
REED: Chiplet-based Accelerator for Fully
Homomorphic Encryption

Aikata Aikata1, Ahmet Can Mert1, Sunmin Kwon2, Maxim Deryabin2 and
Sujoy Sinha Roy1

1 Graz University of Technology, Graz, Austria
{aikata,ahmet.mert,sujoy.sinharoy}@tugraz.at

2 Samsung Advanced Institute of Technology, Samsung Electronics, Korea
{sunmin7.kwon,max.deriabin}@samsung.com

Abstract. Fully Homomorphic Encryption (FHE) enables privacy-preserving com-
putation and has many applications. However, its practical implementation faces
massive computation and memory overheads. To address this bottleneck, several
Application-Specific Integrated Circuit (ASIC) FHE accelerators have been proposed.
All these prior works put every component needed for FHE onto one chip (mono-
lithic), hence offering high performance. However, they encounter common challenges
associated with large-scale chip design, such as inflexibility, low yield, and high
manufacturing costs. In this paper, we present the first-of-its-kind multi-chiplet-based
FHE accelerator ‘REED’ for overcoming the limitations of prior monolithic designs.
To utilize the advantages of multi-chiplet structures while matching the performance
of larger monolithic systems, we propose and implement several novel strategies in
the context of FHE. These include a scalable chiplet design approach, an effective
framework for workload distribution, a custom inter-chiplet communication strategy,
and advanced pipelined Number Theoretic Transform and automorphism design to
enhance performance.
Our instruction-set and power simulations experiments with a prelayout netlist
indicate that REED 2.5D microprocessor consumes 96.7mm2 chip area, 49.4 W average
power in 7nm technology. It could achieve a remarkable speedup of up to 2,991×
compared to a CPU (24-core 2×Intel X5690) and offer 1.9× better performance, along
with a 50% reduction in development costs when compared to state-of-the-art ASIC
FHE accelerators. Furthermore, our work presents the first instance of benchmarking
an encrypted deep neural network (DNN) training. Overall, the REED architecture
design offers a highly effective solution for accelerating FHE, thereby significantly
advancing the practicality and deployability of FHE in real-world applications.
Keywords: Homomorphic Encryption, Hardware Acceleration, Chiplets, CKKS

1 Introduction
Data breaches can put millions of private accounts at risk because data is often stored
or processed without encryption, making it vulnerable to attacks [IBM20, Mor20, LSL20].
Fully Homomorphic Encryption (FHE) is a solution that allows secure, private computa-
tions, communications, and storage. It enables servers to compute on homomorphically
encrypted data and return encrypted outputs. FHE has a wide range of applications,
including cloud computing [MNLK23, KKL+23a], data processing [BZP+23], and machine
learning [PMSW18]. The concept of FHE was introduced in 1978 by Rivest, Adleman, and
Dertouzos [RAD78], and the first FHE scheme was constructed in 2009 by Gentry [Gen09].
Since then, many FHE schemes have emerged- BGV [BGV11], FV [FV12], CGGI [CGGI20],

mailto:{aikata,ahmet.mert,sujoy.sinharoy}@tugraz.at
mailto:{sunmin7.kwon,max.deriabin}@samsung.com

2 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

and CKKS [CKKS17, CHK+18b, KKL+23b]. These schemes allow computations to be
outsourced without the need to trust the service provider, providing a functional and
dependable privacy layer.

Despite significant progress in the mathematical aspects of FHE, state-of-the-art
FHE schemes typically introduce 10,000× to 100,000× slowdown [JLK+21] compared to
plaintext calculations. This overhead can be attributed to plaintext expanding into large
polynomials when encrypted using an FHE scheme. Subsequently, simple operations, like
plaintext multiplication, translate into complex polynomial operations. FHE’s massive
computation and data overhead hinders its deployment in real-life applications. To
bridge this performance gap, researchers have proposed acceleration techniques on various
platforms, including GPU, FPGA, and ASIC [BDTV23, WHEW14, RCK+20, KLK+22,
SFK+22, KKK+22, GBP+23, FSK+21, KKC+23, TRG+20, XZH21, NSA+22, FWX+23,
MAK+23, RLPD20, WH13, RJV+15, JKA+21, BHM+20, SRTJ+19, RJV+18]. Software
implementations offer flexibility but poor performance. Attempts have been made to provide
GPU [JKA+21, BHM+20] and FPGA-based solutions [MAK+23, RLPD20, SRTJ+19].
However, the performance gap is still 2-3 orders compared to plain computation.

Currently, the fastest hardware acceleration results for FHE have been reported using
ASIC modeling [KLK+22, SFK+22, KKK+22, GBP+23, FSK+21, KKC+23]. The works
propose utilizing large chip architecture designs with all FHE building blocks onto a
single chip to maximize performance, hence monolithic. While simulations of these
architectures show that they can achieve high performance for FHE workloads, the
limitations of the current manufacturing capabilities, such as inflexibility, low yield, and
higher manufacturing costs [Gon21], impact their real-world deployment. For instance, the
large architectures [KKK+22, KLK+22, KKC+23] with area-consumption of approximately
400mm2, result in a manufacturing yield of only 67% [MWW+22], chip fabrication cost of
over 25 million US$ [MUS], and long time-to-market (>3 years).

Additionally, several of these proposals overlook the crucial need for communication-
computation parallelism as the off-chip to on-chip communication is slower than the chip’s
computation speed. Our analysis shows that this feature is important in an FHE accelerator
for achieving good performance when running complex tasks like neural network training.
Prior works also utilize higher on-chip bandwidth due to readily available on-chip memory
(20TB/s [KLK+22], 36TB/s [KKC+23], and 84TB/s [SFK+22]). Replacing this on-chip
memory with cheaper HBM3 (1.2TB/s bandwidth) would require 17 to 70 HBM3 modules
to match the necessary bandwidth.

In summary, while the large and complex monolithic FHE architectures proposed
in prior works show promise, they face practical challenges such as high manufacturing
costs, yield rates, and extended time-to-market. Addressing these challenges opens the
door to exploring new approaches like chiplet-based architecture design. Chiplet-based
architecture design utilizes multiple smaller chiplets instead of one large monolithic chip
to realize a large system. Chiplets are modular building blocks that are combined to
create more complex integrated circuits, such as CPUs, GPUs, Systems-on-Chip (SoCs),
or System-in-Package (SiPs).

The transition to chiplet integrated systems represents both the present and future
of architectural designs [Gon21, ZSB21, Man22, YLK+18, GPG23, MWW+22]. In the
DATE2024 keynote talk [RD24], the speaker remarks how chiplet-based designs help ‘push
the performance boundaries, with maximum efficiency, while managing costs associated with
manufacturing and yield’. Chiplet-based architectures also feature the advantage of tiling
beyond the reticle limit (858mm2) [GPG23] as multiple chiplets can be integrated for better
performance. Although chiplet-based architectures enjoy the aforementioned advantages,
they also face a trade-off between performance and yield. Multiple smaller chiplets offer high
yields and reduced manufacturing costs but, at the same time, experience performance
overhead due to slower chiplet-to-chiplet communication. Taking the advantages and

Aikata, Mert, Kwon, Deryabin, Sinha Roy 3

challenges of chiplet-based systems into consideration, we are curious to investigate the
following research questions:

How can we design and optimize a multi-chiplet accelerator for FHE that matches the
performance of large monolithic FHE accelerators while overcoming the inherent challenges
of monolithic designs?

To investigate the question mentioned above, we present REED, a multi-chiplet ar-
chitecture for FHE acceleration. We propose a holistic design methodology covering all
aspects of FHE acceleration, from low-level building blocks to high protocol levels, and
reduce the area to 43.9mm2 for one REED-chiplet. This includes the first scalable design
methodology for one chiplet and ensures full utilization of chiplets for varying amounts of
available off-chip data bandwidths. After finalizing an efficient design of one chiplet, we
move to a data and task distribution study for multiple chiplets in the context of CKKS
[CKKS17] routines. Towards this, we contribute novel strategies that offer long-term
computation and communication parallelism. Finally, we synthesize the proposed design
methodology for ASIC and report application benchmarks.

Contributions
To the extent of our knowledge, this is the first chiplet-based architecture for accelerating
FHE. Throughout this work, we have followed Occam’s razor, seeking the simplest solutions
for the best results. We unfold our major contributions as follows:

• Chiplet-based FHE accelerator: We present a novel and cost-effective chiplet-
based FHE implementation approach, which is inherently scalable1. The chiplets are
homogeneous (i.e., identical), which reduces testing and integration costs. REED
with 2.5D packaging surpasses state-of-the-art work SHARP64[KKC+23] with 1.9×
better performance and 2× less development cost.

• Workload division strategy: The first step to realizing a multi-chiplet architecture
is to develop an efficient disintegration strategy that helps us divide the workloads
among multiple chiplets and reduces memory consumption. Hence, we propose an
interleaved data and workload distribution technique for all FHE routines.

• FHE-tailored efficient C2C communication: Chiplet-based architectures suffer
from slow C2C (chiplet-to-chiplet) communication. We address this by proposing
the first non-blocking ring-based inter-chiplet communication strategy tailored to
FHE. This mitigates data exchange overhead during the KeySwitch macro-routine,
accelerating Bootstrapping (the most expensive FHE routine).

• Scalable design: To attain scalability by design, we propose a configuration-based
design methodology such that the memory read/write and computational throughput
are the same. Changing the configuration parameters allows the architecture to
adapt to the desired area and throughput requirements. This also offers inherent
communication-computation parallelism in the design of every chiplet.

• Novel compute acceleration: Furthermore, we present new design techniques
for the micro-procedures of FHE- the number-theoretic transform (NTT) and auto-
morphism (AUT). Our approach introduces Hybrid NTT, eliminating the need for
expensive transpose operation and scratchpad memory. It is easily scalable for higher
or lower polynomial degrees. Hence, other applications, such as zero-knowledge

1Proof-of-concept implementation for multi-chiplet cycle accurate model, NTT/INTT unit, and
Automorphism unit is open source and available at https://github.com/aikata10/REED/.

https://github.com/aikata10/REED/

4 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

proofs, can also benefit from this, where transposition is expensive due to high
polynomial degrees. Additionally, we have prototyped these building blocks on
FPGA- AlveoU250.

• Application benchmark: Finally, we choose parameters offering high precision
and good performance. REED is the first work to benchmark an encrypted deep
neural network training, showcasing practical and real-world impact. While CPU
(24-core, 2×Intel Xeon CPU X5690 @ 3.47GHz) requires 29 days to finish it, REED
2.5D would take only 15.4 minutes, a realistic time for an NN training. We also use
DNN training to run accuracy/precision experiments and validate our parameter
choice.

Connection and comparison with chiplet designs for ML
While prior chiplet-based Machine Learning (ML) works address similar problems, our
solutions are tailored to meet FHE requirements more effectively. For instance, [SCV+21]
addresses MCM’s long “tail-latency” issue using non-uniform work distribution and
communication-aware data placement. In the context of FHE, we resolve this by running
parallel computations over extended periods, ensuring uniform task distribution and data
placement. Our chiplet interconnections are ring-like and unidirectional. Although we do
not propose an automatic tool, our analysis, similar to [TCDM21], focuses on long-term
chiplet utilization based on FHE’s computational-depth. Our methodology introduces a
new configuration-based design built from scratch with novel building blocks and high-level
protocols. In contrast to [HKKR20], which combines heterogeneous-chiplets, we propose
homogeneous-chiplets observing unique data-flow of FHE. A common limitation of the
prior works is that they propose very small chiplet sizes (2 to 6 mm2), which is too small
as per a recent study done by the authors in [GPG23]. Thus, we ensure that our chiplet
sizes fall within the optimal range.

2 Background
Let ZQ represent the ring of integers in the [0, Q − 1] range. RQ,N = ZQ[x]/(xN + 1)
refers to polynomial ring containing polynomials of degree at most N − 1 and coefficients
in ZQ. In the Residue Number System (RNS) [Gar59] representation, Q is a composite
modulus comprising co-prime moduli, Q =

∏L−1
i=0 qi. The RNS representation is used to

divide a big computation modulo Q into much smaller computations modulo qi such that
the small computations can be carried out in parallel. With the application of RNS, a
polynomial a ∈ RQ,N becomes a vector, say a, of residue polynomials. Let the i-th residue
polynomial within a be denoted as ai ∈ Rqi,N . We use the ‘monotype’ font (c/sk) to
represent ciphertexts/keys. Operators · and ⟨, ⟩ denote the multiplication and dot-product
between two ring elements. Noise (e) is refreshed for every computation. The tilde sign
(˜) represents a data in NTT format (e.g., NTT(a)= ã).

2.1 FHE schemes and CKKS routines
Different FHE schemes exist in literature, such as, BFV [FV12], BGV [BGV11], CGGI
[CGGI20], and CKKS [CKKS17, CHK+18b]. These schemes use polynomial arithmetic
but differ primarily in the data types they can encrypt. For instance, BGV and BFV
encrypt integers, while CKKS encrypts fixed-point numbers. Due to the support for
fixed-point arithmetic, CKKS is widely adopted for benchmarking machine learning
applications [HHCP19, KSK+18]. Therefore, this work targets the RNS (Residue Number
System) CKKS [CHK+18b]. Other FHE schemes like BGV and B/FV are also based on
RLWE and require similar operations as in CKKS. Thus, these schemes can utilize the

Aikata, Mert, Kwon, Deryabin, Sinha Roy 5

Table 1: CKKS Parameters

Parameter Definition
N,n (≤ N

2) Polynomial size, maximum slots packed
Q, qi Coefficient modulus, RNS bases Q =

∏L
i=0 qi

L, l Multiplicative depth (#RNS bases - 1) l < L
dnum Number of digits in the switching key
P , pi Special modulus and its RNS base
K (= ⌈ L+1

dnum⌉) Number of RNS bases for P =
∏K−1

i=0 pi

w Word size (log pi, log qi)
Lboot, Leff Multiplicative depth of/after bootstrapping

same design methodology for varying parameters. In the following, we briefly describe the
main procedures within the RNS CKKS [CHK+18b, KPP22, HK19] for ciphertexts at level
l (multiplicative depth is l) where l < L, Ql =

∏l
i=0 qi, and L is the maximum level. The

residue polynomial associated with each modulus qi in the RNS representation is commonly
called the RNS limb. A CKKS ciphertext consists of components, e.g., c = (c0, c1), where
c0 and c1 are vectors of limbs. Table 1 describes the CKKS parameters, and algorithmic
descriptions are provided for dnum = L+ 1(K = 1).

