
Secure Single-Server Fuzzy Deduplication without
Interactive Proof-of-Ownership in Cloud

Shuai Cheng, Shengke Zeng∗, Yawen Feng, Jixiang Xiao
School of Computer and Software Engineering

Xihua University
Chengdu, China

scheng98@163.com

Haoyu Zheng
Xihua College

Xihua University
Chengdu, China

RicardoZhy@outlook.com

Abstract—The redundant of multimedia data made an un-
necessary waste in encrypted cloud storage, unlike text with
completely consistent content, multimedia data allows a certain
degree of similarity in deduplication, In this work, we focus on
the multimedia data which takes a seriously proportion of storage
in scenarios such as data outsourcing to propose secure fuzzy
deduplication without the additional servers based on Conver-
gent Encryption(CE), say the Single-server Fuzzy Deduplication
(SSFD). Compared to the related fuzzy deduplication, SSFD is
strong at resisting brute-force attacks caused by server-server
collusion, moreover, we also put server-client collusion attacks
into security solutions. Additionally, to enhance the security
of data, the proposed scheme provides both protection against
replay attacks and verification of label consistency and adds
no extra communication such as Proof of Ownership(PoW) in
interaction. We separately presented a formal security analysis
and performed performance at last to prove security solutions
and evaluate the experimental results, it shows SSFD provides
both a reliable fuzzy images secure deduplication protocol and
a computationally feasible solution.

Index Terms—Cloud storage, fuzzy deduplication, single-
server, proof of ownership, convergent encryption.

I. INTRODUCTION

Cloud servers greatly facilitate data owners to save local
storage, At the same time, there is a considerable proportion
of redundant data in these outsourced servers, and redundancy
in backup and archival storage systems is significantly more
than 90% [1]. Among these redundant data, nearly-identical
files occupied an eye-catching portion. The purpose of secure
fuzzy deduplication is to delete the large quantity of identical
or almost identical files or blocks [2] [3] [4] (including videos,
pictures, audio, etc.) uploaded, and only securely keep one
copy on the server [5], in short, the deduplication technology
can both avoid unnecessary consumption of computation and
storage burden [6] [7] while providing a well-protected on
data. Deduplication technology has become a common means
of saving communication overhead and storage capacity for
most cloud service providers(including Amazon S3, Bitcasa
and Microsoft Azure [8]) today. This way of retaining finan-
cial resourcing for cloud service provider shows data secure
deduplication great significance [9].

The first scenario of deduplication came up in 2000 [10],
however, it is difficult to compare ciphertexts encrypted by
users with different private keys. To solve this problem,

Convergent Encryption (CE) [11] extracts the secret key from
the plaintext for encryption and decryption. Bellare et al.’s
[12] proposed Message-Locked Encryption (MLE), which
calculates the encryption key by combining the unencrypted
data and system parameters. Time has come to today, there
is a variety of deduplication mechanisms have been proposed
[8] [13] [14] [15] [16], however, these plans do not apply to
fuzzy data effectively, the difference between similar files and
completely identical files in the above deduplication scheme
reflects on they only allow the identical-same documents in
deduplication.

Thus, to further reduce data redundancy in storage, Li
et al.’s [4] and Chen. et al.’s [17] both proposed a secure
deduplication scheme for similar images. However, their
schemes are based on sharing a group key and can only
remove redundant images within this group. For a system
that interacts with multi-user and cross-domain, the scope of
this deduplication mechanism is heavily limited. Jiang.et al.’s
[18] proposed a FuzzyMLE and a FuzzyPow scheme, which
can effectively solve the data deduplication, where FuzzyMLE
has security enhancements ith an aided server, conceiving a
situation that collusion may exist between the storage server
and aided server, the server-aided-based scheme is not reliable
mechanisms against brute force attacks. For seeking profit, the
aided server and the storage server definitely can leak data to
each, giving exposure to stored information which belongs
to clients. Additionally, as Jiang.et al.’s mentioned about the
process of FuzzyPow, once the server obtain both ciphertext
cw and the similar one c′w, it will be able to compute plaintext
w as w ⊕ w′ = cw ⊕ c′w with a similar file w′. Although
Oblivious Transfer(OT) is used to protect cw, actually, it still
takes a risk in operating leak-prohibited ciphertext.

