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Abstract

Recently, a number of highly optimized threshold signing protocols for Schnorr sig-
natures have been proposed. While these proposals contain important new techniques,
some of them present and analyze these techniques in very specific contexts, making
it less than obvious how these techniques can be adapted to other contexts, or com-
bined with one another. The main goal of this paper is to abstract out and extend in
various ways some of these techniques, building a toolbox of techniques that can be
easily combined in different ways and in different contexts. To this end, we present se-
curity results for various “enhanced” modes of attack on the Schnorr signature scheme
in the non-distributed setting, and we demonstrate how to reduce the security in the
distributed threshold setting to these enhanced modes of attack in the non-distributed
setting. This results in a very modular approach to protocol design and analysis, which
can be used to easily design new threshold Schnorr protocols that enjoy better security
and/or performance properties than existing ones.

1 Introduction

Recently, a number of highly optimized threshold signing protocols for Schnorr signatures
have been proposed [KG20, CKM21, BHK+24, GS24]. While these proposals contain im-
portant new techniques, some of them (notably, [KG20, CKM21, BHK+24]) present and
analyze these techniques in very specific contexts, making it less than obvious how these
techniques can be adapted to other contexts or combined with one another.

The main goal of this paper is to abstract out and extend in various ways some of these
techniques, building a toolbox of techniques that can be easily combined in different ways
and in different contexts. To this end, we present security results for various “enhanced”
modes of attack on the Schnorr signature scheme in the non-distributed setting. Based on
our experience, a good design methodology is to reduce the security of a distributed signing
protocol to such an enhanced attack mode in the non-distributed setting. This approach
was taken in the papers [GS22a, GS22b] for ECDSA — the paper [GS22b] presented the
analysis for various enhanced modes of attack on ECDSA in the non-distributed setting,
while [GS22a] gave distributed protocols for ECDSA along with security reductions to these
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attack modes. Moreover, the paper [GS24] does exactly the same for distributed Schnorr
— it gives new distributed protocols for Schnorr along with security reductions to the
enhanced attack modes in the non-distributed setting that we analyze here in this paper.
For completeness, we review those reductions here, filling in a number of details along the
way.

We believe this modular approach can and should be adapted to other settings and can
lead to better protocol designs. Typically, any particular distributed protocol will represent
a compromise between many different goals (attack models, security assumptions, synchrony
assumptions, communication complexity, robustness requirements, latency, computational
complexity, etc). Focusing on one such design choice and then presenting a monolithic
security proof can obscure the underlying security techniques and impede their adoption in
alternative settings.

1.1 Background

Recall that for the Schnorr signature scheme, the public key is of the form D = dG, where
d ∈ Zq is the secret key and G is a generator for a group E of prime order q (which we
write here using additive notation to reflect the fact that E is nowadays typically an elliptic
curve). A signature on a message m is a pair (R, z) ∈ E × Zq, where zG = R + hD and
h ∈ Zq is a hash of R and m (and typically D as well). To generate such a signature in
the non-distributed setting, the signer generates r ∈ Zq at random, computes R ← rG and
z ← r + hd, and outputs the signature (R, z).

In the threshold setting, we have n parties on a signing committee, some of which may
be corrupt, and a certain threshold number of parties is needed to sign a message (and
assuming this threshold is high enough, some honest party must actually participate in
signing the message). The usual technique used is Shamir secret sharing, so that each of
the n parties obtains D and its share of d. To generate a public-key/secret-key pair, some
kind of distributed key generation (DKG) protocol must be executed, which can be rather
expensive.

To sign an individual message, in principle, the same DKG protocol could be used to
generate the “ephemeral” public-key/secret-key pair (R, r), where each party obtains R and
its share of r. Once this is done, each party can locally compute its share of the signature
(since this is a linear operation), and then these shares can be revealed and combined to
form a signature.

The problem with this approach is that an expensive DKG protocol must be run for
each signing operation. To reduce this cost, a few optimizations have been considered.

One obvious optimization follows from the observation that the ephemeral public-
key/secret-key pair (R, r) is completely independent of the message to be signed. Therefore,
we could potentially use an “offline/online” strategy, in which we generate such ephemeral
key pairs in an offline fashion, building up a cache of them in advance of actual signing
requests. In this context, such an ephemeral public key (together with the sharing of the
ephemeral secret key) is called a presignature. The idea is to build up a large cache of
presignatures in periods of low demand, so as to be able to quickly respond to bursts of
signing requests in periods of high demand. While computing presignatures in this way can
improve latency, it does not by itself improve throughput. However, since such presignatures
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can be generated in large batches, one can potentially also increase throughput as well by
utilizing “batching” techniques. Indeed, various types of batching techniques are used in
precisely this way in [BHK+24] and [GS24].

Unfortunately, using presignatures naively in this way breaks the security of Schnorr sig-
natures. Indeed, the usual proof of security of ordinary, non-distributed Schnorr signatures
relies in an essential way on the fact that the randomly generated group element R is not
revealed before the request to sign m is given. Moreover, this is not just an artifact of the
proof: there are actual subexponential (and even polynomial) attacks on signing protocols
that use presignatures in this way [DEF+19, BLL+22] (which we review below).

To mitigate against these presignature attacks, the FROST protocol [KG20, CKM21]
was introduced. FROST provides security even with an unlimited number of presignatures;
moreover, assuming unused presignatures are available, signing requests can be processed
concurrently with minimal latency. However, FROST is not a robust protocol. Indeed, a
single corrupt party can prevent any signatures from being produced. Nevertheless, FROST
does enjoy a property called identifiable abort, which allows misbehaving parties that prevent
protocol termination to be identified and removed from the signing committee. The use
of identifiable aborts in the context of threshold signatures is also found in the work of
[CGG+20]. However, the notion of identifiable aborts only makes sense in a synchronous
communication setting. Indeed, in an asynchronous communication setting, it is impossible
to tell the difference between a party that is misbehaving by staying silent and a party
that is just slow or temporarily disconnected from the rest of the parties. Thus, at least
in an asynchronous communication setting, FROST does not provide robustness. This
makes FROST unusable in distributed systems for which both security and robustness
are required without synchrony assumptions. Indeed, for a protocol with many parties
distributed around the globe, such synchrony assumptions seem quite unrealistic.

This limitation of FROST was highlighted in [RRJ+22], who propose a new protocol
called ROAST. To obtain robustness without synchrony assumptions, the ROAST protocol
uses FROST (or any protocol with similar security properties) as a subprotocol, running
it concurrently O(n) times per signing request. Thus, while ROAST achieves robustness
without synchrony assumptions, this comes at a significant performance cost.

More recently, the SPRINT protocol [BHK+24] was proposed, which aims to achieve
security and robustness without synchrony assumptions, and to do so while actually pro-
viding better throughput than FROST by using improved presignature generation protocols
based on batch randomness extraction techniques (an idea that goes back to [HN06]). While
SPRINT does achieve this goal, it is only secure in very restricted modes of operation, due to
the particular technique it uses to mitigate against presignature attacks. Specifically, only
a limited number of presignatures may be generated in advance of signing requests, which
somewhat defeats the purpose of presignatures. Indeed, the security theorem in [BHK+24]
only applies to a chosen message attack in which a single, fixed-size batch of presignatures
is generated, which are subsequently used to sign a corresponding batch of messages. As
we discuss below if many such batches of presignatures are generated in advance, the same
subexponential attacks mentioned above can be used on SPRINT.

We mention here another technique that can be used to mitigate against presignature
attacks, which is to simply add a group element δG to the presignature, so that the “effective
presignature” is R + δG. Here, the “shift amount” δ is obtained from a “random beacon”
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after the message to be signed has already been specified — such a random beacon should
remain unpredictable until at least one honest party chooses to reveal it. A random beacon
can be easily implemented in a number of ways (by generating a BLS threshold signature
or by opening a previously secret-shared random value). However, this may add some
latency to the online signing phase. We call such a shifted presignature a re-randomized
presignature.

NOTES:

1. As we will discuss, in some settings, it may be possible to implement the random beacon
without introducing any extra latency.

2. SPRINT can be viewed as using a variation of re-randomized presignatures, where the shift
amount δ is obtained from a hash function (which may be modeled as a random oracle) rather
than from a random beacon. While this distinction may seem small, it in fact has significant
security implications (as we shall discuss).

3. FROST’s mitigation technique can also be viewed as a variation of re-randomized presigna-
tures, where the shift amount δ is obtained from a hash function and effective presignature is
R+ δS, where S ∈ E is a second ephemeral public key. Compared to the basic re-randomized
presignatures technique, the FROST mitigation technique avoids the extra latency in the on-
line phase incurred by the random beacon. However, this comes at the cost of essentially
doubling the amount of work that needs to be done per presignature in the offline phase.
It also may increase the computation cost of the online signing phase (an issue discussed at
greater length in [GS24]).

4. The re-randomized presignatures technique was used in the context of ECDSA in [GS22b].
The use of re-randomized presignatures for Schnorr signatures appears in somewhat different
form in [KG20]: although the FROST protocol itself does not use a random beacon, the only
rigorous analysis in [KG20] is for a variant of FROST called FROST-Interactive which derives
the shift amount δ using (something similar to) a random beacon (but still uses the second
ephemeral public key S). The follow-up paper [CKM21] provides a rigorous analysis (in the
random oracle model) of FROST2, which is a slight variation of FROST.

1.2 Our contributions

Our main technical contributions are as follows:

1. An analysis of the re-randomized presignature technique. We show how to model
re-randomized presignatures (based on a random beacon) using an appropriate en-
hanced attack mode in the non-distributed setting, and present several analyses of
this mitigation technique, including a reduction to Discrete Logarithm, as well as a
direct analysis in the Generic Group Model (GGM), with hash functions modeled
both as random oracles and as concrete functions satisfying specific security proper-
ties. The GGM analysis gives a much tighter security bound than that obtained by
going through a reduction to Discrete Logarithm.

2. A direct analysis of the FROST presignature-attack mitigation technique in the GGM.
We show how to model FROST’s mitigation strategy using an appropriate enhanced
attack mode in the non-distributed setting, and give a direct analysis of this in the
GGM (modeling hash functions as random oracles). Previous work showed FROST
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secure in the random oracle model under the one-more discrete log (OMDL) assump-
tion [CKM21], and showed OMDL hard in the GGM [BFP21]. However, that chain
of reductions is very loose. Our results here give much better security bounds in the
GGM.

3. An analysis of SPRINT with re-randomized presignatures in the GGM. The analysis
of SPRINT in [BHK+24] is based on a presignature-attack mitigation technique based
on a random oracle, and gives a reduction to Discrete Logarithm. We mentioned above
that SPRINT is only secure in very limited modes of operation, due to the particulars
of this mitigation technique. We show that these restrictions can be lifted if we instead
use re-randomized presignatures (based on a random beacon). We show how to model
this using an appropriate enhanced attack mode in the non-distributed setting, and
present several analyses, including a direct security analysis in the GGM, which gives
much better security bounds than those obtained by going through a reduction to
Discrete Logarithm.

4. An analysis of SPRINT with FROST mitigation in the GGM. As mentioned above,
we can analyze the SPRINT batch randomness extraction technique in combination
with re-randomized presignatures. This is based on a random beacon which may add
some latency to the online signing phase (but as we will discuss, in some settings
this extra latency can actually be avoided). To avoid this (possible) latency cost,
we can combine SPRINT’s batch randomness extraction technique with FROST’s
presignature-attack mitigation technique. We analyze an enhanced attack mode in
the non-distributed setting that models this combination. This analysis is carried out
in the GGM (modeling hash functions as random oracles).

Our results allow one to easily combine SPRINT’s batch randomness extraction tech-
nique with either the re-randomized presignatures technique or the FROST technique for
mitigating against presignature attacks. In particular, we can obtain a threshold Schnorr
signing protocol that combines the best properties of both FROST and SPRINT:

• it is secure and robust without synchrony assumptions (like SPRINT),

• it achieves optimal resilience (i.e., tolerates up to t < n/3 corrupt parties, like
SPRINT),

• it achieves high throughput (like SPRINT), and

• it provides security even with an unlimited number of presignatures, and (assuming
unused presignatures are available) signing requests can be processed concurrently
with minimal latency (like FROST).

Moreover, our results can be used to analyze the security of new protocols that are very
different in design from either FROST or SPRINT. For example, [GS24] introduces new
protocol techniques that give a protocol that enjoys all of the above properties, but with
significantly greater throughput than SPRINT (or any other threshold Schnorr protocol, for
that matter). Thanks to the modular design approach we are advocating here, the security
analyses of the new protocol techniques in [GS24] are actually all quite simple, as they all go
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through the same reduction to the enhanced modes of attack in the non-distributed setting
that we analyze here in this paper.

As mentioned above, we carry out a security analysis of various enhanced modes of
attack on (non-distributed) Schnorr in the in the Generic Group Model (GGM). Such an
analysis in the GGM has already been done by [NSW09] for the basic attack mode on
Schnorr, but not for any of the enhanced attack modes we consider here. The analysis in
[NSW09] proves the security of Schnorr for the basic attack mode in the GGM under specific
preimage assumptions on the underlying hash function. In fact, we reprove the results in
[NSW09]. Our main reason for doing so is that we want to establish a general framework for
proving results on various Schnorr attack modes. This framework builds on that introduced
in [GS22b], in which an attack in the GGM is reduced to a purely “symbolic” attack that
allows for a much more modular and intuitive security analysis.

We actually prove a bit more than what is proved in [NSW09], observing that if we use
both the GGM and random oracle model (ROM), where the hash function is modeled as
a random oracle, we get a very tight security bound: any adversary that makes at most
N oracle queries (to either the signing, group, or random oracles) forges a signature with
probability O(N2/q +N/M). Here, M is the size of the output space of the hash function
(which could be significantly smaller than q in some settings, allowing for a more compact
representation of signatures). Note that this tight security bound is not new: it was proved
already in [BL19]. However, as stated above, our purpose in reproving this is to establish
a general framework that will allow us to easily prove similar results for various enhanced
attack modes. Moreover, our proof of this is substantially different than that in [BL19],
and therefore may be of independent interest. Indeed, the proof in [BL19] is monolithic
and carried out directly in the GGM+ROM. In contrast, our proof is very modular, in that
we first give a reduction to a “symbolic” attack, and then give a reduction to a specific
preimage property of the underlying hash function, and separately analyze this preimage
property in the ROM.

We give security proofs in the GGM+ROM for all of the enhanced attack modes
considered here, and in all cases, we find that the adversary’s forging probability is still
O(N2/q +N/M), just as for the basic attack mode.

We feel that giving security proofs in the GGM or GGM+ROM provides useful insight
into the practical security of the various enhanced attack modes we consider. For example,
the attack modes that correspond to FROST and SPRINT have been analyzed in the
literature in the ROM, with reductions to the one-more discrete logarithm problem (for
FROST) or the discrete logarithm problem (for SPRINT). However, these reductions all
go via the so-called “forking lemma” [PS96], which yields very “loose” security reductions.
Even though security proofs in the GGM or GGM+ROM have limitations in the generality
of attacks they consider, they also have value by giving a better understanding of concrete
security against the types of attacks that are arguably most likely to be carried out in
practice.

In addition to all of the above, we also model additive key derivation. Here, when
the adversary makes a signing query, he additionally specifies an additive “tweak” e ∈ Zq

to derive the effective public key as D′ := D + eG. This corresponds to using a scheme like
BIP32 [Wui20] to derive subkeys from a master key. This type of key derivation is especially
important in a threshold setting, as there is a significant cost to maintaining a secret key
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— for example, it will likely need to be reshared with regular frequency, both to achieve
proactive security and to support membership changes to the signing committee. With
additive key derivation, a signing committee can just maintain a single master key, and
derive subkeys as necessary on behalf of individual external users (or “smart contracts” in a
blockchain setting). Moreover, because of the simple additive nature of the key derivation,
it is generally trivial to deal with these derived keys in a distributed computation. Not
surprisingly, including the (effective) public key in the hash used to derive h is necessary
and sufficient to obtain security proofs for all of the attack modes we consider. Additive
key derivation was previously presented and analyzed in the context of threshold ECDSA
signatures [GS22a], and is currently used in the threshold ECDSA signing protocol on the
Internet Computer [DFI22].

