
Putting the Online Phase on a Diet:
Covert Security from Short MACs

(Full Version)

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. An important research direction in secure multi-party com-
putation (MPC) is to improve the efficiency of the protocol. One idea
that has recently received attention is to consider a slightly weaker se-
curity model than full malicious security – the so-called setting of covert
security. In covert security, the adversary may cheat but only is detected
with certain probability. Several works in covert security consider the
offline/online approach, where during a costly offline phase correlated
randomness is computed, which is consumed in a fast online phase. State-
of-the-art protocols focus on improving the efficiency by using a covert
offline phase, but ignore the online phase. In particular, the online phase
is usually assumed to guarantee security against malicious adversaries.
In this work, we take a fresh look at the offline/online paradigm in the
covert security setting. Our main insight is that by weakening the secu-
rity of the online phase from malicious to covert, we can gain significant
efficiency improvements during the offline phase. Concretely, we demon-
strate our technique by applying it to the online phase of the well-known
TinyOT protocol (Nielsen et al., CRYPTO ’12). The main observation is
that by reducing the MAC length in the online phase of TinyOT to t bits,
we can guarantee covert security with a detection probability of 1− 1

2t .
Since the computation carried out by the offline phase depends on the
MAC length, shorter MACs result in a more efficient offline phase and
thus speed up the overall computation. Our evaluation shows that our
approach reduces the communication complexity of the offline protocol
by at least 35% for a detection rate up to 7

8
. In addition, we present a

new generic composition result for analyzing the security of online/offline
protocols in terms of concrete security.

Keywords: Multi-Party Computation (MPC) · Covert Security · Offline/Online
· Deterrence Composition

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties to se-
curely compute an arbitrary function on private inputs. While originally MPC
was mainly studied by the cryptographic theory community, in recent years
many industry applications have been envisioned in areas such as machine learn-
ing [KVH+21], databases [VSG+19], blockchains [Zen] and more [ABL+18, MPC].
One of the main challenges for using MPC protocols in practice is their huge
overhead in terms of efficiency. Over the last decade, tremendous progress has
been made both on the protocol side as well as the engineering level to move
MPC protocols closer to practice [DPSZ12, DKL+13, KOS16, KPR18, BCS19,
CKR+20, Ors20].

Most efficient MPC protocols work in the honest-but-curious setting. In this
setting, the adversary must follow the protocol specification but tries to learn
additional information from the interaction with the honest parties. A much
stronger security notion is to consider malicious security, where the corrupted
parties may arbitrarily deviate from the specification in order to attack the proto-
col. Unfortunately, however, achieving malicious security is much more challeng-
ing and typically results into significant efficiency penalties [KOS16, DILO22].

An attractive middle ground between the efficient honest-but-curious model
and the costly malicious setting is covert security originally introduced by Au-
mann and Lindell [AL07]. As in malicious security, the adversary may attack
the honest parties by deviating arbitrarily from the protocol specification but
may get detected in this process. Hence, in contrast to malicious security such
protocols do not prevent cheating, but instead de-incentivize malicious behavior
as an adversary may fear getting caught. The latter may lead to reputational
damage or financial punishment, which for many real-world settings is a suffi-
ciently strong countermeasure against attacks. Moreover, since covert security
does not need to prevent cheating at the protocol level, it can lead to signifi-
cantly improved efficiency. Let us provide a bit more detail on how to construct
covert secure protocols.

The cut-and-choose technique. In a nutshell, all known protocols with covert
security amplify the security of a semi-honest protocol by applying the cut-and-
choose technique. In this technique, the semi-honest protocol is executed t times
where t − 1 of the executions are checked for correctness via revealing their
entire private values. The remaining unchecked instance stays hidden and thus
can be used for computing the output. Since in the protocol the t − 1 checked
instances are chosen uniformly at random, any cheating attempt is detected with
probability at least t−1

t , which is called the deterrence factor of the protocol
and denoted by ε. The overhead of the cut-and-choose approach is roughly a
factor t compared to semi-honest protocols due to the execution of t semi-honest
instances.

The offline/online paradigm. An important technique to construct efficient
MPC protocols is to split the computation in an input independent offline phase
and an input dependent online phase. The goal of this approach is to shift

2

the bulk of the computational effort to the offline phase such that once the
private inputs become available the evaluation of the function can be done effi-
ciently. To this end, parties pre-compute correlated randomness during the offline
phase, which is consumed during the online phase to speed up the computa-
tion. Examples for offline/online protocols are SPDZ [DPSZ12], authenticated
garbling [WRK17a, WRK17b] and the TinyOT approach [NNOB12, LOS14,
BLN+21, FKOS15].

While traditionally the offline/online paradigm has been instantiated either
in the honest-but-curious or malicious setting, several recent works have consid-
ered how to leverage the offline/online approach to speed-up covert secure pro-
tocols [DKL+13, DOS20, FHKS21]. The standard approach is to take a covertly
secure offline phase and combine it with a maliciously secure online phase. Since
the offline phase is most expensive, this results into a significant efficiency im-
provement. Moreover, since the offline phase is input independent, it is partic-
ularly well suited for the cut-and-choose approach used for constructing covert
secure protocols. In contrast to the offline phase, for the online phase we typi-
cally rely on a maliciously secure protocol. The common belief is that the main
efficiency bottleneck is the offline phase, and hence optimizing the online phase
to achieve covert security (which is also more challenging since we need to deal
with the private inputs) is of little value. In our work, we challenge this belief
and study the following question:

Can we improve the overall efficiency of a covertly secure offline/online protocol
by relaxing the security of the online phase to covert security?

1.1 Contribution

Our main contribution is to answer the above question in the affirmative. Con-
cretely, we show that significant efficiency improvements are possible by switch-
ing form a maliciously secure online phase to covert security.

To this end, we introduce a new paradigm to achieve covert security. Instead
of amplifying semi-honest security using cut-and-choose, we start with a mali-
ciously secure protocol and weaken its security. In malicious security, successful
cheating of the adversary is only possible with negligible probability in the statis-
tical security parameter. For protocol instantiations, this parameter is typically
set to 40. The core idea is to show that in the setting of covert security, we can
significantly reduce the value of the statistical security parameter without losing
in security. We are the first to describe this new method of achieving covert
security by weakening malicious security.

For achieving covert security of already efficient online protocols, the naive
cut-and-choose approach is not a viable option due to its inherent overhead. In
contrast, our approach is particularly interesting for these protocols. In addition,
we observe that for several offline/online protocols, a reduction to covert security
in the online phase reduces the amount of precomputation required. This results
in an overall improved efficiency.

3

To illustrate the benefits of our paradigm, we apply it to the well-known
TinyOT [NNOB12] protocol for two-party computation for boolean circuits
based on the secret-sharing approach. This protocol is a good benchmark for
oblivious transfer (OT)-based protocols and hasn’t been considered before for
the covert setting. The original TinyOT protocol consists of a maliciously secure
offline and online phase where MACs ensure the correctness of the computation
performed during the online phase. While the efficiency of the offline phase can
be improved by making this phase covertly secure using the cut-and-choose ap-
proach, we apply our paradigm to the online phase to gain additional efficiency
improvements. Our insight is that instead of using 40-bit MACs, which is typ-
ically done for an actively secure online phase, using t-bits MACs results in a
covertly secure online phase with deterrence factor 1 − 1

2t . We formally prove
the covert security of this online protocol.

As touched on earlier, shortening the MAC length of the TinyOT online
phase has a direct impact on the computation overhead carried out in the offline
phase. In particular, the size of the oblivious transfers that need to be performed
depend on the MAC length and thus this number can be reduced. Concretely, we
compare the communication complexity of a cut-and-choose-based offline phase
for different choices of MAC lengths. We can show that the communication
complexity of the offline protocol reduces by at least 35% for a deterrence factor
up to 7

8 .

While we chose the TinyOT protocol for demonstrating our new paradigm,
we can apply our techniques also for other offline/online protocols in the two-
and multi-party case, e.g., [LOS14, BLN+21, FKOS15, WRK17a, WRK17b].

As a second major technical contribution, we show that the combination of
a covert offline and covert online phase achieves the same deterrence factor as a
covert offline phase combined with an active online phase. We show this result
in a generic way by presenting a deterrence replacement theorem. Intuitively,
when composing a covertly secure offline phase with a covertly secure online
phase, the deterrence factor of the composed protocol needs to consider the worst
deterrence of both phases. This is easy to see, since the adversary can always
try to cheat in that phase where the detection probability is smaller. While easy
at first sight, the formalization requires a careful analysis and adds restrictions
on the class of protocols for which such composition can be shown. By applying
our deterrence replacement theorem, we show for offline/online protocols that
the overall detection probability is computed as the minimum of the detection
probability of the offline phase and the detection probability of the online phase.

While this result was proven by Aumann and Lindell [AL07] for a weak
notion of covert security, the failed-simulation formulation, we are the first to
formally present a proof in the strongest setting of covert security which is also
mostly used in the literature. The definitional framework of the failed-simulation
formulation and the one of all of the stronger notions are fundamentally different.
In particular, the failed-simulation formulation relies on the ideal functionality
defined for the malicious setting but allows for failed simulations. The stronger
notions define a covert ideal functionality explicitly capturing the properties

4

of the covert setting, i.e., the possible cheating attempts of the adversary. For
this reason, it is not straightforward to translate the proof techniques from the
failed-simulation formulation to the stronger notions.

1.2 Related Work

Short MACs. Hazay et al. [HOSS18] also considered short MAC keys for
TinyOT, but in the context of concretely efficient large-scale MPC in the ac-
tive security setting with a minority of honest parties. The main idea of their
work is to distribute secret key material between all parties such that the se-
curity is based on the concatenation of all honest parties’ keys. In contrast, we
achieve more efficient covert security and the security is based on each party’s
individual key.

TinyOT extensions. In the two-party setting, the TinyOT protocol is extended
by the TinyTables [DNNR17] and the MiniMac [DZ13] protocols. The former
improves the online communication complexity by relying on precomputated
scrambled truth tables. The precomputation of these works is based on the offline
phase of TinyOT. Therefore, we believe that our techniques can be applied to the
TinyTables protocol as well. We focus in our description on the original TinyOT
protocol to simplify presentation.

The MiniMac protocol uses error correcting codes for authentication of bit
vectors and is in particular interesting for “well-formed” circuits that allow
for parallelization of computation. The sketched precomputation of MiniMac
is based on the SPDZ-precomputation [DPSZ12]. In the SPDZ protocol, MACs
represent field elements instead of binary strings as in TinyOT. Therefore, it is
not straight-forward to apply our techniques to the MiniMac protocol. We leave
it as an open question if our techniques can be adapted to this setting.

Larraia et al. and Burra et al. [LOS14, BLN+21] show how to extend TinyOT
to the multi-party setting. Our paradigm can be applied to these protocols as
well as to the precomputation of [FKOS15].

Authenticated garbling. The authenticated garbling protocols [WRK17a,
WRK17b, KRRW18, YWZ20] achieve constant round complexity and active
security by utilizing an authenticated garbled circuit. For authentication, the
protocols rely on a TinyOT-style offline phase. Hence, we believe that our ap-
proach can improve the efficiency of the authenticated garbling protocols as well
(when moving to the setting of covert security).

Arithmetic computation. The family of SPDZ protocols [DPSZ12, DKL+13,
KOS16, KPR18, CDE+18] provide means to perform multi-party computation
with active security on arithmetic circuits. Damg̊ard et al. [DKL+13] have al-
ready considered the covert setting but only reduced the security of the offline
phase to covert security. As already mentioned above in the context of MiniMac,
we leave it as an interesting open question to investigate if our approach can
be translated to the arithmetic setting of the SPDZ family in which MACs are
represented as field elements.

5

Pseudorandom Correlation Generators. Recently, pseudorandom corre-
lation generators (PCGs) were presented to compute correlated randomness
with sublinear communication [BCG+19, BCG+20a, BCG+20b]. While this is a
promising approach, efficient constructions are based on variants of the learning
parity with noise (LPN) assumption. These assumptions are still not fully un-
derstood, especially compared to oblivious transfer which is the base of TinyOT.

1.3 Technical Overview

Notions of covert security. The notion of covert security with ε-deterrence
factor was proposed by Aumann and Lindell in 2007 [AL07], who introduced
a hierarchy of three different variants. The weakest variant is called the failed-
simulation formulation, the next stronger is the explicit cheat formulation (ECF)
and the strongest variant is the strong explicit cheat formulation (SECF). The
last is also the most widely used variant of covert security. In the failed-simulation
formulation, the adversary is able to cheat depending on the honest parties’
inputs. This undesirable behavior is prevented in the stronger variants. In the
ECF notion, the adversary learns the inputs of the honest parties even if cheating
is detected. Finally, SECF prevents the adversary from learning anything in case
cheating is detected.

In this work, we introduce on a new notion that lies between ECF and SECF.
We call it intermediate explicit cheat formulation (IECF) (cf. Section 2), where
we let the adversary learn the outputs of the corrupted parties even if cheating
is detected. This is a strictly stronger security guarantee than ECF, where the
adversary also learns the inputs of the honest parties. Our new notion captures
protocols where an adversary learns its own outputs (which may depend on
honest parties inputs) before the honest parties detect cheating. However, we
emphasize that the adversary cannot prevent detection by the honest parties. In
particular, it must make its decision on whether to cheat or not before learning
its outputs. Moreover, notice that in case when the adversary does not cheat, it
would anyway learn these outputs, and hence IECF is only a very mild relaxation
of the SECF notion.

