
DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and
Nothing More

Private and Efficient Commitments for TLS-encrypted Data

Sof́ıa Celi∗, Alex Davidson†, Hamed Haddadi∗¶, Gonçalo Pestana‡ and Joe Rowell§
∗ Brave Software, cherenkov@riseup.net, hamed@brave.com

† NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, a.davidson@fct.unl.pt
‡ Hashmatter, gpestana@hashmatter.com

§Information Security Group, Royal Holloway, University of London, joe.rowell@rhul.ac.uk
¶Imperial College London, h.haddadi@imperial.ac.uk

Abstract—We design DiStefano: an efficient, maliciously-

secure framework for generating private commitments over

TLS-encrypted web traffic, for a designated third-party. DiS-
tefano provides many improvements over previous TLS com-

mitment systems, including: a modular protocol specific to

TLS 1.3, support for arbitrary verifiable claims over encrypted

data, client browsing history privacy amongst pre-approved

TLS servers, and various optimisations to ensure fast online

performance of the TLS 1.3 session. We build a permissive

open-source implementation of DiStefano integrated into the

BoringSSL cryptographic library (used by Chromium-based

Internet browsers). We show that DiStefano is practical in

both LAN and WAN settings for committing to facts in

arbitrary TLS traffic, requiring < 1 s and ≤ 5KiB to execute

the online phase.

1. Introduction

The Transport-Layer Security (TLS) protocol [56]
provides encrypted and authenticated channels between
clients and servers on the Internet. Such channels com-
monly transmit trusted information about users behind
clients such as proofs of age [75], social security sta-
tuses [59], and accepted purchase information. While
various applications would benefit from learning such
data points, doing so represents an obvious privacy
concern [11], [18], [20], [48], [62], [73]. Exporting such
information as anonymous credentials is non-trivial since
the information resides in an encrypted and authen-
ticated channel. Meanwhile, both legislation (such as
GDPR [25]) and standards bodies (such as W3C [35])
have made usage of privacy-preserving data credentials
a priority.

Designated-Commitment TLS (DCTLS) protocols
(also known as three-party handshake protocols) provide
modified TLS handshakes that allow exporting certain
claims over the TLS channel to a designated verifier. The
protocols perform handshakes that secret-share private
session data amongst a client and a verifier, and com-
pute the handshake and record-layer phases in two-party

computation (2PC). Examples of DCTLS protocols in-
clude DECO [75], TLSNotary/PageSigner [64]1, Town-
Crier [74], Garble-then-Prove [69], and Janus [47]. Sim-
ilar techniques are also used to produce zero-knowledge
middleboxes [31] (for proving that client traffic adheres
to corporate browsing policies, for example), and for
devising multi-party TLS clients/servers. Prominent ex-
amples of the latter are Oblivious TLS [1] and MP-
CAuth [63].

Unfortunately, while previous works claim practi-
cality, all such DCTLS protocols appear insufficient for
wide-scale usage. First, no protocol explicitly provides
secure support for TLS 1.3. Support for TLS 1.3 sur-
passed that of 1.2 around December 2020 [49] and, ac-
cording to Cloudflare Radar [17], TLS 1.3 now accounts
for 63% of secure network traffic as opposed to 8.7% for
TLS 1.2, so it is imperative that protocols support this
version. When DCTLS protocols do support TLS 1.3,
the security analysis is lacking and/or efficiency con-
cerns that surround implementing TLS 1.3 ciphersuites
and protocol steps in (maliciously-secure) 2PC are over-
looked. Existing security arguments also lack in agility,
meaning that they only apply for a static protocol, ci-
phersuite and 2PC primitives. This is a critical concern:
primitives used by DECO have been already shown to
be insecure [51], [66]. Client privacy is also neglected as
the protocols reveal the server that clients communicate
with to the verifier, revealing their browsing history. Sec-
ond, from a deployability perspective, no fully-featured
open-source implementation of a DCTLS protocol exists
that achieves strong security guarantees, or much less
one that interoperates with Internet browsing tools.

Our work. We design DiStefano (Fig. 1), a DCTLS
protocol that securely generates private commitments
over TLS 1.3 data. Security is proven using a novel stan-
dalone model that permits cryptographic agility by al-
lowing to swap various schemes depending on the desired
ciphersuite. DiStefano is provided as a permissive open-

1. We refer exclusively here to original PageSigner as TLSNotary
does not appear to have a fixed cryptographic design.



Figure 1. An overview of the DiStefano protocol. In the handshake and query phases, the client performs the TLS 1.3 handshake and
record-layer phases in conjunction with the verifier using 2PC to secret-share traffic keys and other session data for establishing a secure
session with the server (secret-shared keys are represented with a square over the key). In the commitment phase, the client authenticates
the server to the verifier using a zero-knowledge proof of valid TLS signatures (denoted by ZKPVS, see Appendix C), and commits to
some encrypted session data, before receiving the verifier’s secret TLS session shares.

source implementation2 integrated into the widely-used
BoringSSL library,3 where 2PC functionality is provided
by emp [67]. With respect to the client’s privacy, DiSte-
fano supports zero-knowledge authentication amongst N
verifier-approved TLS servers by using zero-knowledge
proofs of valid signatures. Finally, the commitments
generated by DiStefano can be used to produce any
type of verifiable private claim, either non-interactively
using zero-knowledge proofs or interactively using 2PC.
Note that, in this work, we prefer to build a modular
framework for solving the core functionality and leave
the implementation of the subsequent proving stage up
to the implementer (see Section 4.4). To ensure high
performance, a number of optimisations were made to
the cryptographic functionality and software implemen-
tation for DiStefano. We show that the online portions of
the handshake and record-layer phases can be executed
in 500ms and ∼ 750ms in the LAN setting, and with
5KiB and around 4KiB of bandwidth, respectively, for
2KiB of communication. In the WAN setting, there are
modest increases in timing that are largely explained
by the increase in latency. All in all, the online costs of
DiStefano fall way under a second, which is far below
standard TLS handshake timeout times [39].

Formal contributions. Our formal contributions follow:

• A private Delegated-Commitment TLS 1.3
(DCTLS) protocol, DiStefano (Section 4), with
a modular, standalone security framework that
proves security in the presence of malicious
adversaries (Section 6).

• Novel optimisations that allow running secure 2PC
TLS 1.3 clients with higher efficiency (Section 5).

• An open-source, Chromium-compliant implementa-
tion integrated into BoringSSL.

2. https://github.com/brave-experiments/DiStefano
3. This library is used by most Chromium-based Internet

browsers, that make up a dominant share of all browser usage.

• Experimental analysis showing that DiStefano is
practical (in LAN/WAN settings) for committing
to various sizes of Internet traffic (Section 7).

2. Background

2.1. General Notation

Vectors are denoted by lower-case bold letters. We
use len(s) to denote the length of s ∈ {0, 1}∗. The symbol
[m] indicates the set {1, 2, . . . ,m}. We write a ← b to
assign the value of b to a, and a ←$ S to assign a
uniformly sampled element from the set S. λ denotes
the security parameter.

We denote a finite field of characteristic q as Fq

and the m-dimensional vector space over Fq as Fqm .
We are primarily concerned with the smallest field, F2,
where the additive operation on a, b ∈ F2 is simply
an exclusive-or operation, a ⊕ b, with multiplication
corresponding to the AND operation. We extend this
notation to refer to operations on m-dimensional vectors
a,b ∈ F2m , writing a⊕b and a·b to refer to addition and
multiplication, respectively. Note that while addition in
F2m is simply m XOR operations, multiplication over
F2m requires extra logic compared to multiplications
over F2. We write elliptic curves with a generator G over
Fq as EC(Fq).

For a security game Game used by a cryptographic
scheme ∆, we denote the advantage of an algorithm A
in ∆ by Advgame

A,∆ (λ), where:

Advgame
A,∆ (λ) = Pr[A succeeds]− Pr[A fails]. (1)

We say that ∆ is secure with respect to Game, iff
Advgame

A,∆ (λ) ≤ negl(λ), for some negligible function
negl(λ) and security parameter λ.

2

https://github.com/brave-experiments/DiStefano


2.2. Background on DCTLS Protocols

Designated-Commitment (DCTLS) TLS protocols al-
low a client (C) to generate commitments to TLS session
data communicated with a server (S) that can be sent to
a designated third-party verifier (V). They consist of the
following phases (which are described in Appendix C):
a (V-assisted) handshake phase, a (V-assisted) query
execution phase, and a commitment phase. Previous
work, such as in DECO and tools like PageSigner, pro-
vide explicit attestation functionality for proving facts
about the committed TLS session (using zero-knowledge
proofs). Note that, without such commitments, proving
statements that use TLS data as sources of truth must
assume either a trustworthy client, or C must allow V to
read their TLS traffic in the clear.

DCTLS over TLS 1.3. Previous DCTLS protocols fo-
cused on TLS 1.2, with an informal (and mostly incom-
plete) extension to TLS 1.3. Recall that TLS 1.3 emerged
in response to dissatisfaction with the outdated design
of the TLS 1.2 handshake, its two-round-trip overhead,
and the increasing number of practical attacks [2], [5],
[6], [10]. The necessary changes introduced by TLS 1.3
to improve performance and deployability are significant
stumbling blocks for applying previous DCTLS protocols
directly. Thus, in this work, we focus on TLS 1.3, and
highlight explicit changes to DCTLS protocols that are
required for handling the substantial protocol-level dif-
ferences. We provide an overview of the standard TLS
1.3 handshake, and its standard notation defined in [24],
in Appendix H.

Description of DCTLS phases. In Fig. 1, we give an
overview of the stages of DCTLS for establishing commit-
ments to TLS 1.3 encrypted traffic between C and S to
be sent to a designated V. In the following, we describe
how the different stages of the protocol function, specif-
ically in relation to the various stages of the TLS 1.3
protocol [56]. The following is an informal description of
TLS 1.3 (1-RTT with certificate-based authentication)
when extended to support DCTLS-like protocols.

Handshake phase. In this phase, S learns the same
secret session parameters (i.e. session key information)
as in standard TLS 1.3, while C and V learn shares of
the session parameters that a regular C would normally
learn. This requires C and V to engage in the core
TLS 1.3 protocol using a series of 2PC functionalities.

We focus on the default mode for establishing a
secure TLS 1.3 session using (EC)DH ciphersuites, and
certificate-based authentication between C and S. In
this mode, the handshake starts with C sending a
ClientHello (CH) message to S. This message adver-
tises the supported (EC)DH groups and the ephemeral
(EC)DH keyshares specified in the supported_groups
and key_shares extensions, respectively. The CH mes-
sage also advertises the signature algorithms supported.
It also contains a nonce and a list of supported
symmetric-key algorithms (ciphersuites). Note that for

DCTLS protocols, the ephemeral keyshares Z ∈ EC(Fc)
are generated as a combination of additive shares (zX ←$

Fc, ZX = zX ·G) for X ∈ {C,V}, where Z = ZC + ZV ∈
EC(Fc).
S processes the CH message and chooses the cryp-

tographic parameters to be used in the session. If
(EC)DH key exchange is in use, S sends a ServerHello
(SH) message containing a key_share extension with
the server’s (EC)DH key, corresponding to one of the
key_shares advertised by C. The SH message also con-
tains a S-generated nonce and the ciphersuite chosen.
An ephemeral shared secret is then computed at both
ends, which requires C and V to engage in a 2PC
computation to derive this secret. After this action,
all subsequent handshake messages are encrypted using
keys derived from this secret. Once this derivation is
performed, V’s keys can be revealed to C to perform
local encryption/decryption of handshake messages, as
these keys are considered independent from the eventual
session secret derived at the end of the handshake [24].
S then sends a certificate chain (in the

ServerCertificate message -SCRT-), and a message
that contains a proof that they posses the private
key corresponding to the public key advertised in
the leaf certificate. This proof is a signature over
the handshake transcript and it is sent in the
ServerCertificateVerify (SCV) message. S also
sends the ServerFinished (SF) message that provides
integrity of the handshake up to this point. It contains
a message authentication code (MAC) over the entire
transcript, providing key confirmation and binding S’s
identity to any computed keys. Optionally, S can send
a CertificateRequest (CR) message, prior to sending
its SCRT message, requesting a certificate from C.

At this point, S can immediately send application
data to the unauthenticated C. Upon receiving S’s mes-
sages, C verifies the signature of the SCV message and
the MAC of SF. If requested, C responds with their
own authentication messages, ClientCertificate and
ClientCertificateVerify, to achieve mutual authen-
tication. Finally, C must confirm their view of the hand-
shake by sending a MAC over the handshake transcript
in the ClientFinished (CF) message. The MAC gener-
ation must also be computed in 2PC with V.

Now, the handshake is completed, and C and S
can derive the key material required by the subsequent
record layer to exchange authenticated and encrypted
application data. This derivation is performed in 2PC,
and C and V both hold shares of all the secret parameters
needed to encrypt traffic using the specified encryption
ciphersuite. In this work, we specifically target AES-
GCM, since over 90% of TLS 1.3 traffic uses this ci-
phersuite [38].

Record Layer (query execution) phase. C sends a query
q (in encrypted form q̂) to S with help from V. Specif-
ically, since the session keys are secret-shared, C and
V jointly compute the encryptions of these queries in
2PC. Encrypted responses, r̂, can then be decrypted

3



using a similar procedure to reveal S’s response r to C.
This is important for running tools in a browser, or any
multi-round protocol, where subsequent queries depend
on previous responses.

Commitment phase. After querying S and receiving a
response r, C commits to the session by forwarding the
ciphertexts to V, and receives V’s session key shares in
exchange. Hence, C can verify the integrity of r, and later
prove statements about it. The fact that C sends com-
mitments before they receive V’s shares means that V
can trust subsequent attestations over the commitments.

Limitations of approaches. Existing DCTLS schemes
have serious security, performance, and deployability
limitations. They either only work with old/deprecated
TLS versions (1.2 and under) and offer no privacy from
the oracle (PageSigner [65]), or rely on trusted hard-
ware (Town Crier [74]) against which various attacks
exist [13]. Another class of oracle schemes assumes co-
operation from S by installing TLS extensions [57], or
by changing application-layer logic [7]. These approaches
suffer from two fundamental problems: they break legacy
compatibility, causing a significant barrier to wide adop-
tion; and only provide conditional exportability as S
has the sole discretion to determine which data can
be exported, and can censor export attempts. While
DECO [75] promises to solve these problems, its non-
modular security design makes it impossible to swap
individual pieces of functionality (without rewriting the
entire security proof). These limitations have the follow-
ing repercussions.

Security. Some primitives used by DECO have since
been shown to be insecure [51], [66], and the secu-
rity proof only targets TLS 1.2. General guidance is
offered for handling TLS 1.3, but it is not formally
specified. More worryingly, the security argument is all-
encompassing (this is common in other constructions
too [63], [74]). This significantly harms cryptographic
agility, since any change to the primitives, protocol,
or ciphersuites that are used theoretically dictates that
an entirely new proof should be written. Lack of cryp-
tographic agility has been shown to be a significant
source of cryptographic vulnerabilities in real-world sys-
tems [54].

Privacy. Explicit authentication of S to V during the
handshake is mandated due to the non-modular security
proof, which is harmful for client browsing privacy.

Performance. Certain underlying cryptographic tools
(such as oblivious transfer protocols) have seen re-
markable improvements subsequent to DECO’s publi-
cation [60], [71]. However, certain parts of the trans-
formations needed to handle the AES-GCM ciphersuite
detailed by DECO are underspecified, and naively lead
to high costs during 2PC execution.

Deployability. Recent DCTLS protocols [16], [47], [61],
[69] are either aimed entirely at TLS 1.2 [69], are entirely
theoretical [61], or use semi-honest 2PC to achieve rea-
sonable performance [16], [47]. We note that the use of

semi-honest 2PC must be applied carefully to prevent
loss of security, and (to the best of our knowledge) no
TLS 1.3 attestation mechanism has yet been proposed
that provides an appropriate level of security. We dis-
cuss this, and the fact that it may lead to potential
attacks, further in Appendix H. Moreover, even when
semi-honest 2PC is used, performance is lacking and
public implementations are rare. For example, the re-
cently proposed Janus protocol [47] is accompanied by
a reference implementation, with a reported handshake
time of around 0.6 s in a LAN setting with around 1.7GB
of traffic. By contrast, our implementation achieves ma-
licious security guarantees in around the same time (in
LAN/WAN settings), whilst exchanging much less data
(around 220MiB of offline data, and 5KiB of online).
Thus, we conclude that malicious 2PC is not a bottle-
neck for current protocols.