1.3 The rest of the paper

Section 2 covers a number of preliminary topics. It reviews the Schnorr signature scheme,
and introduces the enhanced attack modes we shall consider, along with the mitigations
and variations discussed above.

In Section 3, we provide a detailed security analysis in the GGM and GGM+ROM
of the Schnorr signature scheme with respect to several attack modes. To set the stage,
we start with the basic attack mode, and then move on to the enhanced attack modes of
re-randomized presignatures and re-randomization via hashing.

In Section 4, we provide a security analysis of enhanced modes of operation that model
protocols that use batch randomness extraction.

In Appendices A and B, we give proofs of some technical lemmas.
In Appendix C, we review in some detail a general approach to construct threshold

Schnorr signature schemes, and how to reduce the security of such schemes to the enhanced
modes of attack defined and analyzed in this paper. This approach is very modular, allowing
a system designer to “plug in” implementations of various subprotocols that satisfy appro-
priate security properties (such as DKG and verifiable secret sharing). These ideas are not
really new, but are spread across several papers, including [Gro21, GS22a, BHK+24, GS24],
sometimes in rather implicit form, and so it is hopefully useful to bring these ideas together
explicitly in one place.

2 Preliminaries

2.1 Schnorr Signatures

From now on, we consider the Schnorr signature scheme over an elliptic curve. Let E be an
elliptic curve defined over Zp and generated by a point G of prime order q, and let E∗ be
the set of points (x, y) on the curve excluding the point at infinity O.

The secret key for Schnorr signatures is a random d ∈ Zq, the public key is D = dG ∈ E.
The scheme makes use of a hash function H : {0, 1}∗ → Zq. The signing and verification
algorithms are shown in Fig. 1. Here, we assume a serialization function

⟨·⟩ : E → {0, 1}∗

that is prefix-free and is 1-1 (as well as easy to compute and to invert).

7



Sign message m:

r
$← Zq, R ← rG ∈ E

h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

z ← r + hd
return the signature (R, z)

Verify signature (R, z) ∈ E × Zq on m:

h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

check that zG = R+ hD

Figure 1: Schnorr signing and verification algorithms

NOTE: The scheme presented in Fig. 1 does not quite fully capture either BIP340 (the bitcoin
version of Schnorr) or EdDSA — each have their own quirks. However, it seems reasonable to
speculate that all of the results proved here can easily be adapted to those particular schemes.

2.2 Enhanced attack modes

In the basic attack game for signatures, the adversary makes a series of signing queries and
then must forge a signature on some message that was not submitted as a signing query.
This attack game needs to be modified in order to model attacks that can be carried out in
the threshold setting. There are three variations to consider:

Presignatures. The adversary instructs the challenger to generate presignatures
R1,R2, . . . , which are random elements of E that are given to the adversary. In a signing
query, the adversary specifies the index k of an unused presignature and a message mk; the
challenger then signs mk using Rk.

This models the situation in the threshold setting where we do the expensive pre-
signature computation in advance using a secure DKG protocol. Any secure DKG protocol
may be used. For example, [GS22a] provides fairly efficient DKG protocols that are secure
and robust, with optimal resilience, in the asynchronous setting. Since these presignatures
are computed in the offline phase, they may be computed in large batches to achieve better
performance. The paper [GS22a] also considers such optimizations.

Biased presignatures. When the adversary makes a signing query, in addition to spec-
ifying k and mk, the adversary specifies a “bias” (uk, u

′
k) ∈ Z∗

q × Zq; the challenger then
signs mk using R̄k := ukRk + u′kG.

This models a common situation in the threshold setting where we utilize a simplified
DKG protocol in which each party securely distributes shares of an ephemeral secret key
and publishes the corresponding ephemeral public key, after which a collection of these
ephemeral keys is agreed upon and added together to obtain a presignature. This protocol
is not a secure DKG, as the adversary can bias the result. Indeed, the adversary may use
the values of the ephemeral public keys to influence the choice of his own secret keys and
the choice of ephemeral keys to include in the agreed-upon collection.

This type of biasing was discussed in [GJKR07] in the synchronous communication
setting, and in [GS22a] in the asynchronous communication setting. In [GS22a] it was
shown, by means of a random self-reduction, that the effects of this biasing can be simply
modeled as we have here. See also [GS24] for more context. We give a self-contained
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discussion of all this in Appendix C.5. Note that [GS24] also gives highly optimized batched
implementations of this simplified DKG.

Additive key derivation. When the adversary makes a signing query, he additionally
specifies an additive tweak ek ∈ Zq to derive the effective public key as D′

k := D+ekG. With
this modification, the notion of a forgery must also be appropriately modified, so that the
forgery includes a tweak e∗ ∈ Zq in addition to a message m∗, and the forgery counts so
long as (m∗, e∗) ̸= (mk, ek) for any (mk, ek) submitted to a signing query.

Additive key derivation can be considered either by itself, or in combination of one of
the two variants above.

2.3 Proof techniques and known attacks

In the usual analysis of Schnorr, we model H as a random oracle. The main idea of the
security proof is to reduce an attack on the signature scheme to an attack on the interactive
identification scheme. In the latter attack, the adversary, playing the role of prover, may
initiate many conversations with the challenger, who is playing the role of verifier. The
adversary wins the attack game if he can make any of these verifiers accept.1 To carry out
this reduction, we program the random oracle, which allows us to (a) simulate signing queries
and (b) translate the random challenges in the identification attack game into random oracle
outputs in the signature attack game.

The only nontrivial part of the proof is to simulate signaing queries. To do this, when
we get a message m to sign, we generate z, h ∈ Zq at random, compute R ← zG − hD,
and program the random oracle representing H so that H(⟨D⟩ ∥ ⟨R⟩ ∥ m) := h. This
simulation fails only if H(⟨D⟩ ∥ ⟨R⟩ ∥ m) was already defined, which happens only with
negligible probability since R is chosen after m is specified.

With presignatures, the above proof falls apart, precisely because R is chosen and given
to the adversary before the adversary specifies m. Indeed, as is well known [DEF+19], there
are attacks. Assume that the output space ofH is all of Zq (this is not strictly necessary, but
simplifies things). Suppose the adversary is given presignatures R1, . . . ,RK . The adversary
computes

R∗ ←
∑
k∈[K]

Rk,

and attempts to find messages m∗,m1, . . . ,mK such that

H(⟨D⟩ ∥ ⟨R∗⟩ ∥ m∗) =
∑
k∈[K]

H(⟨D⟩ ∥ ⟨Rk⟩ ∥ mk).

This is an instance of the (K + 1)-sum problem, a generalization of the Birthday Problem
studied by Wagner [Wag02]. Indeed, the adversary can generate (K + 1) lists of random
numbers, where the first list is obtained by computing H(⟨D⟩ ∥ ⟨R∗⟩ ∥ m∗) for various
messages m∗, the second by computing H(⟨D⟩ ∥ ⟨R1⟩ ∥ m1) for various messages m1,
and so on. This can generally be done much faster than the time O(

√
q) needed to break

1One can then reduce the security of the interactive identification scheme to the hardness of the discrete
logarithm using the “forking lemma”. See Chapter 19 of [BS23] for proofs of this.
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the discrete logarithm problem in E. Indeed, Wagner presents an algorithm that for any
constant K runs in time O(q1/c), where c := 1 + ⌊log2(K + 1)⌋. Once this is done, the
adversary can obtain signatures (Rk, zk) on mk for k ∈ [K]. From this, the adversary can
compute z∗ ←

∑
k∈[K] zk so that (R∗, z∗) is a valid signature on m∗.

In fact, if the adversary can obtain K > log2 q unused presignatures, then he can forge a
signature in polynomial time using the “ROS attack” from [BLL+22]. While that paper does
not explicitly consider the problem of attacking Schnorr with presignatures, it considers the
related problem of attacking Schnorr blind signatures, and that attack is easily adapted to
Schnorr with presignatures For completeness, we give that attack here.

1. The adversary first chooses three distinct messages m∗, m0, and m1, and computes

hk,b ← H(⟨D⟩ ∥ ⟨R⟩k ∥ mb) ∈ Zq (k ∈ [K], b ∈ {0, 1}).

We may assume that hk,0 ̸= hk,1 for all k ∈ [K].

2. The adversary computes the coefficients ρ0, ρ1, . . . , ρK ∈ Zq of the polynomial

ρ0 +
∑
k∈[K]

ρkXk :=
∑
k∈[K]

2k−1 Xk − hk,0
hk,1 − hk,0

∈ Zq[X1, . . . , Xk].

The key fact here is that the kth term of the sum on the right-hand side is 0 if we set
Xk := hk,0, and is 2k−1 if we set Xk := hk,1. In particular, for every b1, . . . , bK ∈ {0, 1},
we have

ρ0 +
∑
k∈[K]

ρkhk,bk =
∑
k∈[K]

2k−1bk.

3. The adversary computes

R∗ ←
∑
k∈[K]

ρkRk and h∗ ← H(⟨D⟩ ∥ ⟨R∗⟩ ∥ m∗) ∈ Zq,

and writes ρ0 + h∗ in binary as (bK , . . . , b1)2, so that

ρ0 + h∗ =
∑
k∈[K]

2k−1bk = ρ0 +
∑
k∈[K]

ρkhk,bk ,

and hence
h∗ =

∑
k∈[K]

ρkhk,bk .

This is where we use the assumption that K > log2 q.

4. For each k ∈ [K], the adversary now obtains a signature (Rk, zk) on mbk .

5. The adversary computes z∗ ←
∑

k∈[K] ρkzk so that (R∗, z∗) is a valid signature on
m∗.

10



2.4 Re-randomized presignatures

We just saw that the use of presignatures can severely (or completely) reduce the security
of Schnorr signatures. One mitigation to this security weakness is to use re-randomized
presignatures, just as in [GS22b]. The idea is that a random shift amount δk ∈ Zk is chosen
by the challenger after the signing request is made, so that the original presignature Rk is
replaced by the effective presignatureR′

k := Rk+δkG. The value δk is given to the adversary
to model that once chosen by the system it is publicly known. The same mitigation can be
applied to biased presignatures: the effective presignature is then R′

k := ukRk+(u′k+ δk)G.
To implement this technique in a threshold setting, some type of “random beacon”

must be used. A random beacon is a mechanism for obtaining public random values that
remain hidden and unpredictable until a time determined by the protocol. For example,
a random beacon can be efficiently implemented using a threshold BLS signature scheme
[BLS01, Bol03]. Alternatively, it may be implemented by simply opening a previously
secret-shared random value. Since the re-randomization is linear (and public), in terms
of working with linear secret sharing, the impact is negligible. Depending on the details
of the system, obtaining the shift amount δk from the random beacon may result in some
additional latency — but not necessarily so. For example, on a distributed system such
as the Internet Computer [DFI22], signing requests must go through an atomic broadcast
protocol, which itself may be implemented so that it uses a threshold BLS signature to
achieve finalization; that very same threshold BLS signature can be used to derive δk. We
give a self-contained discussion of all of this in Appendix C.3.

Let us reconsider the proof of security with this mitigation. We will consider the re-
randomized biased presignature setting (which includes the re-randomized presignature set-
ting as a special case where uk = 1 and u′k = 0). We will also combine this with additive key
derivation. Just as in Section 2.3, the only nontrivial part of the proof is to simulate signing
queries, which we do by programming the random oracle representing H. The simulator
generates the presignature Rk as

Rk ← ζkG − ηkD,

where ζk, ηk ∈ Zq are chosen at random. At a later time, the adversary makes a corre-
sponding signing query, where he specifies a message mk an additive key tweak ek ∈ Zq,
and a presignature tweak (uk, u

′
k) ∈ Z∗

q × Zq. So the effective public key is D′
k := D + ekG,

the effective presignature (used in the actual signature) is R′
k := ukR+ (u′k + δk)G and the

resulting signature is (R′
k, zk), where

zkG = R′
k + hkD′

k = (ukRk + (u′k + δk)G) + hk(Dk + ekG),

which is equivalent to

u−1
k (zk − u′k − δk − ekhk)︸ ︷︷ ︸

=ζk

G = Rk + u−1
k hk︸ ︷︷ ︸
=ηk

D.

So the simulator can simply compute

hk ← ukηk

11



and
zk ← ukζk + u′k + δk + ekhk,

and then program the random oracle so that H(⟨D′
k⟩ ∥ ⟨R′

k⟩ ∥ mk) := hk. Because δk is
chosen only after the adversary makes the signing request, the input is unlikely to have been
used before and the programming of the oracle will fail only with negligible probability.

We give an alternative proof of security of re-randomized presignatures in the generic
group model, below in Section 3.3.

2.4.1 Batch re-randomization

Another variation worth considering is an attack game in which the adversary may submit
a batch of signing queries, and a single random shift amount δ ∈ Zq is used to update all the
corresponding presignatures in the batch. That is, the adversary submits several signing
queries mk1 ,mk2 , . . . in a batch, which are paired with presignatures Rk1 ,Rk2 , . . . , and the
effective presignatures are then computed as R′

k1
:= Rk1 + δG, R′

k2
:= Rk2 + δG, and so on.

This attack mode corresponds to a setting where a threshold signing protocol has signing
requests coming in so fast that it makes sense to process these signing requests in batches,
so as to amortize the cost of generating δ and computing δG over the size of the batch. The
practical impact of this is discussed in more detail in [GS24].

One can easily verify that the above security proof extends to cover batch re-
randomization.

2.5 Re-randomizing presignatures via hashing

The FROST [KG20] and FROST2 [CKM21] protocols use a hash function to derive the
shift amount and use a second random group element as a part of the presignature. We
abstract away the details of that protocol, and instead consider an enhanced attack mode in
the non-distributed setting. Here, when the adversary makes the kth a presignature query,
the challenger generates a pair of random group elements (Rk,Sk). To sign a message mk

using this presignature pair, the effective presignature (used in the actual signature) is

R′
k := Rk + δkSk,

where
δk := ∆(⟨D⟩ ∥ ⟨Rk⟩ ∥ ⟨Sk⟩ ∥ mk).

Here, ∆ is a hash function whose output space is Zq.
We give a full discussion of how to implement a threshold signature scheme whose

security is based on this enhanced attack mode in Appendix C.4. The main advantage of
this approach to re-randomizing presignatures is that in the threshold setting, we do not
need a random beacon, as in Section 2.4. The disadvantages are that (a) we have to do twice
as much work to generate these presignature pairs, and (b) we cannot reap the benefits of
batch re-randomization (see Section 2.4.1).

The FROST2 protocol was analyzed in [CKM21] in the random oracle model, giving a
reduction to one-more discrete log (OMDL). Below in Section 3.4, we gave an analysis of
the above enhanced attack mode in the generic group model (where we also model the hash
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functions as random oracles). We believe this is useful because (a) the reduction to OMDL
is extremely loose and our analysis here gives what is probably a more realistic bound on
the effectiveness of any generic attacks, and (b) working in the generic group model allows
us to examine further variants more quickly and easily.

NOTE: If we instead derive R′
k := Rk + δkG, where

δk := ∆(⟨D⟩ ∥ ⟨Rk⟩ ∥ mk),

one can carry out essentially the same attacks as in Section 2.3. Indeed, suppose the adversary is
given presignatures R1, . . . ,RK . For k ∈ [K], define

δk(m) := ∆(⟨D⟩ ∥ ⟨Rk⟩ ∥ m)

and
hk(m) := H(⟨D⟩ ∥ ⟨Rk + δk(m)G⟩ ∥ m).