Composition of covert protocol. Composition theorems allow to modular-
ize security proofs of protocols and thus are tremendously useful for protocol
design. Aumann and Lindell presented two sequential composition theorems for
protocols in the covert security model [AL07]. One for the failed-simulation for-
mulation and one for the (S)ECF. In the following, we focus on the later theorem
since these notions are closer to the IECF notion. The composition theorem pre-
sented in [AL07] allows to analyze the security of a protocol in a hybrid model
where the parties have access to hybrid functionalities. In more detail, the the-
orem states that a protocol that is covertly secure with deterrence factor ε in a
hybrid model where parties have access to a polynomial number of functionali-
ties, which themselves have deterrence factors, then the protocol is also secure if
the hybrid functionalities are replaced with protocols realizing the functionalities
with the corresponding deterrence values. Note that the theorem states that a

6

composed protocol using subprotocols instead of hybrid functionalities has the
same deterrence factor as when analyzed with (idealized) hybrid functionalities.

Aumann and Lindell’s theorem is very useful to show security of a complex
protocol. Unfortunately, however, the theorem of Aumann and Lindell does not
make any statement how the deterrence factor of hybrid functionalities influences
the deterrence factor of the overall protocol. Instead, the deterrence factor of
the overall protocol has to be determined depending on the concrete deterrence
factors of the hybrid functionalities. We are looking for a composition theorem
that goes one step further. In particular, we develop a theorem that allows to
analyze a protocol’s security and its deterrence factor in a simple model where no
successful cheating in hybrid functionalities is possible, i.e., a deterrence factor
of ε = 1. Then, the theorem should help deriving the deterrence factor of the
composed protocol when cheating in hybrid functionalities is possible with a
fixed probability, i.e., ε < 1.

Deterrence replacement theorem. Our deterrence replacement theorem fills
the aforementioned gap (cf. Section 3). Let Hy1 and Hy2 be two hybrid worlds.
In Hy1 an offline functionality exists with deterrence factor 1. In Hy2 the same
offline functionality has deterrence factor ε∗off . Our theorem states that a protocol,
which is covertly secure with deterrence factor εon in Hy1, is covertly secure
with deterrence factor ε∗on := Min(εon, ε

∗
off) in Hy2. While we have to impose

some restrictions on the protocols that our theorem can be applied on, practical
offline/online protocols [DPSZ12, NNOB12, WRK17a, WRK17b] fulfill these
restrictions or can easily be adapted to do so. The main benefit of our theorem
is to simplify the analysis of a protocol’s security by enabling the analysis in a
model where successful cheating in the offline functionality does not occur. In
addition, our theorem implies that the deterrence factor of the online phase can
be as low as the deterrence factor of the offline phase without any security loss.

Achieving covert security. Most covertly secure protocols work by taking
a semi-honest secure protocol and applying the cut-and-choose technique. In
contrast, we present a new approach to achieve covert security where instead of
amplifying semi-honest security, we downgrade malicious security. Our core idea
is to obtain covert security by reducing the statistical security parameter of a
malicious protocol.

As highlighted in the contribution, reducing the security of the online phase
to covert has the potential to improve the efficiency of the overall protocol exe-
cution. This improvement does not come from a speed-up in the online phase, in
fact the online phase can become slightly less efficient, but from lower require-
ments on the offline phase. Using the cut-and-choose approach to get a covertly
secure online phase incurs an overhead to the semi-honest protocol that is linear
in the number of executed instances. This overhead might exceed the efficiency
gap between the semi-honest and the malicious protocol rendering the cut-and-
choose-based covert offline phase significantly less efficient than the malicious
online phase. In this case, the overhead of the online phase can vanish the gains
of the faster offline phase. In contrast, our approach comes with a small con-
stant overhead to the malicious protocol such that the overall efficiency gain is

7

preserved. This makes our approach particularly interesting for actively secure
protocols that are already very efficient such as information-theoretic online pro-
tocols, e.g., the online phase of TinyOT [NNOB12].

The TinyOT protocol. We illustrate the benefit of our new paradigm for
achieving covert security by applying it to the maliciously secure online phase
of TinyOT [NNOB12]. We start with a high-level overview of TinyOT.

The TinyOT protocol is a generic framework for computing Boolean circuits
based on the secret sharing paradigm for two-party computation. The protocol
splits the computation into an offline and an online phase. In the offline phase,
the parties compute authenticated bits and authenticated triples. For instance,
the authentication of a bit x known to a party A is achieved by having the other
party B hold a global key ∆B, a random t-bit key K[x], and having A hold the bit
x and a t-bit MAC M [x] = K[x]⊕x·∆B. In the online phase, parties evaluate the
circuit with secret-shared wire values where each share is authenticated given the
precomputed data. Due to the additive homomorphism of the MACs, addition
gates can be computed non-interactively. For each multiplication gate, the parties
interactively compute the results by consuming a precomputed multiplication
triple. At the end of the circuit evaluation, a party learns its output, i.e., the
value of an output wire, by receiving the other party’s share on that wire. The
correct behavior of all parties is verified by checking the MACs on the output
wire shares.

Covert online protocol. The authors of TinyOT showed that successfully
breaking security of the online phase is equivalent to guessing the global MAC
key of the other party. In this work, we translate this insight to the covert setting.
In particular, we show that the online phase of a TinyOT-like protocol with a
reduced MAC length of t-bits implements covert security with a deterrence factor
of 1− (1

2)t (cf. Section 4).
The resulting protocol can be modified with small adjustments to achieve

all known notions of covert security. In particular, the unmodified version of
TinyOT implements a variant of covert security in which the adversary learns
the output of the protocol, and, only then, decides on its cheating attempt.
We achieve the IECF, i.e., the notion in which the adversary always learns the
output of the corrupted parties, even in case of detected cheating, by committing
to the outputs bits and MACs before opening them. Due to the commitments,
the adversary needs to decide first if it wants to cheat and only afterwards
it learns the output. However, since the adversary receives the opening on the
commitment of the honest party first, it learns the output even if it committed to
incorrect values or refuses to open its commitment, both of which are considered
cheating. Finally, in order to achieve the SECF, we have to prevent the adversary
from inserting incorrect values into the commitment. We can do so by generating
the commitments as part of the function whose circuit is evaluated. Only after the
parties checked both, correct behavior throughout the evaluation and correctness
of the received outputs, i.e., the commitments, the parties exchange the openings
of the commitments. This way, we ensure that the adversary only receives its
output if it behaved honestly or cheated successfully which fulfills the SECF.

8

In this work, we focus on the IECF. On one hand, we assess the IECF to
constitutes a minor loss of security compared to the SECF. This is due to the fact
that we are in the security-with-abort setting, implying that the honest parties
already approve the risk of giving the adversary its output while not getting
an output themselves. On the other hand, the efficiency overhead of the IECF
compared to the weaker variant of covert achieved by the unmodified protocol
just consists out of a single commit-and-opening step accounting for 48 bytes
per party (if instantiated via a hash function and with 128 bit security). In
contrast, the SECF requires generating the commitments as part of the circuit
which incurs a much higher efficiency overhead. Therefore, we assess the protocol
achieving the IECF notion to depict a much better trade-off between efficiency
overhead and security loss than the other notions.

Evaluation. Our result shows that we can safely reduce the security level of
the online phase without compromising on the security of the overall protocol.
As we show in the evaluation section (cf. Section 5), this improves the efficiency
of the overall protocol. Concretely, the main improvements come from savings
during the offline phase since using our techniques the online phase gets less
demanding by relying on shorter MACs. We quantify these improvements by
evaluating the communication complexity of the offline phase depending on the
length of the generated MACs. More precisely, when using an actively secure
online phase, the MAC length needs to be 40 Bits, while for achieving covert
security, we can set the length of the MACs to a significantly lower value t. This
results into a deterrence factor of 1 − 1

2t . Our evaluation shows that we can
reduce the communication complexity of the offline protocol by at least 35% for
a deterrence factor of up to 7

8 .

2 Covert Security

A high-level comparison between the notions of covert security presented by Au-
mann and Lindell [AL07] is stated in Section 1.3. Next, we present details about
the explicit cheat formulation (ECF) and the strong explicit cheat formulation
(SECF). Afterwards, we present our new notion which lies strictly between the
ECF and the SECF.

The ECF and the SECF consider an ideal functionality where the adversary
explicitly sends a cheati command for the index i of a corrupted party to the
functionality which then decides if cheating is detected with probability ε. In
the ECF, the adversary learns the honest parties’ inputs even if cheating is
detected, which is prevented by the SECF. In addition, the adversary can also
send a corruptedi or aborti command, which is forwarded to the honest parties.
The corruptedi command models a blatant cheat option, where the adversary
cheats in a way that will always be detected, and the aborti command models an
abort of a corrupted party. Later, Faust et al. [FHKS21] proposed to extract the
identifiable abort property as it can be considered orthogonal and of independent
interest (cf. [IOZ14]). For the covert notion, this means that if a corrupted party

9

aborts, the ideal functionality only sends abort to the honest parties instead of
aborti for i being the index of the aborting party.

In the following, we present a new notion for covert security called the inter-
mediate explicit cheat formulation (IECF). We follow the approach of [FHKS21]
and present our notion without the identifiable abort property. In addition, we
clean up the definition by merging the blatant cheat option, where cheating
is always detected, with the cheat attempt that is only detected with a fixed
probability. To this end, if the adversary sends the cheat-command, we allow
the adversary to specify any detection probability between the deterrence factor
and 1. Furthermore, we enable the adversary to force a cheating detection or
abort even if the ideal functionality signals undetected cheating. This additional
action does not provide further benefit to the adversary and thus does not harm
the security provided by our notion. Since the decision solely depends on the
adversary, the change also does not restrict the adversary.

Finally, and most important, our notion allows the adversary to learn the
outputs of the corrupted parties but nothing else if cheating is detected. There-
fore, it lies between the ECF, where the adversary learns the inputs of all parties
even if cheating is detected, and the SECF, where the adversary learns nothing
if cheating is detected. Since our notion is strictly between the ECF and the
SECF, we call it the IECF.

Next, we present the IECF in full details in the following and state the
difference to the SECF afterwards.

Intermediate explicit cheat formulation. As in the standalone model, the
notions are defined in the real world/ideal world paradigm. This means, the
security of a protocol is shown by comparing the real-world execution with an
ideal-world execution. In the real world, the parties jointly compute the de-
sired function f using a protocol π. Let n be the number of parties and let
f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn) is the function computed by
π. We define for every vector of inputs x̄ = (x1, . . . , xn) the vector of outputs
ȳ = (f1(x̄), . . . , fn(x̄)) where party Pi with input xi obtains the output fi(x̄).
During the execution of π, the adversary Adv can corrupt a subset I ⊂ [n] of all
parties. We define REALπ,Adv(z),I(x̄, 1κ) as the output of the protocol execution
π on input x̄ = (x1, . . . , xn) and security parameter κ, where Adv on auxiliary
input z corrupts parties I. We further specify OUTPUTi(REALπ,Adv(z),I(x̄, 1κ))
to be the output of party Pi for i ∈ [n].

In contrast, in the ideal world, the parties send their inputs to the uncor-
ruptible ideal functionality F which computes function f and returns the result.
Hence, the computation in the ideal world is correct by definition. The security
of π is analyzed by comparing the ideal-world execution with the real-world ex-
ecution. The ideal world in covert security is slightly changed compared to the
standard model of secure computation. In particular, in covert security, the ideal
world allows the adversary to cheat, and cheating is detected at least with some
fixed probability ε which is called the deterrence factor. Let ε : N → [0, 1] be
a function. The execution in the ideal world in our IECF notion is defined as
follows:

10

Inputs: Each party obtains an input, where the ith party’s input is denoted
by xi. We assume that all inputs are of the same length and call the vector
x̄ = (x1, . . . , xn) balanced in this case. The adversary receives an auxiliary input
z. In case there is no input, the parties will receive xi = ok.

Send inputs to ideal functionality: Any honest party Pj sends its received
input xj to the ideal functionality. The corrupted parties, controlled by ideal
world adversary S, may either send their received input, or send some other
input of the same length to the ideal functionality. This decision is made by S
and may depend on the values xi for i ∈ I and the auxiliary input z. Denote
the vector of inputs sent to the ideal functionality by x̄. In addition, S can send
a special cheat or abort message w.

Abort options: If S sends w = abort to the ideal functionality as its input,
then the ideal functionality sends abort to all honest parties and halts.

Attempted cheat option: If S sends w = (cheati, εi) for i ∈ I and εi ≥ ε,
the ideal functionality proceeds as follows:

1. With probability εi, the ideal functionality sends corruptedi to all honest
parties. In addition, the ideal functionality computes (y1, . . . , yn) = f(x̄)
and sends (corruptedi, {yj}j∈I) to S.

2. With probability 1− εi, the ideal functionality sends undetected to S along
with the honest parties’ inputs {xj}j /∈I . Then, S sends output values {yj}j /∈I
of its choice for the honest parties to the ideal functionality. Then, for every
j /∈ I, the ideal functionality sends yj to Pj . The adversary may also send
abort or corruptedi for i ∈ I, in which case the ideal functionality sends abort
or corruptedi to every Pj for j /∈ I.