Liu et al.’s [14] raised a scheme that only relies on one
single server to deduplicate for the first time. However, it takes
no consideration of collusion between the server and clients,
and it’s a pity that this whole deduplication scheme only works
for exactly the same files rather than similar data. A new
single-server deduplication scheme was proposed by Takeshita
et al.’s to try to solve the problem of nearly-identical Image
deduplication [2]. As Takeshita et al.’s argued in the article,
the scheme of them cannot resist brute force attacks carried

by repeatedly querying both server and clients, moreover, the
experimental evaluation of Takeshita et al.’s only show the
time cost rather than the effect of deduplication in quantity so
we cannot give a frank judgment to admire this deduplication
mechanism is efficient. There are huge pits in single-server
fuzzy deduplication still not filled.

To overcome the above-mentioned challenges, in this paper,
we implemented a secure single-server fuzzy deduplication
mechanism without extra interactive proof-of-ownership. It
mainly consists of three contributions as following:

• We conceive a strategy that uses a single server, com-
pared to the existing single-server scheme, we aim at
ending the brute force attack caused by the sever coop-
eration with the uploader, since the privacy of the client
summoned by the uploader may be revealed under this
collaboration.

• We pose a proposal that only allows the clients who
hold the original value of phash being able to recover
the key of the encrypted similar images. No need for
extra interactively challenges and responses like PoW,
and we set an additional verification mechanism in server
to maintain the consistency of the tag.

• The security analysis and experimental evaluation of
SSFD are shown at the end. The precision of our dedupli-
cation rate is well-performing derived from experimental
results. Besides, SSFD is competent to be against online
brute-force attacks by restricting times of communica-
tion. It can provide thorough privacy protection while
completing the outstanding data deduplication which is
based on a large amount of experimental data.

In subsequent articles, system models and design goals will
be discussed in Section 2, then, we will describe preliminaries
in Section 3, after that, we have an exhaustive introduction to
the scheme and system in Section 4, and security analysis and
performance evaluations are respectively depicted in Section
5 and Section 6, finally, the conclusion will be concluded in
Section 7.

II. MODELS

A. System Model
Different from most existing cloud (cloud computing) re-

lated research schemes [2] [19] [20], our system relies on
no additional servers. The whole entity of SSFD consists of
three entities: an uploading client, who outsources its image
files to the cloud server, a cloud service provider who is
responsible for storing private pictures and need long-term
preservation in this interactive protocol, and a number of
summoned client Ci = {C1, C2, ..., Cn}, where n is the
number of clients summoned by the uploading client, and Ci

is the first uploader of the file, they will be gathered together
for aiding the uploading client to obtain the symmetry key.
Figure 1 illustrates the system architecture.

B. Threat Model
An honest-but-curious server S will comply with the

process of deduplication faithfully while it provides honest

Uploading client(C)

b.f
irs

t up
loa

d

a.upload preparation

c.deduplication

Summoned client(Ci)

c.deduplication

Cloud service provider(S)

Fig. 1. System model

storage services, on the other hand, it is curious about the
plaintext of encrypted data and attempts to learn the plaintext
by Internal off-line guess attacks.

A malicious uploading client C attempts to defraud the
server and possess the ownership of files that do not belong
to itself by transmitting data that has been used or expired
data. In addition, C can guess the content of the plaintext
uploaded by Ci in the way of exchanging the parameters and
other information provided by Ci through federating with S.

A malicious summoned client Ci may provide incorrect
information during the stage of comparison, resulting in
redundant or even loss of data in the S. Besides, it can also
deceive C and have guessing attacks by the means of colluding
with S.

III. PRELIMINARIES

A. Hamming Distance and Threshold

Haming Distance. Hamming distance represents the number
of two characters in positions corresponding to two (of the
same length) strings.

Definition 1 (Hamming Distance). For x and y over a finite
binary Fn, where x = {0, 1}n, y = {0, 1}n the Hamming
distance denoted d(x, y), is defined as the number of positions
at which x and y differ, i.e., d(x, y) =

∑n
1 xi ⊕ yi, where

xi, yi respectively from ith position of x and y.
Threshold. Hamming distance is commonly used to indicate
the degree of similarity between two strings.

Definition 2 (Threshold). We set D to represent the threshold
of the Hamming distance to judge similarity or not as below:

1) If d(x, y) = 0, x and y are identified as identical strings
2) If d(x, y) ≤ D , x and y are identified as similar strings.
3) If d(x, y) > D , x and y are identified as dissimilar

strings.

