts
in the system that are introduced subject to the approval of the maintainers.

3. Users and Payment interface Providers (PIPs): As any digital currency system, in a
CBDC system, the users can act as either the sender (a.k.a. buyer, payer, or customer)
or the recipient (a.k.a. seller, payee, or merchant) of digital currency in a transaction.
Users of the currency can be private individuals or organizations. Note that users engage
with the system through software and/or hardware provided by a PIP. The distinction
between users and PIPs will not be essential for our analysis and modeling, and we will
not pursue it further. We assume that any number of users of the system are untrusted,
i.e. they may behave maliciously against honest users or other system entities. Privacy
of payments should be satisfied between an honest sender and an honest receiver in a
transaction.

2.1 CBDC Security Requirements

In this section, we informally define security requirements that will be captured by our
CBDC ideal functionality. Note that the CBDC system should be resilient against broad
types of attacks (e.g., Sybil attacks, man-in-the-middle attacks etc.), however, the focus of
this section is on explaining requirements which are more specific to payment systems and
CBDCs; these are as follows.

1. Financial and Regulatory Integrity. No one should be able to update the account of
another user. Furthermore, currency in circulation or the amount of CBDC that is
used to conduct transactions between consumers and businesses does not change as the
system evolves over time except when the central bank decides to create new money
(digital currency). Double-spending prevention is a crucial requirement for any payment
system. A specific balance of a user should not be used in two transactions without
being updated each time. In addition, after a successful payment between two users, the
account of both of them should be updated correctly considering all parameters that are
included in users’ accounts for the purpose of checking financial and regulatory rules.

2. Comprehensive Regulatory Compliance. This term means achieving all the following four
items at the same time.

(a) Balance Limit: It limits the amount of funds that a particular user can possess
in a specific period of time. The Bank of England [I] and a report from several
Central Banks (that details the principles, motivations, and risks of CBDC) [14]
have mentioned that balance limit can help prevent bank runs and evasion of wealth
tax. Moreover, the Bank of England (BoE) [I] and the European Central Bank
(ECB) [13] have addressed that to manage the implications of a CBDC for financial
stability, limits of how much CBDC any individual can hold is necessary.

(b) Receiving and Sending Limit: It limits the amount of received and sent funds that a
particular user can receive or send in a specific period of time. The sent and received
amounts should not exceed a predefined threshold. European Central Bank [9], and
several central banks [14] have mentioned that limiting receiving and sending values
can help achieve AML and prevent tax evasion.

(¢) Transaction Value Limit and KYT: Reporting requirements and disclosure of source
of funds for large value transactions are typically required (e.g., in the US filing a
report is required for transactions in cash exceeding $10, 000). To reflect this, we have
a limit on the value of each transaction. Furthermore we discuss how it is possible
to comply with more complex KYT policies where users should disclose additional
information for large value transactions.

(d) Auditability: In cases of suspicious activities, additional auditing actions are needed
(for e.g., filing suspicious activity reports called SARs [2]). The auditing functionality
has two components:
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i. Privacy Revocation: Given an anonymous transaction, authorities can reveal
the real world identities of involved parties and the transferred value of that
transaction

ii. Tracing: Given a real world identity of a user, authorities can trace anonymous
payments in which the user has engaged (as a sender or recipient).

3. Full Privacy. This property means achieving all the following three items at the same
time.

(a) Identity Privacy: It means for any given transaction the real world identities of either
the sender or the receiver cannot be revealed (except when auditing). Furthermore,
given the identity of a specific user no one can find the transactions in which the
user has involved as a sender or receiver.

(b) Transaction Privacy: The transferred value by the sender to the recipient cannot be
revealed (except when auditing) and given a specific amount of transferred value
no one can find the transactions that match that same (or related) value. Only the
sender and recipient should know the value of the transaction. Moreover, the account
information of users (e.g., sum of all sent and received values) are hidden from all
network entities.

(¢) Full Unlinkability: It contains two parts that are as follows.

i. User Unlinkability: Given an anonymous payment’s real world identities of the
sender or receiver it should not be possible to link the sender or receiver’s other
transactions to the given transaction.

ii. Transaction Unlinkability: Given a transaction, it should not be possible to link
any past transaction that resulted in the possession of the funds used by the
current transaction.

4. Accountability. When a user makes a payment it should not be able to deny it later —
there is an obligation to accept the responsibilities that come with a finalized transaction.

2.2 Notations

In this paper, for uniquely identifying parties, we denote the central bank by B, the user
and its key pair with U and (pky,sky) respectively. U also has another secret key A used for
generating per-transaction tracing tag. This tag is denoted by T. We denote the account of U
by acc. The notation M; is used for the j-th maintainer and M for the set of all maintainers.
Each maintainer (e.g, M;) has two pairs of keys for threshold encryption (pk, ;,ski ;) and
(pko,;,ska ;). M; also, has a pair of key for threshold signature (pk;,sk;). We assume [M| = D
and there are two thresholds, « is the threshold number of maintainers required for verifying
transactions on behalf of the central bank and the regulator, and f is the threshold number
of maintainers required for executing the Auditing protocol. Maintainers of which 8 number
is required for executing the Auditing protocol is called audit committee. Set of honest and
malicious maintainers are denoted by H and C, and their associated identifiers (indexes)
by H and C respectively. We assume |C| = t. Honest maintainer is denoted by M, and
malicious maintainer is denoted by M.

L; denotes the j-th ledger maintained by j-th maintainer M; which is initially empty. We
denote the user record which is saved in £; with UR. The sender and receiver of a payment
are denoted by Ug and U, respectively. Hence, for instance the key pair of the sender is
(pk,,sks) and its tracing key is as. The value of transaction that is transferred from a sender
(B or Uy) to a recipient is denoted by v and the transaction identifier is denoted by #q.

2 To improve regulatory compliance, we recognize the existence of more general rules that are sub-
jective and cannot be formally captured. To address these, we encrypt transaction information,
allowing decryptability and making decisions based on external information and additional evi-
dence (Privacy Revocation). This approach supports subjective decision-making. It is important
to note that this encryption feature is part of a modular design. If deemed inappropriate, it can
be removed without affecting other system functionalities.
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The balance of U is denoted by B, and sum of all sent and received values of U by S
and R respectively. Bmax, Smax, Bmax, and Vmax are regulatory limits on maximum allowed:
balance, sum of all sent values, sum of all received values, and transaction value respectively.
We denote transaction counter of a user which is incremented for each transaction ( Currency
Issuance or Payment) by x (the statement of Zero-Knowledge is denoted by x). The notation
{ei}ij\il is used to denote a set {eq,...,en} with N elements. If for every positive polynomial
p, there is an integer iy where for all integers i > ig, negl(i) < ﬁ holds, the function
negl is negligible. We use F, to denote a field with ¢ elements. PPT stands for probabilistic
polynomial time.

2.3 CBDC Formal Model

We formalize the objectives of a CBDC system as an ideal functionality in the Universal
Composition framework [25]. The central bank digital currency scheme consists of six main
sub-protocols: User Registration, Currency Issuance, Payment, Abort Transaction, Privacy
Revocation and Tracing. The last two are called Auditing. Valid transactions are recorded
in the ledger £ of each maintainer M. Hence, there is a history of all verified transactions
accessible by anyone who is permissioned to audit private transactions.

Fcepc is parameterized by D, t, Vinax, Bmax, Smax, and Rmax where D = 4t + 1 holds. The
functionality Fcgpc maintains the following tables and mappings:

1. T(U) outputs 0 if U has not been traced and 1 if it has been traced. Initially, T'(U) < L
meaning that for non-registered users T'(U) outputs L.
. Users to their accounts’ state: W = (B, S, R, x) <— K(U). Initially, K(U) < L.
3. U(U) outputs pid if the user U has ongoing transaction with pid. Once the transaction is
finalized (in the real world the user receives « valid signature shares on its new account)
U(U) is set to L meaning that user is in the Idle state, therefore, can start a new
transaction.
. Payment identifiers pid to transaction identifiers t4: t;q < P(pid).
. Set of maintainers who engage in a specific transaction whose identifier is tq: M(tiq).
6. Users to their most recent transaction metadata and transaction identifier (Ug, Uy, tig, v) <
Tid(U) where U =U; or U= U,, or (B,U, tig,v) + Tid(U). Initially, Tid(U) + L.

7. Transaction identifiers to transaction metadata (Us, U, v) < Rvk(tig).

8. Users to all their transaction identifiers and their role in each of them {¢J;,role” }7_; +
Trc(U).

We note that session identifiers are of the form sid = (B, M, sid’) such that Ml = {M;}2.,.
Initially, init - 0 where init € {0,1}. At the end of Initialization init is set to 1. Afterwards in
the beginning of all parts of the functionality (namely User Registration, Currency Issuance,
Payment, Abort Transaction, Privacy Revocation and Tracing) it is checked whether init has
been set to 1. If it has not been set to 1, Fcgpc ignores the received message. In Fcgpc, by
sending a message m to M via delayed output, we mean the following. Fcgpc provides m
and unique identifiers of all maintainers in the set M to the ideal-world adversary A. Fcgpc
lets A decide the order of maintainers in the set Ml who receives the message m. Also it can
delay the message delivery and prevent delivering a message to a maintainer.

[N

T~

,—[ Functionality Fcppc, part I: Registration and Issuance } \

Initialization.

1. Upon input (Init,sid) from party P € {B,M}: Abort if sid # (B,M,sid’). Else,
output (InitEnd,sid, P) to A. Once all parties have been initialized, set init < 1.

User Registration.
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1. Upon receiving a message (GenAcc,sid) from U: If K(U) = L1, output
(GenAcc,sid, U) to A. Else, ignore.

2. Upon receiving (0k.GenAcc,sid,U) from A: Output (AccGened,sid,U) to M via
public-delayed output. Output (AccGened,sid) to U via public-delayed output and
set K(U) <~ W = (0,0,0,0) and T'(U) < 0 when delivered.

Currency Issuance.

1. Upon receiving a message (Iss,sid,U,v) from B: Ignore if B is not in sid. Else,
generate a new pid, and record the tuple (Iss, U, v, pid, 1). If U is corrupted, output
(Iss,sid, pid, U, v) to A. Else, output (Iss,sid, pid) to A.

2. Upon receiving (AcceptIss,sid,v) from U: If K(U) = L or U(U) # L or the tuple
(Iss,U,v,pid, 1) is not recorded, ignore. Else, retrieve K(U) = W. If B+ v > Bpax
or R+ v > Rmax, ignore. Else, set U(U) <« pid and retrieve T'(U): (a) If T(U) = 0,
output (AcceptIss,sid, pid) to A. (b) Else, output (AcceptIss,sid, pid,U) to A.

3. Upon receiving (GenTnx, sid, pid, tiq) from A: If already exits a pid’ # pid where
P(pid") = t;g or the tuple (Iss, U, v, pid, 1) is not recorded, ignore. Else, if P(pid) =
1, set P(pid) < tig. Else, retrieve P(pid) = t,, ignore if t/; # tiq. Set Tid(U) «+
(B, U,tid,v).

4. Upon receiving (GenTnx, sid, pid, M) from A: Retrieve the tuple (Iss, U, v, pid,b).
Ignore if b = 0 or P(pid) = L. Else, retrieve P(pid) = tig. Set M(tiq) < M (tia) UM
and output (TnxDone,sid, t;g) to My, via public-delayed output. Once | M (tiq)| > B:
Set K(U) «+ (B4 v,S5, R+ v,z + 1), Rvk(tiq) + (B,U,v), Trc(U) + Trc(U) U
(tia, receiver), P(pid) < L, and b < 0 if B+v < Bpax and R+ v < Rpax hold. Once
|M(tiq)| > a: Output (TnxDone,sid, B,v) to U via private-delayed output and set
U(U) «+ L when delivered.

In more details the components of our functionality are as follows.

D Initialization. This step merely ensures that the relevant parties (B and all D main-
tainers M) have been activated; the functionality keeps a record of all parties that have been
initialized for the scheme.

@ User Registration. At the registration phase, a user U should get their account ratified
by the system. If the user U has already been registered by maintainers M, it cannot be
registered again. Note that as it is common in the Universal Composition setting, we allow
the adversary A communications and hence also block registration (i.e., we do not model
denial of service attacks). The balance and regulation-related information of user W are set
to initial values which are zero for balance B, sum of all sent values S, sum of all received
values R of user, and transaction counter z. The maintainers are notified for each successful
user registration.

@ Currency Issuance. In the Currency Issuance process different from Payment, only the
central bank B is allowed to be the payer and there are no limits imposed to the funds that
the central bank possesseﬁ First of all, functionality Fcgpc checks whether the receiver of
digital currency U is a valid registered user in the system or not which means if the user
U has not already been registered by maintainers M, it cannot obtain any digital currency.
The functionality imposes the regulatory restrictions of B +v < Bpax and R 4+ v < Rpyax,
where v is the amount of currency that is issued following the central bank’s instructions. We
remark that based on different regulatory rules in each jurisdiction, some of the restrictions
such as upper bounding the value central bank B issues v < V,ax can be easily captured or
the mentioned checks B + v < Bpmax and R+ v < Rpyax can be ignored for currency issuance
transactions (note that as our construction is account-based rather than token-based; adding
or removing such regulatory compliance constraints is relatively straightforward). Currency

3 Currency Issuance mechanism is one of the main differences of CBDCs with cryptocurrencies
(e.g., Bitcoin [48]) and Stablecoins (e.g., PARScoin [54]).
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issuance is not a unilateral action from the central bank B as it also needs the activation of
the user U who receives the digital currency. This highlights one of the distinctions of our
setting compared to blockchain systems: the recipient of funds U is online during transaction
and the protocol is interactive. The state of the receiver’s account is updated after each
currency issuance action. As before, the adversary A may block the currency issuance from
going forward. A successful currency issuance will increase the balance of the receiver U
by the indicated amount v. Transaction value, and identity of the receiver is hidden from
the adversary. The ideal-world adversary A is also required to assign a unique transaction
identifier t;4 and all transaction metadata are stored by the functionality in a table Rvk(tq)
while the t;4 is stored in Trc(U), where U is the recipient.

@ Payment. As in the case of Currency Issuance, the Payment process involves both
the sender Uy and the receiver U, being activated. Contrary to issuance transaction, the
functionality during payment performs the important check that the sender Uy has sufficient
balance to fund the payment By — v > 0. Interactive payment is necessary as we claim that
Feepe captures regulatory compliance (e.g., AML, CFT) considering both parties which
means both of them are supposed to know with whom they are making a payment. Hence,
it is vital for the receiver U, to actively engage in each payment. (Refer to PARScoin [54]
for an alternative system design and modeling approach, where the receiver does not need
to be online at the time of payment. In PARScoin, payments are non-interactive between
the sender and receiver. When the receiver comes online, she scans the ledger, identify
transactions associated with her, and submit a zero-knowledge proof to claim the funds.
Furthermore, the receiver still needs to prove compliance with the system’s regulations to
be able to successfully claim the funds.)

A successful payment protocol will increase the balance of the receiver U,. by the indicated
amount v as well as subtract that amount from the balance of the sender Us. Additionally,
account information of each user is updated to capture different regulation policies. As in the
case of issuance a unique transaction identifier t;q is determined by the ideal-world adversary
A and the transaction metadata are stored in table Rvk(tiq) while the ¢4 is stored in Trc(U,.)
and Trc(Uy), where U, and U are the sender and recipient of the payment. Note that the
adversary A is not aware of the transaction value, and identities of sender and receiver
(unless one of them is malicious) and the tiq is selected independently of them.

® Abort Transaction. The user initiates aborting transaction by which it requests an
update on its account’s state. The update which user acquires on its account depends on
the number of maintainers who have actively engaged in the user’s transaction (either in
Currency Issuance or Payment). The engagement corresponds to signing the account of the
user in the real world. If less than or equal to ¢ (either malicious or honest) maintainers have
engaged with the most recent transaction of the user, the user’s transaction gets rejected
meaning that the state of the account is not changed (only x is updated). Otherwise, the
transaction is confirmed and the state of the sender and receiver’s account is updated (in
case of Currency Issuance transaction only the receiver’s account is updated).

® Privacy Revocation. Privacy revocation is initiated by the maintainers who submit
the transaction identifier of a fully anonymous payment they wish to revoke. If a sufficient
number of them (this is set to §) agrees on the revocation of a specific transaction the
functionality will recover the metadata of the specific transaction and return them to the
maintainers and adversary.

(@ Tracing. As in the case of revocation, the maintainers have to agree they want to
trace a specific user. If the quorum is reached (requiring 8 maintainers) then the set of
transaction identifiers that correspond to the agreed users will be returned to the maintainers
and adversary.
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,_[ Functionality Fcgpc, part II: Payment and Auditing }

2.

2.

Payment.

1.

Upon receiving a message (GenTnxSnd, sid, U,., v) from U,: If K(U,) = L or U(Us) #
1 ignore. Else, retrieve K(Ug) = Ws. If Ss+v > Spax, or Bs—v < 0, or v > Vipay, Or
v < 0 holds ignore. Else, generate a new pid, set U(U;) < pid, and record the tuple
(Tnx, U, U, v, pid, 1). If U, is corrupted, output (GenTnxSnd, sid, pid, U, U,,v) to
A. Else, retrieve T'(Uy): (a) If T'(Uy) = 0, output (GenTnxSnd, sid, pid) to A. (b) Else,
output (GenTnxSnd, sid, pid, Us) to A.

Upon receiving (GenTnxRev,sid, Ug,v) from U,: If K(U,) = L or U(U,) # L or
the tuple (Tnx, U, U,., v, pid, 1) is not recorded, ignore. Else, retrieve K(U,.) = W,..
If B, +v > Bmax, Or R. + v > Rpyax, ignore. Else, set U(U,) < pid and re-
trieve T'(U,): (a) If T(U,) = 0, output (GenTnxRcv,sid, pid) to A. (b) Else, output
(GenTnxRcv, sid, pid, U,.) to A.

Upon receiving (GenTnx, sid, pid, tiq) from A: If already exits a pid’ # pid where
P(pid") = t;4 or the tuple (Tnx, Uy, U,,v,pid, 1) is not recorded, ignore. Else, if
P(pid) = L, set P(pid) < ti4. Else, retrieve P(pid) = t};, ignore if t; # tig. Set
Tid(Uy) < (U, U,., tia, v) and Tid(U,) ¢ (Uy, U, g, ).

Upon receiving (GenTnx,sid, pid,Mg) from .A: Retrieve the tuple
(Tnx, U, U, v, pid, b). Ignore if b = 0 or P(pid) = L. Else, retrieve P(pid) = ti4.
Set M(tig) + M(tiq) UMy, and output (TnxDone, sid, tiq) to My via public-delayed
output. Once |M(tiq)| > 5: Set K(Uy) < (Bs — v, S5 + v, Rs, x5 + 1), K(U,) «
(Br+v, Sy, Ry +v,z, +1), Rvk(tig) < (Us, Uy, v), Tre(Us) <= Tre(Us) U (tig, sender),
Trc(U,) < Tre(U,.) U (tiq, receiver), P(pid) < L, and b < 0 if S5 + v < Spax, and
v < B, and By + v < Bpmax, and R, + v < Rpax hold. Once | M (tiq)| > a: Output
(TnxDone, sid, U, v) to U, via private-delayed output and set U(U,) < L when
delivered. Output (TnxDone,sid,U,,v) to Uy via private-delayed output and set
U(Us) < L when delivered.

Abort Transaction.
1.

Upon receiving a message (AbrTnx,sid) from U% If K(U) = L or Tid(U) = L,
ignore. Else, retrieve (Us, U,, tig, v) < Tid(U). Send (AbrTnx,sid, ti4) to A.

Upon receiving (AbrTnx.0k, sid, ti4) from A: Set Tid(U) < L. (a) If IM(¢i4)| < B: Set
K(U) < (B,S,R,z+1), Trc(U) < Trc(U)U(tiq, Aborted). Output (TnxAborted, sid)
to U via public-delayed output and set U(U) < L when delivered. Output
(TnxAborted, sid, tiq) to M via public-delayed output. (b) Else, given the retrieved
tuple (Us, Uy, tig, v): Output (TnxDone, sid, U, v) to U, via private-delayed output
and set U(U,.) + L when delivered. Output (TnxDone,sid, U,.,v) to U, via private-
delayed output and set U(Ug) < L when delivered. Output (TnxDone, sid, t;4) to
M via public-delayed output.

Privacy Revocation.

1.

Upon receiving a message (RvkAnm,sid, #),) from maintainer M;: If Rvk(t},) = L,
ignore. Else, record (RvkAnm, sid, ti{j, M;) and output (RvkAnm, sid, tij;j, M;) to A. Once
|{j|tljd = tid}‘ > ﬁ, set X « tiq.

Upon receiving (RvkAnm.0k, sid, tiq) from A: If X has not already been set to tq4,
ignore. Else, retrieve (U, U,., v) + Rvk(X). Output (AnmRevoked, sid, 4, Us, U, U)EI
to M via public-delayed output.

Tracing.
1.

Upon receiving a message (Trace, sid, U;) from maintainer M;: If K(U;) = L ignore.
Else, record (Trace, sid, U;, M;) and output (Trace, sid, U;, M;) to A. Once |{j|U; =
U} > 5, set Y + U.
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2. Upon receiving (Trace.0k,sid,U) from A: If Y has not already been set to U,
ignore. Else, retrieve (B, S, R, z) < K(U). Retrieve {t;,role” }2_; < Trc(Y). Set
T(U) « 1. Output (Traced,sid, {t7, role” }2_;) to M via public-delayed output.

¢ Either U = U or U = U, holds.
b For a currency issuance transaction Us = B.

3 Our Construction

In our construction, we aim to achieve all the financial, regulatory and security properties
described informally in Sec. 2.] and formally in Sec. 2.3] We assume that the total number
of maintainers is D = 5¢ + 1 and ¢ of them can be corrupted by the adversary. Hence, we
set the thresholds of blind signature scheme and auditing as « = 4t + 1 and 8 =t + 1
respectively.