The ideal execution ends at this point. Otherwise, if no w equals abort or
(cheati, ·) the ideal execution proceeds as follows.

Ideal functionality answers adversary: The ideal functionality computes
(y1, . . . , yn) = f(x̄) and sends yi to S for all i ∈ I.

Ideal functionality answers honest parties: After receiving its outputs,
the adversary sends abort, corruptedi for some i ∈ I, or continue to the ideal
functionality. If the ideal functionality receives continue then it sends yj to all
honest parties Pj (j /∈ I). Otherwise, if it receives abort resp. corruptedi, it sends
abort resp. corruptedi to all honest parties.

Outputs: An honest party always outputs the message it obtained from
the ideal functionality. The corrupted parties output nothing. The adversary S
outputs any arbitrary (probabilistic polynomial-time computable) function of
the initial inputs {xi}i∈I , the auxiliary input z, and the messages obtained from
the ideal functionality.

We denote by IDEALCεf,S(z),I(x̄, 1κ) the output of the honest parties and the
adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 1 (Covert security - intermediate explicit cheat formula-
tion). Let f, π, and ε be as above. A protocol π securely computes f in the

11

presence of covert adversaries with ε-deterrence if for every non-uniform prob-
abilistic polynomial-time adversary Adv in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S for the ideal model such that
for every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input
z ∈ {0, 1}∗:

{IDEALCεf,S(z),I(x̄, 1κ)}κ∈N
c≡ {REALπ,Adv(z),I(x̄, 1κ)}κ∈N

The SECF notions follows the IECF notion with one single change. Instead of
sending (corruptedi, {yj}j∈I) to S in case of detected cheating, the ideal function-
ality only sends (corruptedi). This means that in the SECF the ideal adversary
does not learn the output of corrupted parties in case cheating is detected.

3 Offline/Online Deterrence Replacement

Offline/online protocols split the computation of a function f into two parts. In
the offline phase, the parties compute correlated randomness independent of the
actual inputs to f . In the online phase, the function f is computed on the pri-
vate inputs of all parties while the correlated randomness from the offline phase
is consumed to accelerate the execution. When considering covert security, the
adversary may cheat in both the offline and the online phase. The cheating de-
tection probability might differ in these two phases. Intuitively, the deterrence
factor of the overall protocol needs to consider the worst-case detection proba-
bility. This is easy to see, since the adversary can always choose to cheat during
that phase where the detection probability is smaller.

While the above is easy to see at a high level, the outlined intuition needs
to be formally modeled and proven. We take the approach of describing of-
fline/online protocols within a hybrid model. This means, the offline phase is
formalized as a hybrid functionality to which the adversary can signal a cheat
attempt. This hybrid functionality is utilized by the online protocol during which
the adversary can cheat, too. We formally describe the hybrid model in Sec-
tion 3.1.

Next, we present our offline/online deterrence replacement theorem in Sec-
tion 3.2. Let πon be an online protocol that is covertly secure with deterrence
factor εon while any cheat attempt during the offline phase is detected with
probability εoff = 13. Then, our theorem shows that if the detection probability
during the offline phase is reduced to ε′off < 1, πon is also covertly secure with a
deterrence factor of ε′on = min(εon, ε

′
off). This means, the new deterrence factor

is the minimum of the detection probability of the old online protocol, in which
successful cheating during the offline phase is not possible, and the detection
probability of the new offline phase. Intuitively, our theorem quantifies the effect
on the deterrence factor of the online protocol when replacing the deterrence

3 Covert security with deterrence factor 1 can be realized by a maliciously secure
protocol as shown by Asharov and Orlandi [AO12].

12

factor of the offline hybrid functionality with a different value. This is why we
call Theorem 1 the deterrence replacement theorem.

The main purpose of our theorem is to allow the analysis of the security
of an online protocol in a simple setting where εoff = 1. Since in this setting
cheating during the offline phase is always detected, the security analysis and
the calculation of the online deterrence factor εon are much simpler. Once the
security of πon has been proven in the hybrid world, in which the offline phase is
associated with deterrence factor 1, and εon has been determined, our theorem
allows to derive security of πon in the hybrid world, in which the offline phase
is associated with deterrence factor ε′off , and determines the deterrence factor to
be ε′on = min(ε′off , εon).

While the effect of deterrence replacement was already analyzed by Aumann
and Lindell [AL07] for a weak variant of covert security, we are the first to
consider deterrence replacement in a widely adopted and strong variant of covert
security. We discuss the relation to [AL07] in Appendix C.

3.1 The Hybrid Model

We consider a hybrid model to formalize the execution of offline/online protocols.
Within such a model, parties exchange messages between each other but also
have access to hybrid functionalities F1, . . . ,F`. These hybrid functionalities
work like trusted parties to compute specified functions. The hybrid model is thus
a combination of the real model, in which parties exchange messages according
to the protocol description, and the ideal model, in which parties have access to
an idealized functionality.

A protocol in a hybrid model consists of standard messages sent between the
parties and calls to the hybrid functionalities. These calls instruct the parties to
send inputs to the hybrid functionality, which delivers back the output according
to its specification. After receiving the outputs from the hybrid functionality, the
parties continue the execution of the protocol. When instructed to send an input
to the hybrid functionality, all honest parties follow this instruction and wait for
the return value before continuing the protocol execution.

The interface provided by a hybrid functionality depends on the security
model under consideration. Since we deal with covert security, the adversary
is allowed to send special commands, e.g., cheat, to the hybrid functionality.
In case the functionality receives cheat from the adversary, the functionality
throws a coin to determine whether or not the cheat attempt will be detected by
the honest parties. The detection probability is defined by the deterrence factor
of this functionality. We use the notation Fεf to denote a hybrid functionality
computing function f with deterrence factor ε. The notation of a (Fε1f1

, . . . ,Fε`f`)-
hybrid model specifies the hybrid functionalities accessible by the parties.

The hybrid model technique is useful to modularize security proofs. Classical
composition theorems for passive and active security [Can00] as well as for covert
security [AL07] build the foundation for this proof technique. Informally, these
theorems state that if a protocol π is secure in the hybrid model where the

13

parties use a functionality Ff and there exists a protocol ρ that securely realizes
Ff , then the protocol π is also secure in a model where Ff is replaced with ρ.

3.2 Our Theorem

We start by assuming an online protocol πon that realizes an online functionality
Fεon

fon
in the F1

foff
-hybrid world. This means the deterrence factor of πon is εon and

the deterrence factor of the offline functionality is 1 which means that every
cheating attempt in the offline phase will be detected. Next, our theorem states
that replacing the deterrence factor 1 of the offline hybrid functionality with
any ε′off ∈ [0, 1] results in a deterrence factor of the online protocol of ε′on =
min(εon, ε

′
off), i.e., the minimum of the previous deterrence factor of the online

protocol and the new deterrence of the offline hybrid functionality.
Formally, we model the composition of an offline and an online phase via

the hybrid model. Let foff : ({⊥}j /∈I , {xoff
i }i∈I) → (yoff

1 , . . . , yoff
n) be an n-party

probabilistic polynomial-time function representing the offline phase, where I
denotes the set of corrupted parties. We model the offline functionality in such
a way that the honest parties provide no input, the adversary may choose the
randomness used by the corrupted parties and the functionality produces outputs
which depend on the randomness of the corrupted parties and further random
choices. The n-party probabilistic polynomial-time online function is denoted by
fon : (x1, . . . , xn) → (yon

1 , . . . , y
on
n). We use the abbreviation Fεoff

off and Fεon
on for

Fεoff

foff
and Fεon

fon
.

Our composition theorem puts some restrictions on the online protocol πon

that we list below and discuss in more technical depth in Appendix A. First,
we require that Fεoff is called only once during the execution of πon and this
call happens at the beginning of the protocol before any other messages are
exchanged. Second, we require that if Fεoff returns corruptedi to the parties,
then πon instructs the parties to output corruptedi. Practical offline/online pro-
tocols [DPSZ12, NNOB12, WRK17a, WRK17b] either directly fulfill theses re-
quirements or can easily be adapted to do so. We are now ready to formally
state our deterrence replacement theorem.

Theorem 1 (Deterrence replacement theorem). Let foff and fon be n-party
probabilistic polynomial-time functions and πon be a protocol that securely realizes
Fεon

on in the F1
off-hybrid model according to Definition 1, where foff , fon and πon

are defined as above. Then, πon securely realizes Fε
′
on

on in the Fε
′
off

off -hybrid model
according to Definition 1, where ε′on = min(εon, ε

′
off).

Remarks. Our theorem focuses on the offline/online setting where only a single
hybrid functionality is present. Nevertheless, it can be extended to use additional
hybrid functionalities with fixed deterrence factors. In addition, we present our
theorem for the intermediate explicit cheat formulation to match the definition
given in Section 2. We emphasize that our theorem is also applicable to the strong
explicit cheat formulation. For this variant of covert security, our theorem can

14

also be extended to consider an offline hybrid functionality that takes inputs
from all parties, in contrast to the definition of the offline function we specified
above.

Proof sketch. We present a proof sketch together with the simulator here and
defer the full indistinguishability proof to Appendix B.

On a high level, we prove our theorem by constructing a simulator S for the

protocol πon in the Fε
′
off

off -hybrid world. In the construction, we exploit the fact
that πon is covertly secure in the F1

off -hybrid world with deterrence factor εon,
which means that a simulator S1 for the Fεon

on -ideal world exists. Next, we state
the full simulator description.

0. Initially, S calls S1 to obtain a random tape used for the execution of Adv.

1. In the first step, S receives the messages sent from Adv to Fε
′
off

off , i.e., a set of
inputs for the corrupted parties {xoff

i }i∈I together with additional input from the
adversary m ∈ {⊥, abort, (cheati, εi)}, where i ∈ I and εi ≥ ε′off . S distinguishes
the following cases:
(a) If m ∈ {⊥, abort}, S sends {xoff

i }i∈I and m to S1 and continues the execution
exactly as S1. The latter is done by forwarding all messages received from S1

to Adv or Fε
′
on

on and vice versa.
(b) If m = (cheat`, ε`) for some ` ∈ I, S samples dummy inputs {x̂on

i }i∈I for

the corrupted parties, sends {x̂on
i }i∈I together with (cheat`, ε`) to Fε

′
on

on and
distinguishes the following cases:

i. If Fε
′
on

on replies (corruptedi, {ŷon
i }i∈I), S computes the probabilistic func-

tion foff : ({⊥}i/∈I , {xoff
i }i∈I) → (ŷoff

1 , . . . , ŷoff
n) using fresh randomness,

sends (corruptedi, {ŷoff
i }i∈I) to Adv and returns whatever Adv returns.

ii. Otherwise, if Fε
′
on

on replies (undetected, {xon
j }j /∈I), S sends undetected to

Adv and gets back the value y defined as follows:

– If y ∈ {abort, corrupted`} for ` ∈ I, S sends y to Fε
′
on

on and returns
whatever Adv returns.

– If y = {yoff
j }j /∈I with yoff

j ∈ {0, 1}∗ for j /∈ I, S interacts with Adv to
simulate the rest of the protocol. To this end, S takes xon

j as the input
of the honest party Pj and yoff

j as Pj ’s output of the offline phase for
every j /∈ I. When the protocol ends with an honest party’s output

yon
j for j /∈ I, S forwards these outputs to Fε

′
on

on and returns whatever
Adv returns. Note that yon

j can also be abort or corrupted` for ` ∈ I.

Recall that due to first restriction on πon, the call to the hybrid functionality

Fε
′
off

off is the first message sent in the protocol. Via this message, the adversary Adv
decides if it sends cheat to the hybrid functionality or not. Since this message
is the first one, the cheat decision depends only on the adversary’s code and its
random tape. The cheat decision is equally distributed in the hybrid and the
ideal world, as it depends only on the random tape and input of Adv which is
the same in the ideal world and in the hybrid world.

In the ideal world, the hybrid functionality is simulated by the simulator S
and hence S gets the message of Adv. Depending on Adv’s decision to cheat, S
distinguishes between two cases.

15

On the one hand, in case the adversary does not cheat, S internally runs S1
for the remaining simulation. Since the case of no cheating might also appear
in the F1

off -hybrid world, S1 is able to produce an indistinguishable view in the
ideal world. We formally show via a reduction to the assumption that πon is
covertly secure in the F1

off -hybrid world that the views are indistinguishable in
this case.

On the other hand, in case the adversary tries to cheat, S cannot use S1.
This is due to the fact that the scenario of undetected cheating can occur in

the Fε
′
off

off -hybrid world, while it cannot happen in the F1
off -hybrid world. Thus,

S needs to be able to simulate undetected cheating which is not required from
S1. Instead of using S1, S simulates the case of cheating on its own. To this end,
S asks the ideal functionality whether or not cheating is detected. If cheating
is detected, the remaining simulation is mostly straightforward. One subtlety
we like to highlight here is that S needs to provide the output values of the

corrupted parties of Fε
′
off

off to Adv. S obtains these values by computing the offline
function foff . Since this function is independent of the inputs of honest parties,
S is indeed able to compute values that are indistinguishable to the values in
the hybrid world execution.

If cheating is undetected, S needs to simulate the remaining steps of πon. Note
that if cheating is undetected, S obtains the inputs of the honest parties from
the ideal functionality. Moreover, the adversary provides to S the potentially
corrupted output values of the hybrid functionality for the honest parties. Now,
S knows all information to act exactly like honest parties do in the hybrid world
execution and therefore the resulting view is indistinguishable as well.