1. CKKS.Add(c, c′): As shown in Algorithm 1, this operation takes two input ciphertexts
c and c′ and computes cadd = (d0,d1) = (c0 + c′

0, c1 + c′
1).

2. CKKS.Mult(c, c′): It multiplies the two input ciphertexts c and c′, as shown in Algo-
rithm 3, and computes the non-linear ciphertext d = (d0,d1,d2) = (c0 · c′

0, c0 · c′
1 +

c1 · c′
0, c1 · c′

1). Subsequently, CKKS.KeySwitch transforms d into a linear ciphertext.
The computation is done on data in NTT format.

Algorithm 1 CKKS.Add [CHK+18b]
In: c = (c̃0, c̃1), c′ = (c̃′

0, c̃′
1) ∈ R2

Ql

Out: cadd = (d̃0, d̃1) ∈ R2
Ql

1: d̃0 ← c̃0 + c̃′
0, d̃1 ← c̃1 + c̃′

1

Algorithm 2 CKKS.Rotate [CHK+18b]
In: c = (c̃0, c̃1) ∈ R2

Ql
, rot

Out: crot = (d̃0, d̃1) ∈ R2
Ql

1: (d̃0, d̃1)← ρrot(c̃0, c̃1)

Algorithm 3 CKKS.Mult [CHK+18b]
In: ct = (c̃0, c̃1) ∈ R2

Ql

In: ct′ = (c̃′
0, c̃′

1) ∈ R2
Ql

Out: d = (d̃0, d̃1, d̃2) ∈ R3
Ql

1: d̃0 ← c̃0 · c̃′
0

2: d̃2 ← c̃1 · c̃′
1

3: d̃1 ← c̃0 · c̃′
1

4: d̃1 ← d̃1 + c̃1 · c̃′
0

3. CKKS.Rotate(c, rot, kskrot): It rotates the plaintext slots within c by rot. First,
a permutation ρ is applied to the ciphertext polynomial coefficients, as shown in
Algorithm 2. This permutation is called automorphism and is determined by the
Galois element gle = 5rot mod 2N . Finally, the permuted ciphertext is processed by
CKKS.KeySwitch using the rotation key kskrot.

4. CKKS.KeySwitch(d, ksk): It uses a KeySwitch or evaluation key ksk to homomor-
phically transform a ciphertext decryptable under one key into a new ciphertext
decryptable under another (original) key, as illustrated in Algorithm 4. It computes
c′′ where c′′

0 =
∑l−1

i=0 d
i
2 · ksk

i
0 ∈ RP Ql,N and c′′

1 =
∑l−1

i=0 d
i
2 · ksk

i
1 ∈ RP Ql,N . This

is followed by c =
(
(d0, d1) + CKKS.ModDown(c′′)

)
∈ R2

Ql,N . CKKS.ModDown() scales
down the modulus (PQl to Ql), and is described in Algorithm 5 following the
works [HK19, KPP22]. A more detailed and generalized description is provided in
Algorithm 10 (Appendix A).

6 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

5. CKKS.Bootstrap: It refreshes a noisy ciphertext [BMTH21, CCS19, CHK+18a] by
producing a new ciphertext with a higher depth or lower noise. As bootstrapping
itself consumes a certain number of depths, the depth of a bootstrapped ciphertext,
say Leff, is smaller than the initial depth L after fresh encryption. Bootstrapping is
required to refresh the processed ciphertexts in complex applications, such as DNN.
It consists of the following four major steps.

• Slot to Coefficient Conversion: Converts the ciphertext from slot form to
polynomial form using a homomorphic DFT (Discrete Fourier Transformation).
This involves computing a homomorphic matrix-vector multiplication, where
the matrix is not encrypted, and the ciphertext is the vector.

• Modulus Raising: Raises the modulus from q0 to Q, introducing an error
term that needs removal. This requires a plain ModUp operation,

• Coefficient to Slot Conversion: Converts the ciphertext back to slot form
after modulus raising via homomorphic IDFT (Inverse DFT) computation. This
also involves computing a homomorphic matrix-vector multiplication.

• Homomorphic Modular Reduction: This step applies a Chebyshev polyno-
mial approximation to remove the introduced error term after Modulus raising.
It results in refreshed computational depth.

Algorithm 4 CKKS.KeySwitch [HK19, KPP22] (for dnum = L+ 1)
In: d = (d̃0, d̃1, d̃2) ∈ R3

Ql
, ˜ksk0 ∈ Rl

P Ql
, ˜ksk1 ∈ Rl

P Ql

Out: d′ = (d̃′
0, d̃′

1) ∈ R2
Ql

1: for j = 0 to l do
2: d2[j]← INTT(d̃2[j]) ∈ Zqj

3: end for
4: for j = 0 to l + 1 do
5: (c̃′′

0 [j], c̃′′
1 [j])← 0

6: for i = 0 to l do
7: r̃ ← NTT(

[
d2[i]

]
qj

) ∈ Zqj

8: c̃′′
0 [j]←

[
c̃′′

0 [j] + ˜ksk0[i][j] · r̃
]

qj
, c̃′′

1 [j]←
[
c̃′′

1 [j] + ˜ksk1[i][j] · r̃
]

qj

9: end for
10: end for
11: d̃′

0 ← d̃0 + CKKS.ModDown(c̃′′
0), d̃′

1 ← d̃1 + CKKS.ModDown(c̃′′
1)

Algorithm 5 CKKS.ModDown [CHK+18b]
In: d̃ ∈ RP Ql

Out: d̃′ ∈ RQl

1: t← INTT(d̃[l + 1])
2: for i = 0 to l do
3: t̃← NTT(

[
t
]

qi
∈ Zqi

4: d̃′[i]←
[
p−1

0 · (d̃[i]− t̃)
]

qi

5: end for

2.2 FHE Hardware design goals
A tiered structure exists in the CKKS scheme routines. The high-level or macro rotuines are
CKKS.Add, CKKS.Mult, CKKS.Rotate, and CKKS.KeySwitch. These macro procedures apply
micro procedures, such as forward and inverse Number Theoretic Transforms (NTT/INTT),
dyadic Multiplication/Addition/Subtraction (MAS), and Automorphism (AUT). The NTT

Aikata, Mert, Kwon, Deryabin, Sinha Roy 7

is used for multiplying two N coefficients long polynomials in O(N logN) time complexity,
which is the asymptotically fastest one.

The special CKKS.Bootstrap procedure uses these macro procedures in a specific se-
quence to refresh noisy ciphertexts. Note that contrary to schemes like FHEW, TFHE
[CGGI20] where bootstrapping is a standalone procedure, CKKS-Bootstrapping is a high-
level routine which utilizes KeySwitches, Automorphisms, and MACs. Therefore, while
TFHE/FHEW accelerators (e.g., [BDTV23]) focus on optimizing the programmable boot-
strapping, acceleration for CKKS relies on optimized KeySwitching, Automorphisms, and
MACs. Among these operations, MAC is a straightforward linear operation. Automor-
phism involves permutation, followed by KeySwitch [HK19, KPP22]. This permutation,
if naively implemented, can become complex and expensive as the input polynomial has
N=216 coefficients and offers N/2 different permutations. In this work, we show how we
design the permutation unit that is not only cheap in terms of area but also has linear time
complexity for all permutations. The final operation- KeySwitch, is the most expensive due
to the expensive ModUp step (Figure 2). Since KeySwitch is the most expensive operation,
the task and data distribution approach aims to optimize this particular operation. For
simplicity, KeySwitch for dnum = L+ 1 (K = 1) [KPP22, HK19] is utilized throughout
the paper.

2.3 Monolithic vs Chiplet packaging
In the context of large Integrated Circuits, authors in [Gon21, YLK+18, MWW+22]
discuss the advantages of chiplet-based designs over monolithic designs. The problem with
monolithic designs stems from the fact that to keep up with the increasing demand for
high performance and functionality, chips need to be scaled up, and advanced technology
nodes must be utilized. Manufacturing such big chips reduces the wafer yield as more
surface area is exposed to defects per chip and increases the development cost. Such huge
designs take a long time-to-market, and it is not straightforward to test and verify them.
Factors such as size limitation and sub-optimal die performance due to overload contribute
to a shift to SiP [Gon21].

In SiP, multiple heterogeneous smaller chiplets can be manufactured separately and
later integrated together using various packaging techniques. This promotes chiplet-reuse,
lowering the development costs. The chiplet-packaging techniques can be broadly classified
into three main categories: 2D, 2.5D, and 3D [Gon21, MWW+22]. In 2D packaging,
different dies are mounted on a substrate, known as a multi-chip module. Due to substrate
limitations, this results in slow die-to-die communication and high power consumption.

To address these limitations, silicon interposers are used, and this technique is known
as 2.5D integration [UCI23, PZM+23]. In this approach, an interposer is placed be-
tween the die and the substrate, enabling die-to-die connections on the interposer itself.
The use of an interposer significantly enhances interconnectivity, leading to improved
performance. Taking the integration capabilities a step further, 3D packaging involves
stacking different dies on top of each other, akin to a skyscraper. In 3D packaging, the
dies are interconnected using through-silicon vias (TSVs). 3DIC is gaining significant
popularity and serves as the foundation for advancements like High Bandwidth Memory
(HBM/HBM2/HBM3) [PLC+23, CPS+23, TGF09, VGT+20]. This approach significantly
reduces the critical path, resulting in higher performance, lower power consumption, and
increased bandwidth. The slowdown of Moore’s law finds hope in 2.5D and 3D IC.

2.4 NTT Design Techniques
The multiplication of large degree polynomials is one of the major performance bottlenecks
for FHE implementations. The number theoretic transform enables fast polynomial
multiplications by reducing the complexity of polynomial multiplication to O(N · logN),

8 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Algorithm 6 The Cooley-Tukey NTT Algorithm [Sco17a]
In: A polynomial x with coefficients {x0, · · · , xN−1} where xi ∈ Zq, N, q
In: Table of 2N th roots of unity g, in bit reversed order
Out: x̂← NTT(x), x̂i ∈ Zq, in bit-reversed order

1: t,m← (N/2), 1
2: while (m < N) do
3: k ← 0
4: for (i = 0; i < m; i = i+ 1) do
5: for (j = k; j < (k + l); j = j + 1) do
6: V ← x[j + t]× g[m+ i] (mod q) ▷ Butterfly operation starts.
7: x[j + t]← x[j]− V (mod q)
8: x[j]← x[j] + V (mod q) ▷ Butterfly operation ends.
9: end for

10: k ← k + 2t
11: end for
12: t,m← t/2, 2m
13: end while
14: return x

Figure 1: Hierarchical (4-step) NTT datapath for N = 16. DIT stands for Decimation in
Time, and DIF stands for Decimation in Frequency.

and it is extensively employed for implementing FHE schemes. The NTT is defined as
the Discrete Fourier Transform over Zqi

. As shown in Algorithm 6, an N -point NTT
operation transforms a polynomial a of degree N − 1 degree polynomial into another N − 1
degree polynomial ã. The NTT uses the powers of N -th root of unity ω (also referred to as
twiddle factors) which satisfies ωN ≡ 1 (mod q) and ωi ̸= 1 (mod q) ∀i < N , where q ≡ 1
(mod N). Here, q represents an RNS base, qi. Similarly, inverse NTT (INTT) follows
the same method with the modular inverse of ω, and the resulting coefficients should be
scaled by 1/N . Prior FHE hardware acceleration works mainly utilized three techniques
for implementing an NTT. The major difference between works is how they instantiate
the butterfly unit highlighted in Algorithm 6.

• Iterative. In this type of implementation, the prior works [MAK+23, Sco17b]
instantiate multiple butterfly units to process the inner ‘for’ loop (Algorithm 6)
simultaneously, hence faster. Thus, the runtime of the NTT transformation for m
butterfly units is ∼ N ·log N

2·m .

• Pipelined. This is a bandwidth-efficient implementation where the butterfly units
operate in pipelines instead of parallel. It is also used by prior works [ZWZ+21,
YCH22] for applications such as zero-knowledge proofs where the polynomial degree
is huge. It can be considered a stage unrolled NTT, where the unrolling is done
based on the outer ‘for’ loop instead of the inner loop (in Algorithm 6). While its
latency does not decrease, its throughput is much higher and useful for applications
requiring multiple polynomial NTT transformations.

Aikata, Mert, Kwon, Deryabin, Sinha Roy 9

Figure 2: KeySwitch operation for l = 2, where I, F, and K represent INTT, NTT, and
key multiplication operations using MAS, respectively.

• Hierarchical (4-Step). This implementation technique adopted by [FSK+21], pre-
dominantly utilizes the first technique as shown in Figure 1. It splits one polynomial
into a matrix of dimensions N1 ×N2 = N . The NTT units transform N1 coefficients
using multiple butterfly units instantiated in parallel, and there are N2 such sets
to process all N1 ×N2 coefficients. After this first operation, the resultant data is
transposed and multiplied with twiddle factors. Finally, other NTT units transform
N2 coefficients using multiple butterfly units instantiated in parallel, and there are
N1 such sets to process all the coefficients. To save area N1, N2 are chosen so that
N1 = N2. This way, the same NTT unit can be utilized for both transformations
(N1 × N2, N2 × N1). In this case, the transpose operation becomes complex and
expensive as N increases.

