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Abstract

In this note we explain how to compute n KZG proofs for a polynomial of degree d in time superlinear of
(n+ d). Our technique is used in lookup arguments and vector commitment schemes.

1 Preliminaries

1.1 Setup

Let F be a field and let G be a group with a designated element g, called a generator. We denote [a] = a · g for
integer a.

1.2 KZG Commitment Scheme

Setup. In a KZG commitment scheme [KZG10] for polynomials of degree up to d a Verifier or a trusted third
party first selects a secret s and then constructs d elements of G:

[s], [s2], . . . , [sm].

Commitment. Let f(X) =
∑

0≤i≤d fiX
i ∈ F[X] be a polynomial of degree d. Then a commitment Cf ∈ G is

defined as
Cf =

∑
0≤i≤d

fi[s
i],

being effectively the evaluation of f at point s multiplied by g.

Proof. Note that for any y we have that (X − y) divides f(X)− f(y). Then the proof that f(y) = z is defined as

π[f(y) = z] = CTy ,

where Ty(X) = f(X)−z
X−y is a polynomial of degree (d− 1).

Note that a proof can be constructed using d scalar multiplications in the group. The coefficients of T are
computed with one multiplication each:

Ty(X) =
∑

0≤i≤d−1

tiX
i; (1)

td−1 = fd; (2)

tj = fj+1 + y · tj+1. (3)

Expanding on the last equation, we get

Ty(X) = fdX
d−1 + (fd−1 + yfd)Xd−2 + (fd−2 + yfd−1 + y2fd)Xd−3+

+ (fd−3 + yfd−2 + y2fd−1 + y3)Xd−4 + · · ·+ (f1 + yf2 + y2f3 + · · ·+ yd−1fd). (4)
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1.3 Discrete Fourier Transform

Let n be a positive integer. Then ω ∈ F is called n-th root of unity if ωn = 1 and ωi 6= 1 for i < n.
Dicrete Fourier Transform for vectors in Fn is defined as

DFTn(a0, a1, . . . , an−1) = (b0, b1, . . . , bn−1)

where
bi =

∑
0≤j≤n−1

ajω
ij .

It is easy to see that bi are essentially evaluations of polynomial a(X) =
∑

j ajX
j in points ω0, ω1, . . . , ωn−1. As a

polynomial of degree n− 1 is defined by its values in n points, DFT is invertible. We denote its inverse by iDFTn.
In a vast majority of finite fields with characteristic bigger than n, the DFT can be computed in O(n log n)

time with an algorithm called FFT (Fast Fourier Transform) [CT65]. An overview of such methods can be found
in [DV90].

2 Multiple KZG proofs

In this section we derive our main result.

Theorem 1. Let {[si]} be KZG setup of size at least d, and fi be the coefficients of polynomial f(X) of degree d.
Let {ξi}1≤i≤n ⊂ F be field elements, and suppose that FFT with complexity n log n is available for n-sized vectors.
Then KZG proofs for evaluating f at {ξi} can be obtained

• In O((n+ d) log(n+ d)) group operations (scalar multiplications) if {ξi} are n-th roots of unity.

• In O(n log2 n+ d log d) group operations in other cases1.

2.1 Formula for multiple proofs

Let ξ1, ξ2, . . . , ξn be field elements and let f(ξk) = zk. We show how to construct KZG proofs for all these (ξk, zk)
pairs simultaneously.

Proposition 1. Let {[si]} be KZG setup of size at least d, and fi be the coefficients of polynomial f(X) of degree
d. Let {ξi} ⊂ F be field elements. Then KZG proofs for evaluating f at {ξi} are evaluations of polynomial
h(X) ∈ Gd−1[X] with

h(X) = h1 + h2X + . . .+ hdX
d−1. (5)

where
hi =

(
fd[sd−i] + fd−1[sd−i−1] + fd−2[sd−i−2] + · · ·+ fi+1[s] + fi

)
.