3.1 High-level Technical Overview

Every user in the system has an account acc for storing the current balance B and other user
specific values related to the system’s financial and regulatory restrictions. Users update their
accounts when transacting. For each new Currency Issuance or payment transaction, the
involved parties in the transaction engage in a cryptographic protocol with all maintainers
M. To this end, users encode the values of accounts into cryptographic one-time objects that
fix a unique tag T. When updating an account a user discloses the tag associated to the
previous account snapshot acc (which has been signed by at least o maintainers). A user also
discloses U&”d that is a re-randomization of the consolidated signature oy on their previous
account snapshot. The disclosed tags are stored by maintainers for the purpose of enforcing
users to use their most updated accounts (as in Chaum’s double-spending prevention for
online cash [29]). To support tracing, the protocol in fact computes tags pseudo-randomly
so that they can be recomputed by the Awditing protocol using a special-purpose MPC
(multi-party computation) protocol.

The newly updated account acc™" is given to M for signing together with a proof that the
new account acc"® is consistent with the previous account snapshot acc and the transaction
value v issued by B to U in the Currency Issuance protocol or transferred from U, to U,
in the Payment protocol. To this end, users prove to M in a privacy-preserving way that
their new accounts snapshots acc"®" are updated honestly. For instance, the same value is
deducted from U,’s account and that value is added to U,’s account. Similarly, the account
of the receiver is updated with respect to the value of digital currency issued by the central
bank while making sure that attacks such as a replay attack on central bank’s message is
prohibited. Moreover, both Uy and U,’s new accounts acc}®" and acc]®" comply with the
system’s regulatory compliance rules. The parties engaged in a payment should acquire at
least & number of maintainers’ blind signature shares o"":® on their new accounts. They
locally unblind these signature shares ¢"*" and aggregate them to create a single consolidated
signature o™ on their new account snapshot. Furthermore, every transaction results in a
transaction identifier tiy that is output to maintainers M and stored in each maintainer’s
ledger £. This identifier contains cryptographic information concerning the transaction. To
ensure privacy, we prove that the transaction identifier ¢,y does not leak any privacy-sensitive
information so that we achieve full privacy. It is only retrievable and reconstructable by an
audit committee using the information saved in £ for the purpose of privacy revocation and
tracing. In other words, an audit can be done when the audit committee has been convinced
that a specific transaction or user is suspicious enough for anonymity to be revoked or have
its counterparties be traced respectively. Note that tracing and revocation can be applied in
an adaptive fashion to reconstruct a set of counterparties across a sequence of payments.
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Receiving

Idle
(initial state)

Sending

Fig. 1. User’s State Transition in PEReDi’s Transactions. Tl: Transaction Information. AR: Abort
Request. opf": Maintainers’ signature on the new account of the user. oy;: Maintainers’ signature

on the refreshed account of the user.

In the following, we describe user’s state transition (in Currency Issuance and Payment
protocols) in the PEReDi’s setting which is depicted in Fig. [I} Upon receiving environment’s
Z command (of the form (AcceptIss,sid,v) or (GenTnxRcv,sid, Us, v) or (GenTnxSnd, sid, U,., v))
to make a transaction, if the user U is in:

1. The Idle state, it sends its transaction information T| (which includes U’s new-blinded ac-
count acc"®®) to all maintainers M. Upon sending TI, U’s state is changed to Receiving
(from central bank B or from another user Us) or Sending (to another user U,.).

2. One of the states Receiving or Sending (which means U’s most recent transaction is
pending), U ignores Z’s message.

When state is changed from Idle to Receiving or Sending, the transaction can be successful
or pending as explained in the following cases:

1. Successful (e.g., payment participants use their newly updated accounts, regulatory com-
pliance is met, and maintainers have received valid transaction information of both pay-
ment participants). U receives at least a valid blind signature shares of maintainers on
acc"™B_ Upon generating unblinded-consolidated maintainers’ signature on the new ac-
count off", state is changed to Idle. Hence, U who, now, has its new account signed is
ready to enter into the next transaction.

2. Pending (e.g., the sender-receiver pair has not been generated on sufficiently enough
maintainers’ sides). U’s state remains in Receiving or Sending up to the moment when Z

instructs U to send an abort request AR.

Upon Z’s instruction (of the form (AbrTnx, sid)) for sending abort request AR (which includes
U’s refreshed-blinded account acc”®), U sends AR to M (in this case, if the state of U is
not Sending or Receiving, it ignores Z’s instruction). Doing so changes U’s state from either
Sending or Receiving to Aborting. The two following scenarios are for the case when U is in
the Aborting state:

1. If at least t + 1 maintainers have saved a sender-receiver Tl pair in their ledgers (which
guarantees at least one honest maintainer has the pair), maintainers ignore acc™® and
send their signatures for acc™"® to U. Upon generating unblinded-consolidated main-
tainers’ signature on the new account opf", state is changed to Idle.

2. Else, maintainers sign acc”®, record the pending transaction as aborted and ignore
acc™"® included in TI. Upon generating unblinded-consolidated maintainers’ signature

on the refreshed account oy, state is changed to Idle.

Furthermore, you can find a pictorial representation of all the sub-protocols of our con-
struction in Fig. [2lf6] Note that for simplicity, in the figures we do not include the messages
between the environment Z and the parties. For the same reason, we do not depict AR
messages as well.
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3.2 Details of the Construction

In this section, we describe our CBDC protocol IIpgrepi- We will prove that ITpgrep;i se-
curely realizes Fcgpc. Our construction uses several concrete cryptographic components
(see Appendix |A]) and ideal functionalities (see Appendix. Our scheme uses the Coconut
Threshold Blind Signature scheme (TBS) [66/52] and the Threshold ElGamal Encryption
(TE) scheme [36l50I39] in a mostly blackbox manner. However, we reduce the unforgeabil-
ity of Coconut to its underlying Pointcheval-Sanders [51] signature component. Throughout
this section when we use Coconut we employ its algorithms as described in Appendix [A]
However, whenever possible we merge its ZK proofs with those of the rest of the protocol for
improving performance. PEReDi employs the following functionalities: a Key-Registration
functionality Fkr, a communication Channels functionality Fc, (parameterized by differ-
ent labels, e.g., “sa” for a sender anonymous channel F& ), a Broadcast functionality Fgc,
an asynchronous Byzantine Agreement functionality F,ga, a Random Oracle functionality
Fro, a Non-Interactive Zero Knowledge functionality Fnizk and a Signature of Knowledge
functionality Fsek.

We will assume that transacting parties communicate through variants of F¢, as spec-
ified. We note that some sender-anonymity is necessary for privacy, as otherwise network
“leakage” will trivially reveal the counterparties of a transaction irrespective of the strength
of cryptographic protections at the transactional level. We note that in a real-world deploy-
ment such network leakage may be considered tolerable — our analysis would apply directly
to such setting as well, exhibiting the unavoidable concession that the adversary may break
privacy via traffic analysis.

Throughout this section we use the notation of Sec. Each maintainer M has its own
ledger L for storing registration and transaction information. In the Currency Issuance and
Payment protocols of the construction below, the sender (Us or B) and receiver (U or U,)
separately send their transaction information Tl to all maintainers M. However, a plausible
alternative communication pattern could have the sender sending its transaction information
Tl to the receiver and then the receiver sending both the sender’s Tl and its own Tl to M.
The public key of threshold encryption, the ciphertexts and tracing tags all are from G (see
, and we use Bilinear maps for threshold blind signature (see and .

Initialization. The key generation algorithm takes the security parameter as input and
generates the secret key sk and public key pk for the caller of algorithm as outputs. Partic-
ipants of the network independently call the key generation algorithm for each underlying
cryptographic scheme to generate their keys (see Appendix [Alfor key generation algorithms
and see Section for the notations). The public keys of all parties are maintained in a
public-key directory and are assumed to be accessible on demand by calling Fxr with input
(RetrieveKey,sid, P) for party P.

User Registration. Maintainers M enroll a user U in the CBDC system by creating a sig-
nature on the user’s initial account. Afterwards, U uses the signature to create transactions.
For registration, U with a pair of public-secret key (pky,sky) and a secret key A (used in
tag generation) engages in a threshold blind signature TBS protocol with M where U proves
honest creation of its initial account to M. The output of this protocol is a signed account
om for U (needed for its first transaction) and the user record UR saved in the ledger £
of each maintainer M (required for additional investigation during the Auditing protocol).
Every user’s account consists of a tuple of field elements acc = (B, S, R, sky, a”,a). During
registration, U sets B, S, R and z to 0.

Upon receiving (GenAcc,sid) (from Z), U who is initially in the Idle state initiates the
User Registration protocol, see Fig. 2] to get the account signed by M.

U generates its registration information Rl; = (acc%7 aj,rj,comy, pky, ) as follows:
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I Registration Information RI; = (acc'l;.ui,‘ 7, comyy, pky. :r)
1 INIZK (Blinded account, share of tracing tag’s secret key, randomness, e
T commitment on tracing tag’s secret key, public key, and NIZK proof). " -
\ S Sybil-resilient user record
(%, W) o -7:B : UR = (aj,r;,compy, U)
™ ]'—éc: : is saved in ledgers that will be used
ae H 5 in the Auditing protocol.
]:ac: K
User B Ci
Maintainers’ blind signature shares o; i B
Maintainers’ consolidated-unblinded on user’s account. —1
signature Oy on user’s initial account. 9 -
e Commercial Banks and Financial Institutions

Fig. 2. User Registration Protocol

1. (acc®,- {0, }5_)) « PrepareBIindSign(acc,~)and calls {a;}52, & SSH.Share?#(a) to

secret share A and computes com; = g% - "7 for r; & 75 1t sets comy = {com; }]Dzl.
2. Calls Fnizx with input (Prove,sid, x,w), and receives (Proof,sid, 7) where 7 is a NIZK
proof of knowledge for statement x = (acc™, comy, pkyy) and witness w = (acc {a; }] 1
Ibaces Ffcom) We denote the randomness used to create the blinded account acc® and the
commitment comy; by rpacc and reom, respectively and define the relation R(x,w) of NIZK
as follows (for formal definition of the relation and the associated Sigma protocol see
59):
(a) The secret key sky in the blinded account acc™ is the secret key associated with
public key pky.
(b) The secret key A in acc® is the same as the secret key that can be reconstructed
from the shares {aj} _, committed in comyy.

(c) acc® is generated such that B = S = R = z = 0 holds.
(d) The user U knows the randomness rpaec and reom.

3. Calls Fgc with (Broadcast,sid, comy), and then calls (Send, sid, M;, Rl;) to the secure
channel Fg, for j =1,...,D. Spemﬁcally, U calls Fg, with the 1nput (Send sid, Mg, RI)
(1<k<D-1)and Walts for Fg, to send back (Contlnue,5|d) then U proceeds by
calling F¢& with the input (Send, sid, Mgt1, Rlg41).

Each maintainer (M;):

1. Generates pairs of messages. Each pair contains the received message from Fgc and
where both messages have the same identifier U of the user. In other words, it receives
(Broadcasted sid, U’, comy) from Fgc and (Received,sid, U’, Rl;) from the secure chan-

nel LU = U M; generates a pair of messages containing the received messages
from ch and Else waits to receive such messages.

2. If comy recewed from ch is not equal to comy included in RIl; received from Fg,
aborts.

3. Else, ignores the message if at least one of the following conditions holds:
(a) There already exists a user record UR" in £; where U’ = U.
(b) Upon calling Fxg with (RetrieveKey,sid,U), it receives (KeyRetrieved, sid, U, pk’)
such that pky # pk'.
(c¢) Upon calling Fyizk with (Verify,sid,x, ), it receives (Verification,sid,0).
(d) Given (a],r]) received from Fg, included in Rl;, it computes g% - h'"3 which is not
equal to com; for com; € comy.

4 Given acc, it calls PrepareBlindSign algorithm of the threshold blind signature scheme TBS to
obtain a blinded account acc®. {o,}8_; are random field elements. Here, as explained in the
[beginning of this section| in contrast to the original PrepareBlindSign algorithm of Coconut the
algorithm does not create a proof. All necessary ZK proofs are included in .
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Central Bank e
Tlg =
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Fig. 3. Currency Issuance Protocol

(e) Know Your Customer (KYC) guidelines for U is not verified.

4. Else, the user record: UR = (a;, r;, comy, U) is saved in £}, U}B + BlindSign(sk;, -, -, acc%)
calls authenticated channel F&f with input (Send, sid, U, Uj%), and outputs (AccGened, sid, U)
(to Z).

The user U:

1. Receives (Received, sid, Mj,cr;-B) for different j from the authenticated channel Fg.
2. 05 Unblind({oT}?:1 ,U]%)HO'M — TBS.Agg({Uj}?=1 7pk)aund outputs (AccGened, sid)
(to Z).

Currency Issuance. Upon receiving (Iss,sid, U, v) (from Z), B initiates Currency Issuance
protocol as shown in Fig. [3]

To issue a digital currency worth of v for U, first of all, B sends v to U using the secure-
receiver anonymous channel F&? with input (Send, sid, U, v) so that U receives (Received,sid, B, v).
Upon receiving (AcceptIss,sid,v) (from Z), if U is in Idle state, it sends the fresh random-
ness p of ¢ to B using the secure-sender anonymous channel F&? with input (Send, sid, B, p)ﬁ
1 is fresh ElGamal threshold encryption of U’s public key pky and g°.

U waits for the message (Continue,sid) from F&? and after receiving it, U sends its
transaction information Tly to M which is of the form: Tly = (3, acc™®, of" T 7). The

components of Tly is computed by U who does the following;:

1. Computes threshold ElGamal encryption as follows setting its public key pky and g* as
plainteXtS: w = (¢17 QZ}Za 1/)3) = (gpv pk’l),M : pkU7 pkg,M : gv)

2. Computes acc™® and aﬁﬂnd. Similar to acc® at User Registration protocol, to ob-
tain blind signature shares of M on U’s new account which is as follows: acc™"
(Brew, Snew RreW sky, a*tla) = (B + v, 8% RO 4 v sky,a” - a,a), U should prove
that it has a valid signature oy on its previous account acc and request a new signature
on its new account acc"®V.

® Signs associated information of acc® using the BlindSign algorithm of TBS scheme to obtain blind
signature share o.

5 Unblinds at least « different signature shares {o; }j—, using the Unblind algorithm of the TBS
scheme.

7 Aggregates unblinded signature shares using the TBS.Agg algorithm of the TBS scheme to form
one consolidated signature op. pk is Coconut’s public key defined in the Appendix

8 Upon receiving (AcceptIss,sid,v) (from Z), if U is in one of the Sending or Receiving state, U
ignores the message.
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new,B new

acc is computed for U’s new account acc™" using PrepareBlindSign algorithm and

JI';H“d is computed for U’s previous account acc (for which it has consolidated signature

opm) using the ProveSig algorithm of the TBS scheme.

3. Computes T = g“erl that is a tag used for compelling users to use their most updated
accounts in which z is an incrementing value per transaction. As we will see, same value
is used for tracing the user when it is necessary.

4. Calls Fnizk with input (Prove,sid, x,w), and obtains (Proof,sid, 7) from it in which 7
is a NIZK proof for the statement x = (1, acc"™® ¢f" T) We denote the randomness
used to create acc“e"‘”%,of\sﬂ”d and threshold encryption ¢ by r,. The witness of 7 is
w = (acc, rreg, v) for the following relation R(x,w) (for formal definition of the relation
and the associated Sigma protocol see [2e|in the subsection :

(a) The secret key sky used in acc"™® is the secret key associated with public key pky
in the threshold encryption ¢ generated under the public key of maintainers pky .

(b) T is well-formed, the exponent of g is the fifth element in acc"".

(c) a&”d is re-randomization of oy which is a signature generated by aggregating «
different valid signature shares of maintainers on acc.

(d) acc"™® is generated considering acc and v in . Hence, B"W = B 4 y Snew —
Gold Rprew = Rl 4 g skif" = sky,a*t! = a® - @ and a" = a hold for acc™".
Additionally, B"" < Bpax, and R"™" < Rpax hold?]

(e) U knows the randomness freg.

5. Calls the sender anonymous channel F¢&, with input (Send, sid, M;, Tly) for j =1,...,D.
Specifically, U calls F& with the input (Send,sid, M, Tly) (1 < k < D — 1) and waits
for functionality to send back (Continue,sid), then U proceeds by calling F& with the
input (Send,sid, Mgy, Tly).

Upon receiving (Received,sid, U, p) from the secure-sender anonymous channel 7&?, B also
sends its transaction information Tlg = 1) to M. The central bank B calls the authenticated
channel F& with input (Send,sid,M;, Tlg) for j = 1,...,D. Specifically, B calls F& with
the input (Send, sid, My, Tlg) (1 < k < D—1) and waits for F& to send back (Continue, sid)
then B proceeds by calling F& with the input (Send, sid, M1, Tlg).

Each maintainer (M;):

1. Receives (Received,sid, Tly, mid) from the sender anonymous channel F& and parses
Tly as (¢, acc"™® gRrd T ) (resp. receives (Received,sid, B, Tlg) from the authenti-
cated channel Fg and parses Tlg as ¢).

2. Ignores Tly if at least one of the following conditions holds:

(a) There already exists a transaction identifier ¢/, (for an issuance transaction or an
aborted transaction) in its ledger £; where T' = T or ¢/ = 9 (the latter only applies
for ¢/, of issuance transaction).

(b) There already exists a transaction identifier ¢/, (for a payment transaction) in £;
where T. =T or T, =T.

(¢) Upon calling Fnizk with (Verify,sid,x,m), it receives (Verification,sid,0).

(d) Upon calling VerifySig, it receives 0.

3. Else, records Tly (resp. Tlg) in £; with mid, and upon receiving Tlg (resp. Tly that
passes all the checks) that has 1)’ value where ¢’ = 1, it saves a sender-receiver pai
(T|B7T|U) in ,Cj.

4. Saves transaction identifier tiy = (¢, T) in L;, O’;ew7% < BlindSign(skj, -, -, acc"""®),
calls the sender anonymous channel & with input (Send, sid, mid, a;ew’%), and outputs

(Issued,sid, tiq) (to 2).

9 Different from Payment protocol in which transferred value is upper bounded, in this protocol,
there is no upper bound on value of transaction v issued by B. However, as addressed before, it
is straightforward to add such a constraint if desired.

10 Note that it does not matter which transaction information Tly or Tlg is received by M; first.
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The user U:

L. Receives (Received,sid, M, 07" 2

sa
Ch*

for different j from the sender anonymous channel

2. oneW Unblind({o,}S_,, o™ sB) i < TBS.Agg({o7°"}%_,, pk), and outputs (Issued,sid, v)

(to Z).

Payment. To make a payment, upon receiving (GenTnxSnd, sid, U,, v) (from Z), if Uy is in
Idle state, it initiates the Payment protocol as shown in Fig. ] by sending a fresh randomness
ps of ¥ and the value of transaction v to the receiver U, via fully anonymous channel
with input (Send, sid, U, (ps, v EQ/JS is a fresh ElGamal threshold encryption of Uy’s pubhc
key pk, and g".

On receiving (GenTnxRcv,sid, Us,v) (from Z), if U, is in Idle state, it sends back a
fresh randomness p, used in ¥, to U, using the fully anonymous channel F¢ with input
(Send, sid, Us, p) er is El1Gamal threshold encryption of U,.’s public key pk,.. Furthermore,
U, and U, generate their transaction information. The transaction information Tl of U, is
of the form: Tl, = (s, Yy, 75(¢y), acct® P 5rl]\§jﬂ7T8)' The components of Tl is computed
by Us who does the following:

1. Computes threshold ElGamal encryptions ¢, = (5.1, ¥s,2, ¥s,3) = (g°*, pk -pks, pk
g9") and ¢, = (r,1,%r2) = (977, PKYy - PK,.)

2. Computes acc?®:® 5’1‘\?17 and Tg smular to the Currency Issuance protocol where the
new account of US is as follows: acc™® = (BleW, Snew Rew ok q%F! a,) = (B —

v, 8% v, ROM sk, a%s - ag, ay)
3. Calls Fsok on input (Sign,sid,,,xs,ws) and receives (Signature,sid, ;,xs,05(1;))
from it in which 75(¢),) is U4’s signature of knowledge on v, that also binds the message
1, to the proof so that it proves knowledge of w, satisfying the relation R(xs, ws) for the

statement x, = (15, acc?®": %, E’f\j, Ts) and the message of signature ..
We denote the set of all random values acc?®:® SRR?M and s by rs. The witness of

(1) is wg = (accy, rg,v) for the following relatlon R(x,, ws) (for formal definition of the

relation and the associated Sigma protocol see |11 m in the subsection

(a) The secret key sk, used in acc?"® is the secret key associated w1th public key pk,
in the threshold encryption 5 generated under the public key of maintainers pky .

1 Upon receiving (GenTnxSnd, sid, U,,, v) (from Z), if Uy is in one of the Sending or Receiving state,
it ignores the message.

2 Upon receiving (GenTnxRev, sid, Us, v) (from Z), if U, is in one of the Sending or Receiving state,
or if v < 0 it ignores the message.
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(b) Ts is well-formed, the exponent of g is the fifth element in accl®¥.

(c) O'er\?l is re-randomization of o4 which is a signature generated by aggregating o
different valid signature shares of maintainers on accs.

(d) acc®® is generated considering acc, and v in 1,. Hence, B = B4 — ¢ Snew —
Sold oy Rrew = ROM sk = sk,,a%t! = a% - a, and a"™ = a, hold for acchnew.
Additionally, 0 < BV, ST < Spax and O < v < Viax hold.

(e) Ug knows the randomness ry.

The transaction information of U,, Tl,. is similar to Tl; with values associated to U,
which is Tl = (Vs, ¥y, 77 (s), accm®: 3 frg,dﬂ, T,). Hence, everything is similar to what has
been described for Uy except that acc™"® is generated considering acc, (for which user

reveals JR?\?I) and v in ¢ 3 (U, gets to know p,). The new account of the receiver is acc]®V =

(B;‘e‘”7Sﬂew,RﬂeW,skr,af”‘l ar) = (B + v, 8% RO 4 v, sk,,a" - a,,a,) Hence, B =
BoM 4y, Snew = Gold prew — Rold 4 ¢ skl = skr7 af”‘l = a® - a, and a?® = a, hold for
cc™™ . Additionally, B'® < Bpay and R™ < Ry, hold 7]

The sender U (resp. receiver U,.):

Calls the sender anonymous channel F& with input (Send, sid, M;, Tl,) (resp. (Send, sid, M,
Tl,)) for j = 1,...,D. Specifically, U, (resp. U,) calls F& with the input (Send, sid, M,
Tls) (resp. (Send,sid, My, Tl,.)) (1 < k < D —1) and Walts for the channel to send back
(Continue,sid), then Uy (resp. U,.) proceeds by calling F& with the input (Send, sid, Mg41,
Tly) (resp. (Send,sid, Mgy, Tl,.)). Note that, U, after recelvmg (Received,sid, U, p,) from

fa sends its Tls to M. U, waits for the message (Continue,sid) from Ff, and then sends
Tl to M.