2.3. Overview of DiStefano

Due to the limitations of the previous DCTLS proto-
cols, we aim to build a protocol that works for TLS 1.3,
improves browser privacy guarantees for C, does not
require specific hardware or extensions, and can be easily
integrated into common applications. Overall, DiStefano
achieves the following.
• The creation of a maliciously-secure framework that
generates binding and hiding commitments over
data communicated during TLS 1.3 sessions.

• Cryptographic optimisations that ensure practical
running costs, and experimental analysis showing
that DiStefano is ready for real workflows.

• A publicly-available implementation integrated into
the TLS library that browsers use, with no need for
specialized hardware or installing extra extensions.

We believe that DiStefano is an essential step-forward for
showing that DCTLS can be implemented in practice.

Overview of required optimisations. Our implemen-
tation of DiStefano requires several optimisations to
achieve its performance. We reduce the number of
rounds required to derive AES-GCM secret shares
(cf. Section 5) by a factor of around 500 compared to
prior art (PageSigner), and reduce the required band-
width by around a factor of 3. Moreover, we carefully
combine multiple sub-circuits used in the TLS hand-
shake to reduce the number of re-computed secrets and
circuit invocations (cf. Section 4.1). We emphasise that
a significant portion of our engineering effort was dedi-
cated to fine-tuning at a low level, and we view this as a
valuable contribution in its own regard: we aspire that
this facilitates seamless adaptation of our code by future
researchers.

3. Secure Multi-Party Computation

Two-party secure computation (2PC) protocols al-
low parties p1 and p2 to jointly compute generic func-
tions f(s1, s2) over their private inputs s1 and s2. The

4



security of the protocols ensures that nothing of each
input is revealed to the other party, except for what
f naturally reveals [50]. There are two common ap-
proaches for 2PC protocols. Garbled circuits protocols
[29], [72] encode f as a boolean circuit and evaluate
an encrypted variant of the circuit across two parties.
Threshold secret-sharing protocols (e.g. SPDZ [19], [43],
or MASCOT [45]), typically operate by first produc-
ing some random multiplicative triples (referred to as
Beaver triples [8]) before additively sharing secret inputs
with some extra information. Garbled circuit protocols
are particularly well-suited to secure evaluation of bi-
nary circuits, such as AES or SHA-256. The cost of a gar-
bled circuit is normally evaluated in terms of the number
of AND gates due to the Free-XOR optimisation [46]. In
contrast, threshold secret-sharing schemes are typically
well-suited for computing arithmetic operations, such as
modular exponentiation. We calculate their cost in terms
of their number of rounds and bandwidth requirements.

MPC primitives. We use both types of 2PC protocols:
we use the maliciously-secure authenticated garbling im-
plementation provided by emp [68] for binary operations,
and we base our 2PC arithmetic operations on the well-
known oblivious transfer (OT) primitive.

Definition 1 (Oblivious Transfer (OT)). An oblivious
transfer scheme, OT, consists of the following algorithms:

• OT.Gen(1λ): outputs any key material.
• OT.Exec(m0,m1, b): accepts m0,m1 from P1 and b
from P2. P2 learns mb, and P1 learns nothing.

We realise the OT functionality via the actively
secure IKNP [41], [44] extension and the Ferret [71]
OT scheme. Both rely on the security of information
theoretic MACs, the learning parity with noise (LPN)
assumption, and on randomness assumptions about hash
functions, see [34].

Using OT as a building block, we realise the remain-
ing 2PC functionality needed by using multiplicative-to-
additive (MtA) secret sharing schemes.

Definition 2 (MtA). An MtA scheme, MtA, consists of
the following algorithms:

• MtA.Gen(1λ): outputs any needed key material.
• MtA.Mul(α, β): each Pi supplies ai, learning as out-
put bi, such that

∑
bi = Πiai.

A maliciously-secure MtA scheme expands
this definition with an additional algorithm,
MtA.Check(a1, . . . , b1, . . .), to check shares consistency.
Existing works [47], [64], [75] realise MtA with an
approach [28] based on Paillier encryption [55]. We
deviate from this approach to improve efficiency [70,
§5], and to mitigate the need for range proofs [51], [66]
(necessary for achieving malicious security). We realise
the MtA functionality using the schemes introduced
in [37] and [22], [23] for rings of characteristic > 2
and 2, respectively. The schemes require access to
OT functionality and are instantiated with 128-bit

statistical and computational security. We note that
whilst the security of [22], [23] reduces directly to an
NP-hard encoding problem [40], to the best of our
knowledge, there is no computational hardness proof
for [37].

ECtF. During the Key Exchange phase of the handshake
of DCTLS, both V and C hold additive shares Zv and Zc

of a shared ECDH key (x, y) = DHE. Given that all
key derivation operations are carried out on the x co-
ordinate of Z, we use the elliptic curve to field (ECtF)
functionality [75] to produce additive shares tv and tc of
the x coordinate, which is an element in Fq. Using these
shares as inputs to the subsequent 2PC operations to
derive the handshake secrets allows running all compu-
tation in a binary circuit, which results in a substantial
performance improvement compared with attempting to
combine arithmetic and binary approaches in a garbled
circuit. We stress that use of the ECtF functionality
improves performance: we estimate that computing just
the x co-ordinate of Zv + Zc in a garbled circuit would
be more expensive than deriving all TLS session secrets,
requiring around 1.7M AND gates for an elliptic curve
over a field with a 256-bit prime. From a security per-
spective, we remark that the security of the ECtF func-
tionality reduces the security of the underlying secure
multiplication protocol. We achieve malicious security
by instantiating the multiplication with a maliciously-
secure MtA scheme.

4. DiStefano Protocol

In this section, we fully describe each of the phases of
the DiStefano protocol (formal ideal functionalities are
given in Appendix C). A diagram of the full protocol
is found in Fig. 2. For comparison, we also provide a
diagram of TLS 1.3 and a summary of the shorthands
that are taken from [24] in Appendix H. The security
analysis is handled in Section 6 and Appendix C.

4.1. Handshake Phase: HSP

We use the similar overarching mechanism for the
handshake phase as described in Section 2.2, but focused
exclusively on TLS 1.3 with AES-GCM as the AEAD
scheme (Appendix B), using ECDH for the shared key
generation, and using ECDSA certificates. The 2PC
ideal functionalities that we use are defined in Algo-
rithms 1 to 3 (Appendix D). However, the protocol can
be adapted to work with any other TLS 1.3-compliant
ciphersuites that are compatible with 2PC.

At a high-level, we adapt the TLS 1.3 handshake
by treating C and V as a single TLS client from the
perspective of S. For this, we reverse the “traditional”
flow of the TLS 1.3 handshake by having C and V each
prepare an additively shared ephemeral key share SSK,
as seen in Fig. 2. This can be computed without 2PC.
C then sends the CH and the CKS messages, adver-

tising SSK as part of the key_shares extension. S

5



Figure 2. The DiStefano 1-RTT handshake protocol. Shorthands correspond to those defined in [24]. Purple represents messages sent or
calculated by V, orange by the client, pink by the server, and black for 2PC calculations between the client and verifier. Messages with
an asterisk (*) are optional, and those within braces ({}) are encrypted.

Verifier Client Server

static (Sig): pkS , skS
ClientHello:ClientHello:

xc←$ Zq, Xc ← gxczv←$ Zq, Zv ← gzv

+ClientKeyShare: SSK← Zv +Xc +ClientKeyShare: SSK← Zv +Xc

ServerHello:

ys←$ Zq

+ServerKeyShare: Ys←$ gys

Forward SKS to Verifier

sskc ← Y xc
s , tc ← ECtF(sskc)sskv ← Y zv

s , tv ← ECtF(sskv)

DHE← SSKys

HSv ⊕HSc ← HKDF .Extract(∅, tv + tc) HS← HKDF .Extract(∅,DHE)

CHTSv ⊕ CHTSc ← HKDF .Expand(HSv ⊕HSc,Label1 ∥H0) CHTS← HKDF .Expand(HS,Label1 ∥H0)

SHTSv ⊕ SHTSc ← HKDF .Expand(HSv ⊕HSc,Label2 ∥H0) SHTS← HKDF .Expand(HS,Label2 ∥H0)

dHSv ⊕ dHSc ← HKDF .Expand(HSv ⊕HSc,Label3 ∥H1) dHS← HKDF .Expand(HS,Label3 ∥H1)

tkvchs ⊕ tkcchs ← DeriveTK(CHTSv ⊕ CHTSc) tkchs ← DeriveTK(CHTS)

tkvshs ⊕ tkcshs ← DeriveTK(SHTSv ⊕ SHTSc) tkshs ← DeriveTK(SHTS)
{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
SigS ← Sign(skS ,Label7 ∥H3)

fkS ← HKDF .Expand(SHTSv ⊕ SHTSc,Label4 ∥Hϵ) fkS ← HKDF .Expand(SHTS,Label4 ∥Hϵ)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

Forward encrypted {EE},...,{SF} to Verifier

Reveal SHTSv to Client

Derive tkchsusing SHTSv

abort if Verify(pks,Label7 ∥H3,SigS) ̸= 1

abort if SF ̸= HMAC(fkS ,H4)

Forward SF, σ ← Π.Prove(R,SigS ,Label7 ∥H3) to Verifier
Reveal fkS to Verifier

Forward H4, H3 and H2 to Verifier

abort if SF ̸= HMAC(fkS ,H4) or 0← Π.Verify(R, σ,Label7 ∥H3)

MSv ⊕MSc ← HKDF .Extract(dHSv ⊕ dHSc,∅) MS← HKDF .Extract(dHS, 0)

CATSv ⊕ CATSc ← HKDF .Expand(MSv ⊕MSc,Label5 ∥H2) CATS← HKDF .Expand(MS,Label5 ∥H2)

SATSv ⊕ SATSc ← HKDF .Expand(MSv ⊕MSc,Label6 ∥H2) SATS← HKDF .Expand(MS,Label6 ∥H2)
tkvcapp ⊕ tkccapp ← DeriveTK(CATSv ⊕ CATSc) tkcapp ← DeriveTK(CATS)
tkvsapp ⊕ tkcsapp ← DeriveTK(SATSv ⊕ SATSc) tksapp ← DeriveTK(SATS)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
SigC ← Sign(skC ,Label8 ∥H5))

Reveal CHTSv to Client

fkC ← HKDF .Expand(CHTSv ⊕ CHTSc,Label4 ∥Hϵ)

fkC ← HKDF .Expand(CHTS,Label4 ∥Hϵ)

{+ClientFinished:} CF ← HMAC(fkC ,H6)

abort if Verify(pkc,Label8 ∥ ∥H5,SigC) ̸= 1

abort if CF ̸= HMAC(fkC ,H6)

6



then processes these messages and, in turn, sends a SH
message back to C containing a freshly sampled ECDH
key_share Zs. At this stage, S computes the shared
ECDH key as E = xs · SSK and continues to derive
all traffic secrets (i.e. CHTS,SHTS, tkshs, tkchs). Once
C and V receive the SH message, they derive additive
shares of the shared ECDH key as E = xc · Ys + xv · Ys.
As TLS 1.3 key derivation operates on the x co-ordinate
of the shared key, C and V convert their additive shares
of E = (Ex, Ey) into additive shares Ex = tc + tv by
running the ECtF functionality. With Ex computed, C
and V proceed to run the TLS 1.3 handshake key deriva-
tion circuit in 2PC, with each party learning shares
HSv ⊕ HSc = HKDF .Extract(∅, tv + tc). In practice,
this process is carried out inside a garbled circuit that
produces shares of CHTS,SHTS and dHS, as well as the
SF message key fkS . This key is provided to both C and
V. This circuit comprises of around 800K AND gates,
which is similar to DECO’s circuit size for TLS 1.2. We
delay the derivation of the traffic keys, as it provides
authenticity guarantees to V.

Authentication phase. S sends the CR (if wanted), SCRT,
SCV and SF messages. The SF message is computed by
first deriving a finished key fkS from SHTS and then
computing a MAC tag SF over a hash of all the previous
handshake messages. At this point, S is able to compute
the client application traffic secret, CATS, and the server
application traffic secret, SATS. S can also start send-
ing encrypted application data (encrypted under tksapp)
while waiting for the final flight of C messages.

C receives the encrypted messages from S and, in
turn, forwards them (encrypted) to V alongside a com-
mitment to their share of SHTS. This commitment is
necessary to make AES-GCM act as a committing cipher
from the perspective of V, which allows V to disclose
their shares of CHTS and SHTS to C without compro-
mising authenticity guarantees. As C now knows the
entirety of CHTS and SHTS, they are able to locally
derive the handshake keys tkchs and tkshs, allowing them
to check S’s certificate and SF messages without the
involvement of V. Moreover, as C now knows tkchs they
are also able to respond to the CR if one exists. C then
forwards an authentic copy of the hashesH2,H3, andH4

to V, allowing them to check the SF message’s authentic-
ity. Notice that C does not forward the decrypted SCRT
message to V, as this message reveals the identity of the
server. Let R be a set of TLS certificates, corresponding
to a set of pre-approved TLS servers (Ss). At this point,
C can (optionally) send to V a zero-knowledge proof
(σ ← Π.Prove(R,Sig,Label7 ∥H3)) of a valid TLS signa-
ture (ZKPVS), Sig, as long as S ∈ R.4 V can then check
the validity of the produced ZKPVS proof (if present) by

4. We detail a formalisation of ZKPVS schemes in Appendix C.
Practical variants of such schemes exist for ECDSA signatures [15],
[26], [30].

Figure 3. The DiStefano query execution protocol. Purple repre-
sents messages sent or calculated by V, orange by C, pink by S,
and black for 2PC between C and V.

Verifier Client Server

q̂ ← AEAD .Enc(tkvcapp ⊕ tkccapp, IVc, q)

q ← AEAD .Dec(tkcapp, IVc, q̂)

r̂ ← AEAD .Enc(tksapp, IVs, r)

r ← AEAD .Dec(tkvsapp ⊕ tkcsapp, IVs, r̂)

checking that 1← Π.Verify(R, σ,Label7∥H3).
5 Similarly,

C can selectively reveal the blocks containing the SF
message, allowing V to validate the SF. Finally, C and V
derive the shares of the traffic secrets MS,CATS,SATS
and the traffic keys tksapp, tkcapp in 2PC. In practice,
we instantiate this derivation as a garbled circuit that
contains around 700K AND gates. Note that this circuit
cannot cheaply be combined with the handshake secret
derivation circuit, as deriving the traffic keys requires
a hash of the unencrypted handshake transcript. This
would require decrypting and hashing large messages
inside a garbled circuit, which is expensive.

4.2. Query Execution Phase: QP

Once HSP has completed, C and V move into the
query phase (Fig. 3). For simplicity, we describe this
portion of the protocol in terms of a single round of
queries, before extending the phase to multiple rounds.

During the query phase of the protocol, C produces a
series of queries q = q1, . . . , qn and jointly encrypts these
with V, with both parties learning a vector of ciphertexts
q̂ as output. Then, C forwards q̂ to S, receiving an
encrypted response r̂ in exchange. At this stage of the
protocol, C forwards r̂ to V so that both parties may
verify the tags on r̂: both parties learn a single bit
indicating if the tag check passed or not.

In practice, we instantiate this portion of the pro-
tocol using the AES-GCM approach described in Sec-
tion 5. There is no explicit dependence on AES-GCM:
any AEAD cipher supported by TLS 1.3 will suffice. We
highlight this, and the general security formalisation of
the query phase, in Section 6.

Extending the query phase to multiple rounds is
straightforward using AES-GCM. We discuss the details
of committing to ciphertexts in Section 5.1, but the main
idea is that, as each ciphertext block qi is encrypted with
a unique key ei = AES.Enc(k, IV + i), C and V can arbi-
trarily reveal their shares of ei at any stage of the query

5. Sending and verifying the ZKPVS proof can be alternatively
performed at a later time in the DCTLS protocol, without compro-
mising security.

7



Figure 4. The DiStefano commitment protocol, assuming a com-
mitment scheme, Γ, and a ZKPVS scheme, Π, for TLS signatures
produced by a set R of pre-approved servers. Purple represents
messages sent or calculated by V, and orange by C.
Verifier Client

σ ← Π.Prove(R,Sig,Label7 ∥H3)

abort if 1 ̸= Π.Verify(R, σ,Label7 ∥H3)

c← Γ.Commit((tkccapp, tk
c
sapp), (q̂, r̂))

Forward tkvcapp, tk
v
sapp to Client

phase, provided an appropriate commitment has been
made beforehand. As these key shares are ephemeral,
revealing them does not compromise the shares derived
during the HSP. The security of this approach directly
reduces to the difficulty of recovering an AES key from
many known plaintext/ciphertext pairs. This permits
many useful applications, as C and V can now nest
commitment rounds inside of the query phase.