3 FHE-tailored Multi-Chiplet Design
A widely adopted approach for realising a chiplet-based architecture is to distribute
the components of one large monolithic design across multiple chiplets connected in a
mesh [RKRB, KMP+21, CLSW11]. While such a disintegration approach has found
utilities in applications like Machine Learning [SCV+21], they fall short in leveraging the
inherent algorithmic intricacies of FHE, thereby hindering efficient workload distribution
among chiplets. In the following, we investigate the trade-offs of various chiplet design
possibilities for FHE and consolidate on an optimal solution. For this, let us consider the
most performance-heavy macro routine- KeySwitch. Its data flow is illustrated in Figure 2
for depth l = 2.
(a) The naive approach for chiplet decomposition would be to closely follow the data
flow of Figure 2 and allocate one chiplet per square-box in the figure (I=INTT, F=NTT,
K=Key Multiplication). This approach, as shown in Figure 3 (a), will lead to (i) uneven
allocation of chiplet resources; for example, the chiplets for NTT or INTT will be much
larger than those for MAS, (ii) a massive increase in C2C communication overhead due
to the continuous data exchange between the components, and (iii) increase in required
on-chip memory for data duplication. Figure 3 (a) further provides a schedule for the
KeySwitch operation depicted in Figure 2. In addition to illustrating the complexity of
chiplet-to-chiplet communication and task dependencies, it demonstrates how most chiplets
remain idle during computation, further emphasizing the imbalance in task distribution.

10 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

(a) (b) (c)

Figure 3: The diagram depicts the different techniques, data, and task distribution for
automorphism followed by KeySwitch. l = 2, 1 for (a), (c) and 4 for (b)

For a KeySwitch operation, the communication overhead is (l+ 1) · (l+ 2) polynomials
for ModUp and 2 · (l + 2) polynomials for ModDown. The time required for the operation
is equivalent to the time taken to process (l+ 1) INTT and (l+ 1) · (l+ 2) NTT operations
for ModUp+KeyMul and 1 INTT and (l + 1) NTT for ModDown of each ciphertext
component. This is tabulated in Table 2 and assumes that transfer can be done fast enough
(monolithic) to compute MAS operations in parallel. If the 2× slow communication cost is
added, considering chiplet disintegration, the communication would take more time and
surpass the computation overhead by 2×, thus becoming the major bottleneck. Hence,
this approach significantly inhibits the performance of the design. A deeper disintegration
would imply breaking the individual operation into several chiplets, for example, computing
one NTT using several chiplets. Although this approach can lead to smaller chiplets, it
will result in additional C2C communication overhead.

(b) The second approach, illustrated in Figure 3 (b), involves assigning each RNS limb
computation, as depicted in Figure 2, to a single chiplet encompassing NTT, AUT, and
MAS components. Computations with respect to one modulus are performed within
the same chiplet. This approach also faces slow and more complex C2C communication
overhead due to data dependencies between the processing of RNS limbs in the KeySwitch
routine. Furthermore, as the depth of the FHE application decreases over time, reducing
the number of RNS limbs (l), their respective chiplets become idle.

Figure 3 (b) illustrates the complexity of C2C communication with six chiplets, show-
casing the all-to-all dependencies between the chiplets. This figure highlights that before
the chiplets can begin evaluating the NTT, they must wait for the INTT operation to
complete, which leads to certain chiplets sitting idle during this time. This idle time
reduces the overall efficiency of the design and contributes to increased communication
overhead due to the frequent data exchanges required between the chiplets. If we assume

Aikata, Mert, Kwon, Deryabin, Sinha Roy 11

Table 2: Comparison of the naive techniques and our technique for the KeySwitch
operation, including ModUp, Key Multiplication, and ModDown. The operation count is
the maximum reported by any chiplet, which will determine the overall throughput of the
design. || Implies Operation is done in parallel with other computations.

Polynomials in Computation # ChipletsCommunication INTT NTT MAS
Tech. (a) (l + 3) · (l + 2) l + 3 (l + 1) · (l + 4) || 4
Tech. (b) (l + 1) · (l + 4) 2 l + 4 l + 4 L+ 2
Tech. (c) (l + 1) · (l + 4) l + 3 l + 4 l + 4 L+ 2

Our Tech.† 4 · (l + 3) l+1
4 + 2 (l+1)·(l+4)

4 || 4
† This technique is discussed in Section 5 for four chiplets (r = 4).

that the result can be immediately sent to all the PU (monolithic), the runtime can be
quantified as l + 1 INTT and 2 · (l + 1) NTT(+MAS) for ModUP+KeyMul, and 1 INTT
and 2 NTT(+MAS) for ModDown of each ciphertext component, as tabulated in Table 2.
The total data in communication for ModUp is (l + 1) · (l + 2) polynomials, as all l + 1
INTT resultant polynomials are broadcasted to l+ 2 chiplets. Similarly, for ModDown, the
communication cost is 2 · (l + 1) polynomials. Hence, in a chiplet disintegration scenario
where communication between chiplets is 2× slower, it becomes the main bottleneck.

(c) A refined third approach, depicted in Figure 3 (c), involves enabling each chiplet to
support multiple RNS limbs to reduce C2C communication overhead and utilizing data
duplication. For instance, the first chiplet can initiate NTTq1 after executing INTTq0

without sending it to the second chiplet, as depicted in Figure 2. This strategy minimizes
communication overhead during ModUp and increases intermediate storage requirements
by storing copies of input RNS limbs d0

2, d1
2, d2

2 in Figure 2 on each chiplet. INTTq0 ,
INTTq1 , NTTq0 , etc., are computed within the same chiplet. As shown in Figure 3 (c),
this technique does not completely eliminate the complexity of C2C interconnects, as some
inter-chiplet communication remains necessary to ensure duplication. Additionally, this
approach requires significantly more on-chip memory since data must be duplicated across
chiplets to enable local processing of multiple tasks, further increasing resource demands.
This technique reduces wait time during ModUp but requires an all-to-all broadcast at the
end of the computation. Hence, requiring transfer of (l+ 1) · (l+ 4) polynomials, including
broadcast required for ModDown.

Thus, all the available approaches offer certain trade-offs and highlight communication as
the major bottleneck, and our aim is to determine the best and most practical solution.
With this aim, we develop a chiplet-based design approach for REED.

3.1 REED 2.5D Architecture
In a chiplet-oriented design process, there are two critical choices: the size of chiplets and
the number of chiplets. The manufacturing cost is reduced, and yield increases when the
chiplets are small in area. However, having many small chiplets reduces performance as the
complexity of slow C2C communication increases. In this work, we will develop a chiplet
design strategy and integration topology, considering the data flow of FHE. This approach
provides a balance between yield, manufacturing cost, and C2C communication overhead.

As an example, Figure 4 shows a four chiplet-based REED 2.5D architecture, where
the chiplets are connected in a ring formation and have exclusive read/write access to
HBM in its proximity. Later, we will show that this architecture scales well with an
increasing number of chiplets (Section 6.4). To overcome C2C communication overhead

12 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Figure 4: Side and top view of proposed four chiplet-based REED 2.5D.

and memory storage issues, we propose an RNS polynomial (limb)-oriented task and data
distribution strategy, which is built on top of the third approach. Specifically, chiplets are
assigned certain RNS limbs and all tasks related to these limbs without requiring data
duplication (detailed in Section 5). The proposed ring formation (Section 5.4) allows us
to increase the number of chiplets at the cost of only a linear increase in the number of
interconnects. Hence, we can scale it to eight or sixteen chiplets as well. This ring formation
for connecting the FHE chiplets is specifically tailored to the data-flow of performance-
critical FHE workloads. With this formation, not all dies need to communicate with every
other die simultaneously, which is crucial for minimizing C2C communication requirements.

Furthermore, our communication protocol ensures (Section 5.4) that no HBM-to-HBM
communication is required. Hence, HBMs are positioned on the outer side. We also
avoid sharing one HBM among multiple chiplets, ensuring that each HBM is located only
in proximity to the one chiplet it serves. Notably, our placement strategy aligns well
with [PZM+23, ZSB21], where authors design chiplet-based general-purpose processors
with an actual tapeout, demonstrating practical viability. Finally, we also ensure a
homogeneous design where all chiplets are identical, simplifying post-silicon realization.

Disintegration Granularity: Chiplet systems face a trade-off between development cost
and performance degradation, depending on the disintegration granularity. Existing works
on chiplet-based architectures, such as [VGT+20, TGF09, YLK+18, ZSB21, MWW+22,
GPG23], show that disintegration improves yield, but it introduces challenges such as
floorplanning and post-silicon testing overhead. Hence, the question:

How much disintegration is too much disintegration?

Considering a maximum die area of 800mm2, dividing it into four chiplets offers an
≈80% yield, while eight chiplets provide a yield of ≈90%. The yield numbers are obtained
from [MWW+22].

While the eight-chiplet option shows promise for achieving high yield, it faces the
challenge of underutilization over time as the number of RNS limbs decreases after rescaling.
Specifically, when l becomes smaller than 8, certain REED chiplets remain idle (Detailed
in Section 5.3 and Section 6.4). On the contrary, the instantiation of four chiplets strikes
an optimal balance between manufacturing cost and utilization. We want to remark that
the number of REED chiplets is flexible and can be changed as per user requirements,
depending on the technology and computation constraints.

4 Architecture Design of One Chiplet
The need for scalability and high throughput drives our design methodology. We introduce
the REED design configuration- (N1, N2) for polynomial degree N , where N1 ·N2 = N .
For the clock frequency f , this configuration provides a throughput of f

N1
operations per

second and can process N2 coefficients in parallel. A configuration-flexible design approach
will help obtain computation-communication parallelism within every chiplet by ensuring

Aikata, Mert, Kwon, Deryabin, Sinha Roy 13

 NTT Flow

 INTT Flow

...

TW
(Stor.)

TW
(Stor.)

TW
(Gen.)

TW
(Gen.)

TW
(Gen.)

TW
(Gen.)

TW
(Stor.)

...

...

PP Unit HP Unit U-NTT UnitSDF-NTT Unit
S S R R S

SSSRS
log N1 log N2

Figure 5: Novel routing-friendly Hybrid NTT/INTT design flow for N = N1 ×N2.

that the memory read/write throughput is the same as the computational throughput.
Now, let us explore how we design the ingredients of REED Processing Unit (PU) to
ensure flexibility.

4.1 The Hybrid NTT (Frankenstein’s Approach)
The NTT/INTT unit plays a vital role in converting polynomials from slot to coefficient
representation and vice versa. It is the most computationally expensive micro building-block
and occupies over 50% architectural area. Therefore, designing an efficient NTT/INTT
unit is crucial as it directly impacts the overall throughput and area consumption of REED.

Prior works: There are various approaches in the literature to implement NTT in hard-
ware for large-degree polynomials, such as iterative [MAK+23, Sco17b], pipelined [ZWZ+21,
YCH22] and hierarchical [FSK+21], thoroughly discussed in Section 2. The implementation
complexity of the plain iterative approach increases significantly with the number of pro-
cessing elements. The pipelined approach (also known as single-path delay feedback (SDF))
provides a bandwidth-efficient solution but a diminished performance. The hierarchical
approach (also referred to as four-step NTT), utilized in [FSK+21], treats a polynomial
of size N as an N = N1 × N2 matrix and divides a large NTT into smaller parts. It
involves performing N1-point NTTs on the N2 columns of the matrix, then multiplying
each coefficient by ωi·j (where i and j are matrix row and column indices), transposing
the matrix, and finally performing N2-point NTTs on the N1 columns.

Transposing a matrix of size N1 ×N2 requires N1 separate memories and large data
re-ordering units. Hence, in [FSK+21], the transpose unit consumes 14% of the area per
compute cluster. Moreover, it also requires additionalN2 cycles for writing data to the trans-
pose memory and N1 cycles for reading it. Therefore, although the hierarchical approach
simplifies the NTT implementation, we observe that it has the following limitations: (i) the
costly transpose operation, (ii) fixed N1 and N2 such that N1 = N2 [FSK+21, GBP+23],
and (iii) the reliance on scratchpad in some works leads to large memory fan-in and
fan-out, causing routing inefficiencies.

Our Technique: We address these problems and propose a novel, scalable, and efficient
NTT/INTT architecture. Our proposed design methodology-Hybrid NTT/INTT divides
large NTTs into smaller parts that may differ in size. To eliminate the transpose operation
and reduce implementation complexity, we use a different design approach that amalgamates
the two approaches mentioned above, thus the name Hybrid NTT/INTT. A transpose is

14 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Figure 6: The proposed novel Hybrid NTT/INTT design flow with Memory access for
(a) NTT and (b) INTT with N1 = 4, N2 = 4, and N = 16. The butterflies represent the
Gentleman-Sande butterfly [Sco17b] operation employed in our design.

required in the hierarchical implementation approach to feed the data from unrolled NTT
units back to the same unrolled NTT units. This is also the reason they need to have
the same configuration (N1 = N2). If, instead, we use pipelined NTT to replace one of
the unrolled NTTs, no transpose will be required. This also results in design flexibility
regarding N1 and N2 values.

We utilize this idea to design an NTT that is routing-friendly, throughput-oriented, and
does not necessitate costly transposition. To achieve this, we utilize parts of hierarchical,
iterative, pipelined, and plain unrolled NTTs (Frankenstein’s approach) and introduce a
novel Hybrid NTT. It is fully pipelined, and its flow is shown in Algorithm 7 and Figure 5.
The input polynomial for NTT operation is stored in N2 memories of depth N1, hence
forming a matrix of size N1 ×N2 in row-major order. The NTT unit is fully pipelined and
reads N2 coefficients from memories in each cycle. We illustrated the memory layout and
read the pattern of a polynomial during NTT operation for N = 4× 4 in Figure 6. NTT
unit first performs pre-processing (Step 3 of Algorithm 7) using N2 modular multipliers
(PP unit), where each coefficient is multiplied with the corresponding twiddle factor.

The resulting N2 coefficients represent one coefficient from each column of the input
matrix, which should be processed via the N1-pt NTT operation as shown in Step 6 of
Algorithm 7. To avoid in-between memory communication and reduce performance, we
instantiate N2 N1-pt single-delay feedback (SDF)-based NTT units to perform N2 NTT
operations in parallel. Each SDF-based NTT architecture consumes and generates one
coefficient per cycle after filling the pipeline. It utilizes log2 N1 cascaded butterfly units
where each butterfly is coupled with a FIFO for data re-ordering [ZWZ+21].

