
Haze and Daze: Compliant Privacy Mixers
Stanislaw Baranski

Gdansk University of Technology
stanislaw.baranski@pg.edu.pl

Maya Dotan
The Hebrew University in Jerusalem, Israel

mayadotan@mail.huji.ac.il

Ayelet Lotem
The Hebrew University in Jerusalem, Israel

ayelet.lotem@mail.huji.ac.il

Margarita Vald
Reichman University, Israel
margarita.vald@cs.tau.ac.il

ABSTRACT

Blockchains enable mutually distrustful parties to perform financial
operations in a trustless, decentralized, publicly-verifiable environ-
ment. Blockchains typically offer little privacy, and thus motivated
the construction of privacy mixers, a solution to make funds untrace-
able. Privacy mixers concern regulators due to their increasing use
by bad actors to illegally conceal the origin of funds. Consequently,
Tornado Cash, the largest privacy mixer to date, is sanctioned by
large portions of the Ethereum network.

In this work, we proposeHaze andDaze, two privacy mixers that
mitigate the undesired abuse of privacy mixers for illicit activities.
Haze guarantees users’ privacy together with compliance, i.e., funds
can bewithdrawn as long as theywere deposited from a non-banned
address, without revealing any information on thematching deposit.
This means that once a user is flagged as non-compliant, their
funds can no longer exit the mixer. However, this leads to a race
condition for bad actors to withdraw funds before becoming flagged
as unlawful in the banned-addresses list. Thus, we introduce Daze,
a second mixer protocol that, in addition to compliance, enables
retroactive de-anonymization of transactions of non-compliant
users, making the mixer fruitless for them. To maintain privacy of
compliant users, the de-anonymization procedure is performed by
a committee, with privacy guaranteed as long as at least one of the
committee members is honest. Moreover, Haze and Daze have an
optional feature for non-compliant funds to be released from the
mixer to some predetermined entity.

We empirically evaluate our solution in a proof-of-concept sys-
tem, demonstrating gas consumption for each deposit and with-
drawal that is comparable to Tornado Cash for compliant users,
both for Haze and Daze. To the best of our knowledge, our solution
is the first to guarantee compliance and privacy on the blockchain
(on-chain) that is implemented via a smart contract.

1 INTRODUCTION

Blockchains and privacy. Blockchains are decentralized, pub-
licly verifiable, and distributed append-only immutable ledgers
that allow mutually distrustful parties to maintain a common state.
Bitcoin [29] is the first blockchain system to go live, enabling par-
ties to engage in money transfers using the native currency of
the blockchain. Ethereum [46] is a blockchain platform that en-
ables users, in addition to simple money transfers, to perform more

complex operations in the form of a smart contract. A smart con-
tract can be any program implemented on the blockchain. The
state of the smart contract is maintained as part of the state of the
blockchain. While Bitcoin and Ethereum offer users pseudonymity,
in both blockchains funds are traceable. Over the years, there
have been several attempts at adding various flavors of privacy
to blockchains [5, 18, 34, 44]. One such flavor is untraceability of
funds. A popular way to make funds untraceable in blockchains is
through the use of privacy mixers [4, 17, 43]. A widely used privacy
mixer in practice is Tornado Cash [31], which is decentralized and
implemented via a smart contract on the blockchain. The untrace-
ability property provided by privacy mixers aided a growing phe-
nomenon of money being laundered via such systems. For instance,
the Ethereum address 0𝑥 . . . 383𝐸2𝑓 96 which belongs to the hacker
group Lazarus of North Korea [40] used Tornado Cash to launder
millions of dollars in stolen funds. The U.S. Department of Trea-
sury publishes the “Specially Designated Nationals And Blocked
Persons List (SDN)” [41] that contains addresses of persons that
the U.S. prohibits dealing with, as part as the OFAC list (Office of
Foreign Assets Control). This list contains, amongst other things,
blockchain addresses suspected to be involved in various types of
illegal activity. In August 2022, following the Lazarus incident, the
list was updated to include Tornado Cash [42]. This act changed
the patterns of block-inclusion for Tornado Cash transactions by
miners/validators. Today about a third of validators in the Ethereum
network censor Tornado Cash transactions [24]. Currently, such a
list is maintained on the Ethereum blockchain by Chainalysis [7].
The extensive usage of privacy mixers to move illicit funds and
the addition of Tornado Cash to OFAC’s list emphasizes the need
for solutions that provide privacy only to “good” users, but do not
allow access to the system to entities that do not comply with the
policy. In this paper we refer to the problem of preventing addresses
from OFAC’s list from transferring funds through a privacy mixer
as the “compliance” problem. A compliant privacy mixer is therefore
a mixer that preserves privacy in the sense of fund untraceability
for honest users, ones that are not on the banned-addresses list,
and does not enable the release of funds deposited from banned
addresses on the list, even if the address only becomes banned af-
ter successfully depositing funds to the mixer. To construct such
mixers one needs to take into account the dynamic nature of the
banned-addresses list that is constantly updated to include new
addresses. For this reason, a compliant privacy mixer must verify
that, at the time of withdrawal, the funds being withdrawn did not
originate from a banned address. However, this requirement that is



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

essential for achieving compliance together with privacy induces
a non-trivial combination, as at the time of withdrawal the mixer
must be oblivious to the origin of the funds. Burleson et al.[6] were
the first to introduce the question of compliant privacy mixers,
and discuss at a high level the desired features of such a solution.
However formal security definitions and implemented solutions
are still missing. This raises the following question: How can we
construct a practical privacy mixer with provable compliance?

1.1 Our contribution

In this work we construct the first compliant privacy mixer, Haze,
that guarantees the following security properties: (1) correctness -
compliant users can always withdraw their funds, (2) soundness -
funds cannot be double spent, (3) privacy in the form of deposit-
withdrawal unlinkability, and (4) compliance - users on the banned-
addresses list cannot withdraw funds from the mixer. Moreover, we
formalize these properties and cast them into general security defi-
nitions. We note that the mixer is considered honest, due to the fact
that its code is publicly deployed and immutable on the blockchain,
and can be verified for correctness prior to usage. However, illicit
users may manage to exit the mixer prior to being inserted to the
banned-addresses list, gaining privacy. To handle this undesirable
situation we introduce Daze, a protocol that provides retroactive
de-anonymization of transactions of non-compliant users, in ad-
dition to the guarantees of Haze. The de-anonymization is in the
sense that the deposit and withdrawal transactions become pub-
licly linked, which revokes the privacy of the user in the mixer.
The de-anonymization in Daze is implemented as a committee
based distributed procedure, such that privacy of compliant users
is maintained as long as at least one committee member is honest.
We further show how Haze and Daze can be extended to allow
funds deposited to the mixer from banned addresses (i.e., funds that
cannot be withdrawn) to be released to a predetermined trusted
entity. This enables, for example, stolen funds to be returned to their
rightful owner instead of being locked forever inside the mixer. We
implementHaze andDaze and evaluate their performance, showing
comparable costs to the most prominent privacy mixer, Tornado
Cash.

Formalization of compliance for mixers. In order to formalize
compliance, we consider an idealized compliant ledger. In this
ledger, deposits that become non-compliant are “removed” from
the ledger, alongside the funds that are associated with them. This
implies that mixer protocols in the idealized compliant ledger are
compliant by default, as non-compliant deposits are not inside the
mixer and hence cannot be withdrawn. Informally, our compli-
ance definition is the following: a mixer protocol is compliant if
it behaves indistinguishably in the idealized compliant ledger and
the standard (append-only) ledger. Concretely, any accepted with-
drawal transaction by the mixer is also accepted if the ledger is
replaced with the idealized compliant ledger and vice versa. This
definition coincides with the intuitive notion of compliance - illicit
funds can’t go through the mixer.

Overview of our constructions. Both Haze and Daze are com-
prised of two entities, a user and a mixer. The mixer is a smart

Mixer 

Compliant 
Merkel 

Tree

Merkel 
Root

dpst dpstdpst

Nuliifiers

nullifier_1

nullifier_2

.

.

.

Figure 1: Haze. Deposits from non-compliant addresses are
removed from the tree (the red 𝑋 ). The removal is triggered
by a withdrawal transaction and done by zeroing their leaf
value and updating the hashes at the nodes along the path
from this leaf to the root. The privacy guarantee is that a
withdrawal cannot be linked to its corresponding deposit.

contract implemented on the blockchain, and the user is a client
run locally by any user wishing to interact with the smart con-
tract of the mixer. Users interact with the mixer by depositing and
withdrawing funds, by means of transactions on the blockchain.

Similarly to Tornado Cash, Haze and Daze utilize Merkle trees
and zero-knowledge proofs. Deposits are made by submitting a
leaf to the Merkle tree maintained by the mixer. Withdrawals are
made by users by creating a zero-knowledge proof that asserts that
they have an unspent deposit from a compliant address in the mixer.
The proof is sent to the mixer alongside a nullifier, where both are
based on some secret information known only to the depositor. The
nullifier is then stored in the smart contract and is used to ensure
funds cannot be double-spent.

In Haze, the proof is constructed and verified with respect to
the compliant Merkle tree, a tree where leaves associated with de-
posits from non-compliant addresses are removed. A non-compliant
address is an address on the banned-addresses list. The banned-
addresses list is implemented as a smart contract on the blockchain,
and maintained by a list maintainer. At withdrawal, the mixer
queries this list in order to keep the compliant Merkle tree up-to-
date, and if an address of a deposit had become non-compliant
(banned), it removes the corresponding leaf from the Merkle tree
and updates the relevant path in the tree accordingly. Funds be-
longing to removed leaves (equivalently, funds deposited from non-
compliant addresses) are unrecoverable to the depositor, as it no
longer can generate a successfully verifiable zero-knowledge proof
to withdraw these funds, see fig. 1. Therefore, Haze ensures that
funds can never be withdrawn once the address they deposited from
becomes non-compliant. Moreover, we emphasize that our tech-
nique for achieving compliance via removing leaves in the Merkle
tree that are associated with non-compliant deposits can be applied
with respect to any general compliance policy that can be checked
against a deposit and not only policies defined by addresses. Thus,
Haze captures a richer family of compliance policies.

Haze’s Implementation. We implement both Haze’s client (i.e.,
“user”) in JavaScript and server (i.e., “mixer”) in Solidity and evaluate
the protocol’s performance and gas consumption, demonstrating:



Haze and Daze: Compliant Privacy Mixers

• No overhead at deposit. The gas consumption of a deposit
transaction and the running time of the user are identical to
Tornado Cash, i.e.,∼ 1Mgas and∼ 0.04 seconds, respectively.
• ∼ 1M gas consumption for the Merkle tree update per each
newly non-compliant address that is associated with a leaf
in the tree. The gas for the this update operation is paid
by the withdrawal that triggers this tree update (i.e., the
first withdrawal transaction since this address entered the
banned-addresses list), and funded by non-compliant users,
as explained below.
• Negligible running time overhead at withdrawal. Concretely,
0.24 seconds user running time amortized per Merkle tree
node, with a ∼ 0.005 seconds difference from Tornado Cash.
The time difference stems from fetching the banned-addresses
list. The gas consumption per withdrawal is ∼ 0.31M for the
zero-knowledge proof and nullifier validation (as in Tornado
Cash), plus ∼ 1M gas per newly non-compliant address that
requires an update of the Merkle tree, as specified above.

The gas consumption per Merkle tree update is identical to the
gas consumption of a deposit transaction, as both only require
updating the relevant path in the tree. Therefore, a reasonable so-
lution to cover the additional gas consumption of withdrawal due
to compliance is to charge an extra fee per deposit proportional
to the gas consumption of a single deposit. The legitimacy for the
fee is by having each user cover not only the cost of the deposit
itself, but also the cost of preserving compliance in case its address
becomes non-compliant. Concretely, the cost of withdrawal is com-
prised of the gas consumption of the zero-knowledge and nullifier
verification and an additive factor proportional to the number of
newly non-compliant addresses associated with leaves in the tree.
The extra cost paid at withdrawal for the Merkle tree updates is
refunded to the withdrawer by the mixer, and funded by the extra
fee charged with each deposit transaction. The cost overhead in
the deposit is refunded to compliant users, as described in appen-
dix C, making this a type of limited-time escrow. This approach
makes a deposit transaction in Haze cost at most twice compared
to Tornado Cash for non-compliant users, while maintaining the
cost of a withdrawal identical to Tornado Cash. Overall, together
with this feature, our protocol does not incur, for compliant users,
a cost overhead over Tornado Cash. The full implementation and
experimental results are detailed in section 5.

