
Private Coin Verifiable Delay Function

Peter Chvojka

chvojka.p@gmail.com

Abstract. We construct the first tight verifiable delay function (VDF)
where the evaluation algorithm only evaluates sequentially the function
and hence outputs and empty proof, verification is independent of time
parameter T and setup has constant size parameters. Our VDF is based
on repeated squaring in hidden order groups, but it requires that coins
used to sample a random instance must be kept secret in order to guar-
antee sequentiality. We denote such a VDF as a private coin verifiable
delay function and show that it can be used to obtain multiplicatively
homomorphic non-interactive timed commitment with efficient publicly
verifiable force decommitment algorithm.

1 Introduction

A verifiable delay function (VDF) is a function which takes some specified time
T to evaluate on a random input x and moreover the evaluation algorithm pro-
duces together with an output y a proof π which allows to efficiently check that
(x, y) is valid input/output pair of the VDF. This primitive has been introduced
by Boneh et al. in [BBBF18] and has found several interesting applications. Soon
after the introduction of this primitive, Pietrzak [Pie19] and Wesolowski [Wes19]
constructs VDFs based on repeated squaring in hidden order groups. Their con-
structions differs in the size of generated proofs, in verification time, in time
needed to compute a proof and in assumptions on which their security is based.
Concretely, Pietrzak’s construction is based on the low order assumption, the
verification time is 2 log2 T small exponentiations, the time needed to compute
a proof is 2

√
T and the size of the proof is log2T group elements of the underly-

ing group. Wesolowski’s construction is based on the adaptive root assumption,
the verification time is log2 T multiplications and two small exponentiations, the
time needed to compute a proof is 2T group operations (this can be reduce to T
group operations using a windowing method) and the size of the proof is single
element of the underlying group. Döttling et al. [DGMV20] study a tight veri-
fiable delay functions where the prover’s computational complexity is not much
more than the sequentiality bound T . Moreover, they show that VDF can not
be constructed in black-box way from random oracles. De Feo et al. [DMPS19]
construct the first tight verifiable delay function where the evaluation algorithm
does not need to compute any proof and hence the verification time is inde-
pendent of T . The construction is based on supersingular isogenies, however,
its public parameters grow linearly with the time parameter T . The notion of
continuous verifiable delay function (cVDF) was introduced by Ephraim et al.

chvojka.p@gmail.com

in [EFKP20] and it has an additional property that the intermediate steps of
the computation are publicly and continuously verifiable. Construction of cVDF
of Ephraim et al. is based on repeated squaring assumption and Fiat-Shamir
heuristic.

Till now there remained open questions if it is possible to build a tight VDF
based on the squaring assumption in hidden order groups whose verification
does not require any proof and if it is possible to build such a tight VDF whose
public parameters are constant size. We answer both of this questions positively,
however, under the condition that the coins which are used to sample random
instance have to remain secret in order to preserve sequentiality property. We
denote such a VDF as a private coin verifiable delay function. This requirement
unfortunately makes applicability of our VDF in typical scenarios significantly
harder and it would require a multi-party computation protocol for instance
sampling. However, we show that there might be applications outside of typical
scenarios.

Concretely, we show that our VDF can be used in building non-interactive
timed commitment (NITC) [KLX20] which achieves efficient public verifiability
of force decommitment. A non-interactive timed commitment is a commitment
which can be additionally opened by anyone after some deadline T has passed.
This is usually achieved by executing some sequential computation which takes
time roughly T . In a public verifiable NITC this computation can be outsourced
to an untrusted server that can prove that the computation was performed
correctly. Chvojka et al. [CJ23] propose a construction of multiplicatively ho-
momorphic public verifiable NITC in which the party which executes forced
decommitment has to compute a proof of exponentiation in order to achieve
public verifiability. As we show, this can be avoided by a small modification of
the construction. The main disadvantage of our approach is that one has to rely
on generic purpose NIZKs.

We remark that our constructions fulfil the standard VDF definition, since
these definitions are not explicit about the way how random instances are sam-
pled. We believe that these VDFs are not only interesting from the theoretical
point of view, but the ideas used in their constructions might find useful appli-
cations in different scenarios.

2 Technical Overview

We construct two verifiable dealy functions using the same ideas. Our first VDF
achieves only weaker soundness of Pietrzak [Pie19], which assumes that an in-
stance is honestly generated. Then we show, how this construction can be mod-
ified to achieve stronger soundness as defined by Boneh et al. [BBBF18]. Our
constructions are based on the repeated squaring in hidden order groups. Sim-
ilarly to [Pie19,Wes19], the evaluation algorithm of VDF is computing value

x2
T

mod N on input x. However, to obtain VDF with an empty proof, we rely on
rerandomization technique used in building time-lock puzzles [MT19] and non-
interactive timed commitments [CJ23] based on the strong sequential squaring

2

assumption (SSS). The basic idea is to sample a generator of the group G in

which the SSS assumption holds and then compute h := g2
T

mod N . Then to
commit to a message m, these elements are both rerandomized by computing
c0 = gr mod N , y := hr mod N , and y is used to hide a message m by com-
puting c1 := ym mod N . The commitment is pair (c0, c1). To recover message,

it is sufficient to compute y := c2
T

0 mod N by repeated squaring and computing
m := c1y

−1 mod N .

The crucial observation is, that value y which is at committing time computed
efficiently just by rerandomizing h using randomness r, can be used to verify that
repeated squaring of c0 was executed correctly. For now, assume that there is a
designated entity which checks the validity of the output of VDF and this entity
is responsible for sampling the instance and at the same time can keep some
secret value. This is in some sense similar to designated verifier NIZKs. Then if
the instance is computed as x := gr mod N and the verifier stores value r, then
the correctness of VDF ouput y can be easily check by y = hr mod N . Notice
that the verification time is independent of time parameter T . Now the question
is, how to make from this VDF with designated verifier a standard VDF, or
in other words how to make the verification step public. Since value y can be
computed at the time of sampling instance x, one can provide some information
about y as part of the instance in a way which does not hurt sequentiality. This
can be done by revealing the value x1 := F(y), where F is the one-way function.
Observe that this does not harm sequentiality, since it is infeasible to compute
value y from the evaluation of one-way function and at the same time it allows for
efficient verification of the validity of VDF ouput y by evaluating the expression
x1 = F(y). In case that F is collision resistant function and we are guaranteed
that instance x0, x1 is correctly generated, it is impossible to find y′ such that
y′ 6= y and x1 = F(y′). Hence, the soundness property of VDF is attained.
However, if an instance can be maliciously generated, then the soundness does
not need to hold anymore. To avoid this issue, we supplement our instance with
a NIZK proof which guarantees that instance is generated correctly. Function
F can be instantiated in several ways as we discuss in Section 6 and hence we
obtains VDFs based on different assumptions.

Next we show, how the ideas used in building our VDFs can be applied
to transform a multiplicatively homomorphic publicly verifiable non-interactive
timed commitment (MHPVNITC) of Chvojka and Jager [CJ23] in such a way
that force decommitment algorithm does not need to compute any additional
proof in order to guarantee public verifiability property of forced decommit-
ment. A non-interactive timed commitment [KLX20] allows to commit a mes-
sage in such a way that commitment can be opened in two ways: 1) using
an opening and a message, 2) using forced decommitment which can be exe-
cuted by anyone and takes time roughly T to perform without knowledge of
opening value. MHPVNITC of Chvojka et al. is based on Naor-Yung paradigm
[NY90] with shared randomness [BMV16] and works as follows. The setup al-

gorithm produces elements g, h1 := gk mod N,h2 := g2
T

mod N , where g is a
generator of group of quadratic residues QRN and k is sampled uniformly at

3

random from [|QRN |]. A commitment to a message m is generated as c0 :=
gr mod N, c1 := hr1m mod N, c2 := hr2m mod N . To force decommit the mes-

sage one can compute value y := c2
T

0 mod N by repeated squaring and then
output m := c3y

−1 mod N . However, if we are interested in public verifiabil-
ity of force decommitmnet, then a proof of exponentiation must be provided in
addition. In order to avoid this additional computation we commit to a mes-
sage m as follows. We use concrete instantiation of function F from our VDFs
using the RSA trapdoor function with exponent e. In that case the instance of
VDF is (x0 := gr mod N, x1 := (hr)e mod N, πNIZK), where πNIZK guarantees that
instance is correctly generated. In a timed commitment we commit to a mes-
sage as c0 := gr mod N, c1 := hr1m mod N, c2 := (hr2)em mod N (notice that
c0 := x0, c2 := x1m). But since the value x1 in commitment is blinded with
value m we have to provide an additional value which ensures public verifiability
of forced decommitment and at the same time preserves non-malleability. This
can be achieved by adding value c3 := H(hr2) where H is a hash function mod-
elled as a random oracle. Since the construction relies on Naor-Yung, we have to
use one-time simulation sound NIZK proving that (c0, c1, c2, c3) is well formed
commitment. We remark, that now the underlying language for our NIZK is not
anymore algebraic as it was in cite and therefore we make of use a generic pur-
pose NIZKs. Another disadvantage is that we require proving something about
a hash function which is modelled as a random oracle and hence this can be
considered only heuristically secure.

