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Abstract. Amortized bootstrapping offers a way to simultaneously refresh many ciphertexts of a fully
homomorphic encryption scheme, at a total cost comparable to that of refreshing a single ciphertext.
An amortization method for FHEW-style cryptosystems was first proposed by (Micciancio and Sorrell,
ICALP 2018), who showed that the amortized cost of bootstrapping n FHEW-style ciphertexts can
be reduced from é(n) basic cryptographic operations to just O~(né), for any constant ¢ > 0. However,
despite the promising asymptotic saving, the algorithm was rather impractical due to a large constant
(exponential in 1/¢) hidden in the asymptotic notation. In this work, we propose an alternative amor-
tized bootstrapping method with much smaller overhead, still achieving O(n®) asymptotic amortized
cost, but with a hidden constant that is only linear in 1/¢, and with reduced noise growth. This is
achieved following the general strategy of (Micciancio and Sorrell), but replacing their use of the Nuss-
baumer transform, with a much more practical Number Theoretic Transform, with multiplication by
twiddle factors implemented using ring automorphisms. A key technical ingredient to do this is a new
“scheme switching” technique proposed in this paper which may be of independent interest.
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1 Introduction

Fully Homomorphic Encryption (FHE) schemes support the evaluation of arbitrary programs on encrypted
data. Since a first solution to the problem was proposed in [8], FHE has become both a central tool in
the theory of cryptography, and an attractive cryptographic primitive to be used to secure privacy sensitive
applications. Still, improving the efficiency of these schemes is a major obstacle to the use of FHE in practice,
and a very active area of research.

All reasonably efficient currently known constructions of FHE are based on the “Ring Learning With
Errors” (RingLWE) problem [19,22]. There are two main approaches to design FHE schemes based on Ring
LWE: the one pioneered by the BGV cryptosystem and its variants (e.g., see [4,9,10]) and the one put
forward by the FHEW cryptosystem and follow up work (e.g., see [3,5,7].) In BGV, ring operations are
directly used to implement (componentwise) addition and multiplication of ciphertexts encrypting vectors
of values. The ability to simultaneously work on all the components of a vector (at the cost of a single
cryptographic operation) makes these schemes very powerful. The downside is that they also require fairly
large parameters, leading to stronger security assumptions (namely, the hardness of approximating lattice
problems within superpolynomial factors), a very slow bootstrapping procedure, and complex programming
model. By constrast, in FHEW, ciphertexts are simple LWE encryptions (which offer native support only
for homomorphic addition,) while Ring LWE is used only internally, to implement a special “functional
bootstrapping” procedure that, given an encryption of m, produces a (bootstrapped) encryption of f(m), for
a given function f. The combination of linearly homomorphic LWE addition and functional bootstrapping
still allows to perform arbitrary computations: for example, as originally done in [7], one can represent bits
z,y € {0,1} as integers modulo 4, and then implement a (universal) NAND boolean gate as an addition
followed by a (functional bootstrapping) rounding operation |(z+y+2 mod 4)/2]|. The FHEW approach has
several attractive features: (1) since bootstrapping is performed after every operation, gates can be arbitrarily



composed, leading to a very simple and easy to use programming model; (2) since we only need to bootstrap
basic LWE ciphertexts supporting a single homomorphic addition, the scheme can be instantiated with much
smaller parameters; (3) in turn, this leads to weaker security assumptions (hardness of approximating lattice
problems within polynomial factors), and substantially simpler and faster bootstrapping, orders of magnitude
faster than BGV.

However, the lower speeds of BGV bootstrapping are largely compensated by its ability to encrypt and
operate on many values (encrypted as a vector) at the same time, allowing, for example, to simultaneously
bootstrap thousands of ciphertexts. This drastically reduces the amortized cost of BGV bootstrapping,
making it preferable to FHEW in terms of overall performance in many settings.

In an effort to bridge the gap between the two approaches, a method to amortize FHEW bootstrapping was
proposed in [21]. The suggested method consists in combining several (say n) FHEW /LWE input ciphertexts
into a single RingLWE ciphertext, and then perform FHEW-style bootstrapping on a single RingLWE
ciphertext. This results in a major asymptotic performance improvement, reducing the amortized cost of
FHEW bootstrapping from O(n) homomorphic multiplications to just O(n°), for any fixed constant e > 0.
Unfortunately, the method of [21] is rather far from being practical, due in large part to a large constant
20(1/¢) hidden in the asymptotic notation.

Challenges, Results and Techniques In this paper we propose a variant of the bootstrapping procedure
of [21] with similar asymptotics, but substantially smaller multiplicative overhead. In particular, we reduce
the amortized cost of FHEW bootstrapping from 2°(1/€) . n€¢ to just (1/€) - n°. In other words, we achieve a
similar asymptotic cost O(n°) (for any constant € > 0), but with an exponentially smaller constant hidden
in the asymptotic notation.

The main challenge faced by [21] was the use of RingGSW registers to implement the homomorphic
fourier transform required to bootstrap a RingLWE ciphertext. These registers, introduced in [7], encrypt
messages in the exponent as X™. This allows to implement homomorphic addition using some form of
ciphertext multiplication X .- X™1 = X™o+™1 hut other homomorphic operations required by FFT/NTT
algorithms (like subtraction and constant multiplication by so-called “twiddle factors”) are much harder,
seemingly requiring homomorphic division and exponentiation on ciphertexts. This is addressed in [21] by
using the Nussbaumer transform, a variant of the FFT/NTT algorithm that does not require multiplication
by twiddle factors. Unfortunately, the use of the Nussbaumer transform in [21] also introduces a 20(1/¢)
factor in the running time, making the algorithm impractical.

Methods to perform homomorphic multiplication in the exponent (i.e., exponentiation by a constant) are
known, using automorphisms, and have been used in connection to the bootstrapping of FHEW-like cryp-
tosystems [3,15], but they only work for RingLWE ciphertexts, making them inapplicable to the RingGSW
ciphertexts required by [21]. In this paper we introduce three technical innovations that allow to overcome
these issues:

We introduce a new RinglWE-to-RingGSW “scheme switching” procedure, which allows us to transform
RingLWE ciphertexts into equivalent RingGSW ones. The method is of independent interest and may find
applications elsewhere. Note that a similar technique also appears in [14].

We design a new variant of the amortized FHEW bootstrapping of [21] that operates on RingLWE
registers, rather than RingGSW. This allow us to implement multiplication by arbitrary twiddle factors using
the automorphism techniques of [3,15], and instantiate the amortized FHEW bootstrapping framework with
a standard (homomorphic) FFT/NTT computation, which carries a much smaller overhead. Then, when
RingGSW registers are required, we resort to our scheme switching procedure to convert RingLWE to
RingGSW on the fly.

We replace the power-of-two cyclotomic rings [7,15,21] and circulant rings [3] used by previous FHEW
bootstrapping algorithms, with prime cyclotomics. This requires a new error analysis for prime cyclotomics,
which we describe in this paper. (Error analysis for power-of-two cyclotomic and circulant rings is compar-
atively much easier.) This speeds up and simplifies various steps of our bootstrapping procedure, e.g., by
supporting a standard radix 2 FFT (as opposed to the radix 3 Nussbaumer transform of [21]), and completely
bypassing the problem that automorphisms only exists for invertible exponents [15].



One important problem that still remains open is that of reducing the noise growth in amortized FHEW
bootstrapping. Just as in previous work [21], the ciphertext noise of our bootstrapping procedure increases
multiplicatively at every level of the FFT/NTT computation. In order to keep the RingLWE noise (and
underlying lattice inapproximability factors) polynomial, this requires to limit the recursive depth of the
FFT/NTT algorithms to a constant. This is the reason why both [21] and our work only achieve O(n)
amortized complexity, rather than the O(logn) one would expect from a full (O(log n)-depth) FFT algorithm.
In practice, this limits the recursive depth to a small constant, typically just two levels or so. Further
improving amortized FHEW bootstrapping, allowing the execution of a homomorphic FFT with O(logn)
levels is left as an open problem.

Related and Concurrent Work: Ring automorphisms have been used in many other works aimed at improv-
ing the efficiency of lattice cryptography based on the RingLWE problem, most notably the evaluation of
linear functions in HElib [13] and algebraic trace computations [2]. Our use of automorphisms is most closely
related to [15], which recently used them to improve the performance of FHEW (sequential, non-amortized)
bootstrapping. In a concurrent and independent work [11], an algorithm very similar to ours is presented.
The algorithm achieves essentially the same results, improving the cost of amortized FHEW bootstrapping
from 2001/¢) . pl/¢ to (1/€) - n'/¢. The overall structure of the algorithm is very similar, using automor-
phisms to replace the Nussbaumer transform in [21] with a standard FFT. However, the algorithms differ in
some technical details. For example, while [11] uses the circular rings [3], we use prime cyclotomics, which
results in marginally smaller ciphertexts. Another difference is that while [11] extends the automorphism
multiplication technique to work directly on RingGSW ciphertexts, we center our FFT algorithm aroung
RingLWE registers (which are smaller than RingGSW by a factor 2) and convert them to RingGSW only
when necessary using our new scheme switching technique. This allows us to exploit RLWE’-RGSW multi-
plications instead of RGSW-RGSW multiplications during the homomorphic inverse FFT, which gives a 2x
performance improvement compared to RGSW key-switching as used in [11].

At Eurocrypt 2023, Liu and Wang introduced a new algebraic framework for batch homomorphic com-
putation based on the tensoring of three rings [16]. Their new framework is also used in the context of
bootstrapping algorithms [17] to improve the efficiency of the amortized bootstrapping algorithm following
the Nussbaumer technique from [21], achieving an amortized bootstrapping cost of 0(1) FHE multiplications
within a polynomial modulus. We compare our algorithm to theirs in Section 5.4.

More recently still, another line a work from Liu and Wang [18] (Asiacrypt 2023) obtained the asymptotic
results of [16,17] while also achieving concrete efficiency by exploiting both BFV and LWE ciphertexts.
Asymptotically, [18] requires a super-polynomial modulus whereas our work considers only polynomial
modulus. Considering a super-polynomial modulus would allow to increase the recursive depth in our work
but would unlikely be effective in practice.