After the SDF-NTT unit, the resulting coefficients are multiplied with powers of ω as
shown in Step 9 of Algorithm 7. Similar to the PP unit, we use N2 modular multipliers
to perform this Hadamard product (HP unit). After this step, the hierarchical approach
would require a transpose operation. To eliminate the transpose, we employ one fully
unrolled N2-pt NTT architecture (N-NTT unit) that takes N2 coefficients as input per

Aikata, Mert, Kwon, Deryabin, Sinha Roy 15

Algorithm 7 Hybrid NTT with NWC
In: a (a matrix of size N1 ×N2 in row-major order)
In: ω (N -th root of unity), ψ (2N -th root of unity)
Out: ã = NTT(a) (a matrix of size N1 ×N2 in column-major order)

1: for (i = 0; i < N1; i = i+ 1) do
2: for (j = 0; j < N2; j = j + 1) do
3: a[i][j]← a[i][j] · ψi·N2+j (mod q) ▷ PP:Pre-processing
4: end for
5: end for
6: Apply N1-pt NTT to the columns of a ▷ using SDF-NTT
7: for (i = 0; i < N1; i = i+ 1) do
8: for (j = 0; j < N2; j = j + 1) do
9: a[i][j]← a[i][j] · ωi·j (mod q) ▷ HP:Hadamard prod.

10: end for
11: end for
12: Apply N2-pt NTT to the rows of a ▷ Unrolled(U)-NTT
13: return a

cycle and generates N2 coefficients as output per cycle while performing a cost-free natural
transpose operation. It does not incur an extra run-time cost as it is merged with the
final step (N1 N2-pt NTTs). Thus, the proposed Hybrid design reads N2 coefficients per
cycle and generates N2 coefficients per cycle after filling the pipeline. It is scalable and
enables different area/performance configurations by changing N1 and N2 values. This
unit features bi-directional flow, and based on the configuration parameters, it provides
a throughput of f

N1
. Overall, the properties and advantages of the proposed unit are as

follows.

• Transpose elimination: The Hybrid NTT eliminates transpose by using two
orthogonal NTT approaches, pipelined (SDF) approach for N1-sized NTTs and
unrolled (U-NTT) approach for N2-sized NTTs. As shown in Figure 6 (a), the output
coefficients of SDF-NTT are processed directly by U-NTT, providing a seamless,
natural transpose operation.

• Bi-directional workflow: The above method of transpose elimination also helps
make our NTT unit bi-directional (for INTT), as illustrated in Figure 6 (b). The
additional routing complexity is balanced with efficient pipelining.

• Low-level optimizations: For modular multiplication and reduction unit, we
adopted the word-level Montgomery [Mon85, MÖS19] modular reduction algorithm.
and optimized it for our special prime form, 2w−1 + qH · 2m + 1, where m = 18 is
Montgomery reduction size, and ⌈log2 qH⌉ = 10 is small. A total of (N2+1) log2(N1)+
N2
2 (log2 (N2

2) + 5)− 7 modular multipliers are utilized.

• On-the-fly twiddle generation: We employ commonly used on-the-fly twiddle
generation with a small constant memory that stores a few initial roots of the unity.
This helps reduce the on-chip constant storage by up to 98.3%.

One REED-NTT requires ((N2 +1) · log2(N1)+(N2
2) · log2(N2

2)+(5 · N2
2)−7) multipliers.

The proposed transpose-less NTT also finds applications in other cryptographic schemes.
For example, in Zero-Knowledge proofs [LWY+23], where higher polynomial degrees make
transposing more expensive, our NTT design offers a better area-time tradeoff.

16 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Algorithm 8 Automorphism
In: a[N1][N2], gle
Out: â = ρ(a)

1: index← gle
2: for (l0 = 0; l0 < N1; l0 = l0 + 1) do
3: l1 ← index (mod log(N1))
4: start← index≫ log(N1)
5: addr[j]← (start+ j · gle) (mod log(N2)) ∀ j ∈ [0, N2)
6: â[l1]← shuffle_tree_N2 ×N2(addr, a[l0])
7: index← index+ gle
8: end for
9: return â[N1][N2]

4.2 Multiply-Add-Subtract (MAS) and Automorphism (AUT)
MAS is elementarily designed as a triadic unit for computing point-wise multiplication,
addition, subtraction, or multiply-and-accumulate operations. It utilizes the modular
multiplier proposed for the Hybrid NTT unit. A high-level overview of the MAS unit
is shown in Figure 7. On the other hand, designing an efficient AUT unit is challeng-
ing [FSK+21, SFK+22]. It permutes ciphertexts using the Galois element (gle) to achieve
rotation or conjugation. A polynomial is stored as a matrix N1 ×N2 in N2 memories.

+/-

x

+/-

x

+/-

x

Figure 7: The set of triadic MAS units.

For AUT, we make a key observation that when we load N2 coefficients from memory
address l0 across all N2 memories, they are shuffled based on the desired rotation offset
(ρrot), and then written to address l1 across all N2 memories. Hence, even though the coef-
ficient order is shuffled, they all go to the same address of N2 distinct memories. We utilize
this property to permute all N2 coefficients in parallel. This out-of-place automorphism
is presented in Algorithm 8. The in-place permutation techniques proposed in previous
works [FSK+21, SFK+22] increase routing complexity due to memory transposition re-
quirements. We are still left with a quadratically complex and expensive shuffle O(N2

2)
among the coefficients. However, we analyzed that all the shuffles could be performed
pairwise on the coefficient batches, as shown in Figure 8. After each stage, two batches of
coefficients are merged to form a new batch. We replace the naive and expensive operation
with a pipelined binary-tree-like shuffle. Its number of pipeline stages adjusts with N2,
making the pipelining scalable and efficient for higher configurations. Moreover, the unit
can handle any arbitrary rotation.

4.3 PRNG-Based Partial Key-Switching Key Generation
A PRNG is deployed to generate half the key components on the fly. The idea here is
that the ksk1 = a component of the key is generated by expanding a public seed and
is assumed to be in NTT form, meaning it does not undergo an NTT transformation.
Therefore, instead of storing the complete polynomial, the cloud or server can store the
seeds of the key and generate them on the fly when needed. Note that the polynomials are

Aikata, Mert, Kwon, Deryabin, Sinha Roy 17

Figure 8: An example of a shuffle_tree_N2 ×N2 workflow. Every stage has sufficient
registers to hold N2 coefficients.

generated in RNS form and have no interdependency. In other words, for ciphertext at
depth, l, the (l + 1) · (l + 2) seeds are expanded, and the remaining limbs are ignored.

Our implementation uses the Trivium unit for PRNG similar to [MAK+23], which
takes a 64-bit seed as input and initializes over 18 clock cycles, performing 18 rounds of
operations. After initialization, the Trivium core generates 64-bit pseudorandom data
continuously, producing one word per cycle without stalling. Each PU is equipped with
one Trivium unit. The keys are only used for Key Multiplication during KeySwitch and
are directly fed to the MAS unit, which simultaneously consumes the pseudorandom words
generated by the Trivium cores. The on-the-fly generation of the ksk1 substantially reduces
the memory footprint for key-switching. By generating it during runtime, we cut the
required bandwidth (HBM-to-chiplet) and storage space for the key-switching key by 50%.
This dynamic approach optimizes memory usage and increases the efficiency of the system
for key-switching operations. With this, we conclude the design of micro procedures.

4.4 Programmable Instruction-Set Architecture
In this section, we discuss how to program the micro procedures (NTT, AUT, MAS) for
high-level FHE routines. This is crucial for determining their placement in the architecture,
which will be discussed in the subsequent section.

Prior works define a strict operation flow. This prevents adaptations to future changes in
the FHE algorithms or routine flow. Noting this, we utilize an instruction-based architecture
design technique [SRTJ+19], wherein a relatively small instruction controller programs the
REED-PU, manages the multiplexers, and collects ‘done’ signals from these units. The
instruction controller includes a small BRAM for storing instructions. These instructions
are provided at the start of the computation, along with the input data. Once the user
sends an execute command, the instruction controller manages the execution of all stored
instructions. This setup gives users the flexibility to specify any desired set of instructions,
such as only performing NTT processing, and allows customization of parameters. Two
types of instructions handled by the instruction controller are micro and macro. Micro-
instructions are low-level arithmetic procedures like NTT, INTT, point-wise modular
addition, subtraction, multiplication, multiplication-and-accumulation, and automorphism.
They are used to compose microcodes for realizing macro-instructions for homomorphic
addition/multiplication, KeySwitch, rotation, and moddown. A bootstrapping is performed
using these macro instructions.

We initiate the PU design, as shown in Figure 9, and uncover two important design
decisions. The first is regarding the placement of NTT/INTT and MAS/AUT units. The
second deals with the problems associated with large on-chip memories utilised in prior
works [KLK+22, KKC+23] for storing keys.

18 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Figure 9: The REED-PU design. Every data communication (memory to building blocks
and off-chip to on-chip) here has a bandwidth of N2w bits/clock-cycle.

4.5 REED Processing Unit (PU)
We initiate the PU design, as shown in Figure 9. A PRNG is deployed to generate half the
key components on the fly [MAK+23]. We uncover two important design decisions. The first
is regarding the placement of NTT/INTT and MAS/AUT units. The second deals with the
problems associated with large on-chip memories utilised in prior works [KLK+22, KKC+23]
for storing keys.
1 The polynomial processed by NTT unit is multiplied with two polynomials of KeySwitch
keys and accumulated. Hence, we instantiate a pair of MAS/AUT units capable of
simultaneously processing both key components. Thus, the design has the ability to run
NTT and MAS units concurrently (shown in Figure 10), which improves the KeySwitch
performance by 66.7%, as explained in Section 4.6. Moreover, since the AUT and MAS
units are relatively cheaper, this design decision also does not add significant area overhead,
as presented later in Table 4.
2 In hardware accelerators, on-chip memory causes significant area overhead. Chiplets

with large on-chip memory are not power, area, and manufacturing cost efficient [Sie14].
In the context of FHE, each KeySwitch key demands ≈1MB or 91MB storage for
dnum = L + 1, and L = 30 or dnum = 3, and L = 22 respectively. Given the limited
on-chip memory capacity of small chiplets, accommodating even a single KeySwitch key
becomes rather challenging. Consequently, reliance on off-chip memory access becomes
essential when a KeySwitch operation necessitates a different key. It is also not useful to
store just one relinearization key required after ciphertext multiplication, as for a majority of
applications, more rotations are required compared to multiplications [JKLS18]. Therefore,
in our architecture, we store all the keys in the large off-chip HBM. To reduce the overhead
of off-chip memory access, we develop an efficient prefetch unit that streamlines data
movements in parallel to computation, as described next.

4.6 Throughput Computation for KeySwitch
The KeySwitch, detailed in Algorithm 4, is the most expensive operation among all the
routines. For dnum = L + 1, it transforms all L + 1 residue polynomials from slot to
coefficient representation (INTT), and then each of these is transformed to L+ 2 NTTs,
multiplied with two key components, and accumulated. This requires L + 1 INTTs,
(L + 1)(L + 2) NTTs, and 2(L + 1)(L + 2) MAS, making the naive throughput of this
operation: f

(L+1)(1+3(L+2))·N1
. By utilizing REED’s parallel processing capability to

Aikata, Mert, Kwon, Deryabin, Sinha Roy 19

Figure 10: Timeline of parallel and pipelined operation flow.

perform all MAS operations concurrent to the NTT operations (shown in Figure 10), we
save 2(L+ 1)(L+ 2) clock cycles and increase the throughput to f

(L+1)(L+3)·N1
, resulting

in a 66.7% improvement.

4.7 Streamlined Prefetch for On-Chip Storage
As mentioned in Section 4.1, REED’s design methodology mitigates the need for scratchpad-
like on-chip memory, allowing us to use memory units solely as prefetch units.

Each memory unit in Figure 9 exhibits balanced fan-in and fan-out, and among the five
memory units depicted, four are fed by off-chip memory. The small memory is responsible
for storing and communicating the INTT result to the other PUs (or Chiplets) (elaborated
in Section 5.4). Only two of the four memories communicating with off-chip memory need
to write back the results, as illustrated by bi-directional arrows in Figure 9.

Summarily, three memories perform off-chip read/write communication. These memo-
ries are physically divided into two parts. When one is utilized for on-chip computation,
the other performs off-chip prefetch (similar to ping-pong caching).

5 Techniques for exploiting Comm-Comp Parallelism
The previous section discussed how a configuration-based design methodology enables
off-chip and on-chip communication-computation parallelism. However, when distributing
FHE workloads among multiple chiplets, we must consider the C2C communication
overhead. This is important as state-of-the-art HBM3 [Ram] features a bandwidth of
1.2TB/s, while the state-of-the-art C2C interconnect UCIe [UCI23, Syn23] only offers a
bandwidth of 0.63 TB/s. Consequently, a chiplet system optimized for HBM bandwidth
could face bottlenecks due to slow C2C communication. The routine that necessitates
most data exchange is the ModUp portion of KeySwitch, detailed in Algorithm 9. It
switches the modulus of each L+1 residue polynomial (INTT(d2qi)qi ∀ i ∈ [0, L]) to (L+2)
residues polynomials (NTT(d2qi)qj ∀ j ∈ [0, L+ 1]). The ModUp operation is followed by
key multiplication and ModDown. This is the flow for dnum = L+ 1, and a more detailed
discussion of our proposed technique for dnum < L+ 1 is provided in Appendix A.

5.1 Communication cost-analysis
In a multi-PU work [MAK+23], the authors briefly discuss limb-based decomposition and
propose distributing computation across the RNS polynomials (limbs) by employing one PU
per limb. While this approach enables highly parallel computations, as the multiplicative
depth decreases, many PUs become idle, causing underutilization.

In [KKK+22, KLK+22, KKC+23], the authors utilize both the limb-based and coefficient-
based task distribution during KeySwitch. They [KLK+22, KKC+23] propose using limb-
wise distribution for INTT and NTT steps and coefficient-wise distribution for the modulus
switch (referred to as Base Conversion in the paper). [KLK+22] utilizes four PUs, and since
thus base conversion is needed between the INTT and NTT steps, all-to-all broadcasts are

20 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

done across PUs to switch from one distribution to another. In the subsequent subsection,
we analyse how both techniques attain the same communication overhead.