Daze: De-anonymizing non-compliant users. Due to the strong
privacy guarantees of Haze, users that manage to withdraw funds
prior to becoming non-compliant succeed in concealing the trace
of their illicit funds. To handle this risk, we construct a solution
that enables the banned-addresses list maintainer to publicly re-
voke the privacy of users that become non-compliant. For this we
introduce Daze, a mixer protocol which supports, in addition to
correctness, soundness, privacy and compliance, the retroactive
de-anonymization of transactions of illicit users, even if they be-
come banned only after withdrawing their funds from the mixer.
Daze differs from Haze in the way it achieves compliance. Instead
of removing non-compliant deposits from the Merkel tree, it pro-
vides compliance as follows: when depositing funds to the mixer,
a user provides an encryption of its nullifier, encrypted with the

public key of the banned-addresses list maintainer, together with a
correctness proof. Later, if an address becomes non-compliant, the
list maintainer updates the banned-addresses list with the user’s
address and the nullifier in plaintext. Upon a withdrawal request,
the mixer compares the submitted nullifier against the nullifiers
that appear on the banned-nullifier set, making funds of deposits
from non-compliant addresses non-withdrawable. Publishing the
nullifiers associated with non-compliant addresses publicly links
withdrawals of illicit funds to their deposits, thus revoking the
privacy of the withdrawal.

In Daze, preventing abuse by the banned-address list maintainer
is crucial, to prevent off-chain de-anonymization of compliant users.
We therefore suggest instantiating the de-anonymization process
as a committee using threshold encryption. Ideally, the committee
should contain a designated set of parties that are in charge of
maintaining the mixer (i.e. an on-chain governance module [39]),
as well as two off-chain separate entities such as the court and an
executive authority (police, etc.). The governance module is incen-
tivised to comply with de-anonymization of transactions of users
that meet some threshold of bad behaviour, as not participating
in de-anonymizing can render the entire mixer illegal (as in the
case of Tornado Cash). Once a proof of user non-compliance is
presented by the off-chain entities the on-chain entities contribute,
publicly on chain, their part to the de-anonymization of this user’s
transactions. This guarantees the privacy of compliant users as long
as at least one of the committee members is honest. We emphasize
that even if all committee members are corrupted, they still cannot
steal funds from the mixer.

We implemented Daze, and found that it is comparable to Tor-
nado Cash it terms of running time and gas cost of withdrawal, and
with a fixed overhead per deposit of ∼ 350K gas and ∼ 1.35 sec-
onds. In Daze all users pay the “price of compliance”, in contrast to
Haze, in which the cost overhead can be relayed to non-compliant
depositors. This is detailed in section 5.

Releasing non-compliant funds. Our construction ensures that
funds deposited into Haze and Daze from addresses on the banned-
addresses list cannot be withdrawn. However, this might mean that
stolen funds deposited into them are locked forever in the smart
contract and cannot be returned to their rightful owners. It is desir-
able to be able to release these funds to some predetermined entity,
possibly a hard-coded address of a law enforcement agency that can
then redistribute these funds. This entity can also implement a dis-
pute resolution mechanism for individuals that claim to be wrongly
placed on the list. In Daze, the mixer can count non-compliant
funds by counting the number of "banned" nullifiers on the list
that have not yet withdrawn their funds from it. This way, Daze
can release these funds to this entity at any desired period during
the life-time of the mixer. In Haze, due to its privacy guarantees,
determining whether a deposit made by a non-compliant user has
been withdrawn is infeasible. Therefore, non-compliant funds that
have been block by Haze can be released only at the end of the
mixer’s life-cycle.



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

1.2 Related Work

Flavors of privacy over the blockchain. Prior to this paper, ex-
tensive work has been done towards ensuring transaction pri-
vacy on the blockchain, e.g., Hopwood et al., Sasson et al. etc.
[2, 5, 18, 28, 32, 34, 44] are blockchain solutions that utilize cryptog-
raphy to anonymize transactions. Most of them utilize Merkle trees
and nullifiers, as in our construction. However, these solutions tend
to be slow and expensive deeming them less popular for use in prac-
tice. Other works, such as [10, 26, 33] by Malatova et al, Roos et al.,
etc. provide privacy to layer 2 systems implemented on top of the
blockchain. They however do not address the privacy of on-chain
transactions. Another desired flavor of privacy is untraceability of
funds over the blockchain, that is commonly achieved through the
use of privacy mixers. These are sometimes referred to as “add-on”
privacy solutions that derive privacy by mixing a user’s funds with
many other funds. Mixers can be either centralized, see Bonneau et
al., Heilamn et al., etc. [4, 17, 43], and depend on a trusted central
entity or decentralized, see Meiklejohn et el., Pertsev et al., Bunz
et al. etc. [5, 27, 31] which means that the functionality is imple-
mented via an on-chain smart contract. Several papers quantify the
privacy achieved by existing systems. For instance, Wu et al. [47]
and Wang et al. [45]. However, none of these systems provide any
guarantees of compliance. Moreover, some of these systems have
been prone to abuse by money launderers, as mentioned above.

Compliance with privacy over the blockchain. Several papers
have studied the intersection of privacy and compliance in the
blockchain setting. In particular, Goldwasser et al. [15] proposes a
protocol that enables to prove that specific regulations are being
adhered to while maintaining secrecy of recorded data. Burleson
et al. [6] were the first to introduce the question of compliance
for privacy mixer, and state it in the sense of a banned-addresses
list. They proposed a solution based on exclusion proof, where the
zero-knowledge proof is extended to include a proof of exclusion
from the banned-addresses list. However they do not provide an im-
plementation, or definitions of the desired properties. A concurrent
work of Soleimani [35], called privacy pools, proposed a prelimi-
nary implementation of the exclusion proof approach. Their notion
of compliance is however weaker as a user may prove exclusion
with respect to any banned-addresses list of their choice, including
the empty one, and thus funds from non-compliant addresses are
not blocked from exiting the mixer. In [35] an additional Merkle
tree is maintained and used for the exclusion proof, in contrast to
our solution that uses a single Merkle tree and rather manipulates it
directly. Our solution provides a comparable cost to Tornado Cash
for compliant users, and punishes non-compliant users by charging
them an extra fee. A monetary punishment of non-compliant users
might be a desired feature on its own. Tomescu et al. [36] suggest
UTT, a system for decentralized ecash with accountable privacy.
They consider a notion of compliance, based on a privacy budget,
which limits the volume of private transactions a user can perform.
This differs from our setting, where we aim to block, indefinitely,
funds originating from misbehaved users and guarantee privacy to
all other users.

Paper Organization

The rest of this paper is organized as follows. Preliminary terminol-
ogy and definitions appear in section 2. Our protocols for compliant
privacy mixers in section 3. Details on integrating our protocols
with the blockchain in section 4. The implemented system and
empirical evaluation in section 5. Conclusions in section 6.

2 PRELIMINARIES

We use standard definitions for functions being negligible with re-
spect to a system parameter _ called the security parameter, denoted
negl(_); similarly for polynomial, where ppt stands for probabilistic
polynomial time in _. See definitions in [23].

In the following we establish definitions and terminology re-
quired for the rest of the paper.

Hash functions. We call an efficiently computable family of
keyed functions H = {𝐻𝑠 : {0, 1}∗ → {0, 1}𝑡 }𝑡=𝑡 (_), 𝑠∈{0,1}_, _∈N
collision resistant hash functions, if for every ppt adversary A, and
any _, a uniformly random function𝐻𝑠 ∈ H satisfies thatA cannot
find 𝑥 ≠ 𝑥 ′ s.t 𝐻 (𝑥) = 𝐻 (𝑥 ′), except with negligible probability.

A CPA-secure PKE scheme. for public key encryption (PKE)
scheme E = (Gen, Enc,Dec) and its properties of correctness, CPA-
indistinguishability experiment against an adversary A denoted
EXP𝑐𝑝𝑎A,pk (_), and CPA-security. See the formal definitions in appen-
dix A.

Commitment schemes. Commitment schemes are protocols
which enable a party, known as the committer C, to commit himself
to a value while keeping it secret from the (potentially cheating)
receiver, R. This property is known as hiding. Additionally, upon re-
ceiving the commitment from C, R is ensured that even if C cheated,
there is at most one value that C can decommit to during a later,
decommitment phase (binding). We formally define a secure com-
mitment scheme in appendix A. It is known how to construct a
non-interactive, perfectly binding commitment scheme from any
one-way permutation [3]. Pedersen [30] constructed a computa-
tionally binding and unconditionally hiding scheme based on the
discrete logarithm problem.

Merkle trees. AMerkle treeT is a complete binary tree equipped
with a collision-resistant hash function𝐻 and computed on 𝑛 leaves
having values [𝑣1], . . . , [𝑣𝑛], and the value of each internal node
is 𝐻 (𝑎 | |𝑏) where 𝑎 and 𝑏 are the values of its two children; (We
assume 𝑛 is a power of 2; if not, we fix a zero value for the missing
leaves). We use a standard notion where each leaf value [𝑣]𝑖 is a
hash of some cleartext data d𝑖 . An authentication path 𝑂 (T , ℓ) of
a leaf with position ℓ in T is made up of the values of all “sibling”
nodes on the path from leaf ℓ to the root denoted 𝑅T , as well as [𝑣]ℓ
itself and dℓ . We use computationally binding and unconditionally
hiding commitment scheme for the leaves value, and a collision
resistant hash to compute the internal nodes of T .

Zero-knowledge succinct non-interactive arguments of
knowledge. Let 𝑅 be a polynomial time decidable binary relation
over pairs (𝜙,𝑤) where 𝜙 is the statement and𝑤 the witness. An
efficient-prover publicly verifiable non-interactive argument for𝑅 is
a tuple of ppt algorithmsΦ = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim)



Haze and Daze: Compliant Privacy Mixers

satisfying perfect completeness, perfect zero-knowledge, computa-
tional zero-knowledge soundness, producing a proof of polynomial
size in _ and having verification ZK.Ver polynomial in _ and |𝜙 |.
See the formal definitions in appendix A.

3 COMPLIANT PRIVACY MIXERS HAZE &
DAZE

In this section we present our two protocols for privacy mixers
with compliance. Our protocols achieve correctness, soundness,
privacy, and compliance.1 First, Haze is presented in section 3.1,
and fig. 4 with its security analysis. Then, in section 3.2, and fig. 6
we present Daze, the mixer protocol which supports retroactive
de-anonymization of non-compliant users. Formal definitions for
the properties achieved by our protocols and listed in this section
are available in appendix B.

3.1 A Compliant Privacy Mixer Haze

In this section we formally describe our protocol Haze. We en-
hance the Tornado Cash protocol [31] to obtain compliance in
the sense of preventing withdrawals of funds that belong to non-
compliant deposits, without exposing information on the deposit
being withdrawn, thus maintaining privacy of the user. A deposit is
non-compliant if it was deposited from an address that has become
non-compliant in the duration leading to the withdrawal attempt.
The main difference between Haze and [31] is in the withdrawal
phase, where we first manipulate the Merkle tree to remove leaves
corresponding to non-compliant deposits. This treatment guaran-
tees that even if deposits become non-compliant after entrance to
the mixer, they cannot be withdrawn. More formally,

The protocol Haze = (deposit,withdraw) consists of a pair of
protocols, deposit and withdrawal where any user Usr can commu-
nicate with Srv to perform the following functionality:

• deposit enables users to deposit money to Srv. Depositing is
done by user Usr generating a deposit transaction of a fixed
amount and communicating it to Srv.
• withdraw enables users to withdraw deposited funds from
Srv. Withdrawing is done by userUsr generating a withdraw
transaction (of the same fixed amount) using undisclosed
data generated by Usr during the deposit phase and commu-
nicating it to Srv.