2 Preliminaries

2.1 Cyclotomic Rings and Embeddings

Given a positive integer N, the N** cyclotomic polynomial is defined as @y (X) = HiEZ}‘\, (X — wb) for

wy = e2™/N ¢ C the complex N*" principal root of unity. The N** cyclotomic ring is defined as Ry =
Z[X]/(®n(X)). In this work, we will consider the dth cyclotomic ring modulo g, for d a power-of-2, defined

as Rq = Zg[X]/Pa(X) ~ ZZ’ (@) Each element of this ring corresponds to a polynomial a € R, of degree less
than ¢(d) and with coefficients taken modulo ¢. There exist various ways of representing a ring element. One
can first map the polynomial a(X) = -, ;) @i - X' to its vector of coefficients (a1, az -, aga)) € Zg(d).
This is known as the coefficient embedding. The norm of any ring element then refers to the 5 norm of the
corresponding vector in the coefficient embedding.

Another representation of a ring element is with its canonical embedding o : K — C" which endows
K, the d*" cyclotomic number field, with a geometry. Note that the ring of integers of K corresponds to
the d*" cyclotomic ring Z[X]/®4(X). We know that K has exactly ¢(d) ring homomorphisms, also called



embeddings, ; : K — C. The canonical embedding is then defined as the map o(a) = (0;(a))icz; for a € K.
The norm usually considered when using the canonical embedding is the {o, norm ||o(a)||e = max; |o;(a)|.
More generally, for any a € K and any p € [1, 0], the £, norm is defined as ||a||, = ||o(p)||p- Since the o;
are ring homomorphisms, we then have for any a,b € K the inequality ||a - b||, < [|a|ls - [|b]]p-

Working with prime cyclotomics, or more generally with non-power-of-two cyclotomics can be rather
cumbersome, in particular, when considering the canonical embedding and not just the coefficient embedding.
We know that any two embeddings are related to each other by a fixed linear transformation on R¢. For power-
of-2 cyclotomics, the transformation is even an isometry and thus the coefficient and canonical embeddings
are equivalent up to a v/d factor. In this work, we will be working with both R4, the d** cyclotomic ring
modulo ¢ for which we will use the notation R;, and the ¢'* cyclotomic modulo @ for a prime ¢ and a
positive integer ) > 0, which we will denote R,¢y. The latter is a prime cyclotomic ring where the two
embeddings cannot be easily interchanged. This will affect the error growth analysis as we later explain in
Section 3.2.

2.2 Encryption Schemes and Operations

We recall definitions and notations for the standard LWE encryption scheme used in the bootstrapping
algorithm. We also extend our description to the ring version of LWE and introduce two related schemes,
GadgetRLWE and RGSW, both used in our algorithm.

LWE: Consider some positive integers n and ¢q. Let sk < x be a secret key sampled from a distribution x
and m € Z a message. The LWE encryption of the message m under the secret key sk is given by

LWE, sk(m) = [aT,b] € ZL*("+D),

where a <~ Zy, b = —a-sk+e+m € Z; and e «+ X' is the error, sampled from a distribution y’, and
ciphertexts are represented as row vectors.

RLWE: The ring version of LWE considers the ring R,. Let sk < x be a secret key sampled from a
distribution x and m € R, a message. The RLWE encryption of the message m under the secret key sk is
given by

RLWE, «k(m) = [a,b] € R,'*?,

where a < R, and b = —a-sk+ e + m and e; « x’ for each coefficent e; of the error. If context is clear,
we do not specify the modulus g or the secret key sk.

Gadget RLWE or RLWE’ Consider a gadget vector v = (vg,v1, -+ ,v5—1). Gadget RLWE or equivalently
refered to as RLWE’ is expressed as a vector of RLWE ciphertexts of the form

RLWE/, (m) = (RLWEgk (vo - m), RLWEgy (v1 - m), - -+ , RELWEg (ve—1 - m)) € RE*?

i.e., matrices with k rows, each representing a basic RLWE ciphertext. We remark that RLWE ciphertext
can be regarded as a special case of RLWE' instantiated with a trivial gadget @ = (1). So, anything we say
about RLWE' applies to RLWE as well.

RingGSW Given a message m € R, we define
RGSWgk(m) = (RLWE,, (sk - m), RLWE,, (m)) € Rq%“,

We now summarize the operations that can be done with the different schemes presented above and focus
in particular on the operations used in our algorithm. The main operation in our algorithm that serves as a
building block for other operations is the scalar multiplication by arbitrary ring elements. In order to compute



this multiplication, one uses RLWE’ with gadget vector v = (vg,v1,- -+ ,vk—_1). The scalar multiplication is
denoted as R ® RLWE' and corresponds to ® : R x RLWE’' — RLWE defined as

k—1
t © RLWE, (m) := » _t; - RLWEg(v; - m)
=0
k—1
= RLWEg <Z v -t - m> = RLWEg(t - m)
=0

where ). v;t; = t is the gadget decomposion of t into “short” vectors t;, for an appropriate notion of “short”
depending on the gadget v. Each operation performed with ciphertexts increases the error. When performing
many of these operations, as in our bootstrapping algorithm, it is crucial to keep track of the error growth.
More details will be given in Section 3.2. For now, we simply state that each error e; in RLWEg (v; - m),
after the scalar multiplication, becomes Ef:_ol t;-e;.

The RLWE and RLWE' schemes only support multiplication by constant values. In order to obtain
multiplication by ciphertexts, we need to consider the RGSW scheme. Let us now consider the multiplica-
tion *: RLWE x RGSW — RLWE defined as

RLWEgk(m;) * RGSWg (my) := a ©® RLWEL, (sk - mz) + b ® RLWEL, (my)
= RLWEgk(a-sk-ms + b - mjy)
= RLWESk(m1 -Img + e - mg)

for RLWE(m;) := (a,b). The output of this multiplication is an RLWE ciphertext encrypting the message
m; - my + e - my. The error thus additively increases by e; - my. If the error term e; - my is sufficiently
small, then this approximately results in an RLWE encryption of the product of the two messages. This
multiplication can be extended to RLWE' ciphertext multiplication ' : RLWE' x RGSW — RLWE' defined
as

RLWE;k(ml) * RGSWsk(mg)

:= (RLWEgk (vo - m;) * RGSWgk(my), - - - , REIWEgy (vg—1 - m; ) * RGSWgk (m5))

=~ RLWE;k(ml . mg).

Each component REWEg (v; - m;) x RGSWgk (m2) of the result has the same error growth as a * operation
in the RLWE x RGSW case. In particular, it includes an error term e; ; - my that requires the second message
ms to be small.

The «’ operation corresponds to k times the x operations, and thus a total of 2k ® operations.

2.3 Using Ring Automorphisms

Similarly as in [15], we use ring automorphisms to perform scalar multiplication with registers. Recall that
an automorphism is a bijective maps from the ring R to itself such that for a given ¢ € Z;, we have
a(X) — a(X?).

Automorphism in RLWE and RLWE': Consider the following RLWE ciphertext (a(X), b(X)) which encrypts
a given message m(X) under a certain key sk, i.e., (a(X),b(X)) = RLWEg(m(X)). We also consider a
switching key ak; = RLWEL, (sk(X")), which is used to map ciphertexts [a, b] from key sk(X?) to sk. Given
an automorphism 1); : R — R such that a(X) — a(X"), we recall the procedure Evalauto given in [15]:

1. apply ¢ to each of the RLWE components. One obtains (a(X"), b(X")) = RLWEgy(x+)(m(X"))
2. apply a key switching function [a, b] — a ® ak; + [0, b] to obtain a ciphertext RLWEgy(x)(m(X"))

The same application can be done on RLWE' ciphertexts. The only difference comes during the second
step where we require k key switching, one for each RLWE ciphertext. The only R @ RLWE' operation comes
from key switching. Hence, for automorphism on RLWE, we have a single R ® RLWE' operation and when
considering automorphisms on RLWE’ we have k RORLWE' operations, where k is the length of the gadget.



2.4 Homomorphic Operations on Registers

Following the FHEW framework, we use cryptographic registers that encrypt a Z, element “in the exponent”.
In other words, a register storing m € Z, is an encryption of X™ € R,.4. In our algorithm, the encryption
scheme will sometimes be RLWE' and sometimes RGSW. Some operations require one scheme or the other.
In order to perform some of these operations, we will need to scheme-switch from RLWE' to RGSW. We
describe our scheme-switching technique in Section 3.1. In our bootstrapping algorithm, we will primarily
use three operations on registers, i.e., either RLWE' or RGSW ciphertexts. We have already mentioned these
operations and recall them now:

— « : RLWE' x RGSW — RLWE' multiplications: this operation allows to multiply two ciphertexts, which
in the exponent acts like and addition.

— Scheme-switching: this operation converts an RLWE' register into an RGSW register.

— Automorphisms: this operation allows us to multiply the exponent of a RLWE' ciphertext by some
(known) value, and correponds to multiplication by a constant.

Note that automorphisms can only operate on RLWE' registers, not an RGSW ones. (This is because RGSW
does not directly support the key switching operation required by the second step of the homomorphic
automorphic application algorithm. See Section 3.1 for details.) On the other hand, multiplication requires
one of the two registers to be in RGSW format. The scheme switching operation is used to combine the
two operations, keeping all registers in RLWE’ form, and convert them to RGSW only when required for
multiplication.

In order to analyse the performance and the correctness of our algorithm we will analyse these three
operations in terms of number of R @ RLWE’ operations needed to compute them and the related error
growth (see Table 2).

2.5 Standard and Primitive (Inverse) FFT

We only mention in this paper some relevant facts about FFT algorithms that are useful for our algorithm.
Note that when refering to FFT and related algorithms, we actually refer to the Number Theoretic Transform
(NTT) algorithm.