3 Preliminaries

We use λ to denote the security parameter. For λ ∈ N we write 1λ to denote
the λ-bit string of all ones. To indicate that we choose x uniformly at random

from X for any element x in a set X, we use x
$← X. We write [n] to denote

the set of integers {1, . . . , n} and bnc to denote the greatest integer that is
less than or equal to n. All algorithms are randomized, unless explicitly defined
as deterministic. For simplicity we model all algorithms as Turing machines,
however, all adversaries are modelled as non-uniform polynomial-size circuits
to simplify concrete time bounds in the security definitions of non-interactive
timed commitments and the strong sequential squaring assumption. For any
PPT algorithm A, we define x ← A(1λ, a1, . . . , an) as the execution of A with
inputs security parameter λ, a1, . . . , an and fresh randomness and then assigning
the output to x.

3.1 Verifiable Delay Function

We define a verifiable delay function in similar fashion as Boneh et al. [BBBF18],
however, we additinaly consider Gen algorith that generates instances from the
domain of the function as in [Pie19].

Definition 1. A verifiable delay function VDF is a tuple of four algorithms VDF =
(Setup,Gen,Eval,Vrfy) with the following syntax.

4

– pp← Setup(1λ, T) is a probabilistic algorithm that takes as input the security
parameter 1λ and a hardness parameter T and outputs public parameters.

– x← Gen(pp) is a probabilistic algorithm that takes as input public parameters
pp and samples a value x.

– (y, π) ← Eval(pp, x) takes as input public parameters pp and value x and
outputs value y and (possibly empty) proof π.

– 0/1← Vrfy(pp, x, y, π) is a deterministic algorithm that takes as input public
parameters pp, values x, y, and proof π and outputs 0 (reject) or 1 (accept).

We say VDF is correct if for all λ, T ∈ N holds:

Pr

Vrfy(pp, x, y, π) = 1 :

pp← Setup(1λ, T)

x← Gen(pp)

(y, π)← Eval(pp, x)

 = 1.

Since the soundness definitions of Boneh et al. and Pietrzak differs, we con-
sider both of them, however soundness definition of Pietrzak is adjusted to our
setting. The main difference between them is that in [Pie19] the challenge in-
stance x is generated in the experiment and in [BBBF18] an adversary outputs
an instance x.

Definition 2 (Soundness [Pie19]). A VDF is sound if for all T ∈ N and all
PPT algorithms A that runs in time poly(T, λ) there exists a negligible function
negl(·) such that for all λ ∈ N

AdvVDF−SND
A = Pr

Vrfy(pp, x, y′, π′) = 1

∧y 6= y′
:

pp← Setup(1λ, T)

x← Gen(pp)

(y, π)← Eval(pp, x)

(y′, π′)← A(pp, T, x)

 ≤ negl(λ).

Definition 3 (Soundness [BBBF18]). A VDF is sound if for all T ∈ N
and all PPT algorithms A that runs in time poly(T, λ) there exists a negligible
function negl(·) such that for all λ ∈ N

AdvVDF−SND
A = Pr

Vrfy(pp, x, y′, π′) = 1

∧y 6= y′
:

pp← Setup(1λ, T)

(x, y′, π′)← A(pp, T, x)

(y, π)← Eval(pp, x)

 ≤ negl(λ).

Definition 4 (Sequentiality). A VDF is secure with gap 0 < ε < 1 if there
exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every
non-uniform polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth
of A2,λ is at most T ε(λ), there exists a negligible function negl(·) such that for
all λ ∈ N

AdvVDF−SEQ
A = Pr

Vrfy(pp, x, y, π) = 1 :

pp← Setup(1λ, T)

st← A1,λ(pp)

x← Gen(pp)

(y, π)← A2,λ(x, st)

 ≤ negl(λ).

5

Definition 5 (Private Coin VDF). A VDF is private coin if Gen algorithm
additionally outputs a trapdoor value τ and there is an additional algorithm
TrapEval with the following syntax.

– y ← TrapEval(pp, x, τ) is a deterministic algorithm that takes as input public
parameters pp, a value x ∈ X and a trapdoor τ and outputs a value y ∈ Y
in time poly(λ) that is independent of T .

A private coin VDF is correct, if it fulfils correctness definition of VDF and
additionally it holds

Pr

y = y′ :

pp← Setup(1λ, T)

(x, τ)← Gen(pp)

(y, π)← Eval(pp, x)

y′ ← TrapEval(pp, x, τ)

 = 1.

3.2 Non-Malleable Publicly Verifiable Non-Interactive Timed
Commitment

Non-Malleable Non-Interactive Timed Commitment (NITC) has been intro-
duced by Boneh et al. [KLX20] and later homomorphic NITC was firstly con-
sidered in [TCLM21] and public verifiable NITC by Chvojka and Jager [CJ23].
We define security definitions of NITC in the same way as in [CJ23].

Definition 6. A non-interactive timed commitments scheme NITC with message
space M is a tuple of algorithms NITC = (PGen,Com,ComVrfy,DecVrfy,FDec)
with the following syntax.

– pp← PGen(1λ, T) is a probabilistic algorithm that takes as input the security
parameter 1λ and a hardness parameter T and outputs public parameters pp.

– (c, πCom, πDec)← Com(pp,m) is a probabilistic algorithm that takes as input
public parameters pp and a message m and outputs a commitment c and
proofs πCom, πDec.

– 0/1← ComVrfy(pp, c, πCom) is a deterministic algorithm that takes as input
public parameters pp, a commitment c and proof πCom and outputs 0 (reject)
or 1 (accept).

– 0/1← DecVrfy(pp, c,m, πDec) is a deterministic algorithm that takes as input
public parameters pp, a commitment c, a message m and proof πDec and
outputs 0 (reject) or 1 (accept).

– m ← FDec(pp, c, πCom) is a deterministic forced decommitment algorithm
that takes as input public parameters pp and a ciphertext c and outputs
m ∈M∪ {⊥} in time at most T · poly(λ).

We say NITC is correct if for all λ, T ∈ N and all m ∈M holds:

Pr

 FDec(pp, c) = m

∧ ComVrfy(pp, c, πCom) = 1

∧ DecVrfy(pp, c,m, πDec) = 1

:
pp← PGen(1λ, T)

(c, πCom, πDec)← Com(pp,m)

 = 1.

6

Definition 7. A non-interactive timed commitment scheme NITC is IND-CCA
secure with gap 0 < ε < 1 if there exists a polynomial T̃ (·) such that for
all polynomials T (·) ≥ T̃ (·) and every non-uniform polynomial-size adversary
A = {(A1,λ,A2,λ)}λ∈N, where the depth of A2,λ is at most T ε(λ), there exists a
negligible function negl(·) such that for all λ ∈ N it holds

AdvNITC
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

pp← PGen(1λ, T (λ))

(m0,m1, st)← ADEC(·,·)
1,λ (pp)

b
$← {0, 1}

(c∗, πCom, πDec)← Com(pp,mb)

b′ ← ADEC(·)
2,λ (c∗, π∗Com, st)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where |m0| = |m1| and the oracle DEC(c, πCom) returns the result of FDec(pp, c)
if ComVrfy(pp, c, πCom) = 1, otherwise it returns ⊥, with the restriction that A2,λ

is not allowed to query the oracle DEC(·, ·) for a decommitment of the challenge
commitment (c∗, π∗Com).

Definition 8. We define the BND-CCAA(λ) experiment as follows:

1. pp← PGen(1λ, T (λ));

2. (m, c, πCom, πDec,m
′, π′Dec) ← ADEC(·,·)

λ (pp), where the oracle DEC(c, πCom)
returns FDec(pp, c) if ComVrfy(pp, c, πCom) = 1, otherwise it returns ⊥;

3. Output 1 iff ComVrfy(pp, c, πCom) = 1 and either:
– m 6= m′ ∧ DecVrfy(pp, c,m, πDec) = DecVrfy(pp, c,m′, π′Dec) = 1;
– DecVrfy(pp, c,m, πDec) = 1 ∧ FDec(pp, c) 6= m.

A non-interactive timed commitment scheme NITC is BND-CCA secure if for
all non-uniform polynomial-size adversaries A = {Aλ}λ∈N there is a negligible
function negl(·) such that for all λ ∈ N

AdvNITC
A = Pr [BND-CCAA(λ) = 1] ≤ negl(λ).

Definition 9. A non-interactive timed commitments scheme NITC is publicly
verifiable if FDec additionally outputs a proof πFDec and has an additional algo-
rithm FDecVrfy with the following syntax:

– 0/1 ← FDecVrfy(pp, c,m, πFDec) is a deterministic algorithm that takes as
input public parameters pp, a commitment c, a message m, and a proof
πFDec and outputs 0 (reject) or 1 (accept) in time poly(log T, λ).