The adversary sets

R∗ :=
∑

k∈[K]

Rk,

and tries to find messages m∗,m1, . . . ,mK such that

H(⟨D⟩ ∥ ⟨R∗⟩ ∥ m∗) =
∑

k∈[K]

hk(mk).

This can again be done by solving an instance of an instance of the (K + 1)-sum problem in subex-
ponential time. Once this is done, the adversary asks for signatures (Rk + δk(mk)G, zk) on mk for
k ∈ [K], computes

z∗ ←
∑

k∈[K]

(zk − δk(mk)),

and outputs the forgery (R∗, z∗) on m∗. We also note that if K > log2 q, then we can also easily
adapt the ROS attack from [BLL+22] to forge a signature in polynomial time.

3 Generic Group Model analysis

The proofs sketched in Sections 2.3 and 2.4 give reductions to breaking the interactive
Schnorr identification scheme, which itself can be reduced to the DL problem via a “forking
lemma” argument. This results in very “loose” reductions. An alternative approach is
to carry out an analysis in the Generic Group Model, which can result is much “tighter”
reductions.

In this section, we give a security analysis of Schnorr signatures in the Generic Group
Model (GGM). This analysis includes both basic and enhanced attack modes. While such
an analysis for the basic attack mode has already been done in [NSW09], we start with that
here, so that we can develop a common framework that will be used in all of our proofs.
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3.1 The EC-GGM

We shall adapt and extend many of the techniques developed in [GS22b], and in particular,
we will adopt the EC-GGM (Elliptic Curve Generic Group Model) presented in that paper,
because it is more faithful to Elliptic Curves by capturing point inversion, which other GGM
models do not (that said, we have little doubt that all of our results hold equally well in
other GGM models).

Let us review the EC-GGM. We assume an elliptic curve E is defined by an equation
y2 = F (x) over Zp and that the curve contains q points including the point at infinity O.
Here, p and q are odd primes. Let E∗ be the set of nonzero points (excluding the point at
infinity) on the curve, i.e., (x, y) ∈ Zp × Zp that satisfy y2 = F (x). From now on, we shall
not be making any use of the usual group law for E, but simply treat E as a set; however,
for a point P = (x, y) ∈ E∗, we write −P to denote the point (x,−y) ∈ E∗.

An encoding function for E is a function

π : Zq 7→ E

that is

• injective,

• identity preserving, meaning that π(0) = O, and

• inverse preserving, meaning that for all i ∈ Zq, π(−i) = −π(i).

In the EC-GGM, parties know E and interact with a group oracle Ogrp that works as
follows:

• Ogrp on initialization chooses an encoding function π at random from the set of all
encoding functions

• Ogrp responds to two types of queries:

– (map, i), where i ∈ Zq:

∗ return π(i) // models computing iG
– (add,P1,P2, c1, c2), where P1,P2 ∈ E and c1, c2 ∈ Zq:

∗ return π
(
c1π

−1(P1) + c2π
−1(P2) ) // models computing c1P1 + c2P2

NOTES:

1. The intuition is that the random choice of encoding function hides relations between group
elements.

2. However, to make things more realistic, the encodings themselves have the same format as in
a concrete elliptic curve, even though we do not at all use the group law of an elliptic curve.

3. Also to make things more realistic, the trivial relationship between a point and its inverse
(that they share the same x-coordinate) is preserved.

4. Our model only captures the situation of elliptic curves over Zp of prime order and cofactor
1. This is sufficient for many settings, and it covers all of the “secp” curves in [Cer10].
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5. In the EC-GGM model, the adversary is free to “cook up” encodings of group elements that
were not previously output by Ogrp, and supply these as inputs to add queries.

6. We have enhanced slightly the EC-GGM model from [GS22b]: in that paper, the add query
only supports coefficients c1 = c2 = 1. This “enhanced add query” only strengthens the model
and brings it more in line with other formulations of the GGM (such as [Zha22]).

3.2 Analysis of basic attack

We start with an analysis in the EC-GGM of the basic security of Schnorr signatures. Let
us first recall precisely the basic chosen message attack game, specialized to Schnorr
signatures.

Attack Game 1 (CMA attack game). In this game, an adversary A interacts with a
challenger as follows.

• First, the challenger generates a secret key d and a public key D, and gives D to A.

• Next, A makes a sequence of signing queries. In each such query, A gives a message
m to the challenger, who responds to A with a signature (R, z) on m.

At the end of the game, A outputs a message m∗ and a signature (R∗, z∗). We say A wins
the game if (R∗, z∗) is a valid signature on m∗, but m∗ was not submitted as a signing
query. We denote by CMAadv[A] the probability that A wins the game.

Definition 1 (CMA security). We say that the Schnorr signature scheme is secure
against chosen message attack (or CMA secure) if CMAadv[A] is negligible for every
efficient adversary A.

3.2.1 Modeling the CMA attack game for Schnorr in the EC-GGM

We describe here how the CMA attack game (Attack Game 1) is to be interpreted in the
EC-GGM. The generator G is encoded as π(1) and the public key D is encoded as π(d) for
randomly chosen d ∈ Zq. The challenger gives these encodings of G and D to the adversary
at the start of the CMA attack game.

The adversary then makes a sequence of queries to both the group and signing oracles,
which are processed by the challenger. A signing oracle query on a message m is processed
by the challenger as usual, generating r ∈ Zq at random, except that it uses the group
oracle to compute the encoding of R = rG (that is, the challenger computes R by invoking
(map, r)). After that, the challenger computes h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq and z ← r+ hd
as usual, and then gives the resulting signature (R, z) to the adversary.

At the end of the CMA attack game, the adversary outputs a forgery (R∗, z∗) on a
message m∗. The signature is then verified using the verification algorithm, computing
h∗ ← H(⟨D⟩ ∥ ⟨R∗⟩ ∥ m∗) ∈ Zq and checking that z∗G = R∗ + h∗D using the group
oracle. WLOG, we may assume that the adversary has already performed this check and
made the corresponding calls to the group oracle — specifically, a call to (map, z∗) and call
to (add,R∗,D, 1, h∗). The adversary wins the signing attack game if (R∗, z∗) is a valid
signature on m∗, but m∗ was not submitted as an input to the signing oracle.
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3.2.2 Preimage attack games

In our analysis in the EC-GGM, we give a reduction to the intractability of various preimage
attacks on the hash function H. These are stated a bit more generally than our immediate
needs required.

Preimage Attack I on H.

• For k = 1, 2, . . . , the adversary makes a challenge query, giving (mk,D′
k) to challenger,

who responds with random Rk.

Let h∗k = H(⟨D′
k⟩ ∥ ⟨Rk⟩ ∥ mk).

• To win, the adversary outputs k, (m∗,D∗) ̸= (mk,D′
k), and ϵ ∈ {±1} such that

H(⟨D∗⟩ ∥ ⟨ϵRk⟩ ∥ m∗) = ϵh∗k.

Preimage Attack II on H.

• For i = 1, 2, . . . , the adversary makes a challenge query, giving h∗i to challenger, who
responds with random R∗

i .

• To win, the adversary outputs i, (m∗,D∗), and ϵ ∈ {±1} such that

H(⟨D∗⟩ ∥ ⟨ϵR∗
i ⟩ ∥ m∗) = ϵh∗i .

Preimage Attack III on H. To win, the adversary outputs a bit string x such that
H(x) = 0.

Random oracle analysis. Besides giving reductions to the intractability of these preim-
age attacks, we will also want to give explicit security bounds in the setting where H is
modeled as a random oracle. Assume that the output space of H is a subset of Zq of size
M . Consider an adversary that carries out Preimage Attack I or II and makes at most Nh

random oracle queries and Nch challenge queries. Then such an adversary wins this attack
with probability at most O(N2

ch/q + Nh/M). The term O(N2
ch/q) bounds the probability

that there are collisions among the any of the Nch random group elements generated by the
challenger. Similarly, an adversary that carries out Preimage Attack III and makes at most
Nh random oracle queries wins this attack with probability O(Nh/M).

3.2.3 Security theorem for the basic CMA attack

We now state and prove our main security theorem for the CMA-security of Schnorr sig-
natures in the EC-GGM. This theorem reduces the security of Schnorr in the EC-GGM
to the intractability of the preimage attacks on H presented in Section 3.2.2. It also gives
security bounds in the setting where we additionally model H as a random oracle whose
output space is a subset of Zq of size M . We assume that the adversary A makes

• at most Nsig signing queries, and
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• at most Ngrp queries to the group oracle.

We assume here that Ngrp includes the group oracle queries made by the challenger in
the initialization step and in the verification step of the adversary’s forgery attempt. We
let N be a bound on the number of group oracle and signing queries made during the
attack; moreover, in the random oracle setting, N also includes the number of random
oracle queries.

Theorem 1 (CMA security of Schnorr in EC-GGM). If an adversary A has an
advantage ℵ in the CMA attack game in the EC-GGM, then

ℵ = O(N2/q + ℵI + ℵII + ℵIII). (1)

Here, ℵX is the advantage of an adversary AX in winning Preimage Attack X, for X ∈
{I, II, III}. Each AX has roughly the same running time as A. Moreover, AI makes at most
Nsig challenge queries and AII makes at most Ngrp challenge queries.

In addition, if we model H as a random oracle, then we have

ℵ = O(N2/q +N/M). (2)

To prove the theorem, we use the same general framework developed in [GS22b], where
we first replace the “real” attack game in the EC-GGM by a “lazy simulation”, and then
replace that by a “symbolic simulation”. The move from real attack to symbolic simulation
is usually straightforward and fairly mechanical, and allows us to then focus on the “meat”
of the proof in a more intuitive fashion.

A lazy simulation of the signature attack game. Instead of choosing the encoding
function π at random at the beginning of the attack game, we can lazily construct π as we
go along. That is, we represent π as a set of pairs (i,P) which grows over time — such
a pair (i,P) represents the relation π(i) = P. Here, we give the entire logic for both the
group and signing oracles in the forgery attack game. Fig. 2 gives the details of Lazy-Sim.
This is essentially the same as the lazy simulator in Fig. 2 in [GS22b], except for the logic
for processing signing requests, which has been changed to Schnorr signatures instead of
ECDSA signatures (and the “enhanced add queries”)

This lazy simulation is perfectly faithful. Specifically, the advantage of any adversary
in the signature attack game using this lazy simulation of the group oracle is identical to
that using the group oracle as originally defined.

A symbolic simulation of the signature attack game. We now define a symbolic
simulation of the attack game. The essential difference in this game is that Domain(π)
will now consist of polynomials of the form a + bD, where a, b ∈ Zq and D is a variable (or
indeterminant). Here, D symbolically represents the value of d. Note that π will otherwise
still satisfy all of the requirements of an encoding function. Fig. 3 gives the details of
Symbolic-Sym. This is essentially the same as the symbolic simulator in Fig. 3 in [GS22b],
except for the logic for processing signing requests (and the “enhanced add queries”).

Essentially, the signing oracle in the symbolic simulation (i) chooses R ∈ E and z ∈ Zq

at random, (ii) sets r ← z − hD, where h = H(⟨D⟩ ∥ ⟨R⟩ ∥ m), (iii) “programs” π so that
π(r) = R, and (iv) returns the signature (R, z).
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1. Initialization:

(a) π ← {(0,O)}.
(b) d

$← Zq

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E;

while P ∈ Range(π) do: P $← E

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query
(add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq;

while i ∈ Domain(π) do: i
$← Zq

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2))
and return the result

4. To process a request to sign m:

(a) r
$← Zq

(b) invoke (map, r) to get R
(c) h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

(d) z ← r + hd

(e) return (R, z)

Figure 2: Lazy-Sim

The following lemma is fairly straightforward, and may be proved along the same lines
as Lemma 1 in [GS22b].

Lemma 1. The difference between the adversary’s forging advantage in the Lazy-Sim and
Symbolic-Sim games in Figs. 2 and 3 is O(N2/q).

Proof. See Appendix A.

By virtue of Lemma 1, it suffices to prove Theorem 1 in the Symbolic-Sim game.
Assume the adversary’s forgery is the signature (R∗, z∗) on the message m∗. Suppose

π−1(R∗) = a + bD. Let h∗ := H(⟨D⟩ ∥ ⟨R∗⟩ ∥ m∗). By the verification equation, we must
also have π−1(R∗) = z∗ − h∗D. So we must have a = z∗ and b = −h∗. We consider three
cases.

Type I forgery: R∗ = ±R for some R output by the signing oracle.

Let R∗ = ϵR, with ϵ ∈ {±1}. Suppose m was the input to signing oracle that
produced the signature (R, z), and let h := H(⟨D⟩ ∥ ⟨R⟩ ∥ m). Then we must have

z∗ − h∗D = ϵ(z − hD).

In particular, h∗ = ϵh.

In this case, the adversary must essentially win Preimage Attack I. In particular, we
can easily convert A into an adversary AI that attack as H as in Preimage Attack I,
makes at most Nsig challenge queries, and wins that game with probability identical
to the probability that A succeeds in making a Type I forgery. (Note that in this
reduction to Preimage Attack I, we have D′

k = D∗ = D — the extra flexibility is
needed only to deal with an analysis of a variation with additive key derivation,
discussed below.)

Type II forgery: not type I and h∗ ̸= 0.
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1. Initialization:

(a) π ← {(0,O)}.
(b) invoke (map, 1) to obtain G
(c) invoke (map, D) to obtain D
(d) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E;
if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query
(add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq;

if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2))
and return the result

4. To process a request to sign m:

(a) R $← E, z
$← Zq

(b) h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

(c) r ← z − hD

(d) if r ∈ Domain(π) or R ∈ Range(π)
then abort

(e) add (−r,−R) and (r,R) to π

(f) return (R, z)

Figure 3: Symbolic-Sim

Since b = −h∗ ̸= 0, the group element R∗ was generated at random as the result of a
group oracle query (made by the adversary, or by the challenger in the initialization
step). Note that the assumption h∗ ̸= 0 is used here to rule out the possibility of the
encoding of R∗ being “cooked up” directly by the adversary.

In this case, the adversary must essentially win Preimage Attack II. In particular, we
can easily convert A into an adversary AII that attack as H as in Preimage Attack II,
makes at most Ngrp challenge queries, and wins that game with probability identical
to the probability that A succeeds in making a Type II forgery. (Note that in this
reduction to Preimage Attack II, we have D∗ = D — the extra flexibility is needed
only to deal with an analysis of a variation with additive key derivation, discussed
below.)

Type III forgery: not type I and h∗ = 0.

In this case, the adversary must find a preimage of zero under H, that is, it must
essentially win Preimage Attack III. Note this case does not arise in the analysis of
[NSW09], because they do not allow the adversary to directly “cook up” the encoding
of R∗, which is allowed in the EC-GGM.

The security bounds (1) and (2) are readily verified. That completes the proof of
Theorem 1.

The above analysis is similar to that in [NSW09], except that they consider preimage
attacks with only a single challenge, and then make a “guessing” argument to complete the
reduction to the hardness of winning such a single-challenge preimage attack. This leads to
somewhat artificially pessimistic security bounds. Note that a similar security bound was
proved already in [BL19], although using a completely different proof.
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3.3 Analysis of attack with re-randomized presignatures

We next give an analysis in the EC-GGM of the security of Schnorr signatures with re-
randomized presignatures. Let us first state precisely the attack game that characterizes
this security property.

Attack Game 2 (CMA-RRP security). In this game, an adversary A interacts with a
challenger as follows.

• First, the challenger generates a secret key d and a public key D, initializes a set K
of indices to the empty set, and gives D to A.