We finally give the idea about the deterrence factor of πon in the Fε
′
off

off -hybrid
world. We know that cheating during all steps after the call to the hybrid func-
tionality is detected with probability εon. This is due to the fact that πon is
covertly secure with deterrence factor εon in the F1

off -hybrid world. Now, any
cheat attempt in the hybrid functionality is detected only with probability ε′off .
Since the adversary can decide when he wants to cheat, the detection probability

of πon in the Fε
′
off

off -hybrid world is ε′on = min(εon, ε
′
off).

4 Covert Online Protocol

In this section, we demonstrate the applicability of our new paradigm to achieve
covert security. To this end, we construct a covertly secure online phase for the
TinyOT protocol [NNOB12]. We refer to Section 1.3 for the intuition and high-
level idea of TinyOT. Here, we present the exact specification of our covertly
secure online protocol. We present our protocol in a hybrid world where the
offline phase is modeled via a hybrid functionality and show its covert security
under the intermediate explicit cheat formulation (IECF) (cf. Definition 1) in
the random oracle model.

In the following, we first present the notation we use to describe our protocol.
Then, we state the building blocks of our protocol, especially, an ideal commit-
ment functionality and the offline functionality, which are both used as hybrid

16

functionalities. Next, we present the exact specification of our two-party online
protocol and afterwards prove its security.

We remark that we focus on the two-party setting, since this setting is suf-
ficient to show applicability and the benefit of our paradigm. Nevertheless, we
believe our protocol can easily be extended to the multi-party case following the
multi-party extensions of TinyOT ([LOS14, BLN+21, FKOS15, WRK17b]).

Notation. We use the following notation to describe secret shared and au-
thenticated values. This notation follows the common approach in the research
field [NNOB12, DPSZ12, WRK17a, WRK17b]. For covert security parameter t,
both parties have a global key, ∆A resp. ∆B, which are bit strings of length t. A
bit x is authenticated to a party A by having the other party B hold a random t-
bit key, K[x], and having A hold the bit x and a t-bit MAC M [x] = K[x]⊕x·∆B.
We denote an authenticated bit x known to A as 〈x〉A which corresponds to
the tuple (x,K[x],M [x]) in which x and M [x] is known by A and K[x] by B.
A public constant c can be authenticated to A non-interactively by defining
〈c〉A := (c, c · ∆b, 0

κ). Authenticated bits known to B are authenticated and
denoted symmetrically.

A bit z is secret shared by having A hold a value x and B hold a value y
such that z = x ⊕ y. The secret shared bit is authenticated by authenticating
the individual shares of A and B, i.e., by using 〈x〉A and 〈y〉B. We denote the
authenticated secret sharing (〈x〉A, 〈y〉B) = (x,K[x],M [x], y,K[y],M [y]) by 〈z〉
or 〈x|y〉.

Observe that this kind of authenticated secret sharing allows linear opera-
tions, i.e., addition of two secret shared values as well as addition and multi-
plication of a secret shared value with a public constant. In order to calculate
〈γ〉 := 〈α〉⊕〈β〉 with 〈α〉 = 〈aA|aB〉, 〈β〉 = 〈bA|bB〉, parties compute the authen-
ticated share of γ of A as 〈cA〉A := (aA ⊕ bA,K[aA]⊕K[bA],M [aA]⊕M [bA]).
The authenticated share of γ of B, 〈cB〉B, is calculated symmetrically. It follows
that 〈γ〉 = 〈cA|cB〉 is an authenticated sharing of α ⊕ β. In order to calculate
〈γ〉 := 〈α〉⊕β for a public constant β and α defined as above, parties first create
authenticated constants bits 〈β〉A and 〈0〉B and define 〈β〉 := 〈β|0〉. In order to
calcualte 〈γ〉 := 〈α〉 · β for a public constant β and α defined as above, parties
set 〈γ〉 := 〈α〉 if b = 1 and 〈γ〉 := 〈0|0〉 if b = 0.

Finally, we use the notation [n] to denote the set {1, . . . , n}. We consider
any sets to be ordered, e.g., {xi}i∈[n] := [x1, x2, . . . , xn], and for a set of indices
I = {xi}i∈[n] we denote the i-th element of I as I[i]. Note, that M [x] always
denotes a MAC for bit x and we only denote the i-th element for sets of indices
which we denote by I.

Ideal commitments. The protocol uses an hybrid commitment functionality
FCommit that is specified as follows:

Functionality FCommit: Commitments

The functionality interacts with two parties, A and B.

17

– Upon receiving (Commit, xP) from party P ∈ {A,B}, check if Commit was not
received before from P . If the check holds, store xP and send (Committed, P) to
party P̄ ∈ {A,B} \ P .

– Upon receiving (Open) from party P ∈ {A,B}, check if Commit was received
before from P . If the check holds, send (Open, P, xP) to party P̄ ∈ {A,B} \ P .

Offline functionality. The online protocol uses an hybrid offline functionality
Fεfoff

to provide authenticated bits and authenticated triples. Function foff is
defined as follows.

Functionality foff : Precomputation

The function receives inputs by two parties, A and B. W.l.o.g., we assume that
if any party is corrupted it is A. The function is parametrized with a number of
authenticated bits, n1, a number of authenticated triples n2 and the deterrence
parameter t.
Inputs: A provides either input ok or (∆A, {ri,K[si],M [ri]}i∈[n1+3·n2]) where
∆A,K[·],M [·] are t-bit strings and ri is a bit for i ∈ [n1 + 3 · n2]. An honest A
will always provide input ok. B provides input ok.
Computation: The function calculates authenticated bits and authenticated shared
triples as follows:

– Sample ∆B ∈R {0, 1}t. Do the same for ∆A if not provided as input.
– For each i ∈ [n1 + 3 · n2], sample si ∈R {0, 1}. If not provided as input, sam-

ple ri ∈R {0, 1} and K[si],M [ri] ∈R {0, 1}t. Set K[ri] := M [ri] ⊕ ri · ∆B

and M [si] := K[si] ⊕ si · ∆A. Define 〈ri〉A := (ri,K[ri],M [ri]) and 〈si〉B =
(si,K[si],M [si]).

– For each i ∈ [n2], set j = n1+3·i and define x := rj⊕(rj−1⊕sj−1)·(rj−2⊕sj−2),
K[x] := K[sj], and M [x] := K[x] ⊕ x ·∆A and 〈x〉B := (x,K[x],M [x]). Then,
define the multiplication triple 〈αi〉 := 〈rj−2|sj−2〉, 〈βi〉 := 〈rj−1|sj−1〉, and
〈γi〉 := 〈rj |x〉.

Output: Output global keys (∆A,∆B), authenticated bits {(〈ri〉A, 〈si〉B)}i∈[n1],
and authenticated shared triples {(〈αi〉, 〈βi〉, 〈γi〉)}i∈[n2], and assign A and B their
respective shares, keys and macs.

We present a protocol instantiating Fεfoff
in Appendix D.

Online protocol. The online protocol works in four steps. First, the parties ob-
tain authenticated bits and triples from the hybrid offline functionality. Second,
the parties secret share their inputs and use authenticated bits to obtain au-
thenticated shares of the inputs wires of the circuit. Third, the parties evaluate
the boolean circuit on the authenticated values. While XOR-gates are computed
locally, AND-gates require communication between the parties and the consump-
tion of a precomputed authenticated triple for each gate. Finally, in the output
phase each party verifies the MACs on the computed values to check for correct
behavior of the other party. If no cheating was detected, the parties exchange
their shares on the output wires to recompute the actual outputs.

We modified the original TinyOT online phase in two aspects. First, the
original TinyOT protocol uses one-sided authenticated precomputation data,

18

e.g., one-sided authenticated triples where the triple is not secret shared but
known to one party. In contrast, we focus on a simplification [WRK17a] where
the authenticated triples are secret shared among all parties. This allows us
to use a single two-sided authenticated triple for each AND gate instead of
two one-sided authenticated triples with additional data. Second, we integrate
commitments in the output phase. In detail, the parties first commit on their
shares for the output wires together with the corresponding MACs and only
afterwards reveal the committed values. By using commitments, the adversary
needs to decide first if it wants to cheat and only afterwards it learns the output.
However, since the adversary can commit on incorrect values, it still can learn
its output even if the honest parties detect its cheating afterwards. We show the
security of this protocol under the IECF of covert security.

To prevent the adversary from inserting incorrect values into the commit-
ment, the generation of the commitments can be part of the circuit evaluation.
By checking the correct behavior of the entire evaluation, honest parties detect
cheating with the inputs to the commitments with a fixed probability. This way,
we can achieve the strong explicit cheat formulation (SECF). Since computing
the commitments as part of the circuit reduces the efficiency, we opted for the
less expensive protocol.

Protocol Πon: TinyOT-style online protocol

The protocol is executed between parties A and B and uses of a hash function H
(modeled as non-programmable random oracle), the hybrid commitment functional-
ity FCommit, and the hybrid covert functionality F1

foff
, in the following denoted as Foff .

foff is instantiated with the same public parameters as the protocol. When denoting
a particular party with P , we denote the respective other party with P̄ .
Public parameters: The deterrence parameter t and the number of input
bits and output bits per party n1. A function f({x(i,A)}i∈[n1], {x(i,B)}i∈[n1]) =
({z(i,A)}i∈[n1], {z(i,B)}i∈[n1]) with x(∗,A), x(∗,B), z(∗,A), z(∗,B) ∈ {0, 1} and a boolean
circuit C computing f with n2 AND gates. {z(i,A)}i∈[n1] resp. {z(i,B)}i∈[n1] is the
output of A resp. B. The set of indices of input wires resp. output wires of each
party P ∈ {A,B} is denoted by I in

P resp. Iout
P . Without loss of generality, we assume

that the wire values are ordered in topological order.

Inputs: A has input bits {x(i,A)}i∈[n1] and B has input bits {x(i,B)}i∈[n1].

Pre-computation phase:

1. Each party P ∈ {A,B} defines ordered sets MP
P := ∅, MP

P̄ := ∅, sends (ok) to
Foff and receives its shares of ({(〈r(i,A)〉A, 〈r(i,B)〉B)}i∈[n1], {(〈αj〉, 〈βj〉, 〈γj〉)}j∈[n2]).
If Foff , returns m ∈ {abort, corruptedP̄ }, P outputs m and aborts.

Input phase:

2. For each i ∈ [n1], each party P ∈ {A,B} sends d(i,P) := x(i,P)⊕ r(i,P). Then, the
parties define 〈x(i,A)〉 := 〈r(i,A)|0〉⊕ d(i,A) and 〈x(i,B)〉 := 〈0|r(i,B)〉⊕ d(i,B) For each
party P ∈ {A,B} and each j ∈ [n1] with i := I in

P [j], the parties assign 〈x(j,P)〉 to
〈wi〉.

Circuit evaluation phase:

19

3. Repeat till all wire values are assigned. Let j be the smallest index of an unas-
signed wire. Let l and r be the indices of the left resp. right input wire of the gate
computing wj . Dependent on the gate type, 〈wj〉 is calculated as follows:

– XOR-Gate: 〈wj〉 := 〈wl〉 ⊕ 〈wr〉
– AND-Gate: For the i-th AND gate, the parties define (〈α〉, 〈β〉, 〈γ〉) :=

(〈αi〉, 〈βi〉, 〈γi〉), calculate 〈e〉 = 〈eA|eB〉 := 〈α〉 ⊕ 〈wl〉 and 〈d〉 = 〈dA|dB〉 :=
〈β〉⊕ 〈wr〉, open e and d by publishing eA, eB, dA, dB respectively, and compute
〈wj〉 := 〈γ〉 ⊕ e · 〈wr〉 ⊕ d · 〈wl〉 ⊕ e · d.

Further, each party P ∈ {A,B} appends (M [eP],M [dP]) toMP
P and ((K[eP̄]⊕

eP̄ ·∆P), (K[dP̄]⊕ dP̄ ·∆P)) to MP
P̄ .

Output phase:

4. Party P ∈ {A,B} computes M1
(P,P) := H(MP

P) and M1
(P,P̄) = H(MP

P̄) and

sends M1
(P,P).

5. Each party P ∈ {A,B}, upon receiving M1
(P̄ ,P̄), verifies that M1

(P̄ ,P̄) =M1
(P,P̄).

If not, P outputs corruptedP̄ and aborts. Otherwise, P computes M2
(P,P) :=

H({M [wPi]}i∈Iout
P̄

), and sends (Commit, ({wPi }i∈Iout
P̄
,M2

(P,P))) to FCommit.

6. Upon receiving, (Committed, P̄) from FCommit, P sends (Open) to FCommit.

7. Each party P ∈ {A,B}, upon receiving (Opened, P̄ , ({wP̄i }i∈Iout
P
,M2

(P̄ ,P̄))) from

FCommit, re-defines MP
P̄ := {K[wP̄i] ⊕ wP̄i · ∆P }i∈Iout

P
and verifies that M2

(P̄ ,P̄) =

H(MP
P̄). If not, P outputs corruptedP̄ and aborts. Otherwise, P outputs {wPi ⊕

wP̄i }i∈Iout
P

.