Moreover, a publicly verifiable NITC must have the following properties:

– Completeness for all λ, T ∈ N and all m ∈M holds:

Pr

FDecVrfy(pp, c,m, πFDec) = 1 :

pp← PGen(1λ, T)

(c, πCom, πDec)← Com(pp,m)

(m,πFDec)← FDec(pp, c)

 = 1.

7

– Soundness for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
there is a negligible function negl(·) such that for all λ ∈ N

Pr

FDecVrfy(pp, c,m′, π′FDec) = 1

∧ ComVrfy(pp, c, πCom) = 1

∧ m 6= m′
:

pp← PGen(1λ, T)

(c, πCom,m
′, π′FDec)← Aλ(pp)

(m,πFDec)← FDec(pp, c)

 ≤ negl(λ).

Definition 10. A non-interactive timed commitments scheme NITC is homo-
morphic with respect to a class of circuits C = {Cλ}λ∈N, if there is an additional
algorithm Eval with the following syntax:

– c← Eval(pp, C, c1, . . . , cn) is a probabilistic algorithm that takes as input pub-
lic parameters pp, a circuit C ∈ Cλ, and set of n commitments (c1, . . . , cn).
It outputs a commitment c.

Additionally, a homomorphic NITC fulfils the following properties:
Correctness: for all λ, T ∈ N, C ∈ Cλ, (m1, . . . ,mn) ∈Mn, all pp in the support
of PGen(1λ, T), all ci in the support of Com(pp,mi) we have:

1. There exists a negligible function negl such that

Pr [FDec(pp,Eval(pp, C, c1, . . . , cn)) 6= C(m1, . . . ,mn)] ≤ negl(λ).

2. The exists a fixed polynomial poly such that the runtime of FDec(pp, c) is
bounded by poly(λ, T), where c← Eval(pp, C, c1, . . . , cn).

Compactness: for all λ, T ∈ N, C ∈ Cλ, (m1, . . . ,mn) ∈ Mn, all pp in the
support of PGen(1λ, T), all ci in the support of Com(pp,mi), the following two
conditions are satisfied:

1. The exists a fixed polynomial ˆpoly such that |c| = ˆpoly(λ, |C(m1, . . . ,mn)|),
where c← Eval(pp, C, c1, . . . , cn).

2. The exists a fixed polynomial ˜poly such that the runtime of Eval(pp, C, c1,
. . . , cn) is bounded by ˜poly(λ, |C|).

3.3 Non-Interactive Zero-Knowledge Proof

In this work we consider Non-Interactive Zero-Knowledge proof systems (NIZKs)
both in standard model and in the random oracle model (ROM). Reason for it
is that for an language L in our construction of verifiable delay function with
efficient membership test, one can propose an efficient Sigma protocol which
can be transformed into NIZK in the ROM and also in the standard model.
Moreover, in our PVNITC construction we rely on NIZK in standard model. We
begin with definition of standard model NIZKs that we take from Libert et al.
[LNPY22] that are adjusted in the same way as in [CJ23]. In comparison to
another NIZK definitions in standard model, in definitions of Libert et al. and
Chvojka et al. an adversary gets some auxiliary information about a language
called a membership testing trapdoor τL. Later we propose an instantiation of
NIZK for our application which fulfils these definitions with respect to some
specific language trapdoor.

8

Definition 11. A non-interactive zero-knowledge proof system Π for an NP
language L associated with a relation R is a tuple of four PPT algorithms
(Genpar,GenL,Prove,Vrfy), which work as follows:

– crs ← Setup(1λ, L) takes a security parameter 1λ and the description of a
language L. It outputs a a common reference string crs.

– π ← Prove(crs, s, w) is a PPT algorithm which takes as input the common
reference string crs, a statement s, and a witness w such that (s, w) ∈ R and
outputs a proof π.

– 0/1 ← Vrfy(crs, s, π) is a deterministic algorithm which takes as input the
common reference string crs, a statement s and a proof π and outputs either 1
or 0, where 1 means that the proof is “accepted” and 0 means it is “rejected”.

Moreover, Π should satisfy the following properties.

– Completeness: for all (s, w) ∈ R holds:

Pr[Vrfy(crs, s, π) = 1 : crs← Setup(1λ, L), π ← Prove(crs, s, w)] = 1.

– Soundness: for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
there exists a negligible function negl(·) such that for all λ ∈ N

SndNIZK
A = Pr

[
s /∈ L∧

Vrfy(crs, s, π) = 1
:

(crs← Setup(1λ, L)

(π, s)← Aλ(crs, τL)

]
≤ negl(λ),

where τL is membership testing trapdoor.
– Zero-Knowledge: there is a PPT simulator (Sim1,Sim2), such that for all

non-uniform polynomial-size adversaries A = {Aλ}λ∈N there exists a negli-
gible function negl(·) such that for all λ ∈ N:

ZKNIZK
A =

∣∣∣Pr
[
AProve(crs,·,·),
λ (crs, τL) = 1 : crs← Setup(1λ, L)

]
−Pr

[
AO(crs,τ,·,·),
λ (crs, τL) = 1 : (crs, τ)← Sim1(1λ, L)

]∣∣∣ ≤ negl(λ).

Here τL is a membership testing trapdoor for language L; Prove(crs, ·, ·) is
an oracle that outputs ⊥ on input (s, w) /∈ R and outputs a valid proof
π ← Prove(crs, s, w) otherwise; O(crs, τ, ·, ·) is an oracle that outputs ⊥ on
input (s, w) /∈ R and outputs a simulated proof π ← Sim2(crs, τ, s) on input
(s, w) ∈ R. Note that the simulated proof is generated independently of the
witness w.

Definition 12 (One-Time Simulation Soundness). A NIZK for an NP
language L with zero-knowledge simulator Sim = (Sim0,Sim1) is one-time sim-
ulation sound, if for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
there exists a negligible function negl(·) such that for all λ ∈ N

SimSndNIZK
A = Pr

 s /∈ L∧
(s, π) 6= (s′, π′)∧
Vrfy(crs, s, π) = 1

:
(crs, τ)← Sim1(1λ, L)

(s, π)← ASim2(crs,τ,·)
λ (crs, τL)

 ≤ negl(λ),

where τL is a membership testing trapdoor for language L and Sim2(crs, τ, ·) is a
single query oracle which on input s′ returns π′ ← Sim(crs, τ, s′).

9

Non-Interactive Zero-Knowledge Proofs in the Random Oracle Model. Next we
recall definition of a NIZK in the ROM.

Definition 13. A non-interactive proof system for an NP language L with re-
lation R is a pair of algorithms (Prove,Vrfy), which work as follows:

– π ← Prove(s, w) is a PPT algorithm which takes as input a statement s and
a witness w such that (s, w) ∈ R and outputs a proof π.

– Vrfy(s, π) ∈ {0, 1} is a deterministic algorithm which takes as input a state-
ment s and a proof π and outputs either 1 or 0, where 1 means that the proof
is “accepted” and 0 means it is “rejected”.

We say that a non-interactive proof system is complete, if for all (s, w) ∈ R
holds:

Pr[Vrfy(s, π) = 1 : π ← Prove(s, w)] = 1.

We say that a non-interactive proof system is sound if for all non-uniform
polynomial-size adversaries A = {Aλ}λ∈N there exists a negligible function negl(·)
such that for all λ ∈ N

SndNIZK
A = Pr

[
s /∈ L ∧ Vrfy(s, π) = 1 : (π, s)← Aλ

]
≤ negl(λ).

Next we define the zero-knowledge property for non-interactive proof sys-
tem in the random oracle model. The simulator Sim of a non-interactive zero-
knowledge proof system is modelled as a stateful algorithm which provides two
modes, namely (π, st) ← Sim(1, st, s) for answering proof queries and (v, st) ←
Sim(2, st, u) for answering random oracle queries. The common state st is up-
dated after each operation.

Definition 14 (Zero-Knowledge in the ROM). Let (Prove,Vrfy) be a non-
interactive proof system for a relation R which may make use of a hash function
H : U → V. Let Funs[U ,V] be the set of all functions from the set U to the set V.
We say that (Prove,Vrfy) is non-interactive zero-knowledge proof in the random
oracle model (NIZK), if there exists an efficient simulator Sim such that for all
non-uniform polynomial-size adversaries A = {Aλ}λ∈N there exists a negligible
function negl(·) such that for all λ ∈ N

ZKNIZK
A =

∣∣∣Pr
[
AProveH(·,·),H(·)
λ = 1

]
− Pr

[
ASim1(·,·),Sim2(·)
λ

]
= 1
∣∣∣ ≤ negl(λ),

where

– H is a function sampled uniformly at random from Funs[U ,V],
– ProveH corresponds to the Prove algorithm, having oracle access to H,
– π ← Sim1(s, w) takes as input (s, w) ∈ R, and outputs the first output of

(π, st)← Sim(1, st, s),
– v ← Sim2(u) takes as input u ∈ U and outputs the first output of (v, st) ←

Sim(2, st, u).