4.3. Commitment Phase: CP

The objectives of the commitment phase (Fig. 4) are:
i. to assure V of the authenticity of S (as belonging to the
pre-approved set R) without revealing the exact server
C communicated with; and ii. to allow C to learn secrets
held by V only after producing binding commitments to
a specific portion of the TLS session with S.

To validate the authenticity of the server, V verifies a
proof (as mentioned previously, with a ZKPVS scheme)
of the TLS server that they communicated with, as
one of N servers from which V accepts attestations.6

After zero-knowledge authentication, C can now commit
to and reveal certain information about the applica-
tion traffic they witness. First, we define a commitment
scheme (Γ) that can be implicitly constructed using the
outputs of QP, using the following algorithms.

• (q̂i, r̂i) ← Γ.Commit(spC , (q̂, r̂, i)): For the input i,
output the ciphertexts (q̂i, r̂i) corresponding to the
ith query qi, and the response ri.

• spV ← Γ.Challenge(c): Output the secret parame-
ters of V.

• b ← Γ.Open((spC , spV), (q̂i, r̂i), (qi, ri)): Check that
(q̂i, r̂i) decrypts to (qi, ri), and output b = 1 on
success, and b = 0 otherwise.

In this commitment scheme, the client simply com-
mits to encrypted TLS traffic exchanged during the
query phase (using 2PC to encrypt and decrypt the traf-
fic). When it comes to opening the encrypted application

6. This could be performed during the handshake phase. For per-
formance reasons, it is preferable to communicate in the commit-
ment phase, when online communication is no longer constrained
by potential handshake time-outs.

traffic, the protocol requires V to send their TLS key
secret shares, so that C can decrypt and then reveal the
plaintext values (that were previously encrypted). We
give a construction of Γ that is perfectly hiding and com-
putationally binding, based on AES-GCM Appendix H.

4.4. Subsequent Phases

It is important to note that in the real DiStefano
protocol, C does not send any unencrypted values to
V. Instead, both parties should execute a protocol that
proves certain facts about the DCTLS commitments,
without revealing anything else. This could be done
using zero-knowledge proofs, selective opening strate-
gies (as is used in DECO), or subsequent 2PC. The
formal commitment opening process that we described
previously can be used for this, since C can now use
the combined secret parameters (spC , spV) to prove any
statement about the commitment (q̂i, r̂i). Note that the
proving process can inadvertently leak the identity of
the server (contradicting the ZKPVS proof), if a certain
data is assumed of the server traffic. See Appendix H for
a wider discussion.

5. AES-GCM Specifics

AES-GCM is an authenticated encryption with as-
sociated data (AEAD) cipher that features prominently
inside TLS implementations, with some works report-
ing that over 90% of all TLS1.3 traffic is encrypted
using AES-GCM [38]. We use this algorithm for both
encrypting the corresponding handshake messages and
any application traffic. Here we describe how to commit
to decryptions of ciphertexts in AES-GCM (Section 5.1),
as well as optimisations that make it more amenable
to 2PC evaluation of the encryption and decryption
procedures (Section 5.2). We briefly recall how AES-
GCM operates.

AES-GCM Encryption. Let k and IV refer to an
encryption key and initialisation vector, respectively.
Given as input a sequence of n appropriately padded
plaintext blocks M = (M1, . . . ,Mn), AES-GCM ap-
plies counter-mode encryption to produce the ciphertext
blocks Ci = Mi⊕AES.Enc(k, IV + i). To ensure authen-
ticity, the algorithm outputs a tag τ = Tagk(A,C, k, IV )
computed over C and any associated data A as follows:

• Given some vector x ∈ Fm
2128 , we define the polyno-

mial Px =
∑m

i=1 xi · hm−i+1 over F2128 .
• Assuming that C and A are properly padded, we
compute τ as: τ(A,C, k, IV ) = AES.Enc(k, IV ) ⊕
PA||C||len(A)||len(C)(h) where h = AES.Enc(k, 0).

5.1. Commitment to AES-GCM Ciphertexts

In DiStefano, both C and V learn all AES-GCM
ciphertext blocks Ci = Mi⊕AES.Enc(k, IV +i) produced

8



by S, where the session key k = kc + kv is secret-
shared across both C and V. We now briefly describe
how C can commit to the received ciphertext blocks Ci

without revealing their key share kc. Note first that the
use of AES-GCM in an AEAD setting leads to a non-
committing cipher [32], which means that an adversary
in possession of a key k and a valid ciphertext block
Ci = AES.Enc(k, IV + i)⊕Mi can find a distinct k′ ̸= k
such that Ci = M ′i⊕AES.Enc(k′, IV +i) is a valid AEAD
ciphertext. From the perspective of DCTLS protocols,
this non-committing nature of the algorithm presents
a challenge, as C typically only proves statements after
learning the entirety of the key. We circumvent the issue
as follows.

Assume that C receives a single tuple of an AES-
GCM ciphertext and tag, (Ci, τ), from S that they
wish to decrypt. As C only holds a share (kc) of k,
C cannot decrypt Ci by themselves. Thus, C forwards
(Ci, τ) to V, and they engage in a maliciously-secure
2PC protocol to validate τ on Ci (Algorithm 7). If it
succeeds, then both C and V are convinced that Ci is a
valid ciphertext under k. Yet, we must be careful how
we reveal Mi = AES.Enc(k, IV + i) ⊕ Ci to each party
as revealing Mi to C allows them to mount the outlined
non-committing attack, while revealing Mi to V would
violate the privacy guarantees of DCTLS. In order to
resolve this issue, we use a modified 2PC AES decryption
protocol that, after checking that the client input masks
match the commitments held by V and validating τ ,
outputs ei = AES.Enc(k, IV +i) to C and a commitment,
Ei, to ei to V. With this, notice that C is unable to
exploit the non-committing nature of AES-GCM as a
binding commitment to ei is created and validated by
V. Moreover, C can now reveal individual blocks to V
without requiring either party to reveal their key share:
C can reveal a particular block Ci by simply forwarding
ei to V. In other words, this tweak allows C to engage
in a selective opening protocol with V (we provide more
details on the uses of this technique in Appendix H).
Producing these set of commitments is cheap as, in
practice, we simply require C to commit to n unique
masks bi and then output Ei = AES.Enc(k, IV + i)⊕ bi.
We formalise this scheme in Appendix H.

Checking random-oracle commitments in 2PC is
practical. Using a low-depth hash function, such as
LowMC [4], this would cost 4370 AND gates for the full
commitment check [3], which is cheaper than a single
AES block evaluation (6400 AND gates). Above all, the
practical costs of the 2PC commit scheme are low, and
we demonstrate this using a higher-depth, AES-based
hash (see Section 7).

5.2. 2PC Optimisations

In this section, we discuss some optimisations that
are necessary for ensuring high performance of AES-
GCM encryption/decryption during online TLS opera-
tions. The ideal functionalities that we use to describe

AES-GCM in 2PC, along with the security proofs of
these optimisations, are given in Appendix G.

Efficiency. Despite its simplicity, executing AES-GCM
encryptions in a multi-party setting can be challenging
due to the use of binary and arithmetic operations.
For example, whilst AES operations are well-suited for
garbled circuits, a single multiplication over F2128 typ-
ically requires around 16K AND gates, increasing the
cost by nearly a factor of 3. To mitigate this cost,
both [75] and [64] recommend computing shares of the
powers of h (denoted as {hi}) during an offline setup
stage, amortising the cost across the entire session. In
certain settings, this cost can be reduced further by
restricting how many powers of h are used: for example,
MPCAuth [63] employs a clever message slicing strategy
to minimise the value of i. As this approach may not be
supported by all TLS 1.3 servers, we explicitly target
the largest possible TLS ciphertext of 16KiB, which
corresponds to i = 1024.

Assuming that a sharing ({hi
c}, {hi

v}) exists, pro-
ducing tags in 2PC is rather straightforward: tag-
ging n blocks requires two local polynomial evalua-
tions (writing τc = PA||c||len(A)||len(c)({hi

c}) and τv =
PA||c||len(A)||len(c)({hi

v}), respectively) over F2128 and n+
1 2PC evaluations of AES [64], [75]. The final tag
is achieved by simply computing τ = τc + τv ⊕
AES.Enc(kc + kv, IVc). In order to make this more effi-
cient, it is necessary to initially construct a 2PC pro-
tocol that evaluates the ciphertext c and outputs to
both parties, and then have a subsequent protocol that
computes the tag for this ciphertext, based on the local
polynomials submitted by the client.

Our optimisations. DECO gives few details on how
to compute shares of the powers of h, other than that
they are computed in a 2PC session. We remark that
calculating these shares in a garbled circuit is unlikely
to be feasible: our adapted version of MPCAuth’s share
derivation circuit contained around 17M AND gates,
and required over 900MiB and 18GiB of network traffic
and memory, respectively, just for the pre-processing
stage. For comparison, our circuits for TLS 1.3 secret
derivation contain around 1.3M AND gates in total,
which is approximately a factor of 14 smaller. Thus,
using only garbled circuits is unlikely to be feasible.

Several other approaches exist for computing the
shares of {hi}. For instance, PageSigner [64] reduces
computing additive shares of hi to simply computing
shares usingMtA computations. Given an initial additive
sharing h = hc+hv, C and V iteratively compute additive
shares of ℓc + ℓv = hn = (hc + hv)

n−1
(hc + hv) for

1 < n ≤ 1024. This approach permits an additional
optimisation: as (x+ y)

2
= x2+y2 over F2128 , each party

can compute shares of even powers of h locally. Taking
this optimisation into account, producing shares in this
way costs a total of 1022 MtA operations. However, as
computing shares of any odd hi requires first computing
shares of hi−2, the approach seems to require around 500

9



Figure 5. Ordered execution of 2PC exchange between C and the
V during the handshake phase of DiStefano.

2PC-ECtF

Compute SSK

2PC-DeriveTKHS

2PC-DeriveTKApp

V
er
ifi
er

C
li
en
t

SHTSv

CHTSv

spV spC

rounds, which is likely too slow for a WAN setting.
We improve upon this by replacing the additive

sharing h = h1 + h2 with h = h1/h2, i.e. using a mul-
tiplicative sharing. By using multiplicative shares, we
can run each MtA computation in parallel, with each Pi

supplying hi, hi
3, . . . , hi

1023 as input. This optimisation
asymptotically halves the number ofMtA operations and
reduces the round complexity to a single round. How-
ever, this tweak does require a slightly more complicated
scheme for computing the initial sharing of h, as we now
also must compute a multiplication over F2128 , taking the
size of the circuit for deriving the initial shares to around
23K AND gates in size. In practice, we reduce the size of
this circuit to around 18K AND gates by instead using
a carry-less Karatsuba [33] algorithm. Whilst this still
represents an increase of around a factor of 3 compared
to the additive circuit, the reduction in MtA operations
and rounds means that we are able to achieve an end-to-
end speed-up of around a factor of 3. We discuss these
results in more detail in Section 7.

6. Security Analysis

Previous DCTLS protocols use all-encompassing
ideal functionalities and Universally-Composable (UC)
security proofs [14], proving that the entire flow from
handshake to attestation is secure. This is problematic
for cryptographic agility, as it means that any modi-
fication to the TLS ciphersuite, 2PC functionality, or
protocol extensions would necessitate a complete rewrite
of the proof. Such agility is critical for building flexi-
ble secure systems, that can be modified easily if our

understanding of cryptographic primitives and systems
change [54].

We reimagine the security model for DCTLS proto-
cols in two ways. First, we move the security analysis
to the standalone model. UC security proofs are particu-
larly useful when building atomic protocol primitives, in-
tended for arbitrary composition with other primitives.
Since DCTLS is a high-level protocol that is likely to be
used as a single application, we believe that the stan-
dalone model captures a natural security requirement,
without the added complexity for ensuring UC security.
Second, our analysis breaks the protocol down into three
phases: the handshake, query, and commitment phases;
and proves that each is secure independently. We give a
short overview of how we model security for each phase
of the protocol in the following. The full standalone
security model is covered in Appendix C.

Handshake phase. We model the handshake phase
similarly to Oblivious TLS [1]. Essentially, this model
proves that we can satisfy the original guarantees proven
about TLS 1.3 [24] (i.e. related toMatch andMulti-Stage
security) even when executing certain functionalities in
2PC. One key difference is that the presence of the
verifier ensures that potential TLS 1.3 adversaries can
alter the derivation of secrets in the client, and thus
we similarly base security on a modified Shifted PRF
ODH assumption, see [1, Definition 2] for more details.
While Oblivious TLS opts for a UC-security proof, we
use a standalone depiction for simplicity reasons, since
each 2PC functionality is used in sequence. The general
protocol execution is given in Fig. 5.

Query execution phase. The query phase of DiStefano
essentially amounts to considering a 2PC realisation of
the record-layer of the TLS 1.3 protocol. We define 2PC
ideal functionalities (Algorithms 4 and 5) that abstracts
the core encryption and decryption functionality for ap-
plication traffic. We eventually show that we can prove
security of this phase based on the 2PC realisation of
the AES-GCM functionalities that we formalise in Ap-
pendix G (Algorithms 6 and 7). These functionalities
implement the functionality and optimisations described
in Section 5. To prove security of alternative cipher-
suites, it is simply a matter of implementing the 2PC
ideal functionalities using different primitives.

Commitment phase. We model the commitment phase
in a game-based security model (Appendix F). We pro-
vide multiple security notions (7) that evaluate the ca-
pacity of the protocol to satisfy: session privacy (SPriv),
that ensures that committed sessions are indistinguish-
able; 1-out-of-N authentication (SAuth1n), that the client
is forced to successfully authenticate the TLS server
amongst N possible apriori-chosen servers; and session
unforgeability (SUnf), that ensures that the client cannot
arbitrarily forge sessions that did not occur. In the end,
we show that DiStefano satisfies these properties based
on the commitment scheme devised from AES-GCM

10



(Appendix H), and the zero-knowledge proof scheme
(ZKPVS) for valid TLS signatures [15] (Appendix C).

7. Experimental Analysis

Implementation. In order to enable easy integration
with other cryptographic libraries and browsers, we im-
plemented a prototype of DiStefano in C++.7 This imple-
mentation contains around 14k lines of code, tests and
documentation. We developed this implementation us-
ing C++ best practices, and we hope that this effort is use-
ful for other researchers. Concretely, our implementation
of DiStefano uses BoringSSL for TLS functionality and
emp for all MPC functionality. BoringSSL is the only
cryptographic library supported by Chromium-based In-
ternet browsers. As far as we are aware, our imple-
mentation contains primitives and circuits that are not
available elsewhere. Our implementation also contains
a modified version of MPCAuth’s circuit generation to
produce the relevant garbled circuits. We further reduce
the online cost of MPCAuth’s secret sharing scheme
by using a pre-determined splitting scheme for specific
secrets.8 We provide a full listing of the changes made
to third party libraries alongside our prototype.

Results. We evaluated the performance of DiStefano
in LAN and WAN settings. For the LAN environment,
we use a consumer-grade device (a Macbook air M1
with 8GB of RAM) for C, and a server-grade device
(an Intel Xeon Gold 6138 with 32GB of RAM) for V
and S. All communication used in TLS 1.3 was carried
out using a single thread over a 1Gbps network with
a latency of around 16ms. In the WAN setting, we use
two AWS EC2 “t2.2xlarge” machines: one for C located
in Spain, and one for V and S in Ohio, USA, where
the median latency is estimated at 100ms. Timings and
bandwidth measurements are computed as the mean
of 50 samples, and are represented in milliseconds and
mebibytes, respectively (1 MiB is 220 bytes).

Table 1 gives results for each individual circuit
used in DiStefano. Each circuit is evaluated without
amortisations, i.e. these timings do not take advantage
of the amortised pre-processing available inside emp.
We note that the 2PC-GCM circuit includes encryption
and decryption of traffic as specified in Algorithms 6
and 7, using a random-oracle (AES-based) commitment
scheme. As the most expensive operation of these cir-
cuits will only be used once per session, we do not
expect that employing amortisation will yield a sub-
stantial speed-up. However, employing amortisations for
common operations, e.g. AES-GCM tagging and veri-
fication may lead to faster running times (see [68, §7]
for concrete speed-ups). We also compare the offline
time using the original implementation of authenticated

7. https://github.com/brave-experiments/DiStefano
8. We stress that this approach is less flexible than MPCAuth’s

approach. For example, our approach only supports 2 parties,
whereas MPCAuth supports arbitrarily many.