Proof. Note that a proof for ξk is

π[f(ξk) = zk] = CTξk
= fd[sd−1] + (fd−1 + ξkfd)[sd−2] + (fd−2 + ξkfd−1 + ξ2kfd)[sd−3]+

+ (fd−3 + ξkfd−2 + ξ2kfd−1 + ξ3k)[sd−4] + · · ·+ (f1 + ξkf2 + ξ2kf3 + · · ·+ ξ
(d−1)
k fd). (6)

Regrouping the terms, we get:

CTξk
=
(
fd[sd−1] + fd−1[sd−2] + fd−2[sd−3] + · · ·+ f2[s] + f1

)
+ (7)

+
(
fd[sd−2] + fd−1[sd−3] + fd−2[sd−4] + · · ·+ f3[s] + f2

)
ξk+ (8)

+
(
fd[sd−3] + fd−1[sd−4] + fd−2[sd−5] + · · ·+ f4[s] + f3

)
ξ2k+ (9)

+
(
fd[sd−4] + fd−1[sd−5] + fd−2[sd−6] + · · ·+ f5[s] + f4

)
ξ3k+ (10)

· · · (11)

+ (fd[s] + fd−1)ξd−2k + fdξ
d−1
k . (12)

1A similar statement was also obtained in [GK22]
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Let for 1 ≤ i ≤ d denote

hi =
(
fd[sd−i] + fd−1[sd−i−1] + fd−2[sd−i−2] + · · ·+ fi+1[s] + fi

)
.

Then
CTξk

= h1 + h2ξk + h3ξ
2
k + · · ·+ hdξ

d−1
k . (13)

Let us denote
CT = [CTξ1

, CTξ2
, . . . , CTξn

]

Therefore, CT is the evaluation of h(X) =
∑

0≤i≤d−1 hi+1X
i at points ξ1, ξ2, . . . , ξn.

2.2 Computing h

Now we demonstrate that h can be also computed efficiently from {fi}.

Proposition 2. The coefficients hi can be computed in O(d log d) time if FFT is available for vectors of size d.

Proof. Indeed, by definition

h1
h2
h3
...

hd−1
hd


=



fd fd−1 fd−2 fd−3 · · · f1
0 fd fd−1 fd−2 · · · f2
0 0 fd fd−1 · · · f3

. . .

0 0 0 0 · · · fd−1
0 0 0 0 · · · fd


·



[sd−1]
[sd−2]
[sd−3]

...
[s]
[1]


The matrix

A =


fd fd−1 fd−2 fd−3 · · · f1
0 fd fd−1 fd−2 · · · f2
0 0 fd fd−1 · · · f3

· · ·
0 0 0 0 · · · fd−1
0 0 0 0 · · · fd


is a Toeplitz matrix. It is known that a multiplication of a vector by a d × d Toeplitz matrix costs O(d log d)
operations for FFT-friendly fields (see Section 3 for derivation). Let ν be the 2d-th root of unity. Then the
algorithm is as follows:

1. Compute
y = DFT2d(ŝ) where ŝ = ([sd−1], [sd−2], [sd−3], · · · , [s], [1], [0], [0], . . . , [0]︸ ︷︷ ︸

d neutral elements

)

2. Compute2

v = DFT2d(ĉ) where ĉ = (0, 0, . . . , 0︸ ︷︷ ︸
d zeroes

, f1, f2, . . . , fd)

3. Compute
u = y ◦ v ◦ (1, ν, ν2, . . . , ν2d−1)

4. Compute
ĥ = iDFT2d(u)

5. Take first d elements of ĥ as h.

Therefore, we can compute h from the KZG setup using O(d log d) scalar multiplications in G.

2A previous version of this note had an incorrect form for ĉ. We thank a reviewer for pointing it out.
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2.3 Proof of Theorem 1

Now we can prove the statement of Theorem 1. It remains to show the complexity of evaluating h(X) in {ξi}.

{ξi} are n-th roots of unity. When evaluation points are n-th roots of unity, the polynomial h(X) can be
evaluated in n log n time using FFT.

{ξi} are arbitrary values. In this case we adapt the generic fast evaluation algorithm [vzGG13, Algorithm
10.4], which is known to have complexity O(n log2 n) whenever FFT for n-sized vectors is available. For the sake
of completeness we provide a full description of the algorithm in Section A.