Additionally, the all-to-all C2C broadcast between the chiplets is slow and increases
by O(r2) with the number of chiplets r. In the context of FHE, switching between limb-
and coefficient-wise task distribution becomes expensive as it demands all-to-all C2C data
movements. For example, [KLK+22] proposes utilizing four PUs in a single monolithic
chip. However, when extended to a chiplet setting, where each PU occupies a separate
chiplet, the lack of an all-to-all broadcast capability makes it difficult to send data across all
chiplets instantly. Using bi-directional C2C communication ability, the polynomial would
reach all four chiplets via at least two serial C2C communication interfaces. The on-chip
bandwidth used in the prior works is (20TB/s [KLK+22], 36TB/s [KKC+23]) is much less
than the state-of-the-art C2C communication bandwidth (0.63TB/s [UCI23, Syn23]). As
a result, chiplets would have to wait longer for data to arrive before computing, and this
C2C communication overhead will significantly inhibit the performance. Hence, there is a
need to devise a schedule that can couple most of the communication with computation.

5.2 Limb-wise vs Coefficient-wise distribution
[KLK+22] utilizes four PUs and states that after the ModUp step, the number of polynomi-
als that need to be transferred during limb-based only decomposition is 2·dnum·(L+K+1),
while for coefficient-wise it is (dnum+ 2) · (L+K + 1). They present this discussion in the
context of a generalized KeySwitch technique for an arbitrary value of dnum, presented in
Algorithm 10 (in Appendix A).

This assumes the limb-wise distribution is done after multiplication with KeySwitch
keys, and all the results are sent to every PU via an all-to-all broadcast. However, we
remark that one PU does not need to send all the polynomials and instead only needs to
send 2·(dnum−1)·(L+K+1)

dnum polynomials so that every PU holds the results for the supported
bases. Therefore, the total cost becomes 2 · (dnum− 1) · (L+K + 1), which is less than
the cost of coefficient-wise distribution for dnum = 3. Furthermore, we would like to
note that polynomial distribution after KeySwitch is expensive as the data doubles in
size after multiplication with the two key components. Hence, this distribution should
be done immediately after NTT computation, which further reduces the cost to only
(dnum − 1) · (L + K + 1). This is much less compared to coefficient-wise distribution
(dnum+ 2) · (L+K + 1). Hence, we reassert that limb-based distribution will attain less
communication overhead than coefficient-wise without any extra computation overhead.

5.3 Data Distribution across Multiple Chiplets
The above analysis establishes that limb-based decomposition is the best task and data
distribution technique across multiple chiplets. Within one chiplet, the computation is
coefficient-wise distributed as N2 coefficients are processed in parallel (discussed in Sec-
tion 4). However, as discussed in Section 3 (b) and (c), the limb-based distribution
technique also has limitations. Therefore, we adapt it to offer long-term high performance.

This adaptation stems from the two key observations from the data flow of the KeySwitch
operation in Figure 2. Firstly, the INTT results that need to be shared and duplicated are
ephemeral, and thus, they do not require any long-term storage – subsequent operations
immediately consume them. To improve the efficiency, instead of duplicating the INTT
data or sharing memory across chiplets, we leverage a ring-based C2C communication as
shown in Figure 11. The chiplets are connected in a ring formation where each chiplet
processes one INTT result and then sends it to the next chiplet. The ring-based data
movement minimizes the number of C2C interconnects and ensures that each chiplet
operates on independent memory, simplifying placement and routing constraints.

Aikata, Mert, Kwon, Deryabin, Sinha Roy 21

The second observation is related to the underutilization of chiplets with reduced levels
or depths in the ciphertext after homomorphic rescaling. If we distribute the limbs across
the chiplets in an interleaved manner, then as the multiplication depth decreases, the
number of limbs per ciphertext in each chiplet also uniformly decreases. To explain the
benefits of the interleaved distribution, we will use the analogy of a card game.

The FHE card game: In this game, each player represents a chiplet, while the residue
polynomials or limbs act as the cards. The cards dealt out are collected in a LIFO
(last-in-first-out) manner 1, imitating the loss of multiplicative depth during computation.
All players engage in the game (FHE routine computation) until they exhaust their cards.
The start of a new FHE computation game mirrors Bootstrapping, which starts when only
one player retains a single card. Until this point, players without cards must wait until the
next game to participate. With these rules, the dealer (user or compiler [VJHH23]) has
two choices: deal out all the cards to one player before moving to the next or do alternate
distributions such that every other card goes to different players. Let us say there are
L = 32 cards and r = 4 players. In the former case, the first player gets the cards drawn
at instances {0, 1, 2, · · · , 7}, and in the latter case, at instances {0, 4, 8, · · · , 28}, and so on
for the other players.

In both scenarios, each player receives 8 cards in total. In the first option, the last
player exhausts their cards first, followed by the preceding player, and so on and so forth.
Consequently, until the first player runs out of cards, others remain inactive. Conversely,
with alternating distribution, each player loses one card in turn. Thus, at any point in
the game, players either possess the same number of cards or one less, ensuring active
involvement throughout.

The goal of FHE architecture design is to ensure the full utilization of chiplets in the
long term and, thus, deliver high performance for the available computation resources. It
translates to maximizing the player interaction in the FHE card game. Thus, the latter
technique of interleaved alternate distribution offers maximum chiplet participation in the
"card game" of computations. Now, if there are too many players, then the number of
players becoming idle will increase no matter which technique is used. The latter technique
will only minimize the idle time. This is the problem with using more chiplets. Thus, next,
we will discuss our final key technique for reducing communication overhead and then
derive a good upper-bound on the number of chiplets.

5.4 Efficient Non-Blocking C2C Communication
The proposed ring-based communication still faces overhead as the chiplets have to

wait for every chiplet before them in the ring to send the INTT result. Hence, we propose
a communication strategy, illustrated in Figure 11, to overcome this remaining problem.

The key idea is that the chiplets concurrently operate on different limbs instead of
waiting for one limb and then processing it, as shown in Algorithm 9. Each chiplet starts
with the assigned limb, computes INTT, and then performs multiple NTTs on it. While
performing NTT, it starts sending/receiving the INTT result. For example, the REED0
sends its INTT result to REED3 and receives the INTT result from REED1. This is a
uni-directional ring-based communication. Since only one INTT result needs to be sent for
l+2

r parallel NTT computation, we have a larger C2C communication window compared to
computation. Consequently, non-blocking communication is achieved as data computation
can proceed concurrently with relatively slower communication.

This technique necessitates just one read/write port per chiplet, in contrast to the
requirement for (r− 1) ports in a star-like (i.e., all-to-all) C2C communication network.

1It can also be FIFO (first-in-first-out) without any loss of generality.

22 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Figure 11: Non-blocking ring-based communication for four REED chiplets when l = 6.
The blocks between executions represent the long communication window to make up for
slow inter-chiplet (C2C) communication.

The Adapted Data and Task Distribution Technique.
C2C communication bandwidth plays a major role in the performance versus the number
of chiplets trade-off. Let us assume the C2C communication bandwidth is k× slower than
the HBM to Chiplet communication bandwidth. Each chiplet operates on L+2

r polynomials.
The total computation time to process all L+ 2 polynomials for the KeySwitch should be
close to k. Otherwise, we will not be able to decouple the communication from computation
as discussed above. This offers us a loose upper bound r < L+2

k . To ensure u× higher
utilization, this bound must be made tighter. u can take any value ≤ L+2

k (u = L+2
k

for monolithic chip). We take u as 4. The adapted limb-based task/data distribution
technique has the following properties:

• The number of chiplets is constrained by r ≤ L+2
4k .

• An interleaved data/task distribution approach is utilized such that Chipleti gets
data and task corresponding to limbs rj + i ∀ 0 ≤ j < L+2

r , instead of sequential
allotment (Chipleti ← ri+ j).

• The technique outlined in Algorithm 9 is to be followed by all Chiplets to minimize
data exchange overhead and costly C2C interconnects.

5.5 ModDown/Rescaling Task flow
So far, we have discussed the data and task flow in the context of ModUp operation,
which exhibits the highest complexity in terms of NTT operations. Next, we turn our
attention to the ModDown/Rescaling operation. As shown in Figure 2, the ModDown
operation constitutes the final step of the KeySwitch procedure. This operation involves a
single INTT followed by l + 1 NTT operations, resulting in significantly lower complexity
compared to the ModUp operation. Figure 12 (a) illustrates the communication flow for
ModDown across multiple chiplets. Specifically, the chiplet that holds the polynomial
corresponding to the modulus being dropped performs the INTT and sends the resulting
data to the next chiplet. The data is then propagated through the remaining chiplets in a
feed-forward ring topology, as depicted in the figure. Notably, the MAS operations are
done simultaneously with the NTT operations.

While the overall computational complexity of the operation is l+1
r NTTs per chiplet,

there is an additional fixed communication overhead of r − 1 polynomials due to inter-
chiplet data transfer. A similar flow is observed in the Rescaling operation, which reduces

Aikata, Mert, Kwon, Deryabin, Sinha Roy 23

Algorithm 9 ModUp_KeyMul
In: d2 (the ciphertext component to be linearized)
Out: BUF = ModUp_KeyMul(d2)

1: Following tasks are executed by REEDi ∀ i ∈ [0, r)
▷ All REEDi operate in parallel as shown in Figure 11

2: for (j = 0; j < l+1
r ; j = j + 1) do

3: Ircv
i ← INTT(dj·r+i

2)
▷ Initiate communication with REED(i+1) mod 4, REED(i−1) mod 4

4: for (m = 0;m < r;m = m+ 1) do
5: Iproc

i ← Ircv
i

▷▷ Long Communication window opens now ◁◁
▷ Receive Ircv

(i+1) mod 4 from REED(i+1) mod 4 and Send Ircv
i to REED(i−1) mod 4

6: for (t = 0; t < l+2
r ; t = t+ 1) do

7: BUFt∗r+i + = (NTT(Iproc
i) · KSKj·r+(i+m) mod 4)qt∗r+i

8: end for
▷▷ Ensure Ij·r+(i+m+1) mod 4 has been received
▷▷ Communication window closes ◁◁

9: Ircv
i ← Ircv

(i+1) mod 4
10: end for
11: end for
12: return BUF

ciphertext depth following noise growth. However, Rescaling is not strictly needed after the
KeySwitch procedure and can be performed independently to mitigate noise after several
rotations, accumulations, or plaintext multiplications. ModDown and Rescaling are applied
to each ciphertext component, requiring two polynomial broadcasts. Note that the figure
shows the processing of one component as the second component’s communication will
be done in parallel with the first component’s computation. The INTT will be computed
by the same chiplet and transferred, while the other chiplets compute the NTT for the
previous component. Hence, no communication overhead will be incurred for the second
component. Runtime of ModDown and Rescaling is included in the total runtime reported
for the Relinearization operation (tabulated in Table 3).

When Rescaling is required immediately after a ModDown operation, it leverages
the optimized flow from the ModUp operation, as demonstrated in Figure 12 (b). Both
processes necessitate an INTT broadcast followed by NTT computation, where the chiplet
executing the INTT performs one less NTT at best, effectively dropping the computation
with respect to the modulus used for the INTT. Consequently, while the first set of NTT
computations is underway, the second INTT result can be broadcast; thus, wait time
overhead is incurred only once overall.

6 Implementation Results
Based on the precision-loss study done for dnum = L + 1 (shown in Section 7.1), we
choose the overall parameters for synthesizing and benchmarking our design as N =
216, L = 30,K = 1, Lboot = 15, w = 54. Upon implementation (silicon realisation), only
the parameters N,w are fixed, and the other parameters (e.g., dnum) can be changed as
per application requirements. For a higher value of K, the task distribution is discussed in
Appendix A. The user can control this via the low-level instruction abstraction provided.

We synthesize the entire REED 2.5D PU for configurations 1024×64 and 512×128
using TSMC 28nm and ASAP7 [CVS+16] 7nm ASIC libraries with Cadence Genus 2019.11,

24 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

(b)(a)

Figure 12: Ring-based communication for four REED chiplets when l = 15→ 16 (after
ModUp) for the (a) ModDown operation and (b) ModDown+Rescale operations.

REED-PUREED-PU

REED-PUREED-PU

Figure 13: The complete architecture diagram of 4-chiplet REED 2.5D for 1024×64
configuration. The multiple small black blocks denote I/O interconnects along the edges.

and SRAMs are used for on-chip memories (with total storage capacity of 14 polynomials).
The REED-PU and all its building blocks are fully implemented using Verilog Hardware
Definition Language. We simulated our design using Vivado 2022.2 for functionality testing.
The Instruction Controller is a part of the design and is connected to the master processor
via the same master-slave interface as data in prior works [MAK+23]. Our primary
objective is to achieve high performance while optimizing area and power consumption. To
this end, we set our clock frequency target to 1.5 GHz, use High-vt cells (hvt) configuration
for low leakage power, enable clock-gating, and set the optimization efforts to high. We
set the input/output delays to 20% of the target clock period and leverage incremental
synthesis optimization features. Moreover, we take a step further by prototyping the
building blocks on Xilinx Alveo U250 to verify functional correctness, which has not been
done by prior ASIC FHE accelerators.

As off-chip storage, we leverage the state-of-the-art HBM3 [Ram, JED22, PLC+23,
LLL+15] memory, offering improved performance and reduced power. It is already deployed
in commercial GPUs and CPUs [EH22]. HBM3 with 8/12 stacks of 32Gb DRAMs has
32/48 GB storage capacity [JED22, Mur23]. The ciphertexts provided by the client can be
transferred to REED using 32 lanes PCIe5 offering a bandwidth of 128 GB/s [SYY+23].
In our work, we present results for HBM3 PHY and HBM3 NoC (Network On Chip),
based on [Ram, PLC+23, CPS+23] with reported bandwidth of 1.2TB/s [Ram]. For C2C
communication, UCIe (Universal Chiplet Interconnect Express) advanced interconnect can
offer a bandwidth of 0.63 TB/s [UCI23, Syn23] for 2.5D integration. Thus, we can send

Aikata, Mert, Kwon, Deryabin, Sinha Roy 25

Table 3: Performance micro-benchmarks for 28nm and 7nm.

Micro-Benchmarks ↓ Level Time (ms)
Configuration → l 1024×64 512×128
AUT/MAS (pt-ct) 30 0.005 0.003
MAS (ct-ct) 30 0.01 0.005
KeySwitch 30→31 0.19 0.08
MULT & Relin. 30→29 0.22 0.11
Bootstrapping 1→30→15 14.2 7.1

Table 4: Total area consumption of 4-chiplet REED 2.5D for different configurations on
28nm and 7nm.