• Next, A makes a sequence of presignature and signing queries:

– in the kth presignature query, for k = 1, 2, . . . , the challenger does the follow-
ing: computes

∗ computes rk
$← Zq and Rk ← rkG,

∗ adds the index k to K, and
∗ sends the presignature Rk to A;

– in a signing query, the adversary specifies an index k and a message mk; if
k ∈ K, the challenger does the following:

∗ computes δk
$← Zq and R′

k ← Rk + δkG,
∗ computes the signature (R′

k, zk) on mk using the effective presignature R′
k,

∗ removes k from K, and
∗ sends δk and (R′

k, zk) to A.

At the end of the game, A outputs a message m∗ and a signature (R∗, z∗). We say A wins
the game if (R∗, z∗) is a valid signature on m∗, but m∗ was not submitted as a signing
query. We denote by CMA-RRPadv[A] the probability that A wins the game.

Definition 2 (CMA-RRP security). We say that the Schnorr signature scheme is
CMA-RRP secure if CMA-RRPadv[A] is negligible for every efficient adversary A.

The above definition does not cover biased presignatures or additive key derivation.

• We add biased presignatures to the CMA-RRP attack game as follows: in each
signing query, the adversary A additionally supplies a bias (uk, u

′
k) ∈ Z∗

q × Zq, and
then challenger computes the biased presignature R̄k := ukRk +u′kG, and uses this in
place of the presignature Rk (so that the effective presignature is R′

k = R̄k + δkG).

• We add additive key derivation to the CMA-RRP attack game as follows: in
each signing query, the adversary A additionally supplies a tweak ek ∈ Zq, and the
challenger computes the effective public key as D′

k := D + ekG and the resulting
signature is relative to this effective public key. In addition, at the end of the game,
the adversary must also supply a tweak e∗ ∈ Zq, and the adversary wins the game if
(R∗, z∗) is valid signature on m∗ relative to the effective public key D∗ := D + e∗G,
and the pair (m∗, e∗) was not submitted to any signing query.
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We can also add both biased presignatures and additive key derivation to the CMA-RRP
attack game.

In Section 2.4.1, we mentioned the possibility of batch re-randomization. To adapt
the CMA-RRP attack game and all of its variants to this setting, one would allow the
adversary to submit any number of signing queries in a single batch. The difference is that
the challenger generates a single random shift amount δ ∈ Zq that is used for each signing
request in the batch. The response to the adversary includes δ and the signatures for each
signing request in the batch.

3.3.1 Another preimage attack

We need to add another attack to our list of preimage attack games in Section 3.2.2.

Preimage Attack II′ on H.

• The challenger gives a collection {R∗
i }

Nch
i=1 of random challenges to the adversary (each

R∗
i is a random element of E).

• For k = 1, 2, . . . , the adversary submits a completion query to the challenger consisting
of an index set Ik ⊆ {1, . . . , Nch} that is disjoint from I1 ∪ · · · ∪ Ik−1, along with D′

k,
mk, and {(bi, ci)}i∈Ik , where each (bi, ci) ∈ Zq × Z∗

q .

– The challenger generates R′
k at random and returns this to the adversary.

– Let hk = H(⟨D′
k⟩ ∥ ⟨R′

k⟩ ∥ mk) and h∗i = bi − ci · hk for i ∈ Ik.

• To win, the adversary outputs i, (m∗,D∗), and ϵ ∈ {±1} such that

H(⟨D∗⟩ ∥ ⟨ϵR∗
i ⟩ ∥ m∗) = ϵh∗i .

Random oracle analysis. Assume that the output space of H is a subset of Zq of size
M . Suppose that in Preimage Attack II′, the adversary receives Nch random challenges, and
makes at most Ncmp completion queries and at most Nh random oracle queries. Assume no
collisions among the random challenges occur. This means that for a given random oracle
query of the form

H(⟨D∗⟩ ∥ ⟨ϵR∗
i ⟩ ∥ m∗), (3)

there is a unique index i such that

H(⟨D∗⟩ ∥ ⟨ϵR∗
i ⟩ ∥ m∗) = bi − ci · hk

must hold in order for the random oracle query (3) to lead to a win. Here, k is the index
of the completion query which included i in Ik. Moreover, assuming that R′

k ̸= ±R∗
i and

the adversary did not happen to query H(⟨D′
k⟩ ∥ ⟨R′

k⟩ ∥ mk) before the kth completion
query was made, the value hk := H(⟨D′

k⟩ ∥ ⟨R′
k⟩ ∥ mk) is random and independent of

H(⟨D∗⟩ ∥ ⟨ϵR∗
i ⟩ ∥ m∗), bi, and ci, and so the random oracle query (3) leads to a win

with probability at most 1/M . From this, we see that the adversary wins the attack with
probability at most

O((Nch +Ncmp +Nh)
2/q +Nh/M). (4)
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1. Initialization:

(a) π ← {(0,O)}.
(b) d

$← Zq

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E;

while P ∈ Range(π) do: P $← E

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query
(add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq;

while i ∈ Domain(π) do: i
$← Zq

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2))
and return the result

4. To process a presignature request:

(a) k ← k + 1; K ← K ∪ {k}
(b) rk

$← Zq

(c) invoke (map, rk) to get Rk

(d) return Rk

5. To process a request to sign mk using pre-
signature number k ∈ K:
(a) δk

$← Zq; r
′
k ← rk + δk

(b) invoke (map, r′k) to get R′
k

(c) hk ← H(⟨D⟩ ∥ ⟨R′
k⟩ ∥ mk) ∈ Zq

(d) zk ← rk + δk + hkd

(e) K ← K \ {k}; return (R′
k, zk, δk)

Figure 4: Lazy-Sim

3.3.2 Security theorem for the CMA-RRP attack game

We now state and prove our main security theorem for the CMA-RRP security of Schnorr
signatures in the EC-GGM. The boundsM , N , Nsig, andNgrp are defined as in Section 3.2.3,
except that Ngrp now also includes the group oracle queries made by the challenger in
processing presignature queries. In addition, we define L to be the maximum number of
unused presignatures that are extant at any time (this is the maximum size that the set K
takes during Attack Game 2).

Theorem 2 (CMA-RRP security of Schnorr in EC-GGM). If an adversary A has
an advantage ℵ in the CMA-RRP attack game in the EC-GGM, then

ℵ = O(N2/q + ℵI + ℵII + ℵII′ + ℵIII). (5)

Here, ℵX is the advantage of an adversary AX in winning Preimage Attack X, for
X ∈ {I, II, II′, III}. Each AX has roughly the same running time as A, plus time O(LN).
Moreover, AI makes at most Nsig challenge queries, AII makes at most Ngrp challenge
queries, and AII′ receives at most Ngrp challenges and makes at most Nsig completion
queries.

In addition, if we model H as a random oracle, then we have

ℵ = O(N2/q +N/M). (6)

As in the proof of Theorem 1, to prove this theorem, we first replace the “real” attack
game in the EC-GGM by a “lazy simulation”, and then replace that by a “symbolic sim-
ulation”. Fig. 4 gives the detailed logic of Lazy-Sim, which is a lazy simulation of the
forgery attack game. Fig. 5 gives the detailed logic of Symbolic-Sim, which is a symbolic
simulation of the forgery attack game. Our approach for designing the symbolic simulation
in this setting is similar to that [GS22b], in which each presignature Rk corresponds to
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1. Initialization:

(a) π ← {(0,O)}.
(b) invoke (map, 1) to obtain G
(c) invoke (map, D) to obtain D
(d) k ← 0; K ← ∅
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E; if P ∈ Range(π) then
abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query
(add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq; if i ∈ Domain(π) then

abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2))
and return the result

4. To process a presignature request:

(a) k ← k + 1; K ← K ∪ {k}
(b) invoke (map, Rk) to get Rk

(c) return Rk

5. To process a request to sign mk using pre-
signature number k ∈ K:
(a) δk

$← Zq; r
′
k ← Rk + δk

(b) R′
k

$← E

(c) if r′k ∈ Domain(π) or R′
k ∈ Range(π)

then abort

(d) add (r′k,R′
k) and (−r′k,−R′

k) to π

(e) hk ← H(⟨D⟩ ∥ ⟨R′
k⟩ ∥ mk) ∈ Zq

(f) zk
$← Zq;

substitute Rk 7→ zk − δk − hkD

throughout Domain(π) and abort if
Domain(π) “collapses” (i.e., two dis-
tinct elements of Domain(π) become
equal after the substitution)

(g) K ← K \ {k}; return (R′
k, zk, δk)

Figure 5: Symbolic-Sim

a variable Rk, meaning that π(Rk) = Rk. When such a presignature is used to process a
signing request, we generate δk, zk ∈ Zq and R′

k ∈ E at random, compute the hash hk ∈ Zq,
program π so that π(Rk + δk) = R′

k, and then substitute

Rk 7→ zk − δk − hkD

throughout Domain(π). This same “substitution strategy” for dealing with presignatures
in the GGM was used extensively in [GS22b], and works equally well here. The following
lemma is fairly straightforward, and may be proved along the same lines as Lemma 2 in
[GS22b].

Lemma 2. The difference between the adversary’s forging advantage in the Lazy-Sim and
Symbolic-Sim games in Figs. 4 and 5 is O(N2/q).

Proof. See Appendix B.

By virtue of this lemma, it suffices to analyze the forgery attack in the symbolic sim-
ulation. We break the analysis into the same three cases as in the proof of Theorem 1,
depending on the type of the forged signature (R∗, z∗) on a message m∗.

Type I forgery: R∗ = ±R for some R output by signing oracle.

This is handled exactly the same as Type I in the basic attack in Section 3.2.3.

Type II forgery: not type I and h∗ ̸= 0.

Since h∗ ̸= 0, the group encoding R∗ was generated at random as the result of a group
oracle query (made by the adversary, or by the challenger in the initialization step or
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in processing a presignature query). Suppose that initially

π−1(R∗) = a+ bD+
∑
k

ckRk,

where the ck’s are all nonzero. If the sum on k is empty, this can be handled the same
as Type II in the basic attack in Section 3.2.3.

Otherwise, in order for the forgery to be valid, the Rk variables need to be eliminated
by substitution, so as to end up with

π−1(R∗) = z∗ − h∗D.

Suppose that all but one has been eliminated, say Rℓ, so that at that time,

π−1(R∗) = a′ + b′D+ cℓRℓ.

The last substitution is Rℓ 7→ zℓ − δℓ − hℓD, yielding

π−1(R∗) = {a′ + cℓ(zℓ − δℓ)}︸ ︷︷ ︸
=z∗

+ {b′ − cℓhℓ}︸ ︷︷ ︸
=−h∗

D.

Observe that at this point in time, hℓ is the output of a hash, one of whose inputs
is the group element R′

ℓ, which was generated at random after b′ and cℓ were fixed,
and so, to succeed, the adversary must solve a certain type of preimage problem
— essentially, the adversary must win Preimage Attack II′ (see Section 3.3.1). In
this preimage attack, the random challenge values R∗

i correspond to outputs from
the group oracle in the symbolic simulation of the signing attack, while the random
valuesR′

k produced by the completion queries correspond to the outputs of the signing
oracle. The kth completion query in the preimage attack game corresponds to the kth
signing query in the symbolic simulation of the signing attack, and the set of indices
Ik represents those group elements that were output by the group oracle whose last
remaining presignature variable is being eliminated by substitution from this signing
request. (Note that in this reduction to Preimage Attack II′, we have D′

k = D∗ = D
— the extra flexibility is needed only to deal with an analysis of a variation with
additive key derivation, discussed below.)

Type III forgery: not type I and h∗ = 0.

This is handled exactly the same as Type III in the basic attack in Section 3.2.3.

The security bounds (5) and (6) are readily verified. For the latter, the bound (4) is
helpful. That completes the proof of Theorem 2.

3.3.3 Variations

If we use biased presignatures, then effectively Rk gets replaced by ukRk + u′kG just before
signing a message, where uk ̸= 0 and u′k are explicitly given by the adversary. So in the
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symbolic simulation, the signing oracle programs π so that π(ukRk + u′k + δk) = R′
k and

substitutes
Rk 7→ u−1

k (zk − u′k − δk − hkD).

The general argument does not really change at all. If we use additive key derivation,
deriving D′

k := D + ekG, then this substitution becomes

Rk 7→ u−1
k (zk − hkek − u′k − δk − hkD).

The argument is also easily adapted to deal with batch re-randomization (see Section 2.4.1).
The same concrete security bounds in Theorem 2 also hold here.

3.4 Re-randomizing presignatures via hashing

We next give an analysis in the EC-GGM of the security of Schnorr signatures with pres-
ignatures that are re-randomized via a hash function ∆ whose output space is Zq. Let us
first state precisely the attack game that characterizes this security property.

Attack Game 3 (CMA-HRRP security). In this game, an adversary A interacts with
a challenger as follows.

• First, the challenger generates a secret key d and a public key D, initializes a set K
of indices to the empty set, and gives D to A.

• Next, A makes a sequence of presignature and signing queries:

– in the kth presignature query, for k = 1, 2, . . . , the challenger does the follow-
ing:

∗ computes rk, sk
$← Zq, Rk ← rkG, and Sk ← skG

∗ adds the index k to K, and
∗ sends the presignature pair (Rk,Sk) to A;

– in a signing query, the adversary specifies an index k and a message mk; if
k ∈ K, the challenger does the following:

∗ computes
δk ← ∆(⟨D⟩ ∥ ⟨Rk⟩ ∥ ⟨Sk⟩ ∥ mk)

and R′
k ← Rk + δkSk,

∗ computes the signature (R′
k, zk) on mk using the effective presignature R′

k,

∗ removes k from K, and
∗ sends (R′

k, zk) to A.

At the end of the game, A outputs a message m∗ and a signature (R∗, z∗). We say A wins
the game if (R∗, z∗) is a valid signature on m∗, but m∗ was not submitted as a signing
query. We denote by CMA-HRRPadv[A] the probability that A wins the game.

Definition 3 (CMA-HRRP security). We say that the Schnorr signature scheme is
CMA-HRRP secure if CMA-HRRPadv[A] is negligible for every efficient adversary A.
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We can add additive key derivation to the CMA-HRRP attack game in precisely
the same as in the CMA-RRP attack game, except that in processing a signing query, the
derived public key D′

k should also be input to the hash ∆, in place of D.
We shall not immediately consider biased presignatures in this setting. Rather, we

will deal with biased presignatures in this setting as a special case of batch randomness
extraction in Section 4.4, as we will have to slightly modify the enhanced attack mode to
make the security proof go through.2

We will not consider batch re-randomization at all in this setting.

3.4.1 Security theorem for the CMA-HRRP attack game

We now state and prove our main security theorem for the CMA-HRRP security of Schnorr
signatures in the EC-GGM. Here, we will model ∆ as a random oracle with output space
Zq. Since we are already working in the random oracle model, we will also simply model
as H as random oracle. We assume that the output space of H is a subset of Zq of size
M , and that the total number of queries made by A, including signing, group oracle, and
random oracle queries, is at most N .

Theorem 3 (CMA-HRRP security of Schnorr in EC-GGM). If an adversary A has
an advantage ℵ in the CMA-HRRP attack game in the EC-GGM, then we have

ℵ = O(N2/q +N/M). (7)

To prove this theorem, we first observe that when a signing query on a message mk is
made that uses the presignature pair (Rk,Sk), a preliminary computation

δk ← ∆(⟨D⟩ ∥ ⟨Rk⟩ ∥ ⟨Sk⟩ ∥ mk),

R′
k ← Rk + δkSk,

hk ← H(⟨D⟩ ∥ ⟨R′
k⟩ ∥ mk)

(8)

is made. WLOG, we can assume that the adversary has already computed these values
himself before making the signing query. This means that the signing oracle does not
make any group or random oracle queries. To simplify the analysis, we make one more
assumption about the adversary. Namely, we ensure that whenever the adversary makes a
random oracle query of the form

δ ← ∆(⟨D′⟩ ∥ ⟨R⟩ ∥ ⟨S⟩ ∥ m), (9)

for some D′, R, S, and m, it immediately makes a “special add query”

(add,R,S, 1, δ) (10)

to the group oracle to obtain the encoding of the group element R′ := R+ δS, and then it
immediately makes the random oracle query

h← H(⟨D′⟩ ∥ ⟨R′⟩ ∥ m). (11)

With this simplifying assumption, we have the following invariant:

2In versions of this paper on https://eprint.iacr.org/ dated 2024-04-08 and earlier, a brief proof
sketch was given for biased presignatures in this setting without modification. However, that proof sketch
was rather messy and incomplete, and it is not clear that it can be made to work.
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At any point in during the attack, for every query of the random oracle ∆
of the form (9), the corresponding group element R′ and hash value h have
already been computed, with at most one exception, and this exception will be
immediately eliminated by the steps (10) and (11).