Functionality F𝑏𝑏 for communication. Communication between
users and Srv is done via the Bulletin board F𝑏𝑏 , a functionality that
models the blockchain. F𝑏𝑏 supports the following requests from
any entity in the (blockchain) system:Write a message, and Read
written messages. Written messages are stored in an append-only
linked list, where each list node is a tuple containing: its index
in F𝑏𝑏 , sender’s and recipient’s address, and the message itself.
Similarly to the blockchain, entities in the system can generate and
possess multiple addresses, where each address is unique (w.h.p),
and there is no linkability between the addresses and the identity

1We note that dishonesty of Srv is not a concern in the blockchain setting, since its
code is public and immutable (i.e., deployed on the blockchain) and thus correctness of
Srv can be verified prior to the usage of the protocol.

of the user. Read requests return the content of the linked list at the
request time (i.e., up to the nodewith themost recent index).When a
user executes either deposit orwithdraw, the generated transaction
is written to F𝑏𝑏 with the address of Srv as the recipient’s address,
which is hard-coded within the protocolHaze. The sender’s address
is recorded as well. Users can access F𝑏𝑏 from any address they
own, but cannot use other entities’ addresses (as in the blockchain,
sending a message from an address requires signing the message
with the secret key associatedwith the address being used). See fig. 2
for formal details.

Functionality F𝑏𝑏 proceeds as follows: Set 𝑖𝑛𝑑𝑒𝑥 = 0

Upload. Upon receiving (Write,msg, address𝐵) from some
address address𝐴 , store the tuple
(𝑖𝑛𝑑𝑒𝑥,msg, (address𝐴, address𝐵)), output
(𝑖𝑛𝑑𝑒𝑥,msg, address𝐴) to address𝐵 , and set 𝑖𝑛𝑑𝑒𝑥 + +.

Read. On Read request from a party return all stored records in
F𝑏𝑏 .

Figure 2: The bulletin-board functionality

functionality F𝑄

𝑏𝑎𝑛
for non-compliant addresses. A privacy mixer

is required to reject deposits and withdrawals of funds associated
with banned addresses. Concretely, since the banned addresses
are dynamic, in the sense that new banned addresses are added
from time to time, we consider an interactive banned-addresses
functionality F𝑄

𝑏𝑎𝑛
, that stores the banned addresses (along with

optional metadata), and is updated only by a predefined entity with
a fixed address 𝑄 . We call 𝑄 the banned-addresses list maintainer.
The banned-addresses list can be read by any entity in the system,
and in particular, by users and Srv in Haze. The decision on which
addresses are updated in F𝑄

𝑏𝑎𝑛
is left outside the model. See fig. 3

for formal details.

Functionality F𝑄

𝑏𝑎𝑛
parameterized on address 𝑄 acts as follows:

Update. Upon receiving (Ban, address𝐴, data) from address 𝑄 ,
record (address𝐴, data).

Read. On Read request from any party, return all stored records
in F𝑄

𝑏𝑎𝑛
.

Figure 3: The banned-addresses functionality. Records are
pairs of banned address, together with an (optional) field
containing data related to the address.

The protocol Haze. We present our privacy mixer protocol with
compliance Haze = (deposit,withdraw) in fig. 4. Haze modifies
the Tornado Cash protocol to obtain compliance in the sense that
deposits from banned addresses cannot be withdrawn. That is,Haze
operates in the presence of F𝑄

𝑏𝑎𝑛
and rejects withdrawal of funds

that were deposited from addresses that are recorded in F𝑄

𝑏𝑎𝑛
at the

moment of withdrawal. This guarantees blocking banned addresses,



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

that were not necessarily in F𝑄

𝑏𝑎𝑛
when the deposit transaction

communicated to Srv. The protocols deposit and withdraw are
non-interactive in the sense that users communicate with Srv, but
not vice versa, and Srv only performs Read requests to the F𝑏𝑏 and
F𝑄

𝑏𝑎𝑛
functionalities. The communication to Srv (i.e., deposit and

withdrawal transactions) is done by users sending a Write request
to F𝑏𝑏 with the transaction and addressSrv being the recipient’s
address.

The difference between Haze and Tornado cash resides in the
withdraw protocol. In the original Tornado Cash withdrawal proto-
col [31], when a user Usrwants to withdraw funds that it deposited
in a deposit transaction dtxn, it proceeds as follows: (1) computes
the root 𝑅T of a Merkle tree T , where the leaves of T are all
deposit transactions submitted to Srv so far, where ℓ is the leaf
associated with the deposit dtxn. Then, (2) Usr computes 𝑂 (T , ℓ),
the authentication path of ℓ in T as defined in section 2. Next, (3) it
computes a hash, called nullifier, over part of the randomness used
to generate dtxn. Finally, (4) Usr produces a proof that it "knows"
the authentication path for one of the leaves in T that has not
been previously withdrawn. The proof in (4) is generated using
a ZK-SNARK scheme Φ for a polynomial time decidable binary
relation 𝑅, where the statement is (𝑅T , nullifier) and the witness is
(randomneesdtxn, ℓ,𝑂 (T , ℓ)). The withdrawal transaction submit-
ted by Usr consists of (nullifier, proof).

Upon receiving the withdrawal request, Srv fetches its locally
stored T and verifies the proof wrt its root and the received nullifier
(in addition to the nullifier uniqueness assertion). In our withdrawal
protocol, we modify T and nullify the leaves that correspond to
deposit transactions associated with an address that appears in
F𝑄

𝑏𝑎𝑛
. Consequently, if the ZK-SNARK proof verifies, it guarantees

that the deposit transaction it withdraws is not from an address in
F𝑄

𝑏𝑎𝑛
, as those do not appear in T anymore.

The formal description of our protocol Haze appears in fig. 4.

Our protocols deposit and withdraw in Haze provide the same
time complexity as Tornado Cash except for an additive factor in
withdraw for Srv, that is, for a security parameter _:

• deposit has Usr and Srv time complexity of poly(_) and
poly(_) ·𝑂 (log(𝑛)), respectively.
• withdraw has aUsr time complexity of poly(_) ·𝑂 (𝑛 ·log(𝑛)),
and an additive factor of Δ · poly(_) ·𝑂 (log(𝑛)) on the Srv
side, compared to Tornado Cash.

where 𝑛 is the maximal number of leaves in T , and Δ is the num-
ber of added addresses to F𝑄

𝑏𝑎𝑛
, since the previous withdrawal

transaction, that are associated with leaves in T . See section 5 for
performance measurements of withdraw and deposit.

Our protocolHaze provides correctness, soundness, privacy, and
compliance in the following sense. Detailed formalization of these
properties appears in appendix B.

Correctness is in the sense that any deposited funds can be with-
drawn (once) as long as the matching deposit transaction is compli-
ant at the time of the withdrawal, i.e., the withdrawn funds were
not deposited from an address in F𝑄

𝑏𝑎𝑛
. Correctness stems from

the collision resistance of 𝐻 (·) together with the completeness

property of Φ, and 𝑘 being randomly sampled. Concretely, a valid
deposit transaction Com(𝑘 | |𝑟 ) is a leaf in T as long as it is not from
an address in F𝑄

𝑏𝑎𝑛
. Therefore, on input (𝑘, 𝑟 ) the withdraw proto-

col produces an accepting zero-knowledge proof 𝜋 and a unique
nullifier ℎ.

Soundness is in the sense that a user cannot withdraw funds
that it did not deposit. Soundness stems from the hiding of C,
the collision resistance of 𝐻 (·), and the computational knowledge
soundness of Φ. That is, a user that produces a valid proof for
the instance (𝑅T , 𝐻 (𝑘)), without possessing (𝑘, 𝑟 ) for one of the
leaves, can be used to either break the hiding property of C or
the collision resistance of 𝐻 (·). The reduction uses the knowledge
extractor 𝜒Usr, guaranteed by the knowledge soundness of Φ, to
extract the witness (𝑘, 𝑟, ℓ,𝑂 (T , ℓ)) with non-negligible probability.
Moreover, the binding property of C prevents double spending of
the deposited funds.

Privacy is in the sense that a withdrawal cannot be linked to any
non withdrawn deposit. Privacy stems from the hiding property
of the commitment scheme C and the zero-knowledge property
of Φ. Concretely, the zero-knowledge proof guarantees to hide
(𝑘, 𝑟, ℓ,𝑂 (T , ℓ)) and the hiding property of C guarantees that𝐻 (𝑘)
can be linked to Com(𝑘 | |𝑟 ) w.p at most negligibly larger than a
random guess.

Compliance is in the sense that funds deposited from an addresses
in F𝑄

𝑏𝑎𝑛
cannot be withdrawn. This follows immediately from the

construction as leaves associated with deposit transactions from
banned addresses are zeroed and do not appear in T . Therefore,
depositors from addresses in F𝑄

𝑏𝑎𝑛
cannot produce an accepting

nullifier and zero-knowledge proof to withdraw these funds.

3.2 Daze: De-anonymizing Transactions of
Non-compliant Users

As shown in section 3.1,Hazemaintains the privacy of users, even in
the event they become non-compliant after withdrawing their funds.
In such cases, a user successfully launders money and cannot be
traced. This strong post-withdrawal privacy guarantee for deposits
that became non-compliant might not be acceptable in practice. For
instance, funds of non-compliant users are not traceable even in the
event of a court order. Due to this concern, we suggest an alternative
mixer protocol, called Daze, to de-anonymize withdrawals of funds
that originated from non-compliant addresses, even if these funds
were successfully withdrawn from the mixer.

More formally, the protocol presented in fig. 6 denoted by Daze,
relies on banned-addresses list maintainer 𝑄 that in addition to
uploading the non-compliant addresses to F𝑄

𝑏𝑎𝑛
, also provides for

each such address a data field (see fig. 3) that enables to publicly
disclose the trace of funds deposited from this address to the mixer.
Concretely, it enables linking the withdrawal to the address of the
deposit, and hence revoking privacy. The privacy and compliance of
the protocol rely on 𝑄 to perform the data extraction (1) correctly
and (2) only on deposits to the mixer that are from non-compliant
addresses. To enforce (2), we propose a distributed realization of
the de-anonymization capability of 𝑄 in section 4.1. The protocol



Haze and Daze: Compliant Privacy Mixers

Common parameters: A security parameter _, a function 𝐻 sampled uniformly at random from a collision-resistant hash function family
H , a secure commitment scheme C = (Com,Dcom), and a ZK-SNARK scheme Φ = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim) for relation 𝑅
as defined above.
Parties and addresses: A mixer Srv with public address addressSrv and a user Usr with some addresses addressUsr1 and addressUsr2 .
Storage: Srv locally stores a full binary Merkle tree T on 𝑛 leaves, all initialized to zero, the location of the next available leaf 𝑛𝑒𝑥𝑡 = 0,
and, initially empty, nullifier set S∅ . Each leaf in T is associated with an address, initially set to ⊥.
Trusted setup: Bulletin-board functionality F𝑏𝑏 , and Banned-addresses Functionality F𝑄

𝑏𝑎𝑛
. A common reference string 𝜎 produced by

running ZK.Setup.
Deposit: deposit is executed by user Usr from some address addressUsr1 and mixer Srv, as follows:

(1) User: samples uniformly at random 𝑘, 𝑟 ← {0, 1}𝑡 (_) for some polynomial 𝑡 (·), computes 𝑐 = Com(𝑘 | |𝑟 ), and sends
(Write, 𝑐, addressSrv) to F𝑏𝑏 . We call 𝑐 a deposit transaction.