Components 28nm (mm2) 7nm (mm2)
1024×64 512×128 1024×64 512×128

REED 74.9 115 24 43.9
REED-PU 58.0 81.0 7.01 9.9
⌊ NTT/INTT 38.2 56.8 5.61 7.9
⌊ 2×MAS 3.1 6.6 0.42 0.76
⌊ PRNG 0.15 0.28 0.02 0.04
⌊ 2×AUT 0.14 0.32 0.02 0.04
⌊ Memory 16.1 16.1 1.2 1.2

HBM PHY/NoC 16.9 33.8 16.9 33.8
4×REED 299.6 392.4 96 175.6
C2C 12.32 14.64 0.8 1.6
Total Area 311.9 461.4 96.7 177

or receive 64, 54 − bit coefficients per clock cycle. Overall we present the results using
the following: (i) Verilog description of REED-PU, (ii) Instruction set modeling of the
rest, (iii) Synthesis result in two technologies, (iv) Power simulation of a prelayout netlist
for single clock, (v) Extrapolation of the power consumption of single clock cycles for the
cycle accurate simulation, (vi) Power values estimated from the cycle accurate simulation,
and (vii) Area estimations after synthesis.

Table 4 presents the area results for the REED 2.5D architecture, featuring a 4-
chiplet configuration as illustrated in Figure 13. This design conforms to the fabricated
chiplets systems [Int23, AMD23]. The inner REED-PU, NoC, and HBM (shown in
Figure 13) constitute one chiplet (similar to [PZM+23, ZSB21]). In Table 3, we present
the performance of FHE routines for both configurations (512×128 and 1024×64) with
the achieved target clock frequency of 1.5 GHz. Section 4.6 explains how the throughput
of KeySwitch is obtained. For dnum = L+ 1, we report high (≈99.9%) utilization which
reduces to ≈95% for dnum = 3, as detailed in Section A.1.

6.1 Power and Performance Modelling
Using a cycle-accurate model, we obtain the performance and power consumption estimates
for REED. REED’s communication and computation are decoupled by design and do
not need application-specific schedules to reduce data load/store stalls. REED also has a
modular architecture design; all chiplets are identical, and none of the elementary building
blocks is distributed across chiplets. The REED-PU was fully described using Verilog
Hardware Definition Language. Its complete functionality is tested via simulations in
Vivado 2022.2. For the results, one REED-PU was fully synthesized to obtain overall area
results using Cadence Genus and TSMC 28nm libraries. The entire system was modelled

26 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

163
84×

4

819
2×

8

409
6×

16

204
8×

32

102
4×

64

512
×1

28

256
×2

56

128
×5

12

64×
102

4
0

100

200

300

512
×1

28

102
4×

64

50

150

250

140.6

164.6

198.6

246.6

313.3

31.9
37.6

46.9
58.9

74.9

115

181.6

296.6

75.6 80.6 82.6 87.6
96.7

177

18.9 19.9 20.9 21.9 24
43.9

82.6

158.2

304.4

Configuration (N1 ×N2)

A
re

a
(m

m
2)

monolithic with 4 REED 28nm 1 REED chiplet 28nm
monolithic with 4 REED 7nm 1 REED chiplet 7nm

Figure 14: Area increase with rising throughput configurations [GPG23].

using identical instructions for software library and hardware implementation. However, in
hardware, certain instructions can run simultaneously. Since they have constant execution
time, we factored this behaviour into the software model, ensuring the clock cycle count
aligned with expectations for hardware execution.

In Section 4.4, we elaborated on how our instruction-set architecture handles the
micro (NTT, AUT, MAS) and macro (e.g. rotation, KeySwitch) instructions. Thus, a
user does not need to handle micro-instructions due to the provided macro-instruction
level abstraction. Predefined microcode for static macro-instructions ensures optimized
data flow and memory management. Data exchange across chiplets occurs solely during
KeySwitch and is incorporated into the microcode and task distribution. The simulator
takes into account the bandwidth of C2C and HBM-chiplet communication along with
data communication and distribution strategies (Section 5.3, Section 5.4). The run-time
of macro-instructions is obtained using the known static schedule of micro-instructions.
Finally, the macro-instructions are scheduled using OpenFHE [ABBB+22], and runtime is
obtained for higher-level operations (bootstrapping, DNN).

We used the Cadence Genus tool to measure total power consumption for the entire
REED-PU. For each operation, the duration for which any unit in the chiplet remains active
is predetermined and static. The power consumption for each elementary building block is
also obtained using the Cadence toolchain. We estimated the average power consumption
based on this information combined with the runtime of each operation, following a
methodology commonly employed by prior works such as [KLK+22, KKK+22, KKC+23,
SFK+22] for estimating FHE hardware acceleration on ASIC technology. Similarly, in a
multi-chiplet scenario, the operation runtime remains static, and we conservatively estimate
communication overhead to be 2× slower than linear operations on the same volume of
data. This approach provides a safe estimate of the total runtime. The cycle-accurate
model serves as a simulator and effectively imitates the behaviour of the Instruction Set
Controller within the chiplets, giving us a reasonable approximation of system performance.
We validate this cycle-accurate modelling with Vivado simulation.

Aikata, Mert, Kwon, Deryabin, Sinha Roy 27

Table 5: The table compares memory (number of coefficients to store) and multiplier units
for different N1 and N2 values with and without twiddle factor generation (TFG).

N1 ×N2 → 2048× 32 1024× 64 512× 128 256× 256 128× 512 64× 1024
Total Mul. 432 832 1,600 3,072 5,888 11,264
TFG Mul. 68 131 258 513 1,024 2,047
TFG Mem. 222,912 310,624 486,400 707,232 1,149,248 1,771,488
TFG Mul. 0 0 0 0 0 0
TFG Mem. 4,260,320 4,228,064 4,212,704 4,206,560 4,206,560, 4,212,704
Mul. Inc. 16% 16% 16% 17% 17% 18%
Mem. Red. 95% 93% 88% 83% 73% 58%

6.2 What to expect from higher-throughput configurations?
Until now, we have examined two configurations (1024×64 and 512×128) that only partially
demonstrate the advantages of our proposed scalable design methodology. As we double the
throughput (by doubling the value of N2), the area of PU only increases by approximately
1.5×. This trade-off arises because the chip area comprises two components— (i) the
computation logic area, which scales linearly with throughput, and (ii) on-chip storage
that remains fixed to a number of polynomials. When we opt for a higher configuration,
the polynomial size remains the same while the number of coefficients to be processed in
parallel increases. We also discuss storing versus generating twiddle factors on the fly. As
shown in the Table 5, twiddle factor generation (TFG) increases the number of multipliers
(Mul.) only up to 18% for different configurations (N1 and N2). Indeed, reduction in
memory (Mem.) decreases (i.e., number of coefficients to store) with larger N2. Yet, even
for large values of N2 (i.e., N1 = 64 and N2 = 1024), we observe a reduction in the memory
by 57% compared to storing the twiddle factors (TFG).

However, an important question remains: what configuration strikes the best balance
between throughput and manufacturing cost? To address this, we turn to [GPG23]. The
authors report that the best manufacturing size for high yield ranges from 40 to 80 mm2

for 7nm technology, while for 40nm, it ranges from 50 to 150 mm2. In Figure 14, we
present two sets of area consumption results for 28nm and 7nm technologies. The first set
corresponds to four REED cores produced as a single monolithic chip, while the second
set represents one REED chiplet. The best area ranges are highlighted in black and pink.
As we can see, for both 7nm and 28nm, the configuration 512×128 falls within the best
development area range and offers high throughput. The configuration 1024×64 is within
the optimum range for 28nm and is close to it for 7nm. Monolithic designs, within the
best range, offer 4× to 8× less throughput.

6.3 Comparison with Related Works
The realization of privacy-preserving computation through FHE holds great potential
for the entire community, resulting in various acceleration works. Among these, the
ASIC designs [FSK+21, KLK+22, KKK+22, SFK+22, KKC+23] have achieved the most
promising acceleration results. However, a direct comparison with these works would
be unfair as the benchmarks are provided for different parameters (dnum,L,w, Lboot).
Hence, to ensure fairness, we also provide bootstrapping results for dnum = 3 (utilized
by [KKC+23]) in Table 6. Next, since we cannot change the word size (w = 54) chosen for
high precision, we select L = 23,K = 8, and Lboot = 17 accordingly.

We use the amortized bootstrapping time TA.S. [KKK+22, KLK+22] metric that
calculates the bootstrapping time divided by Leff and packing n. This metric overlooks
factors such as area, power, and precision. Higher precision necessitates a larger word size,

28 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Table 6: Comparison of REED 2.5D with state-of-the-art

Work Area TA.S. PAvg EDAPw Parameters # B.S./Dollar
(mm2) (ns) (W) (/M) (N/L/dnum) (ops)∗ [GPG23]

F132 71.02† 470 28.5† 754.5 214/23/24 0.48
BTS64 373.6 45.4 163.2 106.0 217/39/2 0.74
ARK64 418.3 14.3 135 9.74 216/23/4 1.95
CLake28 222.7† 17.6 124† 16.5 216/60/1−3 3.64
SH36 178.8 12.8 94.7 4.1 216/35/3 6.23
SH64 325.4 11.7 187 7.0 216/22/3 3.4

REED‡(1)
54

98.4∗∗ 6.6 48.8 0.21 216/23/3 25.3
96.7 28.8 49.4 3.96 216/30/31 6.32

REED‡(2)
54 177 14.4 83.5 3.10 216/30/31 6.82

† Area/power are normalized [NJO+17, KKC+23] (14nm/12nm to 7nm).
‡ Result for configuration (1) 1024× 64 with one HBM per chiplet, and (2) 512× 128 with
two HBM per chiplet.
∗ The cost per mm2 is obtained from [MUS] ($57, 500/mm2 for 7nm) and yield estimates
are taken from [GPG23, MWW+22] including manufacturing, pre- and post-testing, and
integration costs.
∗∗ For dnum < L+ 1, the area increases due to BaseConversion MAS units (Section A.1).

w (or expensive composite scaling). Thus, we use the EDAP (Energy-Delay-Area product)
metric [LAS+09] and modify it (EDAPw) to incorporate a linear increase due to word size
(discussed in Section 7.1).

Table 6 compares our design’s area consumption, performance, and power consumption
for the packed bootstrapping operation with existing monolithic works, F1 [FSK+21],
BTS [KKK+22], ARK [KLK+22], CraterLake (CLake) [SFK+22], and SHARP (SH)
[KKC+23]. REED achieves 1.9× better performance than the state-of-the-art (SH36) while
consuming 1.8× less area. Our area consumption is less as the prior works utilize at least
half of the chip area for on-chip memory. In our case, on-chip memory is not significant, as
we utilize HBMs for major storage. We obtain better performance results due to the high
throughput and 4.8× higher off-chip communication bandwidth offered by four HBM3
blocks – where each chiplet is exclusively connected to one HBM3.

Prior works utilize up to 1TB/s peak off-chip bandwidth, relying on large on-chip mem-
ories for storing keys, which necessitates much higher on-chip communication bandwidths—
20TB/s [KLK+22], 36TB/s [KKC+23], and 84TB/s [SFK+22]. In contrast, although our
proposed REED system uses 4.8× higher off-chip bandwidth (with each HBM offering
1.2TB/s at its peak), it efficiently offloads memory requirements to HBM, resulting in
significantly reduced on-chip memory usage and consequently 4.2 − 7.5× lower on-chip
memory bandwidth requirements compared to [KLK+22, KKC+23, SFK+22]. The off-chip
bandwidth requirement of one REED chiplet is comparable to that of a monolithic design.
However, it incurs a 2.7× performance loss compared to the state-of-the-art [KKC+23]
while consuming 3.36× less area. This trade-off is a consequence of designing chiplet-based
architecture over a monolithic one. The REED 4-chiplet system offers better performance
and 35× higher energy efficiency for lower chiplet area, as shown in Table 6.

We also assess the yield and manufacturing cost in Figure 15 by utilizing the results
reported in [MWW+22, GPG23, MUS] including manufacturing, pre- and post-testing, and
integration costs. For a fair comparison, we use the original area and not the word-size scaled
area for prior works. As illustrated, we achieve the highest yield and lowest manufacturing
cost on 7nm, resulting in the least overall cost (manufacturing cost/yield), 50% less than

Aikata, Mert, Kwon, Deryabin, Sinha Roy 29

F1 BTS CLake ARK SH36 SH64 RD7nm RD28nm

0

1

2

3

RD7nm RD28nm

1 0.
95

0.
74 0.
85

0.
69 0.

87

0.
76 1 0.

981.
1

1.
6

1.
3

1.
7

1.
3 1.

5

1

0.
3

1.
2

2.
2

1.
5

2.
5

1.
5

2

1

0.
3

R
el

at
iv

e
va

lu
e

Relative Yield Relative Cost Relative Cost/yield

Figure 15: Relative a) yield of existing monolithic designs versus the proposed 7nm
chiplet-based architecture [MWW+22], b) development cost (including Interposer cost)
[GPG23, MUS, MAK+23], and c) cost of SiP development (cost/yield). RD refers to our
work REED 2.5D.

state-of-the-art monolithic design SHARP64. The cost is estimated using the yield metric
provided in [MWW+22, FM22]. Based on this analysis, we observe that the yield for
SHARP64 is approximately 73%, whereas the yield for the 4-chiplet REED (512× 128)
configuration reaches around 96%. This represents a 1.31× improvement in relative yield.
Factoring in the manufacturing costs[MUS] and the chiplet packaging costs [GPG23], the
design achieves an additional 1.5× cost reduction. Together, these factors contribute
to a 50% reduction in the cost-to-yield ratio, offering an estimate of the overall chip
manufacturing cost. On 28nm technology, we achieve 85% cheaper design compared to
SHARP64. Further, note that the cost per bootstrapping for dnum = L+ 1 looks similar
to prior monolithic works, but at this parameter, we also have the highest (≈ 2× more)
computation depth remaining after bootstrapping for ω ≥ 54. Thus, applications utilizing
this parameter choice require 2× less frequent bootstrapping operations.