Again, to prove this theorem, we first replace the “real” attack game in the EC-GGM
by a “lazy simulation”, and then replace that by a “symbolic simulation”. The move to the
lazy simulation should by now be routine. As for the symbolic simulation, the initialization
step and group oracle queries are exactly as in Fig. 5. Presignature queries are handled the
same as in Fig. 5, except that in addition to invoking (map, Rk) to get Rk, the challenger
also invokes (map, Sk) to get Sk, where Sk is a new variable. Thus, we have π(Rk) = Rk and
π(Sk) = Sk. Finally, when a request is made to sign mk using the presignature pair (Rk,Sk),
the challenger computes the values (8) (which, by assumption, have already been computed
by the adversary), and generates zk ∈ Zq at random, so that the resulting signature is
(R′

k, zk). Before returning this signature to the adversary, the challenger substitutes

Rk 7→ zk − δkSk − hkD (12)

throughout Domain(π). The symbolic simulation will “fail” if any of these substitutions
cause Domain(π) to “collapse” (i.e., if two distinct elements of Domain(π) before the sub-
stitution become equal afterwards).

We leave it to the reader to verify that the analog of Lemma 2 above holds as well for
this symbolic simulator.

As usual, suppose the forgery is a signature (R∗, z∗) on a message m∗. Since the signing
oracle does not generate any new group elements, we do not categorize forgeries as we
did before. We may assume that R∗ was randomly generated by a group oracle query —
otherwise, the adversary must essentially win Preimage Attack III on H (as in Section 3.2.2,
but where H is modeled as a random oracle).

Suppose that initially

π−1(R∗) = a+ bD+
∑
k

(ckRk + dkSk), (13)

where each (ck, dk) is nonzero (as a pair). Note that the constants a, b, and ck, dk for all
indices k are fixed before R∗ is randomly generated. In order for this forgery to be valid,
the Rk, Sk variables need to be eliminated by substitution, so as to end up with

π−1(R∗) = z∗ − h∗D.

In fact, after substitution, we have

π−1(R∗) = {a+
∑
k

ckzk}︸ ︷︷ ︸
=z∗

+ {b−
∑
k

ckhk}︸ ︷︷ ︸
=−h∗

D+
∑
k

{dk − ckδk}︸ ︷︷ ︸
=0

Sk. (14)

For the forgery to be valid, we must have dk − ckδk = 0 for each index k. If ck = 0, then
dk = 0 as well; moreover, since we are assuming that (ck, dk) ̸= (0, 0), this implies ck ̸= 0.
In particular,

δk =
dk
ck
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for each index k.
This means that at the time the adversary generates R∗, we can inspect the queries to

the random oracle ∆ to find for each index k an input

(⟨D⟩ ∥ ⟨Rk⟩ ∥ ⟨Sk⟩ ∥ mk)

to ∆ that yields the output dk/ck. This inspection process could fail, in the sense that for
some k it does not correctly identify the unique signing request that will eliminate (Rk, Sk),
but this happens with negligible probability (see below). Thus, at the time we generate
R∗, the signing queries that define the hk’s must already be preordained — this is the crux
of the proof (and is the reason that a generalized birthday or ROS attack as in Section 2.3
cannot be deployed here).

More precisely, either

(a) all of the hk’s have already been computed, or

(b) some hk has not yet been computed.

In case (a), to succeed, the adversary must essentially win Preimage Attack II on H (as
in Section 3.2.2, but where H is modeled as a random oracle). Now consider case (b).
By the invariant discussed above (right after (11)), R∗ must have been generated as a
result of a “special add query”. This means that R∗ must be equal to ±R′

k, where R′
k =

Rk+δkSk was created by this special add query, and must eventually be used as the effective
presignature in the signing query identified by the inspection process that eliminates (Rk, Sk).
Therefore, to succeed, the adversary must essentially win Preimage Attack I on H (again,
as in Section 3.2.2, but where H is modeled as a random oracle).

To make the above analysis concrete, we have to calculate the probability that the
above inspection process fails. For it to fail, it means that either (a) the adversary finds a
collision in ∆, or (b) for some R∗ output by the group oracle, for each k in (13) for which
the adversary has not already made a relevant query to ∆ whose output hits dk/ck, the
adversary must make such a query at a later time whose output (by pure luck) hits dk/ck.
The probability that (a) or (b) occurs is at most O(N2/q) — more precisely, (a) occurs
with probability O(N2

h) and (b) occurs with probability O(NgrpNh/q).
From this, it follows that if H is modeled as a random oracle with an output space of

size M , the adversary’s forging advantage is O(N2/q+N/M). That completes the proof of
Theorem 3.

3.4.2 Variations

If we use additive key derivation, deriving D′
k := D + ekG, then we also need to include D′

k

as input to ∆, in place of D. The substitution (12) then becomes

Rk 7→ zk − hkek − δkSk − hkD (15)

and the constant term in (14) is adjusted accordingly. The main argument does not change
too much, and we leave the details to the reader to verify that the same security bounds as
in Theorem 3 hold.
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4 Batch randomness extraction

In Section 2.2, we introduced biased presignatures. As discussed there, this models a com-
mon situation in the threshold setting where we utilize a simple DKG protocol in which each
party securely distributes shares of an ephemeral secret key and publishes the corresponding
ephemeral public key, after which a collection of these ephemeral keys is agreed upon and
added together to obtain a presignature. See Appendix C.5 for more details. All if this is
done just to create a single presignature. However, it is possible to use the same approach
to generate many presignatures for the price of one, leading to significantly more efficient
protocols. Specifically, instead of just adding these ephemeral keys together, we can take
several different linear combinations of them, producing several presignatures. This gen-
eral technique of “batch randomness extraction” first appeared in [HN06] in a somewhat
different setting. It was first proposed in the context of threshold Schnorr signatures in
[BHK+24], and further explored in [GS24].

We do not need to go into the details of how this batching done, as it can all be
abstracted away as a more general type of biased presignature, as discussed in [GS24] — but
see Appendix C.6 here for a more complete and self-contained discussion. This generalized
biasing can be modeled as an enhanced attack mode, which we define next for the specific
setting of re-randomized presignatures.

4.1 Re-randomized presignatures

We begin by defining an enhanced attack mode that models batch randomness extraction
with re-randomized presignatures. The attack game generalizes Attack Game 2.

Let P ≤ Q be fixed parameters. In this attack game, the adversary issues presignature
queries to the challenger as usual. However, to process the kth such query, the challenger
generates a batch of “initial” presignatures Rk,1, . . . ,Rk,Q at random and these are immedi-
ately given to the adversary. The adversary may also issue biasing queries. Each such query
specifies the index k of a batch of initial presignatures, along with a “bias” (Uk,u

′
k), where

Uk ∈ ZP×Q
q is a full rank matrix and u′

k ∈ ZP×1
q is an arbitrary column vector. This batch

of initial presignatures is then converted to a batch of “biased” presignatures R̄k,1, . . . , R̄k,P

as follows: R̄k,1
...
R̄k,P

 = Uk

Rk,1
...
Rk,Q

+ u′
kG. (16)

Note that a biasing query may be applied to the kth batch of initial presignatures only after
that batch has already been generated by a presignature query, and only once.

A signing query now specifies a pair of indices (k, i) and a message mk,i. Note that k
must be the index of a batch of biased presignatures, i must be in the range 1, . . . , P , and
(k, i) must not have already been used in a previous signing query. The challenger processes
this request using the biased presignature R̄k,i by first generating a shift amount δk,i ∈ Zq

at random, and then signing the message using the effective presignature

R′
k,i := R̄k,i + δk,iG.

29



The challenger gives the shift amount δk,i to the adversary along with the resulting signature
(R′

k,i, zk,i). This enhanced mode of attack corresponds to a threshold implementation in
which δk is generated by a random beacon — see Appendix C.3 for details.

Note that in the attack mode for biased presignatures Section 2.2, we simply modified
the signing query to include a bias. Here, we need to introduce a separate “biasing query”,
since biasing is applied to initial presignatures in batches, while signing queries are applied
to individual biased presignatures.

4.2 Random oracle analysis

Generalizing the analysis in Section 2.4, we give here an efficient reduction from the security
of this enhanced attack mode to the security of the interactive Schnorr identification scheme,
modeling H as a random oracle. As usual, the key is to show how to simulate the signing
queries. For the kth batch of initial presignatures, for each j ∈ [Q], our simulator will
generate ζk,j , ηk,j ∈ Zq at random, and then compute

Rk,j ← ζk,jG − ηk,jD.

The adversary then specifies the bias

Uk =
(
σ
(j)
k,i

)
i∈[P ],j∈[Q]

, u′
k = (µk,i)i∈[P ],

and we have
R̄k,i =

∑
j∈[Q]

σ
(j)
k,iRk,j + µk,iG (17)

for i ∈ [P ]. Therefore, we have

R̄k,i =
∑
j∈[Q]

σ
(j)
k,iRk,j + µk,iG

= {µk,i +
∑
j∈[Q]

σ
(j)
k,i ζk,j}G − {

∑
j∈[Q]

σ
(j)
k,iηk,j}D.

This implies that the re-randomized presignature is

R′
k,i = R̄k,i + δk,iG = {δk,i + µk,i +

∑
j∈[Q]

σ
(j)
k,i ζk,j}G − {

∑
j∈[Q]

σ
(j)
k,iηk,j}D

So to sign a message mk,i, the simulator will choose δk,i at random, and output the signature
(R′

k,i, zk,i) along with the value δk,i, where

zk,i := δk,i + µk,i +
∑
j∈[Q]

σ
(j)
k,i ζk,j ,

and, additionally, program the random oracle so that

H(⟨D⟩ ∥ ⟨R′
k,i⟩ ∥ mk,i) := hk,i,
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where
hk,i :=

∑
j∈[Q]

σ
(j)
k,iηk,j .

The fact that the matrix Uk has full rank and that the ηk,j ’s are random and independent

(of each other as well as everything in the adversary’s view, including the values σ
(j)
k,i ) means

that the hk,i’s are also random and independent, so the output of the random oracle has
the right distribution.

The above analysis carries over in a straightforward way to handle additive key deriva-
tion. If the effective key for a given signing request is D′

k,i = D + ek,iG, then in the above
simulation, we have to subtract ek,ihk,i from the value zk,i we originally computed, and pro-
gram the random oracle at the point corresponding to D′

k,i, rather than D. The argument
is also easily adapted to deal with batch re-randomization (see Section 2.4.1) — note that
the batches of signing requests used in batch re-randomization do not have to align at all
with the batches of presignatures.

It is a curious fact that the above proof relies crucially on the assumption that the
output space of H is all of Zq. However, this appears to just be an artifact of the proof, as
we can prove security in the GGM without this restriction (see below in Section 4.3).

Relation to SPRINT. Our analysis here highlights and presents in a more simplified
and modular form ideas that are already in present in the SPRINT protocol from [BHK+24].
Note that in SPRINT, rather than the δk,i’s being the output of a random beacon, they are
actually the output of a hash function modeled as a random oracle. In fact, in SPRINT,
the inputs to this random oracle includes a batch of messages {mk,i}i to be signed using
the corresponding batch of biased presignatures {R̄k,i}i, so that all of the δk,i’s for this
entire batch are generated at once (in fact, just a single δ-value is used for the entire
batch). However, the analysis really calls for a random beacon, rather than a random
oracle. Indeed, the security theorem proved in [BHK+24] actually only analyzes an attack
with just a single batch of signing requests. It works by guessing which random oracle query
represents the random beacon, and this (among other things) results in a quite inefficient
security reduction. To be useful, one must model an attack in which many batches of
signing requests are processed. While [BHK+24] is mute on this point, it would appear
that their theorem could be extended to prove the security in an attack in which batches of
signing requests are processed sequentially. However, this means that only a single batch
of unused presignatures can be outstanding at a time: if there are many such batches of
unused presignatures, the same attack as described in Section 2.5 can be carried out (using
one presignature per batch).

This seems to somewhat defeat the purpose of presignatures. Indeed, one of goals of
presignatures is to reduce the latency in processing signing requests by precomputing a large
cache of presignatures in periods of low demand, so as to be able to quickly process bursts of
signing requests in periods of high demand. Moreover, as discussed in [GS24], another goal of
presignatures is to simply increase overall throughput by exploiting the fact that batching
itself can significantly reduce the amortized cost of producing presignatures. However,
with SPRINT, after a single batch of presignatures is produced, it must be consumed by
processing a corresponding batch of signing requests before the next batch of presignatures
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can safely be produced. Regardless of the size of these batches, latency and/or throughput
will be adversely affected by this restriction. For example, when an individual signing
request comes in, we will have to make it wait until the batch of signing requests is full, or
we can process it, discarding any unused presignatures in the batch and initiating production
of the next batch of presignatures. In the latter case, by discarding unused presignatures,
the overall throughput of the system is reduced; moreover, the next signing request that
comes in will have to wait for the production of that next batch of presignatures to complete.

4.3 Generic group model analysis

In Section 4.2 we analyzed the enhanced attack mode modeling batch randomness extraction
with re-randomized presignatures in the random oracle model, giving a reduction to the
security of Schnorr’s identification scheme. Here, we give an analysis in the generic group
model, which generalizes the analysis in Section 3.3.

The attack game is as defined in Section 4.1. We shall prove a result analogous to
Theorem 2 — see Section 4.3.1 for a summary.

The analysis follows the same outline as in Section 3.3, where one first moves from the
real attack game to a symbolic simulation. Analogous to (17), we have

R̄k,i =
∑
j∈[Q]

σ
(j)
k,iRk,j + µk,i, (18)

for i ∈ [P ], where the Rk,j and R̄k,i are variables which symbolically represent the discrete
logarithms of the group elements Rk,j and R̄k,i.

It is convenient to extend (18) to all i ∈ [Q]. To do this, we can simply add Q−P rows
to the matrix Uk and the column vector u′

k in an arbitrary way, subject to the constraint
that Uk is now a nonsingular Q×Q matrix. This defines a bijective Zq-linear map between
the Zq-vector spaces Zq +

∑
j∈[Q] ZqRk,j and Zq +

∑
i∈[Q] ZqR̄k,i (which acts as the identity

on Zq).
Note that for a given k, this bijective map is only defined after the adversary specifies

the bias (Uk,u
′
k). In the symbolic simulation, when this occurs, we use this bijective map

to substitute, throughout Domain(π), each variable Rk,j , for j ∈ [Q], by its corresponding
value in Zq +

∑
i∈[Q] ZqR̄k,i under this map.

Now consider what happens at a later time in the symbolic simulation (after we have
already substituted the variables Rk,j with the variables R̄k,i) when we sign a messagemk,i us-
ing the biased presignature R̄k,i, which is re-randomized to obtain the effective presignature
R′

k,i := R̄k,i + δk,iG. Here, δk,i is generated at random by only after the signing request has
been made. Here, the symbolic simulation chooses zk,i, δk,i ∈ Zq and R′

k,i ∈ E at random,
programs π so that π(R̄k,i + δk,i) = R′

k,i, and makes the substitution

R̄k,i 7→ zk,i − δk,i − hk,iD

throughout Domain(π).
After defining the symbolic simulation in this way, the rest of the argument is essentially

the same as in the proof of Theorem 2.