Each maintainer (M;):

1. Receives (Received,sid, Tls, mids) (resp. (Received, sid, Tl,, mid,)) from the sender anony-

mous channel F& and parses Tls as (Y5, ¥y, 75 (1), accie:® | QR’I‘@I, Ts) (resp. parses Tl,

as (s, Yr, 07 (15 ), acc)®® o R0, T,0)).

2. Ignores Tl (resp. Tl,.) if at least one of the following conditions holds:

(a) There already exists a transaction identifier t/; (for an issuance transaction or an
aborted transaction) in its ledger £; where T = T, (resp. T' =T,).

(b) There already exists a transaction identifier ¢/, (for a payment transaction) in £;
where T, =T, or T, =T, (resp. T, =T, or T, =T,).

(c) Upon calling Fsok with (Verify,sid, v, x5, 75 (1)) (vesp. (Verify,sid, ¢, x,, 07 (¢5))),
it receives (Verified,sid, ¥, xs,05(¢,),0) (resp. (Verified,sid, 1, x,, 77 (1s),0)).

(d) Upon calling VerifySig, it receives 0.

3. Else, records Tl (resp. Tl,.) with mid, (resp. mid,) in £;, and upon receiving a trans-
action information (which has not been ignored w.r.t. the conditions above) that has
(%, 1)) value where (¢, 9)) = (s, %), it saves a sender-receiver pair (Tlg, Tl,.) in £;.

4. Saves transaction identifier tiq = (¢s, ¥r, Ts, T,) in £;, and signs associated information
of acc"™® and acc™® using BlindSign algorithm to obtain blind signature shares

new ‘B new, B

;
os;  ando,

5. Calls the sender anonymous channel &2 with input (Send, sid, mids, 023-'\"%) and (Send, sid,
mldT,J"eW%) Outputs (TnxDone, sid, t;4) (to Z).

that belong to U, and U, respectively.

The sender Uy (resp. receiver U,.):

1. Receives (Received, Sid,Mj,JSZW’%) (resp. (Received, sid,Mj,a:fj‘.N"(B)) for different j

from the sender anonymous channel

2. 0%%" < Unblind({o;, 6 o™ %) (resp g"e]W < Unblind({o, - }¢_;,0 :ej‘f\’,%))
3. oggr < TBS. Agg({anew G=1 pk) (resp. 0.9 < TBS. Agg({anew %_,,Pk)). Outputs (TnxDone,

j=1>P
Sld Ur,v) (to 2) (resp U, outputs (TnxDone,sid, Uy, v)).

13 Regulatory compliance v < Vi has already been considered in Tls.
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Abort Transaction. In the Currency Issuance and Payment protocols it can be the case
that a user’s specific transaction is pending which could mean the transaction has passed the
checks maintainers do. However, sufficiently enough maintainers have not received a valid
Tl of user’s counterparty so far. As a result, a pair of sender-receiver has not been generated
on sufficiently enough maintainers’ sideﬂ which implies that the user has not received «
valid signature shares on its new account so far.

Upon receiving environment’s instruction (AbrTnx,sid) for aborting the transaction, if
the user is not in the state of Receiving or Sending, ignores the message. Otherwise, the user
acts as follows.

U sends an abort request AR to M which is of the form AR = (acc”®, ol T, ) in which
acc" = (B, S", R", sky,a**!,a) = (B4, S ROl sky,a® - a,a) is a refreshed account of the
user and acc”® is a blinded version of it. T = g‘lerl is the most recent tag used in the user’s
most recent transaction. 7 is a NIZK proof of knowledge. Specifically, the user U acts as
follows:

1. Computes acc"® and ofM. acc”® is computed for U’s refreshed account acc” using
Rnd

PrepareBlindSign algorithm and o is computed for U’s previous account acc (for which
it has consolidated signature oy) using the ProveSig algorithm of the TBS scheme.

2. Calls Fnizk with input (Prove,sid, x,w), and obtains (Proof,sid, 7) from it in which =
is a NIZK proof for the statement x = (acc™®, 0" T). We denote the randomness used
to create acc”® and U&"d by rapr- The witness of 7 is w = (acc, rapr) for the following
relation R(x,w) (for formal definition of the relation and the associated Sigma protocol
see [5.5):

(a) T is well-formed, the exponent of g is the fifth element in acc’.

(b) ofrd is re-randomization of oy which is a signature generated by aggregating «
different valid signature shares of maintainers on acc.

(c) acc® is generated considering acc. Hence, B" = B4 S" = §od Rr = Rold ski} =
sky,a®! = a? . q and o' = a hold for acc”.

(d) U knows the randomness r,p,.

3. Calls the sender anonymous channel F& with input (Send,sid, M;, AR) and waits for
channel to send back (Continue,sid, mid;) for j =1,...,D.

Each maintainer M;:

1. Receives (Received,sid, AR, mid) from the sender anonymous channel F& and parses

AR as (acc”®,oRnd T 7).
2. Ignores AR if at least one of the following conditions holds:
(a) There already exists a transaction identifier ¢/, (for an aborted transaction: t, =
(Aborted, T')) in its ledger £; where T' =T.
(b) Upon calling Fnizk with (Verify,sid,x,7), it receives (Verification,sid,0).
(¢) Upon calling VerifySig, it receives 0.
(d) There is no recorded sender-receiver (Tlg, Tl,.) pair with T" € Tl or T’ € Tl,. such
that T =T.
3. Else, sends (Tlg, Tl,, mids, mid,) to other maintainers{ﬂ by calling the authenticated
channel 7@ with the input (Send, sid, M;, (Tls, Tl,, mids, mid,.)) fori =1,...,D A i # j.

Each maintainer M;:
1. Receives (Received,sid, M;, (Tlg, Tl,., mids, mid,.)) sent by M;.

14 As mentioned earlier (e.g., in the payment protocol), the sender sends transaction information
to the maintainers, and the receiver does the same. The maintainers then verify the information,
and if everything is correct, they locally generate a sender-receiver pair associated with one
transaction on their side.

15 (mids, mid,) have already been recorded—see previous protocol.
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2. Verifies (Tls, Tl,.) by calling Fnizk and VerifySig and ignores message on failurﬂ Oth-
erwise, records (Received,sid, M;, (Tls, Tl., mid,, mid,.)) and proceeds E .

3. Does not sign any account in any transaction that contains tag T’ where T' = T, € Tl,
or =T, €Tl.or T =T € Tly until the decision about (Tlg, Tl,.) is made via the
output of asynchronous Byzantine Agreement F,ga described in the following.

4. Checks if there already exists an entry (Tl,, Tl,) recorded in ledger £; where at least
one of the transaction information in the entry is different from Tls or Tl,., and at least
one of the tags used in (Tl., Tl,) equals one of the tags used in (Tls, Tl,.). If so, sends
(Tl,, Tly, mid,, mid,,) to other maintainers by calling the authenticated channel F&r with
the input (Send,sid, M;, (Tl., Tl,, mid., mid,,)) for j =1,...,D A j # i[5

5. Else, checks if there already exists (Tl,, Tl,.) recorded. If exists, sends (Tl, T, mid’, mid;)lﬂ
to other maintainers by calling the authenticated channel Fg with the input (Send, sid, M;,
(Tlg, T, mid), mid.)) for j=1,...,D A j #i.

6. Else, signs (acc?™® acc™®) in (Tl Tl,) and records them in L£; together with the
associated tiq. Sends (Tlg, Tl,.) to other maintainers by calling the authenticated channel

& with the input (Send, sid, M;, (Tl, Tl,,-,-)) for j=1,...,D A j #1i.

Each maintainer:

1. Calls asynchronous Byzantine Agreement F,ga with input (Agree.[(Tls, Tl,.).(mids, mid,)], sid, d;).
The value of d; is set to 1 if M; agrees to sign —or already has signed— (accmW:B accnew.?)
in (Tl,, Tl,.). Else, d; is set to 0.
2. The output of F,gpa is (Agreed.[(Tls, Tl,.).(mids, mid,.)], sid, Q).
3. Q=1
(a) Each maintainer:
i. Who have signed accounts in (T, Tl,), removes (Tl,, Tl,) and the associated
7 from their ledgers.
ii. Signs (acc®® accre"-®) (if they have not already signed), and sends their signa-
ture shares back to users using (midy, mid,.) via calling F&,, and records (Tl,, Tl)
together with its associated 3}.
ili. Outputs (TnxDone,sid, t3}) to Z.
(b) The user Uy (resp. receiver U,.):
i. Receives (Received,sid, Mk,ogzv’%) (resp. (Received,sid, Mk,aﬂj‘:’%)) for dif-
ferent k£ from the sender anonymous channel F&,.
ii. Similar to payment, Ug (resp. U,.) unblinds and aggregates the received signa-
tures.
iii. Outputs (TnxDone,sid,U,.,v) (to Z) (resp. U, outputs (TnxDone,sid, Uy, v)).
4. Else (Q = 0), each maintainer:
(a) Who have signed (acc™® acc™"®) in (Tl,, Tl,) and hence recorded (Tl,,Tl,.),
remove that together with associated t].
(b) Verifies AR by calling Fnizx and VerifySig. Ignores if it does not verify.

6 M; can be identified as malicious. M; can submit the signature of M; as proof of maliciousness
to all other maintainers. Formally identifying malicious maintainers is out of the scope of this
paper.

If there already exists an entry recorded of the form (Received,sid,M;, (Tl., Tly,-,-)) where at
least one of the transaction information in the entry is different from Tls or Tl,., and at least one
of the tags used in (Tl,, Tly) equals one of the tags used in (Tls, Tl,); identifies M; as malicious.
M; can submit the signatures of M; as proof of maliciousness to all other maintainers. Also, the
tuple (Tl., Tly), and (Tls, Tl.) serve as proof of cheating by transaction counterparty (whoever
has engaged in both transactions as an honest user should finalize a transaction and then engage
in another). Formally identifying malicious users is out of the scope of this paper.

The tuple (Tl;, Tly), and (Tls, Tl;) serve as proof of cheating by transaction counterparty (who-
ever has engaged in both transactions as an honest user should finalize a transaction and then
engage in another).

mid’, and mid,. have already been recorded-see payment protocol.
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Fig. 5. Privacy Revocation Protocol

(c) Else, calls asynchronous Byzantine Agreement F,ga with input (Agree.[AR.mid], sid, d;).
The value of d; is set to 1 if M; signs acc”®. Else, d; is set to 0.
(d) The output of Fapa is (Agree.[AR.mid],sid, Q").
() Q' =
i. Each maintainer:
A. Saves the aborted transaction identifier in its ledger which is of the form
tia = (Aborted, T).
B. (e.g., M;) Signs the refreshed-blinded account of the user acc"® to obtain

r7
95
C. Calls the sender anonymous channel F& with input (Send, sid, mid, O’;’%).
D. Outputs (TnxAborted,sid, tiq) (to Z).
ii. The user U:
A. Receives (Received,sid, M, o;’%) for different j from the sender anonymous
channel
B. Similar to payment, U unblinds and aggregates the received signatures. Out-
puts (TnxAborted,sid) (to Z).

(f) Else, each maintainer ignores.

Auditing. For achieving auditability, we make use of trust dispersal, cf. [I]. Users trust
several authorities independently serving in different roles so that no single authority has
unlimited power or authority over any user. Hence, for privacy revocation and user tracing,
we also take advantage of threshold cryptography. For executing any type of auditing the
participation of at least 8 = ¢ + 1 maintainers is required where ¢ is the maximum number
of maintainer that can be corrupted by the adversary. As we have set the threshold of TBS
scheme to a = D — t, always there exists at least D — 2¢ honest maintainers that have
the transaction identifier tiy of a (finalized) transaction saved in their ledgers. This protocol
parses as two sub-protocols Privacy Revocation and Tracing which are as follows.

D Privacy Revocation: Given a privacy-preserved payment made by a specific sender-
recetver pair, the audit committee revokes the privacy of the transaction by decrypting
the ciphertexts and identifying transaction participants and value of the transaction. Upon
receiving a message (RvkAnm, sid, ¢/,) (from Z) the j-th maintainer M; does the following as
shown in Fig. [5}

1. Finds the associated (¢s, 1)) saved in its ledgeI. /.3 for the glven t ', and computes

its decryption shares that are ¢s,1 and ’(/J5k2 7 for 1, and wr,l for 9., and calls Fyizk
with input (Prove,sid, x;,w;), and obtams (Proof7 sid, 7;) from it in which 7; is a NIZK

20 (For currency issuance transaction, given the fact that the sender is B, the cryptographic in-
formation saved for auditing only contains . However, in the following, we describe the steps
of Privacy Revocation protocol for a payment transaction and currency issuance transaction is
similar.



24 Amirreza Sarencheh, Aggelos Kiayias, Markulf Kohlweiss

o c 2]

@ ............. U, &d UR = (aj, r;, comy, U)
] e ]
Identifier of a N 'I/ Associated user record.
: suspicious user.
9 / : PEReDi Mamtalners ______________________ g%
]:NIZKv ]:c i

Tracing share.

Commercial Banks and Financial Institutions

Fig. 6. Tracing Protocol

proof for the statement x; = (¥5.1,%,, 1,1/15k1 J,q/zzkfj, ska, 17) The witness of 7; is w; =

51J

(sk1,j,ska ;) for the following relation R(x;,w;): log, pkl,j = logy, , ¥g 17, log, pky; =

sko j Sklvj

log,, . Y17, and log, pky ; = log,, | v, hold. For the associated Sigma protocol see
Section 5.5 '

2. Calls the authenticated channel F@ with the input (Send,sid,M;, (x;,7;)) for ¢ =
,D A i # j, and considering the equations pk, = 1,2/ H]GI wSk“A“,g” =

ws 3/H]611/J5k2])\2]7 = wrg/Hjejwshj)‘“ such that |I| = 8 and X is Lagrange
coefficient, upon obtalmng B valid decryption shares from F& (sent by other maintain-
ers), computes pkg, g, and pk,. Validity of shares is checked by calling Fyzk.

3. Calls Fkgr with (RetrievelID,sid, pk,) and (RetrievelID,sid, pk,) to retrieve unique iden-
tifiers of users by receiving (IDRetrieved,sid, Uy, pk,) and (IDRetrieved,sid, U, pk,)
from Fkr. Computes v from ¢g*. Outputs (AnmRevoked, sid, t;4, Us, U,., v) (to 2).

Note that to have an efficient zero-knowledge and signature of knowledge proofs the user
sets g¥ as one of the plaintexts in 1. One of the system’s regulatory compliance is having a
limit on transaction value v < Vi, which makes extracting v from ¢v efficient for M in this
sub-protocol.

@ Tracing: Given a suspicious user’s unique identifier, the audit committee traces all
the transactions made by that user. First of all, they find user’s record generated in User
Registration protocol. Using secret shares of A, maintainers compute all tracing tags of the
user without revealing A. We will see that to achieve simulatability A should not be revealed.
The maintainers mutually compute tracing tags such that the last computation results in a
tag that does not exist in their ledgers. In this way, tracing authorities know the most recent
transaction of U. As described in Currency Issuance and Payment protocols, all transactions
contain tracing tag values of the form g%  in which A is user’s (tracing tag) secret key and x
is its transaction counter (note that for aborted transactions the user also increments x by
one). The threshold for TBS is « which results the fact that always there exists at least
honest maintainers who have t;4 of a specific transaction saved in their ledgers. However, the
number of honest maintainers who have the whole tjq of all transactions of a specific user is
not 3 (we do not use any agreement in the main body of payment). Hence, we have to make
sure that at each step of threshold tag computation all maintainers are able to compute
the tag T and afterwards check their ledgers to see if such a tag has already existed or not.
They do so, by sending their next tag-computation shares in a provable way to others so
that having [ shares, the next tag is computed. This process is done up to the point that
maintainers do not see the computed tag T in their ledgers so that there is no § shares for
computing the next tag.

Upon receiving a message (Trace,sid,U;) the j-th maintainer M; does the following as
shown in Fig. [6}
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1. Finds the associated user record UR = (a;,r;, comp, U) savedlﬂ in £;, and proves that
the share contributed by itself to the threshold tag computation is consistent with j-
th commitment com; € comy (broadcasted at User Registration protocol to M). More
specifically, for the witness @; = (a;,r;) and a given group element § = g where initially
e < 0 and the statement X; = (com;, %, §) it calls Fnizx with input (Prove,sid, X;,@;),
and receives (Proof, sid, 7;) from Fnizk. Verification of 7; outputs (Verification,sid, 1)
if R(X;,w;) (which is as follows) holds: com; is the commitment to the same a; as what
is in the maintainer’s share ¢%/. For the relation and the associated Sigma protocol see

Sec. B8

2. Calls the authenticated channel Fg with the input (Send,sid,M;, (%X;,7;)) for i =
1,...,D A i # j, and considering the equation ¢* = Hjel(gaj)Hiel,'i#j(z/(l_])) where
|[I| =B and [];c; #j(i/(i —J)) is a Lagrange coefficient, upon obtaining § valid tracing
shares from F& (sent by other maintainers), computes ¢*. In other words, upon receiving
(Received,sid, M, (X;,7;)) from F& (sent by M;), M; calls Fnizx with (Verify,sid, X;, 7;).
M; ignores the received message from Fgf if Fnizk outputs (Verification,sid,0). Else,
having 8 valid shares, it computes §* based on the equation above.

3. If there already exists a transaction identifier ¢4 (for issuance, payment, or aborted
transaction) in its ledger £; that includes ¢* as a tag T, proceeds from step 2 with
e < e+ 1 and records the associated t;g of computed T and role.

Else, sends a message to all maintainers via calling F& with input (Send, sid, M;, (0, %))
fori=1,...,D A i# j (which means it has not seen ¢* in L;).

4. If it receives D — t messages of the form (Received,sid, M;, (0,§%)) (in which g = ¢%°)
from F&, outputs (recorded) transaction identifiers and corresponding roles (Traced, sid,
{tiy,role” }2_,) (to Z), and aborts. Else, waits for at least ¢t + 1 messages of the form

+1
)

(Received, sid, My, (%;,7;)) (in which ¢ = ¢ ) from & and proceeds from step 2.

For currency issuance transaction tijg only contains tracing tag of receiver and for payment
transaction it contains tracing tags of both sender and receiver. Based on the computed
tracing tags each maintainer knows that the traced user was sender or receiver of the trans-
action for which t4 is retrieved (tag of the sender appears first in t4). Hence, M output
(Traced, sid, {t7}, role” }2_;) (to Z) such that role can be sender or receiver. Note that given
the {¢7,}%_; values, the counterparties of the suspicious user can be revealed using the Pri-
vacy Revocation protocol described above. To make tracing efficient, at User Registration
protocol each user proves that x starts from 1 and then increments by one for each transac-
tion.

In our formal modeling Fcgpc, we capture well-known regulatory compliance rules such
as balance limits and receiving and sending limits specified by several central banks. To
address more general regulations, users can bind their unique real-world identities to their
transactions. This allows them to prove different attributes associated with their real-world
identities (without revealing them) in every transaction, thereby addressing general KYC
regulations in a privacy-preserving setting.

For this purpose, Anonymous Credentials [30/3TI23] can be used. However, due to the
importance of efficiency in our setting, a recently introduced anonymous signature scheme
called SyRA signatures [33] can be utilized. SyRA signatures include the unique real-world
identity of the signer and are efficient to generate and verify. This allows users to prove their
adherence to regulations such as AML and KYC in an anonymous manner based on their
real-world identities. Each PEReDi transaction information Tl can be signed using SyRA
signatures while proving attributes about identity. PEReDi maintainers can play the role of
distributed SyRA issuers.

2! For simplicity we ignore the subscript j for U;.
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3.3 On Abort Requests and a Lower Bound on D

Recall in our construction, we neither use Byzantine broadcast nor Byzantine agreement
in the optimistic execution path of a payment. However, in the pessimistic execution path,
handling an abort request AR requires a supermajority of honest maintainers while main-
taining asynchronous operation. In the following, we discuss the upper limit on the number
of maintainers that can be corrupted by the adversary in our asynchronous setting such that
the construction can handle the pessimistic execution path.

To understand the difficulty of handling abort requests, consider a malicious user that
initiates multiple transactions with the same account state. Since the adversary controls the
communication channel between users and maintainers, they can easily create conflicting
views among honest maintainers, causing confusion about which transaction to confirm and
which to discard in case of an abort request AR. For example, a malicious user A, either as
a sender or receiver, can engage in two different transactions with users B and C, generating
two sets of transaction information objects and sending them to maintainers (B and C can
be honest and/or malicious). Consequently, honest maintainers have differing local views
about handling a potential abort request. Some maintainers may record (Tla, Tlg), while
others may record (Tla, Tlc). Below, we argue that with fewer than 5¢ + 1 maintainers, it is
impossible to correctly handle an abort request in an asynchronous setting.

We examine settings with D < 5¢ maintainers. Without loss of generality we focus on
the 5t case. Consider a scenario in which user A has transactions (Tla, Tlg) and (Tla, Tlc).
Suppose (Tla, Tlg) is signed by the majority of honest maintainers (3t) and all malicious
maintainers (t), while (Tla, Tlc) is signed by a minority of honest maintainers (¢) and all
malicious maintainers (). Recall, any agreement (e.g., by running asynchronous interactive
consistency) among the maintainers should rely on messages from D — ¢ = 4¢ maintainers.
Moreover, the adversary can delay a group of ¢ honest maintainers and provide false claims
on behalf of the ¢ malicious maintainers. Consider now the adversary that falsely claims
that they have not signed (Tla, Tlg) by showing their signature on (Tla, Tlc). This leads to
a view for honest maintainers that has 2t votes for (Tla, Tlg) and 2t votes for (Tla, Tlc),
while the transaction containing (Tla, Tlg) is already finalized and the honest maintainers
have to make a decision about the abort request. A symmetric protocol configuration can
be produced by reversing Tlg and Tlc. It follows that the following two configurations are
hard to distinguish for honest maintainers (i) (Tla, Tlg) is finalized and (Tla, Tlc) pending,
and (ii) (Tla, Tlc) is finalized and (Tla, Tlg) pending.