10

3.4 Complexity assumptions

Our constructions of VDF are based on the strong sequential squaring assump-
tion in group G which can be instantiated either by the group of quadratic
residues or by the group elements with Jacobi symbol 1. Let p, q be safe primes
(i.e., such that p = 2p′+1, q = 2q′+1 for primes p′, q′)and ϕ(·) be Euler’s totient
function. We denote by QRN the cyclic group of quadratic residues modulo N

which has order |QRN | = ϕ(N)
4 = (p−1)(q−1)

4 . To efficiently sample a random

element x from QRN , one can sample r
$← Z∗N and let x := r2 mod N . When

the factors p, q are known, then it easy to check if the given element is a gen-
erator of QRN by checking if xp

′ 6= 1 mod N ∧ xq′ 6= 1 mod N . Therefore we
are able to efficiently sample a random generator of QRN . We denote by JN
the cyclic subgroup of Z∗N of elements with Jacobi symbol 1 which has order

|JN | = ϕ(N)
2 = (p−1)(q−1)

2 . To efficiently sample a random generator g from JN ,

one can sample r
$← Z∗N and let g := −r2 mod N . Let GenMod be a probabilistic

polynomial-time algorithm which on input 1λ outputs two λ-bit safe primes p
and q, modulus N = pq and a random generator g of G. Now we state the strong
sequential squaring assumption in G.

ExpSSSbA(λ):

(p, q,N, g)← GenMod(1λ)
st← A1,λ(N,T (λ), g)

x
$← G

if b = 0 : y := x2
T (λ)

mod N

if b = 1 : y
$← G

return b′ ← A2,λ(x, y, st)

Fig. 1. Security experiment for the strong sequential squaring assumption.

Definition 15 (Strong Sequential Squaring Assumption (SSS)). Con-
sider the security experiment ExpSSSbA(λ) in Figure 1. The strong sequential
squaring assumption with gap 0 < ε < 1 holds relative to GenMod if there ex-
ists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every
non-uniform polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth
of A2,λ is at most T ε(λ), there exists a negligible function negl(·) such that for
all λ ∈ N

AdvSSS
A =

∣∣Pr[ExpSSS0A(λ) = 1]− Pr[ExpSSS1A(λ) = 1]
∣∣ ≤ negl(λ).

The construction of multiplicatively homomorphic PVNITC of Chvojka and
Jager [CJ23] relies on the Decisional Diffie-Hellman assumption in QRN as stated
below.

11

ExpDDHbA(λ):

(p, q,N, g)← GenMod(1λ)

α, β
$← [ϕ(N)/4]

if b = 0 : γ = a · b mod ϕ(N)

if b = 1 : γ
$← [ϕ(N)/4]

return b′ ← Aλ(N, p, q, g, gα, gβ , gγ)

Fig. 2. Security experiment for DDH

Definition 16 (Decisional Diffie-Hellman in QRN). Consider the security
experiment ExpDDHbA(λ) in Figure 2. The decisional Diffie-Hellman assumption
holds relative to GenMod in QRN if for every non-uniform polynomial-size ad-
versary A = {Aλ}λ∈N there exists a negligible function negl(·) such that for all
λ ∈ N

AdvDDH
A =

∣∣Pr[ExpDDH0
A(λ) = 1]− Pr[ExpDDH1

A(λ) = 1]
∣∣ ≤ negl(λ).

ExpRSAA(λ):

(p, q,N, g, e)← GenMod(1λ)

y
$← G

x← Aλ(N, e, y, g)
return the truth value of xe = y mod N

Fig. 3. Security experiment for RSA

In our VDF constructions we make use of collision resistant one way function
which can be instantiated based for example on the RSA assumption or the
square-root assumption. We recall both of them below. In the RSA experiment
definition we use G to denote either JN or QRN . The original definition of the
RSA assumption is in the group of Z∗N which implies that it holds in both JN and
QRN . Moreover, we adjust the assumption slightly by requiring that GenMod
outputs a generator of G.

Definition 17 (RSA assumption). Consider the security experiment ExpRSAA(λ)
in Figure 3. The RSA assumption holds relative to GenMod in G if for every
non-uniform polynomial-size adversary A = {Aλ}λ∈N there exists a negligible
function negl(·) such that for all λ ∈ N

AdvRSA
A = Pr[ExpRSAA(λ) = 1] ≤ negl(λ).

Definition 18 (Square-root assumption). Consider the security experiment
ExpSRA(λ) in Figure 4. The square-root assumption holds relative to GenMod

12

ExpSRA(λ):

(p, q,N)← GenMod(1λ)

y
$← QRN

x← Aλ(N, y)
return the truth value of x2 = y mod N

Fig. 4. Security experiment for square-root assumption

if for every non-uniform polynomial-size adversary A = {Aλ}λ∈N there exists a
negligible function negl(·) such that for all λ ∈ N

AdvSR
A = Pr[ExpSRA(λ) = 1] ≤ negl(λ).

Sampling random exponents for QRN and JN . As shown in [CJ23] we can use the
set [bN/4c] whenever we should sample from the set [ϕ(N)/4] without knowing
the factorization of N . Similarly, we can use the set [bN/2c] whenever we should
sample from the set [ϕ(N)/2]. Sampling from [bN/4c] and [bN/2c] is statisti-
cally indistinguishable from sampling from [ϕ(N)/4] and ϕ(N)/2 respectively as
stated in Lemma 1 below which is proven in [CJ23].

Definition 19 (Statistical Distance). Let X and Y be two random variables
over a finite set S. The statistical distance between X and Y is defined as

SD(X,Y) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

Lemma 1. Let p, q be primes, N = pq, ` ∈ N such that gcd(`, ϕ(N)) = ` and
X and Y be random variables defined on domain [bN/`c] as follows:

Pr[X = r] = 1/ bN/`c ∀r ∈ [bN/`c] and Pr[Y = r] =

{
`/ϕ(N) ∀r ∈ [ϕ(N)/`]

0 otherwise.

Then

SD(X,Y) ≤ 1

p
+

1

q
− 1

N
.

Definition 20 (One-way function). A function F : X → Y is one-way func-
tion if the following holds:

– There exist a polynomial time algorithm that computes F.
– For every non-uniform polynomial-size adversary A = {Aλ}λ∈N there exists

a negligible function negl(·) such that for all λ ∈ N

AdvOWF
A = Pr

[
F(x′) = y :

x
$← X

x′ ← Aλ(F(x))

]
≤ negl(λ).

Definition 21 (Collision resistant function). A function F : X → Y is a
collision resistant function, if for every non-uniform polynomial-size adversary
A = {Aλ}λ∈N there exists a negligible function negl(·) such that for all λ ∈ N

AdvCR
A = Pr[F(x) = F(x′) : (x, x′)← Aλ] ≤ negl.

13

4 VDF Construction

Let N be a product of two large primes. We construct a VDF whose domain is
determined by elements g, h ∈ G2 and a collision resistant one-way function F
produced in Setup and consists of pairs (x0, x1) such that x0 = gr mod N and
x1 = F(hr mod N) for some r ∈ R. We require that the domain of F is group G.
Random sampling from the domain can be done efficiently by sampling at first

r
$← R, where sampling from the set R is statistically indistinguishable from

sampling from [|G|] and then by computing x0 and x1 as described above. The
construction is given in Figure 5.

Setup(1λ, T) Gen(pp)

(p, q,N,G, g)← GenMod(1λ) r
$← R

t := 2T mod |G| x0 := gr mod N, x1 := F(hr mod N)
h := gt mod N return x := (x0, x1), τ := r
return (pp := (N,F, g, h))

Eval(pp, x = (x0, x1)) Vrfy(pp, x = (x0, x1), y)

return y := x2
T

0 mod N if x1 = F(y)
return 1

return 0

TrapEval(pp, x = (x0, x1), τ)

return (y, π) := (hτ mod N,⊥)

Fig. 5. VDF

Theorem 1. If the strong sequential squaring assumption with gap ε holds rela-
tive to GenMod, and F is a collision resistant one-way function, then (Setup,Gen,
Eval,Vrfy) defined in Figure 5 is a secure private coin verifiable delay function
that is sound in the sense of Definition 2.

Proof. We show that VDF in Figure 5 is complete, sound in the sense of Defini-
tion 2 and fulfils sequentiality definition.

Completeness. It is straightforward to verify.

Soundness. We show that if there is an adversary A which breaks soundness
then we can break collision resistance of F. This is straightforward, since in
Definition 2 the instance x = (x0, x1) is honestly generated and hence F(y) =
x1 = F(y′) for y 6= y′. Therefore y, y′ is required collision. Hence, we conclude
that

AdvVDF−SND
A = AdvCR

A .

14

Sequentiality. We consider a sequence of games G0 − G3.