3 Circulant and Toeplitz matrix-vector product computation

3.1 Circulant multiplication

A matrix-vector product with a circulant matrix B and vector

B =


bn−1 bn−2 bn−3 bn−4 · · · b0
b0 bn−1 bn−2 bn−3 · · · b1
b1 b0 bn−1 bn−2 · · · b2

· · ·
bn−3 bn−4 bn−5 bn−6 · · · bn−2
bn−2 bn−3 bn−4 bn−5 · · · bn−1

 c =



c0
c1
c2
...

cn−2
cn−1


Bc = a =



a0
a1
a2
...

an−2
an−1


is equivalent to polynomial multiplication. Concretely, let

b(X) =
∑
i

biX
i, c(X) =

∑
i

ciX
i, a(X) =

∑
i

aiX
i

Then ai =
∑

j+k=i−1 (mod n) bjck and so

a(X) ≡ X · b(X) · c(X) (mod Xn − 1) (14)

Denote the n-th root of unity by ω, then a(ωi) = ωi · b(ωi) · c(ωi) since ωn = 1. We know that all b(ωi), c(ωi) can
be computed in n log n time using FFT. Therefore we have the following algorithm for a:

1. Compute b̂ = DFTn(b0, b1, b2, . . . , bn−1).

2. Compute ĉ = DFTn(c0, c1, c2, . . . , cn−1).

3. Compute â = b̂ ◦ ĉ ◦ (1, ω, ω2, . . . , ωn−1).

4. Compute a = iDFTn(â).

3.2 Toeplitz multiplication

A matrix-vector product with a Toeplitz matrix D and vector

F =


fn−1 fn−2 fn−3 fn−4 · · · f0

0 fn−1 fn−2 fn−3 · · · f1
0 0 fn−1 fn−2 · · · f2

· · ·
0 0 0 0 · · · fn−2
0 0 0 0 · · · fn−1

 c =



c0
c1
c2
...

cn−2
cn−1


Fc = a =



a0
a1
a2
...

an−2
an−1


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is reduced to the circulant case by padding the matrix F to size 2n× 2n and vector c accordingly:

F ′ =



fn−1 fn−2 fn−3 fn−4 · · · f0 0 0 · · · 0
0 fn−1 fn−2 fn−3 · · · f1 f0 0 · · · 0
0 0 fn−1 fn−2 · · · f2 f1 f0 · · · 0

...
0 0 0 0 · · · fn−2 fn−3 fn−4 · · · 0
0 0 0 0 · · · fn−1 fn−2 fn−3 · · · 0
0 0 0 0 · · · 0 fn−1 fn−2 · · · f0
f0 0 0 0 · · · 0 0 fn−1 · · · f1
f1 f0 0 0 · · · 0 0 0 · · · f2

...
fn−2 fn−3 fn−4 fn−5 · · · 0 0 0 · · · fn−1



c′ =



c0
c1
c2
...

cn−1
0
...
0



As a result the product of F ′ and c′ has all the elements of a:

F ′ · c′ = a′ =



a0
a1
a2
...

an−2
an−1
an
...

a2n−1


Therefore, to compute F ·c we compute F ′ ·c′ using DFT and then select the top n elements of the resulting vector.

4 Applications

Our technique is useful whenever a large number of KZG openings is required by a protocol. Examples are

• Lookup arguments. When a table is encoded as polynomial evaluations over roots of unity, the O(n log n)
version of Theorem 1 applies [ZBK+22, ZGK+22, EFG22]. In contrast, when a table is encoded as the set of
roots of a polynomial, then individual proofs are no longer at roots of unity. For this reason [GK22] proved
the special case of the O(n log2 n) case of Theorem 1 where the evaluations are all zero.

• Vector commitment schemes based on KZG. Preparing many (or all) proofs is done with our technique [WUP22,
Tom20]. Another application is speeding up the trusted setup phase [TAB+20].
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A Fast evaluation algorithm for group polynomials

This section is an adaptation of fast polynomial algorithms from [vzGG13] to the case when coefficients of one of
polynomials are group elements. We first define what it to means to multiply polynomials from different domains.

Let F =
∑

i FiX
i ∈ Gn[X], g =

∑
j gjX

j ∈ Fm[X]. Then F · g = H ∈ Gm+n[X] is defined as

H =
∑
k

HkX
k =

∑
k

∑
i≤k

[gk−i]Fi

Xk

A.1 Fast evaluation algorithm

Input: F ∈ Gd[X], A = (a1, a2, . . . , ad) ∈ F.
Output: C = (c1, c2, . . . , cd) ∈ Gd such that f(ai) = ci for all i.

Construction.

• If d = 1 compute F (a1) in constant time and return.

• Else split A into A1 and A2.

• Let g1(X) =
∏

a∈A1
(X − a) ∈ Fd/2[X] be vanishing poly of degree d/2 for A1, and g2(X) ∈ Fd/2[X] be

vanishing poly of degree d/2 for A2.