Observe that without privacy, a reasonable decision would be to reject both (Tla, Tlg) and
(Tla, Tl¢c) once each receives 2t votes, provided no account state has been updated as a result
of these transactions. On the other hand, if a user has advanced their account state created
any of those transactions, the maintainers can run a protocol to check the (previous) state,
and finalize the transaction. As a result, the system can accurately update its state because
the malicious user A cannot use an account generated from a transaction if it has already
been decided to reject that transaction. Moreover, the transaction can never be rejected in
the future if at least one transaction counterparty has already used the account created from
the transaction. However, in our fully anonymous setting, where transactions are unlinkable
to each other it is not straightforward how to implement this procedure. Potentially, by
using an MPC protocol, we can solve this issue in a privacy-preserving manner. However,
this implies using MPC for every single submitted transaction and checking the incoming
transaction against the whole state of the system, which would significantly reduce efficiency.
It follows that D > 5t + 1 for any construction that is efficient and privacy-preserving. As
we demonstrate in section [d] choosing D = 5t + 1 is also sufficient to realize Fcgpc in the
asynchronous setting.

3.4 Know Your Transaction for Large Payments

Enforcing limits on transaction value and sum of all sent values are two general regulatory
rules. The maximum allowed values for the former is denoted by V.. and for the latter
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is denoted by Smax. While such limits serve a purpose, a user may want to exceed them
when a large payment is required. Even though we do not include this feature in our main
functionality we describe in this section how to realize it given our construction.

In such cases, regulatory compliance may require proving the source of funds. In such
circumstances, the user can exceed the mentioned thresholds up to the new limits V..
and S),,.- The new limit is computed by adding all values whose sources are proven as
verified sources to the pre-defined general limit value. For instance, assuming the setting
in which the user has accumulated funds during a long period of time and now it wants
to spend them at once (e.g., in the process of buying a property) this will result in a
transaction value far exceeding Viax (note we assume Bpayx > Vinax, as otherwise there is
no need for the mechanism of this paragraph). The user saves the relevant information of
transactions for which it will make a claim. The user points to transaction identifiers of
associated transactions in which it has received money during a period of time from an
acceptable source. The user can make such a claim to M who will facilitate the excess
thresholds.

We denote the sum of all values for which the user makes a claim by J, then following
the above explanation V! . = Vyax + 6 and S),,.. = Smax + 0 hold. The user points to the
relevant transaction identifier of [ transactions {¢7;}\_; that contain associated threshold
encryptions { (s, 1,)"}L_;. Given the fact that the user knows the randomness of threshold
encryptions it provides the proof of knowledge and proves that sum of all values in threshold
encryptions equals to §. Moreover, using the relevant random values it convinces M regarding
the sender of transactions. More generally, M can recognize a third party auditor who will
verify the user’s claim and in this case the user needs only to present a certification of this
transaction by that auditor.

4 PEReDi Security

Our main theorem is given below.

Theorem 1. Assuming that Pedersen commitments are perfectly hiding and computa-
tionally binding, Pointcheval-Sanders signatures are EUF-CMA secure in the random oracle
model, ElGamal encryption is IND-CPA secure, and the d-strong Diffie-Hellman problem is
hard, there exist two polynomials p. and p, such that no PPT environment Z can distin-
guish the real-world execution EXEC 1, ... 4, 2z from the ideal-world execution EXECr o s 2
with advantage better than AdvE" <™ + AdvE'FMA 4 p - Adv!INP-PA 1 p, - AdvPPM in the
{FKR, Fch, FaBA, FBC, FRO, FNIZK, Fsok } -hybrid model with static corruptions in the presence
of arbitrary number of malicious users, up to t malicious maintainers out of D = 4t + 1
total maintainers and a potentially malicious central bank.

We denote the real-world protocol and adversary by IIpgrep; and A respectively. The sim-
ulator S described in a detailed manner in the Appendix makes the view of real-world
execution EXEC7,cnpi,4,2z and ideal-world execution EXECx, . s,z for any PPT environ-
ment Z indistinguishable. Session identifier denoted by sid is chosen by Z. The simulator
S internally runs a version of Ilpgrepi and makes the view of the dummy adversary A in
the ideal world indistinguishable from its view in the real-world. At the inception of the
execution, Z triggers A to corrupt parties with a message (Corrupt,sid, P), where P denotes
a party that can be any entity of the network. S reads these corruption messages and tells
Fcepe which parties are corrupted by sending the message (Corrupt,sid, P), the simula-
tor S also stores the corrupted parties identifiers. S internally emulates the functionalities
FKRs Fch, FaBa, Frnizk, Fec and Fsok. A instructs corrupted parties arbitrarily. S interacts
with Fcgpc on behalf of corrupt parties. In the ideal-world execution EXEC x5,z , honest
(dummy) parties forward their input from Z to Feppc.
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Sequence of games Through a sequence of games, we show that the random variables
EXEC ffperem. 4.2z and EXEC x5,z are statistically close. We denote by Pr[Game'] the prob-
ability that the environment Z outputs 1 in Game'. Each game Game' has its own ]:CBDC
and S°. We start from the most leaky functionality Flgpc and the associated simulator S*
and gradually go toward the main functionality Fcgpc and the simulator S. For the security
analysis, without loss of generality, we set the number of malicious maintainers to equal to
the maximum allowed number of maintainers to be malicious (wherever it is necessary).

Game®: Initially, Fgpc forwards all communication with Z, and the simulator S° cor-
responds to the execution of the real-world protocol EXEC j7,te.i,4,2 -

Gamel: Same as Game? except that Game! checks if A provides two commitments com
and com’ where com = com’ and com € x, and com’ € x’ (with associated proofs =, and 7’
respectively), however, with different committed values.

More specifically, in Game®, Fgpc prohibits S' from submitting any message to Flgpc
on behalf of adversary A who is providing two different messages with the same associated
commitment.

SM who emulates Fyizx extracts witnesses by submitting (Verify,sid,x, 7) and (Verify,
sid, X', 7') to A. S() receives (Witness, sid, w) and (Witness, sid, w’) from A. If with the given
extracted witnesses, the committed values are different, the flag is raised. Therefore, any dif-
ference between Game! and Game® is due to breaking the binding property of the underlying
Pedersen commitment, which enables us to bound the probability that Z distinguishes Game!
from Game® as followd?2]

| Pr[Game!] — Pr[Game?]| < Adv5rd-eom

Game?: Same as Game! except that in Game? we change w-th honest maintainer’s blind
signature share on U’s account to o> which is simulated by S2. To do so, in this game,
S? selects the secret signing key of non-threshold Pointcheval-Sanders signature and then
computes non-threshold signature oy = (h,s). Note that after Game? the simulator S°
for i > 2 never uses the secret signing key of non-threshold signature scheme (as we will
see it receives a non-threshold signature from the challenger of non-threshold signature’s
unforgeability game —see Def. @» in the associated reduction). Also, by selecting the secret
key of malicious maintainers, S? computes partial blind signatures of malicious maintainers
that are o2 for t € C. As a result of having oy and o for ¢ € C the simulator S computes
honest maintainers’ signature shares o> for w € H as follows.

When A initiates the protocol in which it requests a signature on the blinded account
acc®, S? who emulates Fizk in Currency Issuance and Fsok in Payment protocols extracts
the witness of A’s (malicious user’s) message namely acc and the associated randomness
of acc®. Then, having the message acc, S? computes oy. S? selects the secret keys of
malicious maintainerﬂ and computes associated public keys. S? uses Lagrange interpolation
to compute public keys of M,, € H using computed public keys for M; € C and public key
of non-threshold signature. Hence, all public keys are consistent with the public key of non-
threshold signature. First of all, S? computes blind signature shares for YM; € C using
selected sk; = (24, {ys,-}7_,) to obtain o = (h,h® [[?_, com¥"7). As described above, S*
has extracted witness of NIZK or SoK proofs, hence, it knows {o,}?_, Which lets him to
compute unblinded signature shares in the following way: oy = (h,c[{_, 8;77) = (h,s;) in
which s; = h** [[?_, ™%, Then, §? computes unblinded signature shares for vYM, € H
as follows (note that k = 0 as 0 does not exist in the corrupted maintainers’ indexes C).

G = (By ) = (B, sTTuec (b= /) T s, TTucc (w1 (1))
teC

22 As it is straightforward, we refrain from providing a formal proof for this.
23 Note that Z triggers (ideal-word) adversary to corrupt parties with a message (Corrupt,sid, P),
therefore, S? has already known C.
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Having the extracted witness {O.,-}ZZl, the simulator computes blind signature shares for

VM., € H using the computed o, as follows: o = (h,[1_, sw857,).

As a result, in this game we changed w-th honest maintainer’s blind signature share on
U’s account to 0.2 which is simulated by S as described above. Based on Unblind algorithm
which is run by A, the unblinded signature is computed as follows oy, = (h,c[]_; 8,%)

for the C simulated by the simulator as ¢ = []?_, swBy - As aresult, we have oy, = (h, 54)

that passes the verification algorithm e(h, au, [T7_, ~$;) = e(Sw, §) which means that the
following equation holds.
Pr[Game?] = Pr[Game!]

Game3: Same as Game? except that in Game®, Fggpc does not allow S to submit any
message on behalf of adversary A (malicious user) who forges threshold blind signature TBS
scheme to Fggpc. Hence, Game® equals to Game? except the fact that it checks if a flag
is raised or not. If A who is not issued at least 4t + 1 signature shares submits a valid
signature, the flag is raised. Hence, any difference between Game® and Game? is because of
the forgery for threshold blind signature TBS which allows us to bound the probability that
Z distinguishes Game? from Game? as follows.

Associated Reduction (existential unforgeability of signature). If A forges threshold
blind signature TBS used in our construction, it can be used to construct another A’ who
breaks unforgeability property (see Def. @ of non-threshold Pointcheval-Sanders signature
used in threshold blind signature TBS scheme. The partial blind signatures of all honest
maintainers o> for Vw € H can be reconstructed from the partial blind signatures of mali-
cious maintainers that are o> for ¢ € C and the non-threshold signature oy = (h, s) obtained
from the challenger of the existential unforgeability game (different from Game? in which S
selected the secret signing key of non-threshold signature) using the Lagrange interpolation
for the other shares. We omit writing the details as the algorithm is similar to what S? does
in Game? except the fact that A’ obtains the non-threshold signature oy from the challenger.
Hence, given the non-threshold signature, A’ simulates the entire view of A which are partial
signatures that the honest maintainers are contributed which implies that A cannot forge
messages in the threshold setting of our construction unless A forges it in the non-threshold
one. In other words, for Z, Game? is the same as running a threshold signature TBS with
real-world maintainers rather than simulated maintainers by .A’. Hence, if A forges in the
real world, it will forge in this threshold setting and A’ uses this forgery as a forgery for
the non-threshold scheme. As a result, TBS is simulatable that together with unforgeabil-
ity property of non-threshold Pointcheval-Sanders signature makes TBS unforgeable in our
construction’s setting.

Therefore, under the unforgeability property of non-threshold Pointcheval-Sanders sig-

nature the following inequality holds (see Def. [6[ for the definition of AdviUF'CMA):

| Pr[Game®] — Pr[Game?]| < AdvE’FMA

Game”: Same as Game® except that S* computes a&”d for the honest user without know-

ing the account values of the user. In the real world, having the consolidated signature
om = (h,s), oRM is computed as (', s') = (h™,s” h"'") such that & Zy, and 1’ & Ly,.
Assume a random value as 7, set h = ¢"7 by programming the random oracle. Hence, we
have

q
U&nd = (h" ’(H(hrj H comﬂ-f’ﬂ;ff)lj)r h"")

JjeEE T=1

— (g'm'/7gn'r'(w-l-zzzl(7rL7-yT)+7')) ($+Z?r=:]i17d?=//'r)+r):d O'RS]Ind _ (gd'7gdd,)
Also, in the real world in ProveSig algorithm the user U computes x as well which is of the

form:

q
3 x 4 (mryr)+r)=d ~
k=a ] Brgr = gletErmrmain @A tmoy ) n=d, o o

T=1
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S* randomly selects u & Z, and v’ & Zy. Then, sets h' + g*', s + ¢"* and hence sets

oRrd (g“/, g““/). Finally, sets k < gu Computed values pass the verification e(h/, k) =
e(s',g) as we have e(g", %) = e(¢",§). As d = (z + > (mry-) +7) and d' = nr' are

random values, they match the dlstrlbutlon of u and u’ which concludes the fact that

Pr[Game*] = Pr[Game?]

Game®: Same as Game* except that in Game®, S° simulate the decryption shares wSkl o

and ¢Sk2 ¥ (for 1), and wSkl ¥ (for 1), of honest maintainer M,,, w € H, and for s-th and
r-th honest users’ threshold encryptions using the values of a non-threshold ElGamal en-
cryption scheme. In this game, plaintexts of 15 and v, are the same as real-world values (in
Game? for i > 1, we will change plaintexts to dummy values selected by the simulator S?). To
do so, in this game, S° selects the secret decryption keys of non-threshold ElGamal encryp-
tion ski y and sko y (note that from Game® onward simulator does not use ski v and skam
directly as the decryption shares are simulated using a non-threshold scheme. This allows
for reductions to the non-threshold ElGamal IND-CPA security game, see Def. [5| associated
with Game® ). Then, S° computes ¢, = (Vs,1,Vs,2,¥s,3) = (g”S,pkffM . pks,pkngg’”) and
e = (Yr1,¥r2) = (g7, pkp " pk ). The plaintexts of threshold encryptions are retrieved

Ki,j A ki, A ka,j A
as pk, = Yoo/ e von’ ™, = Pra/ e ra? ™ and g = ¥g3/[1e vig" "
Now, S® should simulate honest mamtalners decryption shares such that decrypted values
become pkg, pk, and g respectively that are consistent with (AnmRevoked, sid, tiq, Ug, U,, v)

received from the leakage of Fgpc-

85 computes 15 2/pk, which results in Pk = (gkrm)Ps = wSkl ™ that is used in the
computation of honest maintainers’ shares in the following equation. S® computes w-th
honest maintainer’s decryption share as follows with knowing malicious maintainers shares

YT and Y2 for 4y, and ¢35 for ¢, for Vi € C such that [C| < — 1 =t (note that in
the equation below k #0as0 does not exist in the corrupted maintainers’ indexes C).

YT = (s a/pky ket T g Heee e om0/ (0200

s,1
teC
8% computes ¥y 2/pk, which results in pk’fjM = (gskl,M)p" — 1/Jjﬁl’M then computes wskl w0 ag
follows:
ski,w T1 (k—w)/k sk1,e\T] (w—k)/(t—k)
wr,l = (¢r,2/PkT) kec ~H(1/)T,1 ) keC, k#t
teC
S® computes 15 3/g" which results in pkis, = (gk2)"™ = wjﬁQ'M then computes w5k2 v as
follows:

¢Sk2vw — (¢8,3/gv)l'[kec(k—w)/k . H(wzt(f’t)erc,k;ét(w_k)/(t_k’)

s,1
tec
Fnizk emulation allows S® to provide faked proofs about the contribution of honest main-
tainers which is unconditionally secure. Moreover, changing honest maintainers’ decryption
shares is information theoretically indistinguishable. Moreover, the simulated decryption
shares work in the threshold decryption computation (as shown above), thus, we have the
following equation:
Pr[Game®] = Pr[Game*]

Game®: Same as Game® except that in Game® we change all plaintexts of threshold
encryptions to dummy values selected by S®. Hence, Game® equals to Game® except the
fact that S® computes encryptions for some dummy values as plaintexts (e.g., denoted by
pk:, pky and ¢**) on behalf of an honest user. However, the decryption shares of honest main-
tainers simulated in a way that computation of 452/, ¢Sk1 AL U2/ [Ljer ¢Sk1 AL

and 93/ ngl 1/)5k2 9227 pesult in pks, pk, and ¢” respectively that are consistent with
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(AnmRevoked, sid, tig, Us, U, v) received from Fgpc (rather than dummy values pk}, pk;: and
g*?). We ignore writing the details as it is similar to Game®. Hence, any difference between
Game® and Game® is because of breaking the IND-CPA security of threshold encryption used
in our construction which allows us to bound the probability that Z distinguishes Game®
from Game® as follows.

We define Game = Game® and p. as the upper bound on the number of all ciphertexts
of honest users. Also, lets define Game} as a game similar to Game] except in Game3 we
change the plaintext of first ciphertext from the real-world value to the ideal-world dummy
value. The reduction between Game§ and Game? is similar to the described reduction below
so that any difference between Game3 and Game? is upper bounded by Adv'}P-“A (see Def.
for the definition of Adv'ED‘CPA). Similarly, we change the plaintexts of ciphertexts of i-th
honest user to dummy values and finally we do the same for the last ciphertext of last
honest user such that in Gamegc (which equals to Game®) all ciphertexts are generated from
dummy plaintexts. The reduction between Gamegr1 and Ga mef;c is similar to the described
reduction below so that the any difference between Ga megc_:l and Ga megc is upper bounded
by Ady'l{P-PA,

Associated Reduction Between Game? ; and Game? (IND-CPA security of encryp-
tion). If A distinguishes Game® ; and Game? it can be used to construct another A’ who
breaks IND-CPA security of non-threshold ElGamal encryption used in threshold encryption
scheme. The decryption shares of all honest maintainers wzki” and wzkf” for ¢, and w?fll’“’
for 1, for Yw € H can be reconstructed from the decryption shares of malicious maintain-
ers that are 39" and ¢ for 9, and ¢ for ¢, for V¢ € C and the non-threshold
encryption ¢, and ¢, obtained from the challenger of the IND-CPA security game of non-
threshold encryption using the Lagrange interpolation for the other shares. We omit writing
the details as the algorithm is similar to the described algorithm in Game® except the fact
that A’ obtains the non-threshold encryptions ¢, and ¢, from the challenger of IND-CPA
game. Hence, given the non-threshold ciphertexts, A’ simulates the entire view of A which
are decryption shares that the honest maintainers contribute which implies that A cannot
distinguish Game? ; from Game? unless A distinguishes non-threshold ciphertexts ¢; and
¢, generated by real-world values as plaintexts from ciphertexts generated by ideal-world
dummy values as plaintexts. In other words, for Z, Game? is the same as running a thresh-
old encryption with real-world maintainers rather than simulated maintainers by A’. Hence
if Z distinguishes Game? ; from Game?, A’ uses this to win the non-threshold encryption
scheme’s IND-CPA game. As a result, threshold encryption is simulatable that together with
IND-CPA property of non-threshold encryption scheme makes threshold encryption IND-CPA
secure in our construction’s setting.

Therefore, under IND-CPA property of non-threshold ElGamal encryption scheme the
following inequality holds:

|Pr[Game6] — Pr[Game5]| < pe - Adv!\P-CPA

Game’: Same as Game®, except that for honest maintainer M,, the simulator S” computes
the tracing tag share g% for tracing honest user U without directly knowing the shares a,,
of the tracing key. Here g is a group element computed in each step of the protocol. In this
game tracing tags are the same as real-world values (as we will see in Game/ for i > 1, we
will change these tags to dummy values selected by the simulator S7). 87 knows {g*" }7_,
from the transaction identifiers leaked from Flgpc which are (Traced,sid, {t}, role”}7_))
and computes M,,’s first share as follows (¢ = g):

g“w — (gm)l_[kgc,k#o(k—w)/k . H(g“t)erc,k¢t(w_k)/(t_k)
teC



32 Amirreza Sarencheh, Aggelos Kiayias, Markulf Kohlweiss

Then, given the revealed (7 — 1)-th tracing tag (¢*~—!), w-th honest maintainer’s share for
the next computation is simulated as follows (¢ = g*~-1):

(gZ-r—l)aw — (gzﬂ')nkgcﬁk#()(k_w)/k . H((gz‘rfl)at)nkec,k¢t(w_k)/(t_k)
teC

Changing honest maintainers’ shares is information theoretically indistinguishable and emu-
lating Fnizk (which is unconditionally secure) allows S” to provide faked proofs. As a result,
we have

Pr[Game’] = Pr[Game®]

Game®: Same as Game’ except that in Game® we change the tracing tags of honest users
to the dummy values selected by S®. Hence, Game® equals to Game” except the fact that
S8 computes tracing tags and submits them to ]—'gBDC as part of transaction identifiers in
Currency Issuance and Payment protocols. However, the tracing tag shares of honest main-
tainers simulated in a way that computation of tags result in {g* }”_, that are consistent
with transaction identifiers ¢4 leaked from Fggpc. We ignore writing the details as it is sim-
ilar to Game’. Hence, any difference between Game® and Game’ is because of distinguishing
g*" values from ¢? values which allows us to bound the probability that Z distinguishes
Game® from Game’ as follows.

We define Game/ = Game’ and p,, as the upper bound on the number of all honest users.
Also, lets define Game] as a game similar to Game] except in Game! we change the tracing
tags of first honest user from real-world values to ideal-world dummy values. The reduction
between Game/ and Game] is described below so that any difference between Gamej and
Game] is upper bounded by Adv%®P" (see Def. [2| for the definition of Adv%*®°™). Similarly,
we change the tracing tags of i-th honest user to the dummy values and finally we do the
same for the last honest user such that in Game;u (which equals to Game?®) all tracing tags
are dummy values. The reduction between Game;rl and Game/ is similar to the described
reduction below so that the any difference between Ga me‘7)u_1 and Ga mez,u is upper bounded
by Adv4=PPH.