Handle aborts:

8. If a party P does not receive a timely message before executing Step 6, it outs
abort and aborts. If a party P does not receive a timely message after having executed
Step 6, it outputs corruptedP̄ and aborts.

Security. Intuitively, successful cheating in the context of the online protocol is
equivalent to correctly guessing the global key of the other party. Let us assume
A is corrupted. It is evident that A can only behave maliciously by flipping the
bits sent during the evaluation phase and the output phase – flipping a bit during
the input phase is not considered cheating as the adversary, A, is allowed to pick
its input arbitrarily. For each of those bits, there is a MAC check incorporated
into the protocol. Hence, A needs to guess the correct MACs for the flipped
bits (A knows the ones of the unflipped bits) in order to cheat successfully. As a

MAC M [bA] for a bit bA known to A is defined as K[bA]⊕bA ·∆B, a MAC M̃ [b̃A]

of a flipped bit b̃A is correct iff M̃ [b̃A] = M [bA]⊕∆B = K[bA]⊕ (bA ⊕ 1) ·∆B.
It follows that A has to guess the global key of B and apply it to the MACs of
all flipped bits in order to cheat successfully. As the global key has t bits, the
chance of guessing the correct global key is 1

2t . It follows that the deterrence
factor ε equals 1− 1

2t . More formally, we state the following theorem and prove
its correctness in Appendix E:

20

Theorem 2. Let H be a (non-programmable) random oracle, t ∈ N, and ε =
1 − 1

2t . Then, protocol Πon securely implements Fεf (i.e., constitutes a covertly
secure protocol with deterrence factor ε) in the presence of a rushing adversary
according to the intermediate explicit cheat formulation as defined in Definition 1
in the (Foff ,FCommit)-hybrid world.

On the usage of random oracles. As explained above, successful cheating is
equivalent to guessing the global key of the other party. However, a malicious
party can also cheat inconsistently, i.e., it guesses different global keys for the
flipped bits, or even provide incorrect MACs for unflipped bits. In this case, the
adversary has no chance of cheating successfully, which needs to be detected by
the simulator. As the simulator only receives a hash of a all MACs, it needs some
trapdoor to learn the hashed MACs and check for consistency. To provide such
a trapdoor, we model the hash function as a random oracle. The requirement of
a random oracle can be removed if the parties send all MACs in clear instead of
hashing them first. However, this increases the communication complexity.

Another alternative is to bound the deterrence parameter t such that the
simulator can try out all consistent ways to compute the MACs of flipped bits,
i.e., each possible value for the guessed global key, hash those and compare them
to the received hash. In this case, it is sufficient to require collision resistance
of the hash function. As the number of possible values for the global key grows
exponentially with the deterrence parameter t, i.e., 2t, this approach is only
viable if we bound t. Nevertheless, the probability of successful cheating also
declines exponentially with t, i.e., 1

2t . Hence, for small values of t, the simulator
runs in reasonable time.

5 Evaluation

In Section 4, we showed the application of our new paradigm to achieve covert
security on the example of the TinyOT online phase. By shortening the MAC
length in the online phase, we also reduced the amount of precomputation re-
quired from the offline phase. In order to quantify the efficiency gain that can be
achieved by generating shorter MACs, we compare the communication complex-
ity of a covert offline phase generating authenticated bits and triples with short
MACs to the covert offline phase generating bits and triples with long MACs.
The offline protocol. To the best of our knowledge, there is no explicit covert
protocol for the precomputation of TinyOT-style protocols. Therefore, we rely
on generic transformations from semi-honest to covert security based on the
cut-and-choose paradigm, similar to the transformations proposed by [DOS20,
FHKS21, SSS22]. However, semi-honest precomputation protocols do not con-
sider authentication of bits and triples, since semi-honest online protocols do
not need authentication. Hence, it is necessary to first extend the semi-honest
protocol to generate MACs, and then, apply the generic transformation. We
first specify a semi-honest protocol to generate authenticated bits and triples as
well as the covert protocol that can be derived via the cut-and-choose approach.

21

Both protocols are presented in Appendix D. Then, we take the resulting covert
protocol to evaluate the communication complexity for different MAC lengths.

ε # triples
λ-bit MACs

(state-of-the-art)
Short MACs

(our approach) Improvement

1
2

10 K 531 333 37,19%
100 K 5 211 3 258 37,47%

1 M 52 011 32 508 37,50%
1 B 52 000 011 32 500 008 37,50%

3
4

10 K 1 062 677 36,24%
100 K 10 422 6 617 36,51%

1 M 104 022 66 017 36,54%
1 B 104 000 022 66 000 017 36,54%

7
8

10 K 2 124 1 374 35,29%
100 K 20 844 13 434 35,55%

1 M 208 044 134 034 35,57%
1 B 208 000 044 134 000 034 35,58%

Table 1: Concrete communication complexity of the covert offline phase generat-
ing the precomputation required for a maliciously secure TinyOT online phase
(as applied by state-of-the-art) and a covertly secure TinyOT online phase (our
approach). As the offline phase is covertly secure, the overall protocol’s security
level is the same in both approaches. Communication is reported in kB per party.

Evaluation results. The communication complexity of each party is deter-
mined as follows. Let κ be the computational security parameter, λ be the sta-
tistical security parameter, t be the cut-and-choose parameter (which results in
a deterrence factor ε = 1 − 1

t), M be the length of the generated MACs, n1
be the number of authenticated bits required per party, n2 be the number of
authenticated triples, COT be the communication complexity of one party for
performing κ base oblivious transfers with κ-bit strings twice, once as receiver
and once as sender, CCommit be the size of a commitment and COpen be the size
of an opening to a κ-bit seed. Then, each party needs to send C bits with C
equal to

(t+ 1) · CCommit + t · (COT + COpen + n2 · (3 + κ− 1) + (n1 + 2 · n2) · (M − 1))

In our approach, M is defined such that t = 2M . In the classical approach
with a maliciously secure online phase M is fixed to equal λ. This yields an
absolute efficiency gain of G bits with G equal to

t · (n1 + 2 · n2) · (λ−M)

22

In the following, we set κ = 128, λ = 40, COT = (2 + κ) · 256 accord-
ing to [MRR21], CCommit = 256 and COpen = 2 · κ according to a hash-based
commitment scheme. Further, we fix n1 = 256. This yields the communication
complexity depicted in Table 1. For deterrence factors up to 7

8 , our approach
reduces the communication per party by at least 35%. As a reduction of the
security of the online phase to the level of the offline phase does not affect the
overall protocol’s security, as shown in Section 3.2, this efficiency improvement
is for free.

Acknowledgments

The first, third, and fourth authors were supported by the German Federal
Ministry of Education and Research (BMBF) iBlockchain project (grant nr.
16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), and by the BMBF
and the Hessian Ministry of Higher Education, Research, Science and the Arts
within their joint support of the National Research Center for Applied Cyber-
security ATHENE. The second author was supported by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant
No. 1316/18.

References

[ABL+18] David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt
Nielsen, Jakob Illeborg Pagter, Nigel P. Smart, and Rebecca N. Wright.
From keys to databases - real-world applications of secure multi-party com-
putation. Comput. J., 2018.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In TCC, 2007.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security
with public verifiability. In ASIACRYPT, 2012.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO, 2019.

[BCG+20a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In FOCS, 2020.

[BCG+20b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-lpn.
In CRYPTO, 2020.

[BCS19] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using topgear in over-
drive: A more efficient zkpok for SPDZ. In SAC, 2019.

[BLN+21] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian
Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P.
Smart. High-performance multi-party computation for binary circuits
based on oblivious transfer. J. Cryptol., 34(3):34, 2021.

23

[Can00] Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. J. Cryptol., 13(1), 2000.

[CDE+18] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-

ing Xing. Spdz
2k: Efficient MPC mod 2k for dishonest majority. In Ad-

vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part II, 2018.

[CKR+20] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song,
and Sameer Wagh. Maliciously secure matrix multiplication with applica-
tions to private deep learning. In ASIACRYPT, 2020.

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In CRYPTO, 2022.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, 2013.

[DNNR17] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The tinytable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In CRYPTO, 2017.

[DOS20] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Black-box transforma-
tions from passive to covert security with public verifiability. In CRYPTO,
2020.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In TCC, 2013.

[FHKS21] Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser.
Generic compiler for publicly verifiable covert multi-party computation. In
EUROCRYPT, 2021.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In
ASIACRYPT, 2015.

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Concretely efficient large-scale MPC with active security (or,
tinykeys for tinyot). In ASIACRYPT, 2018.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In CRYPTO, 2003.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In CRYPTO, 2014.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious transfer. In CCS,
2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT, 2018.

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Opti-
mizing authenticated garbling for faster secure two-party computation. In
CRYPTO, 2018.

[KVH+21] Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sengupta,
Mark Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party
computation meets machine learning. In NeurIPS, 2021.

24

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest ma-
jority multi-party computation for binary circuits. In CRYPTO, 2014.

[MPC] MPC Alliance. https://www.mpcalliance.org/. (Accessed on 10/14/2022).
[MRR21] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious

transfers. In ASIACRYPT, 2021.
[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and

Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, 2012.

[Ors20] Emmanuela Orsini. Efficient, actively secure MPC with a dishonest ma-
jority: A survey. In WAIFI, 2020.

[SSS22] Peter Scholl, Mark Simkin, and Luisa Siniscalchi. Multiparty computation
with covert security and public verifiability. In ITC, 2022.

[VSG+19] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, An-
drei Lapets, and Azer Bestavros. Conclave: secure multi-party computation
on big data. In EuroSys, 2019.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS,
2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. In CCS, 2020.

[Zen] ZenGo - crypto wallet app. https://zengo.com/. (Accessed on 10/14/2022).

25

Supplementary Materials:

Putting the Online Phase on a Diet:
Covert Security from Short MACs

A Discussion of Constraints on Online Protocol

In this section, we discuss the constraints on the online protocol used in our
theorem. These constraints emerged from technical issues and it is unclear how
to prove our deterrence replacement theorem in a more generic setting. Recall
that in our proof S uses the simulator S1 which exists since πon is covertly secure
in the F1

off -hybrid world.

First, the hybrid functionality Foff needs to be called directly at the begin-
ning. This enables the simulator S to react to the adversary’s cheating decision
in the offline phase, i.e., its input to Foff , right at the start of the simulation.
More specifically, S uses the black-box simulator S1 in case the adversary does
not cheat and simulates on its own in case there is a cheating attempt. If there
would be protocol interactions before the call to Foff , S would have to decide
whether it simulates this interactions itself or via S1. This means that the ad-
versary’s input to Foff could require S to change its decision, e.g., require S to
simulate the following steps itself while S initially used S1 for the earlier steps.
This leads to a problem as S uses S1 in a black-box way, and hence, can only use
it for all or none of the protocol steps. Rewinding does not solve the problem as a
change in the simulation of the steps before the call to Foff can influence the ad-
versary’s input to Foff , and hence, S’s decision to simulate the steps afterwards
based on S1 or not.

Second, we require that in case Foff outputs corrupted, the protocol πon in-
structs the parties to output corrupted as well. This is due to some subtle detail
in the security proof. As S1 runs in a world, in which cheating in the offline phase
is not possible, S1 does not know how to deal with undetected cheating. Further,
we treat the protocol πon in a black-box way. Due to these facts, the only way
for S to simulate the case of undetected cheating is to follow the actual protocol.
To do so in a consistent way, S has to get the input of the honest parties. Hence,
S has to notify the ideal covert functionality Fεon

on about the cheating attempt in

the offline phase. In case of detected cheating, Fε
′
on

on sends corrupted to the honest
parties and thus the honest parties output corrupted in the ideal world. In order
to achieve indistinguishability between the ideal world and the real world, πon

needs to instruct the honest parties to output corrupted in the real world, too.

Finally, we emphasize that known offline/online protocols (SPDZ [DPSZ12],
TinyOT [NNOB12], authenticated garbling [WRK17a, WRK17b]) either directly
fulfill the aforementioned requirements or can easily be adapted to do so.

26

B Proof of Theorem 1

Here, we provide the full and formal proof of our deterrence replacement theorem
which is stated in Theorem 1.

Proof. By assumption, πon is covertly secure in the F1
off -hybrid world and thus

there exists a corresponding simulator S1 in the ideal world with the covert
online functionality Fεon

on . We prove Theorem 1 by constructing a simulator S for

πon in the Fε
′
off

off -hybrid world that utilizes simulator S1. This means, S is running

in the ideal world with the covert online functionality Fε
′
on

on and internally runs
the adversary Adv and S1. Here, Adv is the adversary attacking the protocol πon

executed in the Fε
′
off

off -hybrid world.

In the ideal world with Fε
′
on

on , S plays the role of both the honest parties and

the hybrid functionality Fε
′
off

off towards Adv. In addition, S needs to provide the

inputs of the corrupted parties to Fε
′
on

on . Let I be the set of indices denoting the
set of corrupted parties. The full simulator description is given in Section 3.2.