Game 0. Game G0 corresponds to original security experiment.

Game 1. In G1 we sample exponent r for instance x, uniformly at random from
[|G|].

Lemma 2.

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which
we sample r, to upper bound the advantage of adversary we can use Lemma 1,
which directly yields the required bound.

Game 2. In G2 we sample y
$← G and compute the challenge as x := (gr mod

N,F(y)).

Lemma 3.
|Pr[G1 = 1]− Pr[G2 = 1]| ≤ AdvSSS

B .

The adversary B1,λ(N,T (λ), g) :

1. Computes h := g2
T (λ)

mod N and sets pp := (N,F, g, h).
2. Runs st← A1,λ(pp).
3. Outputs (N,F, g, h, st)

The adversary B2,λ(x, y, (N,F, g, h, st)) :

1. Sets x∗0 := x and computes x∗1 := F(y) mod N .
2. Runs y∗ ← A2,λ((x∗0, x

∗
1), st).

3. Returns the truth value of y = y∗.

Since g is a generator of G and x is sampled uniformly at random from G there

exists some r ∈ [|G|] such that x = gr mod N . Therefore when y = x2
T

=

(g2
T

)r mod N , then B simulates G1 perfectly. Otherwise y is random value and
B simulates G2 perfectly. This proofs the lemma.

Game 3. In G3 we sample exponent r for x∗0, uniformly at random from [R].

Lemma 4.

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which
we sample r, to upper bound the advantage of adversary we can use Lemma 1,
which directly yields the required bound.

Lemma 5.
Pr[G3 = 1] = AdvOWF

B′ .

15

The adversary B′(y) :

1. Samples g
$← G (with high probability g is generator).

2. Computes h := g2
T

mod N by repeated squaring.
3. Runs st← A1,λ(N,F, g, h).

4. Computes x∗0 := gr mod N where r
$← [R].

5. Returns y∗ ← A2,λ((x∗0, y), st).

B′ simulates G3 perfectly and whenever A outputs correct value for our VDF
then it necessary holds that F(y∗) = y mod N which proofs the lemma.

By combining Lemmas 2 - 5 we obtain the following:

AdvVDF−SEQ
A = Pr[G0 = 1] ≤

3∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+ Pr[G2 = 1]

≤ 2(
1

p
+

1

q
− 1

N
) + AdvSSS

B + AdvOWF
B′ ,

which concludes the proof.

Remark 1. The construction in Figure 5 does not achieve soundness as stated
in Definition 3. The problem is, that it is not possible to verify that instance x
has the correct form. An adversary can provide x = (gr mod N,F(y)) for some
random value y and since F is a one-way function we are not able to notice
that this instance is maliciously constructed. An adversary can then output
value y as output of VDF and this value verifies. Output of Eval algorithm is

however (gr)2
T

mod N which is with all but negligible probability different from
y and hence we are able to break soundness. Another problem when we want
to construct a VDF in group QRN is that an adversary can output an element
in JN \ QRN and we are not able to notice this fact, since there is no efficient
membership test for elements in QRN .

To fix this issue, we change the domain of the VDF by adding the proof π
that certifies that given instance is well formed and hence allows for efficient
membership testing.

5 VDF with an Efficient Membership Test

Even though the previous construction fulfils the soundness definition of Def-
inition 2 of a trapdoor VDF, it is difficult to efficiently check if (x0, x1) =
(gr mod N,F(hr mod N)), since F is a one-way function. Depending on an ap-
plication, this might be problematic and therefore we provide also VDF which
avoids this issue by simply certifying the fact that (x0, x1) is correctly generated
using a NIZK proof. As we show, in this way we obtain VDF which achieves
soundness as specified in Definition 3. As before, let N be a product of two
primes. The domain is determined by elements g, h ∈ G produced in Setup and
by a collision resistant one-way function F, and consists of triples (x0, x1, π) such

16

that the tuple x0 = gr mod N ∧ x1 = F(hr mod N) for some r and π is a proof
certifying this fact. We require that the domain of F is G. Random sampling from

the domain can be done efficiently by sampling at first r
$← R, where sampling

from the set R is statistically indistinguishable from sampling from [|G|] and then
by computing x0, x1, π as described above. Let NIZK = (NIZK.Prove, NIZK.Vrfy)
is a non-interactive zero-knowledge proof system for the language

L = {(x0, x1)|∃r : x0 = gr mod N ∧ x1 = F(hr mod N)} ,

where g, h,N,F are parameters specifying the language. The construction is given
in Figure 6.

Setup(1λ, T) Gen(pp)

(p, q,N,G, g)← GenMod(1λ) r
$← R

t := 2T mod |G| x0 := gr mod N, x1 := F(hr mod N)
h := gt mod N π ← NIZK.Prove((x0, x1), r)
return (pp := (N,F, g, h)) return x := (x0, x1, π), τ := r

Eval(pp, x = (x0, x1, πNIZK)) Vrfy(pp, x = (x0, x1, πNIZK), y)

return y := (gr)2
T

mod N if NIZK.Vrfy((x0, x1), πNIZK) = 1 ∧ x1 = F(y)
return 1

return 0

TrapEval(pp, x = (x0, x1, π), τ)

return (y, π) := (hτ mod N,⊥)

Fig. 6. VDF with an Efficient Membership Test

Theorem 2. If NIZK = (NIZK.Prove, NIZK.Vrfy) is a non-interactive zero-knowledge
proof system for language L, the strong sequential squaring assumption with gap
ε holds relative to GenMod, and F is a collision resistant one-way function, then
(Setup,Gen,Eval,Vrfy) defined in Figure 6 is a secure private coin verifiable delay
function which satisfies soundness in the sense of Definition 3.

Proof. We show that VDF in Figure 6 is complete, sound in the sense of Defini-
tion 3 and fulfils sequentiality definition.

Completeness. It follows from the completeness of the corresponding proof sys-
tem.

Soundness. Let denote by SND the event that A breaks the soundness in Defi-
nition 3. Let E denote an event that A outputs an instance x = (x0, x1, π) that
is not a valid tuple.

17

If E does not happen, then if A outputs y′ which verifies and is different
from y this means F(y) = x1 = F(y′). Hence, y, y′ is valid collision and we can
conclude Pr[SND ∧ E] = AdvCR

B .
In case that E happens, then (x0, x1) is not well formed instance and we can

break the soundness of the NIZK. Hence Pr[E] ≤ SndNIZK
B′ . We can conclude

AdvVDF−SND
A = Pr[SND] = Pr[SND ∧ E] + Pr[SND ∧ E]

≤ Pr[E] + Pr[SND ∧ E] = AdvCR
B + SndNIZK

B′ .

Sequentiality. We consider a sequence of games G0 − G4.

Game 0. Game G0 corresponds to original security experiment.

Game 1. Game G1 proceeds exactly as the previous game but we use zero-
knowledge simulator to produce a simulated proof for the challenge instance.

Lemma 6.
|Pr[G0 = 1]− Pr[G1 = 1]| ≤ AdvZK

B .

The adversary B :

1. Runs st← A1,λ(N,F, g, h).

2. Samples r
$← R and computes x∗0 := gr mod N, x∗1 := F(hr mod N).

3. It submits (s := (x∗0, x
∗
1), w := r) to its oracle and obtains proof π∗ as answer.

4. Runs y∗ ← A2,λ(st, (x∗0, x
∗
1, π
∗))

5. Outputs y∗ = hr mod N .

If the proof π∗ is generated using NIZK.Prove, then B simulates G0 perfectly.
Otherwise π∗ is generated using Sim1 and B simulates G1 perfectly. This proves
the lemma.

Game 2. In G2 we sample exponent r for instance x, uniformly at random from
[|G|].

Lemma 7.

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which
we sample r, to upper bound the advantage of adversary we can use Lemma 1,
which directly yields the required bound.

Game 3. In G3 we sample y
$← G and compute the challenge as x∗ := (gr mod

N,F(y), π).

Lemma 8.
|Pr[G2 = 1]− Pr[G3 = 1]| ≤ AdvSSS

B′ .

The adversary B′1,λ(N,T (λ), g) :

18

1. Computes h := g2
T (λ)

mod N and sets pp := (N,F, g, h).
2. Runs st← A1,λ(pp).
3. Outputs (N,F, g, h, st)

The adversary B′2,λ(x, y, (N,F, g, h, st)) :
1. Sets x∗0 := x and computes x∗1 := F(y).
2. Runs π∗ ← NIZK.Sim(1, st′, (x∗0, x

∗
1)).

3. Runs y∗ ← A2,λ((x∗0, x
∗
1, π
∗), st).

4. Returns the truth value of y = y∗.

Since g is a generator of G and x is sampled uniformly at random from G there

exists some r ∈ [|G|] such that x = gr mod N . Therefore when y = x2
T

=

(g2
T

)r mod N , then B′ simulates G2 perfectly. Otherwise y is random value and
B′ simulates G3 perfectly. This proofs the lemma.