B. Perceptual Hashing

Perceptual hashing(phash) is a one-way mapping that
transforms multimedia data sets into perceptual summary
sets, it detects images with the same perception content [21].

Definition 3 (Perceptual Hashing). Here are the properties of
phash:

1) Digest similarity: For x and x′ are two images op-
erating on finite collection of plaintext space K, the value
extract by phash denoted phash(x), phash(y), there have
d(phash(x), phash(x′)) ≤ D when x is similar to x′, else
will be d(phash(x), phash(x′)) > D on K.

2) One-way: it can calculate phash(x) with a given
x, but the process is irreversible that is computationally
unfeasible to find the input x when given the output phash(x).

We resize the image into a fixed-size gray matrix, and then
partition the image matrix after DCT changes into blocks,
next, calculate the entropy value of each block. Finally, we
connect them into a string in as the value of the perceptual
hash. Due to the limited pages of this conference, again, we
do not provide a detailed description and relevant parameters
about this process, those who are interested can pay attention
to our full version.

C. Exchange Rules

The exchange table is the main item among the exchange
rules, it can protect the confidentiality of multiple strings
during the comparison process. Figure 2 provides an example
of convert which used an 8-bit binary sequence under the
exchange rules.

C : ex1={(1,5)(3,7)} S : ex2={(2,4)(6,8)}exchange ex1, ex2

ETc = combin(ex1, ex2) ETs = combin(ex1, ex2)
⇓ ⇓

combin

{(
(1, 5)
(2, 4)

)
,

(
(3, 7)
(6, 8)

)}
combin

{(
(1, 5)
(2, 4)

)
,

(
(3, 7)
(6, 8)

)}
⇓ ⇓

ETc = (1, 2)(4, 5)(3, 8)(6, 7) ETs = (1, 4)(5, 2)(3, 6)(7, 8)

str =

8-bit︷ ︸︸ ︷
1 0 1 0 0 0 1 1

ETc(str) = 1 0 1 0 0 0 1 1
1 2 3 4 5 6 7 8

ETs(str) = 1 0 1 0 0 0 1 1
1 2 3 4 5 6 7 8⇓⇓

ETs(str) = 0 0 0 1 0 1 1 1ETc(str) = 0 1 1 0 0 1 0 1

ETc(ETs(str)) = ETs(ETc(str)) = 0 0 1 0 1 1 1 0

Fig. 2. An example of convert which used an 8-bit binary sequence under
the exchange rules

Definition 4 (Exchange Rules). C and S are the participants
in deduplication, they each provide a set of position pairs,
which we call the exchange factor(ex) here. For the purpose of
avoiding repeat positions, the positions provided by one party
must be even-numbered, so the other party can only provide
odd-numbered positions. As the two parties receive each
other’s ex, they rearranged the position to generate an ex-
change table(ET) by using the exchange function combine()
which randomly combines the received ex1 and their local
ex2 follow the corresponding ordinal position. Finally, c and
s will get their own rearranged ET respectively called ETc

and ETs. We will use ET (str) to define an operation hat
exchanges string str with table ET , and ET has the following
properties.

• Comparability: for a string str and two exchange tables
ETc and ETs generated by the same set of exchange
factors, there is

ETc(ETs(str)) = ETs(ETc(str)).

• Reversibility: for a string str and exchange tables ETc,
there is

ETc(ETc(str)) = str.

IV. PROPOSED SCHEME

A. Upload Preparation

Clients who want to upload files in this system must
experience upload preparation as follow steps to know the
target clients(who may have similar files) and whether their
files need further deduplication.

Step1: C and S generate their private exchange table. C
and S will select half of the positions as exchange factors re-
spectively according to the length of the perceptual hash(e.g.,
256 bit).

• C and S form their exchange factor exc and exs sep-
arately by randomly combining odd positions and even
positions, then they exchange the exc and exs to each

• When they receive the exchange factor from another side,
C and S respectively compute
ETs = Combin(exc, exs), ETc = Combin(exc, exs),

where Combin(·) is the random combination operation
for exchange factors.

Through the above-mentioned interactions, C and S formed
their unique and private exchange table ETc and ETs.

Step2: C and S double exchange phash. In order to
achieve the confidentiality of the information and enable
effective comparison, we process the extracted value of
phash as follows.