32



4.3.1 Summary

The concrete security bounds in Theorem 2 also hold in this setting, except the running
times of the various adversaries in the reductions may be somewhat higher.3 However, if
we are only interested in security bounds in the GGM+ROM, then these running times do
not really matter. The argument is also easily adapted to handle additive key derivation,
as well as batch re-randomization (see Section 2.4.1) — note that the batches of signing
requests used in batch re-randomization do not have to align at all with the batches of
presignatures. The same security bounds hold for all of these variations.

4.4 Re-randomizing presignatures via hashing

In this section, we present an enhanced attack mode that corresponds to a protocol that
combines the technique of re-randomization via hashing (as in Section 3.4) with batch
randomness extraction. This attack game generalizes Attack Game 3, but also adds one
new element. We analyze this attack mode in the GGM plus ROM.

As in Section 4.1, we let P ≤ Q be fixed parameters. In this attack game, we assume
that in response to presignature query, the challenger generates a pair of batches of initial
presignatures: a batch Rk,1, . . . ,Rk,Q and a batch Sk,1, . . . ,Sk,Q. After this, the adversary
may issue a corresponding biasing query, in which the adversary specifies biases (Uk,u

′
k) and

(Vk,v
′
k), which (analogous to (16)) defines a batch R̄k,1, . . . , R̄k,P of biased presignatures

(using the first bias) and a batch S̄k,1, . . . , S̄k,P of biased presignatures (using the second
bias). In addition:

the challenger generates a random nonce ρk from some set of size at least q
which is given to the adversary as the result of the biasing query.

A signing query specifies a pair of indices (k, i) and a message mk,i, and the challenger
signs mk,i using the effective presignature

R′
k,i := R̄k,i + δk,iS̄k,i,

where
δk,i := ∆(⟨D⟩ ∥ R̄k,i ∥ S̄k,i ∥ ⟨ρk⟩ ∥ mk,i).

NOTES:

1. In processing a biasing query, the challenger generates a random nonce ρk, which is then later
included as an input to the hash ∆ when generating a signature using one of the resulting
pairs of biased presignatures. This nonce mechanism is essential to our proof of security. In
the threshold setting, such a nonce is generated using a random beacon, but it is only needed
in the offline preprocessing phase, so this is not a practical concern. See Appendix C.6 for
more details.

2. In Section 3.4, our analysis did not cover biased presignatures. The presentation here fills that
gap, simply by setting P = Q = 1. However, unlike in Section 3.4, our analysis here requires
the use of these random nonces. If we do not wish to use batch randomness extraction, but

3This is because they need to track variables in Domain that may never disappear, so that now the value
of L in the additive term O(LN) has to be replaced by a bound on the total number presignatures generated.
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still use biased presignatures that arise as in Appendix C.5, we can simply generate such
biased presignatures in batches, using one nonce per batch, and model it using this enhanced
attack mode with P = Q = the batch size.

3. The FROST and FROST2 protocols do not rely on random nonces as we do here. Our need
for these nonces is perhaps an artifact of our modular approach. For example, in FROST2,
the inputs to the hash function ∆ are tightly coupled to the particular mechanism used to
generate presignatures. We have completely decoupled these two things, which allows for
more flexibility and efficiency in the generation of presignatures, at the (very minor) cost of
generating these random nonces in the offline preprocessing phase.

We now proceed to analyze this mode of attack in the GGM+ROM. As in Section 3.4,
both ∆ and H are modeled as a random oracles. We shall prove a result analogous to
Theorem 3 — see Section 4.4.1 for a summary.

Analogous to (18), we have

S̄k,i =
∑
j∈[Q]

τ
(j)
k,i Sk,j + νk,i, (19)

for i ∈ [P ], where Sk,j and S̄k,i are variables which symbolically represent the discrete
logarithms of the group elements Sk,j and S̄k,i. Just as we did in relation to (18), we can
extend this to all i ∈ [Q]. This defines a bijective Zq-linear map between the Zq-vector
spaces Zq +

∑
j∈[Q] ZqSk,j and Zq +

∑
i∈[Q] ZqS̄k,i (which acts as the identity on Zq).

Analogous to what we did in Section 4.3, in the symbolic simulation, when the corre-
sponding bias has been specified, and this bijective map has been determined, we use this
bijective map to substitute, throughout Domain(π), each variable Rk,j , for j ∈ [Q], by its
corresponding value in Zq+

∑
i∈[Q] ZqR̄k,i under this map, and each variable Sk,j , for j ∈ [Q],

by its corresponding value in Zq +
∑

i∈[Q] ZqS̄k,i.
Analogous to what we did in Section 3.4, when a signing query on a message mk,i is

made that uses the biased presignature pair (R̄k,i, S̄k,i), a preliminary computation

δk,i ← ∆(⟨D⟩ ∥ R̄k,i ∥ S̄k,i ∥ ⟨ρk⟩ ∥ mk,i),

R′
k,i ← R̄k,i + δk,iS̄k,i,

hk,i ← H(⟨D⟩ ∥ ⟨R′
k,i⟩ ∥ mk,i)

is made. WLOG, we can assume that the adversary has already computed these values
himself. Next, the signing oracle generates zk,i at random. Before returning the signature
(R′

k,i, zk), the signing oracle also substitutes

R̄k,i 7→ zk,i − δk,iS̄k,i − hk,iD (20)

throughout Domain(π).
Analogous to what we did in Section 3.4, we make some additional assumptions on the

adversary. Namely, we ensure that whenever the adversary makes a random oracle query

δ ← ∆(⟨D′⟩ ∥ ⟨R⟩ ∥ ⟨S⟩ ∥ ⟨ρ⟩ ∥ m),

for some D′, R, S, ρ, and m, it immediately makes a “special add query” to the group
oracle

(add, R̄, S̄, 1, δ)
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to obtain the encoding of the group element R′ ← R̄+ δS̄, and then it immediately makes
the random oracle query

h← H(⟨D′⟩ ∥ ⟨R′⟩ ∥ m).

Analogous to what we did in Section 3.4, suppose the forgery is a signature (R∗, z∗)
on a message m∗. We may assume that R∗ was randomly generated by the a group oracle
query — otherwise, the adversary must essentially win Preimage Attack III on H (as in
Section 3.2.2, but where H is modeled as a random oracle).

Suppose that initially

π−1(R∗) = a+ bD+
∑
ℓ,j

(cℓ,jRℓ,j + dℓ,jSℓ,j)

+
∑
k,i

(c̄k,iR̄k,i + d̄k,iS̄k,i).

Here,

• the sum on ℓ, j corresponds to presignatures from pairs of batches whose bias has
not yet been specified (and whose corresponding random nonces ρℓ have not yet been
generated), while

• the sum on k, i corresponds to presignatures from pairs of batches whose bias been
specified (and whose corresponding random nonces ρk have been generated).

Note that all of the constants a, b, cℓ,j , dℓ,j , c̄k,i, d̄k,i are fixed before R∗ is generated at
random. In order for the forgery to be valid, all of the variables except D must be eliminated
by substitution so as to end up with

π−1(R∗) = z∗ − h∗D.

We argue below that the sum on ℓ, j must be empty, as otherwise the forgery will be
valid with only negligible probability. Assuming this for now, we focus on the sum on k, i.
After substitution, we have

π−1(R∗) = {a+
∑
k,i

c̄k,izk,i}︸ ︷︷ ︸
=z∗

+ {b−
∑
k,i

c̄k,ihk,i}︸ ︷︷ ︸
=−h∗

D+
∑
k,i

{d̄k,i − c̄k,iδk,i}︸ ︷︷ ︸
=0

S̄k,i. (21)

For the forgery to be valid, we must have d̄k,i − c̄k,iδk,i = 0 for each k, i.
The rest of the argument is analogous to what we did in the Generic Group Model

analysis in Section 3.4. Namely, if the forgery is to be valid, then with overwhelming
probability, the adversary must have already made queries to ∆ that produce the outputs
d̄k,i/c̄k,i. Thus, at the time we generate R∗, the signing queries that define the hk,i’s must
already be preordained. Therefore, to forge a signature, the adversary must essentially win
Preimage Attack I or II on H (as in Section 3.2.2, but where H is modeled as a random
oracle).

We now return to the claim that the sum on ℓ, j must be empty. Suppose it is not. Then
for some ℓ the corresponding the bias for the corresponding pair of batches has not yet been
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specified at the time R∗ is generated, which means that the corresponding random nonce
ρℓ has not yet been generated either. For the forgery to be valid, the corresponding bias
must be specified, which only then determines values c̄ℓ,i and d̄ℓ,i before ρℓ is generated, and
then we must also make the coefficient d̄ℓ,i− c̄ℓ,iδℓ,i on S̄ℓ,i vanish for each i via substitution.
Since ρℓ is input to the hash ∆ to determine each δℓ,i, the probability that the adversary
can find inputs to ∆ so that d̄ℓ,i − c̄ℓ,iδℓ,i = 0 for each i will be negligible.

4.4.1 Summary

Putting all of the above together, one sees that the same security bounds as in Theorem 3
hold here as well. The argument is also easily adapted to handle additive key derivation,
obtaining the same security bounds.

Acknowledgments

Thanks to Fabrice Benhamouda for pointing out that the ROS attack on blind Schnorr
signatures in [BLL+22] is easily adapted to an attack on Schnorr with presignatures. This
work was partially done while the author was employed at DFINITY.

References

[BFP21] B. Bauer, G. Fuchsbauer, and A. Plouviez. The one-more discrete logarithm
assumption in the generic group model. In Asiacrypt 2021, pages 587–617,
2021. Also at https://eprint.iacr.org/2021/866.

[BHK+24] F. Benhamouda, S. Halevi, H. Krawczyk, Y. Ma, and T. Rabin. SPRINT: High-
throughput robust distributed Schnorr signatures. In Eurocrypt 2024, 2024. Also
at https://eprint.iacr.org/2023/427.

[BL19] J. Blocki and S. Lee. On the multi-user security of short Schnorr signatures
with preprocessing. Cryptology ePrint Archive, Paper 2019/1105, 2019. https:
//eprint.iacr.org/2019/1105.

[BLL+22] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the
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A Proof of Lemma 1

In order to make certain arguments simpler, we shall replace our lazy simulator in Fig. 2 by
a slightly more lazy simulator. This simulator may abort under certain conditions, which
means the entire experiment halts and no forgery is produced.

Lazy-Sim1:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Zq

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E; if P ∈ Range(π) then abort
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ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2)) and return the result

4. To process a request to sign m:

(a) r
$← Zq; if r ∈ Domain(π) then abort

(b) invoke (map, r) to get R
(c) h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

(d) z ← r + hd

(e) return (R, z)

The changes are highlighted. It is trivial to verify that the adversary’s forging advantage
in this game differs from that in the original attack game by O(N2/q). Indeed, we can view
both games as operating on the same sample space, and both games proceed identically
unless a specific failure event occurs in the Lazy-Sim1 game. One sees that this failure
event occurs with probability O(N2/q).

Now we modify the logic for processing signing requests, as follows:

4. To process a request to sign m:

(a) R $← E, z
$← Zq

(b) h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

(c) r ← z − hd

(d) if r ∈ Domain(π) or R ∈ Range(π) then abort

(e) add (−r,−R) and (r,R) to π

(f) return (R, z)

Let us call this Lazy-Sim2. It is easy to verify that this perfectly simulates the behavior
of Lazy-Sim1, and so the adversary’s forgery advantage does not change at all. Indeed, both
simulators generate r and R at random and abort if r ∈ Domain(π) or R ∈ Range(π).

We now define a symbolic simulation of the attack game. The essential difference in
this game is that Domain(π) will now consist of polynomials of the form a + bD, where
a, b ∈ Zq and D is an indeterminant. Note that π will otherwise still satisfy all of the
requirements of an encoding function. The simulator is identical to Lazy-Sim2, except as
highlighted:

Symbolic-Sim0:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Zq
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(c) invoke (map, 1) to obtain G
(d) invoke (map, D) to obtain D
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E; if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2)) and return the result

4. To process a request to sign m:

(a) R $← E, z
$← Zq

(b) h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

(c) r ← z − hD

(d) if r ∈ Domain(π) or R ∈ Range(π) then abort

(e) add (−r,−R) and (r,R) to π

(f) return (R, z)

Note that while the simulator may invoke map with non-constant polynomials, the ad-
versay does not.

We can model the attack game with respect to both simulators Lazy-Sim2 and Symbolic-
Sim0, with each operating on the same underlying sample space. This sample space com-
prises the random tape of the adversary an the random choices made by the simulators
(including d). That is, the outcomes of both games are determined by these values in the
sample space, although the computations performed in each game are different, and so the
outcomes of the games may differ.

Let us define the following Event Z, which we define in terms of the Symbolic-Sim0
attack game. For a polynomial P in Zq[D], we define [P ] ∈ Zq to be the value of P with D

replaced by d. For a set S of such polynomials, we define [S] := {[P ] : P ∈ S}. Event Z
is the event that at one of the highlighted tests of the form “P ∈ Domain(π)”, we have
P /∈ Domain(π) but [P ] ∈ [Domain(π)].

We claim that these two games proceed identically unless Z occurs. This should be
clear. It follows that the forging probability in these two games differs by at most Pr[Z].

It should also be clear from the Schwartz-Zippel Lemma that Pr[Z] = O(N2/q). Here,
we use the fact that in the Symbolic-Sim0 attack game, the value of d is independent of the
coefficients of the polynomials that determine Event Z.

Note that Symbolic-Sim0 as defined here is identical to Symbolic-Sim defined in Fig. 3,
except that in the latter, we have deleted the initialization of d in Step 1(b) of the former,
as d is not actually needed. That proves the lemma.
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B Proof of Lemma 2

In order to make certain arguments simpler, we replace our lazy simulator in Fig. 4 by a
slightly more lazy simulator, which may abort under certain conditions which means the
entire experiment halts and no forgery is produced.

Lazy-Sim1:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Zq

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E; if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2)) and return the result

4. To process a presignature request:

(a) k ← k + 1; K ← K ∪ {k}

(b) rk
$← Zq

(c) invoke (map, rk) to get Rk

(d) return Rk

5. To process a request to sign mk using presignature number k ∈ K:

(a) δk
$← Zq; r

′
k ← rk + δk; if r′k ∈ Domain(π) then abort

(b) invoke (map, r′k) to get R′
k

(c) hk ← H(⟨D⟩ ∥ ⟨R′
k⟩ ∥ mk) ∈ Zq

(d) zk ← rk + δk + hkd

(e) K ← K \ {k}; return (R′
k, zk, δk)

The changes are highlighted. It is trivial to verify that the adversary’s forging advantage
in this game differs from that in the original attack game by O(N2/q).

We now modify the way signing requests are modified as follows:
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5. To process a request to sign mk using presignature number k ∈ K:

(a) δk
$← Zq; r

′
k ← rk + δk

(b) R′
k

$← E

(c) if r′k ∈ Domain(π) or R′
k ∈ Range(π) then abort

(d) add (r′k,R′
k) and (−r′k,−R′

k) to π

(e) hk ← H(⟨D⟩ ∥ ⟨R′
k⟩ ∥ mk) ∈ Zq

(f) zk ← rk + δk + hkd

(g) K ← K \ {k}; return (R′
k, zk, δk)

Let us call this Lazy-Sim2. It is easy to verify that this perfectly simulates the behavior
of Lazy-Sim1, and so the adversary’s forgery advantage does not change at all.

We now define a symbolic simulation of the attack game. The essential difference in this
game is that Domain(π) will now consist of linear polynomials over Zq in the indeterminants
D, R1, R2, . . . . The simulator is identical to Lazy-Sim2, except as highlighted:

Symbolic-Sim0:

1. Initialization:

(a) π ← {(0,O)}.