Associated Reduction Between Game/ ; and Game/ (hardness of d-sDDH). If A dis-
tinguishes Game! ; from Game/ it can be used to construct another A’ who breaks hardness
of d-strong Diffie-Hellman problem. The tracing tag shares of all honest maintainers ¢%»
for Vw € H can be reconstructed from the tracing tag shares of malicious maintainers that
are ¢* for V¢ € C and the tracing tags {g°~}7_, received from the leakage of functionality
using the Lagrange interpolation for the other shares. We omit writing the details as the
algorithm is similar to the described algorithm in Game’. Hence, A’ simulates the entire
view of A which are tracing tag computation shares that the honest maintainers contribute
which implies that A cannot distinguish Game/ ; from Game/ unless A breaks the hardness
of d-strong Diffie-Hellman problem. Hence, if Z distinguishes Game/ ; from Game/, A’ uses
this to win the indistinguishability game of d-strong Diffie-Hellman problem. As a result,
under hardness of d-strong Diffie-Hellman problem the following inequality holds:

]Pr[GameS] — Pr[Game7]| < py - AdvirPPH

As ngDc = Fcapc and S® = S which means Game® corresponds to the ideal-world ex-
ecution EXECf,,. sz, we argue that random variables EXECgpr.0,4,2 and EXECr g0 5,2
are statistically close or, in other worlds, the probability for any PPT environment Z to dis-
tinguish EXEC f7pepp. 4.2 from EXEC £ ooc.s.2 is upper bounded by AdvBmeo™ 4 AdvEUF-MA L
Pe - Advlj‘}'D'CPA + Py - Advi{SDDH that together with the simulator description conclude the
security proof

4.1 Simulation

We describe a simulator S that reproduces the real-world view of 4 and emulate the execu-
tion of honest parties. The simulator internally emulates the functionalities Fxr, Fch, FaBa; FRO,
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Fic, Fnzk and Fsok. To do so, it needs to maintain specific lists associated to each func-
tionality. However, without loss of generality, we assume S internally keeps track of states of
functionalities and omit addressing all these lists explicitly. It also maintains the lists Listyg
for keeping track of registered users and Listy;q for keeping track of transaction identifiers.
S interacts with the dummy adversary A and with the CBDC functionality Fcgpc. Similar
to the functionality Fcgpc and our construction Ilpgrepi, the simulator is described in six
parts: User Registration, Currency Issuance, Payment, Abort Transaction, Privacy Revoca-
tion and Tracing. In this section, we denote the values of user’s old account without the old
superscript e.g., we denote B° by B.

Simulation of User Registration. In all the following cases, S receives (GenAcc,sid, U)
from Fcppc and at the end of the simulation, S sends the message (Ok.GenAcc,sid,U) to
Feppc if the user receives at least D —t valid signature shares from maintainer@ Through-
out the simulation of User Registration S knows the identifier of the user U (regardless of
the fact that U is corrupted or not). We note that in order to keep the functionality as simple
as possible we leave it to the adversary to determine the outcome of the KYC process in the
ideal world. Our construction on the other hand does capture it.

Honest U and at most ¢t malicious maintainers: S initiates User Registration protocol
by emulating the honest user U.

1. Communication from U to M:
(a) Emulating Fkgr, S internally records the pair (U, pky) for a randomly chosen value

as pky-

(b) Simulator on behalf of honest user U is supposed to provide Rl; = (acc%,aj,rj7
comyy, pky, ) to malicious maintainers and associated leakage of channel to adver-
sary A.

(c) Tt does so by computing acc® based on dummy values. It also, selects two values as
a; and r; randomly from Z; per maintainer and computes com; = g*h's. It sets
compy {cdmj}le.

(d) S also stores UR = (a;,7;,M;,U) (per maintainer) in Listy.

(e) S sets x « (acc®, comy, pky). Emulating Fyzk the simulator sends (Prove,sid, x)
to the dummy (internally run) adversary A4 as the leakage of Fnizk-

(f) Upon receiving (Proof,sid, 7) from A, the simulator stores (x,).

(g) Emulating Fgc it sends (Broadcasted, sid, U, comy;) to the dummy A (both as the
leakage of Fgc and the message malicious maintainers receive).

(h) Emulating Fg,, the simulator leaks (Send, sid, (U, M;, |RI;|), mid) to .A. And upon re-
ceiving (0k.Snd, sid, mid) from A, leaks the next leakage (Send, sid, (U, M; 1, |Rl;41]), mid).

(i) Finally, A (malicious maintainer e.g., M;) receives (Received,sid, U, Rl;) from Fg,.

(j) S gives that message to A (who controls M;) upon receiving (0k, sid, mid) from the
dummy A as S has already simulated all information included in Rl;.

2. Communication on maintainers side:

(a) S outputs (RetrieveKey,sid,U,M,) to A as leakage of Fkg.

(b) S has already emulated the honest user and Fyizx by storing (x, 7). Hence, upon
calling Fnizk with (Verify,sid,x,7) via A (malicious maintainer), the simulator
outputs (Verification,sid, 1) to A.

(¢) S keeps track of adversary’s blockage on the message each honest maintainer receives.
As soon as one honest maintainer receives Rl the simulator submits (0k.GenAcc, sid, U)
to Fcepc-

3. Communication from M to U:

24 Doing so makes Fcgpc to update its internally maintained mappings and output (AccGened, sid)
to U and (AccGened,sid, U) to M.
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(a) S needs to simulate the view of A considering the information that is leaked to A
when each maintainer sends back the blind signature share of U’s account.

(b) To do so, S sends (Send, sid, (M;,U, o), mid) to A as leakage of F& in which o5
for w € H is simulated by S and ¢ for ¢ € C is obtained from the A.

(¢) Emulating channel functionality allows S to keep track of active malicious maintain-
ers who participate at generating valid signatures. If at least D — ¢ valid signature
shares are sent by maintainers to the channel functionality the simulator lets func-
tionality output (AccGened,sid) to U.

Malicious U and at most ¢t malicious maintainers: A on behalf of malicious U initiates
User Registration protocol.

1. Communication from U to M:

(a) Once adversary A calls Fgc with (Broadcast,sid,comy) S sends (Broadcasted,
sid, U, comy) to A (both as the leakage of Fgc and the message malicious maintainers
receive).

(b) A calls Fg, that is emulated by S with input (Send, sid, M;, RI;).

(c) S leaks (Send,sid, (U, M, |RI;|), mid) to A as leakage of & . Upon receiving (0k.Snd,
sid, mid) from A, the simulator sends (Continue,sid) to A (malicious U).

(d) S sends (Received,sid, U, RI;) to A (malicious maintainer M;) as the output of Fg
once it receives (0k, sid, mid) from .A.

2. Communication on maintainers side:

(a) S who emulates Fkr checks internally maintained list for Fxgr to see if (U, pky) has
already been saved or not. If not, it ignores RI.

(b) S who emulates Fgc, Fg, and honest maintainers waits to receive a message from
Fic and F, where the message is sent from .A on behalf of one specific U and comy
received from both functionalities is the same.

(¢) Afterwards, S checks whether there is a user record UR saved in Listyy for U. If
there is, it ignores RI.

(d) Given the received (ay,, ) from A, it computes g%~ h™ and ignores if it is not equal
to com,, € comy; for Vw € H.

(e) Else, S checks if (x,7) such that x = (acc™, comyy, pky) is stored.

(f) Otherwise, (to extract the witness) sends (Verify,sid, x,7) to A as leakage of Fnizk.
Upon receiving the answer (Witness, sid, w) from 4, checks (x,w) € R and if so, stores
(x, 7). Else, ignore the message.

(g) S saves UR = (aj,7;,comp, U) in Listyg.

(h) S keeps track of adversary’s blockage on the message each honest maintainer receives.
As soon as one honest maintainer receives Rl the simulator submits (0k.GenAcc, sid, U)
to Fcepe-

3. Communication from M to U:

(a) S sends (Send,sid, (M;, U,O'j%), mid) to A as leakage of communication channel in
which ¢ for w € H is simulated by S (as described in the sequences of games
Sec. 4)) and o for t € C is obtained from the A.

(b) S also sends (Received, sid, M;,07) to A as the message A (malicious user) receives
in the real world once it receives (0Ok, sid, mid) from A.

(¢) Emulating channel functionality allows S to keep track of active malicious main-
tainers who participate at generating valid signatures (S has already extracted the
witness from malicious user’s Rl so that it can check the validity of malicious main-
tainers’ signatures). If at least D — ¢ valid signature shares are received by the user
(note that honest maintainers are emulated by S itself, and S generates signatures
on behalf of the honest maintainers who have received the Rl) the simulator lets
functionality output (AccGened,sid) to U.

Simulation of Currency Issuance.
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Honest U, honest B and at most ¢ malicious maintainers: S receives (Iss,sid, pid)
from Fcppe and initiates Currency Issuance protocol by emulating honest B.

1. Communication from B to U:
(a) In the real-world A sees (Send,sid, (B, |v|), midg) as leakage of F&?. The simulator
S has already known |v| and thus sends the leakage to A.
2. Communication from U to B:
(a) Upon receiving (AcceptIss,sid, pid) from Fcgpce the simulator emulates an honest

user U. We note that if the user has already been traced S receives (AcceptIss,sid, pid, U)

from Fcppc so that it is able to use the same tag in this protocol as it had generated
for the user U who did not have any transactions in the time of executing the Tracing
protocol.

(b) In the real world, A sees (Send,sid, B, |p|, midy) as leakage of F&?. The simulator
has already known |p| and sends the leakage to A.

3. Communication from B and U to M:

(a) Considering U and B’s communications with M, the adversary A respectively sees
(Send, sid, M;, Tly, midy,) as leakage of &2 and (Send, sid, B, M;, Tlg, midg) as leakage
of F&.

(b) Once S receives (0k.Snd, sid, midy;) from A it leaks the next leakage (Send, sid, M, {1,
Tly, midy;) and once it receives (0k.Snd, sid, midg) from A it leaks the next leakage
(Send, sid, B, M, 1, Tlg, midg).

(c) Hence, S is supposed to simulate the view of dummy A with respect to the infor-

mation real-world A sees without knowing the identity of U.
First of all, based on PrepareBlindSign, S selects random values to compute acc
Then, computes a&”d in a way described in Sec.

) new,‘B.
e)
f) Afterwards, S computes a threshold encryption ¢ on dummy values as plaintexts.
)
)

It computes T by randomly selecting z & Z, and let T + g°.
S sets x « (1, acc™® ofnd T). Emulating Fizk, the simulator sends (Prove, sid, x)
to A. The simulator receives (Proof,sid, 7) from A and records (x, ).

(i) S sends (Send,sid, M;, Tly, midy;) and (Send,sid, B,M;, Tlg, midg) to A such that
Tly = (¢, acc”ew’%70§H“d,T, m) and Tlg = ¢ as explained above.

(j) Finally, A (malicious maintainer) receives (Received, sid, Tly, mid{,) and (Received,
sid, B, Tlg) from channel (emulated by S) once dummy A sends (0Ok, sid, midy;) and
(0k, sid, midg) to S respectively.

4. Communication on maintainers side:

(a) S has already emulated the honest user and Fnizk (it has stored (x,7)).

(b) Hence, upon calling Fyizk with (Verify,sid, x, ) via A (malicious maintainer), the
simulator outputs (Verification,sid, 1) to A.

(c¢) As soon as one honest maintainer receives both Tly and Tlg, the simulator submits
(GenTnx, sid, pid, t;4) to Fcapc where tiqg = (¢, T). The values of ¢ and T are simulated
by S as described above.

(d) For each maintainer (either honest or malicious) who generates a valid signature on
user’s account S submits (GenTnx, sid, pid, My) to Fcgpc where My is the identifier
of that maintainer.

5. Communication from M to U:

(a) S sends (Send,sid, I\/Ij,U;ew’%, midy,) to A as leakage of F& in which o7"® for
w € H is simulated by S and o7**® for ¢ € C is obtained from the A (malicious
maintainer).

Malicious U, honest B and at most ¢ malicious maintainers: In this case, S receives
(Iss,sid, pid, U, v) from Fcgpc. The simulator initiates Currency Issuance protocol on behalf
of honest B to issue a digital currency worth of v for U.

1. Communication from B to U:
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(a) Similar to the case offhonest U and honest Bf S leaks to A the message (Send, sid, B, |v|, midg)
as leakage of F&?.
(b) In the real world, A (malicious U) receives (Received,sid, B, v), S has already re-
ceived (Iss,sid, pid, U, v) from Fcgpc thus it knows v and it sends (Received, sid, B, v)
to the dummy (internally run) A once it receives the message (0k, sid, mid).
2. Communication from U to B:
(a) Emulating F&?, the simulator receives A’s message of the form (Send,sid, B, p).
Then, S leaks (Send, sid, B, |p|, midy) to A as leakage of F&.
(b) Once S receives (0k, sid, mid) from A it proceeds emulating honest B.
3. Communication from B and U to M:

(a) Simulating the communication from B to M is similar to the case of honest U and
lhonest Bl

(b) Regarding the communication from U to M, the adversary calls Fg& with input
(Send, sid, M;, Tly).

(c) The simulator sends (Send,sid,M;, Tly, midy) to A as the leakage of F&. Upon
receiving (0k.Snd, sid, midy;) from A, S sends (Continue,sid) to A (malicious U).

(d) A (malicious maintainer) receives (Received,sid, Tly, midy;) from S. For the simu-
lator to do so, it uses A’s sent information Tly once it receives (Ok, sid, midy;) from
A.

(e) S submits (AcceptIss,sid,v) to Fcepc on behalf of malicious U.

4. Communication on maintainers side:

(a) S checks if 1 included in Tly is generated using the randomness it received from A
and value v. In other words, whether v equals to the threshold encryption that is
generated by ﬂ

(b) Also S checks if 1 is the first element of one of the ¢4 arrays saved in Listyq. If it
is, then ignores.

(¢) Then, verifies whether T is the second element of one of the saved tj4 arrays in
LiSttid.

(d) If not, parses of™ as (ol k) and ignores the message 0 if i’ = 1 or if e(h/, k) =
e(s’, g) does not hold.

(e) Otherwise, checks whether (x,7) such that x = (1, acc":® oRd T) is stored.

(f) Otherwise, sends (Verify,sid,x,m) to A as leakage of Fyjzx. Upon receiving the
answer (Witness,sid,w) from A, checks (x,w) € R. If so stores (x, 7). Else, ignore the
message.

(g) S saves tig = (¢, T) in Listyiq.

(h) S submits (GenTnx,sid, pid,tid) to Fcepc where tig = (1/J,T)

(i) The values of v is calculated by S (also it is given by A) and T is given by A as
described above.

(j) As soon as one honest maintainer receives both Tly and Tlg, the simulator submits
(GenTnx, Sid, pid, tid) to -FCBDC where tid = (’(/J, T)

(k) The values of 1 and T are received from A as described above.

(1) For each maintainer (either honest or malicious) who generates a valid signature on
user’s account S submits (GenTnx, sid, pid, M) to Fcgpc where My is the identifier
of that maintainer.

5. Communication from M to U:

(a) For simulating the messages that are sent back to malicious U, S gives (Send, sid, M, U;ew’%,
midy,) to A as leakage of F& in which o"n®'® for w € H is simulated by S (as de-
scribed in the sequences of games Sec. [4) and o7®*® for t € C is obtained from the
A (malicious maintainer).

(b) Also, once it receives (Ok.End, sid, midy)) from A, it outputs (Received, sid, M;, a;’ew’%)
to A as the message that malicious U receives.

25 In this case, S has already received (Iss,sid, pid, U, v) from Fcgpc which means regulatory com-
pliance and so on have already been verified by Fcgpc-
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Honest U, malicious B and at most ¢ malicious maintainers: A on behalf of malicious
B, initiates Currency Issuance protocol.

1. Communication from B to U:

(a) A initiates the protocol on behalf of B by calling &2 with input (Send, sid, U*, v*).

(b) Hence, emulating Fg@ the simulator knows U* and v* and sends (Send,sid, B, [v*],
midg) to A as the leakage of F&2.

(¢) The simulator submits a currency issuance transaction to Fcgpc with input (Iss,sid, U*, v*)
on behalf of malicious B.

(d) If S receives (AcceptlIss,sid, pid), it concludes that sent values by A, namely U* and
v* are the same as corresponding values in honest U’s message given to Fcgpc- In
other words, U* = U and v* = v hold.

(e) Hence, it continues the protocol otherwise it ignores @

2. Communication from U to B:

(a) S emulates U and this emulation is similar to the case of |honest U and honest Bl

(b) In addition, emulating F& the simulator sends (Received,sid, U, p) to A in which
p is chosen randomly by S.

3. Communication from B and U to M:

(a) The simulation of communication between U and M is similar to the case of

(b) A (malicious B) calls F& with input (Send,sid, M;, Tlg). Emulating F&f, the simu-
lator leaks (Send, sid, B,M;, Tlg, midg) for to A.
(¢) The adversary (malicious maintainer) receives (Received,sid,B, Tlg) from S if S
receives (0Ok, sid, midg) from A.
(d) Upon receiving (0Ok.Snd, sid, midg) from A, S sends (Continue,sid) to A and leaks
the next massage similarly.
4. Communication on maintainers side:
(a) S (on behalf of honest maintainer) checks if Tlg = v holds or not such that v is
computed using the randomness chosen by itself and the value v. If it does not hold,
S ignores.
(b) Other parts of simulation are similar to the case of honest U and honest B}
5. Communication from M to U:
(a) This simulation is similar to (the associated simulation of) the case of
lhonest Bl

Malicious U, malicious B and at most ¢ malicious maintainers: In this case, exchang-
ing information between U and B namely communication from B to U and communication
from U to B is done by A. If A uses communication channel functionalities to exchange
information between U and B, the simulator leaks whatever real-world A sees as the leakage
of channels to the dummy A similar to the associated simulations in the cases of
[U and honest Bl and [honest U and malicious B|described above.

1. Communication from B and U to M:
(a) A calls F& with input (Send,sid, M;, Tly) on behalf of U.
(b) Also, A calls Fg& with input (Send,sid, M;, Tlg) on behalf of B. The simulator leaks
(Send, sid, M;, Tly, mid{,) and (Send, sid, B, M;, Tlg, midg) to A as leakage of & and
& using the information received from A.
c) Once S receives (0k.Snd, sid, mid},) from A it sends (Continue,sid) to .A. Similarly
U
once S receives (Ok.Snd, sid, midg) from A it sends (Continue,sid) to .A.

26 Doing so, S captures the fact that if B tries to issue a currency that breaks regulatory rules
imposed to U the transaction will be failed. In the real world, U will not engage in a Currency
Issuance protocol when it knows that doing so will break the rules (when U is malicious, after
it engages in a transaction that breaks the regulatory rules, the transaction will be failed by
maintainers as we will see in the next case).
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(d) The adversary (malicious maintainer) receives (Received, sid, Tly, mid;,) and (Received,
sid, B, Tlg) from S. For the simulator to do so, it uses A’s sent information Tly and
Tlg once it receives (0Ok, sid, mid(;) and (Ok, sid, midg) respectively.

2. Communication on maintainers side:

(a) S checks if 9 in Tlg equals to ¢ in Tly. If it equals, S checks if ¢ is the first element
of one of the tjq arrays saved in Listyiq. If it is, then ignores.

(b) Else, S parses of™ as (oif, k) and ignores the message 0 if b’ = 1 or if e(h/, k) =
e(s’, g) does not hold.

(c) Else, S checks whether (x,7) such that x = (1, acc™""® oRnd T) is stored.

(d) Otherwise sends (Verify,sid,x, ) to A as leakage of Fnizx. Upon receiving the
answer (Witness,sid,w) from A, checks (x,w) € R. If so stores (x, 7).

(e) Having the witness w, the simulator submits a currency issuance transaction to Fegpc
with input (Iss,sid,U,v) on behalf of malicious B. If it receives (Iss,sid, pid, U, v)
from Fcppc it saves tig = (¢, T) in Listyiq else ignores.

(f) Other parts of simulation are similar to the case of malicious U and honest Bl

3. Communication from M to U:
(a) This simulation is similar to the case of malicious U and honest B}

Simulation of Payment.

Honest Ug, honest U, and at most ¢ malicious maintainers: S receives (GenTnxSnd, sid,
pid) from Fcppc and initiates Payment protocol by emulating an honest sender U,. We note
that if the sender Uy has already been traced, S receives (AcceptIss,sid, pid, Us) from Feppe
so that it is able to use the same tag in this protocol as it had generated for U; who did not
have any transactions in the time of executing the Tracing protocol.

1. Communication from Uy to U,.:

(a) In the real-world A sees (Send,sid, |(ps,v)|, mids) as leakage of F¢,. The simulator
has already known |(ps,v)| and sends (Send, sid, | (ps, v)|, mids) to A once it receives
(0k, sid, mid) from A.

2. Communication from U, to Ug:

(a) Upon receiving (GenTnxRcv,sid, pid) from Fcgpc (similar to what was explained for
traced U above, if the receiver U, has already been traced, S receives (AcceptIss,sid, pid,
U,) from Fcgpe), the simulator emulates honest U...

(b) In the real world, A sees (Send,sid, |p,|, mid,) as leakage of F,. The simulator has
already known |p,| and sends (Send, sid, | p-|, mid,.) to A once it receives (0k, sid, mid,.)
from A. .

3. Communication from U, and U, to M:

(a) Regarding Ug and U,’s communications with M, the adversary respectively sees
(Send, sid, M;, Tl;, mid,) and (Send,sid, M, Tl,, mid;.) as leakages of F&,.

(b) Hence, S is supposed to simulate the view of the dummy A with respect to the
information real-world A sees.

(¢) We note the simulation of Ug’s communications with M and the simulation of U,’s
communications with M in this step of the protocol is the same. Hence, in the
following we describe simulation for Us.

(d) Using PrepareBlindSign algorithm, S selects random values to compute acc?®:®.

Then, computes UE?\?H in a way described in the Sec.
) Then, S computes a threshold encryption ¢ on a dummy value as plaintext.
) It computes T by randomly selecting z, & Z, and let T < g*.
(g) S sets x4 + (1hg, acci™®, o3, T,).
) Emulating Fsok, the simulator computes 5 (¢,.) < Simsign (v, x).
) The simulator records the entry (¢, xs,75(¥,)).



PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 39

(j) Therefore, Uy’s transaction information Tl is simulated by S which is of the form
Tl = (1/15, %,07(1/17«), accgew’%v UEE\?[» Ts)

(k) The simulator gives (Send,sid, M;, Tls, mid}) to A as leakage of F&.