• C and S respectively extract the perceptual hash value
phc, phs from the image I and Is by the following
formula:

phc = phash(I), phs = phash(Is).
where I the uploading image of C, Is the unified
and unique compared image of S, and phash(·) is the
perceptual hash extraction operation.

• Then they make the first exchange of phc and phs with
their own private exchange table ETc and ETs to obtain
ETc(phc) and ETs(phs), next, S sends ETs(phs) the to
C.

• When C receives ETs(phs), it computes Ephs which is
exchanged twice with the following formula and sends
Ephs, ETc(phc) to S.

Ephs = ETc(ETs(phs)).
• Finally, S obtains both Ephs which be double ex-

changed, and ETc(phc) which is exchanged once, then it
exchanges the latter one again by the following formula:

Ephc = ETs(ETc(phc)).
The exchanged phash swapped by the exchange table can

be safely transmitted in the channel, moreover, even if an
original binary sequence and its exchanged state are known
to the adversary, the probability of guessing the exchange table
can be negligible.

Step3: S performs a deduplication check. for the purpose
of confirming whether the uploading image is a duplicate file

and determining whether to perform a further deduplication
operation, S performs the following operations.

• S calculates the Hamming distance dc of two double
exchanged perceptual hashes Ephc, Ephs with the fol-
lowing formula.

dc = d(Ephc, Ephs).
where d(·) is the Hamming distance calculation opera-
tion.

• If there have all dci make |dc − dci| > D, where D is
the threshold in deduplication and dci is the Hamming
distance stored in the S and compared Ic with the
previously uploaded image, then they will enter the first
upload phase.

• If there exists any dci that makes |dc − dci| ≤ D, then
they will enter the deduplication phase.

B. First Upload

If there are no duplicate files in the cloud, then S will ask C
to upload image I after the deduplication check. The specific
process is as follows.

• S instructs C to upload image I with the message First
Upload, which means that S does not store a file similar
or identical to I .

• when C received the instruction, it will encrypt uploading
Image I by using phash of I as the encryption key as
below:

• Then C will send IDc of itself and CI to S,
after S obtains the information, it will record
{dc, CI , IDc, ETs, ETc(phc), Ephs, exc, exs} as a in-
formation link with C .

CI = SEphc(I).
where SEk(·) is the symmetric encryption algorithm
with a key k.

C. Deduplication

When C enters the deduplication phase, it means that the
S may have stored an image similar to the uploading one, so
C needs to interact with Ci to figure out whether files are
duplicated in the help with S.

Step1: C interacts with Ci with a new exchange table.
After S narrowed down the scope of target clients which may
have the same or identical image, we need a more precise
comparison between C and Ci. So we need a new round of
exchanges as follows.

• According to the Hamming distance dci which is
within the threshold D, S will find the record
{CIi, IDci, ETsi, ETci(phci), Ephsi, exci, exsi} which
are linked to Ci.

• Instead of exchanging with ETsi, S computes the ex-
changed phash value of its phs by using ETci which
belongs to uploaded Client Ci as

ETci(phs) = ETsi(Ephsi),
where Ephsi is the double exchanged phash of Ci.

• Then S sends {IDci, ETci(phci), exci, exsi, ETci(phs)}
to C, C generates a new exchange table ET ′

c by com-
puting

ET ′
c = Combin(exci, exsi).

• Based on this new exchange table ET ′
c, C swaps phc of

its image and obtains ET ′
c(phc), then it has to double

exchange phci which is swapped by ETc for the first
time, and phs which are also swapped by ETc. the double
exchange formula is
Eph′

ci = ET ′
c(ETci(phci)), Eph′

si = ET ′
c(ETci(phs)),

• C sends {Eph′
ci, Eph′

si} to S, then S keeps Ephci and
Ephsi which are exchanged twice. After that, C delivers
ET ′

c(phc) to Ci according to IDci.
• Ci finished the double exchange of phc by using its own

private table ETci as
Eph′

c = ETci(ET ′
c(phc)).

Step2: S validates the exchange table of Ci. So far, C and
Ci have co-generated Eph′

c, Eph′
ci and Eph′

si by using a new
double exchange for phc, phci and phs, Eph′

c and Eph′
si will

be compared in this step to judge whether Ci is exchanged
with the correct exchange table ETci. The specific process is
as follows.