• Compute F1(X) = F (X) mod g1(X) and F2(X) = F (X) mod g2(X) of degree d/2 using fast division algo-
rithm (Section A.2).

• Evaluate F1 on A1 and get C1 recursively (go to step 1). Evaluate F2 on A2 and get C2. Return C1 ∪ C2.

6

https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2020/1516
https://eprint.iacr.org/2022/864
https://eprint.iacr.org/2022/864
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565


Complexity. The algorithm is divide-and-conquer. At the combination step we apply the fast division algorithm
of complexity O(d log d). The cost of computing all vanishing polynomials is d log2 d (see below). Thus for the
complexity C(d) of the evaluation algorithm without it we have an equation

C(d) = d log d+ 2C(d/2)

Thus the total complexity is O(d log2 d) group operations.

Constructing all vanishing polys We construct all vanishing polynomials in the monomial form from low
degree to high degree. Recall that these polynomials belong to F[X] i.e. their coefficients are field elements. In
order to compute a vanishing poly of degree r, we multiply two vanishing polys of degree r/2 using fast multiplication
algorithm. The complexity of the combination step is r log r so we have for the complexity V (r) an equation:

V (r) = r log r + 2V (r/2)

This yields total complexity of r log2 r.

A.2 Fast division algorithm

Input: F ∈ Gn[X], g ∈ Fm[X].
Output: Q ∈ Gn−m[X], R ∈ Gm−1[X] such that

F (X) = Q(X)g(X) +R(X)

Idea For F (X) = F0 + F1X + · · ·+ FnX
n define

rev(F ) = Fn + Fn−1X + · · ·+ F0X
n

Note that
XnF (1/x) = Xn−mQ(1/X)Xmg(1/X) +Xn−m+1Xm−1R(1/X).

In terms of reverses:
rev(F ) = rev(Q) · rev(g) +Xn−m+1rev(R).

Then
rev(F ) ≡ rev(Q) · rev(g) (mod Xn−m+1).

where reduction modulo Xn−m+1 means dropping terms of degree (n−m+ 1) and higher. This is consistent with
regular modular reduction for polynomials.

Finally we obtain
rev(Q) ≡ rev(F ) · rev(g)−1 (mod Xn−m+1).

Construction

1. Compute rev(F ) ∈ Gn[X], rev(g) ∈ Fm[X].

2. Compute rev(g)−1 mod Xn−m+1 using fast inversion algorithm (section A.3).

3. Find rev(Q), then q and R using fast polynomial multiplication.

Complexity Both fast inversion algorithm and fast multiplication algorithm have complexity O(d log d) (see
below) so the total complexity is O(d log d) group operations.

A.3 Fast Inversion Algorithm

Input: f ∈ F[X], l.
Output: g ∈ F[X] such that

f(X)g(X) ≡ 1 (mod X l)
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Idea We find a ”root” of an equation 1
g − f = 0 using Newton iteration for φ(g) = 0:

gi+1 = gi −
φ(gi)

φ′(gi)

which in our case is

gi+1 = gi −
1/gi − f
−1/g2i

= 2gi − fg2i

Construction

1. Initialize g0 = 1
f(0) .

2. Compute for i up to log l:

gi+1 = (2gi − fg2i ) mod x2
i+1

3. Return glog l+1.

Complexity At each step we do 3 fast polynomial multiplications of degree 2i. Using that∑
1≤i≤r

c · 2i · i ≤ 2cr2r

the total cost is still O(d log d) as reduction modulo x2
i+1

is easy.

A.4 Fast multiplication Algorithm for Group Polynomials

Input: F ∈ Gn[X], g ∈ Fm[X].
Output: H ∈ Gn−m[X] such that

H(X) = F (X)g(X)

The algorithm is as follows:

1. Evaluate F on 2d-roots of unity using FFT and obtain tuple F̃ ∈ G2d. We multiply group elements by field
elements here.

2. Evaluate g on 2d-roots of unity using FFT and obtain tuple g̃ ∈ F2d.

3. Multiply F̃ by g̃ componentwise and obtain H̃.

4. Apply inverse FFT to H̃ and obtain H.

The complexity is 2d log d group operations.
We multiply 2 polynomials of degree d in O(d log d) time using FFT:

1. Compute 2d-FFT of both polys. Note that we do not evaluate the polynomials at a group element here, but
rather remain in the field F.

2. Multiply pairwise.

3. Compute inverse FFT.
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