Table 1. Garbled Circuit timings and bandwidth.

Circuit OT Offline Online Bandwidth

AES-GCM share (K) LD 2340 34.92 21.04
AES-GCM share (K) FC 2683 59.48 9.009
AES-GCM share (N) LD 2678 39.09 25.63
AES-GCM share (N) FC 2853 61.36 10.35
AES-GCM Tag LD 1019 22.30 7.604
AES-GCM Tag FC 2336 22.22 5.010
AES-GCM Verify LD 1032 21.16 7.746
AES-GCM Verify FC 2277 21.24 5.130
TLS 1.3 HS (P256 ) LD 51470 93.16 305.1
TLS 1.3 HS (P256 ) FC 19847 88.90 113.3
TLS 1.3 HS (P384 ) LD 51610 95.38 305.8
TLS 1.3 HS (P384 ) FC 19940 89.88 113.6
TLS 1.3 TS LD 51450 95.21 243.7
TLS 1.3 TS FC 18820 99.25 91.12
2PC-GCM (256B) LD 18690 82 131.4
2PC-GCM (256B) FC 10971 80 47.5
2PC-GCM (512B) LD 31534 136 206.5
2PC-GCM (512B) FC 16010 142 77.75
2PC-GCM (1KiB) LD 57485 252 409.4
2PC-GCM (1KiB) FC 26154 301 151.2
2PC-GCM (2KiB) LD 114820 728 815.4
2PC-GCM (2KiB) FC 48764 763 299.3

Each garbled circuit is reported in terms of offline/online
times (ms) and total bandwidth (MiB) costs. “K” means
Karatsuba and “N” means Naive. “LD” refers to “Leaky-
DeltaOT” and “FC” means “FerretCOT”.

garbling (LeakyDeltaOT [68]) that uses FerretCOT. Our
results imply that FerretCOT performs better than the
original OT for large circuit sizes in both bandwidth and
running time. However, for smaller circuits it appears
that the original implementation is faster at the cost of
more bandwidth. Given that the pre-processing times
are proportional to the size of the circuits, we can see
that our results appear to be predominantly network
bound. The results also highlight that our Karatsuba-
based circuit achieves modest gains in both bandwidth
and time over the naive circuit.

Table 2 shows the results for each arithmetic prim-
itive used. Given that all running times and bandwidth
counts are rather low, we do not expect this to represent
a bottleneck even on constrained networks. We can also
see that the tweak introduced in Section 5.2 reduces
the running time by a factor of around 3, whilst also
halving the required bandwidth for the multiplication
(this ignores bandwidth used by shared setup). This
all represents an improvement of around 4 orders of
magnitude over using a garbled circuit.

The timings indicate that our implementation of
DiStefano is competitive with DECO, with the DCTLS
online portion taking around 500ms to complete for a
256-bit secret in a LAN setting. These conclusions are
consistent across both the individual and E2E timings
(cf. Table 3). Our WAN experiments model realistic E2E
executions, and indicate that the running times roughly
increase by the amount of latency introduced. The only
deviations occurred are related to either circuit prepro-
cessing — which increases by just over a second, but is

11

https://github.com/brave-experiments/DiStefano


Table 2. Primitive timings and bandwidth.

Primitive Time (ms) Bandwidth (MiB)

ECtF (P256 ) 336.1 0.768
ECtF (P384 ) 335.5 1.295
ECtF (P521 ) 421.4 2.442
MtA (P256 ) 33.67 0.086
MtA (P384 ) 40.65 0.127
MtA (P521 ) 55.83 0.241
AES-GCM powers (mul.) 1694 0.049
AES-GCM powers (add.) 5926 0.080
AES-GCM powers (GC) — 900

Table 3. E2E timings (ms) and bandwidth (MiB) for DCTLS
in LAN/WAN settings (with latency ≈ 16ms/100ms,

respectively).

Process LAN (ms) WAN (ms) Bandwidth (MiB)

Offline costs

C/S Key Share 1.3167 102.0697 6.67572e-05
C/V execute ECtF 0.008083 101.0024 9.53674e-07
Circuit Preprocessing 6280.08 8830.68 220.484

Online costs

S sends cert. 0.011375 103.008 3.14713e-05
Derive traffic secrets 33.1389 130.1952 0.0276108
Derive GCM shares 136.573 534.464 0.0488291

an offline amortisable cost — and the derivation of GCM
shares — which reflects the multi-round trip time nature
of this part of the protocol. Even so, the GCM shares
derivation still takes less than a second, and the total
online costs are significantly lower than standard online
TLS handshake timeout times which, while configurable,
are typically between 10 and 20 seconds [39].

Comparisons with prior work. We note that compar-
isons between our results and previous work [64], [75]
should be made carefully. In the case of DECO, their
implementation is not publicly available, and we were
unable to reproduce any of their results. Moreover, as
our implementation is single-threaded, we are unable to
take advantage of emp’s multi-threaded pre-processing.
Given that [68, §7] reports an order of magnitude in-
crease in bandwidth due to multi-threading, it is not sur-
prising that our offline times are an order of magnitude
higher. However, our online timings are comparable with
DECO, and parallelising the pre-processing stage would
likely mitigate any discrepancies9. As pre-processing can
be carried out before, we do not consider this a major
issue.

It is also difficult to compare our timings to Pa-
geSigner. Their original implementation is written en-
tirely in Javascript, preventing the usage of dedicated
hardware resources. Given that our implementation is
instead written in C++, we might expect DiStefano to
be faster. PageSigner also follows a semi-honest security

9. Notably, [75] does not mention if the pre-processing used
multiple threads.

model and targets TLS 1.2; these are incompatible with
DiStefano.

8. Discussion

8.1. Related Work

As noted in Section 2, DiStefano is an instance of a
DCTLS protocol. Other alternatives exist, but all have
limitations as noted in Section 2.2. We summarise the
comparison in Table 4, and discuss further below.

The DECO and PageSigner protocols, for example,
only (formally) work for TLS 1.2 and under, and pro-
vide limited privacy. TownCrier [74] has similar prob-
lems, and requires using trusted computing function-
ality. Recently, the PECO protocol [61] was proposed,
which informally extends the DECO protocol to sup-
port TLS 1.3, but provides no formal guarantees nor
implementation of it.

MPCAuth [63] allows a user to authenticate to N
servers independently by doing the work of only au-
thenticating to one. An N -for-1 authentication system
consists of many servers and users. Each user has a
number of authentication factors they can use to au-
thenticate. The user holds a secret s that they wish to
distribute among the N servers. The protocol consists of
two phases. In the enrollment phase, the user provides
the servers with a number of authentication factors,
which the servers verify using authentication protocols:
these protocols use a mechanism called “TLS-in-SMPC”
that allows N servers to jointly act as a TLS client
endpoint to communicate with a TLS server (which can
be, for example, a TLS email server). A single server
from the N ones cannot decrypt any TLS traffic, and,
after authenticating with these factors, the client secret-
shares s and distributes the shares across the servers. In
the authentication phase, the user runs the MPCAuth
protocols for the authentication factors and, once it is
authenticated, the N servers can perform computation
over s for the user, which is application-specific (such as
key recovery, for instance).

The Oblivious TLS protocol [1] allows for any TLS
endpoint to obliviously interact with another TLS end-
point, without the knowledge that it is interacting with
a multi-party computation instance. It consists of the
following phases: i) Multi-Party Key Exchange, which is
the key exchange phase of the TLS handshake ran in an
MPC manner by performing an exponentiation between
a known public key and a secret exponent, where the
output remains secret; ii) Threshold Signing, which is
the authentication phase of the TLS handshake done by
having the TLS transcript signed with EdDSA Schnorr-
based signatures in a threshold protocol; and iii) Record
Layer which is ran by using authenticated encryption,
based on AES-GCM, inside MPC.

Recent work on developing zero-knowledge middle-
boxes for TLS 1.3 traffic [31] has many similarities with

12



Table 4. Comparison of DCTLS-like protocols.

Protocol TLS 1.3 Attest Ring auth

DECO-like [74], [75] ✗ ✓ ✗
MPCAuth [63] ✓ ✗ ✗
Oblivious TLS [1] ✓ ✗ ✗
ZKMiddleboxes [31] ✓ C → S ✗
DiStefano ✓ ✓ ✓

techniques used in DCTLS protocols. However, the ver-
ifier is considered to be an on-path proxy that both re-
ceives and forwards encrypted traffic between the parties
(similar to the proxy model of DECO [75]). Furthermore,
the client is only required to produce commitments to
their own traffic, rather than the traffic received from
the server. Applications include corporate oversight and
enaction of Internet browsing policies to be enforced by
middleboxes, which are naturally thwarted in a setting
where all client traffic is sent encrypted over TLS.

Concurrent work. Concurrent work of Xie et al. [69]
proposes a series of optimisations to the MPC protocols
used inside DECO, targeting TLS 1.2. Whilst most of
these improvements are orthogonal to our work, one
interesting optimisation is a faster approach for deriving
TLS traffic secrets inside garbled circuits. This approach
is reminiscent of the highly optimised CBC-HMAC pro-
tocol proposed in DECO [75, §4.2.1] for computing tags
in 2PC. We remark that incorporating this particular op-
timisation into our secret derivation process seems non-
trivial, and we discuss these difficulties in Appendix H.

8.2. Applications

Attestations. DiStefano produces commitments to en-
crypted TLS 1.3 data which, as noted in [75], can be used
as the basis of zero-knowledge proofs (or attestations)
for showing that certain facts are present in such traffic.
However, such attestations could also be constructed via
different methods, using cooperative decryption of cer-
tain ciphertext blocks, or more generic 2PC techniques.
The DECO protocol provides examples that they can
prove certain statements for, including proof of confiden-
tial financial information, and proof of age. It should be
noted that TLS sessions could serve as the basis for more
generic user credentials, proving arbitrary facts about a
user. For a more complete summary, see [75].

Server anonymity. As noted throughout, we introduce
the possibility for C to prove to V that the communi-
cating TLS server, S, belongs to a pre-approved set,
R, of server identities. This list of identities can be
constructed simply from a list of TLS certificates, and
uses a compliant ZKPVS scheme (Appendix C) for gen-
erating proofs of valid TLS signatures. We note here that
anonymity is only preserved amongst the set R, and is
highly application-specific: if R only contains a single
identity, then anonymity is not guaranteed. However,
there are various applications where R is likely to be

Table 5. Results for running KeyUpdate in 2PC.

Circuit OT Offline (ms) Online (ms) Bandwidth (MiB)

KeyUpdate LD-OT 10540 29.95 98.54
KeyUpdate FC-OT 7960 31.96 31.61

non-trivial, such as in the case where C would like to
generate a commitment to a bank balance that is in a
range. In principle, our approach would allow generating
commitments to balances provided by any of a pre-
approved list of banks. In doing so, this would preserve
C’s privacy by hiding the identity of the bank they have
an account with. Similar mechanisms can be built for
generating commitments with respect to governmental
identities (e.g. social security statuses associated with
EU member states). While targeting any given appli-
cations are beyond the scope of this work, we believe
that the provisioning of the capability for generating
such proofs (which previous works do not provide) can
provide meaningful privacy enhancements for clients in
a number of applicable scenarios.

Finally, note that a larger R will have an impact on
the performance of the ZKPVS scheme employed, since
their complexity is typically dependent on |R|. Nonethe-
less, we believe that even a modest value (e.g. |R| = 10)
would grant meaningful privacy protection. As a con-
crete example, banking sectors are typically highly con-
solidated — in the UK, there are four banks that hold
the majority of customer accounts [21] — and thus even
providing privacy for this “small” sets can be meaningful
for large numbers of clients.

8.3. Limitations

Our implementation of DiStefano does not support
key rotation via KeyUpdate messages or full 0-RTT
mode, but this limitation is not major: it can be circum-
vented by simply re-running the HSP.10 We also provide
no concrete instantiation of the zero-knowlege primitives
that can be used to create attestations, but they should
follow the guidelines stated in Section 4.4. Said proofs
must also be mindful of user privacy concerns: if proof
circuits explicitly target server-specific HTML formats,
this will undo the zero-knowledge authentication privacy
guarantees, provided by the ZKPVS approach.

DCTLS protocols must assume user commitments are
meaningful, that the TLS server stores only correct data.
Suppose that Alice wishes to provide a proof of their age
from a particular Government agency website. Alice logs
in to the website, and then runs DiStefano to produce
a commitment to their age based on the data present
there. This process assumes that the account Alice logs
in to is their own, which may not be the case, e.g.
if the account is stolen or fake. V should only accept

10. For completeness, we benchmarked the cost of running the
KeyUpdate operation in a garbled circuit, see Table 5.

13



commitments from servers that it trusts to correctly
store user data.

Finally, DCTLS protocols could become actively
harmful tools for monitoring or censoring client traffic
in certain applications, especially those without human
involvement. Thus, we would like to emphasise that de-
ployment of tools such as DiStefano must be considered
carefully. Furthermore, DCTLS can also be subject of
different legal and compliance issues in regards to being
considered as a form of webscraping.

8.4. Browser Integration

DiStefano can be integrated into a browser that uses
BoringSSL, e.g. Google Chrome/Brave, easily. As our
changes to BoringSSL itself are rather minimal, it would
be possible to simply describe our changes as a series
of deltas in a version control system, which can then
be applied during the process of building the browser
based on build flags.11 We leave the completion and
deployment as future work.

9. Conclusion

We build DiStefano, a DCTLS protocol that gener-
ates private commitments to encrypted TLS 1.3 data.
We use a modular, standalone security framework that
provides malicious security, and guarantees privacy for
client browsing patterns amongst pre-approved servers.
We provide an open-source integration in BoringSSL,
and demonstrate the online efficiency of DiStefano for
believable workloads.12 The flexibility, security, and de-
ployability of DiStefano makes it an immediate candi-
date for real-world applications and Internet browser
integration.

References

[1] Damiano Abram, Ivan Damg̊ard, Peter Scholl, and Sven
Trieflinger. Oblivious TLS via multi-party computation. In
Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 51–74. Springer, Heidelberg, May 2021.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, pages 5–17, New York, NY, USA,
2015. Association for Computing Machinery.

[3] Nitin Agrawal, James Bell, Adrià Gascón, and Matt J. Kus-
ner. MPC-friendly commitments for publicly verifiable covert
security. In Giovanni Vigna and Elaine Shi, editors, ACM
CCS 2021, pages 2685–2704. ACM Press, November 2021.

11. Indeed, such a system is already used for the Brave Browser.
12. https://github.com/brave-experiments/DiStefano

[4] Martin R. Albrecht, Christian Rechberger, Thomas Schnei-
der, Tyge Tiessen, and Michael Zohner. Ciphers for MPC
and FHE. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
430–454. Springer, Heidelberg, April 2015.

[5] Kenichi Arai and Shinrqichiro Matsuo. Formal verification
of TLS 1.3 full handshake protocol using proverif (Draft-11).
IETF TLS mailing list, 2016.

[6] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Na-
dia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval
Shavitt. DROWN: Breaking TLS using SSLv2. In 25th
USENIX Security Symposium (USENIX Security 16), pages
689–706, Austin, TX, August 2016. USENIX Association.

[7] A. Backman, J. Richer, and M. Sporny. Signing http mes-
sages. IETF draft. Accessed 14/11/2022.

[8] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 420–432. Springer, Heidelberg,
August 1992.

[9] Mihir Bellare and Phillip Rogaway. Entity authentication and
key distribution. In Douglas R. Stinson, editor, CRYPTO’93,
volume 773 of LNCS, pages 232–249. Springer, Heidelberg,
August 1994.

[10] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue.
A messy state of the union: Taming the composite state
machines of tls. In 2015 IEEE Symposium on Security and
Privacy, pages 535–552, 2015.

[11] Pandora Blake. Age verification for online porn: more harm
than good? Porn Studies, 6(2):228–237, 2019.

[12] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Chris-
tian Janson. PRF-ODH: Relations, instantiations, and im-
possibility results. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 651–681. Springer, Heidelberg, August 2017.

[13] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the intel SGX kingdom with transient
Out-of-Order execution. In 27th USENIX Security Sympo-
sium (USENIX Security 18), page 991–1008, Baltimore, MD,
August 2018. USENIX Association.

[14] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, October 2001.

[15] Sofia Celi, Shai Levin, and Joe Rowell. Cdls: Proving knowl-
edge of committed discrete logarithms with soundness. Cryp-
tology ePrint Archive, Paper 2023/1595, 2023. https://eprint.
iacr.org/2023/1595.