• Ci sends the phash Eph′
c which has double exchanged

to S.
• When S received both Eph′

c and Eph′
si, it will calculate

the Hamming distance d′c between them as
d′c = d(Eph′

si, Eph′
c).

• If d′c equals dc, where dc is the Hamming distance
between phc and phs calculated in the upload preparation
phase, then S will assume that Ci used the correct
exchange table ETci and judge it as an honest client.

• If d′c not equals dc, then S will assume that Ci used
the incorrect exchange table and judge it as a dishonest
client, then the remaining operations will be terminated.

Step3: S starts a further deduplication check. After con-
firming that Ci provided the correct exchange table, S will
check the Hamming distance between the phash value of
the uploaded image and the compared one to form a final
determination as to whether the file is duplicated. Procedures
can be described as follows.

• S will calculate the Hamming distance d′ci between
the two double exchanged phash Eph′

c and Eph′
ci by

computing
d′ci = d(Eph′

c, Eph′
ci).

• If there are all d′ci > D, then S will decide that it did
not store a duplicate file of image I , and the first upload
phase with the C.

• If there is a d′ci ≤ D, then S will identify I as a
duplicate file of a stored image belonging to Ci, then
it will compute The XOR value of the double exchanged
phash which we also named the position difference value
P as

P = Eph′
c ⊕ Eph′

ci

• Then S sends urlI to client C, where urlI is the public
resource locator of CI . Meantime, S sends P to Ci.

Step4: Ci verifies P and inverses exchange P for once.
Ci needs to prevent C and S from obtaining the private
phash phci with using unrelated images by verifying the
similarity among these images. After this verification with
the right result, Ci will have an inverse exchange on P
with its own table ETci. The operation will be performed
according to the following procedure.

• To sum the number dp of 1 in P , which also is the
Hamming distance between phc and phci, Ci calculates

dP =
∑256

i=1 Pi

where P used here is 256-bit binary sequence and P =
{P1, P2, ..., P256}.

• If dP > D, then Ci will determine that there is abnormal
behavior in the system and quit the process of dedupli-
cation.

• If dP ≤ D, then Ci will perform an inverse exchange of
P using its own table ETci as

ET ′
c(phc ⊕ phci) = ETci(P).

• In the end of this step, Ci delivers ET ′
c(phc ⊕ phci

directly to C.
Step5: C recovers and verifies the symmetric key. In this

step, C needs to recover the symmetric key phci by using
the received data and phc. In addition, to prevent Ci and
S from conspiring to deceive C, C also needs to verify the
authenticity of the phci. The process can be followed.

• C will find the corresponding ciphertext CI which is
stored on the server according to this urlI and keep it
temporarily local.

• After being given the ET ′
c(phc ⊕ phci), C recovers the

key as
phci = ET ′

c(ET ′
c(phc ⊕ phci)⊕ phc.

• phci will be used as the symmetric key to decrypt Ci and
C verifies phci by computing

phash(Dephci
(Ci)),

d(phci, phc).
• If both phci == phash(Dephci(Ci)) and d(phci, phc) ≤

D, it would be a smooth and reasonable situation which
mean C got the correct decryption key, then it will pre-
serve only {phci, urli} and drop others to save storage.

• Otherwise, C will determine that there is abnormal
behavior in the system and quit the process of dedupli-
cation.

Through the above verification, C can effectively prevent
Ci and S from conspiring to use an unrelated the image to
obtain the information about image owned by C, and avoid
further guessing attacks.

V. SECURITY ANALYSIS

In this section, we give a careful analysis of the security
properties of our scheme. We infer that the data confidentiality
is guaranteed by proving the security of the exchange table
ET , then we show that the probability of acquiring the ET is

negligible to prove the collusion resistance, and we describe
the infeasibility of online and offline guesses respectively to
show that resistance to brute-force attacks. Finally, resistance
to replay attacks and tag consistency are proven by analyzing
security of communication in the deduplication system and
feasibility of the tag verification mechanism separately. Un-
fortunately, due to space constraints, we do not describe them
in detail here. Those who are interested can pay attention to
our full version.