6.4 Higher Chiplet-Integration Study

In Section 3, we examined multiple chiplet configurations and selected four (r = 4) based
on long-term utilization, lower power dissipation, and low integration costs. Our design
methodology and data/task distribution approach remain adaptable to any desired chiplet
configuration and the number of chiplets. In fully connected chiplet nodes, interconnect
length between chiplets can significantly impact energy consumption and latency. Therefore,
our proposed non-blocking ring-based communication technique for KeySwitching shows a
better advantage for higher chiplet integration density.

Table 7: Results for 1024 × 64 configuration on 28nm technology with parameters
(N/L/dnum = 216/30/31).

Number of Chiplets → 4 8 12
Area (mm2) 311.9 623.8 935.7 (> reticle limit)
TA.S. (ns) 14.41 7.37 4.98

30 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

REED-PU REED-PU

REED-PUREED-PU

REED-PUREED-PU

Figure 16: The complete architecture diagram of 6-chiplet REED 2.5D for 1024×64
configuration.

Figure 16 illustrates a chiplet-based architecture for six chiplets, which can be expanded
to accommodate more chiplets. Additionally, energy-efficient lower-bandwidth memories,
such as DDR, can be integrated with the appropriate (N1, N2) configuration based on
memory throughput. While increasing the number of chiplets enhances performance, as
shown in Table 7, it comes at the cost of area and underutilization when the current
multiplicative depth (l) falls below the number of chiplets (l < r). However, more chiplets
can lead to better performance in the long term and allow tiling beyond the reticle limit,
albeit with the additional area, power, and integration overhead. Also, note that a higher
number of chiplet interconnects implies additional points of failure, making testability
and reliability more involved. A more detailed multi-chiplet study is also presented in
concurrent work [KKCA24], where the authors show that increasing the cores from 4 to
16 results in speedup of only 1.99− 2.11×.

7 Application benchmarks
We benchmark three machine learning applications: linear regression, logistic regression,
and a Deep Neural Network (DNN). Each application is evaluated for encrypted training
and inference. In this setting, the server provides computational support without knowledge
of the data or model parameters, ensuring complete blind computation. Most applications
benchmarked in the previous works [FSK+21] are partially blind; the server does not see
the data but knows the model parameters to evaluate it. To the best of our knowledge,
none of the previous works benchmark an encrypted neural network training. The speedup
results are presented in Table 8 using the most area conservative design (1024×64). Higher
configuration (512×128) will improve the performance by 2×.

• Linear Regression: We employ the Kaggle Insurance dataset [Sco20] to benchmark
linear regression. The model uses a batch size of 1204 and 1338 input feature vectors
(each containing six features) for training and inference and achieves an accuracy of
78.1% (same as plain model [Sco20]).

• Logistic Regression: It is a supervised machine learning model that utilizes the
log function, evaluated using function approximations in a homomorphic context.
Its accuracy depends on the degree of approximation function expansion and preci-
sion. Existing works, such as [SFK+22, KKC+23], utilize the HELR [HHCP19] to

Aikata, Mert, Kwon, Deryabin, Sinha Roy 31

Table 8: Application benchmark and the speedup achieved by REED 2.5D. The CPU
speed is reported on a 24-core, 2×Intel Xeon CPU X5690 @ 3.47GHz with 192GB DDR3
RAM.

Appl. Accuracy Op Time SpeedupCPU HW

Lin.Reg. 78.12% Inf. 0.86 s 0.31 ms 2,873×
Trn. 13.82 s 4.6 ms 2,991×

Log.Reg. 61.8% Inf. 1.27 s 0.46 ms 2,785×
Trn. 11.18 s 3.8 ms 2,865×

DNN 95.2% Inf. 128.7 s 48.6 ms 2,646×
Trn. 29 days 920 s 2,725×

CLake28 SH36 SH64 REED54

2

4

6

8

10

REED54

1

10
.9

1.
2

3.
7

11.
6

8.
7

3.
3

11.
3 11.
6

1

R
el

at
iv

e
va

lu
e

Relative EDAPw [HELR256]
Relative EDAPw2 [HELR256]
Relative EDAPw[HELR1024]
Relative EDAPw2 [HELR1024]

Figure 17: Relative metrics comparison for the HELR [HHCP19] application with batch
sizes 256 and 1024. Under these metrics, the lower the value, the better.

benchmark encrypted training on MNIST [LC10] data, with batch sizes (256, 1024).
In Figure 17, we illustrate the performance advantage of REED 2.5D. To predict
cancer probability, we further evaluate logistic regression on the iDASH2017 cancer
dataset (similar to [KSK+18]). Here, we achieve a training accuracy of 62% in a
single iteration. This dataset comprises 18 features per input, with batch sizes of
1422 and 1579 used for training and inference.

• Deep Neural Network : The DNN serves as a powerful tool for Deep Learning.
Our study employs a DNN, shown in Figure 18, for the MNIST dataset [LC10], with
two hidden and one output layer. We pack four pre-processed images per batch
to prevent overflow during matrix multiplication. DNN training requires 12,500
batches. Thus, all the existing works [KLK+22, KKK+22, SFK+22, KKC+23] not
providing computation-communication parallelism will suffer as their on-chip memory
is insufficient. The DNN is trained for ≈7000 (≈5.8 Bootstrappings per iteration)
iterations and achieves 95.2% accuracy in 29 days using OpenFHE [ABBB+22].
REED 2.5D could finish this in only 15.4 minutes. This is where our computation-
communication parallelism shines, as many ciphertexts are required for such an
application. None of the works in literature offers this and is bound to suffer for
memory-intensive applications.

32 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Figure 18: A DNN for MNIST [LC10] with two hidden and one output layers.

0.6

0.5

0.4

0.2

0.1

0.3

0.7

0 50 100 150 200

0.8

Figure 19: Accuracy plot of different word sizes for the DNN. The lines are smoothened
and the red dotted zig-zag line resembles the original form.

7.1 Precision-loss Experimental Study
Another facet of privacy-preserving computation is precision loss. Since the server cannot
see the intermediate or final results, the best it can do is to ensure that the parameters it
operates on support higher precision. To validate our parameter sets, we ran experiments
for the DNN training. In Figure 19, we can see how quickly the training accuracy drops as
the word size is reduced. Thus, precision plays a vital role in providing privacy-preserving
computation on the cloud. Our choice of 54-bit word size strikes the perfect balance
between precision and performance. Works offering a smaller word-size [FSK+21, SFK+22,
KKC+23] require in-depth study to mitigate the accuracy loss due to low precision.

8 Future Scope: Journey from 2.5D to 3D
The extension of REED 2.5D to a complete 3D IC holds immense potential for future
computing. To achieve this transition, we have two options: connecting the PU with the
HBM controller via TSV (as shown in Figure 20) or merging the PU unit with the lower
HBM controller die. Since HBM is sold as an IP, the latter approach relies on the IP
vendors to integrate the PU. By adopting either of these approaches, we can significantly
reduce the reliance on the Network-on-Chip (NoC), leading to a compact chip design with
lower power consumption. Each chiplet will be a full 3D IC package (PU and Memory)
and will need a C2C link via interposer for connecting to other chiplets. A reduction in
the area is expected due to fewer HBM stacks on the lateral area and the integration of
the REED-PU unit with the HBM controller. Additionally, decreased critical paths would
further enhance the design’s performance. Thus, the REED’s 3D IC integration promises
a huge reduction in overall chip area and power consumption.

Aikata, Mert, Kwon, Deryabin, Sinha Roy 33

Figure 20: The side and top view of futuristic RE3D has four REED 3DIC chiplets.

9 Conclusion

FHE has garnered considerable interest due to its ability to preserve data and computation
privacy, leading to several efforts for accelerating FHE using large monolithic ASIC designs.
However, many of these attempts primarily focus on acceleration at the expense of yield,
manufacturing cost, and scalability. We proposed a scalable FHE accelerator design
methodology for a multi-chiplet system that can be easily extended to larger configurations
while adapting to constrained environments.

Chiplet-based designs face inherent challenges, such as increased latency costs due to
slow C2C communication. We designed REED to address these and show advantages over
the monolithic designs in terms of performance, area, and energy consumption. REED
achieved this feat by utilizing a non-trivial yet uncomplicated bandwidth-oriented design
methodology and a modular design approach.

An efficient workload division strategy optimized for multi-chiplet architectures is
proposed to minimize memory usage and enhance efficiency through interleaved data
and workload distribution strategy for all FHE routines. Next, to address slow chiplet-
to-chiplet communication, a novel non-blocking ring-based inter-chiplet communication
strategy tailored to FHE is introduced. Additionally, a scalable bandwidth-oriented design
methodology is adopted, offering flexibility to adjust to the varying area and performance
needs while supporting communication-computation parallelism within each chiplet. Fur-
thermore, novel design techniques are presented for building blocks (NTT/AS/AUT),
enhancing scalability. These techniques accelerate routines such as KeySwitch or Boot-
strapping and reduce their latency by ≈67%. Finally, REED benchmarks an encrypted
DNN training, demonstrating utility for real-world FHE applications.

All the REED-chiplets are small and identical, allowing us to prototype the building
blocks using FPGA and validate the functionality, which had not been done by prior works.
Summarily, the proposed design methodology for REED showcased a robust and scalable
approach to FHE acceleration that addressed several key challenges inherent in traditional
monolithic designs. This paves the way for interesting future prospects such as formal
verification. The advancements presented in this work hold the promise of advancing
privacy-preserving computations and promoting the wider adoption of fully homomorphic
encryption.

Acknowledgement

This work was supported in part by Samsung Electronics Co. Ltd., Samsung Advanced
Institute of Technology and the State Government of Styria, Austria – Department
Zukunftsfonds Steiermark. We extend our gratitude to the anonymous reviewers for their
constructive feedback. We thank Ian Khodachenko for conducting extensive application
benchmarking, the results of which were integral to this paper, and Florian Hirner for
FPGA prototyping.

34 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Appendix

A KeySwitch Task Distribution for dnum < L + 1 (k > 1)

Algorithm 10 CKKS.KeySwitch [HK19, KPP22] (for arbitrary dnum)
In: d = (d̃0, d̃1, d̃2) ∈ R3

Ql
, ˜ksk0 ∈ Rdnum

P Ql
, ˜ksk1 ∈ Rdnum

P Ql

Out: d′ = (d̃′
0, d̃′

1) ∈ R2
Ql

1: for j = 0 to dnum− 1 do
2: ỹ[j]← d̃2[j ·K : (j + 1) ·K − 1] ∪ BConvRoutQK→P Ql/K

(d̃2[j ·K : (j + 1) ·K − 1])
3: (c̃′′

0 [j], c̃′′
1 [j])← 0

4: for i = 0 to l +K do
5: c̃′′

0 [j][i]←
[
c̃′′

0 [j][i] + ˜ksk0[j][i] · ỹ[j][i]
]

qj

6: c̃′′
1 [j][i]←

[
c̃′′

1 [j][i] + ˜ksk1[j][i] · ỹ[j][i]
]

qj

7: end for
8: end for
9: for j = 1 to dnum− 1 do

10: c̃′′
0 [0]←

[
c̃′′

0 [0] + c̃′′
0 [j]]

11: c̃′′
1 [0]←

[
c̃′′

1 [0] + c̃′′
0 [j]]

12: end for
13: d̃′

0 ← d̃0 + (c̃′′
0 [0]Ql

− BConvRoutP →Ql
(c̃′′

0 [0]))
14: d̃′

1 ← d̃1 + (c̃′′
1 [0]Ql

− BConvRoutP →Ql
(c̃′′

1 [0]))

The generic version of the KeySwitch routine [HK19, KPP22] is presented in Algo-
rithm 10. The L+ 1 limbs of the ciphertext are split into dnum digits of K limbs. Every
digit consisting of K limbs is used to obtain l +K + 1 limbs after the ModUp operation
(via BConvRout Algorithm 11) for ciphertext at depth l. This results in dnum · (l+K + 1)
limbs, which are then multiplied with the keys and accumulated to return (l + K + 1)
limbs per ciphertext component. Finally, a ModDown is done to reduce the limbs to
(l + 1) limbs and the operation flow is very similar to that of ModUp. As discussed in
Section 5.2, maintaining the limb-based decomposition proves advantageous compared to
switching between limb-based and coefficient-based methods. We now explore how this
limb-based decomposition applies when dnum < L+ 1. It is important to note that for
dnum < L+ 1, NTT computation cannot start until the INTT results are multiplied with
base hats (p̂i, p̂i

−1) for BaseConversion.
The first technique involves digit-wise distributing data and tasks across limbs, where

the number of chiplets equals dnum. This allows each chiplet to independently execute
the outer loop for ModUp in Algorithm 10 without requiring inter-chiplet data exchange.
Data is only shared after ModUp (before Key Multiplication) and during ModDown,
as illustrated in Figure 21 first figure. The authors in [KLK+22], note that this has
an overhead of 2 · dnum · (K + l + 1) polynomials per chiplet, which can be reduced
to 2·(dnum−1)·(l+K+1)

dnum for ModUp as explained in Section 5.2. During ModDown, 2 ·K
polynomials would be communicated for BaseConversion. ModDown can also be handled
within each chiplet, eliminating the need for cross-chiplet data exchange if the result of Key
Multiplication is duplicated across all chiplets, as depicted in the second figure of Figure 21.
This results in a one-time communication cost of 2·(dnum−1)·(l+1)

dnum + 2 ·K polynomials per
chiplet and requires additional storage for 2 · (K − 1) polynomials in each chiplet.