(2) Mixer: Upon receiving (𝑖𝑛𝑑𝑒𝑥, 𝑐, addressUsr1 ) from F𝑏𝑏 , perform the following steps:
(a) Check that 𝑐 is not already a leaf in T (else output 0).
(b) Invoke the subroutine in fig. 5 on Update_Tree(T , 𝑛𝑒𝑥𝑡, 𝑐, addressUsr1 ) to update T , set 𝑛𝑒𝑥𝑡 = 𝑛𝑒𝑥𝑡 +1, and output 1 if successful.

We call such a deposit transaction valid. a

Withdrawal: withdraw is executed by user Usr from some address addressUsr2 and mixer Srv, as follows:

(1) User: On input (𝑘, 𝑟 ), to withdraw a deposit transaction 𝑐 = Com(𝑘 | |𝑟 ) proceed as follows:
(a) Send Read request to F𝑄

𝑏𝑎𝑛
and denote by S𝑏𝑎𝑛 the received banned-addresses list.

(b) Send Read request to F𝑏𝑏 and denote by S𝑙𝑒𝑎𝑣𝑒𝑠 = {(𝑖𝑛𝑑𝑒𝑥𝑖 , 𝑐𝑖 , address𝑖 )}𝑖∈[𝑘 ] the subset of the returned records from F𝑏𝑏 where
𝑐𝑖 is a valid deposit transaction, and address𝑖 is the address associated with it. For each 𝑖 ∈ [𝑘] such that address𝑖 ∈ S𝑏𝑎𝑛 set
𝑐𝑖 = 0 and address𝑖 = ⊥.

(c) Construct a Merkle tree T with (𝑐1, . . . , 𝑐𝑘 ) being the leaves and let 𝑅T be the root of T .
(d) Compute the authentication path 𝑂 (T , ℓ), where ℓ is the leaf index of 𝑐 in the computed T (if no leaf 𝑐 , abort).
(e) Compute ℎ = 𝐻 (𝑘) and 𝜋 ← ZK.Prove(𝜎, (𝑅T , ℎ), (𝑘, 𝑟, ℓ,𝑂 (T , ℓ))).
(f) Send (Write, (ℎ, 𝜋), addressSrv) to F𝑏𝑏 . We call (ℎ, 𝜋) a withdrawal transaction and ℎ its nullifier.

(2) Mixer: Upon receiving (𝑖𝑛𝑑𝑒𝑥, (ℎ, 𝜋), addressUsr2 ) from F𝑏𝑏 , perform the following steps:
(a) Send Read request to F𝑄

𝑏𝑎𝑛
and denote by S𝑏𝑎𝑛 the received banned-addresses list.

(b) Zero leaves associated with deposits from banned addresses: For each leaf ℓ in T and an address addressℓ associated with it,
check if addressℓ ∈ S𝑏𝑎𝑛 , and if so invoke the subroutine in fig. 5 on Update_Tree(T , ℓ, 0,⊥) to update T .

(c) Verify that ℎ did not appear in any previous withdrawal transaction (output 0 otherwise).
(d) Output 𝑏 ← ZK.Ver(𝜎, (𝑅T , ℎ), 𝜋) and if 𝑏 = 1 set S∅ = S∅ ∪ ℎ.

ain the blockchain implementation the mixer also verifies that the deposit transaction is funded.

Figure 4: Compliant privacy mixer protocol Haze

Daze instructs the user to encrypt its nullifier as part of the deposit,
and in case its address becomes non-compliant 𝑄 decrypts and
publishes the nullifier. The idea in Daze is to guarantee compliance
by blocking withdrawals that present a nullifier that is associated
with a non-compliant address. If a user manages to withdraw their
funds prior to becoming non-compliant, their nullifier appears
on the nullifier set in the smart contract. Once becoming non-
compliant, their decrypted nullifier is published alongside with
their address, and can be linked to the withdrawal transaction,
thus revoking the transaction privacy provided by the mixer to
non-compliant users. Concretely:

• In deposit, Usr samples 𝑘, 𝑟 and computes Com(𝑘 | |𝑟 ), and
an encryption of the nullifier under the public-key 𝑝𝑘𝑄 of

the banned-addresses list maintainer𝑄 , together with a "con-
sistency" proof. The proof is generated using a ZK-SNARK
scheme Φ for a polynomial time decidable binary relation
𝑅𝑐𝑜𝑛𝑠𝑖𝑠𝑡 , where the statement is

(
Com(𝑘 | |𝑟 ), 𝑝𝑘𝑄 , ciphertext

)
and the witness is (𝑘, 𝑟, ciphertext randomness). The deposit
transaction submitted by Usr consists of:
((Com(𝑘 | |𝑟 ), ciphertext) , proof).
• The withdraw protocol of Daze differs from Tornado Cash
only in its nullifier treatment. That is, the Srv compares the
nullifier in the withdraw transaction not only to nullifiers of
prior withdrawals but also to the nullifiers in the data field
in F𝑄

𝑏𝑎𝑛
, and rejects withdrawal if appears in either.



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

Subroutine Update_Tree executed by Srv on (T , ℓ, 𝑐, address),
and shared parameters as in fig. 4, where T is a Merkle tree on 𝑛
leaves (and height log(𝑛)).

For a node 𝑣 ∈ T we denote by [𝑣] its value, and similarly by
[𝑣]sb and [𝑣]pr its sibling and parent values, respectively.

The subroutine proceeds as follows:

(1) Set the value of the ℓ’th leaf to 𝑐 and denote this leaf by 𝑣 .
(2) while 𝑣 ≠ 𝑅T compute:
(a) [𝑣]pr = 𝐻 ( [𝑣] | | [𝑣]sb) for left child 𝑣 and
[𝑣]pr = 𝐻 ( [𝑣]sb | | [𝑣]) for right child 𝑣 .

(b) 𝑣 = parent(𝑣)

Figure 5: The subroutine Update_Tree updates the hashes
along the path from the ℓ ’th leaf to the root in T .

We emphasize that in Daze the mixer is not required to maintain
a compliant Merkle tree, and in particular does not perform any tree
updates for non-compliant leaves. This reduces the gas consump-
tion of Daze compared to Haze. See fig. 6 for formal description of
Daze.

The protocol Daze provides correctness, privacy, soundness and
compliance in the same sense as in section 3.1, where privacy is
guaranteed only for compliant users. Correctness and soundness
stems from the same reasons as in Haze. Privacy of compliant users
stems from the same reasons as in Haze, combined with the CPA-
security of E. Moreover, due to the knowledge soundness of Φ,
the decryption functionality provided by the banned-address list
maintainer 𝑄 cannot be leveraged to violate privacy of compliant
user by mounting a malleability attack. Compliance follows from
the construction of Daze. In particular, due to the binding of C, the
collision resistance of 𝐻 (·), and Daze’s updates to include nullifiers
that appear in the banned-addresses list it guaranteed that depos-
itors from banned-addresses cannot produce a nullifier and zero
knowledge proof that is accepted by Daze.

4 INTEGRATINGWITH THE BLOCKCHAIN

In this section we address the necessary adjustments needed to
make our protocols in section 3 securely deployed on a blockchain.
In particular, they need to remain correct, compliant, private, and
sound on the blockchain. Both protocol Haze and Daze use prim-
itives that are available on many contemporary platforms, and
in particular all EVM blockchains, and therefore are broadly ap-
plicable. In section 4.3 we introduce additions to Haze to enable
balanced distribution of the cost overhead induced by the com-
pliance maintenance mechanism. Additionally, in appendix C, we
propose a solution that enables releasing funds deposited from
non-compliant addresses back to some predetermined entity. We
implement both Haze and Daze and empirically evaluate their per-
formance, comparing them to state of the art in section 5.

4.1 Deployment on the Blockchain

In the blockchain deployment of Haze and Daze, the mixer Srv is
an on-chain smart contract that implements the logic of fig. 4 and
fig. 6, respectively, and can be publicly audited. The Merkle tree
T is stored in the smart contract’s storage. Users interact with
Srv by sending transactions to the blockchain. The address of a
transaction sender is publicly visible and therefore a deposit to Srv
can be linked to the address from which it originated. However, a
user may send many transactions to Srv from multiple addresses.

In Haze, a deposit transaction is an on-chain transaction trans-
ferring 𝑀 coins to the smart contract Srv (we assume for ease of
notations that 𝑀 = 1, but any amount will work as long as it is
the same amount across all users and all transactions). The transac-
tion will also have as auxiliary data 𝑐 = Com(𝑘 | |𝑟 ) as described in
deposit of both protocols. In Daze, the encrypted nullifier and the
zero knowledge proof are also included, as described in fig. 6, de-
posit Step 1. The user must also include in the transaction additional
funds to pay the gas fees.

In both Haze and Daze, a withdrawal transaction is an on-chain
transaction from the user to Srv. In order to maintain privacy, the
transaction should originate from a previously unused address.
The transaction does not transfer any funds into Srv, and includes
in the auxiliary data the user inputs as described in withdraw of
both protocols. When the withdrawal is processed by Srv,𝑀 coins
will be released to the address designated in the transaction. The
transaction should again include the gas fee needed to execute the
withdrawal. Paying for gas of a withdrawal is preferably done via a
relay in order to preserve privacy, see section 4.2.

The banned-addresses list and its maintainer. The banned-
addresses list functionality F𝑄

𝑏𝑎𝑛
is an on-chain smart contract

which receives queries from users and asserts whether an address
has been included in the banned address list (sanctions list). To-
day, the company Chainalysis maintains such a contract [7] on the
Ethereum blockchain and reflects the sanctions designations listed
on economic/trade embargo lists from governments and organiza-
tions including the US, EU, and the UN. In off-chain settings, there
are defense mechanisms in place to prevent the corruption of a
single entity from compromising the system, i.e. search warrants,
that require authorities to reach some threshold of permissions. For
this reason, the list maintainer should ideally consist of at least
two off-chain authorized and separate entities (i.e. law enforce-
ment agency and court) which participate together in signing the
transaction which adds a user to the banned-addresses list.

Instantiating the de-anonymization process. In Daze, it is
vital that users are not “quietly” de-anonymized, without a pub-
lic record of the decrypted nullifiers being posted on-chain. The
de-anonymization process begins once an address being published
on the banned-addresses list. We instantiate the de-anonymization
process as a committee, utilizing a CPA-secure threshold encryp-
tion scheme. We aim for a committee that contains a designated
set of parties that are in charge of maintaining the mixer (i.e. a
governance module [39]). Each member of the committee holds a
key share and together the members decrypt nullifiers associated
with deposits from non-compliant addresses by running threshold



Haze and Daze: Compliant Privacy Mixers

Common parameters: A security parameter _, a function 𝐻 sampled uniformly at random from a collision-resistant hash function family
H , and a ZK-SNARK scheme Φ = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim) for relation 𝑅 as defined in section 3.1 and 𝑅𝑐𝑜𝑛𝑠𝑖𝑠𝑡 as defined
above. A CPA-secure PKE scheme E = (Gen, Enc,Dec), and a a secure commitment scheme C = (Com,Dcom).
Parties and addresses: A mixer Srv with public address addressSrv and a user Usr with some addresses addressUsr1 and addressUsr2 .
Storage: Srv locally stores a full binary Merkle tree T on 𝑛 leaves, all initialized to zero, the location of the next available leaf 𝑛𝑒𝑥𝑡 = 0,
and, initially empty, nullifier set S∅ . Each leaf in T is associated with an address, initially set to ⊥.
Trusted setup: Bulletin-board functionality F𝑏𝑏 and a Banned-addresses Functionality F𝑄

𝑏𝑎𝑛
, containing records (addressℓ , dataℓ ), where

dataℓ = Dec𝑠𝑘𝑄 (𝑒) for 𝑒 appearing in a deposit from addressℓ . A common reference string 𝜎 produced by running ZK.Setup. A key pair

(𝑠𝑘𝑄 , 𝑝𝑘𝑄 ) produced by running Gen, where F𝑄

𝑏𝑎𝑛
is parameterized on 𝑝𝑘𝑄 , and 𝑠𝑘𝑄 is securely stored by the predefined entity with

address 𝑄 .
Deposit: deposit is executed by user Usr from some address addressUsr1 and mixer Srv, as follows:

(1) User: samples uniformly at random 𝑘, 𝑟, 𝑟𝑒 ← {0, 1}𝑡 (_) for some polynomial 𝑡 (·) and performs the following:
(a) computes 𝑐 = Com(𝑘 | |𝑟 ) and 𝑒 = Enc𝑝𝑘𝑄 (𝐻 (𝑘), 𝑟𝑒 ).
(b) 𝜋in ← ZK.Prove(𝜎, (𝑐, 𝑝𝑘𝑄 , 𝑒), (𝑘, 𝑟, 𝑟𝑒 )).
(c) Sends (Write, ((𝑐, 𝑒, 𝜋in), addressSrv) to F𝑏𝑏 .