Game 4. In G4 we sample exponent r for x∗0, uniformly at random from [R].

Lemma 9.

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which
we sample r, to upper bound the advantage of adversary we can use Lemma 1,
which directly yields the required bound.

Lemma 10.
Pr[G4 = 1] = AdvOWF

B̃ .

The adversary B̃(y) :

1. Samples g
$← G (with high probability g is generator).

2. Computes h := g2
T

mod N by repeated squaring.
3. Runs st← A1,λ(N,F, g, h).

4. Computes x∗0 := gr mod N where r
$← R.

5. Runs π∗ ← NIZK.Sim(1, st′, (x∗0, y)).
6. Returns y∗ ← A2,λ((x∗0, y, π

∗), st).

B̃ simulates G4 perfectly and whenever A outputs correct value for our VDF
then it necessary holds that F(y∗) = y mod N which proofs the lemma.

By combining Lemmas 6 - 10 we obtain the following:

AdvVDF−SEQ
A = Pr[G0 = 1] ≤

4∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+ Pr[G4 = 1]

≤ 2(
1

p
+

1

q
− 1

N
) + AdvZK

B + AdvSSS
B′ + AdvOWF

B̃ ,

which concludes the proof.

Remark 2. Proposed VDFs require the trusted setup, since the factorization of
N must be kept secret. One can achieve also the transparent setup if the VDFs
are instantiated over the class group of an imaginary quadratic number field.

In that case the value h := g2
T

computed in the setup must be computed by
repeated squaring and hence the runtime of the setup is O(T).

19

6 Instantiation of function F

In this section we discuss several ways how to instantiate a collision resistant
one-way function F.

Using RSA trapdoor one-way function. If we choose e, such that gcd(e, ϕ(N)) =
1 (for example e = 3), then function xe mod N is a well-known one-way function
based on RSA assumption (Definition 17) in the group G. Moreover, this function
is permutation on Z∗N therefore there are no collisions and can be instantiated
over both QRN and JN . When F is instantiated in this way, the language for a
NIZK proof system is equivalent to showing that (g, he, x0, x1) is a DDH tuple
and an efficient Sigma protocol for this language was given for example in [CJ23,
Theorem 11]. The proposed Sigma protocol can be transformed into NIZK in
ROM using Fiat-Shamir transformation [FS87] or into NIZK in the standard
model using technique of Libert et al.. [LNPY22].

Using Rabin’s one-way function . Another candidate for F is Rabin’s one-way
function which is essentialy computing x2 mod N . This function is one-way func-
tion since computing square roots modulo N is considered to be a hard problem
(Definition 18) and actually it is equivalent to factoring. Moreover, if the domain
of this function is QRN , then the function is a permutation and there are no
collisions. This is because assuming that p, q are safe primes, then N is a Blume
integer. VDF obtained in this way over QRN which is given in Figure 5 is sound
in the sense of Definition 2. However, if we instantiate construction in Figure 5
over JN , then we don’t achieve soundness as defined in Definition 2. Moreover,
we are not able to achieve soundness in the sense of Definition 3 also for VDF
constructions given in Figure 6 over both QRN and JN . The problem is that
Rabin’s function is not collision resistant over JN and since we do not know how
to efficiently check a membership in QRN , even the use of Rabin’s function over
QRN is problematic as we explain now. An attacker can construct a collision sim-
ply by taking x ∈ QRN and computing y := x2 mod N . Then (−x)2 = y mod N
and −x ∈ JN \QRN . Since we do not know how to distinguish elements of QRN
and JN \QRN the pair (x,−x) is a collision for y.

One could avoid this issue by defining the output of F either as a set (x,−x)
and adjusting the output of Eval algorithm of VDF to be also set. Another option
would be to accept as a valid output for example max(x,−x) or min(x,−x). In
this way if Vrfy of VDF checks that x ∈ JN then this is permutation. Moreover,
even if we would omit this check in VDF and an attacker would output another
square root of y, then we would be able to break the factoring assumption.
Hence, a VDF constructed in this way which omits the membership test in JN
is collision resistant under the factoring assumption. Another option is to work
with the group of signed quadratic residues QR+

N as done in [Pie19], that is
isomorphic to QRN and moreover one can efficiently test the membership in this
group.

Similarly as before, the language for a NIZK proof system is equivalent to
showing that (g, h2, x0, x1) is a DDH tuple and an efficient Sigma protocol for

20

this language was given for example in [CJ23, Theorem 11]. The proposed Sigma
protocol can be transformed into NIZK in ROM using Fiat-Shamir transforma-
tion [FS87] or into NIZK in the standard model using technique of Libert et al..
[LNPY22]. Now notice that the strong sequential squaring assumption implies
the factoring assumption which is equivalent to the square-root assumption.
Therefore we can say that a VDF obtained in this way which is given in Fig-
ure 5 is secure based on the strong sequential squaring assumption. And VDF
obtained in this way which is given in Figure 6 (with adjustions defined above) is
secure based on the strong sequential squaring assumption in the random oracle
model if the underlying NIZK is obtained via Fiat-Shamir transformation.

Using a collision resistant hash function . The straightforward candidate for F
is also a collision-resistant hash function which is one-way. Disadvantage of this
approach is that when constructing a VDF with efficient instance membership
test we need NIZK which enables to prove statements containing a hash func-
tions. These NIZKs are usually less efficient than NIZKs obtained from Sigma
protocolas via Fiat-Shamir transformation.

7 Construction of Multiplicatively Homomorphic
Non-Malleable NITC

In this section we show how to apply ideas from our VDF’s constructions to ob-
tain a multiplicatively homomorphic publicly verifiable NITC which has efficient
FDec and FDecVrfy algorithms. To adjust the construction of Chvojka and Jager
[CJ23] we could use any function F whose domain and range are QRN . From the
discussed options in Section 6 the simplest option is to use the RSA trapdoor
function. In Figure 7 is our construction of publicly verifiable NITC and we rely
on a one-time simulation sound NIZK for the following language:

L =

{
(c0, c1, c2, c3)|∃(m, r) :

(c0 = gr mod N ∧ c1 = hr1m mod N

∧c2 = hre2 m mod N ∧ c3 = H(hr2 mod N)

}
,

where g, h1, h2, N,H, e are parameters specifying the language.
We highlight the changes which are added to the original construction of

[CJ23] using blue color.
The most significant changes compared to original proposal of Chvojka et al.

are in FDec and FDecVrfy algorithms and therefore Figure 8 provides their orig-
inal content as stated in [CJ23].

Theorem 3. If (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a one-time simulation-
sound non-interactive zero-knowledge proof system for L, the strong sequential
squaring assumption with gap ε holds relative to GenMod in QRN , the Deci-
sional Diffie-Hellman assumption holds relative to GenMod in QRN , and H is
modelled as a random oracle, then (PGen,Com,ComVrfy,DecVrfy,FDec) defined
in Figure 7 is an IND-CCA-secure non-interactive timed commitment scheme
with ε, for any ε < ε.

21

PGen(1λ, T) Com(pp,m)

(p, q,N, g)← GenMod(1λ) r
$← [bN/4c]

ϕ(N) := (p− 1)(q − 1) c0 := gr mod N

k1
$← [bN/4c] For i ∈ [2] : yi := hri mod N

t := 2T mod ϕ(N)/4 c1 := y1 ·m mod N, c2 := ye2 ·m mod N

h1 := gk1 mod N c3 := H(y2)
h2 := gt mod N c := (c0, c1, c2, c3), w := (m, r)
Pick e s.t. gcd(e, ϕ(N)) = 1, e.g. e := 3 πCom ← NIZK.Prove(crs, c, w)

crs← NIZK.Setup(1λ, L) πDec := r
return pp := (N,T, g, h1, h2, crs, e,H) return (c, πCom, πDec)

ComVrfy(pp, c, πCom) DecVrfy(pp, c,m, πDec)

return NIZK.Vrfy(crs, c, π) Parse c as (c0, c1, c2, c3)
if c0 = gπDec mod N ∧ c1 = h

πDec
1 m mod N

c2 = h
eπDec
2 m mod N∧c3 = H(h

πDec
2)

return 1
return 0

FDec(pp, c) FDecVrfy(pp, c,m, πFDec)

Parse c as (c0, c1, c2, c3) Parse c as (c0, c1, c2, c3)

Compute πFDec := c2
T

0 mod N if c2 = πeFDec ·m mod N∧c3 = H(πFDec)
m := c2 · π−eFDec mod N return 1
return (m,πFDec) return 0

Eval(pp,⊗N , c1, . . . , cn)

Parse ci as (ci,0, ci,1, ci,2, ci,3)
Compute c0 :=

∏n
i=1 ci,0 mod N, c1 := ⊥, c2 :=

∏n
i=1 ci,3 mod N, c3 := ⊥

return c := (c0, c1, c2, c3)

Fig. 7. Construction of Multiplicatively Homomorphic NITC
⊗N refers to multiplication modN

FDec(crs, c) FDecVrfy(crs, c,m, πFDec)

Parse c as (c0, c1, c2) Parse c as (c0, c1, c2)

y := c2
T

0 mod N , πPoE = PoE.Prove(c0, y) if c2 = m · y mod N ∧ PoE.Vrfy((c0, y), πPoE)
πFDec := (y, πPoE),m := c2 · y−1 mod N return 1
return (m,πFDec) return 0

Fig. 8. FDec and FDecVrfy of Chvojka et al. [CJ23]

The IND-CCA security can be proved in similar fashion as in [CJ23]. We
define a sequence of games G0 − G8. For i ∈ {0, 1, . . . , 8} we denote by Gi = 1
the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs b′ in the game Gi
such that b = b′.