(1) Finally, A (malicious maintainer) receives (Received,sid, Tly, mid’,) from S once S
receives (0k, sid, mid’,) from A. To do so, S uses the above simulated values for Tl.

4. Communication on maintainers side:

(a) S has already emulated the honest sender U, and honest receiver U,., and Fsok (it
has stored (¢, x5,05(¥)) and (s, X, 77 (15))).

(b) Hence, once A (malicious maintainer) calls Fsox with (Verify,sid, ¥y, xs,75(¢r))
and (Verify,sid, ¥s, x,, 7, (¥5)), the simulator outputs (Verified, sid, ¢, s, 05 (¢r), 1)
and (Verified,sid, ¢s, %, 7, (¢s), 1) respectively to A.

(¢) As soon as one honest maintainer receives both Tl and Tl,., the simulator submits
(GenTnx, sid, pid, t;4) to Fcepc where tig = (s, ¥y, Ts, T,) (note that pid is unique
per transaction hence Fcgpc can distinguishes payment and issuance transactions
based on tables it has generated with respect to pid). The values of 15,4, T and
T, are simulated by S as described above.

(d) For each maintainer (either honest or malicious) who generates a valid signature on
sender and receiver’s account S submits (GenTnx, sid, pid, M) to Fcgpc where My, is
the identifier of that maintainer.

5. Communication from M to Uz and U,.:

(a) Ssends (Send,sid, M;, 023""%, mid’,) and (Send, sid, M, 023‘-”’%, mid,.) to A as leakages
of F& in which o"*"® for w € H is simulated by S and o*® for ¢ € C is obtained
from the A (malicious maintainer).

Malicious Uy, honest U, and at most ¢t malicious maintainers: S receives (GenTnxSnd,
sid, pid) from Fcppc (similarly, if the sender U has already been traced, S receives (AcceptIss,
sid, pid, Uy) from Fcgpc). A on behalf of malicious Ug, initiates Payment protocol.

1. Communication from Ug to U,.:
(a) Ainitiates the protocol on behalf of U, by calling F¢§, with input (Send, sid, U, (ps, v*)).
(b) Hence, emulating ¢, the simulator knows U and v* and sends (Send, sid, |(ps, v*)|, midy)
to A as the leakage of F¢,.
(¢) The simulator submits a payment transaction to Fcgpc with input (GenTnxSnd, sid, U}, v*)
on behalf of malicious U,.
(d) If S receives (GenTnxRcv,sid, pid) (or (GenTnxRcv,sid, pid, U,.)) from Fcppc, it con-
cludes that sent values by A, namely U’ and v* are the same as corresponding values
in honest U,.’s message which is (GenTnxRcv, sid, U, v). In other words, U = U,. and
v* = v hold.
(e) Hence, it continues the protocol otherwise it ignores{ﬂ
2. Communication from U, to Ug:

(a) S emulates U, and the simulation process is similar to the case of

(b) In addition, emulating F¢§, the simulator sends (Received,sid, U,, p,) to A in which
pr is chosen randomly by S once S receives (0k, sid, mid,.) from A.

3. Communication from U, and U, to M:

(a) The simulation of communications between U, and M is similar to the case of
[U, and honest U,

(b) A (malicious Uy) calls F& with input (Send,sid, M;, Tl;).

(c) Emulating F&,, the simulator leaks (Send,sid, M;, Tls, mid}) to A.

2" Doing so, S captures the fact that if malicious U, tries to make a payment that breaks regulatory
rules related to the account of honest U, the transaction will be failed. Because, in the real world,
U, will not engage in a Payment protocol when it knows that doing so will not be in compliant
with system’s rules.
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(d) Upon receiving (0Ok.Snd, sid, mid,) from A, S sends (Continue,sid) to A (malicious
Us).

(e) Finally, A (malicious maintainer) receives (Received,sid, Tl,, mid’) from S. To do
so, S uses A’s sent information Tl once it receives (0Ok, sid, mid’,) from A.

4. Communication on maintainers side:

(a) Having Tl = (15, 9, 75 (), acct®® 0’53@[, T,) generated by A, the simulator checks
if 95 and 1,. equal the values that S has generated internally or not (using v and the
random values exchanged between A and S). If they are not the same, S ignores.

(b) Then, verifies whether T exists in one of the saved tiy arrays in Listyiq.

(¢) If not parses Jsrl‘\jjﬂ as (o'}, k) and ignores the message 0 if b’ = 1 or if e(h/, k) =
e(s’, g) does not hold.

(d) Else, S checks whether (¢,,xs,0’) such that x, = (%,accgewm,am,n) is stored
for some o’ or not. Else emulating Fsok, lets ws < Extract(i,, xs,75(1,)). Then, if
(xs,Ws) € R proceeds as follows else ignores.

(e) S saves tiq = (Vs, %y, Ts, Ty) in Listyiq.

(f) As soon as one honest maintainer receives both Tl; and Tl,., the simulator submits
(GenTnx, sid, pid, tid) to Feepc where tig = (s, ¥, Ts, T).

(g) The values of 1,9, and T, are simulated by S (the first two also are given by A to
S) and T is sent by A to S.

(h) For each maintainer (either honest or malicious) who generates a valid signature on
sender and receiver’s account S submits (GenTnx, sid, pid, M) to Fcppc where My, is
the identifier of that maintainer.

5. Communication from M to U and U,.:

(a) Ssends (Send,sid, M;, 023‘-'“’%, mid’,) and (Send, sid, M}, 023“”%, mid) to A as leakages
of F& in which o7*"® for w € H is simulated by S (as described in the sequences
of games Sec. [4)) and o7*""® for ¢ € C is obtained from the A (malicious maintainer).

(b) S also sends (Received,sid, M;, a""®) to A (malicious U,) once it receives (0k.End, sid,

8,
mid’,) from A.

Honest U,, malicious U, and at most ¢ malicious maintainers: S on behalf of honest
Us, initiates Payment protocol. In this case, S receives (GenTnxSnd, sid, pid, U, U,., v) from
Feepe-

1. Communication from Uy to U,.:
(a) S initiates the protocol on behalf of Us. The simulator emulates Ff, and sends
(Send, sid, |(ps, v)|, mids) to A as the leakage of F& such that p, is chosen randomly
by S.
(b) The real world adversary also receives (Received,sid, Uy, ps,v) and S sends this
message to A using the leaked information from Fcgpc once it receives (Ok, sid, mid)
from A.
2. Communication from U, to Ug:
(a) Emulating F,, the simulator receives A’s message of the form (Send,sid, Uy, p,.).
(b) S leaks (Send,sid, |p,|, mid,) to A as leakage of Ff,.
(¢) Once S receives (0k, sid, mid,.) from A continues. Else, ignores.
3. Communication from U, and U, to M:
(a) The simulation of communications between U, and M is similar to the case of
[U, and honest U,
(b) The simulation of communications between U, and M is similar to the case of
[cious U, and honest U,| however, for malicious U, rather than malicious Ug.
4. Communication on maintainers side:
(a) The simulation of this part is similar to the case of [malicious Ug and honest U,}
however, for malicious U, rather than malicious Uj.
5. Communication from M to U and U,.:
(a) The simulation of this part is similar to the case of [malicious Ug and honest U,]
however, for malicious U, rather than malicious Us.
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Malicious U,, malicious U,, and at most ¢ malicious maintainers: In this case,
exchanging information between Uy and U, namely communication from Ug; to U, and
communication from U, to U, is done by A. If A uses communication channel functionalities
to exchange information between Uy and U,., the simulator leaks whatever real-world A sees
as the leakage of channels to the dummy A similar to the associated simulations in the cases
of [malicious U; and honest U,| and |honest U; and malicious U,| described above.

1. Communication from Uy and U, to M:

(a) Communications from Uy to M is similar to the associated communications in case
of malicious U, and honest U,| and communications from U, to M is similar to the
associated communications in the case of fhonest U, and malicious U, |

2. Communication on maintainers side:

(a) S checks if (¢5,1,) in Tl equals to (¢s, ) in Tl,.

(b) If it is not, S ignores.

(c) After verifying 05’1‘\5& and UEM; and extracting the witnesses wy and w, (similar to
what was described before), the simulator submits a payment (GenTnxSnd, sid, U,., v)
to Fcepc on behalf of Ug.

(d) The rest of the simulation of this step of protocol is similar to the associated simu-
lations in the cases of [malicious Ug and honest U,| and |honest Uy and malicious U,]
(e.g., upon receiving (GenTnxSnd, sid, pid, Us, U,, v) from Fegpce the simulator starts
emulating M and so on).

3. Communication from M to Uy and U,.:

(a) This simulation is similar to the associated simulations in the cases of
[and honest U,| and jhonest U; and malicious U,}

Simulation of Abort Transaction.

Honest U, and at most ¢ malicious maintainers: In this case, S receives (AbrTnx, sid, tiq)
from ]:CBDC~

1. Communication from U to M:
(a) S is supposed to simulate the view of dummy A with respect to the information
real-world A sees without knowing the identity of U, however, by having the leaked
T included in tiy given by Fcepc-
(b) Considering U’s communications with M, the adversary A sees (Send, sid, M;, AR, mid)
as leakage of F¢.
(c) First of all, based on PrepareBlindSign, S selects random values to compute acc™®.
(d) Then, computes o™ in a way described in Sec.
(e) Using the leaked T included in tg, S sets x + (acc"®, ofM, T).
(f) Emulating Fnizk, the simulator sends (Prove,sid, x) to A.
(g) The simulator receives (Proof,sid, 7) from A and records (x, 7).
(h) S sends (Send, sid, M;, AR, mid) to A such that AR = (acc"®,ofM T, 7).
(i) Upon providing (Send, sid, M;, AR, mid) as leakage of F&, to the dummy A, S receives
(Ok.Snd, sid, mid) from A and leaks the next leakage (Send,sid, M;;1, AR, mid").
(j) A (malicious maintainer) receives (Received,sid, AR, mid) from the channel (emu-
lated by S) once dummy A sends (0k, sid, mid) to S.
2. Communication on maintainers side:

In the following, whenever the simulator S needs to emulate an honest maintainer,
it follows the real-world protocol based on its internal state. S updates its state as
necessary.

(a) S has already emulated the honest user and Fnjzk by storing (x,7). Hence, upon
calling Fnizk (for AR’s 7 verification) with (Verify,sid, x, 7) via A (malicious main-
tainer), the simulator outputs (Verification,sid, 1) to A.
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(b) S leaks to the dummy adversary whatever real-world adversary sees as the leakage of

& whenever a maintainer calls F& (e.g., (i) for those honest maintainers emulated

by S who have recorded (Tls, Tl,.) pair with T € Tls or T’ € Tl, such that T/ =

T(€ tq); (i) for all malicious maintainers on behalf of whom the adversary calls Fg;
with (Send, sid, M;, (Tlg, Tl,., mid,, mid,.))).

(¢) S delivers messages based on (0k,sid, mid) sent by the adversary.

(d) S submits (AbrTnx.0k,sid, t;4) to Fcepe.

(e) Emulating honest maintainers for messages received from malicious maintainers, S
acts as follows. For (j =sAi=r)and (j =7 Ai=3s): S checks whether (¢;,x;,0")
such that x; = (¢, acc;ew’%, aiﬁ,Tj) is stored for some ¢’ or not. Else emulating
Fsok, lets w; <— Extract(;, x;,0;(1;)). Then, if (x;,w;) € R proceeds as follows.

(f) For i = s and i = r: S parses ojy as (0%, £) and ignores the message 0 if b’ =1
or if e(h/, k) = e(s’, §) does not hold.

(g) S leaks to the dummy adversary the leakage of F@f whenever a maintainer calls Fgf.

(h) Emulating asynchronous Byzantine Agreement functionality F,ga, S leaks
(Agree.[(Tl,, Tl,.).(midg, mid,.)], sid, d;, M;) to A where for malicious maintainers S
uses d; received by A (malicious maintainer My).

(i) S emulates the asynchronous Byzantine Agreement functionality F,ga. Based on
the adversary’s actions, the simulator terminates the Byzantine Agreement upon
receiving the call from 4¢ 4+ 1 maintainers (including honest ones emulated by S).
For instance, the adversary can block the sender anonymous channel 7g&, for some
maintainers. S, emulating Fg&, locally generates the view of honest maintainers
regarding the recipient of Tl messages.

(j) S sets @ to the bit that has the majority among the 4t + 1 (e.g., in the worst-
case scenario, messages are split into two 2t groups, and the 4¢ 4+ 1-th message will
terminate the agreement). Note that e.g., if a transaction is already finalized (i.e.,
there are at least 4t + 1 valid maintainer signature shares for it), the adversary can
never prevent the Abort Transaction protocol from finalizing the transaction. Even if
the adversary blocks ¢ honest maintainers and provides incorrect input on behalf of
t malicious ones, there are still 2t +1 (= 4t + 1 — ¢t — t) honest maintainers emulated
by & who can safely finalize the transaction and unstuck the user similar to the
real-world protocol.

(k) If @ = 1, based on internal state of the simulator who emulates honest maintainers,
if S has to simulate the signature shares of honest maintainers for blinded accounts
(acc™™®B accrew-®) in (Tlg, Tl,.), it does so following the steps described in Sec.
S leaks Fg leakage to the dummy adversary. S terminates.

(1) If @ = 0, upon calling Fyizk (for AR’s 7 verification) with (Verify,sid,x,7) via A
(malicious maintainer), S outputs (Verification,sid, 1) to A.

(m) Emulating asynchronous Byzantine Agreement functionality Faga, S leaks (Agree.[AR.mid],
sid, dj, M;) to A where for malicious maintainers S uses d; received by A (malicious
maintainer My).

(n) S emulates the asynchronous Byzantine Agreement functionality F,ga (similar to
the case above).

(o) If S needs to simulate the signature shares of honest maintainers for the refreshed-
blinded account of the user acc® in AR, it does so by following the steps described

in Sec. ] S leaks Fg, leakage to the adversary. S terminates.

Malicious U, and at most ¢t malicious maintainers: It is similar to the case above
except whenever an honest maintainer wants to verify = € AR, the simulator S, emulating
honest maintainers acts as follows.

1. Upon receiving AR generated by the adversary, S parses AR as (acc"%,a&”d, T, ™).
2. Tt sends (Verify,sid,x, ) to A where x = (acc™®, oRnd T).
3. Upon receiving the answer (Witness,sid, w) from A, checks (x,w) € R and if so, emulating

Fnizk locally stores (x,7) and proceeds. Else, ignores.
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Simulation of Privacy Revocation. S receives (RvkAnm, sid,tij;j,Mj) from Fcgpc and
starts emulating honest maintainers.

Honest Ug, honest U,, and at most ¢t malicious maintainers for both Currency
Issuance and Payment protocols: In the following, for simplicity we describe S for
payment transactions (issuance transactions are similar and more straightforward).

1. S uses its internally maintained list Listyiq to find out the associated ciphertext (¢, ¢,
of the received tiq from Fcrpc.

2. S submits (RvkAnm.Ok,sid, tiq) to Fcgpc and waits for the message (AnmRevoked,sid,
tid7 US7 UT7 ’U) from ]:CBDQ

3. Once S receives that message it starts faking the threshold decryption of ciphertexts
based on keys it has registered for honest Uy and honest U,.. Specifically, S computes
shares of honest maintainers in a way that threshold decryption of (¢, 1),) result in
associated values received from Fcgpc, pk, and pk, registered for Us; and U, and v as
described in details in Sec. @l

4. The real-world A sees the leakages of Fnjzk when honest maintainer (e.g., M,,) generates

proof which is (Prove,sid, x,,) for x,, = (1/1571,1/)7,,1,7,/12'?;’1” lef’“’, :kll“’)

5. In x,,, the values ¢ 1 and 1,1 are from (45, ,.), however, the values of wzkll w:kf and

w:,kll'” are computed as it is described detailedly in Sec.

6. S outputs the leakage of authenticated channel F& whichis (Send, sid, M,, M;, (x4, Ty ), mid)

to A which is related to the calls honest maintainers make.

7. Emulating F&, upon receiving the message (Send,sid, M;, (x¢, 7)) from A (malicious
maintainer M), S outputs (Send, sid, My, M;, (x4, 7;), mid") to A.

8. Upon receiving messages of the form (0k,sid, mid) and (0k,sid, mid") from A, S sends
(Received,sid, M, (x;,7;)) to A (or malicious maintainer M;) where M; includes honest
maintainer M,, and malicious maintainer M, respectively.

9. Moreover, upon receiving (0k.Snd, sid, mid’) from A, S sends (Continue,sid) to M;.

10. S also leaks (RetrieveID,sid, pk,,M;) and (RetrieveID,sid, pk,, M;) to A upon receiv-
ing the associated calls from maintainer M;.

Honest (resp. malicious) U; and malicious (resp. honest) U,., or malicious U, and
malicious U,; and at most ¢ malicious maintainers for both Currency Issuance
and Payment protocols: The simulation of this case is similar to the case of
except the fact that there is no need for changing the shares. The reason is
that in this case S knows the identities of participants Us; and U,., and also transaction value
.

1. S on behalf of honest maintainers computes decryption shares and all participant main-
tainers in the Privacy Revocation protocol use their decryption shares to obtain the
associated public keys and value as described in the construction details.

Simulation of Tracing. Our construction achieves a stronger form of post-tracing privacy.
However, for the sake of keeping the functionality concise we exclude that property in the
functionality. S receives (Trace,sid,U;, M;) from Fcgpc and emulates honest maintainers.

Honest U and at most ¢ malicious maintainers for both Currency Issuance and
Payment protocols:

1. S submits (Trace.0k,sid,U) to Fcgpc and upon receiving (Traced, sid, {¢7, role” }”_))
gets to know {t7, roIeT}f:1 which are required for simulating honest maintainers’ shares
such that tracing tag computation results in tags (that are random values that were

selected by S in issuance and payment transactions) associated to {t7;}7_,.
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Table 1. Size of parameters and cost of operations

Parameter: |Zy| IG| |G| |G
Size (byte): 46 46 90 514

Parameter: field operations E E E; P
Time (ms):  negligible  0.89 1.58 5.36 23.32

2. In the [Simulation of Currency Issuance| and [Simulation of Payment| we described that
S randomly selects z. Hence, S should simulate the result of threshold tag computation
to be consistent with values {g* }7_,. The simulator does so as described in the Sec.

3. S uses its internally maintained list Listyg to retrieve UR = (a;,7;,M;,U). Then, com-
putes com,, (on behalf of the honest maintainer M,,). It outputs (Prove,sid,X,,) to A
where X, = (com,,, %, §) see Sec. [4| for details of computing g%~.

4. S outputs the leakage of authenticated channel Fgf which is (Send, sid, My, M;, (Xw, Ty ), mid)
to A which is related to the calls honest maintainers make.

5. Emulating F&, upon receiving the message (Send,sid, M;, (X;,7;)) from A (malicious
maintainer M;), S outputs (Send, sid, My, M;, (X;, 7 ), mid’) to A.

6. Upon receiving messages of the form (0k, sid, mid) and (Ok, sid, mid’) from A, S sends
(Received,sid, M;, (X;,7;)) to A (or malicious maintainer M;) where M; includes honest
maintainer M,, and malicious maintainer M, respectively.

7. Moreover, upon receiving (0k.Snd, sid, mid’) from A, S sends (Continue,sid) to M;.

8. Emulation of Fg& for the rest of the protocol (e.g., calls with input (Send, sid, M;, (0, §%)))
is similar to the calls above.

Malicious U and at most ¢ malicious maintainers for both Currency Issuance
and Payment protocols:

1. The simulation of this case is similar to the case above except the fact that there is no
need for changing the shares of honest maintainers. S on behalf of honest maintainers
participate at computing the tracing tags as described in the construction.

5 Implementation Details and PEReDi Performance

We measured the performance of PEReDi transactions with an Intel Core i7-9850H CPU
@ 2.60 GHz with 16 GB of RAM using Ubuntu 20.04.2 LTS. Table [ lists the size of the
field and groups’ elements and the exponentiation running time and pairing cost using the
Charm-Crypto framework [4], a Python library for Pairing-based Cryptography. E, E, E; and
P denote exponentiation in G, G and G, and pairing respectively. We applied the Barreto-
Naehrig (BN) curve, type F, y?> = 2% + b over the field with order p with embedding curve
degree k = 12 and 1920-bit DLog security. For simplicity the computations over Z, and hash
functions are not taken into account.

The summary of time complexity and communication costs with respect to number of
maintainers and ranges we have for regulatory compliance are shown in Table 2] and Table 3]
respectively@

To instantiate Fyizx and Fsok efficiently one can either follow the approach of [45]
based on Fischlin’s transform [43] or construct a simulation-extractable NIZK/SoK from
simulation-sound NIZK and a CPA-secure encryption scheme as described by [34]. Instead,
to allow for an apple-to-apple comparison with existing schemes we analyze performance in
the in practice more common, e.g. [57], stand-alone setting in which one can employ the
plain Fiat-Shamir transform.

28 For the sake of completeness and for providing some example of concrete vales, one may set n.,
to 32 and other values can be set accordingly.
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Table 2. Time complexity of PEReDi transactions considering all regulatory compliance-
related information in user’s account. We assume that Bmax = 2™ — 1, Smax = 2™ — 1, Rmax =
2" — 1 and Vmax = 2™% — 1. t is the maximum number of malicious maintainers where the number
of all maintainers is D = 5t + 1.

Transactions Sender Receiver

Issuance 3.56 ms (for B) 7.12(ny + n,) + 310.86¢ 4 192.21 ms

Payment 7.12(ny + ns + np) + 310.86t 4+ 193.99 ms  7.12(np + n,) + 310.86¢ 4+ 193.99 ms
Maintainer

Issuance 3.56(ny + ny) + 81.15 ms

Payment 3.56(ny + 2ny + ny + ng) + 162.3 ms

Table 3. Communication cost of PEReDi transactions considering all regulatory compliance-
related information in user’s account. We assume that Bmax = 2™ — 1, Spax = 2™ — 1, Rmax =
2" — 1 and Vimax = 2" — 1. G and G means group elements, and F means field elements.