(2) Mixer: Upon receiving (𝑖𝑛𝑑𝑒𝑥, (𝑐, 𝑒, 𝜋in), addressUsr1 ) from F𝑏𝑏 , perform the following steps:
(a) Check that 𝑐 is not already a leaf in T (else output 0).
(b) Compute 𝑏 ← ZK.Ver(𝜎, (𝑐, 𝑝𝑘𝑄 , 𝑒), 𝜋in) and if 𝑏 = 0 output 0.
(c) Invoke the subroutine in fig. 5 on Update_Tree(T , 𝑛𝑒𝑥𝑡, 𝑐, addressUsr1 ) to update T , set 𝑛𝑒𝑥𝑡 = 𝑛𝑒𝑥𝑡 +1, and output 1 if successful.

We call such a deposit transaction valid.

Withdrawal: withdraw is executed by user Usr from some address addressUsr2 and mixer Srv, as follows:
(1) User: On input (𝑘, 𝑟 ), to withdraw a deposit transaction 𝑐 = Com(𝑘 | |𝑟 ) proceed as follows:
(a) Send Read request to F𝑏𝑏 and denote by S𝑙𝑒𝑎𝑣𝑒𝑠 = {(𝑖𝑛𝑑𝑒𝑥𝑖 , 𝑐𝑖 , address𝑖 )}𝑖∈[𝑘 ] the subset of the returned records from F𝑏𝑏 where

𝑐𝑖 is a valid deposit transaction, and address𝑖 is the address associated with it.
(b) Construct a Merkle tree T with (𝑐1, . . . , 𝑐𝑘 ) being the leaves and let 𝑅T be the root of T .
(c) Compute the authentication path 𝑂 (T , ℓ), where ℓ is the leaf index of 𝑐 in the computed T (if no leaf 𝑐 , abort).
(d) Compute ℎ = 𝐻 (𝑘) and 𝜋out ← ZK.Prove(𝜎, (𝑅T , ℎ), (𝑘, 𝑟, ℓ,𝑂 (T , ℓ))).
(e) Send (Write, (ℎ, 𝜋out), addressSrv) to F𝑏𝑏 . We call (ℎ, 𝜋) a withdrawal transaction and ℎ its nullifier.

(2) Mixer: Upon receiving (𝑖𝑛𝑑𝑒𝑥, (ℎ, 𝜋out), addressUsr2 ) from F𝑏𝑏 , perform the following steps:
(a) Send Read request to F𝑄

𝑏𝑎𝑛
and denote by S𝑏𝑎𝑛 = {(addressℓ , dataℓ )}ℓ∈[𝑚] the received banned-addresses list.

(b) Add nullifiers associated with deposits from banned addresses: For each leaf ℓ in T and an address addressℓ associated with it,
check if addressℓ ∈ S𝑏𝑎𝑛 , and if so S∅ = S∅ ∪ dataℓ .

(c) Verify that ℎ ∉ S∅ (output 0 otherwise).
(d) Output 𝑏 ← ZK.Ver(𝜎, (𝑅T , ℎ), 𝜋out) and if 𝑏 = 1 set S∅ = S∅ ∪ ℎ.

Figure 6: Compliant privacy mixer protocol Daze, with de-anonymization of non-compliant users.

decryption. This guarantees the privacy of compliant users as long
as at least one of the committee members is honest, i.e., it refuses
to decrypt a nullifier of a non-banned address. The committee is
incentivised to perform de-anonymization, as if they do not, the
entire mixer risks being added to the banned-addresses list and
censored by the network. We emphasize that even if all committee
members are corrupt, they still cannot break the soundness of the
mixer, i.e. cannot steal funds. We note that due to the two-stage
de-anonymization process, there is a wait time between the pub-
lication of an address on the banned-addresses list and the time
the cleartext nullifier is published. Therefore, if blockage of these
funds during the wait time is desired, one can combine Daze with
Haze and block the funds as soon as the address is included in the
banned-addresses list.

4.2 Security Concerns over the Blockchain

Care needs to be taken in order to deploy our protocols on top of
the blockchain, due to the asynchronous nature of the blockchain
and the fact that messages are not written to the blockchain directly
by users. The blockchain is indeed an append-only linked list, as
per our theoretical model. However, messages may arrive at the
blockchain simultaneously and several messages may be included
in a single block (a single state update). Messages are sent to the
blockchain either via broadcast, through a trusted relay or directly
to validators through private channels. Block builders\validators
choose how to order transactions inside a block according to their
own best interest (typically according to a tip-maximizing order) [9].
This means that in addition to the security properties mentioned
above, over blockchains, several other security concerns arise. For
example, the deployed protocol needs to guarantee resilience to



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

hijacking and front-running.2 We therefore have to take extra pre-
cautions when implementing Haze and Daze as a smart contract
to mitigate these concerns. We emphasize that the honesty of the
mixer is a assumed due to the fact that the code of the mixer is
publicly auditable on the blockchain.

Hijacking resilience. In the idealized bulletin-board model,
messages are written to F𝑏𝑏 directly without the possibility of inter-
ception. On the blockchain, messages are sent either via broadcast to
the entire network, or through private channels to builders\validators.
This introduces a previously undiscussed risk of messages being
hijacked and modified in order to steal funds headed out of Srv. To
prevent an attacker from replacing the recipient with its address
after seeing withdraw transaction, a "non-malleability" property is
required. This is achieved by using the SnarkJS and Circom imple-
mentation of Groth16 [16, 20, 22] which encodes non-malleability
into the implemented circuit. This way, Haze and Daze prevent
hijacking by including the recipient address in the zero-knowledge
proof in the withdrawal transaction.

Front-running resilience. The front-running problem arises
when Alice issues a withdrawing transaction w.r.t some state, and
before Alice’s withdrawal is included in a block, a new deposit
or withdrawal by Bob is made to the mixer and is included in a
block, thus changing the state of the mixer and potentially deeming
Alice’s withdrawal invalid [25] (meaning Bob’s transaction front-
ran Alice’s). Due to this concern, we extend Haze and Daze to
be front-running resilient. Both protocols enable a withdrawal to
reference any previous root, as long as there were no updates to
the banned-addresses list since that root was valid. In Haze, to
accommodate this the previous root is simulated (“zeroing” the
relevant deposits) which can be done in𝑂 (log(𝑛)) time, where 𝑛 is
the number of leaves in T . This means the withdrawal transaction
will be processed correctly.

Withdrawal gas fees. In order to pay the gas fee of a with-
drawal transaction, the initiator of the transaction needs to have
sufficient funds. The recipient address of a withdrawal needs to
be a fresh address to maintain the privacy of our protocols. If the
withdrawal were initiated by a fresh address, that address would
need to somehow have these funds. However, the withdrawal ad-
dress needs to be unlinkable to the address of the depositor. So the
depositor can’t simply fund this fresh address to pay the gas fees.
This raises the question of how the gas fees can still be paid. For
this reason, users should utilize relays to minimize the privacy loss.
Relays exist in the original Tornado Cash implementation [31]. A
relay receives a withdrawal transaction from the depositor via a
private secure channel. In the recipient field of the withdrawal, the
depositor will list a fresh address. The relay funds the gas costs for
the withdrawal and forwards the withdrawal transaction to Srv.
The relay cannot alter the recipient field since Haze and Daze are
hijacking resilient. Srv processes the withdrawal and releases the
funds to the fresh recipient address, minus a fee paid to the relay
and the gas cost for the withdrawal transaction which are sent to
the relay. This way, the withdrawal request cannot be linked to the
depositor’s address on-chain. However, this requires trust between

2We note that the protocol is replay resilience due to its soundness guarantee.

Mixer 

Alice

Relay

Bob

Figure 7: In order to pay the gas costs of the withdrawal
transaction withdraw addressed to Bob, the depositor Al-
ice should utilize a relay. Alice and the relay communicate
through a private channel. The relay forwards the with-
drawal transaction to Srv. Srv processes the withdrawal and
sends the released funds to Bob, minus the gas cost and fee
that is sent back to the relay. This way Alice remain unlink-
able to Bob on the blockchain.

the depositor and the relay, as the relay can link the depositor to
the withdrawal request. See fig. 7.

4.3 Haze: Economic Concerns over the
Blockchain

In addition to the concerns addressed above, when implemented
over the blockchain, Haze needs to not fail due to gas limitations.
Concretely, the number of tree updates required per withdrawal
depend on the newly banned addresses, thus making the cost of
withdrawal non uniform per withdrawal and a priori unpredictable.
In this section we provide a twofold treatment: once at the feasibil-
ity level, enforcing that such updates do not fail due to technical
limitation of the host blockchain, and at the user level: a single
user should not be made to cover the cost of a large update due to
“bad timing”. We implement and evaluate the cost of deposit and
withdraw in section 5.

Balancing the gas costs associated with withdraw. As men-
tioned in section 3, enforcing compliance introduces a cost pro-
portional to the number of newly non-compliant deposits times
the cost of a single path update in T . This implies that the cost
of withdrawal depends on the number of newly non-compliant
deposits and hence is a priori unpredictable and also non uniform
on all withdrawals. In order to resolve this issue and create unifor-
mity in the cost of withdrawals, we suggest creating a fund in the
smart contract of Srv which will be funded by a depositor fee for
every deposit to refund these users that happen to bear the cost
of updates induced by changes in the banned-addresses list. As an
update costs the same amount of gas as a deposit, the maximal
amount of fee Haze needs to charge in order to cover these costs
(per deposit) is bounded by the gas fee per a deposit transaction.
This makes the price of a deposit increase by at most a factor of
2. In appendix C we show how this overhead can be refunded to
compliant users, making the overall cost of using Haze comparable
to Tornado Cash. This treatment also mitigates the risk of spanning
the banned-addresses list by bad actors, as they would cover the
price of the spamming upon the deposit to the mixer.

Overcoming block gas limit for large updates to T . Recall
that if a withdrawal transaction invokes a number of path updates
in T that require gas that exceeds the gas limit for a single block, it



Haze and Daze: Compliant Privacy Mixers

could potentially fail. To mitigate this issue, in the blockchain im-
plementation of Haze, the withdraw function is split into two func-
tions - withdraw and update. withdraw handles the withdrawal
logic, while update handles the logic for updating T according to
the banned-addresses list. This way, if the backlog of updates is too
big for a single withdrawal transaction to be processed, any user
in the system can call the update function to relieve the backlog.
The gas for this altruistic transaction can be funded by the fees
collected upon deposit, and will be refunded to the caller of the
update function. This solution is compatible with the incentives of
users of Haze who want to be able to withdraw their funds.

5 EMPIRICAL EVALUATION

In this section we implement and empirically evaluate the per-
formance of our protocols Haze and Daze and compare them to
Tornado Cash [31]. In our experiments, we used an Apple M1 Pro
chip machine with 8-core CPU and 16GB RAM to run clientUsr. We
deploy and manage the mixer Srv on an Ethereum local blockchain
using Ganache [8].

5.1 Implementation

Our implementation comprises of two components:

• Server Srv: the mixer, implemented as a smart contract in
Solidity [11].
• Client Usr: the user, implemented in JavaScript.