22

Dec(pp, c, πCom, i, sk)

Parse c as (c0, c1, c2, c3)
if NIZK.Vrfy(crs, (c0, c1, c2, c3), πCom) = 1

Compute y := csk0 mod N
return ci · y−1 mod N

return ⊥

Fig. 9. Decommitment oracle

Game 0. Game G0 corresponds to the original security experiment where de-
commitment queries are answered using FDec.

Game 1. In game G1 decommitment queries are answered using the algorithm
Dec defined in Figure 9 with i := 2, sk := t which means that secret key t and
ciphertext c2 are used, to answer decommitment queries efficiently.

Lemma 11.
Pr[G0 = 1] = Pr[G1 = 1].

Notice that both DEC and Dec answer decommitment queries in the exactly
same way, hence the change is only syntactical.

Game 2. Game G2 proceeds exactly as the previous game but we run the zero-
knowledge simulator (crs, τ)← Sim1(1λ) in PGen and produce a simulated proof
for the challenge commitment as π∗ ← Sim2(crs, τ, (c∗0, c

∗
1, c
∗
2, c
∗
3)). By the zero-

knowledge security of the NIZK we directly obtain

Lemma 12.
|Pr[G1 = 1]− Pr[G2 = 1]| ≤ ZKNIZK

B .

We construct an adversary B = {Bλ}λ∈N against the zero-knowledge security
of NIZK. Bλ is given as input crs together with membership testing trapdoor
with respect to auxiliary input τL := (k1, t) where t := 2T mod ϕ(N)/4 and it
works as follows: Bλ(crs, τL) :

1. Sets pp := (N,T (λ), g, h1, h2, crs, e,H), runs (m0,m1, st) ← A1,λ(pp), and
answers decommitment queries using t which is included in τL.

2. Samples b
$← {0, 1}, r $← [bN/4c] and compute c∗0 := gr, c∗1 := hr1mb, c

∗
2 :=

hre2 mb mod N, c∗3 := H(hr2 mod N). Then submits (s := (c∗0, c
∗
1, c
∗
2, c
∗
3), w :=

(m, r)) to the oracle to obtain proof π∗.
3. Runs b′ ← A2,λ((c∗0, c

∗
1, c
∗
2, c
∗
3), π∗, st), answering decommitment queries us-

ing t.
4. Returns the truth value of b = b′.

If the proof π∗ is generated using NIZK.Prove, then B simulates G1 perfectly.
Otherwise, π∗ is generated using Sim1 and B simulates G2 perfectly. This proves
the lemma.

23

Game 3. In G3 we sample k1 uniformly at random from [ϕ(N)/4].

Lemma 13.

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 1 with ` := 4.

Game 4. In G4 we sample y1
$← QRN and compute c∗1 as y1mb.

Lemma 14.
|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvDDH

B .

We construct an adversary B = {Bλ}λ∈N against DDH in the group QRN .
Bλ(N, p, q, g, gα, gβ , gγ) :

1. Chooses e s.t. gcd(e, ϕ(N)) = 1, e.g. e := 3.
2. Computes ϕ(N) := (p−1)(q−1), t := 2T mod ϕ(N)/4, h2 := gt mod N , runs

(crs, τ)← NIZK.Sim1(1λ, L) and sets pp := (N,T, g, h1 := gα, h2, crs, e,H).
3. Runs (m0,m1, st)← A1,λ(pp) and answers decommitment queries using t.

4. Samples b
$← {0, 1} and computes (c∗0, c

∗
1, c
∗
2, c
∗
3) := (gβ , gγ · mb, (g

β)te ·
mb, H((gβ)e)). Runs π∗ ← NIZK.Sim2(crs, (c∗0, c

∗
1, c
∗
2, c
∗
3), τ).

5. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using t.
6. Returns the truth value of b = b′. We remark that at this point c∗1 does not

reveal any information about mb.

If γ = αβ then B simulates G3 perfectly. Otherwise gγ is uniform random element
in QRN and B simulates G4 perfectly. This proofs the lemma. We remark that
at this point c∗1 does not reveal any information about mb.

Game 5. In G5 we sample k1 uniformly at random from [bN/4c].

Lemma 15.

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 1 with ` := 4.

Game 6. In G6 we answer decommitment queries using Dec (Figure 9) with
i := 1, sk := k1 which means that secret key k1 and ciphertext c1 are used.

Lemma 16.
|Pr[G5 = 1]− Pr[G6 = 1]| ≤ SimSndNIZK

B .

Let E denote the event that adversaryA asks a decommitment query (c, πCom)
such that its decommitment using the key k1 is different from its decommitment
using the key t. Since G5 and G6 are identical until E does not happen, by the
standard argument it is sufficient to upper bound the probability of happening
E. Concretely,

24

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ Pr[E].

We construct an adversary B that breaks one-time simulation soundness
of the NIZK and it is given as input crs together with a membership testing
trapdoor τL := (k1, t) where t := 2T mod ϕ(N)/4.

The adversary BSim2

λ (crs, τL) :

1. Sets pp := (N,T, g, h1, h2, crs, e,H).
2. Runs (m0,m1, st)← A1,λ(pp) and answers decommitment queries using k1.

3. Samples b
$← {0, 1}, x, y1

$← QRN and computes (c∗0, c
∗
1, c
∗
2, c
∗
3) := (x, y1mb,

xtemb, H(xt)). Forwards (c∗0, c
∗
1, c
∗
2, c
∗
3) to simulation oracle Sim2 and obtains

a proof π∗.
4. Runs b′ ← A2,λ((c∗0, c

∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
5. Find a decommitment query (c, πCom) such that Dec(pp, c, πCom, 1, k1) 6=

Dec(pp, c, πCom, 2, t) and returns (c, πCom).

B simulates G6 perfectly and if the event E happens, it outputs a valid proof
for a statement which is not in the specified language L. Therefore

Pr[E] ≤ SimSndNIZK
B ,

which concludes the proof of the lemma.

Game 7. In G7 we sample r uniformly at random from [ϕ(N)/4].

Lemma 17.

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which we
sample r, to upper bound the advantage of adversary we can use Lemma 1 with
` := 4, which directly yields required upper bound.

Game 8. In G8 we sample y2
$← QRN and compute c∗2 as ye2mb and c∗3 as H(y2).

Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS as-
sumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–2 and answer decommitment queries in Step 3 of the ad-
versary B2,λ defined below. Set T := (polyB(λ))1/ε. Set T̃NITC := max(T̃SSS, T).

Lemma 18. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ)
with

|Pr[G7 = 1]− Pr[G8 = 1]| ≤ AdvSSS
B .

The adversary B1,λ(N,T (λ), g) :

25

1. Chooses e s.t. gcd(e, ϕ(N)) = 1, e.g. e := 3.

2. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,h2 := g2

T (λ)

mod N ,
runs (crs, τ)← NIZK.Sim1(1λ, L) and sets pp := (N,T (λ), g, h1, h2, crs, e,H).
Notice that value h2 is computed by repeated squaring.

3. Runs (m0,m1, st)← A1,λ(pp) and answers decommitment queries using k1.
4. Outputs (N, g, k1h1, h2, crs, e,H, τ,m0,m1, st)

The adversary B2,λ(x, y, (N, g, k1, h1, h2, crs, τ,m0,m1, st)) :

1. Samples b
$← {0, 1}, y1

$← QRN , computes c∗0 := x, c∗1 := y1mb, c
∗
2 := yemb.

2. Runs π∗ ← NIZK.Sim2(crs, (c∗0, c
∗
1, c
∗
2, c
∗
3), τ).

3. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗), st) and answers decommitment queries

using k1.
4. Returns the truth value of b = b′.

Since g is a generator of QRN and x is sampled uniformly at random from QRN
there exists some r ∈ [ϕ(N)/4] such that x = gr. Therefore when y = x2

T

=

(g2
T

)r mod N , then B simulates G7 perfectly. Otherwise y is random value and
B simulates G8 perfectly.

Now we analyse the running time of the constructed adversary. Adversary
B1 computes h2 by T (λ) consecutive squarings and because T (λ) is polynomial
in λ, B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃NITC(·) ≥ T̃SSS(·) as required.

Lemma 19.