VI. PERFORMANCE EVALUATIONS

A. Simulation Results

Feature extraction time with phash. We selected an
image with 180KB and 1200 × 1005 pixels by using
CC WEB VIDEO [22], then resize it to multiple sizes while
maintaining the aspect ratio, and test the time spent in ex-
tracting features under the changed size for 50 times each.
The result is shown in the Figure 3, we can see the time
cost is less than 100ms at the image size of 4038 × 3417,
moreover, in the normal size of 480 × 402 pixels, the time
spending is closing 20ms which is an acceptable cost.

240×201 480×402 720×603 960×804 1200×1005 1440×1206 1680×1407 1920×1608 2160×1809 2400×2010 2640×2211 2880×2412 3120×2613 3360×2814 3600×3015 3840×3216 4080×3417

Image size

10

20

30

40

50

60

70

80

90

T
im

e
 c

o
st

(m
s)

Fig. 3. Time cost of phash in various sizes

Variation of deduplication rate at several thresholds. In
this simulation, we modify a certain proportion of pixels in
random positions of the picture to random values. In addition,
we also set various thresholds D (including D=30, D=35,
D=40), and the phash length is set to 256 bits. We know from
Figure 4, observing that under a certain degree of modifica-
tion, these thresholds have a suitable deduplication rate, where
D=40 takes the best effect which has the deduplication rate
remains above 0.9 When the percentage of modified pixels is
lower than 2%.

0% 1% 2% 4% 6% 8% 10% 20% 30%

Percentage of modification

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ed

up
lic

at
io

n
ra

te

D=40

D=35

D=30

Fig. 4. Deduplication rate Pdr affected by modifying pixels in various
thresholds

Influence of various distortions on the deduplication.
Considering the distortion occurs frequently In the transmis-
sion, we tested in this simulation under the influence of
circular mean filter blur, motion filter blur, Gaussian noise,
and salt&pepper noise with 20505 images, as the experimental
results of Pdr with exact data have shown in Figure 5, where
Pdr is the deduplication rate, and the calculation formula
of the deduplication rate is given as Pdr = 1 − N/T, we
found that with the increase of the number of pictures, the
deduplication rate Pdr still remained within a stable limit,
which testify our system have a good robustness in face

of conventional interference, so that the distortion changes
caused by the above blurring and noise can be accurately
detected within a certain range, and the threshold we chose
for this experiment is D=40.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.2505

Number of pictures 104

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

D
e

d
u

p
lic

a
tio

n
 r

a
te

circular mean filter blur

motion filter blur

Gaussian noise

salt&pepper noise

Fig. 5. Deduplication rate Pdr influenced by various distortion

Comparing to the Existing Fuzzy Deduplication Scheme
[18] We compared the deduplication rate of this scheme
with the existing scheme in this part with a different
threshold(D=30,D=40,D=50), which we both using the non-
replicated images from the same dataset of CC WEB VIDEO
with similar numbers respectively are 22317 of Jiang.et al.’s
[18] and 22505 of our proposal. Notably, due to the distinction
in the algorithms, the selected thresholds of the corresponding
algorithms selected should also be different, where the com-
pared thresholds selected by Jiang are t=1, t=2 and t=3. We
set the pixel modification value of the picture to 1.5%, and
the detail of this comparison is shown in the Figure 6.

(t=1) (t=2) (t=3) (D=30) (D=35) (D=40)

Various thresholds of Jiang's scheme and SSFD's scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ed

u
p
li

ca
ti

o
n
 r

at
e

af
fe

ct
ed

 b
y
 m

o
d
if

y
in

g
 1

.5
%

 p
ix

el
s

0.325

0.65

0.85 0.852

0.908

0.954Jiang's scheme

Our's scheme

Fig. 6. Deduplication rate Pdr affected by modifying 1.5% pixels in various
thresholds

The experimental result shows that despite the modification
of 1.50%, our deduplication rate remains above 85%. Com-
pared with the Jiang‘s scheme which set t=3, although the
deduplication rates are seen almost the same, however, we
slightly higher under this influence.

VII. CONCLUSION

This paper designs a single-server fuzzy deduplication
scheme mainly aims at images which does not require re-
dundant file ownership authentication interaction. In order to
securely deduplicate files, we design a novel phash function
and exchange table ET to extract the image features and be
as the blinding tags respectively. Both security analysis and
experimental evaluation show that our scheme can resist collu-
sion or other forms of brute force attacks, and can effectively
verify the consistency of labels and prevent repeat attacks
to ensure data confidentiality. Additionally, SSFD also has a
satisfactory deduplication effectiveness with its deduplication
rate.