Both are implemented using a fork of the Tornado Cash mixer [37]
and client [38] extended to our protocols. As in Tornado Cash,
for practical reasons we use Pedersen hash function [19] for the
leaves instead of a commitment scheme and the MiMC hash func-
tion [1], which are implemented in the circomlib library [21]. The
SNARK keypair and the Solidity verifier code are generated us-
ing SnarkJS [22], It uses a non-malleable implementation of the
Groth16 [16] Protocol, PLONK [13] and FFLONK [12].

Haze’s implementation. We implemented Haze by forking the
Tornado Cash code and introducing the following changes:

• The smart contract of the mixer now calls an external smart
contract that manages the banned-addresses list.
• We store the Merkle tree T in the smart contract as a map
with the node indices as keys. The map grows gradually as
deposits enter our system. In addition we maintain a map of
depositors’ addresses to the indices of the tree leaves repre-
senting their deposits. This map is used to efficiently locate
leaves in the tree associated with non-compliant deposits.
• We maintain a queue of the indices of the Merkle tree leaves
associated with all non-compliant addresses that are cur-
rently known and not yet zeroed in the Merkle tree, based
on banned-addresses list obtained from the external contract.
• Path updates of the Merkle tree are realized as follows: We
implement an update function, that on input 𝑛 zeroes the
leaves associated with the first 𝑛 indices in the queue and
updates the values along their path to the root accordingly.
We allow 𝑛 ≤ 35 as this is the maximum possible number

of leaves that can be handled in a single transaction within
the block gas limit of 30M. We change the implementation
of the withdraw function to call the update function as part
of its internal logic.

Daze’s implementation. We implemented Daze by augmenting
the Tornado Cash code with the de-anonymization functionality
using ElGamal encryption [14] via the Circom library. Again, the
smart contract of Haze calls an external contract that manages the
banned-addresses list.

5.2 Experiments and Results

We evaluate the performance of Haze and Daze in terms of gas
consumption and running time of the client, for deposits and with-
drawals in different scenarios. We compare our measurements to
Tornado Cash.

In all our experiments, we measure the actual gas consumption
using the transaction receipt “gasUsed” field of corresponding re-
quests. We set the block gas limit to 30 · 106 which is the gas limit
used by the Ethereum mainnet today. We repeat each experiment
20 times and present the average result of all repetitions.

The purpose of our first experiment is to show that when there
are no non-compliant addresses the gas consumption of the smart
contract and running time of the client of Haze and Daze is compa-
rable to Tornado Cash, which is widely used.

Experiment A: comparison of our protocols to Tornado Cash. We
measure the cost of deployment ofHaze andDaze to the blockchain,
as well as the cost of a single deposit and withdrawal when there
are no non-compliant addresses (we denote it the baseline setting).
We run the deposit and withdrawal measurements on the client
side as well. We compare the baseline gas costs and running time
of our protocol with the deposit and withdrawal of Tornado Cash.

The results appear in Table 1. We see that for Haze, on aver-
age the gas cost has increased by 1.1% for our mixer compared to
Tornado Cash for a withdrawal transaction, by 4.1% for a deposit
transaction, and by 7.2% for the deployment. These increases are
explained by the additional storage in Haze compared to Tornado
Cash. The running time of the deposit on the client side of our
protocol is identical to Tornado Cash and the withdrawal running
time increases by 4.6% on average. This difference stems from the
fact that in our implementation, in each withdrawal, the client
checks for updates of the banned-addresses list. In Daze, we find
that the overhead in deposit imposed by the new functionality is
410𝐾 gas, which implies approximately 40% increase in gas cost
compared to Tornado Cash. The increase in gas cost stems from
the zero-knowledge proof verification, that has a constant cost of
approximately 300𝐾 . We measured the running time of the deposit
in Daze, and found it to be 1.4 seconds. The increase in the deposit
running time stems from encryption and preparation of the zero-
knowledge proof. We also ran experiments to measure the cost of
withdrawal, both in terms of gas and running time on the client
side.



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

Server (gas) Client (sec)
Action Tornado Cash Haze Daze Tornado Cash Haze Daze
Deploy 1960209 2099721 2332409 — — —
Deposit 957037 996139 1367056 0.043 0.045 1.415

Withdraw 312254 315782 314529 3.040 3.035 3.123
Table 1: Comparison Haze in the baseline setting vs. the Tornado Cash vs. our de-anonymization protocol Daze, for smart con-
tract deployment (gas units), deposit (seconds), and withdrawal (gas units). Measurements taken when the mixer is populated
with 1K deposits.

Experiment B: Gas cost vs. number of non-compliant addresses.
This experiment is relevant only to Haze, as the cost of a with-
drawal depends on the number of newly non-compliant addresses.
After populating the mixer with 1K deposits we measure the gas
consumption of a deposit transaction and a withdrawal transaction
as the number of deposits associated with newly non-compliant
addresses increases.

We find that the gas consumption of withdrawal increases lin-
early with the number of deposits associated with non-compliant
addresses. For completeness, we also present the gas consumption
of a deposit operation, which does not change with the number
of non-compliant addresses. Moreover, we find that the maximal
number of tree updates due to non-compliant address that can be
supported in one transaction is at most 35, since after that the gas
required surpasses the block gas limit of 30M gas. The results are
summarized in fig. 8. We note that the results of this experiment
are independent of the number of deposits that were made to the
mixer prior to the measurement. We verified this independence by
repeating the experiment when populating the mixer with differ-
ent numbers of deposits in {1, . . . , 1000}, checking at increments
of 100, and obtained the same results. The gas consumption of
a withdrawal transaction consists of the zero-knowledge proof
verification and tree updates, which result from each newly non-
compliant address. The number of deposits in the mixer does not
influence either of these components, as the updates depend only
on tree height which is fixed throughout the lifetime of the mixer.
Similarly, a deposit transaction depends on the tree height and is
oblivious of the number of deposits inside the mixer, as well the
number of non-compliant addresses. See fig. 8.

Experiment C: Running time vs. number of deposits in the mixer in
Haze and Daze. We measure the client’s withdrawal running time
as the number of deposits in the mixer increases in the baseline
setting (i.e., there are no banned addresses). Results for Haze are
summarized in fig. 9. We see that the running time of the client
for the withdrawal increases linearly with the number of deposits
in the mixer. The increase in running time stems from increasing
number of nodes in the constructed tree by the client.

Next, we assert that the number of newly non-compliant ad-
dresses does not influence the running of the client both for deposit
and withdrawal transactions. More formally,

Experiment D: Running time vs. number of non-compliant ad-
dresses in Haze and Daze. After populating the mixer with 1K
deposits we measure the running time of the client for a deposit

Figure 8: The deposit cost (blue) and withdrawal cost (red) of
Haze in gas units vs. the number of newly banned addresses
as part of the upcoming withdrawal transaction. Measure-
ments taken when the mixer is populated with 1K deposits.

transaction and a withdrawal transaction as the number of deposits
associated with newly non-compliant addresses increases.

We find that the running time of withdrawals in Haze and Daze
is unaffected by the number of non-compliant addresses, per fixed
number of deposit populating the mixer. We verified this by repeat-
ing the measurements for different deposit populations in the mixer,
for the same values presented in the previous experiments. This
is due to the fact that the client, similar to Tornado Cash, rebuilds
the entire tree in each withdrawal request. Moreover, the deposit
running time does not change with the amount of non-compliant
addresses and the number of deposits in the mixer, similarly as for
gas cost of deposits.

6 CONCLUSIONS

In this work we presented two compliant privacy mixers, Haze and
Daze that attain correctness, soundness, privacy, and compliance.
Daze additionally supports de-anonymization of non-compliant
users. Our protocols can be deployed and used over the blockchain
guaranteeing resiliency against: transaction hijacking, front-running,
and banned-addresses list spamming. In addition, we propose a solu-
tions for responsible release of banned funds due to non-compliance
in both protocols. We implemented both Haze and Daze using So-
lidity for the mixer Srv and JavaScript for the client Usr. We ran
extensive experiments demonstrating efficient user running time



Haze and Daze: Compliant Privacy Mixers

Figure 9: The time in seconds it takesHaze’s client to prepare
a withdraw transaction. This measurement is taken in the
baseline setting when there are no banned addresses.

and realistic gas requirements comparable to the popular Tornado
Cash mixer.

REFERENCES
[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. In International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pages 191–219. Springer, 2016.

[2] Kurt M. Alonso and Jordi Herrera-Joancomartí. Monero - privacy in the
blockchain. IACR Cryptol. ePrint Arch., 2018:535, 2017.

[3] Manuel Blum. Coin flipping by telephone a protocol for solving impossible
problems. ACM SIGACT News, 15(1):23–27, 1983.

[4] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A
Kroll, and Edward W Felten. Mixcoin: Anonymity for bitcoin with accountable
mixes. In Financial Cryptography and Data Security: 18th International Conference,
FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers 18,
pages 486–504. Springer, 2014.

[5] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:
Towards privacy in a smart contract world. In Financial Cryptography and Data
Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February
10–14, 2020 Revised Selected Papers, pages 423–443. Springer, 2020.

[6] Joseph Burleson, Michele Korver, and Dan Boneh. Privacy-protecting regulatory
solutions using zero-knowledge proofs. https://api.a16zcrypto.com/wp-content/
uploads/2022/11/ZKPs-and-Regulatory-Compliant-Privacy.pdf, 2022.

[7] Chainalysis. Chainalysis oracle for sanctions screening. https://
go.chainalysis.com/chainalysis-oracle-docs.html, 2023.

[8] ConsenSys Software Inc. Ganache. https://www.trufflesuite.com/docs/ganache/
overview, 2021.

[9] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability. In 2020 IEEE
Symposium on Security and Privacy (S&P), pages 910–927. IEEE, 2020.

[10] Maya Dotan, Saar Tochner, Aviv Zohar, and Yossi Gilad. Twilight: A differentially
private payment channel network. In 31st USENIX Security Symposium (USENIX
Security 22), pages 555–570, 2022.

[11] Ethereum Foundation. Solidity programming language. https:
//docs.soliditylang.org/en/latest/, 2019.

[12] Ariel Gabizon and Zachary J Williamson. fflonk: a fast-fourier inspired verifier
efficient version of plonk. Cryptology ePrint Archive, 2021.

[13] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[14] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[15] Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws: Can
they coexist? Cryptology ePrint Archive, 2018.

[16] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305–326. Springer, 2016.

[17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous pay-
ment hub. In Network and distributed system security symposium, 2017.

[18] Daira Hopwood, Sean Bowe, Taylor Hornby, NathanWilcox, et al. Zcash protocol
specification. GitHub: San Francisco, CA, USA, 4(220):32, 2016.

[19] Iden3. edersen hash. https://iden3-docs.readthedocs.io/en/latest/
iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-
hash/pedersen.html, 2019.

[20] iden3. Circom. https://github.com/iden3/circom, 2022.
[21] iden3. Circomlib/circuits. https://github.com/iden3/circomlib/tree/master/

circuits, 2022.
[22] iden3. Javascript and pure web assembly implementation of zksnark and plonk

schemes. https://github.com/iden3/snarkjs, 2022.
[23] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC

press, 2020.
[24] Labrys. Mev watch. https://web.archive.org/web/20230428094150/https://

www.mevwatch.info/, 2023.
[25] Duc V Le and Arthur Gervais. Amr: Autonomous coin mixer with privacy

preserving reward distribution. In Proceedings of the 3rd ACM Conference on
Advances in Financial Technologies, pages 142–155, 2021.

[26] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silen-
twhispers: Enforcing security and privacy in decentralized credit networks. In
NDSS, 2017.

[27] Sarah Meiklejohn and Rebekah Mercer. Möbius: Trustless tumbling for trans-
action privacy. Proceedings on Privacy Enhancing Technologies, 2018(2):105–121,
2018.

[28] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In 2013 IEEE symposium on security
and privacy, pages 397–411. IEEE, 2013.

[29] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
business review, page 21260, 2008.

[30] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Annual international cryptology conference, pages 129–140.
Springer, 1991.

[31] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado cash privacy
solution version 1.4. https://berkeley-defi.github.io/assets/material/Tornado%
20Cash%20Whitepaper.pdf, 2019.