Next, we show indistinguishability between the ideal world execution and
the hybrid world execution. In the hybrid world, the adversary Adv interacts
with the honest parties, where the honest parties act as specified by πon, and

all parties have access to the hybrid functionality Fε
′
off

off . The ideal world involves

ideal functionality Fε
′
on

on , the honest parties, which just forwards their inputs to
the ideal functionality, and simulator S which internally executes Adv. For both
worlds, we consider the joint distribution of the honest parties’ outputs and the
view of Adv. We show indistinguishability between these two distributions in
three steps. First, we prove that the adversary tries to cheat in the offline hybrid
functionality with the same probability in the hybrid and in the ideal world.
Second, we show that the joint output distributions are indistinguishable if the
adversary refrains from cheating in the offline hybrid functionality. Third, we
argue about the indistinguishability if the adversary tries to cheat in the offline
hybrid functionality. At the end, since the cases happen with the same prob-
ability in both worlds and the joint output distributions are indistinguishable
in each case, it follows that the entire ideal world execution is indistinguishable
from the hybrid world execution.

Claim. The probability that Adv sends (cheati, ·) for i ∈ I to the offline hybrid
functionality is identical in the hybrid and ideal world.

Recall that the call to the hybrid functionality Fε
′
off

off is the first message sent
by the adversary Adv as stated as the first requirement on the online protocol

above. Thus, the input to Fε
′
off

off only depends on the random tape and the code
of Adv. This is true for the hybrid world as well as for the ideal world.

In the ideal world, simulator S ask S1 for the random tape of the adversary.
We make the standard assumption that S1 fixes a uniformly sampled random
tape for the adversary at the beginning and uses this randomness throughout the

27

simulation. As Adv receives a uniformly sampled random tape in both worlds and
its decision depends only on the random tape and its own code, it follows that the

cheating probability Fε
′
off

off -hybrid world is identical to the cheating probability in

the ideal world with ideal online functionality Fε
′
on

on .

Claim. The ideal world execution is indistinguishable from the hybrid world

execution if the adversary does not send (cheati, ·) for i ∈ I to Fε
′
off

off .

In case (a) of the simulator, i.e., if Adv sends ⊥ or abort as additional input

to Fε
′
off

off , S uses simulator S1 for the remaining simulation. S1 exists since πon is
covertly secure in the F1

off -hybrid world. To use S1, every message from Adv is
forwarded to S1 and every response is sent back to Adv. The same procedure is

done with messages from S1 to Fε
′
on

on and vice versa.
We show Claim 2 via a reduction to the assumption that πon is covertly secure

in the F1
off -hybrid world. To this end, we start with the opposite, i.e., we assume

there exists an adversary Adv that does not send (cheati, ·) with its first message

with non-negligible probability and the simulation in the Fε
′
on

on ideal world condi-
tioned on the event that Adv does not send (cheati, ·) is distinguishable from the

protocol execution in the Fε
′
off

off -hybrid world. Then, we construct an adversary
Adv′ that uses Adv in a black-box way to make the simulation involving S1 in the
Fεon

on ideal world distinguishable from the protocol execution in the F1
off -hybrid

world. Since this leads to a contradiction, our initial assumption that the hybrid
world execution is distinguishable from the ideal world execution is false and
thus Claim 2 holds.

Adv′ is constructed as follows. Upon receiving the random tape from S1
it executes Adv on the same random tape. If Adv does send (cheati, ·), Adv′

forwards aborti and aborts. Once, Adv does not send (cheati, ·), Adv′ forwards
the message to S1 (in the ideal world) resp. F1

off (in the hybrid world) and
continues by forwarding all messages between Adv and S1 (in the ideal world)
resp. the honest parties (in the hybrid world). In the end Adv′ outputs whatever
Adv outputs.

We observe two important aspects. First, conditioned on the event that Adv
does not send (cheati, ·) with its first message, each simulation produced by S1
when interacting with Adv′ in the Fεon

on ideal world is equivalent to the simulation

S produces when interacting with Adv in the Fε
′
on

on ideal world. Second, given
the same condition, each hybrid world protocol execution produced by Adv′

in the Fεoff

off -hybrid world is equivalent to the hybrid world protocol execution

Adv produces in the Fε
′
off

off -hybrid world. Recall that by our initial assumption,
conditioned on the event that Adv does not send (cheati, ·), Adv produces views

that can be used to distinguish between the Fε
′
on

on -ideal world with S and the Fε
′
off

off -
hybrid world. As Adv′, conditioned on the same event, produces views that are
equivalent to the ones produces by Adv, these views can be used to distinguish

between Fεon
on ideal world with simulator S1 and Fε

′
off

off -hybrid. This contradicts

our assumption that πon is covertly secure in the Fε
′
off

off -hybrid world.

28

What remains is to show that our two observations hold. Observation one
follows from the following facts: In any two concrete experiments with equivalent

inputs in the Fε
′
on

on ideal world and the Fεon
on ideal world, in which our condition

holds, it is true that (a) Fεon
on is executed identical to Fε

′
on

on , (b) S’s execution is
identical to the one of S1 and (c) Adv’s execution is identical to the one of Adv′.

The only difference between Fε
′
on

on and Fεon
on is that Fε

′
on

on can only be called with
special input (cheati, εi) if εi ≥ ε′on while Fεon

on is called with εi ≥ εon. S1 being the
correct simulator for the Fεon

on ideal world will call the ideal functionality always

with εi ≥ εon. Fε
′
on

on , if only called with εi ≥ εon, behaves exactly as Fεon
on , which

shows fact (a). If our condition holds, S determines all of its behavior via S1, and
hence, the two are executed identical (b). Equivalently, if the condition holds,
Adv′ determines all of its behavior via Adv, and hence, the two are executed
identical (c). Note that in both cases even the randomness given to Adv is deter-
mined by S1. From facts (a), (b), (c), it follows that the outputs of the honest
parties and the simulator in any two concrete experiments with equivalent inputs

in the Fε
′
on

on ideal world and the Fεon
on ideal world, in which our condition holds, are

identical. Hence, observation one is true, i.e., each simulation produced by Adv′

when interacting with S1 in the Fεon
on ideal world is identical to the simulation

Adv would produce when interacting with S in the Fε
′
on

on ideal world. The second
observation is straight forward. As the protocol, based on our condition, is the

same in the Fεoff

off -hybrid world and the Fε
′
off

off -hybrid world, the honest parties
behave the same. Further, Adv′ behaves exactly as Adv without telling Adv in
which hybrid world it is. Hence, the behavior of Adv′ in the Fεoff

off -hybrid world is

the same as the one of Adv in the Fε
′
off

off -hybrid world. It follows that the output
of the honest parties and Adv′ in the Fεoff

off -hybrid world is identical to the output

of the honest parties and Adv in the Fε
′
off

off -hybrid world execution. Subsequently,
observation two holds, i.e., given our condition, each hybrid world protocol ex-
ecution produced by Adv′ in the Fεoff

off -hybrid world is equivalent to the hybrid

world protocol execution Adv would produce in the Fε
′
off

off -hybrid world.

Claim. The ideal world execution is indistinguishable from the hybrid world

execution if the adversary sends (cheati, ·) for i ∈ I to Fε
′
off

off .

In case (b) of the simulator, the adversary tries to cheat by sending m =
(cheati, εi) for i ∈ I and εi ≥ ε′off . In the hybrid world, the hybrid functionality

Fε
′
off

off signals detected cheating with probability εi. In the ideal world, simulator

S simulates the hybrid functionality by first asking the online functionality Fε
′
on

on

whether or not the cheating is detected. To this end, S samples dummy inputs

{x̂on
i }i∈I and sends {x̂on

i }i∈I together with m = (cheati, εi) to Fε
′
on

on . Fε
′
on

on accepts
message m as εi ≥ ε′on. Note that sampling dummy values for the inputs is no

problem, since only the output values {ŷon
i } returned from Fε

′
on

on depend on these

values and these output values are not used later on. Fε
′
on

on signals that cheating

29

is detected with probability εi. It follows that the detection probability is εi in
both worlds.

In case cheating is detected in the hybrid world, the hybrid functionality
returns corruptedi to the honest parties and sends the outputs of the corrupted
parties of the offline function to the adversary. These outputs are computed by
evaluating foff on the inputs of the corrupted parties and some freshly and uni-
formly sampled randomness but without any input from the honest parties. By
assumption (the second restriction) the protocol instructs the honest parties to
output corruptedi upon receiving corruptedi. In the ideal world, upon receiving

corruptedi from Fε
′
on

on , S computes the outputs {ŷoff
i }i∈I of the probabilistic func-

tion foff itself using the inputs of the corrupted parties {xoff
i }i∈I received by Adv.

As S has access to Adv’s inputs and can sample the randomness provided to foff

itself, the computed output of S is indistinguishable from the output computed

by Fε
′
off

off in the hybrid world. Next, S sends (corruptedi, {ŷoff
i }i∈I) to Adv and

returns whatever Adv returns. At the same time, the ideal online functionality
sends corruptedi to the honest parties which output corruptedi. As the outputs of
the honest parties are identical in the hybrid and the ideal world in this case and
the view of the adversary is indistinguishable, the resulting output distributions
are indistinguishable as well.

In case cheating is undetected, the hybrid functionality in the hybrid world
sends undetected to the adversary. Since the offline hybrid functionality takes no
inputs from the honest parties, no inputs are sent to the adversary. Next, the
adversary can either return abort, corruptedi or a set of output values for the
honest parties {yoff

j }j /∈I . In the ideal world, the simulator S sends undetected to
Adv and waits for its reply exactly as in the hybrid world. In case the adversary
sends abort or corruptedi in the hybrid world, the hybrid offline functionality
forwards the message to the honest parties. By assumption (second restriction)
the honest parties terminate the protocol by outputting the same message. Simi-
larly, in the ideal world, S forwards the message to the ideal online functionality
which sends the message to the honest parties and instructs them to terminate by
outputting the same message. Then, S terminates the execution by outputting
whatever Adv outputs. It follows, that the joint output distributions are indistin-
guishable in the case that Adv sends abort or corruptedi after successful cheating.
In case the adversary sends output values for the honest parties {yoff

j }j /∈I in the
hybrid world, the hybrid functionality forwards these values to the honest par-
ties. Then, the honest parties continue the execution of the online protocol with
the adversary by using their inputs {xon

j }j /∈I and the outputs of the offline hy-

brid functionality {yoff
j }j /∈I . As a result of the execution, the honest parties may

either obtain output values {yon
j }j /∈I or output abort or corruptedi for i ∈ I. In

the ideal world, if S receives {yoff
j }j /∈I from the adversary, the simulator simu-

lates the rest of the protocol as follows. For every honest party Pj for j /∈ I,

S takes party Pj ’s input obtained from Fε
′
on

on and the value yoff
j obtained from

Adv to act like the honest party Pj . Since S knows all inputs and the outputs of
the offline hybrid functionality for all honest parties, S can act exactly like all
the honest parties. It follows that the view of the adversary is indistinguishable

30

from the hybrid world execution. Finally, upon obtaining the outputs {yon
j }j /∈I

for the honest parties at the end of the simulation, S sends these messages to

Fε
′
on

on which forwards them to the honest parties. Since the outputs of the honest
parties are indistinguishable too, the final joint output distribution is indistin-
guishable as well. This finishes the argumentation about the indistinguishability
of the hybrid world execution and the ideal world execution.

We analyze the deterrence factor ε′on for both cases. In case (a), the adversary
does not send cheat to the offline functionality and thus cheating happens at
most during the remaining steps of the online protocol. In these steps, we can
detect cheating with probability at least εon which is given by the deterrence
factor of the online protocol in the F1

off -hybrid model. In case (b), the adversary
sends cheati to the offline functionality in which case cheating is detected with

probability at least ε′off , since πon is executed in the Fε
′
off

off -hybrid model. It follows

that the overall deterrence factor of πon in the Fε
′
off

off -hybrid world is min(εon, ε
′
off).

Finally, it is easy to see that in case (b) the simulator runs in polynomial time,
since S behaves like an honest party which also runs in polynomial time. In case
(a), S internally executes S1. Since S1 runs in polynomial time per definition, S
runs in polynomial time as well. ut

C Comparison of Theorem 1 with [AL07]

Aumann and Lindell [AL07] presented a sequential composition theorem for the
(strong) explicit cheat formulation. The theorem shows that a protocol π that
is covertly secure in an (Fε11 , . . . ,F

εp(n)

p(n))-hybrid world with deterrence factor επ,

i.e., parties have access to a polynomial number of functionalities F1, . . . ,Fp(n)
with deterrence factor ε1, . . . , εp(n), respectively, is also covertly secure with de-
terrence επ if functionality Fi is replaced by a protocol πi that realizes Fi with
deterrence factor εi for i ∈ {1, . . . , p(n)}. This theorem allows to analyze the
security of a protocol in a hybrid model and replace the hybrid functionalities
with subprotocols afterwards. Aumann and Lindell already noted that the com-
putation of the deterrence factor επ needs to take all the deterrence factors of
the subprotocols into account. However, the theorem does not make any state-
ment about how the individual deterrence factors influence the deterrence factor
of the overall protocol and neither analyzes the effect of changing some of the
deterrence factors εi.

Out theorem takes on step further and addresses the aforementioned draw-
backs. In particular, it allows to analyze the security of a protocol in a simple
hybrid world, in which the hybrid functionality is associated with deterrence
factor 1. As there is no successful cheating in the hybrid functionality, a proof
in this hybrid world is expected to be much simpler. The same holds for the
calculation of the overall deterrence factor. Once having proven a protocol to
be secure in the simple hybrid world, our theorem allows to derive the security
and the deterrence factor of the same protocol in the hybrid world, in which the
offline phase is associated with some smaller deterrence factor, ε′ ∈ [0, 1].