Transactions Sender

Issuance 3 G (for B)

Payment 48 G + 2logy(ny) G + 2logy(ny) G + 2logy(ns) G+2 G+ 19 F

Receiver

Issuance 40 G + 2log,(ny) G +2logy(n,) G+2G +19 F

Payment 42 G+ 2logy(ns) G +2logy(ny) G+2 G+ 19 F
Maintainer

Issuance 2G

Payment 2G

5.1 Fiat-Shamir Transform

All the proofs presented in this section as an interactive protocol with a logarithmic number
of rounds can be converted into a non-interactive protocol that is secure and zero-knowledge
in the random oracle model using the Fiat-Shamir transform [II]. All random challenges are
replaced by hashes of the transcript up to that point, including the statement itself.

5.2 Range Proofs

For the range proofs of PEReDi we use bulletproofs [19]. The range proof relation is defined
as follows:

{(Public Input: h,g € G, A, n; Witness: v,y € Z,): A=g¢" -h” Av € [0,2" — 1]}

According to comparisons made in [46], the computation complexity of one range proof of
the form above is 8n group exponentiation on the prover’s side and 4n group exponentiation
on the verifier’s side.

We note that using other techniques for range proofs (rather than bulletproof) can result
in a better efficiency.

5.3 Performance Details of Currency Issuance

1. Central bank needs to compute ¥ = (¢1,92,93) = (97, pk] 1y - Pky, PKs 1 - %) which
requires 4 exponentiation in G and 2 multiplication in G.
2. User needs to compute Tly = (¢, acc"® O’&nd7 T, 7). Associated computation complex-

ities to compute each element of Tly are as follows.
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¢: Similar to central bank user needs to perform 4 exponentiation in G and 2 mul-
tiplication in G to compute .
acc""'®: For acc"™'® = (com, {comT}f:1 , h) user performs 19 exponentiation in G,
12 multiplication in G and 1 hash.
oRMd: For re-randomizing signature user parses oy as (h, s), picks r & Z,, and sets
ro & Z,. Then, it computes offt = (I',s') « (h",s" (h')"). Tt computes x ¢
dH?Zl B " Sets ol = (o, k) = (o4, @ HE:1 B §"). Hence, computing oRM
requires 3 exponentiation in G, 1 multiplication in G, 7 exponentiation in G, and 7
multiplication in G.
T= g“”ls It requires 1 exponentiation in field, and 1 exponentiation in G.
m: To compute computation complexity of proof © we describe the details of Sigma
protocol between the prover (user) and the verifier (each maintainer).
The witness of the user is w = ((B°!, §°¢, RO sk v = a®,a), p, o, {OT}E=1 Ty T1,T2, V)
the statement is x = (b, acc"™® oRM T), and the relation is {¢; = g” Ay =
PKY p - g™ Atby = Gy 9" Acom = g B0 RS I pg g™ g A comy
g1 - BB HY A comy = o2 - BS™ A comy = o - hEYHY A comy = g% - h%K A coms =
4o -h“""ew/\comﬁ _ oo AR — d'B]_BDId i "2Sold ) ~3Ro|d . ~Zk.ﬁ~gjo\d -Bg‘-gr/\T _ gspnew/\N _
grl ) h(pold A coms = N . gr2 A Bhew — Bold + 0 < Bpax A R™W = Rold +ou< Rmax}-
We stress that prover sets ro < 05 —ar;. Also, all values are included in the (defined)
statement instead of N which is sent by the prover to the verifier as part of the proof.
First of all, the prover and verifier execute 2 range proofs using bulletproofs (as
defined in where the relations are as follows: {(g,h € G,comy, Bnax; 01, B"™" €
Zp) : com; = g -hB™ A B™" € [0, Bmax]} and {(g,h € G,coms, Riay; 03, S €
Z,) : comg = g% - b AR € [0, Rmax]}. Then the prover and verifier run a sigma
protocol (where in the non-interactive version all random challenges are replaced
by hashes of the transcript up to that point, including the statement itself, so the
hash in the following Sigma protocol contains bulletproof’s transcripts as well). The
commitments used in the range proof relations are exactly the commitments used
in the sigma protocol explained in the following. The prover and verifier execute the
following (interactive) Sigma protocol:

i. Prover computes: ¢ = g™, 15 = pk{y - ", 15 = pkyhy - g™, com’ = g
R3S - hITT BRI RS com) = gMo . AT com) = g™ - A, com} =
g~7712 . bﬁ?'“ls’comg :~g7713 .]7‘7727 Com% — gTI14 _hn177comé — gms . hns’ K =a- ﬁ15 .
5;16 ﬂgﬁ IBZZ . gQ ,l@gt? ,gmG,T/ — g7717’]\]' — gms . h" and comg — N7s . g7719'
Prover sends ], ¥}, %, com’, com], com, comf, com), comf, comg, «', T, N’ and
comy to the verifier.

ii. Verifier sends back challenge C.

iii. Prover computes: w; = m — pc,ws = 12 — ske,ws = M3 — vC, Wy = Mg — 0C, W5 =
n5 — B¢, ws = ng — 5%, wr = 07 — R%Mc,ws = s — ac,wg = ng — ¢, wip =
Tho —01C, W11 = M1 — 02C, W12 = 1112 — 03C, W13 = 113 — 04C, W14 = 114 — 05C, W15 =
15 — 06C, W16 = N16 — I'C, w17 = N7 — @ Ve, wig = Mg — r1c and wig = 119 — TaC.
Prover sends w1, ...,wig to the verifier.

iv. Verifier checks if: 97 = ¢7 - g*1, 95 = 5 - pk{yy - 6“2, 95 = ¥5 - pk3jy - g2, com’ =
comc~g‘*’4~h“f5+“’3 -h3g® ~h‘§7+°’3 -h§?-hi7 - hg®, com) = com§- g0 - h¥s s coml =
coms - g1t - h¥s, comy = com§ - g¥1? - h*7F¥s com); = com§ - g“*¢ - h*2, comy =
qomg ;gw14 . hw177com% = com§ - g“15 - hws’ﬁl = k¢.alt—c. ﬁi% . ‘5’6 . 3’7 . 212 .

20 Bt - g¥re, T =T¢- g7, N' = N©- g¥18 - h*9 and com{ = com§ - N“& . g«19.

The interactive protocol explained above is converted to non-interactive version using

Fiat-Shamir transform. The computation complexity on the prover’s side for non-

interactive version is 1 hash, 29 exponentiation in G, 7 exponentiation in @, 16

multiplication in G, 7 multiplication in G, 23 field addition, 19 field multiplication,

and 16n exponentiation in G. Moreover, as explained above the prover computes

n5+n3
B .

b
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N which is sent to the verifier as well that needs 2 exponentiation in G and 1
multiplication in G.
The user also needs to unblind and aggregate the maintainers’ signatures. Hence, we
address each of them in the following.

(a) For unblinding signature: the user parses O'j% as (h',c). Aborts if h # h'. Then, com-

putes o; = (h, s;) < (h, CHT 1 B 27). Hence, this step requires at maximum 6D ex-
ponentiation in G and 6D mulmphcamon in G. Afterwards, aborts if e(h, &; HT 1B =
e(s;, §) does not hold. Hence, at maximum this step requires 2D pairings, 6D expo—
nentiation in G and 6D multiplication in G.

(b) For aggregating signature: the user parses o; = (h,s;) and computes the signature
om = (h,s) < (h]];cp séj) which requires D — ¢ exponentiation in G and D —¢—1
multiplication in G. Afterwards, aborts if e(h, & HE:1 B7) = e(s, §) does not hold
which requires 2 pairings, 6 exponentiation in G and 6 multiplication in G.

3. Each maintainer verifies the proof and re-randomized signature and generates a blind
signature.

(a) For verification, each maintainer does the following:

i. Parses ofM as (olff = (W', s'), k) and aborts if b’ = 1 or if e(W, k) = e(s', §) does
not hold which requires 1 pairing.

ii. Verifies w and aborts if the proof is not correct which means that the maintainer
acts as what explained above for the proof verification as a result, considering
the presented details above this step requires 1 hash, 42 exponentiation in G,
9 exponentiation in G, 29 multiplication in G, 8 multiplication in G, 4 field
addition, and 8n exponentiation in G.

(b) For blind signature, each maintainer does the following:

i. Sends com to Fro and receive h' from Fro. Aborts if h # h' which requires 1
hash.

Yj7

116
. Computes ¢ = h% [[’_, com7 P

and sets the blind signature share o> = (h,

h¥i H 1 com?") which requires 7 exponentiation in G, and 6 multiplication in

G.

5.4 Performance Details of Payment

In the following, we present the details for the sender’s side. The computation complexity
on the receiver’s side is similar to the sender’s side except the fact that the receiver performs
one range proof less than the sender.

1. The sender needs to compute Tlg = (s, ¥y, 75 (¥r), accge‘”’gB erf\jjﬂ» Ts). Associated com-

putation complexities to compute each element of Tl are as follows.

(a) 1s: The sender needs to perform 4 exponentiation in G and 2 multiplication in G to
Compute ’(/}S = (wsq,lv ’(/}5,25 %,3) (gps7 pk pk57 pk )

(b) t,: Computing ¢, = (¥y1,%r2) = (97, pk’l’M pk,.) requlres 2 exponentiation in G
and 1 multiplication in G.

() acc™™®: Computing acc”™® = (com, {com, }°
G, 12 multiplication in G and 1 hash.

.. . . $
(d) ofnd: For re-randomizing signature user parses oy as (h, s), picks r <~ Z, and sets

+_1,h) requires 19 exponentiation in

& Z,. Then, it computes oift = (h',s') « (h",s" (K')"). Tt computes k <
! H?—:l B G". Sets airl‘\jjﬂ = (ot k) = (oiff, & HEZI B~ g"). Hence, computing ofnd
requires 3 exponentiation in G, 1 multiplication in G, 7 exponentiation in @, and 7
multiplication in G.

(e) Ts = gasmﬁlz It requires 1 exponentiation in field, and 1 exponentiation in G.
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(f) 75(¢): To compute computation complexity of signature of knowledge 75(¢,.) we

describe the details of Sigma protocol between the prover (sender) and the verifier
(each maintainer).
The witness of the sender is w, = ((B°!, §°¢, R sk, x°M = a” a), p, o, {07}?:1 T, T,
T9,v), the statement is x, = (¢S,accge""’%,a§rﬁ,Ts), and the relation is {¢s1 =
gp/\ws72 — pkllJ’M.gsk/\ws)3 — pkgM-g”/\COm — go'hlBOId_U'h§OId+v-h§OId 'hik-h?new -hg/\
com; = ¢ hB"=v Acomy = g°2~h50'd+”/\com3 = g% B Acomy = g°*-h* Acoms =
gOS I.dhLPHEW /\C0m6 _ gOG ha/\li _ d.BlBOId .B’“égo\d . ~§o\d . Nik_B/%POId .Bg.gT/\T _ gwnewAN _ ng .
h?”™ Acoms = N%-g"2 A0 < v < Vipax AB™ = B 4y > A Smew = §old gy < Smax }
Similar to currency issuance protocol, we stress that prover sets 1o < 05 — ary.
Also, all values are included in the (defined) statement instead of N which is sent
by the prover to the verifier as part of the proof. First of all, the prover and verifier
execute 3 range proofs using bulletproofs (as defined in where the relations are
as fOHOWS: {(pk2,Mvg € vas,fbvmax;pvv € Z;D) : ws,f} = pkg)M : gv ANv € [07 Vmax]}7
{(g,h € G,comy, Bmax; 01, B"™" € Z,) : com; = g° - h®" A B"" € [0, Byax|}, and
{(g,h € G, comgy, Smax; 02, 5" € Z,) : comg = ¢°2 -hS™ A S"W € [0, Smax]}- Then
the prover and verifier run a sigma protocol (where in the non-interactive version
all random challenges are replaced by hashes of the transcript up to that point,
including the statement itself and the message of signature of knowledge .., so the
hash in the following Sigma protocol contains bulletproof’s transcripts as well). The
commitments used in the range proof relations are exactly the commitments used
in the sigma protocol explained in the following. The prover and verifier execute the
following (interactive) Sigma protocol:

i. Prover computes ¢, ; = g™, 5 = pkiy; - g7, 9% 5 = pkgy, - 9", com’ = g
h;75*773 .h36+773 -h;)” ~h22 .h75717 .hg87 com’1 — gmo Lh5 N3 , com’2 — gﬁu .h"76+7]3’ con1’3 —
g~7112 .~h?77,c~0m£1 = gnis . h’l’z,com/s — 97714 . h’l177com’6 — gms . h”87l<v' =& - 5175 .
ﬁgﬁ .ﬁgﬁ .522 . g9 .ggs cgme, T = gMm7 N’ = g™s . b7 and com'5’ = N7s . gho,
Prover sends v 1,5 5,9 3, com’, com], com, comj, com);, comg, comg, ', T', N'
and com? to the verifier.

ii. Verifier sends back challenge C.

iii. Prover computes w1y = 11 — pc,ws = 1 — skc, w3 = N3 — vC, W4 = Mg — 0C, W5 =
n5 — B¢, wg = ng — ¢, wr = 7 — B¢, ws = 15 — ac,wyg = ng — ¢, wip =
Tho —01C, W11 = 11 — 02C, W12 = 112 — 03C, W13 = 113 — 04C, W14 = T)14 — 05C, W15 =
M5 — 06C, W16 = N16 — I'C, W17 = N7 — @ Ve, wig = Mg — r1c and wig = 119 — TaC.
Prover sends w1, ...,w9 to the verifier.

iv. Verifier checks if: ¢ = ¢, - 9", ¥ o = ¥ o - Pk - 9% 0k s = Yl - PR3y -
g@%,com’ = com® - g¥t - hYSTYR L RYSTYS L pST LR L RS RES com) = com§ -
g¥10 - h¥5T¥9s com = com§ - g¥tt - h¥TWs com) = com§ - g“12 - h¥7, com), =
COmZ .gw13 ;hwz 7~Comgv — Cpmg ;gw14 . h""”,COm% — Comg . gw15 . hws,ﬁl = k€.
dl_c'ﬁfs . ‘2'-)6 . 4307 . 272 . ;)9 'ng .gle,T/ — Tc-gw”,N/ — Nc-gwls . h¥ and
comy = com§ - N“s . g«1o,

The interactive protocol explained above is converted to non-interactive version using

Fiat-Shamir transform. The computation complexity on the prover’s side for non-

interactive version is 1 hash, 29 exponentiation in G, 7 exponentiation in G, 16

multiplication in G, 7 multiplication in (G, 23 field addition, 19 field multiplication,

and 24n exponentiation in G. Moreover, as explained above the prover computes

N which is sent to the verifier as well that needs 2 exponentiation in G and 1

multiplication in G.

The user also needs to unblind and aggregate the maintainers’ signatures. Hence, we

address each of them in the following.

(a) For unblinding signature: the user parses aj% as (R, c). Aborts if h # h'. Then, com-

putes o = (h, s;) < (h, cH?:1 7). Hence, this step requires at maximum 6D ex-
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ponentiation in G and 6D multiplication in G. Afterwards, aborts if e(h, &; HT 1 *) =
e(s;, ) does not hold. Hence, at maximum this step requires 2D pairings, 6D expo—
nentiation in G and 6D multiplication in G.

(b) For aggregating signature: the user parses o; = (h,s;) and computes the signature
om = (h,s) < (h]];cp si-j) which requires D —t exponentiation in G and D —¢—1
multiplication in G. Afterwards, aborts if e(h, & ngl B7) = e(s, §) does not hold
which requires 2 pairings, 6 exponentiation in G and 6 multiplication in G.

2. Each maintainer verifies the proof and re-randomized signature and generates a blind
signature. All the following computation complexities are related to processing Tl;, pro-
cessing T, requires the same computation complexity except one range proof less than
processing Tl,. In our results, we have considered computation complexity for processing
both Tl and TlI,.

(a) For verification, each maintainer does the following:

i. Parses al\sﬂnd as (ot = (K, s'), k) and aborts if b’ = 1 or if e(h/, k) = e(s', §) does
not hold which requires 1 pairing.

ii. Verifies 7w and aborts if the proof is not correct which means that the maintainer
acts as what explained above for the proof verification as a result, considering
the presented details above this step requires 1 hash, 42 exponentiation in G,
9 exponentiation in G, 29 multiplication in G, 8 multiplication in G, 4 field
addition, and 12n exponentiation in G (for Tl,. it is 8n exponentiation in G).

(b) For blind signature, each maintainer does the following;:

i. Sends com to Fro and receive h' from Fro. Aborts if h # h’ which requires 1
hash.

Yj,r

. N 6 B
. Computes ¢ = h% [[_, comz

and sets the blind signature share o = (h,

h*i H _, com?”™) which requires 7 exponentiation in G, and 6 multiplication in

G.

5.5 Sigma Protocols and Formal Definitions for Zero-Knowledge Relations

In this section, we address formal definitions of all zero-knowledge relations used throughout
the whole construction. The formal definitions of ZK relations for Currency Issuance and
Payment protocols addressed in Sections [5.3] and [5.4}

User Registration ZK Relation User’s witnessisw = ((0,0,0,sk, 1, a), {a; }]D:17 0,{o:}5_4,

B comyy, pky), and the relation is {com =

{rj}?:l,{coej}f;ll), the statement is x = (acc
g° - h$ - hs - h¢ A com; = g°* A comy = g"2 A coms = ¢° A comy = g% - b A coms =

g% - h A comg = g° - h® A {comJ = g% h”a}. Apky = g A {com; = gateoerit...Feoes— P

hTi = g%. g1 g8 A X }D 1}. The prover and verifier execute the following Sigma
protocol:
1. Prover sends com’ = g™ - h* - hs - h®,com] = ¢4, com}, = ¢, com} = g¢"®, com4 =
g - h"2 coml = g"8 h comg = g™ - b, {com} = gHi b} A pk = g™ and {com}*
gn - gad L g% 13" h’Y?}D 1 to the verifier.

2. Verifier sends back challenge C.
3. Prover sends: wy = 11 —oc,wy = 1y —ske,ws = N3 —ac,wy = N4 —01¢, W5 = 15 — 02C, Wg =

/ !
N — 03C,Wr = 17 — 04C, W8 = T)]g — O5C, W9 = T)g — OC, W1 = H1 — 1€, ..., Wp = UD —
" " " "
apc,w; =771 —1g¢,...,Wp =YD —TpC, Wy = 1 — CO€1C,. .. ,wﬁ_l = vig—1 — CO€3_1C

to the verifier.

4. Verifier checks if: com’ = com®- g¥t - h{? - hi~° . hg®, com) = com§ - g*4, com) = com§ -
- A /A 1— /A
g“s,comz = com§ - g¥6,comy = com§ - g7 - h¥? comy = comg - g“® - h' "¢ comg =

comg - g“9 - h“’f’ {cdm* = com¢ - ¥R P A pk’ = pk® - g¥2 A {com** = com® - g+

6 L J Jj=1 J J

w///- w//l - UJ
get J .. .g B— 1] . h%i j 1
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Abort Transaction ZK Relation User’s witness is w = ((B°¢, 594, ROl sk, o = a”, a), o,

{0,}8_,,7,71,72), the statement is x = (acc"™™® R T), and the relation is {com = ¢°
old old old new old old old
B RS RET hSRE -hg Acomy = gt -hB” Acomy = go2-hS /\coms =9 hR Acomy =
new old ~ gold old
g% -h¥k Acoms = g% - h#™" Acomg = g% -h* Ak =a-BP° 55T BR 65 BE-GTAT =

g AN =g - R A comsz = N . g™}, We stress that prover sets ro < 05 — ary. The
prover and verifier execute the following Sigma protocol:

1. Prover computes com’ = g™ - h® - hI® - BRI RJ? - R - RE com) = gMo - RS com’2 =

gnu hns com — gmz hn7 com _gms hnz com = 97714 . hmr C0m6 = gms hns P
5775 5776 . ?77 . Bng an gnw T = gn17 N/ — gmg - h" and com” N8 . gmg
Prover sends com coml,comz,comg,com47com5,com6,/@ T/, N’ and comy to the veri-

fier.

2. Verifier sends back challenge C.

3. Prover computes: wo = 1y — ske, wy = 14 — oc,ws = 05 — B¢, wg = ng — S%e, wy = ny —
ROldca wg = 18 —ac,wy = 779—900'%, W10 = N0 —01C, W11 = N11 —02C, W12 = 112 —03C, W13 =
13— 04C, W14 = 114 —05C, W15 = N15—06C, Wi = N6 —TC, W17 = Nz — "¢, wig = Nig—7ric
and wig = N9 — T2C.

Prover sends wo, wy, .. .,wig to the verifier.

4. Verifier checks if: com” = com® - g‘”4 ~h7® - hy® - h3yT - hy? - hg’” - h§®, com) = com§ - g¥1° -
hvs com2 = com§ - g“’11 h¥s, comf = com3 9“12 he7 com4 = comg - g“1% - h*2, comy =
com gw14 Lhwit com6 — com gw15 hwg k! = K° 041 c 6 w6 317, 212. ‘5*’9. ‘é’s.gww’ T =
TC¢.gw17 N/ = N¢.gwis . h“’9 and comf = com§ - Nvs . ““.

Privacy Revocation ZK Relation Maintainer’s witness is w; = (sky j, ska, ]) the state-
ment is x; = (s 1,¥r1, wSkl J@/;Skz 7, ¢Sk1 7), and the relation is {pk; ; = = gkui A¢s 17 Apky ;=

g2 A wSkQ 7 Skl ’} The prover and verifier execute the following Sigma protocol:
1. Prover computes: pk} . = g™, ¥l kaJ g’72 ¢4 and
Prover sends pk’l’j7 a1 pks 4 ”2 and v,'} to the Verlﬁer

2. Verifier sends back challenge C.
3. Prover computes: wy; = 11 — sky jc and wy = 12 — skg jc.
Prover sends w; and ws to the verifier.
4. Verifier checks if: pki ; = pkS - g1, 07 = (¥397)C - ¢y, pkh, = pkS; - g2, 91 =

($297)e - 423 and Yl = (P27 - Y

Tracing ZK Relation Maintainer’s witness isW; = (a;,7;), the statement is; = (cémj, §%, g),
the relation is {com; = g% - k"5 A g% }. The prover and verifier execute the following Sigma
protocol:

1. Prover computes: cdm;f = g™ - b and ¢gM.
Prover sends com? and §" to the verifier.
2. Verifier sends back challenge C.
3. Prover computes: w; = 01 — ajc and wp = 19 — 15C.
Prover sends w; and wsy to the verifier.
4. Verifier checks if: com; = com{ - g - h*? and g™ = (g%7)° - g“*.
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A.1 ElGamal Encryption Scheme

The security of ElGamal encryption scheme [36] depends on the hardness of the discrete
logarithm problem. It contains the three following algorithms:

1. KeyGen: Let p be a large prime and g be a generator of Z;. The receiver (maintainer in

ITpggreni) randomly chooses the secret key sk & Z,, and computes pk = ¢* mod p. Then,
the receiver publishes public parameters (g, p, pk) while keeping sk secret.