[32] Antoine Rondelet and Michal Zajac. Zeth: On integrating zerocash on ethereum.
arXiv preprint arXiv:1904.00905, 2019.

[33] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling
payments fast and private: Efficient decentralized routing for path-based transac-
tions. arXiv preprint arXiv:1709.05748, 2017.

[34] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474.
IEEE, 2014.

[35] Ameen Soleimani. Privacy pools with opt-in or opt-out anonymity sets.
https://github.com/ameensol/privacy-pools, 2023.

[36] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. Utt: Decentralized ecash with accountable
privacy. Cryptology ePrint Archive, Paper 2022/452, 2022. https://eprint.iacr.org/
2022/452.

[37] Tornado Cash. Tornado cash privacy solution. https://github.com/tornadocash/
tornado-core, 2019.

[38] Tornado Cash. Tornado-cli. https://github.com/tornadocash/tornado-cli, 2019.
[39] Tornado Cash. Solidity programming language. https://github.com/tornadocash/

tornado-governance, 2021.
[40] TRM Labs. North korea’s lazarus group moves funds through tornado

cash. https://www.trmlabs.com/post/north-koreas-lazarus-group-moves-funds-
through-tornado-cash, 2022.

[41] U.S. Department Of Treasury. Specially designated nationals and blocked
persons list (sdn) human readable lists. https://home.treasury.gov/policy-
issues/financial-sanctions/specially-designated-nationals-and-blocked-
persons-list-sdn-human-readable-lists, 2022.

[42] U.S. Department Of Treasury. U.s. treasury sanctions notorious virtual currency
mixer tornado cash. https://home.treasury.gov/news/press-releases/jy0916, 2022.

[43] Luke Valenta and Brendan Rowan. Blindcoin: Blinded, accountable mixes for
bitcoin. In Financial Cryptography and Data Security: FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30,
2015, Revised Selected Papers, pages 112–126. Springer, 2015.

[44] Nicolas Van Saberhagen. Cryptonote v 2.0. 2013.
[45] Zhipeng Wang, Stefanos Chaliasos, Kaihua Qin, Liyi Zhou, Lifeng Gao, Pascal

Berrang, Benjamin Livshits, and Arthur Gervais. On how zero-knowledge proof
blockchain mixers improve, and worsen user privacy. Cryptology ePrint Archive,
Paper 2023/341, 2023. https://eprint.iacr.org/2023/341.

[46] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

https://api.a16zcrypto.com/wp-content/uploads/2022/11/ZKPs-and-Regulatory-Compliant-Privacy.pdf
https://api.a16zcrypto.com/wp-content/uploads/2022/11/ZKPs-and-Regulatory-Compliant-Privacy.pdf
https://go.chainalysis.com/chainalysis-oracle-docs.html
https://go.chainalysis.com/chainalysis-oracle-docs.html
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://docs.soliditylang.org/en/latest/
https://docs.soliditylang.org/en/latest/
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://github.com/iden3/circom
https://github.com/iden3/circomlib/tree/master/circuits
https://github.com/iden3/circomlib/tree/master/circuits
https://github.com/iden3/snarkjs
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/tornado-cli
https://github.com/tornadocash/tornado-governance
https://github.com/tornadocash/tornado-governance
https://www.trmlabs.com/post/north-koreas-lazarus-group-moves-funds-through-tornado-cash
https://www.trmlabs.com/post/north-koreas-lazarus-group-moves-funds-through-tornado-cash
https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists
https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists
https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists
https://home.treasury.gov/news/press-releases/jy0916
https://eprint.iacr.org/2023/341


Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

[47] Mike Wu, Will McTighe, Kaili Wang, Istvan A Seres, Nick Bax, Manuel Puebla,
Mariano Mendez, Federico Carrone, Tomás De Mattey, Herman O Demaestri,
et al. Tutela: An open-source tool for assessing user-privacy on ethereum and
tornado cash. arXiv preprint arXiv:2201.06811, 2022.

A PRELIMINARIES (FORMAL DEFINITIONS
FROM SECTION 2)

A.1 CPA-Secure Public Key Encryption

A public key encryption scheme has the following syntax and cor-
rectness requirement.

Definition A.1 (Public-Key Encryption (PKE)). A public-key en-
cryption (PKE) schemewithmessage spaceM is a triple E = (Gen, Enc,Dec)
of ppt algorithms satisfying the following conditions:

• Gen (key generation) takes as input the security parameter
1_ , and outputs a pair (𝑝𝑘, 𝑠𝑘) consisting of a public key 𝑝𝑘
and a secret key 𝑠𝑘 ; denoted: (𝑝𝑘, 𝑠𝑘) ← Gen(1_).
• Enc (encryption) takes as input a public key 𝑝𝑘 and amessage
𝑚 ∈ M, and outputs a ciphertext 𝑒 ; denoted: 𝑒 ← Enc𝑝𝑘 (𝑚).
• Dec (decryption) takes as input a secret key 𝑠𝑘 and a ci-
phertext 𝑒 , and outputs a decrypted message𝑚′; denoted:
𝑚′ ← Dec𝑠𝑘 (𝑒).

Correctness. The scheme is correct if for every (𝑝𝑘, 𝑠𝑘) ← Gen(1_)
and every message𝑚 ∈ M,

Pr[Dec𝑠𝑘 (Enc𝑝𝑘 (𝑚)) =𝑚] ≥ 1 − negl(_)
where the probability is taken over the random coins of the encryp-
tion algorithm.

Security against chosen plaintext attack. APKE E = (Gen, Enc,Dec)
is CPA-secure if no ppt adversary A can distinguish between the
encryption of two equal length messages 𝑥0, 𝑥1 of his choice. This
is formally stated using the following experiment between a chal-
lenger Chal and the adversary A.

The CPA indistinguishability experiment EXP𝑐𝑝𝑎A,E (_):

(1) Gen(1_) is run by Chal to obtain keys (𝑝𝑘, 𝑠𝑘).
(2) Chal provides the adversaryA with 𝑝𝑘 A sends to Chal two

messages 𝑥0, 𝑥1 ∈ M s.t. |𝑥0 | = |𝑥1 |.
(3) Chal chooses a random bit 𝑏 ∈ {0, 1}, computes a ciphertext

𝑒 ← Enc𝑝𝑘 (𝑥𝑏 ) and sends 𝑒 to A. We call 𝑒 the challenge
ciphertext.

(4) A outputs a bit 𝑏 ′.
(5) The output of the experiment is defined to be 1 if 𝑏 ′ = 𝑏 (0

otherwise).

Definition A.2 (CPA-security). A public key encryption scheme
E = (Gen, Enc,Dec) has indistinguishable encryptions under chosen-
plaintext attacks (or is CPA-secure) if for all ppt adversariesA there
exists a negligible function negl such that:

Pr[EXP𝑐𝑝𝑎A,E (_) = 1] ≤ 1
2
+ negl(_)

where the probability is taken over the random coins of A and
Chal.

A.2 Commitment Schemes

Definition A.3 ( Commitment Scheme). Let C = (Com,Decom) be
an non-interactive protocol between a committer C and a receiver
R. We say that C is a secure commitment scheme if the following
properties hold:

Correctness: If C and R do not deviate from the protocol, then R
should accept during the decommit phase with probability
1.

Binding: For every pptC∗, there exists a negligible function negl(·)
such that C∗ succeeds in the following game with proba-
bility at most negl(_): On security parameter 1_ : C∗ first
produces a commitment 𝑐 . Then C∗ outputs two decommit-
ments (𝑐,𝑚0, 𝑑0) and (𝑐,𝑚1, 𝑑1), and succeeds if 𝑚0 ≠ 𝑚1
and R accepts both decommitments.

Hiding: For every ppt receiver R∗ and every two messages𝑚0,𝑚1,
the view of R∗ after receiving a commitment to𝑚0 is indis-
tinguishable from its view after receiving a commitment to
𝑚1.

It is known how to construct a non-interactive, perfectly binding
commitment scheme from any one-way permutation [3]. Pedersen
[30] constructed a computationally binding and unconditionally
hiding scheme based on the discrete logarithm problem.

A.3 Zero Knowledge

Zero-knowledge succinct non-interactive Argument of Knowledge
[Groth [16]]. Let 𝑅 be a polynomial time decidable binary relation
over pairs (𝜙,𝑤) where 𝜙 is the statement and𝑤 the witness.

An efficient-prover publicly verifiable non-interactive argument
Φ = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim) for 𝑅 is a quadruple of
ppt algorithms as follows:

• (𝜎, 𝜏) ← ZK.Setup(𝑅): The setup produces a common refer-
ence string 𝜎 and a simulation trapdoor 𝜏 for 𝑅.
• 𝜋 ← ZK.Prove(𝑅, 𝜎, 𝜙,𝑤): The prover algorithm takes as in-
put a common reference string 𝜎 and (𝜙,𝑤) ∈ 𝑅 and returns
an argument 𝜋 .
• 0/1← ZK.Ver(𝑅, 𝜎, 𝜙, 𝜋): The verification algorithm takes
as input a common reference string 𝜎 , a statement 𝜙 and an
argument 𝜋 and returns 0 (reject) or 1 (accept).
• 𝜋 ← ZK.Sim(𝑅, 𝜏, 𝜙): The simulator takes as input a sim-
ulation trapdoor and statement 𝜙 and returns a simulated
argument 𝜋 .

Definition A.4 (Succinct non-interactive zero-knowledge argument
of knowledge). We say Φ = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim)
is a perfect succinct non-interactive zero-knowledge argument of
knowledge (ZK-SNARK) for 𝑅 if it has:

• perfect completeness: Given any true statement, an honest
prover should be able to convince an honest verifier to accept
it. Formally, for all (𝜙,𝑤) ∈ 𝑅

Pr
[
ZK.Ver(𝑅, 𝜎, 𝜙, 𝜋) = 1| (𝜎,𝜏)←ZK.Setup(𝑅) ;

𝜋←ZK.Prove(𝑅,𝜎,𝜙,𝑤)

]
= 1



Haze and Daze: Compliant Privacy Mixers

• perfect zero-knowledge: An argument that does not leak any
information besides the truth of the statement. Formally, for
all (𝜙,𝑤) ∈ 𝑅 and all adversaries A

Pr[A(𝑅, 𝜎, 𝜏, 𝜋) = 1| (𝜎,𝜏)← ZK.Setup(𝑅) ;
𝜋←ZK.Prove(𝑅,𝜎,𝜙,𝑤)]

= Pr[A(𝑅, 𝜎, 𝜏, 𝜋) = 1| (𝜎,𝜏)← ZK.Setup(𝑅) ;
𝜋←ZK.Sim(𝑅,𝜏,𝜙) ]

• computational knowledge soundness: There exists an extrac-
tor that extracts a witness whenever the adversary produces
a valid argument (given access to its internal state). Formally,
for all non-uniform polynomial time adversaries A there
exists a non-uniform polynomial time extractor 𝜒A , and a
negligible function negl(·) such that,

Pr[ (𝜙,𝑤)∉𝑅 and
ZK.Ver(𝑅,𝜎,𝜙,𝜋 )=1|

(𝜎,𝜏)←ZK.Setup(𝑅) ;
( (𝜙,𝜋 ) ;𝑤)←(A | |𝜒A ) (𝑅,𝜎)] < negl(_)

• The proof 𝜋 is of polynomial size in _ and ZK.Ver is polyno-
mial in _ + |𝜙 |.

B FORMAL DEFINITIONS

In this section we formalize the properties correctness, privacy,
soundness and compliance.

First, we formally define the following terms: Correctness is in
the sense that any deposited funds can be withdrawn (once) as long
as the matching deposit transaction is compliant at the time of the
withdrawal, i.e., the withdrawn funds were not deposited from an
address that is banned in F𝑄

𝑏𝑎𝑛
. Soundness is in the sense that no user

can withdraw more than it deposited. Privacy is in the sense that a
withdrawal cannot be linked to any non withdrawn deposit. Com-
pliance is in the sense that funds belonging to deposit transactions
associated with an address in F𝑄

𝑏𝑎𝑛
cannot be withdrawn.