An FFT algorithm can either evaluate a polynomial at all N** roots of unity for a given N or only
the primitive ones. The former case is refered to as a standard/cyclic FE'T whereas the latter case is called
a primitive/cyclotomic FFT. In the case of a standard FFT, the inverse direction reconstructs from these
evaluations a polynomial mod X~ —1. When multiplying two polynomials a(z) and z(z) modulo a cyclotomic
polynomial, using a standard FFT (and its inverse) requires a “final reduction” step to take polynomials
modulo (X¥ — 1) to polynomials modulo @ (X). This “final reduction” increases the multiplicative depth
of the circuit and, in our case, prevents some useful optimizations (namely, using RLWE instead of RLWE'
in the last FFT layer as we will explain in Section 4.2). We can avoid the final reduction step by using
a primitive/cyclotomic FFT, which we recall only evaluates the polynomials at the primitive N** roots of
unity w’ for i € Z}. The inverse FFT then reconstructs from these evaluations a polynomial modulo the
N cyclotomic polynomial @y (X). We note however that, unlike with a standard FFT, the forward and
inverse directions are not interchangeable. We focus the rest of the discussion on the case of power-of-two
cyclotomics (which is the case we will use in this paper) where N = d = 2!°%2" and ¢(d) = d/2. For the
forward direction, let 0 < i < ¢(d) = d/2, and w be a primitive d** root of unity. Then the Fourier coefficients
f=(fo, f, ...,fd/g) of a polynomial f(X) = Ziﬁ;l fi - X* (mod X%?2 4 1) are computed as

d/2—1

fim 3 fut,

§=0
and the inverse FFT of f can be computed as

d/2—1 d/2—1

fom 203 fum e 2t 3 e
i=0 =0



for each 0 < /¢ < d/2 and output f( )= Zfl/% ! f— - X'. It is easy to verify that these operations are inverses

—

of each other, i.e., f = f. The FFT also preserves both addition and multiplication, i.e., f—i— g=f+g and

f o g = f g where o denotes the component-wise multiplication of input vectors. Moreover, one notices that
the inverse operation can be computed as a standard/cyclic length-¢(d) FFT (using w™? as the ¢(d)*" root
of unity) followed by a multiplication by a power of w.

In this work, we mainly focus on homomorphic computation of the inverse FFT (while the forward FFT
is done in cleartext), so the constant multiplication by 2/d becomes a (minor) computational overhead. We
can easily remove this overhead by moving the constant from the inverse FFT to the forward FFT. If we
move the constant 2/d, we get

d/2—
2 2
FFT(f)z = a a 21+1
7=0
—1 d e (@i
FFT ™! (FFT(f))e = 5 - FFT(f), = Z FFT(f

In this case, FFT ! is still the inverse of FFT and addition is preserved in the same manner. However, note
that there is a slight difference in multiplication: FET™*(FFT(f) o §) = FFT *(FFT(f-g)) = f - .

In our algorithm, we will consider partial (primitive) FFT, denoted by PFT, where instead of reducing
modulo (X — ¢) (i.e., evaluating the polynomials at X = ¢, we reduce modulo (X* — ¢). In this reduction,
an X° term will not interact with an X7 term unless ¢ = j mod k. Hence, an equivalent description of a
partial FTT is doing k& FFTs in parallel, each with 1/k as many terms. More precisely, one FFT will operate
on the terms which are 0 modulo %, one FFT on just the terms that are 1 modulo k&, and so on. This also
applies to the inverse direction. In our algorithm, we will thus divide by ¢(d)/k and not ¢(d).

2.6 Summary of Notations

We summarize the notations used throughout the paper in Table 1. For simplicity of exposition, this paper
uses a standard power-of-B gadget (1, B, B2,..., B¥~1). In practice, this can be replaced by a CRT gadget
which typically supports more efficient implementation.

3 Novel Techniques

In this section, we introduce some novel techniques related to scheme switching and error analaysis. We
first introduce a new variant of scheme-switching. We then introduce an error analysis in the context of
prime cyclotomics. Indeed, our algorithm will use a prime cyclotomic for the registers, whereas common
FHE schemes use power-of-2 cyclotomic rings for which the error analysis differs.

3.1 RLWE’ to RGSW Scheme Switching

When an automorphism is applied to a ciphertext, it modifies both the encrypted message and the encryption
key. (This applies to RLWE, RLWE’ and RGSW ciphertexts alike.) Therefore, in order to use automorphisms
to operate homomorphically on ciphertexts, one needs a method to switch back to the original key. For RLWE
and RLWE’ ciphertexts, this is provided by a standard key switching operation as described in the previous
section. However, for RGSW encryption, this does not quite work. The reason is that a RGSW encryption
can be interpreted as a pair of RLWE’ ciphertexts encrypting m and m - sk. The first component does not
pose any problem, as it can be transformed using a standard RLWE’ key switching operation. However,
key switching cannot be directly applied to the second component, because it encrypts a key-dependent
message m - sk. So, RGSW key-switching would require not only to modify the encryption key, but also



Table 1. Summary of notations used in the paper

Notation |Description

Modulus Gplain Ciphertext modulus for standard LWE.
q Prime ciphertext modulus for input RLWE ciphertext. Plaintext modulus for registers.
Q Ciphertext modulus used in RLWE' / RGSW registers.
Rings Rin dth cyclotomic ring (mod q), 4%3&2]) ~ 73D,
d power-of-2 degree of Rip,.
Rreg qth prime cyclotomic ring mod @ used by the registers.
FFT k degree at which we stop the partial FFT.

o(d) the number of Plain-LWE ciphertexts that are packed into an RLWE ciphertext; the number
of coefficients in an R;, element; the number of coefficients in the input polynomial of the
FFT; the number of registers in any layer of the IFFT; the number of registers output by
the IFFT.
N = ¢(d)/k |the number of degree-(k — 1) polynomials output by the partial FFT.

w € Zyg a primitive (d/k)th root of unity in Z, for use in the FFT.

T4 radix for FFT layer.
L number of FFT layers.
Secret keys sp € ZZ;’Z’:;‘:H Plain LWE secret key.

z € Rin RLWE secret key for the input (packed) RLWE ciphertext.
s € Rreg |RGSW secret key used for registers.

Gadget decomposition B Base for the powers-of-B gadget used in registers.
dp [log5(Q)], the length of the PowersOfB gadget.
Error variance a3 The (expected) factor by which an Rrey @ RLWE' operation scales up the error variance in

a ciphertext.

O’éyRGSW The resulting error variance of the ® operation on each RLWE' component of RGSW (ms).
Ug)‘evalikey The resulting error variance of the ® operation on the evaluation key with error variance
Ujval_key‘

U%,aut_ key |The resulting error variance of the ® operation on the automorphism key RLWE, (¢ (sk)).
o2, The error variance of the input to an operation.

to change the message from m - sk to m - sk’, where sk’ is the new key. For this reason, key switching
(and homomorphic automorphism evaluation), is directly applicable only to RLWE and RLWE’ ciphertexts.
On the other hand, RGSW ciphertexts are required to perform homomorphic multiplications when both
multiplicands are encrypted. We address this problem by providing a method to convert RLWE’ ciphertexts
to RGSW ones, which we call scheme switching. Let us now describe how this is done.

Since RGSWgk(m) = (RLWEL, (sk-m), RLWEL, (m)) and we are given RLWEL, (m), we just need a way
to compute RLWEL, (sk - m). To do so, we will use RLWEL, (sk?) given as part of the evaluation key. We
will operate in parallel on each of the RLWEgy (v; - m) ciphertexts that make up the RLWEL, (m) ciphertext,
lifting each REWEgk (v; - m) to RLWEg (v; - sk - m). More precisely, for each RLWEgk (v; - m) := (a, b), we
compute

a ® RLWE/, (sk?) + (b,0).

By regarding (b,0) as a noiseless RLWE encryption of b - sk under the secret key sk, this computation
gives RLWEy (a - sk? + b - sk) = RLWEg ((a - sk + b) - sk) = RLWEg((v; - m + e) - sk). Hence we do get
RLWEgk (v; - sk - m) as desired, but with an additional error e - sk scaled up by sk from the input RLWE’
ciphertext error e. We will choose the secret key sk with small norm (e.g., binary) so that this multiplicative
error growth remains small. More details about the full error growth for this scheme switching will be given
in Section 3.2.

When our scheme switching method is used in conjuction with key switching, it allows a small optimiza-
tion. Say we are given a RLWEL,,(m), and we want to turn it into a RGSW encryption under sk. This can be
done in two steps, by first performing key-switching to RLWEL, (m), and then using the scheme switching key
RIWE,, (sk?®) to compute RLWE,, (m-sk). The optimization consists in using a modified scheme switching
key RLWEL, (sk’ - sk) to turn the input ciphertext (encrypted under sk’) directly into RLWEL, (m - sk),
performing key switching sk’ — sk and homomorphic multiplication by sk at the same time. Notice that
the running time is about the same as before as we still need another key switching sk’ — sk to compute



the other component of the output RGSW ciphertext. However, combining key switching and multiplication
in a single operation allows to slightly reduce the noise growth. To give a more modular presentation, we
ignore this optimization in the description of our algorithm.

3.2 Error Growth in Prime Cyclotomics

Analysing the error growth in bootstrapping algorithms is crucial for the correctness of the scheme as it allows
to set the proper modulus sizes and show the implementation can be run with concrete parameters. It is a
standard practice in lattice cryptography to estimate the error growth during homomoprhic operations under
the heuristic assumption that the noise in ciphertexts behaves like independent gaussian (or subgaussian)
random variables, with standard deviation that depends on the computation leading to the ciphertext. In
order to fairly compare our algorithm to previous work, in this paper we use a similar technique and compute
the total error estimation based on the error variance introduced by a single R,., © RLWE’ operation. In
previous works, where a power-of-2 cyclotomic is being used, this value is equal to %d Bqucr?nput where B
is the base for the power-of-B gadget, dg is the length of the gadget and aignpu
input RLWE’ ciphertext considered. Because Rreg is a prime cyclotomic, the analysis of this variance differs
in our case as we do not directly have a bound on the /, norm in the canonical embedding of a ring element
for which we know a bound on each coefficient. We thus propose the following theorem.