2. Encryption: For encrypting a message m € Z,, the user randomly chooses an integer
g Zy and set the ciphertext ¢ = (c1,¢2) = (g%, pkkm) mod p.

3. Decryption: Given ¢ = (cy, ¢3), the receiver computes the message m = cy/c;*¢ mod p.

A.2 Threshold ElGamal Encryption Scheme

Using a distributed key generation protocol introduced in [50] or [39] the secret key of
threshold ElGamal encryption scheme is generated. We denote that sk; is the secret key of
decryption for j-th maintainer and pk; = g% is the corresponding public key share. Hence,
we have sk = Zj€I sk;A; such that \; is the Lagrange coefficient for the j-th share and
|I| = 8. To decrypt an ElGamal ciphertext ¢ = (c1,¢3) = (¢*, pk*m), j-th maintainer first
publishes cikj, and then generates a proof that log, pk; = log,, cslkj hold to prove its honest

contribution. Finally, the plaintext m can be retrieved as m = c2/[];¢; cikj A7
In our construction, assuming the first message as user’s public key m; = pky and
the second message as mo = ¢¥ in which v is the value of transaction, we extend the

ciphertext such that ¢ = (cy, ¢, c3) = (g%, pklf’Mml7 pkngg). Hence, j-th maintainer has
two secret keys sky ; and skp; such that pk, ; = g1 and pky; = g2, Similarly, we
have skyy = Zjel skq jA1; and skoy = Zjel sk jA2 ;, and their associated public keys
are pky y = g™ and pko v = g%k respectively. The j-th maintainer’s decryption shares
are cslkl’j and cslk”. It also generates a proof that log, pk; ; = log,, cslkl’j and log, pky ; =

log,., cikz’j hold to prove its honest contribution. The messages m; and msy are retrieved by

. ski,j 1,5 ska, j A2, j .
computing m1 = ca/ [[;c,¢7 77" and ma = ¢3/ [[ ;¢ ¢1 7777 respectively.

A.3 Secret Sharing

Shamir introduced (D, 3)-threshold scheme [55]. A S-out-of-D threshold secret sharing of a
secret (field element) message m is sharing m into D parts such that any 3 shares together
can be used to reconstruct the secret m. However, fewer shares provide no information at
all about m.

Definition 1. A (D, f)-secret sharing scheme SSH = (SSH.Share, SSH.Agg) consists of the
following algorithms:

1. {mi}zpzl & SSH.Share?? (m): Upon receiving m as input it outputs D secret shares such
that m; denotes the i-th share of m.

2. m* « SSH.Agg"”? {mi};c;: Upon receiving B shares (|I| = B) as input it outputs a
reconstructed secret m*.

Moreover, SSH generally satisfies Correctness and Privacy. The former guarantees that
Pr[m* = m] = 1 and the latter requires that given 8 — 1 or fewer shares of either my
or mg no PPT adversary A can guess which message was shared with probability better than
1

= + negl(X).

2
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Shamir’s Secret Sharing Scheme In order to share a secret A into 8 shares, one needs to
choose f—1 random numbers (a1, ...,ag_1) to construct a polynomial P(x) = a+ajz+...+
ap_12°~1. Every share i is then given by (z;, P(z;)) where 2;’s are distinct and non-zero. The

reconstruction is derived from interpolation which is as follows: a = 37, .o i [ [, i jeg =
; i—;

A.4 Bilinear Maps

The threshold blind signature employed in PEReDi uses bilinear maps. Assuming that
(G,G,Gy) are groups of prime order p, we define a map e : G x G — G; with the fol-
lowing properties:

— Bilinearity: for all g € G, § € G, and (z,y) € IE‘?,, e(g*,3¥) = e(g, )Y holds.

— Non-degeneracy: for all generators g € G and § € G, e(g, §) generates G;.

— Efficiency: there exists an efficient algorithm G(1*) that outputs the pairing group setup
(1, G,G, Gy, e,g,g) and an efficient algorithm to compute e(g, §) for any g € G and g € G.

In type 3 pairings, G # G and there exists no efficiently computable homomorphism
f:G—=G.

A.5 Pointcheval-Sanders Signature Scheme

Pointcheval-Sanders signature scheme [5I] is existentially unforgeable and randomizable
which consists of the following algorithms:

1. KeyGen(1*,¢): Run G(1*) to obtain a pairing group setup 1 = (p, G, G, Gy, e, g, ). Pick
random secret key sk = (z, {y; }2_,) from ZI*'. Set the public key pk = (1, a, {8 }1_,)
(U,ﬁm,{gy’ g:l)'

2. Sign(sk, {m,}?_,): Select random r from Z,, and set h < g". Output the signature
o = (h,s)  (h,heH{vrmeio)

3. VerifySig(pk, o, {m}?_,): Output 1if h # 1 and e(h,a []?_, B7) = e(s, g). Else, output
0.

A.6 Threshold Blind Signature

Coconut [56] is an optional declaration credential construction supporting distributed thresh-
old issuance based on Pointcheval-Sanders signature [51]. Unlinkable optional attribute dis-
closures, and public and private attributes are supported by the framework of [56] even when
a part of issuing authorities are malicious or offline. Recently, Rial et al. [52] have analyzed
the security properties of Coconut [56] by introducing an ideal functionality which captures
all the security properties of a threshold blind signature TBS. They introduced a new con-
struction that follows Coconut with a few modifications to realize TBS ideal functionality.
They have some changes for issuing blind signatures and for signature show.

Informally TBS scheme satisfies unforgeability, unlinkability and blindness. Unforgeabil-
ity guarantees unfeasibility for a corrupted user to convince an honest verifier that it has a
valid signature if in fact it has not. Blindness guarantees unfeasibility for a corrupted signer
to learn any information about the message m during the execution of IssueSig protocol,
except for the fact that m satisfies a predicate. Unlinkability guarantees unfeasibility for a
corrupted signer or verifier to learn anything about the message m, except that it satisfies
a predicate, or to link the execution of ProveSig with either another execution of ProveSig
or with the execution of IssueSig.

We use the improved version of Coconut [56] introduced in [52] with modifications (to
their construction such as modelling the communication between the user and the sign-
ing maintainer, and embedding the NIZK proofs needed throughout the TBS scheme into
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proofs generated in our construction as we describe in Sec. as a TBS scheme@ The
scheme TBS = (TBS.KeyGen, IssueSig, TBS.Agg, ProveSig, VerifySig) consists of the following
algorithms and protocols (maintainers and signers are interchangeable).

TBS.KeyGen algorithm can be replaced by a distributed key generation protocol using

e.g., [50] or [39].
@ ({(pk;»5kj)} ., » Pk) = TBS.KeyGen(1*, D, a)

1.

4.

Run (p,G,G,Gy, e, g,7) < G(1*) and pick ¢ random generators {h}!_, + G and set
the parameters par < (p, G, G, Gy, e, 9,7, {h-}1_,).

Choose (g 4 1) polynomials (v, {w,}?_,) of degree (a — 1) with random coefficients in
Z, and set (z, {yr}?_y) + (0(0), {ur (O)}_, ).

For j =1 to D, set the secret key sk; of each maintainer M; as sk; = (x5, {y;+}7_,) ¢
(v(j), {w-(j)}1_,) and set the verification key pk; of each maintainer M; as pk; =
(ay, {ﬁj,ryﬂj,T}Til) (g%, {g¥, v }1_,).

~ 7 P-4 q ~ ~
Set pk = (par, &, {57, 57}721) « (par, g%, {g¥, ¥ }1_,).

@ IssueSig protocol consists three following algorithms (PrepareBlindSign, BlindSign, Unblind).

as

1.

2.1. (acc®, 7y, {0, }7_,) < PrepareBlindSign(acc, ¢) algorithm is run by user U which is
follows:
Parse acq®| as acc = {m,}?_, € Z,. Pick a random value o & Z,, and compute com =
g° ngl h7 and send com to }—RO@ and receive h from Fgro.

Compute commitments to each of the messages. For {7}4

+—1, pick random o, ¢ Z, and
set com, = g°~h"™.

Compute a NIZK proof 7, for the following relation: my = NIZK{({m,}?_, ,0,{o-}!_,),
com = g° [1¢_, b A {com, = g™ }1_ A p({m,}!_, = 1)} and set
acc® = (com, {com, }?_, ,h)

2.2. O’;-B <+ BlindSign(skj, ¢, 75, acc®) algorithm is run by maintainer M; which is as follows:

Send com to Fro and receive h' from Fro. Abort if h # b’ or 7, is not correct.

Compute ¢; = h™ [[2_, com?”” and set the blind signature share

q
O’;-B = (h,h" H com¥i7)

=1

2.3. oj + Unblind({o,}?_, ,o¥F) algorithm is run by user U which is as follows:

1

2. Compute

T=1" i

Parse o as (h/,c;). Abort if h # h'.

q
aj = (hys;) < (hoe; [] B;:27)
T=1

3. Abort if e(h, a; [1?_, 77;) = e(s;, §) does not hold.

@ om TBS.Agg({aj}?:1 , pk) User U does the following;:

29

30
31

Note that, recently, Threshold Structure-Preserving Signatures [47] have been proposed, which

are compatible with Groth-Sahai (GS) proofs [41I]. Since GS proofs are straight-line extractable
in the standard model, they are particularly interesting for constructions such as ours aiming for
security in the UC framework.

acc is the tuple of field elements as a message in the signature.

Fro denotes functionality of random oracle which is a black box that provides a truly random
response from an output domain for every unique request.
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1. Let E € [1, D] be a set of « indices of maintainers in M.

2. For all j € E, evaluate at 0 the Lagrange basis polynomials I; = [[[;cp ., (9)/(i —
j)] mod p.

3. For all j € E, take 0; = (h, s;) and compute the signature

ou = (h,s) < (b, ][ s7)

jeEE
4. Abort if e(h,a[[_, B™) = e(s, §) does not hold.

@ (Ol'sﬂnd7 Ty, ) < ProveSig(p, oum, {mr}g—zl , pk)
User U does the following:

. Parse ow as (h, s), pick r & Z, and 1’ & Zy.

. Compute oift = (B',s") « (b, s" (')")

. Parse acc as {m,}7_,. Compute s < & [[?_, 87 §"

. Compute the NIZK pI‘OOfﬂ'U for the relation: m, = NIZK{({m,}?_, ,r):c =a ]!, B G" A

({m7}7=1) =1}
5. Set

W N =

q
Rnd (UII\?JItv Ii) _ H BmT ~7‘

® (1,0) « VerifySig(oyi, m, ¢, pk)
Maintainer (M;) does the following:

1. Parse of" as (ol k) and output 0 if A’ = 1 or if e(h, k) = e(s, §) does not hold.

2. Verify 7, and output 0 if the proof is not correct. Else, output 1

B Functionalities

The description of the ideal functionalities used in our protocol is as follows. Functionality
Fkr models key registration. A party calls the functionality with (Register,sid, key) to
register a key for the identifier U of the party. Later, all parties can call the functionality
with (RetrieveKey,sid, U) to receive the registered key key of party U; or they can call the
functionality with (RetrievelID,sid, key) to obtain the identifier of the owner of key.

,_[ Functionality Fxgr }

1. Register. Upon input (Register,sid, key) from U, output (Register,sid, U, key)
to A. Upon receiving (0k,sid,U) from A, record the pair (U, key), and output
(Registered,sid) to U.

2. Retrieve. Upon  input (RetrieveKey,sid, U) from Uj, output
(RetrieveKey,sid,U,U;) to A. Upon receiving (0k,sid,U,U;) from A, if there
exists a recorded pair (U,key), output (KeyRetrieved,sid, U, key) to U;. Else,
output (KeyRetrieved,sid,U, L) to U;.

Upon input (RetrieveID,sid, key) from U;, output (RetrieveID,sid, key, U;) to A.
Upon receiving (0k, sid, key, U ;) from A, if there exists a recorded pair (U7 key),

output (IDRetrieved, Sld U, key) to U;. Else, output (IDRetrieved,sid, key, L) to
U;.

J

For privacy-preserving requirements, Fcgpc does not leak the identities of users. To
realize this functionality, our protocol uses different types of communication channels Fcp,
to deliver messages and to meet network-level anonymity (e.g., preventing traffic analysis
attacks and extracting identities).
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,_[ Functionality F¢;, } .

Let define a set of parties where S and R denote two parties of the set as the sender
and receiver of a message m respectively. A is defined as follows based on parameters
of functionality. Message identifier mid is selected freshly by the functionality.

1. Upon input (Send,sid, R, m) from S, output (Send,sid, A, mid) to A.
2. Upon receiving (0k, sid, mid) from A, send (Received,sid, S,m) to R.

Set A based on the following parameterized functions:

— for Fg set A = (S,R,m). Upon receiving (Ok.Snd,sid, mid) from A, send
(Continue,sid) to
— for F&2 set A = (S,|m|).
— for F&? set A= (R, |m|).
— for F& set A= |m|.
— for Fg set A = (S,R,|m|). Upon receiving (0k.Snd,sid, mid) from A, send
(Continue,sid) to S.
— for Fg, set A= (R,m).
1. Upon receiving (0k, sid, mid) from A, send (Received,sid, m, mid) to R. Upon
receiving (0k.Snd, sid, mid) from A, send (Continue,sid) to S.
2. Upon receiving (Send, sid, mid, m’) from R, output (Send, sid, R, m’, mid) to A.
Upon receiving (0k.End, sid, mid) from A, send (Received,sid, R,m’) to S.

¢ This gives more power to adversary A who decides when the sender can proceed as sequential
message sending is required in the UC model.

In asynchronous Byzantine Agreement (BA) protocol a set of D parties agree on their
inputs, even facing malicious corruptions. The following functionality tolerates a malicious
adversary who statically corrupts up to t parties.

In our protocol Ilpgrep;i that tolerates static malicious adversaries, we use the following
asynchronous Byzantine Agreement functionality F,ga which can be implemented as follows.
Parties send their inputs to everyone. Once all D — t inputs are received, an honest party
switches its input to the bit that has the majority among D — t. Afterwards, parties engage
in a standard Byzantine Agreement protocol [I7].

,_{ Functionality 5, } \

Running with M = {Mj, ..., Mp} parties; Byzantine Agreement functionality Faga
proceeds as follows where initially @ < L:

1. Upon receiving (Agree.[label],sid,d;) from M, where d; € {0,1}, record
(Agree.[label], sid, d;, M;) and send (Agree.[label],sid, d;, M;) to A. Upon receiving
D —t distinct d; values: Set @ = d; once |{j|d;}| > c-t+ 1.

2. Upon receiving (Agree.[label].0k,sid) from A: If @ # L output
(Agreed.[label],sid, Q) to every M; via public-delayed output. Else, ignore.

In the following, we define the standard Broadcast functionality Fgc from [37] where it
does not guarantee secrecy for the message m.
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Functionality Fgc ]

Broadcast functionality Fgc parameterized by the set M = {My,...,Mp} proceeds as
follows:

Upon receiving (Broadcast,sid, m) from a party P, send (Broadcasted,sid, P, m) to
all entities in the set M and to A.

Fro defined in the following models an idealized hash function [20].

_[ Functionality Fro }

The functionality is parameterized by an output space Y and a message space M. Upon
receiving (Query,sid, m) from a party P:

1. Abort if m ¢ M,

2. Else, if a tuple (sid,m’, h) where m’ = m has not already been stored, select a
random h from Y where there is no stored tuple (sid, m*, k') where h’ = h, then
store (sid,m, h).

3. Take the stored tuple (sid,m’, h) where m’ = m and output (Query.Re,sid, h) to
party P.

Groth et al. [40] formalized ideal functionality of Non-Interactive Zero Knowledge (NIZK)
that was introduced by Blum et al. [16]. Fnizk does not specify the verifier in advance
different from the interactive zero-knowledge proof. The generated proof can be verified by
anyone.

,_[ Functionality Fyzk }

The functionality is parameterized by a relation R.

1. Proof. On receiving (Prove,sid,x,w) from U, ignore if (x,w) ¢ R. Else, send
(Prove,sid, x) to A. Upon receiving (Proof,sid, 7) from A, store (x,7) and send
(Proof,sid, 7) to U.

2. Verify. Upon receiving (Verify,sid,x,n) from U check whether (x,7) is stored.
If not send (Verify,sid,x,7) to A. Upon receiving the answer (Witness,sid,w)
from A, check (x,w) € R and if so, store (x, 7). If (x,7) has been stored, output
(Verification,sid, 1) to U, else output (Verification,sid,0).

Signature of knowledge (SoK) was first formally defined by Chase et al. [28]. In SoK, by
providing a valid signature, the signer proves the possession of a witness w to a statement x
for a relation R. It generalizes the notion of traditional signature where a signature under a
public key serves as a proof that the signer is in possession of the corresponding secret key.

Functionality Fsox )

J

The functionality is parameterized by a relation R. Moreover, Sign, Simsign and Extract
are descriptions of PPT TMs, and Verify is a description of a deterministic polytime
TM.
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1. Setup. Upon receiving (Setup,sid) from U if this is the first time
that (Setup,sid) is received, send (Setup,sid) to A; upon receiving
(Algorithms, sid, Sign, Verify, Simsign, Extract) from A, store these algorithms.
Output the stored (Algorithms,sid, Sign, Verify) to U.

2. Signature Generation. Upon receiving (Sign,sid, m,x,w) from U, if (x,w) ¢ R
ignore. Else, compute o < Simsign(m,x), and check that Verify(m,x,0) = 1. If
so, then output (Signature,sid, m,x,0) to U and record the entry (m,x, o). Else,
output an error message (Completeness error) to U and halt.

3. Signature Verification. Upon receiving (Verify,sid, m,x, o) from U;, if (m, x, ')
is stored for some ¢, then output (Verified, sid, m,x, o, Verify(m, x,0)) to U;. Else
let w + Extract(m, x,0); if (x,w) € R, output (Verified,sid, m,x, o, Verify(m, x, o))
to U;. Else if Verify(m, x,0) = 0, output (Verified,sid,m,x,0,0) to U;. Else out-
put an error message (Unforgeability error) to U; and halt.

C Security Definitions of PEReDi’s Building Blocks

C.1 d-sDDH Assumption

Definition 2. We say that the d-strong Diffie-Hellman problem is hard relative to G if for
any PPT adversary A there exists a negligible function negl(-) such that:
= xr I2 CEd T T xr
AV = | Pr[A(G,p, 9,97, 9" .., 9" ) = 1] =PrlA(G,p, g, 9™, 9", ..., g"*) = 1]| <
negly_sppH(A)
where (G, p, g) < G(1*) and the probabilities are taken over the choices of (x, 1, ..., 2q) &
Lp,.

C.2 Security Properties of Commitment Scheme
Let com = (com.Setup, Commit, com.Vrf) be a commitment scheme.

Definition 3. For any PPT adversary A, the hiding property is defined as the following
security experiment between A and a challenger parameterized by a bit b € {0,1}:
Hid-com(A, \):

1. The challenger runs PubPar & com.Setup(1*) and outputs PubPar to A.
2. A gives two messages (mg,m1) such that mg A my; € M to the challenger.
3. The challenger computes (comy;r) = Commit(my) and outputs com; to A.
4. A outputs a bit b/ to the challenger.

; 1
Adyid-com — |§ — Pr[Hid-com(A, \) s.t. b = b]| < neglcom(N)

We say that commitment scheme com is perfectly hiding if Advt!lid"Com =0.

Definition 4. For any PPT adversary A, the binding property is defined as the following
security experiment between A and a challenger parameterized by a bit b € {0,1}:
Bind-com(A, \):

1. The challenger runs PubPar & com.Setup(1*) and outputs PubPar to A.
2. A outputs (com,mg, my,7r0,71).

AvaBétind'Com = Pr[Bind-com(A, A) s.t. com.Vrf(com,mg,r9) =1 A com.Vrf(com,my,r) =

1 A mg 7é ml] < neglcom(A) -
We say that commitment scheme com is perfectly binding if Adv5" ™ = 0.
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C.3 CPA Security of Public Key Encryption Scheme

Definition 5. Let PKE = (PKE.Gen, Enc, Dec) be a public key encryption scheme. The fol-
lowing security experiment between PPT adversary A and a challenger is parameterized by
a bitb e {0,1}:

IND-CPAS, £ (A, \):

1. The challenger runs (pk, sk) & PKE.Gen(1*) and outputs pk to A.

2. A gives two messages (mg, m1) such that |mg| = |my| to the challenger.

3. The challenger computes ¢, = Encpu(my) and outputs ¢, to A.

4. A outputs a bit b’ to the challenger (if A aborts without giving any output, we set b’ < 0).

Adv'NP-PA — | Pr[IND-CPAb ke (A, A) = 1] — Pr[IND-CPAS (A, \) = 1]| < neglpke(N)

C.4 Existential Unforgeability of Digital Signature Scheme

Definition 6. Let DS = (DS.Gen, Sign, Verify) be a digital signature scheme. Existential
Unforgeability under Chosen-Message Attack (EUF-CMA) is defined using the following

game between PPT adversary A and the challenger:
EUF-CMAps(A, A):

1. The challenger runs (vk,sk) & DS.Gen(1*) and gives the adversary A the resulting
verification key vk and keeps the secret key sk to itself.

2. The adversary A submits signature queries for {m,}?_,. To each query m, the chal-
lenger responds by running Sign to generate a signature o, of m. and sending o, to the
adversary A.

3. The adversary A outputs a pair (m,o) and wins if o is a valid signature of m according
to Verify and (m, o) is not among the pairs (m,,o;) generated during the query phase.

AdvEPFMA — PrEUF-CMAps (A, \)] < neglps(A)
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