Pr[G8 = 1] ≤ AdvRSA
B +

1

2
.

Let E be an event that adversary A asks a random oracle query for value y.
We show that if E happens, then we can build B against RSA assumption. On
the other hand, if E does not happen, then A does not have any information
about committed message.

At first assume that E does not happen. Since H(y2) is a uniform random
element over the range of the hash function, it does not reveal any information
about y2 and does not contain any information about mb. Clearly, c∗0 is uniform
random element in QRN and hence it does not contain any information about
the challenge message. Since y1, y2 are sampled uniformly at random from QRN
and H(y2) does not reveal any information about y2, the ciphertexts c∗1, c

∗
2 are

also uniform random elements in QRN and hence do not contain any information
about the challenge message mb. Therefore, an adversary can not do better than
guessing with probability 1/2.

If E happens, then we build B = {Bλ}λ∈N against RSA.
The adversary Bλ(N, e, y, g) :

1. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,h2 := g2

T

mod N , runs
(crs, τ) ← NIZK.Sim1(1λ, L) and sets pp := (N, g, h1, h2, crs, e,H). Notice
that value h2 is computed by repeated squaring.

26

2. Runs (m0,m1, st)← A1,λ(pp) and answers decommitment queries using k1.
It answers random oracle queries x by lazy sampling. If for any x holds
xe = y mod N , then it returns x.

3. Samples b
$← {0, 1}, c∗0, y1

$← QRN and computes c∗1 := y1mb, c
∗
2 := ymb, c

∗
3

$←
V, where V is the image of the RO. Runs to simulation oracle NIZK.Sim2(crs,
(c∗0, c

∗
1, c
∗
2, c
∗
3), τ) and obtains a proof π∗.

4. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1. RO queries are answered by lazy sampling and consistently with
previous RO queries. If for any query x holds xe = y mod N , then it returns
x.

Now notice that if E happens, then B indeed outputs x such that xe =
y mod N . Therefore Pr[E] = AdvRSA

B . Hence,

Pr[G8 = 1] = Pr[G8 = 1 ∧ E] + Pr[G8 = 1 ∧ E]

≤ Pr[E] + Pr[G8 = 1 ∧ E] = AdvRSA
B +

1

2
.

Notice that at the same time Pr[G8 = 1] ≥ 1
2 , because A can always do random

guessing independent of happening E. Therefore
∣∣Pr[G8 = 1]− 1

2

∣∣ ≤ AdvRSA
B . By

combining Lemmas 11 - 19 we obtain the following:

AdvNITC
A =

∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ ≤ 7∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+
∣∣∣∣Pr[G8 = 1]− 1

2

∣∣∣∣
≤ ZKNIZK

B + AdvSSS
B + SimSndNIZK

B + AdvDDH
B + AdvRSA

B + 3

(
1

p
+

1

q
− 1

N

)
,

which concludes the proof.

Theorem 4. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Figure 7 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. Our adjusted construction remains perfectly binding and this can be ar-
gued in the same way as it was argued in [CJ23]. Since ElGamal encryption is
perfectly binding, there is exactly one message/randomness pair (m, r) which
can pass the check in DecVrfy. Therefore the first winning condition of BND-
CCA experiment happens with probability 0. Moreover, since PGen is executed
by the challenger, the value h3 is computed correctly and hence FDec recon-
structs always the correct message m. Therefore the second winning condition
of BND-CCA experiment happens with probability 0 as well.

It is straightforward to verify that considering Eval algorithm, our construc-
tion yields multiplicatively homomorphic NITC.

Theorem 5. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval) de-
fined in Figure 7 is a multiplicatively homomorphic non-interactive timed com-
mitment scheme.

27

Theorem 6. If NIZK = (NIZK.Prove, NIZK.Vrfy) is a non-interactive zero-knowledge
proof system for L and H is a collision resistant hash function, then (PGen,
Com,ComVrfy,DecVrfy,FDec,FDecVrfy) defined in Figure 7 is a publicly verifi-
able non-interactive timed commitment scheme.

Proof. Completeness is straightforward to verify.
To prove the soundness lets assume that A provides m′ such that m 6= m′.

Since FDecVrfy outputs 1 and therefore there are two different y, y′ such that
c2 = yem mod N ∧ c3 = (y′)em mod N . There are two cases to consider:

1. H(y) = H(y′). We denote this event by COLL. Notice if COLL happens then
we can break a collision resistance of the hash function. Adversary provides
y′ as the proof πFDec and y can be computed by repeated squaring.

2. COLL does not happen. This however means that c3 = H(m′) and c2 =
hrem mod N which breaks the soundness of the NIZK.

Therefore we can conclude that both cases are negligible. Let PVSND denotes
the event that A break soundness of the construction. Then

Pr[PVSND] = Pr[PVSND ∧ COLL] + Pr[PVSND ∧ COLL]

≤ Pr[COLL] + Pr[PVSND ∧ COLL] ≤ AdvCRHF
B + SndNIZK

B .

Instantiating NIZK . Since the language L for our constructions is not purely
algebraic we have to rely on NIZK for general relations and one such a option
is simulation-extractable SNARK of Groth and Maller [GM17]. Its security is
based on the assumptions in bilinear groups and its independent of the knowledge
of discrete logarithms of elements h1, h2 that specify the language L. There-
fore zero-knowledge and simulation-extractability, and hence also simulation-
soundness and soundness, holds even if we provide this information as an auxil-
iary input to an adversary.

Remark 3. We note that since language NIZK proof system has to prove the
claim which includes a hash function modelled as a random oracle, the whole
construction is only heuristically secure.

References

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture
Notes in Computer Science, pages 757–788, Santa Barbara, CA, USA, Au-
gust 19–23, 2018. Springer, Heidelberg, Germany.

BMV16. Silvio Biagioni, Daniel Masny, and Daniele Venturi. Naor-yung paradigm
with shared randomness and applications. In Vassilis Zikas and Roberto
De Prisco, editors, SCN 16: 10th International Conference on Security in
Communication Networks, volume 9841 of Lecture Notes in Computer Sci-
ence, pages 62–80, Amalfi, Italy, August 31 – September 2, 2016. Springer,
Heidelberg, Germany.

28

CJ23. Peter Chvojka and Tibor Jager. Simple, fast, efficient, and tightly-secure
non-malleable non-interactive timed commitments. In Alexandra Boldyreva
and Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference
on Theory and Practice of Public Key Cryptography, Part I, volume 13940
of Lecture Notes in Computer Science, pages 500–529, Atlanta, GA, USA,
May 7–10, 2023. Springer, Heidelberg, Germany.

DGMV20. Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Va-
sudevan. Tight verifiable delay functions. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20: 12th International Conference on Security
in Communication Networks, volume 12238 of Lecture Notes in Computer
Science, pages 65–84, Amalfi, Italy, September 14–16, 2020. Springer, Hei-
delberg, Germany.

DMPS19. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Ver-
ifiable delay functions from supersingular isogenies and pairings. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
– ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes in Computer
Science, pages 248–277, Kobe, Japan, December 8–12, 2019. Springer, Hei-
delberg, Germany.

EFKP20. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Con-
tinuous verifiable delay functions. In Anne Canteaut and Yuval Ishai, edi-
tors, Advances in Cryptology – EUROCRYPT 2020, Part III, volume 12107
of Lecture Notes in Computer Science, pages 125–154, Zagreb, Croatia,
May 10–14, 2020. Springer, Heidelberg, Germany.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II,
volume 10402 of Lecture Notes in Computer Science, pages 581–612, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

KLX20. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock
puzzles and timed commitments. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020: 18th Theory of Cryptography Conference, Part III, vol-
ume 12552 of Lecture Notes in Computer Science, pages 390–413, Durham,
NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

LNPY22. Benôıt Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. One-
shot fiat-shamir-based NIZK arguments of composite residuosity and
logarithmic-size ring signatures in the standard model. In Orr Dunkel-
man and Stefan Dziembowski, editors, Advances in Cryptology – EURO-
CRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer Science,
pages 488–519, Trondheim, Norway, May 30 – June 3, 2022. Springer, Hei-
delberg, Germany.

MT19. Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic
time-lock puzzles and applications. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, vol-
ume 11692 of Lecture Notes in Computer Science, pages 620–649, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

29

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd Annual ACM Symposium on
Theory of Computing, pages 427–437, Baltimore, MD, USA, May 14–16,
1990. ACM Press.

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, edi-
tor, ITCS 2019: 10th Innovations in Theoretical Computer Science Confer-
ence, volume 124, pages 60:1–60:15, San Diego, CA, USA, January 10–12,
2019. LIPIcs.

TCLM21. Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguil-
laumie, and Giulio Malavolta. Efficient CCA timed commitments in class
groups. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th
Conference on Computer and Communications Security, pages 2663–2684,
Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Sci-
ence, pages 379–407, Darmstadt, Germany, May 19–23, 2019. Springer, Hei-
delberg, Germany.

30

	Private Coin Verifiable Delay Function