¢ is the error variance of the

Theorem 1. For an odd prime q and a positive integer @), let Ryoq be the " cyclotomic ring modulo Q
used for registers, and dp be the length of the gadget decomposition. For an RLWE' ciphertext defined over
Roreg, the error variance of the result of a single R,y ©@ RLWE' operation is bounded by

O'é < Qquafa?nput,
where Uz‘anut is the error variance of the input RLWE' ciphertext, and o2 is the variance of the gadget
decomposition of the input Rycq ring element.

Proof. We model an element r € R,., as sampled uniformly at random — this is a reasonable model
because in our algorithm the R,., elements always either come from a ciphertext (and hence are uniform)
or are simply an integer constant (leading to even smaller error growth). The gadget decomposition of
7 € Rreg, denoted Gr*l(r)7 then consists of dp ring elements rq,...,7rq, (which we model as independently
distributed). Note that we will use in our algorithm a balanced base-B digit decomposition but we leave
the decomposition unspecified here for sake of generality. We model the error vector egrrwr = (€1, - .-, €dy)
where each component is the error of each RLWE ciphertext in the input RLWE' ciphertext, as independent

random variables with variance afnput. The output error can then be computed as an inner product

dp
Eoutput = <G_1(T)7 gRLWE'> = Z T €.
i=1

We will start by considering a single multiplication v; := r; - ; (mod @4(X)). Recall that r; and e; are
both ring elements of R,q, i.e., polynomials of degree ¢ — 2 (as Ryeq = Zg[X]/(Pq(X)) and &4(X) =
1+ X +---+ X971). We want to compute the variance of each coefficient of

vi = (rig+ria X+ 470X (€0t e X+ Feig2XT?)  (mod &,(X)).

For simplicity of notation in the formulas below, we will consider 7; and e; to be polynomials of degree ¢ — 1
(instead of ¢ — 2) with leading coefficients 0, i.e., the trivial terms 7; g1 = €; 4—1 := 0. By computing r; - e;
(mod X9 — 1) first and then taking the result modulo @,(X), we can easily obtain the ¢! coefficient of v;,

which we denote vzm, for 0 < ¢ < g — 2. First, note that the (" coefficient of v} := r; - ¢; (mod X9 — 1) is

. (e -1 . . .
given by vi( ) = ?:0 Ti; - €i,6—j, where the subscripts of e are defined modulo g, i.e., e;p—; := €; g4o—; if

¢ < j. Then, since X9t = —X972 —... — 1 mod &,(X), the /! coefficient of v; modulo ®,(X) is computed



¢ 0. - ¢ .
asv() vl()vl(q - ?(l)rw (€i—j — €igq—j—1)- LetX():—rw (€i—j —€ig—j—1)for0<j<g-—1

and hence v Zq ! X, (e . Since r; 4—1 = 0 is a constant value, we trivially have that var(Xi(f;)_l) = 0.

When 0 < j < g — 2, the variance of each Xi{ j) equals to

202 if j=0orf+1
var(X\")) = var(ri ;) -var(eio—j — eigjo1) = 4 o e DT RO i
' 207 amput else

The first variance corresponds to the case where var(e; j—; — e;q—j—1) = var(e; ¢—;) as e;q—j—1 = 0 when
. _ _ - ; =1 ye \ _
j = 0or whenvar(e; y_j—e€;q—j—1) = var(e; q—j—1) as var(e; ;) = 0 when j = ¢+1. Since var (EJ 0 X} ) =

Zq 0 var(Xi(?) +23 0<jcr<q cov(Xl(?, X(é)) it now suffices to compute the covariance of each pair. We will
ﬁrst consider the special case where k = j + ¢+ 1 as it is the only case where common terms appear between

X(? and XZ-(’Zk). Indeed, we have that for k =7+ ¢+ 1,

‘
Xz(k) =7ijres1 - (€i,—jo1 — €ig_j_r—2),
where e; _j_1 = €; 4—;—1 also appears in Xi(f;-). However, due to the distributive property of covariance, it
holds that

COV(Xz(?aX(e)) —COV(Tj * €5,q—j—1:Ti,j+4+1 " €ig—j—1) = 0%
In all other cases we trivially have cov(X/ Xz(ek)) = 0 since Xfy- and X/ . are independent. Note that there

1,57
2 2

exist two j indices (j = 0, ¢ + 1) satisfying var(Xi(?) = 0;05pue When 0 < £ < g — 2, while there exists only

one such j index (j = 0) when ¢ = g — 2. As a result, we obtain the variance of vy) as

(2q — 3)o20? ifl=q—2

7~ input

_ 2,2 3 < _
var(v (e) Zvar X(g) {(2(1 4)0r0mput if0<l<qg-—2 .

Finally, the variance of each coeflicient of eouput denoted by 0’% is bounded by 2dgqo2o? a

input*
Corollary 1. For an odd prime q and a positivie integer Q, let R,y be the g™ cyclotomic ring modulo Q
used for registers, and dg be the length of a balanced base-B gadget decomposition with uniform coefficients
n [-B/2,B/2). For an RLWE' ciphertext defined over Rreg, the error variance of the result of a single
Rreg © RLWE' operation is bounded by

2
@ S 6 quUznput )

where afnput is the error variance of the input RLWE' ciphertext.

Proof. If one considers a balanced base-B digit decomposition of r € R,.., which consists of dp ring elements
r1,...,T4d wWhose coefficients are each uniforrn in [—B/2, B/2), then the variance of the gadget decomposition
of the input R,¢4 ring element satisfies 02 = B?/12. By replacing this value in the upper bound for 0® given

in Theorem 1, we get O’G quJ a

nput”

Remark 1. Note that the variance o2, considered for error analysis in power-of-2 cyclotomic is 02 = d BNGE Lt
(see [15, Section 4.2]), where N is a power of two and the 2N cyclotomic ring is considered. Interestlngly,

our analysis for prime cyclotomic rings only shows a difference by a factor 2.

3 In general, it holds that cov(XY, X Z) = E(X?*)E(Y)E(Z) — E(X)?E(Y)E(Z) for any random variables X, Y and
Z. Therefore, if E(Y) = E(Z) =0, then cov(XY, XZ) = 0.
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Error Growth in Previous Operations We now describe the error growth for the main operations used
in our algorithm as a function of o2.

RGSW x RLWE' multiplication: Recall that a multiplication between RLWEL, (m;) and RGSWgy(mz) =
(RLWEL, (m2), RLWE,, (sk - my)) is computed as a ©® RLWE,, (sk -mj) + b® RLWEL, (m;) for each RLWE
component (a,b) of RLWEL, (m;). From this description, we easily see that two ® computations are per-
formed to which should be added the error coming from the RGSW ciphertext itself multiplicatively. Finally,
as already mentioned when describing the operation, the error also additively increases by egpwg - mo. Since
msy is a monomial, we simply add J%LWE/. Therefore, the total error variance is equal to 2(7(297 RGSW +012% LWE

where 02 pogy denotes the resulting error variance of the ® operation on each RLWE' component of

RLWE’-to-RGSW Scheme Switching: Recall that the operation can be described as (b, 0)+a®RLWEL (sk?)
for each RLWE component (a,b) of the input RLWE' ciphertext. There are two sources of error. Firstly,
an additive error growth comes from the ® operation in a ® RLWEL, (sk?). Since RLWE, (sk?) is a fresh
encryption that comes from the evaluation key, the error variance is relatively small. We thus have an additive
error growth with variance oé’eml key which denotes the resulting error variance of the ® operation on the
evaluation key with error variance agml_ key-

Secondly, a multiplicative error growth comes from the fact that the existing error in the RLWE' cipher-
text gets scaled by sk. The secret key sk is not a scalar but rather a ring element and recall we work in a
prime cyclotomic. We know the error variance scales by a factor of no more than ¢ (sk), where the norm is
with respect to the canonical embedding for sk.

Combining these two sources of error under the assumption that each coeflicient of sk is binary /ternary,

then the error variance of the output is £1(sk) - 0% w e + 05 cvar key-

RLWE’ Automorphism: Applying an automorphism 1 itself does not change the error. The following key-

switching operation however introduces an additive error growth with variance aé aut key Which denotes the

resulting error variance of the ® operation on the automorphism key RLWEL, (1(sk)).

We summarize these error growth in Table 2.

Table 2. Summary of register operations with R ® RLWE’ opcount and error growth.

Operation Computation ® ops|Error Variance
(for each RLWE (a,b) of RLWE')
RLWE’ x RGSW|a®RLWEL, (s-m2) +bORLWEL, (m2)| 2k (203 rasw +0hw e

SchemeSwitch |a ® RLWEL (sk?) + (b, 0) k |ti(sk) - onpwe +
Ué,evulikey
Automorphism |¢(a) ©® RLWE (¢(sk)) + (0,%(b)) k |ohowe +U(29,aut7key

4 Description of the Algorithm

The overall algorithm, at a high level, can be subdivided into various steps:

— Step 1: a packing step takes as input ¢(d) LWE ciphertexts and “combines" them into a single RLWE
ciphertext (a,b) € R X Rip.

11



— Step 2: a homomorphic decryption of the RLWE ciphertext consists in computing (an encryption of) the
ring element (a -z + b) € R;,, homomorphically, given (as a bootstrapping key) an encryption of z.
— Step 3: an msbExtract step recovers the ¢(d) LWE ciphertexts with reduced noise.

Step 1 and Step 3, except for the use of different rings, are very similar to previous work [21]. We describe
the 3 steps in detail with a particular emphasis on Step 2 which is the main novelty of this paper.

4.1 Packing

The very first step of bootstrapping procedure consists in taking a set of LWE ciphertexts and pack them
into a single RLWE ciphertext. More precisely, the packing algorithm takes as input ¢(d) LWE ciphertexts
encrypting messages m; € Z as well as an RLWE' encryption RLWE'(s;) of each coefficients of the plain LWE
secret key s, = (50,51, » Snyyuin) € Zgﬁjffﬂ, in the dth cyclotomic ring with modulus gqin and outputs

(a,b) € Rin X Rin encrypting the message m(X) = >, m; X*~!. The pseudo-code is given in Algorithm 1.