31

D Covert Offline Phase

In this section, we present the covertly secure offline protocol implementing Fεfoff

stated in Section 4 which we base our evaluation on. Following the black-box
approach to covert security (resp. publicly verifiable covert security) introduced
by prior work [DOS20, FHKS21, SSS22], we start with a semi-honest protocol
and transform it into a covert protocol using the cut-and-choose approach.

We use a substring routine Sub(a, `), that takes as input a bit-string a and
an index ` and outputs the substring b composed of the first ` elements of a.
Oblivious transfer. We use an ideal functionality to compute random corre-
lated OTs of dynamic length. The functionality generates n1 random correlated
OT tuples. The first n2 of them have messages of length l2 while the remaining
n1 − n2 have messages of length l1. The functionality is defined as follows:

Functionality FOT: Random Correlated Dynamic Length String OT

The functionality involves a sender S and a receiver R.
Upon receiving (ok, n1, l1, n2, l2) with n1 ≥ n2 and l2 ≥ l1 from both S and R, the
functionality

– defines S := [n1] \ [n2] and samples R ∈ {0, 1}l2 , bi ∈ {0, 1} for i ∈ [n1],
m2
i ∈ {0, 1}l2 for i ∈ [n2] and m1

i ∈ {0, 1}l1 for i ∈ S,
– computes o2

i := m2
i ⊕ bi ·R for i ∈ [n2] and o1

i := m1
i ⊕ bi · Sub(R, l1) for i ∈ S,

– outputs (R, {m1
i }i∈S , {m2

i }i∈[n2]) to S and ({bi}i∈[n1]{o1
i }i∈S , {o2

i }i∈[n2]) to R.

A malicious sender may pick R and m∗∗ itself. A malicious receiver may pick b∗ itself.

This functionality can be efficiently instantiated by adapting the IKNP OT
extension protocol [IKNP03] in a straightforward way. In the original protocol,
the OT receiver sends correction terms correcting all message pairs of the base
OT to share the same difference x which represents the choice bits of the receiver.
In the dynamic length version, the receiver does not correct all message pairs
completely. Instead, it corrects the first l1 message pairs completely (all n1 bits)
and corrects the remaining pairs just up to length n2. This way, the OT receiver
only sends l1 correction terms of length n1 bits and (l2 − l1) correction terms of
length n2 bits. This yields a communication complexity of γ bits per γ-bit OT
for γ ∈ {l1, l2} plus the communication complexity of the base OTs. As we are
only interested in random choice bits (represented by x), we can define x to be
the difference of the first message pair, and hence, fix the first correction term to
be the 0-string of length n1. Thus, we can reduce the communication complexity
to (γ − 1) per γ-bit OT plus the communication complexity of the base OTs.
Obviously, this approach is only beneficial if l2 ≤ κ and l1 < κ. Otherwise, we
could generate κ-bit OTs and extend them to longer OTs using a pseudo random
generator seeded by the κ-bit message.
Commitments. The covert protocol uses an extractable commitment scheme
(Commit,Open) that is computationally binding and hiding. A party commits to
a message m by computing (c, d) ← Commit(m), where c is the commitment
value and d denotes the decommitment or opening value. Similarly, a party

32

opens a commitment c with decommitment d by computing m′ ← Open(c, d).
It holds with overwhelming probability that either m′ = m or m′ = ⊥. The
extractability property allows the simulator to extract the committed message
m and the opening value d from the commitment c by using some trapdoor
information.

Such a scheme can be implemented in the random oracle model by defining
Commit(x; r) = H(i, x, r) where i is the identity of the committer, H : {0, 1}∗ →
{0, 1}2κ is a random oracle and r ∈R {0, 1}κ.
Semi-honest instances. The semi-honest protocol which is executed several
times by the covert protocol via the cut-and-choose approach is defined as fol-
lows:

Protocol Πsh-off : Semi-honest triple generation

The protocol is executed between parties A and B. Both parties do not have any
input (the adversary is allowed to pick its own random tape). It makes use of an ideal
functionality FOT for random correlated oblivious transfer for strings of dynamic
length, a hash function H. When denoting a particular party with P , we denote the
respective other party with P̄ .

Public parameters: The computational security parameter κ, the desired MAC
length l, the number of one-sided authenticated bits for each party n1, and the
number of two-sided authenticated triples n2.

Generation of authenticated bits:

1. The parties compute n3 = 3 · n2 + n1 and invoke FOT with input (ok, n3, l, n2, κ)
twice, once with A as sender and once with B as sender. As a result, each party
P ∈ {A,B} receives (RP , {m(1,P)

i }i∈S , {m(2,P)
i }i∈[n2]) in the execution, in which it

acts as sender, and ({bPi }i∈[n3], {o(1,P)
i }i∈S , {o(2,P)

i }i∈[n2]) in the execution, in which
it acts as receiver, for S := [n3] \ [n2].

2. Each party P ∈ {A,B} defines m
(1,P)
i := Sub(m

(2,P)
i , l) and o

(1,P)
i :=

Sub(o
(2,P)
i , l) for i /∈ S. This way m

(1,P)
i and o

(1,P)
i are defined for i ∈ [n3].

3. Each party P ∈ {A,B} defines ∆P := Sub(RP , l), xPi := bPj (for i ∈ [n3]),

M [xPi] := o
(1,P)
i (for i ∈ [n3]), K[xP̄i] := m

(1,P)
i (for i ∈ [n3]), ∆′P := RP , M ′[xPi] :=

o
(2,P)
i (for i ∈ [n2]) and K′[xP̄i] := m

(2,P)
i (for i ∈ [n2]). Note that ∆′P ,M

′[·] and
K′[·] are extensions of the short MACs resp. keys ∆P ,M [·] and K[·], i.e., for each v
for which M ′[v] is defined it holds that Sub(∆′P , l) = ∆P , Sub(M ′[v], l) = M [v] and
Sub(K′[v], l) = K[v].
4. For each i ∈ [n3], the parties jointly define authenticated bits 〈ri〉A :=
(xAj ,K[xAj],M [xAj]) and 〈si〉B := (xBj ,K[xBj],M [xBj]) (each party defines its share
of the authenticated bit).

Turn bits into triples: The parties execute the following for i ∈ [n2]:

4. Define j1 := i, j2 := n2 + i, j3 := 2 · n2 + i, 〈aA〉A := 〈rj1〉A, 〈aB〉B := 〈sj1〉B,
〈bA〉A := 〈rj2〉A, 〈bB〉B := 〈sj2〉B, 〈yA〉A := 〈rj3〉A, and 〈yB〉B := 〈sj3〉B.
5. The parties execute a semi-honest bit oblivious transfer with A as sender and
B as receiver. A samples a random bit zA1 and inserts zA1 and zA1 ⊕ bA. B inserts
choice bits aB and receives zB2 := zA1 ⊕ aB · bA. The oblivious transfer is efficiently
instantiated as follows:

33

(a) A sends H0 := Sub(H(K′[aB]), 1) ⊕ zA1 and H1 := Sub(H(K′[aB] ⊕ ∆′A), 1) ⊕
zA1 ⊕ bA. B calculates zB2 := HxB ⊕ Sub(H(M ′[xB]), 1).

6. The parties execute another semi-honest bit oblivious transfer with B as sender
and A as receiver. B samples a random bit zB1 and inserts zB1 and zB1 ⊕ bB. A inserts
aA and receives zA2 := zB1 ⊕ aA · bB. The oblibious transfer is instantiated as above.
7. A defines cA := zA1 ⊕ zA2 ⊕ aA · bA. B defines cB := zB1 ⊕ zB2 ⊕ aB · bB. Hence,
cA ⊕ cB = zA1 ⊕ zB1 ⊕ aA · bB ⊕ aA · bA ⊕ zB1 ⊕ zA1 ⊕ aB · bA ⊕ aB · bB = aA · bA ⊕ aA ·
bB ⊕ aB · bA ⊕ aB · bB = (aA ⊕ aB) · (bA ⊕ bB).
8. The parties authenticate values cA and cB as follows. Each party P ∈ {A,B}
sends dP := cP ⊕yP . Then the parties non-interactively (see Section 4) authenticate
constant dP to 〈dP 〉P and calculate 〈cP 〉P := 〈yP 〉P ⊕ 〈dP 〉P .
9. The parties define 〈αi〉 := 〈aA|aB〉, 〈βi〉 := 〈bA|bB〉 and 〈γi〉 := 〈cA|cB〉.

Output:

11. The parties output their respective shares of {(〈ri〉A, 〈si〉B)}i∈[n1] and
{(〈αi〉, 〈βi〉, 〈γi〉i∈[n2])}.

The covert protocol. The semi-honest protocol is transformed into a covert
protocol as follows:

Protocol Πcov-off : Covert triple generation

The protocol is executed between parties A and B. Both parties do not have any
input (the adversary is allowed to pick its own random tape). It makes use of a
commitment scheme (Commit,Open) and the semi-honest protocol Πsh-off . When
denoting a particular party with P , we denote the respective other party with P̄ .
Public parameters: The computational security parameter κ, the cut-and-choose
parameter t, the mac length l, the number of one-sided authenticated bits of each
party n1 and the number of two-sided authenticated triples n2. The deterrence factor
of the offline phase is εoff = 1− 1

t
.

The protocol:

1. Each party P ∈ {A,B} samples t random seeds seedPi ∈ {0, 1}κ, samples a ran-
dom coin coinP ∈ [t], computes commitments {(cPi , dPi) ← Commit(seedPi)}i∈[t]

and cP ← Commit(coinP), and sends ({cPi }i∈[t], c
P).

2. The parties execute t instances of the protocol Πsh-off . In the i-th instance, party
P derives all randomness from seed seedPi and receives transcript transcripti and
output outPi .

3. In case a party aborts before this step, i.e., does not send a valid and timely
message, the other party outputs abort and aborts.

4. Each party P ∈ {A,B} sends (dP) and receives (dP̄), Then, P computes coinP̄ ←
Open(cP̄ , dP̄), and coin := coinP ⊕ coinP̄ mod t. If coinP̄ := ⊥ or P̄ aborted, P
outputs corruptedP̄ and aborts.

5. Each party P ∈ {A,B} sends {dPi }i∈[t]\{coin}. Upon receiving {dP̄i }i∈[t]\{coin}, P

calculates seedP̄i ← Open(cP̄i , d
P̄
i) for each i ∈ [t] \ {coin}. If any seedP̄i = ⊥ or P̄

aborted, P outputs corruptedP̄ and aborts. Otherwise, for each i ∈ [t] \ {coin},
P locally emulates the semi-honest protocol Πsh-off with randomness seedPi and

seedP̄i and receives transcripts ˜transcripti. If any ˜transcripti 6= transcripti P out-
puts corruptedP̄ and aborts. Otherwise, P outputs outPcoin.

34

E Proof of Theorem 2

This section provides the proof of Theorem 2 in Section 4.

Proof. We prove covert security by defining an ideal-world simulator S using a
real-world adversary Adv in a black-box way as subroutine and playing the role of
the corrupted parties when interacting with the ideal covert-functionality FCov.
The proof is given in the (Foff ,FCommit)-hybrid world. Without loss of generality,
we assume that party A is corrupted. The simulator S is fully specified as follows.

1. S simulates Foff as specified but stores both the output for A and the one for B.
If Adv sends special input abortA or (cheatA, ·), S sends a dummy input (⊥) and
special input abortA or (cheatA, 1) to FCov, terminates the experiment and outputs
whatever Adv outputs.
2. S picks an empty dummy input 0n1 for the honest party B and executes Step
2 as specified by the protocol. Further, when receiving d(i,A) from Adv, S extracts
the actually input provided for A, {x̃(i,A) := d(i,A) ⊕ r(i,A)}i∈[n1] (for i ∈ [n1]).
Using its knowledge of the precomputation, S computes all components of 〈wi〉
(wAi , w

B
i ,K[wAi],K[wBi],M [wAi],M [wBi]) for i ∈ I in

A ∪ I in
B . Additionally, S initializes

an empty set E to keep track of the flipped bits sent by Adv during the circuit
evaluation.
3. S executes Step 3 as an honest party would do but monitors the computation
performed by Adv using its knowledge of the precomputation and the already com-
puted wire values. In particular, S computes all components of 〈wj〉. However, in
case of an AND-Gate, the resulting 〈wj〉 is not computed based on the eA, dA

values that Adv is supposed to send but on the values ẽA, d̃A that Adv actually
sends. This means that S does not make use of its knowledge of Adv’s secrets to
influence the computation. During the computation of the i-th AND-Gate, if Adv
sends incorrect values for ẽA 6= eA resp. d̃A 6= dA, S adds (i, ‘e’) resp. (i, ‘d’) to E .
In the following, we will denote the e-value resp. the d-value that Adv is supposed
to send in the evaluation of the i-th AND-gate by eAi resp. dAi and the correct MAC
on these values by M [eAi] resp. M [dAi].
4. S computes M1

(B,B) and M1
(B,A) as specified by the protocol and sends

(M1
(B,B)). Upon receiving (M1

(A,A)), S backtracks the preimage of M1
(A,A),

{(M̃ [eAi], M̃ [dAi])}i∈[n2] and differentiates the following cases:
(i) (Failure): In case there are several such preimages, S returns (fail).

(ii) (Early abort): If Adv aborted before this step, S sends (abort) to FCov, terminates
the experiment and outputs whatever Adv outputs.