[16] Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen. Dido:
Data provenance from restricted tls 1.3 websites. Cryptology
ePrint Archive, Paper 2023/1056, 2023. https://eprint.iacr.
org/2023/1056.

[17] Cloudflare. TLS 1.2 vs. TLS 1.3 vs. QUIC: Distribution of
secure traffic by protocol, 2023. Accessed 11/04/2023.

[18] John T Cross. Age verification in the 21st century: Swiping
away your privacy. J. Marshall J. Computer & Info. L.,
23:363, 2004.

[19] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat homomor-
phic encryption. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–
662. Springer, Heidelberg, August 2012.

14

https://github.com/brave-experiments/DiStefano
https://eprint.iacr.org/2023/1595
https://eprint.iacr.org/2023/1595
https://eprint.iacr.org/2023/1056
https://eprint.iacr.org/2023/1056


[20] Jonathan J Darrow and Stephen D Lichtenstein. Do you re-
ally need my social security number-data collection practices
in the digital age. NCJL & Tech., 10:1, 2008.

[21] Statista Research Department. Global number of customers
at the largest banks in the united kingdom (uk) in 2022.
Statista, Aug 29 2023. http://tinyurl.com/statista-banks.

[22] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat.
Secure two-party threshold ECDSA from ECDSA assump-
tions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997. IEEE Computer Society Press, May 2018.

[23] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat.
Threshold ECDSA from ECDSA assumptions: The multi-
party case. In 2019 IEEE Symposium on Security and Pri-
vacy, pages 1051–1066. IEEE Computer Society Press, May
2019.

[24] Benjamin Dowling, Marc Fischlin, Felix Günther, and Dou-
glas Stebila. A cryptographic analysis of the TLS 1.3 hand-
shake protocol. Journal of Cryptology, 34(4):37, October
2021.

[25] European Commission. GDPR: Right to Portability, Art. 20.
https://gdpr-info.eu/art-20-gdpr/. Accessed 5th September
2023., 2014.

[26] Armando Faz-Hernández, Watson Ladd, and Deepak Maram.
ZKAttest: Ring and group signatures for existing ECDSA
keys. In Riham AlTawy and Andreas Hülsing, editors, SAC
2021, volume 13203 of LNCS, pages 68–83. Springer, Heidel-
berg, September / October 2022.

[27] Marc Fischlin and Felix Günther. Multi-stage key exchange
and the case of Google’s QUIC protocol. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
1193–1204. ACM Press, November 2014.

[28] Rosario Gennaro and Steven Goldfeder. Fast multiparty
threshold ECDSA with fast trustless setup. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 1179–1194. ACM Press, Oc-
tober 2018.

[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs
that yield nothing but their validity and a methodology of
cryptographic protocol design (extended abstract). In 27th
FOCS, pages 174–187. IEEE Computer Society Press, Octo-
ber 1986.

[30] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs:
Or how to leak a secret and spend a coin. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 253–280. Springer, Heidelberg,
April 2015.

[31] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and
Michael Walfish. Zero-knowledge middleboxes. In Kevin R. B.
Butler and Kurt Thomas, editors, USENIX Security 2022,
pages 4255–4272. USENIX Association, August 2022.

[32] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage franking via committing authenticated encryption. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 66–97. Springer, Hei-
delberg, August 2017.

[33] Shay Gueron and Michael E. Konavis. Intel® carry-less
multiplication instruction and its usage for computing the
gcm mode, 2014. Accessed 14/03/2023.

[34] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient
and secure multiparty computation from fixed-key block ci-
phers. In 2020 IEEE Symposium on Security and Privacy,
pages 825–841. IEEE Computer Society Press, May 2020.

[35] Amy Guy, Manu Sporny, Drummond Reed, and
Markus Sabadello. Decentralized identifiers (DIDs)
v1.0. W3C recommendation, W3C, July 2022.
https://www.w3.org/TR/2022/REC-did-core-20220719/.

[36] Felix Günther. Modeling advanced security aspects of key
exchange and secure channel protocols. it - Information
Technology, 62(5-6):287–293, 2020.

[37] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and
Eliad Tsfadia. Highly efficient OT-based multiplication pro-
tocols. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
180–209. Springer, Heidelberg, May / June 2022.

[38] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razagh-
panah, Thomas Jost, Narseo Vallina-Rodriguez, and Oliver
Hohlfeld. Tracking the deployment of tls 1.3 on the web:
A story of experimentation and centralization. SIGCOMM
Comput. Commun. Rev., 50(3):3–15, jul 2020.

[39] IBM. Handshake timer, 2023. https://www.ibm.com/
docs/en/zos/3.1.0?topic=considerations-handshake-timer.
Accessed 06/02/24.

[40] Russell Impagliazzo and Moni Naor. Efficient cryptographic
schemes provably as secure as subset sum. Journal of Cryp-
tology, 9(4):199–216, September 1996.

[41] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Dan Boneh, ed-
itor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[42] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu.
Breaking and repairing GCM security proofs. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 31–49. Springer, Heidelberg, Au-
gust 2012.

[43] Marcel Keller. MP-SPDZ: A versatile framework for multi-
party computation. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages
1575–1590. ACM Press, November 2020.

[44] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively
secure OT extension with optimal overhead. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 724–741. Springer, Hei-
delberg, August 2015.

[45] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MAS-
COT: Faster malicious arithmetic secure computation with
oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 830–842. ACM Press, October
2016.

[46] Vladimir Kolesnikov and Thomas Schneider. Improved gar-
bled circuit: Free XOR gates and applications. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008, Part II, volume 5126 of LNCS, pages 486–498. Springer,
Heidelberg, July 2008.

[47] Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, and
Sebastian Steinhorst. Janus: Fast privacy-preserving data
provenance for tls 1.3. Cryptology ePrint Archive, Paper
2023/1377, 2023. https://eprint.iacr.org/2023/1377.

[48] Rick S Lear and Jefferson D Reynolds. Your social security
number or your life: Disclosure of personal identification infor-
mation by military personnel and the compromise of privacy
and national security. BU Int’l LJ, 21:1, 2003.

[49] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. Tls 1.3 in
practice:how tls 1.3 contributes to the internet. In Proceedings
of the Web Conference 2021, WWW ’21, page 70–79, New
York, NY, USA, 2021. Association for Computing Machinery.

[50] Yehuda Lindell and Benny Pinkas. Secure multiparty com-
putation for privacy-preserving data mining. Cryptology
ePrint Archive, Report 2008/197, 2008. https://eprint.iacr.
org/2008/197.

15

http://tinyurl.com/statista-banks
https://gdpr-info.eu/art-20-gdpr/
https://www.ibm.com/docs/en/zos/3.1.0?topic=considerations-handshake-timer
https://www.ibm.com/docs/en/zos/3.1.0?topic=considerations-handshake-timer
https://eprint.iacr.org/2023/1377
https://eprint.iacr.org/2008/197
https://eprint.iacr.org/2008/197


[51] Nikolaos Makriyannis and Udi Peled. A note on the security
of gg18, 2021. https://info.fireblocks.com/hubfs/A Note on
the Security of GG.pdf.

[52] Moni Naor and Moti Yung. Public-key cryptosystems prov-
ably secure against chosen ciphertext attacks. In 22nd ACM
STOC, pages 427–437. ACM Press, May 1990.

[53] Khanh Quoc Nguyen, Feng Bao, Yi Mu, and Vijay Varadhara-
jan. Zero-knowledge proofs of possession of digital signatures
and its applications. In Vijay Varadharajan and Yi Mu,
editors, ICICS 99, volume 1726 of LNCS, pages 103–118.
Springer, Heidelberg, November 1999.

[54] David Ott, Kenny Paterson, and Dennis Moreau. Where is
the research on cryptographic transition and agility? Com-
mun. ACM, 66(4):29–32, mar 2023.

[55] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 223–238. Springer,
Heidelberg, May 1999.

[56] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, RFC Editor, August 2018.

[57] Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Fel-
ley, and Srdjan Capkun. TLS-N: Non-repudiation over TLS
enablign ubiquitous content signing. In NDSS 2018. The
Internet Society, February 2018.

[58] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 552–565. Springer, Heidelberg,
December 2001.

[59] Michael Rosenberg, Jacob White, Christina Garman, and
Ian Miers. zk-creds: Flexible anonymous credentials from
zkSNARKs and existing identity infrastructure. Cryptology
ePrint Archive, Report 2022/878, 2022. https://eprint.iacr.
org/2022/878.

[60] Mike Rosulek and Lawrence Roy. Three halves make a whole?
Beating the half-gates lower bound for garbled circuits. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 94–124, Virtual Event, August
2021. Springer, Heidelberg.

[61] Manuel B. Santos. Peco: methods to enhance the privacy of
deco protocol. Cryptology ePrint Archive, Paper 2022/1774,
2022. https://eprint.iacr.org/2022/1774.

[62] Berin Szoka and Adam D Thierer. Coppa 2.0: The new battle
over privacy, age verification, online safety & free speech.
Progress & Freedom Foundation Progress on Point Paper No,
16, 2009.

[63] Sijun Tan, Weikeng Chen, Ryan Deng, and Raluca Ada Popa.
MPCAuth: Multi-factor authentication for distributed-trust
systems. In 2023 IEEE Symposium on Security and Privacy,
pages 829–847. IEEE Computer Society Press, May 2023.

[64] PageSigner Team. PageSigner: One-click website auditing.
Website. Accessed 04/04/2023.

[65] TLSNotary Team. TLSNotary: Proof of data authenticity.
Website. Accessed 04/04/2023.

[66] Dmytro Tymokhanov and Omer Shlomovits. Alpha-rays:
Key extraction attacks on threshold ecdsa implementations.
Cryptology ePrint Archive, Paper 2021/1621, 2021. https:
//eprint.iacr.org/2021/1621.

[67] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016.

[68] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authen-
ticated garbling and efficient maliciously secure two-party
computation. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
21–37. ACM Press, October / November 2017.

[69] Xiang Xie, Kang Yang, Xiao Wang, and Yu Yu. Lightweight
authentication of web data via garble-then-prove. Cryptology
ePrint Archive, Paper 2023/964, 2023. https://eprint.iacr.
org/2023/964.

[70] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and
Handong Cui. Efficient online-friendly two-party ECDSA
signature. In Giovanni Vigna and Elaine Shi, editors, ACM
CCS 2021, pages 558–573. ACM Press, November 2021.

[71] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small
communication. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–
1626. ACM Press, November 2020.

[72] Andrew C. Yao. Protocols for secure computations. In 23rd
Annual Symposium on Foundations of Computer Science
(sfcs 1982), pages 160–164, 1982.

[73] Majid Yar. Protecting children from internet pornography?
a critical assessment of statutory age verification and its
enforcement in the uk. Policing: An International Journal,
43(1):183–197, 2020.

[74] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and
Elaine Shi. Town crier: An authenticated data feed for smart
contracts. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’16,
page 270–282, New York, NY, USA, 2016. Association for
Computing Machinery.

[75] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data us-
ing decentralized oracles for TLS. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 1919–1938. ACM Press, November 2020.

Appendix

We provide some additional cryptographic prelimi-
naries that are required for arguing the security of our
system.

1. Commitment Schemes

Definition 3 (Commitment scheme). A commitment
scheme Γ is a tuple consisting of the following algorithms:

• Γ.Gen(1λ): outputs some secret parameters sp;
• Γ.Commit(sp, x): outputs a commitment c;
• Γ.Challenge(c): outputs a random challenge t;
• Γ.Open(sp, c, t, x): outputs a bit b ∈ {0, 1}.

An interactive commitment scheme, Γ̃, between a
committer, C, and a revealer, R, proceeds as follows:
• C runs sp ← Γ.Gen(1λ), and sends c ←
Γ.Commit(sp, x) to R;

• R sends t← Γ.Challenge(c) to C;
• C sends x to R;
• R outputs b

?
= 1, for b← Γ.Open(sp, c, t, x).

Definition 4 (Binding property). Given sp← Γ.Gen(1λ).
We say that Γ is a computationally binding commitment
scheme if, for any PPT algorithm, the following holds:

Pr

[
0← Γ.Open(sp, c∗, t∗, x′)

∣∣∣∣ (x∗,c∗)←A(1λ)
t∗←Γ.Challenge(c∗)
x′←A(1λ);x′ ̸=x∗

]
> 1−negl(λ).

16

https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2023/964


We say that Γ is perfectly binding if the same holds for
unbounded algorithms, with probability 1.

Definition 5 (Hiding property). Let sp ← Γ.Gen(1λ),
{xb}b∈{0,1} ∈ {0, 1}2, and {cb ← Γ.Commit(sp, xb)}.
We say that Γ is a computationally hiding commitment
scheme if, for any PPT algorithm, the following holds:

Pr
[
d∗

?
= d

∣∣∣ d←${0,1}
d∗←A(1λ,cd,(x0,x1))

]
< 1/2 + negl(λ).

We say that Γ is perfectly hiding if the same holds for
unbounded algorithms, with probability 1/2.

We show in Appendix H that AES-GCM ciphertext
commitment scheme in Section 5.1 is perfectly binding
and computationally hiding for TLS 1.3 encrypted data.
A high-level overview of the commitment phase based on
this scheme is given in Section 4.3.

2. Authenticated Encryption

An authenticated encryption with associated data
(AEAD) scheme considers a keyspace K, a message
spaceM, a ciphertext space X , and a tag space T , and
is defined using the following algorithms.

• k ← AEAD .keygen(1λ): Outputs a key k ←$ K.
• (C, τ) ← AEAD .Enc(k,m;A): For a key k ∈ K,
message m ∈ M, and associated data A ∈ {0, 1}∗,
outputs a ciphertext C ∈ X and a tag τ ∈ T .

• m ∨ ⊥← AEAD .Dec(k,C, τ ;A): For a key k ∈ K,
ciphertext C ∈ M, tag τ ∈ T , and associated data
A ∈ {0, 1}∗, outputs a message m ∈M or ⊥.

Any AEAD scheme must satisfy the following guarantees.

Definition 6 (Correctness). AEAD is correct if and only
if the following holds true.

Pr
[
m← AEAD .Dec(k,C, τ ;A)

∣∣∣k←AEAD .keygen(1λ)
(C,τ)←AEAD .Enc(k,m;A)

]
= 1

Definition 7 (Security). An AEAD scheme is secure if it
satisfies the IND-CCA notion of security [52].

It is widely known that the AES-GCM block cipher
mode of operation satisfies these guarantees [42], where
K = {0, 1}λ, M = {0, 1}∗, C = {0, 1}∗. In other words,
it can tolerate messages of arbitrary length and produce
ciphertexts accordingly.

3. Zero-knowledge Signature Verification

We require a scheme for constructing zero-knowledge
proofs of knowledge of valid signatures (ZKPVS) of sig-
natures produced during TLS exchanges. Such a scheme
considers a prover and a verifier, where the prover holds
a valid signature σ issued by a keypair sk, vk, and the
verifier holds a list R = {vki}i∈[m] of all valid public veri-
fication keys, where vk ∈ R. Previous work has produced
practical schemes for proving knowledge of ECDSA sig-
natures (e.g. see ZKAttest [26] and CDLS [15]), noting
their similarity to ring signatures [58], in particular.

Figure 6. Security games for establishing anonymity and unforge-
ability guarantees of a ZKPVS scheme Π.

Anon

1 : Let {ski, vki}i∈[n], and R = {vki}i∈[n]

2 : (m,R, i0, i1)← AOS,OC({vki}i∈[n])

3 : if [(i0, i1 /∈ [n]) ∨ (vki0 , vki1 /∈ R)] : abort

4 : d←$ {0, 1}
5 : Sig← Ψ.Sign(skid ,m)

6 : σ ← Π.Prove(R, Sig,m)

7 : d′ ← A(σ)

8 : if [d′
?
= d] : return 1

9 : return 0

Unf

1 : Let {ski, vki}i∈[n], and R = {vki}i∈[n]

2 : (m∗, R∗, σ∗)← AOS,OC(R = {vki}i∈[n])

3 : if [(R∗ ̸⊆ R)∨
4 : (∃ i′ ∈ QC s.t. vki′ ∈ R∗)∨
5 : (m∗ ∈ QS)] : abort

6 : return Π.Verify(R∗, σ∗,m∗)

Similar approaches for other TLS-compliant signature
schemes (e.g. based on RSA) exist [53], but do not ap-
pear to be practical for our application (though practical
constructions would have immediate value for our work).