Algorithm 1 Ring packing
Input: ¢(d) plain LWE ciphertexts (d;, b;) € ZZ;’;::: X Lgpiains
Output: RLWE ciphertext in Rip,.
for 0 < i < npiain do
let r; = ao,i + al,iX + agin2 —+ -4+ ad)(d)_l’inﬁ(d)—l in (Rzn)
end for
' = (0, (bo + 01X + b2 X2 + -+ + byay_1 XD71) > (Noiseless RLWE' ciphertext)
ct < ' 4+ e o RIWE (s4)
return ModSwitch,,,,;, —q(ct)

RLWE'(s;)

dplain *

For simplicity, we first built a ring ciphertext ¢t modulo gpiqein (i-€., the original input modulus) and then
switch the modulus to ¢. Alternatively, one can directly compute a ring ciphertext modulo ¢ by using a pack-
ing key {RLWE/(s;)}; already encrypted under modulus g. The packing key may also use a different gadget
(e.g., the power-of-two gadget, instead of powers-of-B) than other ciphertexts used later in the algorithm.

Since this part of the algorithm is essentially identical to previous work [21], we omit these details, and
move on to the second step.

4.2 Linear Step

This step of the algorithm takes as input a single RLWE ciphertext (a,b) € R;,? and outputs ¢(d) RLWE
ciphertexts, each encrypting a coefficient of (a-z+b) € R, (recall that an element of R;, is a polynomial of
degree ¢(d)). It can be further subdivided into two computations: a (homomorphic) polynomial multiplication
between a and (an encryption of) z, where each coefficient of the polynomials (describing the key z, all
intermediate results, and the final ring element) is a distinct ciphertext, and the addition of the ring element
b. We now provide a detailed explanation of these computations along with a pseudo-code of the various
steps of the algorithm.

An FFT-based Polynomial Multiplication. For this step, the algorithm uses a standard FFT-based
method summarized in Figure 1. More precisely, we perform the following steps:

1. Compute a partial FFT of a € Ry, i.e., PFT(a) in cleartext form. Let k — 1 be the degree of the
polynomials outputted by PFT. Note that a full (non-partial) FFT would have k = 1 as the algorithm
recurses until the input polynomial is reduced modulo all ¢(d) linear factors of $4(X). When computing

12



1.
a—— FFT(a) FFT(a-z) = FFT(a) x2

. 3. 4.
z 2 * FFT(a-z) | ——

Fig. 1. High level description of the linear step of our algorithm. The notation * refers to pointwise multiplication.
The boxed information refers to encrypted data where homomorphic operations are required. Each step i. is described
in detail in the paper.

PFT, the algorithm outputs ¢(d)/k polynomials of degree k — 1 (and hence does not recurse all the way
down to the linear factors). In other words, this corresponds to evaluating the CRT isomorphism

ZJX] [ ZX] Zq4[X]
(X2 41) ((Xk —Co)) . ((Xk Cqb(d)/’f—l))

where the ¢; are the solutions to (¢¥)?(¥) = —1, namely the primitive (d/k)—th roots of unity modulo q.
This step thus outputs a list of ¢(d)/k polynomials {&; }o<;<s(d)/k, Where each a; =a mod (X* — (;) is a
polynomial with & coefficients. Note that this computation is done in the clear, and thus no homomorphic
operations are needed.

Recall that when computing an inverse PFT, one must divide the polynomials a; by ¢(d)/k (mod ¢). In
order to be able to compute this division in the clear rather than homomorphically, this step can be done
now (Refer to Section 2.5). Hence the polynomials are updated to &; < a;/(¢(d)/k) (mod q).

2. The evaluation key contains RGSW registers of PFT(z). Similarly as before, let z; = z mod (X* —¢;),
where each z; is a polynomial with k coefficients. Let Zl(j ) be the jt" coefficient of z;. Then the evaluation

key contains the list of RGSW (Xzzw> for 0 <i < ¢(d)/k and 0 < j < k.

3. We now want to homomorphically compute PFT(a - z) from PFT(a) and the RGSW registers of
PFT(z). Note that the polynomial multiplication in R;, corresponds to component-wise multiplication in
PFT representation, i.e., PFT(a-z) = (a0 - Zo,a1 - Z1, .., 8p(d)/k—1 * Zg(d)/k—1)- FOr ease of notation, let us
fix i (we drop the subscript i) and consider a single multiplication of a := Zf;é a; X7 and z := Zf;& Z; X7
modulo (X* — ¢). More precisely, we want to homomorphically compute

(o +a X+ +ar 1 X" NG +HX+ -+ 20X mod (XF - ).

where each coefficient Z; is encrypted as an RGSW register.
Each coeflicient of the resulting product can be computed as follows. For j = 0,--- ,k — 1, the j-th
coefficient of v := a - z is equal to

vj = ZoGj + 21051 + -+ Zj_1a1 + Zjag + C (Zj1ar—1 + Zj20k—2 + -+ Zp—1Gj41) ,

which corresponds to the inner product taken between the vector of coefficients Z = (Zg,- -+, Zx—1) of the
polynomial z and the new vector € = (a;,a;_1,. .., ao,
Cg—1,-..,Caj+1). We emphasize again the fact that the coefficients of ¢ are in the clear, whereas the

coefficients of Z are not. So, it is easy to multiply € by (.

Without loss of generality, let us assume all the coefficents ¢; of € are nonzero and thus invertible. (Here
we use the fact that ¢ is a prime. So, all nonzero elements are invertible modulo ¢ and multiplication (in the
exponent) can be implemented using an automorphism of the prime cyclotomic ring.) Then we can compute
the inner product in a telescoping manner as

v; = (( .. ((20000;1 + 51) 01051 + 22) CQC??l +.. ) Ck72C;;,11 + Zkfl) Ck—1-
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This will end up being the most efficient way to compute this inner product homomorphically.

Let us now explicit how one coefficient corresponding to a monomial X7 can be computed homomorphi-
cally (this computation will have to be repeated for all k coefficients of a single product as well as for all
¢(d)/k pairs of (a;,%;) polynomials).

a) Let accum be an RLWE' register, initialized as RLWE' (X*) from the evaluation key.
b) For j' € [0,...,k — 2], update accum as follows:
i. Apply the automorphism that sends X to X G5, )
ii. Do an RLWE’ x RGSW multiplication with RGSW (X Zi’+1) from the evaluation key.

c¢) Finally apply the automorphism sending X to X!, yielding RLWE' (X"4).

Since we repeat (a)-(c) for every coefficient of &; - z; for 1 < i < ¢(d)/k, the output of this step consists of
#(d) RLWE' registers of the form

{RLWE’ (XVE“) } :
0<i<d(d)/k,0<j<k

where vgj ) denotes the j-th coefficient of v; := &;-Z; (mod X*—¢;). This procedure is illustrated in Figure 2,

and the corresponding pseudo-code for component-wise multiplication is given in Algorithm 2.

RLWE'(%0) ~>© Mult O e Mult Q vj

Fig. 2. Homomorphic computation of a X7 coefficient for pointwise multiplication. A single line corresponds to RLWE’
ciphertexts and a double line to RGSW ciphertexts. Aut. stands for automorphisms and Mult. for multiplication.
Boxed values are encrypted values.

4. We now have the encryption of PFT(a - z). It remains to perform the inverse of PFT, denoted by
PFT™!, in order to recover the resulting polynomial product a - z, more specifically RLWE encryptions of
the coefficients of a - z.

Recall from Section 2.5 that the inverse of a primitive FFT of length N (using a 2Nth root of unity
w) can be computed by first taking a standard FFT of length N using w=2 as the Nth root of unity, then
multiplying the ith term by w~%. Moreover, a partial FFT of length ¢(d) that reduces modulo (X* — () is
equivalent to k full FFTs of length N = ¢(d)/k done in parallel, and the same remains true for the inverse
(see section 2.5 for details about the equivalence). Hence, to homomorphically compute PFT !, we will

a) Split the ¢(d) registers output by the pointwise multiplication step into k groups of size N: each group
corresponds to the coefficients of the monomial X7 for 0 < j < k — 1 of all ¢(d)/k polynomials.

b) Homomorphically perform a standard (not primitive) length-N FFT in the forward direction on each
group of size N, using w2 as the Nth root of unity. Overall, this step corresponds to computing & FFTs.
We refer the reader to Section 2.5 for more details on the equivalence between partial FFT modulo X* —¢
and k-parallel standard FFT.

¢) Multiply (homomorphically, via an automorphism) the ith output register in each group by w=¢, for all i
from 1 to N —1. More specifically, we apply the automorphism X +— X ', corresponding to multiplication
by w™ in the exponent, followed by a key switching operation.

The following algorithms provide pseudocodes for the above procedure to compute the homomorphic
PFT~!. More specifically, Algorithm 3 describes step (a) and then calls Algorithm 4 for each of the groups of
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Algorithm 2 Pointwise multiplication between polynomials a and z.

1: Input: A set of degree-(k — 1) polynomials {&;}o<i<n, {RGSW(X2£]>)}0§i<N70§j<k for N := ¢(d)/k, w: the

2N-th root of unity mod ¢

2: Output: ¢(d) RLWE' ciphertexts

3: REG «+ [0,...,0]

4: for all 0 <i< N do

5: ¢+ w?itl

6: Let g = (ai,o, di71, ~--7&i,k:—1) > {11 = Zf;ol diijj
7 for all0 < j < k do

8: C (CNLZ‘J', ai,j—l: ey di,O, gdi,kfh Cdi,kfg, A Cai,j_,_l)

9: accum RLWE’(XEEO))

10: for j/ < 0,1,...,k—2do

11: accum < EvalAut(accum, c]-/c;,irl)

12: accum <— MulRGSW(RGSW(%Ej/H)), accum)

13: end for )
14: accum <— EvalAut(accum, cx—1) > accum = RGSW(X(éi'ii)(J))
15: REG([ik + j] < accum

16: end for

17: end for

18: output REG > Register of all coefficients of a; - z; for 0 <i < N

Algorithm 3 IFFT stage of bootstrapping (BootstrapIFFT)

1: Input: a list of ¢(d) registers REG, k, N, a list of radices {r; }o<i<e¢, and w
Require: w a primitive 2Nth root of unity mod ¢, [J,.,.,7: = NN, and kN = ¢(d) = len(REG)
2: for all 0 < j < k do

3. REG[j,k+7,...,(N — Dk +j] « N-IFFT(REG[j, k + j, ..., (N — D)k + j], {ri},w)

4: end for

Algorithm 4 Primitive length-N IFFT for a single group of size N (N-IFFT)

1: Input: List of RLWE' registers REG = {RLWE'(X(’E”'2i)(]))}09<1\7 for some fixed 0 < j < k, list of radices
{ri}o<i<e, primitive 2Nth root of unity w modulo q.
Output: list of RLWE registers REG = {RLWE(X(’”'Z”(J))}OSKN.
let w = w2
REG « FFT(REG, {Ti}0§i<z,u)/) > Step 4—(b)
fori«+1,...N—1do

REG[i] + Eval Aut(REG[i],w™") > Step 4-(c)
end for
return REG
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registers. Algorithm 4 describes a primitive length-N (inverse) FFT for a single group of size N, consisting
of a standard (cyclic) FFT (step (b)) as well as the multiplication by w=% (step (c)). It remains to describe
more precisely what happens in the (cyclic) FFT call, line 4 of Algorithm 4.