To formally state these properties we first set some notations.
We denote the view of user Usr in an execution of the deposit and
withdraw protocols in Figure 4 and Figure 6, by

(𝑟, dtxn, address𝐴) ← viewdeposit
Usr (_) and

(wtxn, address𝐵) ← viewwithdraw
Usr (𝑟, _)

respectively, where the view consists of the party’s randomness,
the generated (deposit/withdrawal) transaction, and the address
associated with the transaction. We note that viewwithdraw

Usr (𝑟, _) is
defined w.r.t the first execution of withdraw on input 𝑟 . We denote
the output of Srv by

outdepositSrv (dtxn, _) = 𝑏 and

outwithdrawSrv (wtxn, _) = 𝑏

where the bit 𝑏 is the output of Srv. We call a transaction valid if
𝑏 = 1. We remark that F𝑄

𝑏𝑎𝑛
and F𝑏𝑏 are accessible to any party in

the system, and the transactions as well as the output of Srv may
depend on their content.

Definition B.1 (Correctness). Amixer protocolΠ = (deposit,withdraw)
is correct if for every _ ∈ N and

(𝑟, dtxn, address𝐴) ← viewdeposit
Usr (_) and

(wtxn, address𝐵) ← viewwithdraw
Usr (𝑟, _)

the following holds with probability ≥ 1 − negl(_):

• outdepositSrv (dtxn, _) = 1

• if address𝐴 is not recorded in F𝑄

𝑏𝑎𝑛
prior to wtxn generation

then outwithdrawSrv (wtxn, _) = 1

where the probability is over the randomness of Usr and Srv.

Intuitively, the soundness property needs to capture that any user
cannot withdraw more funds than it deposited. We formalize this
by requiring that for any user in any point of time, represented by
𝑖𝑛𝑑𝑒𝑥 in F𝑏𝑏 , the number of valid withdrawals made from addresses
belonging to a user must not exceed the number of successful
deposits made by the user.

Definition B.2 (Soundness). Amixer protocolΠ = (deposit,withdraw)
is sound if for every 𝑖𝑛𝑑𝑒𝑥 ∈ N, and any ppt user Usr, associ-
ated with address set SUsr, the following holds with probability
≥ 1 − negl(_) over the randomness of Usr and Srv:

��{(𝑖, dtxn𝑖 , (address𝑖 , addressSrv))}𝑖<𝑖𝑛𝑑𝑒𝑥 and address𝑖 ∈SUsr
��

≥
��{(𝑖,wtxn𝑖 , (address𝑖 , addressSrv))}𝑖≤𝑖𝑛𝑑𝑒𝑥 and address𝑖 ∈SUsr

��
where the tuples are recorded in F𝑏𝑏 , and for every 𝑖 it holds that:
dtxn𝑖 and wtxn𝑖 are valid deposit and withdrawal transactions,
respectively.

Intuitively, the definition of privacy captures the idea that an
adversary should not be able to, given two deposit transactions
and a withdrawal transaction belonging to one of the deposits,
distinguish which of the deposits the withdrawal belongs to. This
should hold true even if the adversary gets to freely interact with
system.

Privacy. Wedefine privacy for amixer protocolΠ = (deposit,withdraw)
using the following experiment between a challenger Chal and an
adversary A with access to F𝑄

𝑏𝑎𝑛
:

The privacy experiment EXPA,Π,F𝑄
𝑏𝑎𝑛

(_):

(1) The adversaryA can send to Chal a deposit and withdrawal
requests that are processed by Chal as follows:
• Honest deposit generation: Upon receiving a (deposit) re-
quest fromA it executes deposit and simulates F𝑏𝑏 using
the stored values. Then Chal stores (𝑟, dtxn, address𝐴) ←
viewdeposit

Usr (_) and sends (dtxn, address𝐴) to A.
• Honest withdrawal generation:Upon receiving a (withdrawal, dtxn)
request from A it fetches 𝑟 that is associated with dtxn
(if no such exists return ⊥ toA), it executes withdraw on
input 𝑟 and simulates F𝑏𝑏 using the stored values. Then
Chal stores (wtxn, address𝐵) ← viewwithdraw

Usr (𝑟, _) and
sends wtxn to A.



Stanislaw Baranski, Maya Dotan, Ayelet Lotem, and Margarita Vald

• Adversarial deposit/withdrawal submission: In addition,
A can submit a deposit or withdrawal transaction of its
choice to Chal that records it in the simulated F𝑏𝑏 with
appropriate 𝑖𝑛𝑑𝑒𝑥 .

(2) A outputs a pair of deposit transactions dtxn0, dtxn1 that
correspond to two deposit transactions previously generated
by Chal and were not requested to be withdrawn in item 1.

(3) Chal chooses a random bit 𝑏 ∈ {0, 1} and fetches 𝑟𝑏 that is
associated with dtxn𝑏 . Then it executes withdraw on input
𝑟𝑏 and send to A the generated withdrawal transaction i.e.,
(wtxn, address𝐵) ← viewwithdraw

Chal (dtxn𝑏 ). We call wtxn the
challenge transaction. A continues to have access to Chal,
interacting as in item 1.

(4) The adversary A outputs a bit 𝑏 ′. The experiment’s output
is defined to be 1 if 𝑏 ′ = 𝑏, and 0 otherwise.

Definition B.3 (Privacy). A protocol Π = (deposit,withdraw) is
private if for all ppt adversariesA, there exists a negligible function
negl(·) such that for all _ ∈ N,

Pr[EXPA,Π,F𝑄
𝑏𝑎𝑛

(_) = 1] ≤ 1
2
+ negl(_)

where the probability is taken over the random coins used by A
and Chal.

Intuitively, a compliant protocol should not allow the flow of
illicit funds through the mixer. Additionally, compliance is some-
what meaningless for non sound protocols, i.e., ones that release
funds without an appropriate assurance of their deposit by the
withdrawing entity. Therefore, we focus our attention on compli-
ance for sound protocols, according to definition B.2, and define
compliance as follows: Our definition considers an idealized world
where compliance is enforced by an ideal compliant ledger that
“magically” deletes deposits from non compliant addresses, as if
they never happened. Our compliance definition requires the pro-
tocol to behave indistinguishably when executed in our standard
(append-only) ledger and the idealized world. In particular, we re-
quire that any valid withdrawal transaction is also valid in the
idealized world, where no deposits from non-compliant addresses
reside in the mixer. Combined with soundness this guarantees that
the protocol enables withdraw funds only for compliant deposits.
Formally,

Definition B.4 (Compliance). Let F𝑏𝑏 and F𝑄

𝑏𝑎𝑛
be the functionali-

ties fromfig. 2 and fig. 3, respectively, and letΠ = (deposit,withdraw)
be a sound mixer protocol as defined in definition B.2, with all enti-
ties having access to F𝑏𝑏 and F𝑄

𝑏𝑎𝑛
. We say that Π is compliant if

the following holds:

• The mixer Srv is stateless (i.e., it does not maintain state
between executions of deposit or withdraw and it only per-
forms Read requests to F𝑏𝑏 ).
• The userUsr only performsUpload requests toF𝑏𝑏 in deposit.
• for every tuple (𝑖𝑛𝑑𝑒𝑥,wtxn, (address𝐵, addressSrv)) in F𝑏𝑏 ,
it holds that:

wtxn is a valid withdrawal transaction if and only if

Pr[outwithdraw(F
∗
𝑏𝑏
)

Srv (wtxn, _) = 1] = 1

where withdraw(F ∗
𝑏𝑏
) is the withdraw protocol of Π, where

calls to F𝑄

𝑏𝑎𝑛
are ignored and F𝑏𝑏 is replaced with the fol-

lowing functionality F ∗
𝑏𝑏
:

– Write and Read requests are treated as in F𝑏𝑏 .
– every request (Ban, address𝐴, data) from address 𝑄 to
F𝑄

𝑏𝑎𝑛
is forwarded to F𝑏𝑏 and treated by overwriting every

tuple

(𝑖𝑛𝑑𝑒𝑥,msg, (address𝐴, addressSrv))

in F𝑏𝑏 to (𝑖𝑛𝑑𝑒𝑥, 0, (⊥, addressSrv)).3

We note that though Srv in our protocol in fig. 4 is not stateless, it
can be equivalently defined as stateless that does not store the entire
tree T , but rather recreates it with each withdrawal call by reading
the bulletin-board F𝑏𝑏 . We avoid this in order to increase efficiency.
Therefore compliance of our non-stateless protocol follows.

C RELEASING NON-COMPLIANT FUNDS

While both Haze and Daze are compliant in the sense that funds
deposited from banned addresses cannot be withdrawn, there exists
the problem of these funds being permanently locked in the mixer.
For this reason, we propose a mechanism that enables releasing
these funds to a predetermined entity. We deal with this problem
separately for Haze and for Daze.

releasing non-compliant funds in Haze. Recall that due to
the privacy property of Haze, it is indistinguishable whether a
non-compliant user withdrew its funds or not, and thus counting
the amount of non withdrawn funds from banned addresses inside
Haze is difficult. Our solution to release non-compliant funds works
as follows: the mixer will have a limited life-cycle of some predeter-
mined amount of time4. At the end of its life-cycle, the mixer will
no longer take new deposits and there will be a period in which all
users are allowed to withdraw their remaining funds. At the end of
this period, all funds that are not withdrawn are transferred to the
predetermined entity. This entity can implement a dispute process
in which users with compliant funds that for some reason did not
withdraw their funds in time can request their funds by exposing
the (𝑘, 𝑟 ) that are associated with the disputed funds (this causes
a privacy loss for the user). At the end of the mixer’s life-cycle,
Haze also enables refunding compliant users the fee overhead they
paid at the time of deposit. We remind that the purpose of this
overhead is to cover the cost of the tree update in the event a de-
posit would ever become non compliant. Since at the end of the
mixer’s life-cycle the deposit is still compliant, this cost will never
be realized. Therefore, Haze can safely refund the remaining fees to
each compliant address that deposited funds to the mixer. Note that
non-compliant users are punished by not being refunded their fee
overhead, as their funds were used to fund the tree updates. This
holds even in the case that the user managed to withdraw their
deposit before becoming non-compliant.

3A similar treatment could suggest removing the records from F𝑏𝑏 instead of over-
writing, however for the ease of presentation we define it as above.
4Time is measured in blocks.



Haze and Daze: Compliant Privacy Mixers

Recall that on the blockchain, a smart contract can only be trig-
gered by a transaction signed by a user. We therefore design Haze
in a way that enables anyone, including the trusted entity, to trigger
the end-of-life of the mixer. There will be a hard-coded condition
in the smart contract to verify that enough blocks have been added
since the creation of the contract, and only upon meeting that re-
quirement, can the end-of life be triggered. The refund to compliant
users guarantees the incentive to trigger the end-of-life of the mixer.

This construction maintains the properties of Haze: compliance,
correctness, privacy, and soundness.

Releasing non-compliant funds in Daze. InDazewe can dis-
tinguish if a non-compliant deposit has already been withdrawn or
not, since non-compliant users become de-anonymized. This makes
it so that the mixer can count non-compliant funds inside the mixer
at any desired period during the life-time of the mixer. This amount
can be released to some predetermined trusted entity.


	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related Work

	2 Preliminaries
	3 Compliant Privacy Mixers Haze & Daze
	3.1 A Compliant Privacy Mixer Haze
	3.2 Daze: De-anonymizing Transactions of Non-compliant Users

	4 Integrating with the Blockchain
	4.1 Deployment on the Blockchain
	4.2 Security Concerns over the Blockchain
	4.3 Haze: Economic Concerns over the Blockchain

	5  Empirical Evaluation
	5.1 Implementation
	5.2 Experiments and Results

	6 Conclusions
	References
	A Preliminaries (Formal Definitions from Section 2)
	A.1 CPA-Secure Public Key Encryption
	A.2 Commitment Schemes
	A.3 Zero Knowledge

	B Formal Definitions
	C Releasing Non-compliant Funds