(iii) (Blatant cheat): Informally, a blatant cheating attempt, which is always de-
tected, happens if Adv (a) modifies the MACs of at least one bit that has not
been flipped during the evaluation, or (b) applies different global keys to the
MACs of two flipped bits. In this case, S sends (cheatA, 1,⊥) to FCov, termi-
nates the experiment and outputs whatever Adv outputs. Formally, the cases
are defined as follows:
(a) If ∃i ∈ [n2] s.th. (i, ·) /∈ E and either M̃ [eAi] 6= M [eAi] or M̃ [dAi] 6= M [dAi].

(b) If ∃i, j ∈ [n2] s.th. i 6= j, (i, v) ∈ E , (j, u) ∈ E and M̃ [vAi] ⊕ M [vAi] 6=
M̃ [uAj]⊕M [uAj]

(iv) (Consistent cheat): If E 6= ∅ and none of the above has occurred, S picks the

first element (i, v) from E to compute the guessed global key of B, ∆̃ = M̃ [vAi]⊕

35

M [vAi]. Then, S sends input ({x̃(i,A)}i∈[n1]) and special input (cheatA, ε) to FCov.
If FCov replies with (corruptedA, ·), S terminates the experiment and outputs
whatever Adv outputs. Otherwise, S continues as following:
(a) When receiving (undetected, {x(i,B)}i∈[n1]) from FCov, S emulates the in-

teractive circuit evaluation in his head. The emulation is performed based
on input bits ({x̃(i,A)}i∈[n1]) and ({x(i,B)}i∈[n1]). In the emulation S fixes
all values received by Adv in the previous execution including the precom-
putation phase. In particular, S fixes A’s output of the precomputation,
the bits Adv receives during the input phase, ({d(i,B)}i∈[n1]), and the bits
Adv receives during the circuit evaluation phase, the values (eB, dB) for each
AND-gate. To do so while still ensuring correctness of B’s input and the mul-
tiplication triples, S adapts B’s share of the precomputation accordingly in
an ad-hoc way. In addition, each eA or dA value, that has been flipped by
Adv during the evaluation of the AND-gates, is flipped in the emulation as
well. This way, S obtains the output bits ({z(i,A)}i∈[n1], {z(i,B)}i∈[n1]).

(b) S sends (Committed,B) to Adv. When receiving (Commit, ({w̃Ai },M2
(A,A)))

from Adv, S backtracks the preimage of M2
(A,A), {M̃ [wAi]}i∈Iout

B
, and de-

fines {uj}j∈[n1] := {w̃AIout
B [j] ⊕ w

A
Iout
B [j]}j∈[n1]. In case there are several such

preimages, S returns (fail). Then, S checks for consistent cheating. In par-

ticular, if there exists i ∈ Iout
B such that w̃Ai = wAi and M̃ [wAi] 6= M [wAi]

or w̃Ai 6= wAi and M̃ [wAi] 6= M [wAi] ⊕ ∆̃, S defines consistent := false. Oth-
erwise, S defines consistent := true. Note that M [wAi] denotes the correct
MAC on the unflipped bit wAi .

(c) S forces A’s output to match S’s emulation by defining for each j ∈ [n1],

w̃BIout
A [j] := z(j,A) ⊕ wAIout

A [j] and M̃ [wBIout
A [j]] := K[wBIout

A [j]] ⊕ w̃
B
Iout
A [j] ·∆A and

sending (Opened,B, ({w̃Bi }i∈Iout
A
, H({M̃ [wBi]}i∈Iout

A
))) to Adv.

(d) Upon receiving (Open) from Adv, S sends ({z(i,B) ⊕ ui}i∈[n1] to FCov, if
consistent = true, and corruptedA, otherwise. Either way, S outputs whatever
Adv outputs.

(e) If Adv does not send the expected message (timely) in any step before S
received (Commit, ·) from Adv, S sends abort to FCov. If the same happens
after S received (Commit, ·) from Adv, S sends corruptedA to FCov. In both
cases, S terminates the experiment and outputs whatever Adv outputs.

(v) (Tentatively honest behavior): If E = ∅ and M1
(A,A) = M1

(B,A), S sends

(Committed,B) to Adv. Then, S waits to receive (Commit, ({w̃Ai }i∈Iout
P̄
,M2

(A,A)))

from Adv, backtracks the primage of M2
(A,A), {M̃ [wAi]}i∈Iout

B
, defines tmp = 0

and differentiates the following cases:
(a) In case there are several such preimages, S returns (fail).
(b) If Adv aborted before sending (Commit, ·), S sends (abort) to FCov, termi-

nates the experiment and outputs whatever Adv outputs.
(c) If for each i ∈ IB it holds that w̃Ai = wAi and M̃ [wAi] = M [wAi], S sends

({x̃(i,A)}i∈[n1]) to FCov, waits to receive ({z(i,A)}i∈[n1]) from FCov, sets tmp =
1 and continues with (f).

(d) If ∃(i, j) ∈ Iout
B such that i 6= j, w̃Ai 6= wAi , w̃Aj 6= wAj , and M̃ [wAi]⊕M [wAi] 6=

M̃ [wAi]⊕M [wAj], S sends input ({x̃i}i∈[n1]) and special input (cheatA, 1) to
FCov, waits to receive ({z(i,A)}i∈[n1]) from FCov, sets tmp = 2, and continues
with (f).

36

(e) Otherwise, S defines {uj}j∈[n1] := {w̃AIout
B [j] ⊕ wAIout

B [j]}j∈[n1], sends input

({x̃i}i∈[n1]) and special input (cheatA, ε) to FCov, and reacts to the possible
replies as follows:
– If FCov replies with (corruptedA, {z(i,A)}i∈[n1]), S sets tmp = 3 and

continues with (f).
– If FCov replies with (undetected, {x(i,B)}i∈[n1]), S computes

({z(i,A)}i∈[n1], {z(i,B)}i∈[n1]) = f({x̃(i,A)}i∈[n1], {x(i,B)}i∈[n1]),
{z̃(i,B) := z(i,B) ⊕ ui}i∈[n1], sets tmp = 4, and continues with
(f).

(f) S defines {w̃BIout
A [j] := wAIout

A [j] ⊕ z(j,A)}j∈[n1] and

{M̃ [wBIout
A [j]] := K[wBIout

A [j]] ⊕ w̃BIout
A [j] · ∆A}j∈[n1]. Then, S sends

(Opened,B, ({w̃Bi }i∈Iout
A
, H({M̃ [wBi]}i∈Iout

A
))) to Adv. If Adv aborts

and tmp /∈ {2, 3}, S sends (corruptedA) to FCov. If Adv sends (Open,A)
and tmp = 1, S sends (ok) to FCov. If Adv sends (Open,A) and tmp = 4, S
sends ({z̃(i,B)}i∈[n1]) to FCov. Either way, S outputs whatever Adv outputs.

In order to finish the proof, we show that the joint distribution of the output
of the adversary Adv and the honest party B in the ideal world is computationally
indistinguishable from the output of Adv and B in the real world. We prove this
via a sequence of hybrid experiments and sketch the indistinguishability between
the outputs for each two subsequent hybrids.

Hybrid-0 : S impersonates the ideal functionality FCov and the honest party B.
S does not instruct B via FCov but does so directly (just tells B what to output).
As all involved parties still behave the same, the output of this hybrid and the
ideal world is identically distributed.

Hybrid-1 : In Step 4)-(iv), S (impersonating FCov) decides on successful cheating

iff ∆B = ∆̃. The hybrids are identically distributed.

Hybrid-2 : In Step 2), S does not use a dummy input 0n1 for the honest party
B but uses B’s input {x(i,B)}. The hybrids are identically distributed.

Hybrid-3 : We merge the case of blatant cheating (Step 4)-(iii)) and detection
during a consistent cheating attempt (part of Step 4)-(iv)). S redefines Step 4)-

(iii) as follows. If ∃i such that M̃ [eAi] 6= K[eAi] ⊕ ẽAi ·∆B or M̃ [dAi] 6= K[dAi] ⊕
d̃Ai ·∆B, S instructs B to output (corruptedA). Further S redefines Step 4)-(iv)
as follows. If E 6= ∅ and none of the above cases occurred, continue with Step 4)-
(iv)-(a). The hybrids are identically distributed. In particular, blatant cheating

and detected cheating (∆̃ 6= ∆B) implies that there exists an i satisfying the
above condition.

Hybrid-4 : Following up on the previous hybrid, we do not check the individual
MACs during the check inserted in the previous hybrid, but the hash of the
MACs that are supposed to be sent, M1

(A,A). The hybrids are computationally
indistinguishable due to the collision resistance of the random oracle.

Hybrid-5 : In Step 4)-(iv)-a), S uses the output wires of the real protocol execu-
tion to determine the outputs of both parties, i.e., S defines ({z(i,A)}i∈[n1], {z(i,B)}i∈[n1]) =
({wAi ⊕ wBi }i∈Iout

A
, {wAi ⊕ wBi }i∈Iout

B
). The hybrids are identically distributed.

37

Hybrid-6 : In Step 4)-(iv)-(b), S decides for inconsistent cheating if M2
(A,A) 6=

M2
(B,A), whereM2

(B,A) is computed as an honest party B would compute it. The
hybrids are computationally indistinguishable due to the collision resistance of
the random oracle.
Hybrid-7 : In Step 4)-(iv)-(c), S sends the real output shares instead of the forged
ones, i.e., S sends (Opened,B, ({wBi }i∈Iout

A
, H({M [wBi]}i∈Iout

A
))). The hybrids are

identically distributed.
Hybrid-8 : In Step 4)-(iv)-(d), S does not instruct the honest party to output
({z(i,B)⊕ui

}i∈[n1]) but ({w̃Ai ⊕wBi }i∈Iout
B

). The hybrids are identically distributed.

Further, we do some syntactic changes: S no longer computes u∗, z(∗,∗) and ∆̃,
and the consistency check is moved from Step 4)-(iv)-(b) to Step 4)-(iv)-(d).
Hybrid-9 : In Step 4)-(v), S defines A’s resp B’s supposed output to be {z(i,A) :=
wIout

A [i]}i∈[n2] resp. {z(i,B) := wIout
B [i]}i∈[n2]. Instead of recomputing those values

via f(·, ·) (within or outside of FCov) below Step 4)-(v), S uses the predefined
values. The hybrids are identically distributed.
Hybrid-10 : In Step 4)-(v)-(f), S sends the real output shares instead of the
forged ones, i.e., S sends (Opened,B, ({wBi }i∈Iout

A
, H({M [wBi]}i∈Iout

A
))). The hy-

brids are identically distributed.
Hybrid-11 : In Step (4)-(v)-(f), S instructs the honest party to output {w̃Ai ⊕
wBi }i∈Iout

B
if tmp ∈ {1, 4}. The hybrids are identically distributed.

Hybrid-12 : In Step 4)-(v)-(e), S (impersonating FCov) decides on successful

cheating if @i ∈ Iout
B such that M̃ [wAi] 6= K[wAi] ⊕ w̃Ai · ∆B. The hybrids are

identically distributed.
Hybrid-13 : In Step 4)-(v), we merge the cases of detected cheating and blatant
cheating as well as the cases of successful cheating and honest behavior. In
particular, we remove Steps 4)-(v)-(c), 4)-(v)-(d) and 4)-(v)-(e), and re-define
Step 4)-(v)-(f) as follows. S sends (Opened,B, ·) to Adv. If Adv aborts, S instructs
the honest party to output corruptedA. Otherwise, S checks correctness of the

MACs (∃i ∈ Iout
B such that M̃ [wAi] 6= K[wAi] ⊕ w̃Ai · ∆B). If there is such an

i, S instructs the honest party to output corruptedA. Otherwise, S instruct the
corrupted party to output {w̃Ai ⊕ wBi }i∈Iout

B
.

The hybrids are identically distributed.
Hybrid-14 : In this experiment, in Step 4)-(v), S decides for detected cheating if
M2

(A,A) 6= M
2
(B,A), where M2

(B,A) is computed as an honest party would com-
pute it. The hybrids are computationally indistinguishable due to the collision
resistance of the random oracle. Further, we do some syntactic changes: S no
longer defines tmp or computes u∗.
Hybrid-15 : We remove all failure events. In particular, we no longer backtrack
preimages computed with H and remove the check for failure events. The hy-
brids are computationally indistinguishable due to the collision resistance of the
random oracle.
Hybrid-16 : We merge the cases of consistent cheating (Step 4)-(iv)) and ten-
tatively honest behavior (Step 4)-(v)). In particular, S executes Step 4)-(iv) if
there has not been an abort andM1

(B,A) =M1
(A,A). The hybrids are distributed

identically. As set E is no longer used, we no longer initialize or populate it.

38

Hybrid-17 : S no longer tracks the computation of Adv, i.e., S does not store
Adv’s output of the precomputation, S does not extract Adv’s actually input
{x̃(i,A)}i∈[n1], and S does not monitor the circuit evaluation. The hybrids are
identically distributed.

The final hybrid experiment, Hybrid-17 :, equals the real world protocol exe-
cution, as S executes the honest party as specified by the protocol and the ideal
functionalities as they are defined. As there is a constant number of hybrids and
each two subsequent hybrids are at least computationally indistinguishable, it
follows that the real-world execution is computationally indistinguishable from
the ideal world execution which concludes the proof. ut

39