While some previous work refers to the zero-
knowledge functionality that we require as ring signature
schemes [15], [26], [30], we note that the functionality
differs in that the eventual proofs are constructed over
standard signatures (by non-signing entities). As a re-
sult, we give a modified formalisation below in Defini-
tion 8 that captures this primitive.

Definition 8 (ZKPoK of Valid signatures). Let R =
{vki}i∈[n] be a collection of public keys for a valid sig-
nature scheme Ψ, and let (sk, vk) be a keypair, such
that there exists a j ∈ [n], where vk = vkj. A scheme
for building zero-knowledge proofs of knowledge of valid
signatures (ZKPVS), Π, is a tuple of the following algo-
rithms:

• Π.Prove(R = {vki}i∈[n],Sig,m): outputs a proof σ
of a valid signature Sig with respect to R;

• Π.Verify(R = {vki}i∈[n], σ,m): outputs a bit b ∈
{0, 1}, where b = 1 indicates successful verification,
and b = 0 indicates failure.

Security properties. We now describe the required
security properties of a ZKPVS scheme. Note that
the properties bear resemblance with ring signature
schemes [58]. First, we say that Π is complete if, for
any set of keys {(ski, vki)}i∈[n], j ∈ [n], message m, the
set R = {vki}i∈[n], signature Sig ← Ψ.Sign(skj ,m), and
σ ← Π.Sign(R,Sig,m), then 1← Π.Verify(R, σ,m). Sec-

17



ond, let Anon and Unf be the security games defined in
Fig. 6. We say that Π is anonymous (resp. unforgeable)
if the advantage of a PPT algorithm, A in either game
is negligible. In both games, the adversary has access to
the following oracles:

• OS: takes as input an index i, a message m′,
and a set R′, and returns a proof σ ←
Π.Prove(R′,Sig′,m′) of a valid signature Sig′ over
m′;

• OC: takes as input an index i, and returns the
randomness used to generate vki.

Furthermore, let QS and QC be the sets of queries
sent to OS and OC, respectively.

13

Instantiations. As mentioned above, it is possible to in-
stantiate the required functionality with a specific proof
scheme that generates signatures under ECDSA private
keys that preserve anonymity amongst a set of known
ECDSA verification keys (e.g. see [15], [26], [30]). This
means that we can directly instantiate our DCTLS pro-
tocol for servers using ECDSA signing. Supporting TLS
signatures of other types requires practical instantiations
of ZKPVS schemes for the specific signing method.

The three phases (HSP, QP, CP) of a generic three-
party TLS (DCTLS) protocol are formally described (in
terms of their inputs and outputs) below.

• (pp, spC , spS , spV) ← DCTLS.HSP(1λ): The hand-
shake phase takes as input a security parameter,
and computes a TLS handshake between S, and
an effective client that consists of both C and V.
The public/secret parameters (pp, spS) learnt by
S are the same as in a standard TLS handshake.
The secret parameters learned by C (spC) and V
(spV) are shares of the secret parameters learnt by
a standard TLS client [24], so that neither party
can compute encrypted traffic alone.

• (r, q̂, r̂) ← DCTLS.QP(pp, spC , spS , spV , q): The
query phase takes the public and secret parame-
ters of each party as input, along with a query, q,
that is to be sent to S. This phase requires S to
construct a response, r, to q and return it to C.
The phase outputs both q and r, and also vectors
of TLS ciphertexts (q̂ and r̂) that encrypt the client
queries and the server responses. q̂ and r̂ are vectors
containing blocks of the TLS ciphertext encrypting
q and r, respectively.

• b ← DCTLS.CP(pp, spC , spV , q, r, q̂, r̂, (i, j)): The
commitment phase outputs a bit b, where b = 1 if C
constructs a valid opening of q̂i and r̂j with respect
to the unencrypted q and r. Broadly speaking, C
sends to V the TLS-encrypted ciphertexts, before V
sends spV to C, and then C opens the commitments.
Note that a valid opening could be proving in zero-
knowledge that r̂j encrypts a value in a given range,
or using 2PC to decrypt the block directly.

13. Note that both oracle definitions assume the generation of a
global set of key pairs that are used during the security game, and
a correspondingly global set, R, of all valid verification keys.

4. Handshake Phase Security

For establishing the security of the handshake phase,
we need to show that C (in cooperation with V) and
S establish a secure TLS 1.3 channel. To do this, we
use the multi-stage key exchange model of [24], which
follows the Bellare-Rogaway (BR) framework [9] for
establishing authenticated key exchange security based
on session key indistinguishability, and builds on the
multistage model of Fischlin and Günther [27], [36]. This
model considers an adversary that: interacts with several
concurrent TLS 1.3 sessions between different endpoints
(each of which has its own identifier); can intercept,
drop, and inject messages between entities; can corrupt
endpoints to learn their secret parameters; and can re-
quest specific leakage of established keys. The two core
security properties that an adversary is attempting to
break are known as Match Security14 and Multi-Stage
Security.15

To prove the above security properties, we rely on
a similar security framework to that used in Oblivious
TLS [1, Section 6], that models C as a multi-party entity
known as a TLS engine. The differences in comparison
with the original model of [24] are: (1) the handshake
traffic keys are leaked to the multi-stage adversary only
when C is corrupted; (2) the MAC keys used in CF and SF
messages are leaked to the multi-stage adversary upon
reception of the corresponding messages; (3) the IVs are
leaked to the adversary; (4) the adversary has the ability
to make the engines abort; (5) the adversary is able to
shift the computed secret by an arbitrary scalar Qϵ.

One crucial difference in our approach from the TLS
engine model of [1] is in criterion (1): we only reveal
handshake traffic keys when the client is corrupted, and
not when the verifier is. It’s worth recalling that criterion
(5) is permitted (as it is in [1]) since V can arbitrarily
influence the session secret by scalar multiplication. This
means that the security of DiStefano is likewise based
on the Shifted PRF ODH assumption [12]. See [1, Def-
inition 2] for more details. We also require (as in [1])
the additional property that the adversary can only test
handshake keys if both C and V of a connection are
completely honest. Finally, we only allow the adversary
to corrupt a single party within any given session.

To summarise, the DiStefano security model essen-
tially provides the adversary with a subset of the ca-
pabilities of the adversary in [1]. Note that a potential
strengthening of the security model could include the
adversary learning S’s identity when it corrupts C. How-
ever, such information only becomes pertinent during
the commitment phase, when we later consider the case
of a malicious V. Since we only allow corruption of a
single entity in a single session, we do not consider this
possibility during the handshake phase of the protocol.

14. That any two sessions with identical identifiers will agree on
the same key eventually.

15. That any tested key is indistinguishable from a random
string of the same length.

18



Algorithm 1 2PC-ECtF ideal functionality

Require: sskc = Y xc
s , sskv = Y zv

s

Ensure: Output shares tc to C, and tv to V of the x-
coordinate of Z = Y xc+zv

s

Algorithm 2 2PC-DeriveTKHS ideal functionality

Require: (tc, H0, H1) from C
Require: (tv) from V
Ensure: For each w ∈ {c, v}: return

(HSw,CHTSw,SHTSw,dHSw, tkwchs, tk
w
shs) to {C,V}

Applying this model to DiStefano. To use the model
defined above, we analyse the 2PC interaction between
C and V, and show that a corrupted client/verifier can
only learn details linked to criteria (1)–(5) above. Fig. 5
gives a summary of the 2PC interactions between C and
V, where Algorithm 1, Algorithm 2, and Algorithm 3
give descriptions of the ideal 2PC functionalities that
are used.16 Our proof is situated in the standard model.

Before any 2PC takes place, the client and the verifier
compute a shared value SSK = gxc+zv , where xc and zv
are the secrets of the respective participants. In this por-
tion of the execution, it is possible for either participant
to shift the session key by a certain scalar value, taken
from the scalar field associated with the group that is
being used. Criterion (5) captures this capability for an
adversary, by allowing them to shift the eventual shared
secret by a scalar value once they have corrupted one of
the participants.

In each executed 2PC functionality, C and V can con-
trol their inputs to each function, and produce a value
that is used in subsequent stages of the TLS protocol.
By using maliciously-secure 2PC garbled circuit proto-
cols, we reduce the “cheat-down” ability for either party
to breaking any of the individual primitives executed
within the garbled circuits. Fortunately, each of these
primitives is already proven secure individually, and in
a non-2PC TLS setting [24]. In other words, using these
primitives does not permit any additional capabilities to
an adversary that corrupts either party.

Therefore, criteria (1)-(4) are explained in the fol-
lowing. As noted in [1], V must reveal certain values
(SHTSv and CHTSv) to allow C to decrypt handshake
traffic before the application session keys are derived.
As was shown in [24], revealing this information after
committing to server-encrypted ciphertexts is safe, since
the eventual application traffic secrets are independent
of the handshake-encryption traffic keys. This protects
against a malicious client, but means that any adversary
that corrupts C learns all of the intermediate secrets that
are used for encrypting and decrypting traffic during
the handshake. On the other hand, a malicious verifier
sending incorrect values will immediately be discovered
since C will no longer be able to decrypt any traffic.

16. See Fig. 2 for the full TLS derivation of each value.

Algorithm 3 2PC-DeriveTKApp ideal functionality

Require: (dHSc) from C
Require: (dHSv) from V
Ensure: For w ∈ {c, v}: return (tkwcapp, tk

w
sapp) to {C,V}

Algorithm 4 2PC-RL-Encrypt ideal functionality

Require: (tkccapp, q, AD) from C
Require: (tkvcapp, AD) from V

(q̂, τq̂)← AEAD .Enc(tkcapp, q;AD)
return Output (q̂, τq̂) to C
return Output q̂ to V

We can now finalise the security of the handshake
into the following theorem.

Theorem 9 (Security of handshake phase). The DiSte-
fano protocol is secure with respect to the ideal handshake
phase functionality (DCTLS.HSP), when assuming the
following:

• a maliciously-secure 2PC-ECtF protocol;
• a maliciously-secure 2PC-DeriveTKHS protocol;
• a maliciously-secure 2PC-DeriveTKApp protocol;
• the hardness of the Shifted PRF ODH problem [1,
Definition 2];

• the underlying security of the TLS 1.3 protocol [24].

The proof of this theorem follows a standard hybrid
argument, where at each stage the 2PC protocol is
replaced with an ideal functionality that computes the
same result. Since each 2PC protocol is executed in
sequence, this proof argument follows in the standard
model. Once the ideal functionality is used, the rest of
the security proof follows from the same properties that
guarantee security of the underlying TLS 1.3 handshake
protocol. A very similar security proof was given in [1]
in the universal composability framework.

As a consequence, the security of DiStefano is con-
firmed, based on the choices of 2PC protocols that are
used. The MPC primitives that we use and implement
satisfy malicious security, and are discussed formally in
Section 3 and Section 4. Our experimental results in
Section 7 detail how performance changes depending on
the choice of 2PC primitives.

5. Query Phase Security

As in the handshake phase, while the server is left
untouched, we continue to consider the client and the
verifier as one that works together to encrypt and de-
crypt packets to and from S. This is a requirement, since
the end of the handshake phase of a DCTLS protocol
leaves the client and verifier with shares of the secret
session parameters, that need to be combined in order
to construct messages.

In effect, the query execution phase considers two
ideal functionalities: 2PC-RL-Encrypt (Algorithm 4), and

19



Algorithm 5 2PC-RL-Decrypt ideal functionality

Require: (tkcsapp, (̂r, τ̂r), AD) from C
Require: (tkvsapp) from V

return AEAD .Dec(tksapp, r̂, τ̂r;AD) to C

2PC-RL-Decrypt (Algorithm 5). In 2PC-RL-Encrypt, the
client and the verifier submit their secret parameters,
and the client submits a query (e.g. an HTTP request).
The ideal functionality returns an encryption of this
query, under a TLS 1.3-compliant AEAD scheme (Ap-
pendix B). In 2PC-RL-Decrypt, the client and the verifier
submit the same inputs, and the client submits a cipher-
text received from the server, and the ideal functionality
returns the decryption of this ciphertext under the same
AEAD scheme, or ⊥ in the event that the ciphertext does
not decrypt properly.

We can show that the query phase of DiStefano is
secure when AEAD = AES-GCM, assuming the secu-
rity of the 2PC-AES-GCM protocol (Appendix G). The
proof that the query phase of DiStefano satisfies security
with respect to the ideal DCTLS.QP functionality follows
once we have protocols that are secure with respect to
2PC-RL-Encrypt and 2PC-RL-Decrypt. The proof that
2PC-AES-GCM satisfies both follows almost immedi-
ately from Lemma 14 and Lemma 15, due to the similar-
ity between the ideal functionality for 2PC-RL-Encrypt
(2PC-RL-Decrypt) and 2PC-AES-GCM Encrypt (2PC-
AES-GCM Decrypt). We state the full theorem below
for completeness.

Theorem 10. The DiStefano protocol is secure with re-
spect to the ideal query phase functionality (DCTLS.QP),
when assuming a maliciously-secure 2PC-AES-GCM
protocol, and the underlying security of the TLS 1.3
protocol [24].

6. Commitment Phase Security

For the commitment phase of DiStefano, we split the
requirement into a number of sub-properties: session pri-
vacy (SPriv), ring session authentication (SAuth1n), and
session unforgeability (SUnf). In each model, we first as-
sume that secure handshake and query phases have been
computed, using the ideal functionalities (DCTLS.HSP,
DCTLS.QP) (Appendix C). Recall that we only consider
adversarial corruption of a single party in any situation,
and, therefore, for any post-handshake security game, we
consider only handshake phase corruptions concerning
the same party.

In each of the security models (Fig. 7), we consider a
(potentially dishonest) C that starts by sending a com-
mitment, cq̂,̂r, to a specific session, S. In SPriv, the honest
client C constructs and sends a proof, σS,sid,L, that cq̂,̂r is
a commitment to a TLS session established with S ∈ L
(L is the set of accepted servers). The adversarial verifier,
AV , succeeds if it identifies the identity of S (it can
point which server in the set L that C is communicating

with). In SAuth1n, we consider an adversarial client, AC ,
where the communication in the security game is the
same, except that AC succeeds if the commitment cq̂,̂r
corresponds to a session S established with a server
S ′ /∈ L. Finally, in SUnf, V reveals their secret session
data to AC , and AC succeeds if it can open cq̂,̂r to a
different session S’. Overall, we show that each of the
properties follows, assuming a sufficiently binding and
hiding commitment scheme, and a ZKPVS scheme for
TLS certificates for showing that S ∈ L (e.g. [30], see
Appendix C).

Session privacy. For protecting the privacy of sessions
during the commitment phase, i.e. that the client com-
mitment does not reveal any information about the
session to a malicious V, we show that DiStefano satisfies
security in the SPriv security game (Fig. 7).

Lemma 11. Let Γ be a computationally hiding commit-
ment scheme for a DCTLS scheme, and let Π be a ZKPVS
scheme that satisfies anonymity for TLS certificates.
Then, for all PPT algorithms A, we have that:

AdvsprivA,DCTLS,Γ(λ) < negl(λ).

Proof. We construct our proof of security as a two-step
hybrid proof. In the first step, Π is modified to always
sign using the secret key of server S0, regardless of the
bit d. In the second step, the commitment scheme is
modified to always commit to traffic exchanged with S0,
regardless of the choice of bit d. We can see that steps
above can be arbitrarily changed to always commit to
traffic exchanged with S1, therefore, we will speak only
about the S0, without loss of generality.

Note that once both hybrid steps have been exe-
cuted, the adversary AV has no advantage in guessing
the bit d, since they always receive session commitments
and zero-knowledge proofs of valid signatures for the
traffic received from a single server. Therefore, we simply
have to show that the real execution of SPriv is indistin-
guishable from this case to show that DCTLS satisfies
SPriv security.

The distinguishing probability between the two views
in the first hybrid step can be bounded by the anonymity
property of Π. In other words, if there is an adversary A
that distinguish between the two steps, then there is an
adversary B that can break the Anon security game of Π
(Fig. 6). This follows since, in the case when d = 1 the
only difference is the fact that σ is always computed over
the certificate of S0. Therefore, B can simply forward
the message to be signed during the TLS execution
to their challenger, and receive back the signature σ.
Then, they can send this signature back to A and output
whatever A outputs. If A has non-negligible advantage
in distinguishing between the two steps, then so will B.

The distinguishing probability between the two views
in the second hybrid step can be bounded by the fact
that the session commitment is generated only for S0. As

20



Figure 7. Security games for the commitment protocol.