(b) d
$← Zq

(c) invoke (map, 1) to obtain G
(d) invoke (map, D) to obtain D
(e) k ← 0; K ← ∅
(f) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E; if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query (add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Zq; if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2)) and return the result

4. To process a presignature request:

(a) k ← k + 1; K ← K ∪ {k}

(b) rk
$← Zq

(c) invoke (map, Rk) to get Rk

(d) return Rk
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5. To process a request to sign mk using presignature number k ∈ K:

(a) δk
$← Zq; r

′
k ← Rk + δk

(b) R′
k

$← E

(c) if r′k ∈ Domain(π) or R′
k ∈ Range(π) then abort

(d) add (r′k,R′
k) and (−r′k,−R′

k) to π

(e) hk ← H(⟨D⟩ ∥ ⟨R′
k⟩ ∥ mk) ∈ Zq

(f) zk ← rk + δk + hkd;
substitute Rk 7→ zk− δk−hkD throughout Domain(π) and abort if Domain(π) “collapses” (i.e.,
two distinct elements of Domain(π) become equal after the substitution)

(g) K ← K \ {k}; return (R′
k, zk, δk)

Let us define the following Event Z, which we define in terms of the Symbolic-Sim0
attack game. For a polynomial P in Zq[D, R1, R2, . . .], we define [P ] ∈ Zq to be the value
of P with D replaced by d, R1 replaced by r1, R2 replaced by r2, and so on. For a set
S of such polynomials, we define [S] := {[P ] : P ∈ S}. Event Z is the event that at
one of the highlighted tests of the form “P ∈ Domain(π)”, we have P /∈ Domain(π) but
[P ] ∈ [Domain(π)].

We claim that the Lazy-Sim2 and Symbolic-Sim0 attack games proceed identically unless
Z occurs. This should be clear — in particular, so long as Z does not occur, the subsitution
in Step 5(f) will not fail. It follows that the forging probability in these two games differs
by at most Pr[Z].

It should also be clear that Pr[Z] = O(N2/q) — this follows from the Schwartz-Zippel
Lemma and the following observation:

at any point in time in the Symbolic-Sim0 game, the polynomials that deter-
mine Event Z involve the variables D and {Rk}k∈K, and the coefficients of these
polynomials are independent of d and {rk}k∈K.

It should also be clear that this symbolic attack game is equivalent to the one in Fig. 5
— to move from the former to the latter, we simply drop the computation of d and the rk’s,
and replace the zk’s by random elements of Zq. That proves the lemma.

C Implementing threshold Schnorr signatures

We assume we have n parties P1, . . . ,Pn, at most t < n/3 of which may be corrupt. We
also assume static corruptions; that is, at the very beginning of the attack, the adversary
corrupts some subset of t∗ ≤ t parties.

C.1 An MPC engine geared towards Schnorr

A fruitful approach to designing a threshold Schnorr signing protocol in the asynchronous
communication setting is to build it on top of a highly optimized MPC (multi-party
computation) engine. That is, rather than designing and analyzing a monolithic protocol,
one can design an MPC engine that supports operations well suited to threshold Schnorr
signatures, and that can be efficiently implemented while providing robustness and optimal
resilience in an asynchronous communication setting.
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We can conveniently define the required functionality and security properties of this
MPC engine in the universal composability framework [Can20]. At a high level, our MPC
engine is an ideal functionality FMPC supporting the following operations:

• ([r],R)← RandomKeyGen():

FMPC chooses r ∈ Zq at random, computes R ← rG ∈ E, and gives R to the
adversary and to each party as a delayed output (i.e., the adversary indicates
when the output is given to any given party). The ideal functionality FMPC

also stores r for future use.

• [z]← LinearOp([x], [y], a, b):

For public inputs a, b ∈ Zq, and previously stored values x, y ∈ Zq, FMPC

computes z ← ax+ by ∈ Zq and stores z for future use.

• z ← Open([z]):

For a previously stored value z ∈ Zq, FMPC gives z to the adversary and to
each party as a delayed output.

We have left out some details about how these operations are locally initiated. Each
party locally initiates each operation, and the adversary is informed of this immediately.
No corresponding data — i.e., the value R in RandomKeyGen and the value z in Open —
is given to the adversary until at least one honest party has initiated the operation. Also,
when a party receives the value R in RandomKeyGen, this means the corresponding value
r has been generated and is available for future use. We assume that LinearOp is a local
operation, which means that in the ideal functionality, the adversary is not informed when
a party performs that operation, and that in an implementation, no communication takes
place.

We have also left out details of liveness or completeness. Following, for example, [SS24],
we do not attempt to capture these properties in an ideal functionality. Rather, these are
best left as properties specific to concrete protocols. In a nutshell, these properties say
that if all honest parties initiate a particular operation, all honest parties will eventually
finish that operation — if and when all protocol messages between honest parties have been
delivered.

The ideal functionality FMPC may be implemented using well-known techniques for
secret sharing and threshold cryptography. See, for example, [GS22a] for a presentation
of one particular approach along with discussions of other approaches. In all of these
approaches, a (t + 1)-out-of-n secret sharing scheme is used to represent the secret values
stored by the ideal functionality. The operation RandomKeyGen is essentially a distributed
key generation protocol, and is typically a quite expensive operation. The operation Open
typically is fairly simple and takes just one round of communication (but possibly two
if certain batching techniques are used to reduce communication complexity — see, for
example, [CP17] for details).
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C.2 A modular implementation of threshold Schnorr signatures

Using the above MPC engine, we can easily implement threshold Schnorr signatures as
follows. The protocol to generate the key is:

([d],D)← RandomKeyGen()

The protocol to sign a message m is:

([r],R)← RandomKeyGen()
h← H(⟨D⟩ ∥ ⟨R⟩ ∥ m) ∈ Zq

[z]← LinearOp([r], [d], 1, h)
z ← Open([z])
output (R, z)

Here, we have highlighted operations that are non-local computations. All other operations
are local.

C.3 Re-randomized presignatures

While the above is very simple, it is typically not very efficient. The problem is that in a
typical implementation of FMPC, the RandomKeyGen operation is fairly expensive. One way
of improving this situation is to observe that the value r is independent of m, and so we
might move the computation of ([r],R)← RandomKeyGen() to an “offline” precomputation
phase. So the pair ([r],R) can be viewed as a “presignature”. These presignatures can be
generated in batches, which can lead to more efficient implementations as well.

As we saw in Section 2.3, doing this significantly reduces the security of the scheme. To
mitigate against this, we introduced the notion of re-randomized presignatures in Section 2.4.
To implement this, we need to implement a random beacon that outputs a random value
in Zq — this should have the property that the output of one instance of the random
beacon protocol remains unpredictable until at least one honest party chooses to initiate
that instance. One way to do this is to use a unique threshold signature scheme such as
BLS [BLS01, Bol03] and derive one beacon output by applying a random oracle to one such
signature.

A more “lightweight” approach is to augment our MPC engine by adding the following
operation to FMPC:

• [r]← Random():

FMPC chooses r ∈ Zq at random and stores r for future use.

Although there is no explicit output for this operation, we assume that the adversary
signals each party using a delayed output mechanism to let it know that the value r has been
generated and is available for future use. Typically, the implementation of this operation
will be less expensive than using BLS signatures to implement a random beacon, especially
if optimized using batching techniques. See, for example, [SS24].

With this operation, then with each presignature ([rk],Rk) ← RandomKeyGen(), we
also associate a shift amount [δk] ← Random(). Then to sign a message mk using this
presignature and shift amount, the protocol runs as follows:
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δk ← Open([δk])
R′

k ← Rk + δkG
hk ← H(⟨D⟩ ∥ ⟨R′

k⟩ ∥ mk) ∈ Zq

[zk]← LinearOp([rk], [d], 1, hk)
zk ← Open([zk])
z′k ← zk + δk
output (R′

k, z
′
k)

Note that care must be taken to ensure that all parties consistently assign each pre-
signature to a unique signing request. To this end, we envision a signing protocol that is
driven by a blockchain or any other consensus mechanism that orders the signing requests,
and that assigns a presignature (and shift amount) to each such signing request. It is
not important to our discussion here which consensus mechanism is used. One can use a
purely asynchronous protocol or a more practical protocol that assumes partial synchrony
for liveness. In our formal Attack Game 2 that models re-randomized presignatures, the
assignment of presignatures to signing requests is left completely to the adversary. This
captures the fact that the adversary may influence the consensus mechanism in such a way
that it may determine exactly when a signing request is ordered and which presignature is
assigned to it. See Appendix C.7 for more details on modeling a complete signing protocol
in this setting.

C.3.1 Reducing latency in the online phase

The approach to implementing re-randomized presignatures requires two consecutive Open
operations, since we need must first open δk and only then open zk. In a typical imple-
mentation, each of these Open operations require one round of communication. In some
implementations, this can be reduced to a single round of communication, as follows. Re-
call that we are assuming a consensus mechanism to order signing requests. Many such
mechanisms (such as PBFT [CL99], ICC [CDH+21], Simplex [CP23], and others) utilize a
“two phase” voting strategy to commit blocks. If such a strategy is used, then we can use
a unique threshold signature scheme such as BLS to sign a committed block, and then for
each signing request triggered by some transaction in the committed block, we can derive
a shift value by hashing this signature (plus other domain-separating data). Moreover, by
using a high reconstruction threshold (of n − t) one can safely piggyback these signature
shares with the second phase of voting in the consensus mechanism. This is an example of
when a “high threshold” or “dual threshold” security property [Sho00, BTZ22], is required
for the threshold signature scheme. Note that for threshold BLS signatures, this property
holds in the random oracle model under a certain type of one-more Diffie-Hellman assump-
tion [Gro21, BTZ22]. With this property, we can be sure that if the threshold signature on
a block is revealed, then that block will be on the path of committed blocks.

For the security analysis to remain valid in this setting, it is important that the assign-
ment of a presignature to a signing request is already determined by the time the shift value
is revealed.
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C.4 Re-randomizing presignatures via hashing

Now suppose we wish to re-randomize via hashing as in Section 2.5. In this case, for each
signing request, instead of a presignature ([rk],Rk), we need a presignature pair ([rk],Rk)
and ([sk],Sk), where both pairs are obtained from the RandomKeyGen. As above, these
presignature pairs may be generated in advance and in batches, but then all parties must
consistently assign each presignature pair to a unique signing request. If that request is to
sign the message mk, then the protocol to generate that signature runs as follows:

δk ← ∆(⟨D⟩ ∥ ⟨Rk⟩ ∥ ⟨Sk⟩ ∥ mk)
R′

k ← Rk + δkSk
hk ← H(⟨D⟩ ∥ ⟨R′

k⟩ ∥ mk) ∈ Zq

[r′k]← LinearOp([rk], [sk], 1, δk)
[z′k]← LinearOp([r′k], [d], 1, hk)
z′k ← Open([z′k])
output (R′

k, z
′
k)

The latency of this online protocol is just that of one Open operation. This can be
an improvement on the latency associated with re-randomized presignatures — but it may
not be, if the derivation of the random shift amounts can be folded into the consensus
mechanism as outlined above in Appendix C.3.1.

C.5 Biased presignatures and more efficient distributed key generation

As already mentioned, implementing the RandomKeyGen operation is typically quite expen-
sive. Even if we move this operation to an offline phase using presignatures, its cost may
still limit the overall throughput of the system. One can reduce this cost by using a simpler
protocol that achieves a somewhat weaker security property, as follows.

Suppose FMPC includes the following operation:

• ([ri],Ri)← InputKeyi(ri):

Party Pi inputs ri ∈ Zq to FMPC, who computes Ri ← riG ∈ E, immediately
gives Ri to the adversary, and gives Ri to each party as a delayed output.
FMPC also stores ri for future use.

This operation is essentially a variation on verifiable secret sharing, allowing a party Pi

to share a secret ri, but where the value Ri := riG is public.
Given this operation, we can implement a weaker kind of distributed key generation

as follows. Each party Pi inputs a random secret key ri to the ideal functionality via
InputKeyi so that every party, including the adversary, learns the public key Ri. Note that
while honest parties input random secret keys, the corrupt parties may choose arbitrary
secret keys in a way that depends on the public keys of the honest parties. The parties
then use a consensus protocol to agree on a set I of t+ 1 indices, where for each i ∈ I, the
operation InputKeyi has successfully completed. 4 The resulting key pair is ([r′],R′), where

4More specifically, the parties run an ACS (Agreement on a Common Set) protocol. See [DDL+24, Sho24]
for a state-of-the art ACS protocol and for useful historical perspective on the ACS problem. With such
a protocol, ACS will not be the bottleneck in any of our protocols, in terms of either communication or
computational complexity. In a practical implementation, any consensus mechanism may be used.
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r′ =
∑

i∈I ri and R′ =
∑

i∈I Ri. This is computed locally, using LinearOp to compute [r′]
from {[ri]}i∈I , and computing R′ directly using the known values {Ri}i∈I as output by
{InputKeyi}i∈I .

One can show that the above protocol realizes the following idealized operation (which
we can then effectively add to FMPC):

• ([r̄], R̄)← BiasedKeyGen():

FMPC chooses r ∈ Zq at random, computes R ← rG ∈ E, gives R to the
adversary.

The adversary later responds with a “bias” (u, u′) ∈ Z∗
q × Zq.

FMPC then computes r̄ ← ur + u′ ∈ Zq and R̄ ← r̄G ∈ E, and gives R̄ to
each party as a delayed output. FMPC also stores r̄ for future use.

That this protocol securely realizes BiasedKeyGen is fairly straightforward to see (this
was observed implicitly in [Gro21] and more explicitly in Section A.3.6 of [GS22a], but in
a slightly different setting). For completeness, we recall the argument here, which use the
random self-reducibilty property of the discrete logarithm.

We want to give a simulator S (i.e., ideal-world adversary) that interacts with FMPC

with the idealized operation BiasedKeyGen and an adversary A that is interacting with
the InputKey operations that are used to implement it. So FMPC first chooses r ∈ Zq at
random, computes R ← rG ∈ E, gives R our simulator S. Now, for each honest party Pi,
the simulator chooses si ∈ Zq at random, computes Ri ← R+siG, and can give Ri to A as if
from the operation InputKeyi. Similarly, A may give an input rj to the operation InputKeyj
from various corrupt parties Pj . After the index set I is agreed upon, the resulting secret
key is

r̄ =
∑
i

(r + si) +
∑
j

rj ,

where the first sum is over all indices i ∈ I belonging to honest parties, and the second
sum is over all indices j ∈ I belonging to corrupt parties. Therefore, S selects the “bias”
(u, u′), where u is the number of terms in the first sum, modulo q, and

u′ :=
∑
i

si +
∑
j

rj .

Since the number of terms in the first sum is nonzero, we have u ∈ Z∗
q , assuming (reasonably)

that n < q. It is easy to verify that this simulation is perfect.
In implementing a threshold Schnorr signature protocol, we may use BiasedKeyGen in

place of KeyGen for generating presignatures, our analysis in Section 3.3 (and, specifically,
the discussion in Section 3.3.3) guarantees security when using re-randomized presignatures.
Also note we can generate presignatures in batches, which means we can implement a
batch version of the InputKey — this can be exploited to obtain even greater efficiency
improvements, such as those in [GS24]. As it turns out, we can also use BiasedKeyGen for
generating the signing key itself — although we have not analyzed this explicitly in this
paper.
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C.6 Batch randomness extraction

In Appendix C.5, we saw that by allowing some bias in the resulting, we could use a
simplified distributed key generation protocol. Even better performance can be obtained
by utilizing the well-known “batch randomness extraction” technique — an idea that goes
back at least to [HN06], but first applied to Schnorr signatures in [BHK+24]. The following
discussion closely follows [GS24], and is provided here to make the presentation in this
paper more self contained.