Recall that FFT is a recursive algorithm that follows the structure of a remainder tree, see the procedure
FFT given in Algorithm 6. We will now focus on what happens in a single layer of the FFT as described in
the second procedure FFT Layer in Algorithm 6.

At a single layer: Let r; be the radix used for the i-th FFT layer for 0 < ¢ < £. Then, for R; := Hi<i,<£ i,
the inputs to the i-th FFT layer are the coefficients of N/R; polynomials modulo (X% — w'7) (for varying
values of j), each with R; coefficients.* Hence this corresponds to a total of N coefficients, i.e., N registers.
The outputs are the coefficients of N/R;;1 polynomials modulo (X®i+1 — /") ranging over all 5" such that
r;-j' =7 mod N. Note that the total number of coefficients remains the same, i.e., we still have N registers.

Let us now consider a single input polynomial (out of N/R;), i.e., one of the nodes in the remainder tree,
and describe what computations are needed to produce the children nodes. This subroutine is described in
Algorithm 5, called FFT Subroutine and is repeated for every node (meaning polynomial) of the layer, hence
N/R; times. We illustrate the reduction of this polynomial via an example to better describe the operations
needed in this subroutine.

Algorithm 5 FFT Subroutine

1: Input: Radix r which divides R for R | N, index j, and RLWE’ ciphertexts {ct; }o<i<r storing coefficients of a
single polynomial mod (z® — w')

2: Output: r tuples each of which consists of index j’ such that 7 -j' =j mod N, and R/r RLWE' ciphertexts

3: for al0<i< R— R/r do

4: ct; + SwitchToRGSW (ct;)

5: end for

6

7

8

: if this is the final FFT layer then
for all R— R/r <i< R do

: let S = % > 4 is the plaintext modulus after bootstrapping
9: ct; <+ SO ct; > ct; is now RLWE instead of RLWE’
10: end for
11: end if

12: let {34, ..., Jr_1} = the set of all j"’s satisfying rj' = j mod N
13: for all0 <v <r—1do

14: let ¢ = w'v

15: for all 0 <i < R/r do

16: accum(v][i] < ctp—pg/rts

17: for k + [2,3,...,7] do

18: accum|[v][i] < Eval Aut(accum, ()

19: accum(v][i] - MulRGSW (ctg—y.g/rti, acCUM)
20: end for

21: end for

22: end for

23: output r tuples (j,, accum[v]) for 0 < v < r

Example 1. We describe in this example the reduction from an input polynomial to a single child node for
the simple radix-2 FFT. Assume we have as input a polynomial of the form

9o+ 91X + g X? + g3 X3 + X + g5 X° + 96 X® + g7 X7

4 When i = 0, it starts with a single input polynomial modulo X% — w°.
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Algorithm 6 Full radix-r standard FFT (FFT)
1: procedure FFT({REG}, {ri}o<i<e, w')

2: state < {(N,REG)} > List of tuples
3: for ¢ in [0,1,...,£—1] do

4: state + FFT LAYER(r;,w’, state)

5: end for

6: return REG

7: end procedure

8: procedure FFT LAYER(r;, w’, list of tuples)
9: Input: N/R; tuples of the form (4, {ctjo,...,ct; r,—1}), where each ct;, is an RLWE' ciphertext

10: > ctj, represents the v-th coefficient of a polynomial mod (X% — w")
11: Output: N/R;1 tuples of the form (5, {ct;r 0,..., ¢ty r,y—1})-

12: > Each input j has r; corresponding outputs j’ such that r; - 5 = j mod N.
13: > ctjr ., represents the v-th coefficient of a polynomial mod (xftir — w'j/)
14: for all (j,{ctjo0,...,ctj,r,—1}) in input do

15: FFT SUBROUTINE({ctjo,...,Ctj Ri—1},Ti,J,w’)

16: end for
17: end procedure

and we want to reduce it modulo (X? — (). Similarly as for pointwise multiplication, it is possible to
compute the coefficient terms for each monomial X7. In our example, we would have constant coefficient
go + Cgo + C2g4 + 3gs and X coefficient g1 + Cgs + ¢2g5 + ¢3g7. In the remainder tree, this operation would
have to be repeated for r different values of (, in particular for this example, four different values.

The homomorphic circuit to perform this reduction is illustrated in Figure 3. We recall that the input
coefficients g; (both in the example and in Figure 3) correspond to registers, in particular RLWE' ciphertexts.
The main operations needed for a reduction are scheme-switching for most of the coefficients, multiplication
by a power of ¢, which can be done using automorphisms, and addition which corresponds to RLWE' x RGSW
multiplications.

Remark 2. The scheme switches at the beginning of the circuit convert RLWE' ciphertexts to RGSW ci-
phertexts for all coefficients except the last. As mentioned previously, the circuit for the same coefficients
is performed for various values of (. For all these cases, the scheme-switching operations need only to be
performed once (as the coefficients do not change) and thus the cost is amortized.

Details of this subroutine are given in Algorithm 5. Algorithm 6 provides the pseudocode for all ¢(d)
registers (FFT Layer) as well as the full FFT algorithm where all layers are considered (FFT).

One can note from Algorithm 5 that the case of the last layer of the FFT slightly differs (see line 6).
Indeed, it is possible to optimize the running-time of the FFT algorithm by modifying the nature of the
elements considered in the very last layer of the FFT. Indeed, one can notice that the outputs of the IFFT
only need to be RLWE ciphertexts, not RLWE' ciphertexts. Hence, one can save operations by using RLWE
registers instead of RLWE' registers when possible. While RLWE cannot be scheme-switched to RGSW
without blowing up the error, we can modify the last IFFT layer to use RLWE instead of RLWE' for the
registers that do not get scheme-switched (this corresponds to accum in Algorithm 5 or g, in Figure 3).
Concretely, each of the ¢(d)/r non-scheme-switched RLWE’ ciphertexts would be converted to RLWE by an
RORLWE' operation with R element [Q/4], where 4 is the plaintext modulus the msbExtract stage expects.
This concludes the description of the homomorphic computation of a - z. The output of this multiplicative
step is thus ¢(d) RLWE registers, each encrypting a coefficient of a -z € Ry,.

Adding b From the previous step, we have obtained registers encoding the coefficients of a - z. We also
have the polynomial b in the clear. In order to obtain registers encoding the coefficients of a -z + b, we
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Fig. 3. One layer of FFT for a single input polynomial. A single line corresponds to RLWE ciphertexts and a double
line to RGSW ciphertexts. SW stands for scheme-switching, Aut. for automorphisms and Mult for multiplication.

add b via fixed rotations, i.e., scaling the ciphertext by a monomial. Concretely, to add a coefficient b; to a
register RLWE(X (@2)¢), we simply scale the RLWE ciphertext by X% resulting in RLWE(X ®#+P)i)_ Since
X" has norm 1, it does not increases the noise of the register. We thus now have ¢(d) registers encoding the
coeflicients of a - z + b, as expected. This concludes the linear step of the algorithm.

4.3 msbExtract

The linear step outputs ¢(d) RLWE registers each encrypting %X ¢, where each ¢; € Z, is a noisy (un-
rounded) decryption of the ith input ciphertext. We now operate separately on each register (and drop the
subscript ) in order to recover from each register a plain-LWE encryption of f(c), for some function f that
applies rounding and allows for computation. OQutput ciphertexts have plaintext modulus 4; to compute
NAND gates, it suffices for f(c) to be 1 for ¢ € [—¢/8,3¢/8) and 0 elsewhere (we refer to [20] for more
details). Focusing on a single register (a,b) € R,¢,”, we have
b(X)=—-a(X) -s(X)+e(X)+ %m(X) (mod Q, P4(X))

where m(X) = X¢. Looking at a single coefficient of these polynomials, the ring product a(X) - s(X) will
become a vector inner product between the coefficients of s and some permuted coefficients of a. Because
we use prime ¢, these polynomials have degree < ¢ — 2, and X9 ! = -1 — X — ... — X972, Note that, as for
error growth, the fact that we consider prime cyclotomics instead of power-of-2 cyclotomics slightly changes
the setting. We get for a single coefficient

b = —a;s0 —a;—181 — - —ags; — 0 811 — Ag_28;12 — Aq-35i43 — "+ — Ui {28¢-2
Q
+ ag—281 + ag—382 + -+ a54—3 + a15q—2 + Rk +e

which can be re-written as

@ =b 0

Zmi +e; =bi +{(ai,ai—1,...,00,0,aq-2,aq—1,...,0i42)

—(0,ag-2,a¢-1,...,a1)} - (S0,81...,8q-2)

For 0 < i < ¢ — 2, letting aj denote the above vector (a;,a;—1 — @q—2,...,a;+2 — a1), we then have that
(a3, b;) is an LWE encryption with noise e; under secret key s, = (so, ..., S4—2) of message m;. Note that
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m;is 1if e =14, —1if ¢ = ¢ — 1, and 0 otherwise. To produce an encryption of f(c), which should be 1 for
¢ € (—q/8,3q/8) and 0 elsewhere, we simply sum the relevant (a;, b;):

q—2 [3q/8] -1
i=[7q/8] =0

taking care to ensure the number of summands is 3 mod 4, so that when ¢ = ¢ — 1 the sum is 1 mod 4 as
desired. (When ¢ = 1 mod 8, this will be the case for the summation written above.)