SPriv

1 : L← AV(1λ, 1N )

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp0, sp0C , sp
0
S , sp

0
V)← DCTLS.HSP(1λ, C,S0,AV)

4 : (pp1, sp1C , sp
1
S , sp

1
V)← DCTLS.HSP(1λ, C,S1,AV)

5 : if [(S0 /∈ L) ∨ (S1 /∈ L)] : return 0

6 : d←$ {0, 1}
7 : q← AV(L)
8 : (q̂, r̂)← DCTLS.QP(ppd, spdC , sp

d
S , sp

d
V , q)

9 : σ ← Π.Sign(skΠ, pp
d, spdC , L)

10 : cd ← Γ.Commit(spdC , q̂, r̂)

11 : d′ ← AV({ppd, spdV}d∈{0,1}, vkΠ, q, c
d, σ, L)

12 : if [d′
?
= d] : return 1

13 : return 0

SAuth1n
1 : L← V(1λ, 1N )

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp, spC ,⊥, spV)← DCTLS.HSP(1λ,AC ,S,V)
4 : if [S ∈ L] : return 0

5 : σ ← AC(pp, spC, skΠ, vkΠ, L)
6 : return Π.Verify(vkΠ, pp, spV , σ, L)

SUnf

1 : (pp, spC , spS , spV)← DCTLS.HSP(1λ,AC ,S,V)
2 : q← AC(1λ, pp, spC)
3 : (q̂, r̂)← DCTLS.QP(pp, spC , spS , spV , q)

4 : c← AC(spC, q̂, r̂)
5 : q′ ← AC(spC , spV , q, q̂, r̂, c)
6 : if [(Γ.Open(spV , q

′, c)) ∧ (q′ ̸= q)] : return 1

7 : return 0

such, any adversary B against the computational hiding
property of Γ forward their challenge commitment to A
in the same as before, and win with the same advantage
as A. This completes the proof.

Ring authentication. We show that DiStefano ensures
that a malicious C must authenticate S to V, out of a
set L possible n accepted servers (where L is specified by
V) using the SAuth1n security game (Fig. 7).

Lemma 12. Let Π be a ZKPVS scheme that satisfies
unforgeability for TLS certificates. Then, for all PPT
algorithms A, we have that:

Adv
sauth1n
A,DCTLS,Π(λ) < negl(λ).

Proof. Suppose that C could win the SAuth1n game with
non-negligible advantage. Then, an adversary B that
is attempting to forge proofs for Π can simply output
whatever signature AC outputs as their answer to the
Unf security game (Fig. 6). If AC creates a valid forgery,
then the unforgeability of Π is violated.

Session unforgeability. We show that a malicious C
cannot open commitments to sessions that were not
previously committed to, by showing that DiStefano
satisfies security in the SUnf security game (Fig. 7).

Lemma 13. Let Γ be a perfectly binding commitment
scheme for a DCTLS scheme. Then, for all PPT algo-
rithms A, we have that:

AdvsprivA,DCTLS,Γ(λ) < negl(λ).

Proof. It is clear to see that an adversary attempting to
break the perfect binding property of Γ can utilise the

Algorithm 6 2PC-AES-GCM Encrypt

Require: k = kc + kv, IVc, IVv, {hi
c}i∈[n], {hi

v}i∈[n]
Require: C inputs a message M
Require: IVc and IVv must not have been supplied for
encryption previously.

Ensure: C learns ((C1, . . . , Cn), τ(A,C, k, IV )).
Ensure: V learns (C1, . . . , Cn).
if IVc ̸= IVv then

return Error ▷ The IVs must match.
end if
Parse M as M1∥ . . . ∥Mn ▷ Mi fits AES blocksize
C = (Ci ← AES.Enc(kc + kv, IVc + i)⊕Mi)i∈[n]
τc ← PA||C||len(A)||len(C)({hi

c})
τv ← PA||C||len(A)||len(C)({hi

v})
τ ← τc ⊕ τv ⊕ AES.Enc(kc + kv, IVc)
return (C, τ) to C
return C to V

adversary AV against SUnf to establish a valid opening
based on an uncommitted value.

7. Secure 2PC Encryption & Decryption

2PC functionalities. We consider the 2PC functional-
ities for encryption and decryption in 2PC-AES-GCM
as given in Algorithm 6 and Algorithm 7, respectively.
Our ideal functionality also covers the nonce uniqueness
requirement of AES-GCM. We note that in practice
these additional checks do not seem to affect the running
time by much: for example, our prototype garbled circuit
implementation only requires around 768 extra AND
gates, representing around a 10% increase over an AES
circuit.

21



Algorithm 7 2PC-AES-GCM Decrypt

Require: k = kc + kv, IVc, IVv, {hi
c}i∈[n], {hi

v}i∈[n]
Require: C inputs a set of n masks {bi} and secret

parameters sp for a computationally binding and per-
fect hiding commitment scheme Γ′, and V inputs the
corresponding commitments {di} that were sent by C,
generated using Γ′, and ephemeral challenges {t′i}.

Require: C and V jointly input a set of ciphertext blocks
C1, . . . , Cn and a tag τ(A,C, k, IV ).

Require: IVc and IVv must not have been supplied for
encryption previously.

Ensure: C learns (M1, . . . ,Mn).
Ensure: V learns (E1, . . . , En).
if ∃ i s.t. 0← Γ′.Open(sp′, di, t

′
i, bi)

return Error ▷ Commitment checks failed.
end if then
if IVc ̸= IVv then

return Error ▷ The IVs must match.
end if
τ ′c ← PA||C||len(A)||len(C)({hi

c})
τ ′v ← PA||C||len(A)||len(C)({hi

v})
τ ′ = τ ′c ⊕ τ ′v ⊕ AES.Enc(kc + kv, IVc)
if τ ′ ̸= τ then

return Error ▷ Invalid tag
end if
(Mi = Ci ⊕ AES.Enc(kc + kv, IVc + i))i∈[n]
(Ei = AES.Enc(kc + kv, IVc + i)i ⊕ bi)i∈[n]
return (Mi)i∈[n] to C
return (Ei)i∈[n] to V

Security argument. We now argue the security of
computing encryptions and decryptions with respect to
the ideal functionalities described in Algorithm 4 and
Algorithm 5. We implicitly assume that 2PC evaluations
of the polynomial P and the AES functionality (using
garbled circuits) are secure with respect to malicious
adversaries, and that AES-GCM is a secure AEAD
scheme. These security guarantees are assumed in pre-
vious work [1], [63], [75], but are not made explicit.
We require them when proving that the query phase of
DiStefano is secure (Appendix E).

Lemma 14 (Malicious Client). 2PC-AES-GCM is secure
in the presence of a malicious adversary that controls C.

Proof. Let S be a PPT simulator for the encryption
functionality, that simply returns samples C ′ from the
domain of AES.Enc, and τc ←$ {0, 1}t, and returns
(C, τc) to C. We ultimately argue that the real-world
outputs of 2PC-AES-GCM are indistinguishable from
this.

Let SAES be a simulator for the ideal 2PC evaluation
of AES.Enc, and let SP be a simulator for the ideal
evaluation of P . It first sends m to SAES and learns
C = (C1, . . . , Cn). Then it sends C to SP (along with
A) and learns τ . It returns (C, τ) to C. To see that this
is indistinguishable from the real-world, we can trivially

construct a hybrid argument from the real-world proto-
col that relies on two steps, replacing real garbled circuit
evaluation of each functionality with ideal-world simula-
tion, and argue security based on the maliciously-secure
2PC garbled circuit approach that we use (Section 3).

Finally, based on the assumption that AES is a pseu-
dorandom permutation, we can construct a final hybrid
step, that replaces AES.Enc with a random value in the
domain.17.

The case of decryption is much simpler since the
client only learns the message if they submit valid inputs
to S (by the AEAD security guarantees of AES-GCM).
This can be established using the same simulators SAES
and SP defined above.

Lemma 15 (Malicious Verifier). 2PC-AES-GCM is se-
cure in the presence of a malicious adversary that con-
trols V.

Proof. The proof for a malicious V follows the same
structure as in the case of C, but note that V is strictly
less powerful, because the V does not submit a message
to be encrypted.

We briefly note that PageSigner follows a slightly
different approach than this for computing tags: we
decided not to follow their approach, as a “back-of-an-
envelope” calculation suggests that it is strictly slower
than the aforementioned approach. We discuss this in
more detail in Appendix H.

8. Commitment Scheme

We prove that the commitment scheme for AES-
GCM ciphertexts presented in Section 5.1 is a per-
fectly hiding and computationally binding commit-
ment scheme. Concretely, this means showing that
the 2PC’s Algorithm 7 produces computationally bind-
ing and perfectly hiding commitments Ei to ei =
AES.Enc(k, IV + i). Since the primary application of
this work is to prove facts about traffic received from
the server, we focus on only the AES Decrypt algo-
rithm. If we wanted to prove facts about client-encrypted
traffic, Algorithm 6 would have to be updated to also
include commitments. As before, we implicitly assume
that the 2PC evaluations of the polynomial P and the
AES functionality are secure with respect to malicious
adversaries.

First, let Γ′ be a perfectly hiding, and computa-
tionally binding commitment scheme, generating com-
mitments d ∈ {0, 1}λ for arbitrary x ∈ {0, 1}∗. Let
K and X be the key and ciphertext spaces for AES-
GCM, respectively. Then, let sp′ ← Γ′.Gen(1λ), and
di = Γ′.Commit(sp′, bi) for some bi ←$ X .

Lemma 16 (AES-GCM Commitment security). The al-
gorithm 2PC-AES-GCM Decrypt, when instantiated with

17. This only holds if the IV is a nonce, see [75, §B.2].

22



Γ′, produces computationally binding and perfectly hiding
commitments to decryptions of AES-GCM ciphertexts.

Proof. We first formally describe the AES-GCM com-
mitment (ΓAES) scheme for any of the ith message blocks,
using the following functionality (applying the frame-
work described in Appendix A).

• sp = (bi, kc), and assume that the receiver holds the
commitment di ← Γ′.Commit(sp′, bi).

• Ei ← ΓAES.Commit(sp,Mi): Runs the 2PC-AES-
GCM-Commit algorithm to generate commitments
(Ci, Ei = ei + bi), where Ci is the ith received
ciphertext, and ei = AES.Enc(kc + kv, IVc + i).

• (kv, t
′
i) ← ΓAES.Challenge(Ci, Ei): reveals V’s key

share, kv, to the commitment sender, along with
a challenge t′i for Γ

′.
• b̂ ←$ ΓAES.Open(sp, (Ci, Ei), kv,Mi): First, checks
that 1← Γ′.Open(sp′, di, t

′
i, bi). Then, computes bi⊕

Ei to reveal ei, and then returns 1 iff M ′ ← Ci⊕ ei
satisfies M ′ = Mi.

To argue perfect hiding, notice that bi is not revealed
to V during the execution of 2PC-AES-GCM-Commit.
As Γ’ is a perfectly hiding commitment scheme, we may
simply replace bi with a uniformly random value ri in the
range of bi, which in turn makes Ei = ri⊕ ei a one-time
pad encryption of ei. By the properties of the one-time
pad, we have that the scheme is therefore also a perfectly
hiding commitment to ei = AES.Enc(kc + kv, IV + i).

To argue computational binding, we first ensure that
the masks bi generated by the client are consistent with
their input to the 2PC-AES-GCM-Commit algorithm by
explicitly checking that they correspond to the verifier-
known commitments. To argue security henceforth, we
consider two possible events. In the first event, we
consider a PPT adversary B′ that can generate valid
openings of di to b′ ̸= bi for Γ′. The advantage of B′ is
clearly bounded by the computational binding security
of Γ′. In the second event, we assume that no such
B′ exists, and instead we consider a PPT adversary
B that finds M ′, such that M ′ = Ei ⊕ bi ⊕ Ci for
M ′ ̸= Mi. Since the only free variable in this equation
is ei = AES.Enc(kc + kv, IVc + i), this would require B
to find k′ ̸= kc⊕ kv such that AES.Enc(k′, IVc + i) = ei.
Clearly, by the IND-CCA security of AES-GCM, finding
such a k′ ∈ K is computationally infeasible. Note that
the lack of key-committing security does not play a role
here: the adversary would need to freely manipulate the
value of ei to launch such an attack, which is impossible
under the assumption that bi is fixed.

In this section, we compare our approach to com-
puting AES-GCM tags to the approach employed by
PageSigner [64]. In a 2PC setting, we assume that both
k and the powers of h = hc+hv are additively shared by
both parties, with C, IV and A acting as public inputs.

Assuming that C is a single block without any asso-
ciated data (i.e. C = C1), we have τ = (hm−2

c + hm−2
v ) ·

(h1
c+h1

v)·C1 = (hm−1
c +hm−1

v +hm−2
c ·h1

v+hm−2
v ·hm−2

c )·
C1. As the first of these terms can be computed locally,
the cost of computing τ can be reduced to computing
(hm−2

v · hc + hm−2
c · hv) · C1 in 2PC. This approach can

actually be written as a variant of our approach, as
the left hand-side is fixed for a particular sharing of h.
However, PageSigner instead repeats this process each
time a tag is computed. Interestingly, it turns out that
simply computing a sharing of h2

vhc and h2
chv is sufficient

to tag blocks of arbitrary length, lowering the cost of
tagging to just two OT-based multiplications.

From a performance perspective, a “back-of-an-
envelope”calculation shows that this approach is strictly
less efficient than the one that we adopt in Section 5.
Intuitively, this is because our approach allows all poly-
nomial evaluation to be done locally, even while both
approaches require computing an initial sharing of h
and its powers, PageSigner’s approach explicitly requires
computing two OT-based multiplications per tagging.
Concretely, instantiating these multiplications using the
maliciously-secure scheme presented in [22] with 128-bits
of statistical security would require 2048 oblivious trans-
fers of 128-bits for the multiplication alone, requiring
around 32KiB of bandwidth per tag. In contrast, our
scheme only requires transferring around 64 bytes per
tagging operation. In other words, our scheme requires
around 500× less bandwidth per tagging operation than
the approach employed by PageSigner.

DiStefano can be used to provide statements in zero
knowledge about encrypted data transmitted during a
TLS 1.3 session. Specifically, it can provide proofs that
a specific substring appears on said data which, in turn
means, that the confidentiality of the data remains and
only what is needed is revealed.

Revealing a substring. We briefly show how DiS-
tefano can implement two specific optimisations pre-
sented by DECO:“Selective Opening”, which allows C to
reveal that a certain substring is present in a plaintext
M , and “Selective Redacting”, which allows C to reveal
the entirety of M , other than some selection of omitted
substrings.

Using our AES-GCM protocol, both approaches are
easily achievable. Suppose that C is committing to some
set of ciphertexts C1, . . . , Cn for the purpose of proving
a statement. Since C is required to commit to their
additive shares of the decryption keys kci before learning
V ’s key shares, selectively opening Ci simply requires
revealing kci to V. Similarly, C can selectively reveal any
combination of ciphertexts by simply revealing those in-
dividual keys. In practice, revealing each block is rather
cheap, requiring only 128-bits of bandwidth. In addition,
this scheme can be adapted to deal with substrings
inside a single block C: rather than revealing kci directly,
C and V instead decrypt C in a garbled circuit with the
output masked by ρ that is chosen by C. We remark that
this approach is somewhat fragile: for any soundness
to hold, we would also require that C is only allowed
to modify certain portions of the output plaintext. We

23



view this difficulty as orthogonal to this work: this would
require more extensive zero-knowledge proofs.

Combining with server anonymity. Note that sub-
string revealing procedures may be at odds with the
anonymity property provided by the ZKPVS scheme.
For instance, if we take the example of proving a suffi-
cient bank balance, then different banks may encode the
account balance in different ciphertext blocks. There-
fore, while the ZKPVS scheme may hide which bank is
used by the client, the selective opening process may
inadvertently leak the identity of the bank by opening
a specific ciphertext block. Any implementation of at-
testations based on the DiStefano framework must be
cognizant of these discussions.

In this section we highlight why we have not in-
corporated the recent improvements presented in [69]
into our work. We stress that there are no fundamental
incompatibilities between DiStefano and the improve-
ments made by [69]; instead, the difficulties are solely
implementation driven. We consider producing a tool
that allows us to incorporate these changes to be a
pressing, but orthogonal, open problem.

An optimised 2PC-HMAC. We briefly recall the secret
derivation optimisation presented in [69]. For the pur-
poses of exposition we shall first show how to efficiently
compute the HMAC function in a 2PC setting before
incorporating this into TLS1.3 secret derivation.