Here, we choose a certain P ×N matrix W over Zq (whose entries are public constants
— see below), where P = n − 2t and N = n − t. As above (in Appendix C.5), each party
Pi inputs a random secret key ri to the ideal functionality via InputKeyi, so that every
party, including the adversary, learns the public key Ri. As above, while honest parties
input random secret keys, the corrupt parties may choose arbitrary secret keys in a way
that depends on the public keys of the honest parties. The parties then use a consensus
protocol to agree on a set I of N indices, where for each i ∈ I, the operation InputKeyi has
successfully completed. Let us write

I = {i1, . . . , iN}.

The parties then locally compute P biased key-pairs

([r̄1], R̄1), . . . , ([r̄P ], R̄P )

where  r̄1
...
r̄P

 = W ·

ri1
...

riN

 and

R̄1
...
R̄P

 = W ·

Ri1
...
RiN

 .

This is computed locally, using LinearOp to compute the biased secret keys [r̄1], . . . , [r̄P ]
from [r1], . . . , [rN ], and computing the biased public keys R̄1, . . . , R̄P directly using the
known values {Ri}i∈I .

The property that the matrix W must satisfy is called super-invertibility, which
simply means that every subset of P columns of A is linearly independent. For example,
one can use a Vandermonde matrix, or (as discussed in [GS24]) a Pascal matrix (which
allows for more efficient computation of the biased public keys).

The security property that the above protocol satisfies can be elegantly captured by
adding the following operation to our MPC engine, where we define P := n − 2t and
Q := n− t∗, where t∗ ≤ t is the number of actual corrupted parties.
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• (([r̄1], R̄1), . . . , ([r̄P ], R̄P ))← BatchedBiasedKeyGen():

FMPC chooses r1, . . . , rQ ∈ Zq at random, computes

R1 ← r1G, . . . ,RQ ← rQG

and gives these group elements to the adversary.

The adversary later responds with a “bias” (U,u′), where U ∈ ZP×Q
q is a full

rank matrix and u′ ∈ ZP×1
q is an arbitrary vector.

FMPC then computes  r̄1
...
r̄P

 = U ·

r1
...
rQ

+ u′

and
R̄1 ← r̄1G, . . . , R̄P ← r̄PG

and gives (R̄1, . . . , R̄P ) to each party as a delayed output. FMPC also stores
the values r̄1, . . . , r̄P for future use.

It is straightforward to show that the above protocol securely implements the
BatchedBiasedKeyGen operation. The proof is similar to that in Appendix C.5. After
the set of indices I is determined, the simulator S chooses the matrix U as follows: for
each index i ∈ I belonging to an honest party, S sets the column of U corresponding to Pi

to the corresponding column in W ; all other columns in U are set to zero. The vector u′

is calculated as the sum over all j ∈ I belonging to corrupt parties of rj times the corre-
sponding column of W . It is easily seen that U has full rank (by virtue of the fact that W
is super-invertible). It is easy to verify that this simulation is perfect.

Note that one can define this operation more generally, in that the parameter P could
be set dynamically to a larger value determined by the adversary. This can be useful to
model variations on the above protocol for batch randomness extraction. For example, it is
possible that the ACS protocol happens determine a set of size greater than n− t, in which
case P can be set to a correspondingly larger value.

In implementing a threshold Schnorr signature protocol, we may use
BatchedBiasedKeyGen along the lines outlined in Section 4 for generating presignatures in
batches. Our analysis in Section 4.1 guarantees security when using re-randomized presig-
natures. Similarly, our analysis in Section 4.4 guarantees security when re-randomizing via
hashing. As discussed in Section 4.4, after generating a pair of batches of presignatures, a
random nonce ρk is generated and published. In the threshold setting, this is accomplished
using a random beacon that is only revealed after the two sets of indices that determine
the biased presignatures in the pair of batches are agreed upon.

See [GS24] for a number of important efficiency improvements to implementing a batch
version of InputKey, as well for the matrix-vector computations involving super-invertible
matrices. By using a batch version of InputKey, one can generate larger “batches of batches”
of presignatures. The paper [GS24] relies on the results in this paper to justify the protocols
given there.
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C.7 How to model a complete signing protocol

In this section, we show how to model a complete signing protocol. This modeling applies
to Schnorr signatures with re-randomized presignatures, but can easily be adapted to any of
the other variations discussed in this paper. While it would be possible to present a single,
general model that encompasses all such variations, doing so would be quite cumbersome.
We leave the modeling of these other variations to the reader. The discussion here follows
[GS22a] fairly closely, and is provided mainly for completeness. Note that [GS22a] was in
the setting of ECDSA signatures, rather than Schnorr signatures. Our presentation here
has also been adjusted in a few ways to make it easier to adapt to other variations (and we
comment on how to do so for a couple of variations).

We again work in the UC framework, giving an ideal functionality that models the
signing process using re-randomized presignatures. Security is captured by the fact that
the ideal functionality only generates signatures that are explicitly requested by honest
parties. As discussed in Appendix C.3, we want to model a system which is driven by
a consensus mechanism that (among other things) consistently pairs presignatures with
signing requests. In our model, this pairing left to the environment, and we therefore
constrain the environment in an appropriate way.

C.7.1 Ideal world

We first describe the ideal world. As usual, we have an environment Z, an ideal-world
adversary, i.e., simulator, S, and an ideal functionality Frrp. We assume static corruptions,
and that Z, S, and Frrp are aware of the identities of the corrupt parties.

The environment Z may give inputs to honest parties (the environment gives inputs only
to honest parties in our model). In the ideal world, when an honest party Pi receives an
input from Z, that input is forwarded directly to the ideal functionality Frrp. Similarly,
when an honest party receives an output from Frrp, that output is forwarded directly to Z.
Each input to an honest party Pi is either an initialization request, a presignature request,
or a signature request.

• An initialization request is of the form (init).

In response to such a request, Pi may at a later time output a message of the form
(output-pk, . . .) to Z.

• A presignature request is of the form (presig, presigID), where presigID is an identi-
fier.

In response to such a request, Pi may at a later time output the message
(output-presig, presigID) to Z.

• A signature request is of the form (sig, sigID , presigID ,m), where sigID and presigID
are identifiers, and m is a message.

In response to such a request, Pi may at a later time output a message of the form
(output-sig, . . .) to Z.

We shall assume that Z is locally consistent, which means that is it satisfies the
following constraints for each honest party Pi.
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• Pi is given an initialization request from Z only once. Moreover, this must be first
input that Pi receives from Z, and it must not receive any further inputs from Z until
it outputs a message of the form (output-pk, . . .) to Z.

• If Pi receives a presignature request of the form (presig, presigID), it should not
receive the same presignature request again. In addition, if Pi receives a signature
request of the form (sig, sigID , presigID ,m) from Z, this must happen only after it
has output the message (output-presig, presigID) to Z. Moreover, Pi should never
receive another signature request with the same presigID .

• If Pi receives an input of the form (sig, sigID , presigID ,m) from Z, it should receive
no other signature request with the same sigID .

These conditions can be locally checked and enforced by each party using publicly available
information, and so it is not a real constraint on Z.

We also assume that Z is globally consistent, meaning that if one honest party receives
a signature request of the form (sig, sigID , presigID ,m), and another receives a signature
request of the form (sig, sigID ′, presigID ′,m′), then

[sigID = sigID ′ ∨ presigID = presigID ′] =⇒
(sigID , presigID ,m) = (sigID ′, presigID ′,m′).

This constraint is justified by the assumption that the system is driven by a consensus
mechanism that consistently pairs presignatures with signing requests. This is the minimal
constraint we need to make to ensure that the security of the distributed system can be
reduced to that of an appropriate enhanced attack mode. We could also make a stronger
constraint that requires that each honest party receives the same requests from Z in the
same order (as was done in [GS22a]), but this is not necessary.

Here is how Frrp works.

• Upon receiving an initialization request from Pi:

If Pi is the first party to send this request, Frrp runs the Schnorr key generation
algorithm to generate a public key D ∈ E and a secret key d ∈ Zq, and then records
the tuple (init,D, d). In any case, it gives (init, i,D) to S.

• Upon receiving a presignature request (presig, presigID) from Pi:

If Pi is the first party to send this request, Frrp runs the presignature generation
algorithm for Schnorr to get a presignature (R, r) ∈ E × Zq, and then records the
tuple (presig, presigID ,R, r). In any case, it gives (presig, i, presigID ,R) to S.

• Upon receiving a signing request (sig, sigID , presigID ,m) from Pi:

If Pi is the first party to send this request, Frrp fetches the correspond-
ing tuple (presig, presigID ,R, r), generates a random shift amount δ ∈ Zq,
generates a Schnorr signature (R′, z), where R′ = R + δG, and then
records the tuple (sig, sigID , presigID ,m, (R′, z), δ). In any case, it gives
(sig, i, sigID , presigID ,m, (R′, z), δ) to S.
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Frrp also responds to “control messages” from S, which determine when outputs are
delivered to honest parties (which are then immediately forwarded to Z).

• (output-pk, i):

If Pi previously sent an initialization request to Frrp, fetch the recorded tuple
(init,D, d) and output (output-pk,D) to Pi.

• (output-presig, presigID , i):

If Pi previously sent a presignature request (presig, presigID) to Frrp, output
(output-presig, presigID) to Pi.

• (output-sig, sigID , i):

If Pi previously sent a signing request (sig, sigID , presigID ,m) to Frrp,
fetch the recorded tuple (sig, sigID , presigID ,m, (R′, z), δ) and output
(output-sig, sigID , (R′, z)) to Pi.

As usual in the UC framework, the environment Z and the simulator S may freely pass
messages back and forth to each other.

NOTES:

1. To support biased presignatures, a bias (u, u′) may be supplied as an extra input to each
output-presig control message. The same bias must be supplied for all such control messages
with the same presigID . The ideal functionality records the bias, and the initial presignature
(R, r) is replaced by the corresponding biased presignature (R̄, r̄) when this presignature is
used in a signing request.

2. To support batch randomness extraction, the ideal functionality is adjusted so that a pre-
signature request generates a batch of initial presignatures (R1, . . . ,RQ). In addition, the
bias is now specified in each output-presig control message is a matrix/vector pair (U,u′),
which defines the batch of biased presignatures (R̄1, . . . , R̄P ). Also, each signature request
must specify an index i ∈ [P ] within this batch to select an individual biased presignature to
be used for signing. The consistency requirements for the environment need to be adjusted
accordingly.

3. To support additive key derivation, an additive tweak may be supplied as an extra input to
each signature request. The consistency requirements for the environment need to be adjusted
accordingly.

C.7.2 Real world

We now describe the real world. As usual, we have an environment Z and an adversary
A. As above, we assume that Z provides inputs to the honest parties of the same form as
in the ideal world, and is both locally and globally consistent, as described above. These
inputs, however, are passed to machines that are running the actual protocol, as opposed
to being forwarded directly to an ideal functionality. These machines will also produce the
outputs (output-pk,D), (output-presig, presigID), and (output-sig, sigID , (R′, z)) that
are passed to Z. As usual in the UC framework, the environment Z and the adversary A
may freely pass messages back and forth to each other.
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Our “real world” is actually a “hybrid world”, in which the protocol machines and
A interact with FMPC, including the basic operations RandomKeyGen, LinearOp, Open, as
well as the operation random, introduced in Section C.3 to implement a random beacon as
needed to create the random shift amounts. We can then implement a distributed signing
protocol Πrrp using these operations as outlined in Appendix C.3.

In that particular implementation, a random shift amount [δ] is generated using the
random operation and associated with a presignature, and is then opened to reveal δ when
that presignature is used to service a signature request. In Appendix C.3 we also men-
tioned other implementations of a random beacon, based on BLS signatures, which we
could alternatively use to implement Πrrp.

C.7.3 Security theorem

Theorem 4. Protocol Πrrp securely realizes Frrp with respect to all consistent environments.

The statement of this theorem does not rely on any cryptographic assumptions. It
does rely on the fact that Πrrp is a hybrid protocol built on FMPC. The proof is quite
straightforward, and we leave the proof to the reader.

C.7.4 Consequences

The ideal function Frrp was designed to closely align with Attack Game 2, which defines
the re-randomized presignatures enhanced attack mode. Indeed, in that attack game, an
adversary interacts with a challenger, making presignature and signature requests, and that
adversary corresponds directly to the combined entities Z and S in interacting with Frrp in
the ideal world. Theorem 2 therefore implies that in the ideal world, the only signatures
that can be produced are ones that were explictly requested by honest parties. Theorem 4
implies that the same holds in the FMPC-hybrid world, and the UC composition theorem
implies that the same holds using any secure implementation of FMPC.

Actually, since Theorem 2 applies only in an idealized model of computation (either
GGM or GGM+ROM), one must interpret the above statement with some care. Indeed, one
must verify that if the real world adversary operates in this idealized model of computation,
then so does the resulting simulator. However, this is straightforward to verify.

C.7.5 Discussion

Our approach to modeling a distributed signing system as an ideal functionality makes
explicitly models the use of presignatures and the assumption that the system is driven
by a consensus mechanism that consistently pairs presignatures with signing requests. By
relegatinh the details of this consensus mechanism to the environment, we can completely
abstract away the details of how this pairing is done. However, this necessitates the intro-
duction of the constraint on the environment to be (locally and globally) consistent.

Our approach is somewhat different than other approaches taken in the literature to
modeling threshold signing protocols with a presigning phase. For example, the approach
taken in [CGG+20] is somewhat different — among other things, their ideal functional-
ity does not seem to explicitly model this notion of consistent pairing of presignatures
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with signing requests.5 There are a number of other differences between our approach and
that of [CGG+20]. Overall, we feel that our approach facilitates a more modular analysis:
first, as discussed in Section C.7.4, the reduction from the ideal-world distributed model to
the enhanced attack mode in the non-distributed setting is essentially immediate; second,
the design allows for many possible instantiations of FMPC, which can be analyzed indepen-
dently. That said, the goals in [CGG+20] are actually quite different, so an apples-to-apples
comparison is not really possible — indeed, [CGG+20] is focused on the synchronous set-
ting (rather than the asynchronous setting), [CGG+20] is focused on the n-out-of-n setting,
which implies no robustness (rather than t-out-of-n and achieving robustness), [CGG+20]
is focused on adaptive corruptions and pro-active security (rather than static corruptions
with no consideration of pro-active security), and finally, [CGG+20] is focused on ECDSA
signatures (rather than Schnorr signatures).

One wrinkle to consider is the fact that our ideal functionality Frrp does not quite
allow us to model the optimized implementation of re-randomized presignatures suggested
in Appendix C.3.1. The issue is that in this implementation, the random shift amount
may be revealed before any honest party explicitly issues a corresponding signing request,
even though the logic guarantees all honest parties will eventually issue this request. It
is perhaps not surprising that our model is inadequate in this instance, as this particular
implementation intentionally blurs the boundaries between the consensus mechanism and
the signing logic. Nevertheless, it is still possible (with a little extra work) to prove that this
implementation of the distributed signing protocol (in the FMPC-hybrid model) satisfies an
appropriate security property assuming security with respect to re-randomized presignatures
in the non-distributed setting. Thus, we still retain the key properties of modular design
and analysis.

5Indeed, the presentation in [CGG+20] seems a bit inconsistent and incomplete. By inconsistent, we
mean that in the protocol description in Fig. 5, signing requests take as input a message, a signature ID,
and a presignature ID, while in the ideal functionality in Fig. 15, these requests take as input only a message
and a signature ID. By incomplete, we mean that there does not appear to be any explicit discussion of
how messages, signature IDs, and presignature IDs are to be consistently associated with one another.
Presumably, some such constraint on the environment as we have imposed is necessary, but this is not
discussed.
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