REFERENCES

[1] H. Biggar, “Exeperiencing data de-duplication: improving efficiency and
reducing capacity requirements,” 2007.

[2] J. Takeshita, R. Karl, and T. Jung, “Secure single-server nearly-identical
image deduplication,” 2020.

[3] M. Chen, S. Wang, and L. Tian, “A high-precision duplicate image
deduplication approach.,” J. Comput., vol. 8, no. 11, pp. 2768–2775,
2013.

[4] X. Li, J. Li, and F. Huang, “A secure cloud storage system supporting
privacy-preserving fuzzy deduplication,” Soft Computing, vol. 20, no. 4,
pp. 1437–1448, 2016.

[5] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level
cache deduplication,” in Proceedings of the 28th ACM international
conference on Supercomputing, pp. 53–62, 2014.

[6] H. Hovhannisyan, K. Lu, R. Yang, Q. Wen, and W. Mi, “A novel
deduplication-based covert channel in cloud storage service,” in
GLOBECOM 2015 - 2015 IEEE Global Communications Conference,
2014.

[7] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani, “Demys-
tifying data deduplication,” in Proceedings of the ACM/IFIP/USENIX
Middleware’08 Conference Companion, pp. 12–17, 2008.

[8] R. Di Pietro and A. Sorniotti, “Proof of ownership for deduplication
systems: a secure, scalable, and efficient solution,” Computer Commu-
nications, vol. 82, pp. 71–82, 2016.

[9] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security & Privacy,
vol. 8, no. 6, pp. 40–47, 2010.

[10] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past, present,
and future of data deduplication,” Proceedings of the IEEE, vol. 104,
no. 9, pp. 1681–1710, 2016.

[11] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proceedings 22nd international conference on distributed
computing systems, pp. 617–624, IEEE, 2002.

[12] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryp-
tion and secure deduplication,” in Annual international conference on
the theory and applications of cryptographic techniques, pp. 296–312,
Springer, 2013.

[13] S. Keelveedhi, M. Bellare, and T. Ristenpart, “{DupLESS}:{Server-
Aided} encryption for deduplicated storage,” in 22nd USENIX security
symposium (USENIX security 13), pp. 179–194, 2013.

[14] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted
data without additional independent servers,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pp. 874–885, 2015.

[15] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized server-aided en-
cryption for secure deduplication in cloud storage,” IEEE Transactions
on Services Computing, vol. 13, no. 6, pp. 1021–1033, 2017.

[16] Y. Zhang, C. Xu, N. Cheng, and X. Shen, “Secure password-protected
encryption key for deduplicated cloud storage systems,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 19, no. 4, pp. 2789–
2806, 2021.

[17] L. Chen, F. Xiang, and Z. Sun, “Image deduplication based on hashing
and clustering in cloud storage,” KSII Transactions on Internet and
Information Systems (TIIS), vol. 15, no. 4, pp. 1448–1463, 2021.

[18] T. Jiang, X. Yuan, Y. Chen, K. Cheng, L. Wang, X. Chen, and J. Ma,
“Fuzzydedup: Secure fuzzy deduplication for cloud storage,” IEEE
Transactions on Dependable and Secure Computing, 2022.

[19] Z. Yan, L. Zhang, D. Wenxiu, and Q. Zheng, “Heterogeneous data
storage management with deduplication in cloud computing,” IEEE
Transactions on Big Data, vol. 5, no. 3, pp. 393–407, 2017.

[20] X. Liu, K.-K. R. Choo, R. H. Deng, R. Lu, and J. Weng, “Efficient and
privacy-preserving outsourced calculation of rational numbers,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 1,
pp. 27–39, 2016.

[21] X. Yang, R. Lu, J. Shao, X. Tang, and A. Ghorbani, “Achieving efficient
secure deduplication with user-defined access control in cloud,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[22] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication on
encrypted big data in cloud,” IEEE transactions on big data, vol. 2,
no. 2, pp. 138–150, 2016.

	Introduction
	Models
	System Model
	Threat Model

	Preliminaries
	Hamming Distance and Threshold
	Perceptual Hashing
	Exchange Rules

	Proposed Scheme
	Upload Preparation
	First Upload
	Deduplication

	Security Analysis
	Performance Evaluations
	Simulation Results

	Conclusion
	References