Let H = SHA256 . Recall that the HMACSHA256 of a
variable length message m with a key k is

HMACH(k,m) = H((k ⊕ opad)||H((k ⊕ ipad)||m)).

From this we can see that naively computing HMACH

in 2PC is likely to be expensive, as any generic circuit
would be required to compute the hash of m in 2PC.
Given that the cost of computing such a hash is pro-
portional to the length of m, such a circuit would likely
perform poorly on long messages.

This situation was considered in the context of
CBC-HMAC by [75]. In this setting, P and V wish to
compute the CBC-HMAC of a message m that is known
entirely by P under a shared key k. In order to im-
plement this functionality efficiently, the authors of [75]
take advantage of the underlying structure of SHA256.
Namely, suppose that m1 and m2 are two correctly sized
blocks. Then

SHA256(m1,m2) = fH(fH(IV,m1),m2)

where IV is the initialisation vector and fH is the
compression function of SHA256. If we now return to
the HMAC computation, it is clear that the inner-most
call is fH(IV, k ⊕ ipad). Given that fH is assumed to be
a one way function, revealing s0 = fH(IV, k⊕ ipad) does
not reveal anything about k to either party; thus, we
can realise HMAC more efficiently by simply revealing
s0 to P, allowing them to compute the hash of m
locally i.e outside of 2PC. This means that the HMAC

computation of an arbitrarily long message only requires
a few SHA256 calls in 2PC, rather than potentially many
when realising HMAC generically.

This idea was recently adapted to the context
of TLS 1.2 secret derivation by the authors of [69].
Briefly, the authors propose revealing the value s0 =
fH(IV0,pms⊕ ipad) to both parties, allowing some of the
fH calls to be realised locally. In addition, the authors
of [69] also propose re-using previously garbled values
across multiple circuits, allowing even fewer fH calls to be
carried out in 2PC. Concretely, this optimisation reduces
the number of needed fH calls in 2PC from 18 to only 6.

Implementation difficulties. We now highlight why this
approach seems difficult to realise in DiStefano. At a
high-level, the main issue is that our current garbled
circuit library (emp) does not support either accepting
new input or outputting partial values as the circuit
runs. Indeed, if emp were to support this feature, then
realising the optimisation presented would be easy. How-
ever, the fact that emp does not support this feature
means that we would have to realise this optimisation by
chaining multiple circuits together. In this model, each
circuit computes a sub-portion of the secret derivation
procedure and outputs some intermediate results to each
party.

On the one hand, this approach would allow each
party to locally compute some of the calls to fH , yield-
ing the claimed speed-ups. However, this would require
each circuit to either recompute any shared input, and
to validate that the same value of s0 is used across
multiple circuits. In the case of the former, we would
need to recompute pms in each individual circuit, and
we would also need to check that the same value of s0 is
supplied by both parties. Put simply, this decomposition
would reduce some of the potential speed-ups from [69].
Moreover, decomposing secret derivation into multiple
circuits would allow a malicious party to alter their
inputs at each stage, potentially causing selective failure.
Whilst we stress that we cannot see an obvious way
to use this to expose a vulnerability in the security of
DiStefano, it would contradict elements of the security
model that we consider.

Nonetheless, none of these reasons invalidate the
approach taken in [69], and we believe that a similar idea
can be applied even with the current version of emp.
For example, notice that our secret derivation circuit
recomputes the compression function fH(HS ⊕ ipad) a
total of three times during secret derivation; re-using this
value inside the same circuit would be more efficient than
our current approach. A similar approach can also be
applied to the derivation of traffic secrets. However, we
have not implemented this approach, as we believe that
it is unlikely to be competitive with [69] in practice. Put
differently, we believe that the completion of a tool that
allows for the [69] optimisation to be realised securely
inside DiStefano should be the priority for future work.

In this section we present an attack on an interpre-
tation of the TLS 1.3 variant of DECO and the recently

24



presented Janus [47] TLS attestation mechanism. No-
tably, this attack allows either a malicious client to pro-
duce false attestations, or for a malicious proxy to fully
decrypt all traffic. We stress that our interpretation of
DECO’s TLS 1.3 variant may be different from exactly
what the authors intended, due to lack of specificity, and
thus the attack presented may not be directly applicable.
However, the attack presented here applies to any TLS
attestation protocol that does not carefully handle the
sharing (and disclosure) of traffic secrets.

The SF message. The attack presented in this section
exploits a flaw in how both Janus and DECO’s TLS 1.3
variant handle session authentication between the client
and the verifier. In order to explain this flaw, we briefly
recall the TLS 1.3 server authentication mechanism used
in TLS 1.3 (see [24] for a more thorough explanation).

First, assume that S and C are establishing a TLS 1.3
session; and that S and C have exchanged both the hello
messages (ClientHello and CH) and derived authentic
copies of the handshake secrets SHTS and CHTS. At
this stage, §authenticates itself to C as follows:

1) To ensure authenticity, S sends its certificate SCRT
to C, followed by a signature on the hash of the
session transcript (SCV). Upon receipt of these mes-
sages, C checks the certificate and uses the corre-
sponding public key to verify SCV. Notably, C is
able to check SCV because C has a full view of the
transcript.

2) To ensure integrity, S uses SHTS to derive the fin-
ished key fks. S then computes the server finished
(SF) message, by computing a HMAC on the hash
of the session transcript using fks. S then sends SF
to C, who locally validates SF by deriving their own
fks. Again, C is only able to check the SF because
they have a full and complete view of the transcript.

In the regular (i.e two-party) variant of TLS 1.3
this approach has been shown to provide very high
security guarantees: the pioneering work of [24] have
shown that the TLS 1.3 handshake protocol establishes
session keys with strong security properties under stan-
dard cryptographic assumptions. Interestingly, the TLS
1.3 handshake protocol actually achieves a stronger level
of security than may be fully necessary in some settings.
For example, it has been argued that the SF message
alone authenticates the transcript [24], as the SFmessage
is an authenticated HMAC of the transcript sent so far.
Put differently, the SCV message does not provide any
additional integrity guarantees for the derived keying
material compared to just checking the SF message.

TLS 1.3 in DECO and potential avenues for attack.. The
authors of [75] initially proposed using a variant of the
above idea to accelerate certificate checking in DECO’s
TLS 1.3 variant. Namely, the authors of DECO suggest,
as the traffic keys are independent of the handshake
keys, that the C and V can simply derive all secrets
in a single circuit, with C alone learning all handshake
keys for the purpose of certificate checking. Whilst it is

unclear that this approach will work18, we note that the
description given in DECO does not specify whether V
ever learns the SF or SCV message in the TLS 1.3 version
of DECO, or if C alone has access to this information.
We argue that this approach leads to a very straight-
forward attack. Namely, suppose that C is a malicious
and wishes to falsely attest of data using a server S. In
this attack, C begins a three-party handshake with V,
and receives V’s keyshare for the three-party handshake.
Then, rather than contacting S and carrying out the
usual three-party handshake, C simply replies to V with
its own keyshare. Intuitively, this step is the same as
establishing a TLS 1.3 session between C and V without
the involvement of S. This step produces the following
outcomes:

1) V, upon receipt of C’s keyshare, is unable to de-
termine whether it belongs to S or C, as it is
unauthenticated at this stage. Thus, V must assume
that the keyshare is a legitimate value from S.

2) On the other hand, C can now locally derive all
handshake and traffic secrets for the session, as C
knows the entirety of the shared handshake secret.
Thus, C can systematically deceive V in an unde-
tectable manner. Moreover, as V never learns the
SF message (or even the SCV message), V is unable
to check if the handshake transcript was valid. As
such, if C indicates that the checks passed, then V
continues as if the transcript was authentic.

At this stage, C can forge any TLS traffic between
itself and S, without V being able to detect the forg-
eries, leading to false attestations. Moreover, this attack
persists even if V explicitly checks the SF message of
the transcript: as the transcript between V and C is a
valid TLS 1.3 transcript, the secret derivation process
will produce valid secrets, and checks on SF will pass.

Formally speaking, this attack arises from the fact
that, although V and C are treated as a singular entity
from the perspective of S, they are in fact very different
entities. Practically speaking, the main issue is that C
obtains a valid copy of the transcript, whereas V does
not. Moreover, ensuring that V receives any meaningful
authenticity guarantees in the face of a malicious ad-
versary whilst respecting privacy is somewhat difficult.
Indeed, a trivial solution to the aforementioned attack
would be to simply require that V learns the identity of
S and the SCV value, allowing V to authenticate S.
Attack vectors on the Janus protocol.. We argue that
the recently proposed Janus [47] TLS attestation proto-
col is potentially vulnerable to an attack with a similar
root cause, albeit with a different mechanism.

Briefly, the Janus protocol is a hybrid between DiS-
tefano and DECO’s proxy mode. In its presented con-
figuration, Janus treats the verifier as a TLS 1.3 proxy
that forwards (and records) all traffic between C and S.

18. Given that deriving the traffic keys requires SF to be in-
corporated into the transcript hash, it seems impossible that the
application and traffic secrets could be derived in one step.

25



Notably, the Janus protocol differs from DiStefano by
using a set of semi-honest garbled circuits for all secret
derivation, other than AES-GCM tagging and verifica-
tion. In this model, the adversary follows an agreed-upon
protocol without deviation. Instead, the primary aim of
the adversary is to learn the secret inputs of the honest
party. Whilst this change is primarily made for efficiency,
the authors of Janus also claim that the authenticity
guarantees given by the SCV and SF messages allows for
this change to be made without any loss of security.

In order to highlight a potential attack, we now
briefly describe the differences in secret derivation be-
tween Janus and DiStefano. We note that the protocols
are essentially identical up until the secret derivation
procedure, and thus we omit these details.

1) C and V invoke a semi-honest garbled circuit pro-
tocol, that outputs the SHTS value to C. C uses
an authentic copy of the transcript to check the SF
and SCV messages. If the checks fail, then C aborts.
Otherwise, C reveals SHTS to V, and V repeats the
same checks.

2) C and V repeat similarly for the CHTS circuit.
3) Finally, C and V derive the traffic secrets using a

series semi-honest garbled circuits. We note that,
according to Figure 4 of [47], the dHS secret ap-
pears to be derived after the SHTS value has been
checked. As we shall soon explain, this is prob-
lematic when only semi-honest garbled circuits are
used.

We now present a potential attack using a malicious
adversary that is undetectable using semi-honest garbled
circuits. First, assume that V is a malicious verifier that
wishes to compromise the confidentiality of C. In order to
achieve this, V generates a public key Kv and establishes
a TLS session with S, recording the entire transcript
T and deriving all traffic secrets. Note that from the
perspective of S, V is behaving honestly, and thus S
cannot mitigate this attack. Then, when C begins the
Janus protocol, V replays the transcript T to C and
maliciously garbles the SHTS derivation circuit such
that the SHTS from T is revealed. We stress that this
step requires V to be a malicious actor, as the circuit
would otherwise output a different SHTS due to the
keyshare input by C. At this stage, C will check the SF
and SCV messages and conclude that they are valid. V,
hence, has succeeded in their attack: V can simply ignore
the request for validation using the CHTS, and, as they
also know all other traffic secrets, V can undetectably
decrypt or modify any messages exchanged between S
and C. Moreover, even if V is unable to modify the SHTS
check, it seems clear that modifying the output of the
dHS circuit to a known value is enough to remove any
security guarantees that Janus offers; indeed, setting the
dHS to some known value affords the exact same powers
to V in a manner that is undetectable to C.
Why will these attacks work?. Intuitively, all the afore-
mentioned attacks rely on the mismatch between the

transcript seen by V and the transcript seen by C. On
the one hand, omitting certain information from the
view of V allows C to act in an arbitrarily powerful
fashion, providing no guarantees at all to C. Yet, we
consider the attack on Janus to be equally as serious;
here, the session guarantees expected by C simply fade
away in an undetectable manner, even though C may
have access to a full view of the transcript. In both cases,
the attacks exist simply because there is no concrete
binding between the transcript shown to C by V and the
actual, underlying session that is being carried out.

Mitigating these attacks appears fairly straightfor-
ward. DiStefano avoids the attack on DECO’s TLS 1.3
variant by simply requiring that C provides commit-
ments to session traffic as part of the authentication
process. This, coupled with a ZKPVS scheme attesting
to the validity of the SCV value, is enough to ensure that
C cannot fool V without a collaborating S. Moreover,
the use of maliciously-secure garbled circuit protocols
is enough to prevent V from modifying the output of
the SHTS derivation in a predictable or useful fashion.
Finally, we mention that a potential defence against the
attack described on Janus would be to simply require
that V proves that the value it sends in the client
handshake somehow involves the share provided by C.
This could be achieved by revealing both T = Kv +Kc

and Kv to C, which would allow C to ensure that its
view of the transcript is authentic relative to the current
session. However, we caution against the belief that this
safeguard alone is sufficient, as it is clear that any attack
against the derivation of dHS is sufficient to allow a
malicious adversary to break the security of the Janus
protocol. We leave clarifying the security properties of a
DiStefano-like protocol that uses semi-honest primitives
for future work.

An overview of the TLS 1.3 handshake is given
in Fig. 8, our notation is based on the notation defined
in [24], which we provide in Table 7 and Table 6 for
completeness.

Table 6. TLS 1.3 handshake and traffic secrets.

Secret Context Input Label

CHTS H0 = H(CH,. . . ,SH) Label1 = “c hs traffic”
SHTS H0 = H(CH,. . . ,SH) Label2 = “s hs traffic”
dHS H1 = H(“′′) Label3 = “derived”
fkS Hϵ = H(∅) Label4 = “finished”
fkC Hϵ = H(∅) Label4 = “finished”

CATS H2 = H(CH,. . . ,SF) Label5 = “c ap traffic”
SATS H2 = H(CH,. . . ,SF) Label6 = “s ap traffic”

26



Figure 8. TLS 1.3 handshake with certificate-based authentication.
Shorthands correspond to [24]. Purple represents messages sent
or calculated by C, pink by S. Messages with an asterisk (*) are
optional, and those within braces ({}) are encrypted.

Client Server

static (Sig): pkS , skS
ClientHello:

rc←$ {0, 1}256, xc←$ Zq

+ClientKeyShare: Xc ← gxc

ServerHello: rs←$ {0, 1}256, ys←$ Zq

+ServerKeyShare: Ys←$ gys

DHE← Y xc
s DHE← Xys

c

HS← HKDF .Extract(∅,DHE)

CHTS← HKDF .Expand(HS,Label1 ∥H0)

SHTS← HKDF .Expand(HS,Label2 ∥H0)

dHS← HKDF .Expand(HS,Label3 ∥H1)

tkchs ← DeriveTK(CHTS)

tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
Sig← Sign(skS ,Label7 ∥H3)

fkS ← HKDF .Expand(SHTS,Label4 ∥Hϵ)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

MS← HKDF .Extract(dHS,∅)

CATS← HKDF .Expand(MS,Label5 ∥H2)

SATS← HKDF .Expand(MS,Label6 ∥H2)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
Sig← Sign(skC ,Label8 ∥H5)

fkC ← HKDF .Expand(CHTS,Label4 ∥Hϵ)

{+ClientFinished:} CF ← HMAC(fkC ,H6))

tkcapp ← DeriveTK(CATS)

tksapp ← DeriveTK(SATS)

abort if Verify(pkc,Label8 ∥ ∥H5,Sig) ̸= 1

abort if CF ̸= HMAC(fkC ,H6)

Table 7. TLS 1.3 auth messages and associated hashes,
where Label7 is “TLS 1.3, server CertificateVerify” and

Label8 is “TLS 1.3, client CertificateVerify”.

Auth message Context Input Label

SCV H3 = H(CH,. . . ,SCRT) Label7
SF H4 = H(CH,. . . ,SCV)
CCV H5 = H(CH,. . . ,CCRT) Label8
CF H6 = H(CH,. . . ,CCV)

27


	Introduction
	Background
	General Notation
	Background on DCTLS Protocols
	Overview of DiStefano

	Secure Multi-Party Computation
	DiStefano Protocol
	Handshake Phase: HSP
	Query Execution Phase: QP
	Commitment Phase: CP
	Subsequent Phases

	AES-GCM Specifics
	Commitment to AES-GCM Ciphertexts
	2PC Optimisations

	Security Analysis
	Experimental Analysis
	Discussion
	Related Work
	Applications
	Limitations
	Browser Integration

	Conclusion
	References
	Appendix
	Commitment Schemes
	Authenticated Encryption
	Zero-knowledge Signature Verification
	Handshake Phase Security
	Query Phase Security
	Commitment Phase Security
	Secure 2PC Encryption & Decryption
	Commitment Scheme