This gives us an LWE encryption with plaintext modulus 4 and ciphertext modulus @ under a key
Sp € 79=1. To conclude bootstrapping, we can keyswitch back to the orignal plain LWE secret key, and
modulus switch back down to the original (much smaller than @) ciphertext modulus.

5 Analysis

To evaluate the performance of our algorithm, we analyse its running-time as well as the error growth.
We will first show that our homomorphic decryption procedure takes no more than O ((k + 7 - £€)¢(d)dp)
homomorphic operations.

5.1 Counting Homomorphic Operations

We will evaluate the efficiency of our algorithm by first measuring the time complexity in terms of the number
of R ® RLWE' operations performed. We have already summarized in Section 3.2, Table 2 the number of
R®RLWE' operations needed for the main operations used in our scheme: scheme switching, automorphisms
(with key switching) and RGSW x RLWE'. We now describe the number of R @ RLWE' operations for the
various steps of our algorithm.

Pointwise Multiplication Based on the description given in Section 4.2, we have the following analysis. For
a single coefficient X7 in the computation of the inner product, our algorithm performed k automorphisms
and (k — 1) RGSW x RLWE' multiplications. Hence the number of R ® RLWE' operations per register is
(3k—2)dp. This computation needs to be repeated for all k coefficients of a single product and for ¢(d)/k pairs
of (a;,z) polynomials. Thus the total number of R©RLWE' operations for the entire pointwise multiplication
algorithm is (3k — 2)¢(d)dp.

Partial Inverse FFT Based on the description given in Section 4.2, considering a single register and
a single radix-r layer of FFT, the algorithm computes (r — 1) automorphisms, (r — 1) RGSW x RLWE’
multiplications but only amortized (1 — 1/r) scheme switches as explained in Section 4.2. Thus the total
number of operations per layer is

((r — 1) +20r—1)+ <1 — i)) o(d)dp = <3r -2- i) ¢(d)dp.

Last layer of IFFT optimization: Recall that the outputs of the IFFT only need to be RLWE ciphertexts
and not RLWE' ciphertexts. This allowed us to optimize the cost of the last layer of the IFFT by using
RLWE registers instead of RLWE' registers when possible. By using this modification, the multiplications
and automorphisms in this layer will use a factor of dg fewer operations. Thus the total number of operations
for the last layer is only

=1+ 20 =144 (1= an )o@ = (3r—3+ 2 4+ds (1-1)) 6(a).
( r < 7“> ) < r < 7">)
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After the last layer: Recall that the very last step of the homomorphic partial IFFT is to multiply the
it" output register in each group by w™?, via an automorphism that sends X to X“ . Operation-wise, this
corresponds to one automorphism per register. Since with the last-layer optimization the registers are RLWE

instead of RLWE', this corresponds to ¢(d) operations in total.

Adding b Recall that to add b; to the register RLWE(X (®%)i), we simply scaled the RLWE ciphertext by
X% . No R ® RLWE' operations are involved.

Table 3. Summary of R ©® RLWE' operation count.

Steps of the algorithm R ® RLWE’ operations
Partial FFT of a -
Pointwise multiplication (3k — 2)¢(d)dB
Partial IFFT (per layer) (Br—2—1p(d)ds

Last layer of IFFT  |(3r —3+ 2 +dp(1— 1))¢(d)
Last IFFT step o(d)
Adding b -

5.2 Error Growth

We have already summarized in Table 2 the error growth coming from the scheme switching, automorphisms
(with key switching) and RGSW x RLWE' operations. We now describe the error growth resulting from the
various steps of our algorithm based on the error variance for each of these operations and the operation
count described in the previous section.

Pointwise Multiplication Recall from the description given in Section 4.2 that the algorithm starts with
an inital RELWE’ ciphertext, denoted as accum, which is a “fresh" ciphertext from the evaluation key with

. 2 . . . . . . . 2
€ITOr Variance 0gy, je,- Each automorphism performed during pointwise multiplication adds 07 4.y key

error variance, and each multiplication with a fresh RGSW ciphertext adds QU%VRGSW error variance. Hence,

the error variance after pointwise multiplication is (3k — 2) (U%7uut_key + QJé,RGSW) + Ugml_key.

Inverse FFT Again, recall that each automorphism adds o7, ,,,, key €rror variance. The output of schemeswitch-

. 2 _ 2 2 . 2 . .. . 2 .
ing has o7, = 0%, eval_key T 41(s)o3, error variance. Let o2, be initialized as o7,. Each automorphism

and RGSW x RLWE' multiplication (performed a total amount of r» — 1 times) updates the variance as

2

2 2 2 2
Caccum € Taccum T+ U@,autikey and Oaccum  Oaccum

. . 2
tal, the error variance after a radix-r layer becomes o2, + (r— 1)(0’%7aut_key +202 ) for o2 ,,, < %quafw

2 .
+ 2(7(29 sw Where a%_sw < %quafw. Hence, in to-

i

After last layer Multiplying the i*" output register in each group by w™
(additively) the error variance by o2, aut_key-

with an automorphism increases

Adding b Scaling by a monomial does not increase the error. This result is summarized in Table 4.
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Table 4. Summary of error growth.

Algorithms Error growth
Partial FFT of a -
Pointwise multiplication (3k — 2) (O’é‘aut_key + 20%7RGSW) + agml_key.
Partial IFFT (per layer) o2, + (r— 1)(0%,(““ key T Z(Ué,eml key T él(s)afn))
Last IFFT step 70294““5 key -
Adding b -

5.3 Asymptotic Analysis

Let A = O(n) the be security level considered. We study the performance of our algorithm as A increases,
i.e., when n tends to infinity. Recall that the other parameters used in our algorithm are dg = [logg Q] =
O(logn), the number of layers £ (i.e., the multiplicative depth) and k = r = ¢(d)'/* (k is the degree at which
we stop the partial FFT and r is the radix for an FFT layer).

Theorem 2. Let ¢(d) = O(n) be the number of packed ciphertexts and q,Q = poly(n) the moduli of the

rings considered. The total cost of bootstrapping (non-amortized) then corresponds to O(nl“'% -logn - 0)
homomorphic operations (in terms of the number of R © RLWE' operations).

Proof. The number of ® operations in the pointwise multiplication step is (3k — 2)¢(d)dp which asymp-
totically corresponds to O(nl"’% logn). Similarly, the inverse FFT requires (3r — 2 — %)¢(d)d3€ operations
(without including the last layer modification which asymptotically does not change the result) which asymp-
totically gives O(n'*7 -logn - £). ]

Corollary 2. The amortized cost per message is O(n% -logn - £) homomorphic operations (in terms of the
number of R ©® RLWE' operations).

Remark 3. Note that we can also reduce the total number of homomorphic operations in the case that we
only need to pack less-than-¢(d) LWE ciphertexts, which we refer to sparse packing. Please refer to the full
version of the paper [6] for the analysis on computational cost of the sparse packing case.

5.4 Comparison with Previous and Concurrent Work

Our algorithm can be compared to two lines of work: sequential bootstrapping algorithms such as FHEW /TFHE |5,
7] and the amortized bootstrapping algorithms of [21] and [17] (as our algorithm performs asymptotically
better than [16], we focus on the comparison with the follow-up work [17]). The asymptotic running times

of the algorithms are reported in Table 5, and show that our algorithm is asymptotically much faster than
both [5,7] (reducing the dependency on the main security parameter from linear O(n) to just n¢ for arbi-
trary small e = 1/¢), and [21] (reducing the dependency on ¢ from exponential 3¢ to linear O(¢).) While [17]

is asymptotically faster, we now discuss why our algorithm is expected to outperform [17]| for practical
parameters.

Assume optimistically that the complexity of [17] is of the form f(n,f) = 2°-log(n), where ¢ is the
recursive depth of the inverse FFT and n the ring dimension. The 2¢ term is inherited by the use of the
Nussbaumer transform from [21], and log(n) is the “polylog" overhead. [17, section 7.3] sets £ = 5, and, in
fact, due to the use of the SIMD parallelization technique from [16], this is the smallest possible value of .
On the other hand, the complexity of our algorithm is g(n,¢) = £- n'/¢, where ¢ can be set to any constant.
To facilitate a more direct comparison to [17], consider setting £ = 5 in our algorithm as well. Since noise
growth of [17] and our algorithm depend in a similar way on the recursive depth ¢, using the same value of
¢ should result in similar values of the ciphertext modulus @) and ring dimension n, for the same security
level. So, for a fixed ¢ = 5, basic operations in [17] and our work can be assumed to have roughly the
same unit cost. The two algorithms can then be compared by checking when f(n,5) < g(n,5). It is easy
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to check that the crossover point f(n,5) = g(n,5) is given by ring dimension n = 2%°, which is well beyond
any conceivable instantiation of lattice cryptography. While this is only a rough comparison, it should be
clear that for any reasonable value of the ring dimension n, our algorithm can be expected to outperform
the (asymptotically faster) algorithm of [17]. In other words, [17] suffers from the very same limitations that
made [21] completely impractical. This is precisely the problem addressed in our work, where the overhead
of [21] is reduced from 2¢ to just ¢, making amortization much closer to practicality. We have already
mentioned the work of Liu and Wang [18] who achieved the same asymptotic complexity as [16,17], but
were able to make their bootstrapping scheme also efficient using BFV ciphertexts. As mentioned previously,
their work differs by using a super-polynomial modulus. We refer to [18, Section 7| for detailed performance
analysis, including timings.

Table 5. Comparing asymptotic cost of various bootstrapping algorithms in terms of homomorphic operations, where
¢ corresponds to the recursive depth in each algorithm. For uniformity with previous work, performance is expressed
as the number of RGSW x RGSW products, or equivalent operations. Alternatively, the number of basic R ® RLWE’
products can be obtained by multiplying these figures by O(logn), the length of the gadget vector.

Scheme | Total cost |[Number of messages|Amortized cost
FHEW O(n) 1 O(n)
TFHE O(n) 1 O(n)
[21] [O(3" - ntT1/h) O(n) O(3" - n'/")
[17] O(n) O(n) o)
[18] O(n) O(n) O(1)
our work| O(£ - n*+1/%) O(n) o -n'*)

Following previous work, performance in Table 5 is measured as the number of operations on cryptographic
registers, and hides many important parameters that still have a big impact on the concrete performance
of the algorithms in practice. In order to provide (still preliminary, but) more realistic estimates of the
performance of the algorithm, we also evaluated the number of (integer) arithmetic operations required for
concrete values of the parameters, with a target security level STD192. Next, we observe that since each
NTT operation works on a g dimensional vector, it requires a number of arithmetic operation proportional
to glogq. So, in the before-last column of Table 6 we estimate the total number of arithmetic operation as
NTT x qlog q. We used [15, Table 1] for the number of ® operations in FHEW-like schemes and recall that
one can easily convert the number of ® products to the number of NTTs as each ® product requires (dp +1)
NTT operations. The reported number of ® multiplication for [21] comes from a non-public report provided
to us by the authors. The before-last column for [21] was obtained using the smallest values of ¢,dp in the
table as a conservative lower bound. Finally, the last column of Table 6 reports the key size (number of
RLWE’ ciphertexts). The parameters and numbers provided in Table 6 are tentative, preliminary estimates
only meant to provide some intuition about the potential performance of our algorithm. Still, they are enough
to draw some general conclusions: our algorithm clearly outperforms previous methods for amortized FHEW
bootstrapping, improving [21] by two orders of magnitude. When comparing with sequential bootstrapping
methods, our algorithm is practical enough to offer comparable (potentially better) performance. But the
improvement is not yet sufficiently marked to make its implementation and use attractive in practice.

6 Conclusion and Future Work

We present a novel amortized bootstrapping algorithm with much smaller overhead than prior amortized
work, in particular smaller than in the algorithm presented by Micciancio and Sorrell in [21]. We make use of
ring automorphisms to perform the multiplication by twiddle factors and replace the Nussbaumer transform
with the more practical Number Theoretic Transform.

In order to properly evaluate the practicality of our algorithm, and accurately compare it with previous
work, we considered implementing it within some mainstream FHE library, like OpenFHE [1]. However, the
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Table 6. Comparing cost of various bootstrapping algorithm in terms of ® operations, number of NTTs performed
and key size. The reported numbers for the amortized schemes are amortized over the number of packed ciphertexts.
The parameter N is the ring dimension for registers (for us it is the same as ¢ since ¢ is prime in our algorithm).

FHEW-like schemes n qg N logy,@Q B dp|® mult. NTTs NTTs # keys
xqlogq

FHEW-AP [7,20] 1024 1024 2048 54 277 27| 3968 11,904 10® 126 976

TFHE-GINX [5] 1024 1024 2048 54 2°7 2| 4096 12288 10® 4096

FHEW-improved [15] [1024 1024 2048 37 2'3 3| 3074 12,296 10® 3073

[21] (amortized) - — 2187 37 - —[4m844 - >10° |-

Ours (amortized) 1024 7681 7681 143 27 2| 101 304 3 x 107 |9728

preliminary estimates in Section 5.4 and our initial implementation effort suggest that both the algorithm
and the support offered by state-of-the-art FHE libraries may still not be adequate to deliver concrete
improvements in practice. In fact, implementing our algorithm within OpenFHE (or similar libraries) raises
a number of technical challenges. Most FHE libraries (incuding OpenFHE) currently only support power-of-
two cyclotomic rings, which are the most widely used rings in lattice cryptography. However, our algorithm
makes essential use of prime cyclotomics. Some support of cyclotomics other than powers-of-two is offered by
the HElib library [12], as well some undocumented functions within the OpenFHE codebase. However, in both
cases, the implementation is based on Bluestein FFT, which for technical reasons is limited to ciphertext
moduli of size at most 27-bit. As a result, the use of a 143-bit modulus (as in the example parameters
in Table 6) would carry at least a x6 slowdown, compared to sequential bootstrapping methods which
can be directly implemented using standard 64-bit arithmetics. Still, our theoretical estimates in Section 5.4
show that amortized FHEW bootstrapping has the potential of being practical, and that, with proper library
support and further optimizations, it can offer a practical alternative to sequential bootstrapping algorithms.
We hope our work will provide a motivation to extend OpenFHE and other libraries with optimized support
for prime (or arbitrary) cyclotomics, and promote further investigation and improvement of amortized FHEW
bootstrapping algorithm.
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Sparse Packing based on MLWE

In Section 4.1, we only address the case where ¢(d) LWE ciphertexts are packed into a single RLWE ciphertext
and then bootstrapped in parallel. However, the ring dimension ¢(d) is determined by the target security level,
and we do not always need to bootstrap ¢(d) ciphertexts at once in real-world applications. In this section, we
introduce a simple variant of our amortized bootstrapping algorithm that requires an homomorphic inverse
NTT of ring dimension smaller than ¢(d) corresponding to a sparse packing case. Under the same security
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level, the amortized bootstrapping for sparse packing shows faster performance in terms of latency, compared
to the original amortized bootstrapping.

Sparse Packing. Let d; be a positive integer that divides ¢(d) and dy := ¢(d)/dy > 1. We present
an algorithm that packs d; LWE ciphertexts into a single RLWE ciphertext of ring dimension ¢(d) in
Algorithm 7.

Algorithm 7 Sparse Ring Packing
Input: d; plain LWE ciphertexts (d;, b;) € ZZ;;;:: X Lgprain s
Output: RLWE ciphertext in R}*?.
for 0 < j < npain do
let Ty = Zj;gl am-Xd”' in R
end for
7= (0,0 b X %20 > (Noiseless RLWE' ciphertext)
ct < 7'+ Y T r; © RLWE!(s;)
return ModSwitchy ., —q(ct)

RLWE'(s;)

dplain*

Linear Step. The decryption of an RLWE ciphertext [a, b] € R}]“ of a sparsely-packed message m under
the secret key z is expressed as b+ a -z (mod ¢q) = m + e for some small polynomial e € R. Since the
message polynomial m is of the form m(X) = m’(X%) for some m’ € R’ := Z[X]/(X + 1), we can apply
the trace function from R, to R; on the decryption formula. Then it holds that

Trg,/r;(b) + Trg,/r;(a-2) (mod g) = do - m' + Tr, /z; (e),
and it can be re-expressed in FFT form as
FFT/(TI'RQ/R& (b)) —+ FFT/(Tqu/R; (a . Z)) (mod q) = d2 . FFT/(III/) + FFT/(Tqu/RZI (e)),

where FFT' denoted the d;-dimensional FFT over R;.

In general, FFT(Trg, /R, (f)) for f € R can be simply computed from FFT(f) by taking block-wise
summations. Indeed, for each d-th root of unity w, the evaluation Trg /=, (f) (wik) = Zo_eGal(Rq/R&) flo(w))
where w? is the 2d;-th root of unity. Hence, the d-th roots of unity are partitioned into d; blocks, each of
which are contained in the same coset of R,/R;, and the summation is done over f(w) for w’s in the same
block.

For 0 < j < d;, the summation corresponding to the j-th block can be expressed as Zfigl Ui - Vij
for some w; j,v;; € Zq, where u; ;’s and v; ;’s correspond to FFT evaluations on a and z, respectively. We
compute the inner product as

do—1

U1, Udy 2, Udy 1,
> Ui vig = o - (Uo,j o= <+ = Udy—2j + " Vdy—1,5) :
=0

0,j Udy—3,5 Udy—2,5

Let us denote by u; := (u; j)o<j<d, and ¥; := (v; j)o<j<d, the di-dimensional vectors over Z,. Starting from
Ug,—1, We repeat 1) a point-wise multiplication with @;/@;—; and 2) taking RELWE’-RGSW multiplication
with ¥;_1 from ¢ = da — 1 to 1. The last step corresponds to a point-wise multiplication with ug. Figure 4
describes a high-level procedure of the linear step of homomorphic RLWE decryption for sparse packing.

In order to compare the performance of this sparse-case algorithm, we can summarize the number of
R ® RLWE' operations in Table 7. The analysis closely follows what has been presented in the main body of
the paper. To compare the total number of R © RLWE' with Table 3, we analysis the following ratio dividing
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a 1—) FFT(a) FFT'(Trr, /= (a - z)) = BlockSum(FFT(a) x )

2. 3. 4.
z * — | FFT'(Trg, /r; (a - 2)) | ——— | Trr, /=, (2 2)
FFT'~*

Fig. 4. High level description of the linear step of our sparse-case algorithm. The notation % refers to pointwise
multiplication. The boxed information refers to encrypted data where homomorphic operations are required.

Table 7. Summary of R ©® RLWE' operation count in sparse packing.

Steps of the algorithm R ® RLWE’ operations
Partial FFT of a -
Mult & BlockSum (3I€ — Z)dldeB + 2d; (d2 — l)dB

Partial IFFT (per layer) (3r—2— Yydidp
Last layer of IFFT (Br—3+21+4+ds(1-1))d
Last IFFT step dy
Adding b -

the total number of R ©® RLWE' operations in the sparse-case by the total number in the main algorithm:

3kop(d)dp + (3r —1-2)didp + (3r =2+ ) di _ 3k+3r/dy
3k¢(d)dp + (3r —3—2) ¢(d)dg + (3r —2+ 1) ¢(d) ~ 3k +3r

Note that the ratio is close to 1/dy if 3r/dy is relatively larger than 3k. Otherwise, the ratio is close to
k/(k 4+ r). In both cases, this shows that the sparse case requires less operations, thus leads to a faster
performance. The exact gain in the sparse case depends on the parameter values. Also, note that to obtain
a complete analysis of this sparse algorithm, a thorough error growth analysis should also be done, which
we leave for future work.
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