Each chiplet would have to perform duplicate K INTT operations and BaseConversion
steps during ModDown while the (l + 1) NTT operations would be distributed across
the chiplets. A key limitation of this technique is that not much computation can be
done in parallel with the communication after ModUp. While the polynomial transfers

Aikata, Mert, Kwon, Deryabin, Sinha Roy 35

Algorithm 11 CKKS.BconvRoutP →Ql

In: ỹ2 ∈ RP

Out: ỹ ∈ RQl

1: for j = 0 to K − 1 do
2: y2[j]pj

← INTT(ỹ2[j])
3: end for
4: for j = 0 to l do
5: y[j]qj ←

∑K−1
i=0 (y2[i] · p̂−1

i mod pi) · p̂i mod qj ▷ BaseConversion
6: ỹ[j]qj

← NTT(y[j +K])qj

7: end for

Data Exchange

M
od
D
ow
n

M
od
U
p+
K
ey
M
ul
t

Data Exchange

(a) (b)

Data Exchange + Duplication

Figure 21: The Data and Task distribution when limbs are distributed digit-wise for
KeySwitch computation. The INTT, NTT, and BaseConversion mentioned here refer to
computations required per digit. In the first case, Data Exchange is done in parallel with
BaseConversion, and in the second case, it is done in parallel with KeyMult. This does
not produce a full decoupling effect when C2C communication is slower.

can overlap with the NTT and Key Multiplication computations, the high throughput of
NTT+KeyMult operations means this overlap does not achieve the desired decoupling
effect. As a result, the potential for parallelism is limited, leading to delays. Additionally,
this approach demands many chiplets for higher values of dnum. As the digits for the key
switch decrease, many chiplets become idle, further reducing efficiency. This inefficiency in
fully utilizing chiplets highlights a bottleneck in achieving optimal performance.

In contrast, the alternate limb distribution technique distributes the task for each digit
across a fixed number of chiplets, as illustrated in Figure 22. This means communication
is only required during ModUp/ModDown, after which all the data needed for Key
Multiplication and accumulation remains confined within a single chiplet. During ModUp,
the chiplets broadcast the INTT results (similar to the case of dnum = L+ 1), which is
efficient as only l+ 1 polynomials undergo INTT conversion. After ModUp, the number of
polynomials increases to dnum · (l+K+ 1). Although communication is necessary for both
ModUp and ModDown, our technique minimizes communication overhead since the number
of polynomials broadcasted during ModUp (l + 1) and ModDown (2 ·K) is significantly
lower compared to the previous method’s 2·(dnum−1)·(l+1)

dnum + 2 ·K for dnum > 2.

We investigated the possibility of using data duplication to decouple INTT data transfer
from NTT computation. However, we found that the overhead caused by duplicating data
after each operation outweighed any potential communication benefits during ModUp and
ModDown. Thus, we converge to an approach where the chiplets do not compute only K
INTT required for each digit computation during ModUp but all l + 1 INTT operations,
which they would require for computation corresponding to all the digits.

36 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Data Exchange

M
od
U
p+
K
ey
M
ul
t

Data Exchange

M
od
D
ow
n

Figure 22: The Data and Task distribution when limbs are distributed alternately for
KeySwitch computation. The Data Exchange is done in parallel with INTT, BaseConver-
sion, and NTT+KeyMult of previous digits.

Data Exchange

M
od
U
p+
K
ey
M
ul
t

M
od
D
ow
n

Figure 23: KeySwitch Flow showing computation throughput and communication overhead
for ModUp, KeyMult and ModDown for dnum = 3.

A.1 Throughput Computation of KeySwitch for dnum < L + 1
In this section, we discuss how the throughput is obtained when dnum = 3, in line with
Section 4.6, in the four (= r) chiplet setting of REED. As discussed above we, perform
all l + 1 INTT at once, to bridge the computation communication gap. Thus, each
chiplet performs at most l+1

r INTT. For the first set of BaseConversion followed by Key
Multiplication, only l+1

dnum INTT results are needed. Since, these limbs are distributed across
chiplets a communication of (r−1)·(l+1)

dnum·r is required to every chiplet. This communication
also works in ring manner, similar to the strategy proposed in Section 5.4.

Note that we cannot start NTT before we have accumulated all the l+1
dnum results as

required for Algorithm 11. When dnum = L+ 1, this value is 1, hence we can start the
NTT immediately on the INTT result, however, the same cannot be done for lower values
of dnum. Thus, in the prior case, while a long communication window was available, here
the communication window is limited. The first set of (r−1)·(l+1)

dnum·r INTT results have to be
communicated while the chiplet is computing l+1

r INTTs. Each BaseConversion computes
l + 1 NTTs (l+1

r NTTs), which gives dnum
r−1 × larger communication window for the INTT

results required for subsequent BaseConversions. Note that, for dnum = 3 and r = 4, its
value is one, hence we only face computation overhead for the last polynomial as the C2C
communication offers the same throughput as the configuration 1024× 64. However, when
the C2C communication becomes slower, than this directly impacts the communication
and hence the delay before the BaseConversions.

Aikata, Mert, Kwon, Deryabin, Sinha Roy 37

Now, the goal of computation is to prevent computation from becoming the bottleneck
in this case. Thus, instead of sending plain INTT results, the results are multiplied with
p̂−1

i for Step 5 [KLK+22], in Algorithm 11. After this the chiplets only need to perform a
MAS operation on all the INTT results for each new base during BaseConversion. We
are only restricted by off-chip communication bandwidth, and therefore we wait until all
the polynomials have been shared. The polynomials in INTT form are in on-chip memory.
The memory for each polynomial is split across various SRAMs. Therefore, one polynomial
can be loaded at a higher throughput. The operations on these can be handled by an
extra MAS unit for BaseConversion using K× (K = 8 for dnum = 3) more multipliers
to offer the same throughput as NTT. Thus, the BaseConversion, followed by NTT, and
Key Multiplication and accumulation works in a pipeline. The key multiplication with the
pre-existing K bases is done in parallel to their INTT conversion, as it does not require
any pre-computation. Hence, the overhead of the ModUp+KeyMul is directly correlated
to the computation time of the INTT polynomials (l+1)

r and the dnum BaseConversions
dnum·(l+1)

r , as shown in Figure 23.
While, the communication could be completely decoupled for the ModUp+KeyMul

step, the decoupling reduces for ModDown. Each chiplet computes the K
r INTT results and

requires communication of (r−1)·K
r INTT results before it can perform the BaseConversion

requiring (l+1)
r NTT computations per chiplet and the subtraction in pipeline. Thus, the

overall overhead of this step is determined by communication of (r−1)·K
r polynomials and

followed by (l+1)
r NTT computation. This is incurred twice, once for each ciphertext

component. Instead of doing the ModDown sequentially for each ciphertext component, we
follow the technique proposed earlier and perform all the INTT 2·K

r INTT computations at
once. Thus the communication overhead for the first ModDown is reduced to (r−3)·K

r . While
the first ModDown is being computed the limbs for the next ModDown are communicated.
Thus, the delay due to communication overhead of (r−3)·K

r is incurred only once, and the
computation overhead is 2·(l+1+K)

r NTT/INTT computations.
Overall, this results in runtime complexity of (2·(l+1+K)+(dnum+1)·(l+1)+(r−3)·K)

r . With
dnum = 3 and r = 4, the communication overhead is ≈5%, while INTT/NTT is being
computed in parallel and MAS operations in pipeline. Substituting the values of dnum =
L+1, shows how this reduces to bare minimum. Thus, NTT unit stays almost fully utilized
(≈95%) during the hybrid key-switch for dnum = 3. We have kept our analysis generic,
so that similar results can be derived for varying values of dnum and r. This also shows
how r = 4, gives a sweet spot, and a higher value would result in higher communication
delay, not only during ModDown but also during ModUp, for lower values of dnum.
Note that, this 5% communication delay can be completely bridged by interleaving the
last BaseConversion+NTT+KeyMul step with the INTT required for ModDown, as no
communication happens during this step. However, we leave this dataflow utilization for
future works.

References

[ABBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,
Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. OpenFHE:
Open-Source Fully Homomorphic Encryption Library. In Proceedings of the
10th Workshop on Encrypted Computing & Applied Homomorphic Cryptog-

38 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

raphy, WAHC’22, pages 53–63, New York, NY, USA, 2022. Association for
Computing Machinery.

[AMD23] AMD. Amd instinct™ mi300 series accelerators. Technical report, AMD,
2023.

[BDTV23] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Furkan Turan, and Ingrid
Verbauwhede. FPT: A fixed-point accelerator for torus fully homomorphic
encryption. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 741–755. ACM, 2023.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homo-
morphic encryption without bootstrapping. Electron. Colloquium Comput.
Complex., page 111, 2011.

[BHM+20] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin
Mi Mi Aung. Privft: Private and fast text classification with homomorphic
encryption. IEEE Access, 8:226544–226556, 2020.

[BMTH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-Pastoriza,
and Jean-Pierre Hubaux. Efficient Bootstrapping for Approximate Homo-
morphic Encryption with Non-sparse Keys. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 587–617.
Springer, 2021.

[BZP+23] Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin, and
Zhenyu Guan. HE3DB: an efficient and elastic encrypted database via
arithmetic-and-logic fully homomorphic encryption. In Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023, pages
2930–2944. ACM, 2023.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved Bootstrapping
for Approximate Homomorphic Encryption. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 34–54. Springer,
2019.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, 2020.

[CHK+18a] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. Bootstrapping for Approximate Homomorphic Encryption. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part I, volume 10820 of Lecture Notes in Computer
Science, pages 360–384. Springer, 2018.

Aikata, Mert, Kwon, Deryabin, Sinha Roy 39

[CHK+18b] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full RNS variant of approximate homomorphic encryption. In Carlos
Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography -
SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-
17, 2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer
Science, pages 347–368. Springer, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437.
Springer, 2017.

[CLSW11] Kun-Chih Chen, Shu-Yen Lin, Wen-Chung Shen, and An-Yeu Wu. A scalable
built-in self-recovery (BISR) VLSI architecture and design methodology for
2d-mesh based on-chip networks. Des. Autom. Embed. Syst., 15(2):111–132,
2011.

[CPS+23] Kwanyeob Chae, Jiyeon Park, Jaegeun Song, Billy Koo, Jihun Oh, Shinyoung
Yi, Won Lee, Dongha Kim, Taekyung Yeo, Kyeongkeun Kang, Sangsoo Park,
Eunsu Kim, Sukhyun Jung, Sanghune Park, Sungcheol Park, Mijung Noh,
Hyo-Gyuem Rhew, and Jongshin Shin. A 4nm 1.15TB/s HBM3 Interface with
Resistor-Tuned Offset-Calibration and In-Situ Margin-Detection. In IEEE
International Solid- State Circuits Conference, ISSCC 2023, San Francisco,
CA, USA, February 19-23, 2023, pages 406–407. IEEE, 2023.

[CVS+16] Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh
Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. ASAP7:
A 7-nm finFET predictive process design kit. Microelectronics Journal,
53:105–115, 2016.

[EH22] Anne C. Elster and Tor A. Haugdahl. Nvidia Hopper GPU and Grace CPU
Highlights. Computing in Science & Engineering, 24(2):95–100, 2022.

[FM22] Yinxiao Feng and Kaisheng Ma. Chiplet actuary: a quantitative cost model
and multi-chiplet architecture exploration. In Rob Oshana, editor, DAC ’22:
59th ACM/IEEE Design Automation Conference, San Francisco, California,
USA, July 10 - 14, 2022, pages 121–126. ACM, 2022.

[FSK+21] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron
Dreslinski, Karim Eldefrawy, Nicholas Genise, Christopher Peikert, and Daniel
Sanchez. F1: A fast and programmable accelerator for fully homomorphic
encryption (extended version), 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[FWX+23] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and Mingzhe
Zhang. Tensorfhe: Achieving practical computation on encrypted data using
GPGPU. In IEEE International Symposium on High-Performance Computer
Architecture, HPCA 2023, Montreal, QC, Canada, February 25 - March 1,
2023, pages 922–934. IEEE, 2023.

[Gar59] Harvey L. Garner. The Residue Number System. IRE Trans. Electron.
Comput., 8(2):140–147, 1959.

40 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

[GBP+23] Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios D. Dimou, Ingrid
Verbauwhede, Frederik Vercauteren, and David W. Archer. BASALISC:
programmable hardware accelerator for BGV fully homomorphic encryption.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):32–57, 2023.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, USA, 2009.

[Gon21] Joe L. Gonzalez. Heterogeneous Integration of Chiplets Using Socketed Plat-
forms, Off-Chip Flexible Interconnects, and Self-Alignment Technologies. PhD
thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2021.

[GPG23] Alexander Graening, Saptadeep Pal, and Puneet Gupta. Chiplets: How Small
is too Small? ACM/IEEE Design Automation Conference (DAC),, 2023.

[HHCP19] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic
regression on homomorphic encrypted data at scale. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
9466–9471. AAAI Press, 2019.

[HK19] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate
homomorphic encryption. Cryptology ePrint Archive, Report 2019/688, 2019.
https://ia.cr/2019/688.

[HKKR20] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Centaur: A
chiplet-based, hybrid sparse-dense accelerator for personalized recommenda-
tions. In 47th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2020, Virtual Event / Valencia, Spain, May 30 - June 3,
2020, pages 968–981. IEEE, 2020.

[IBM20] IBM. IBM Cost of a Data Breach 2022 – Highlights for Cloud Security
Professionals. Technical Report, 2020.

[Int23] Intel. Intel xeon cpu max 9400. Technical report, Intel, 2023.

[JED22] JEDEC. High Bandwidth Memory DRAM (HBM3). Tech. Rep. JESD238,
2022.

[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4):114–148, Aug. 2021.

[JKLS18] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. Secure
outsourced matrix computation and application to neural networks. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1209–1222. ACM, 2018.

[JLK+21] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Jongmin Kim, Namhoon Kim,
Keewoo Lee, Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. Accelerat-
ing fully homomorphic encryption through architecture-centric analysis and
optimization. IEEE Access, 9:98772–98789, 2021.

https://ia.cr/2019/688

Aikata, Mert, Kwon, Deryabin, Sinha Roy 41

[KKC+23] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan Kim,
and Jung Ho Ahn. SHARP: A short-word hierarchical accelerator for robust
and practical fully homomorphic encryption. In Yan Solihin and Mark A.
Heinrich, editors, Proceedings of the 50th Annual International Symposium
on Computer Architecture, ISCA 2023, Orlando, FL, USA, June 17-21, 2023,
pages 18:1–18:15. ACM, 2023.

[KKCA24] Sangpyo Kim, Jongmin Kim, Jaeyoung Choi, and Jung Ho Ahn. Cifher: A
chiplet-based FHE accelerator with a resizable structure. In International
Symposium on Secure and Private Execution Environment Design, SEED
2024, Orlando, FL, USA, May 16-17, 2024, pages 119–130. IEEE, 2024.

[KKK+22] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John
Kim, Minsoo Rhu, and Jung Ho Ahn. BTS: An Accelerator for Bootstrap-
pable Fully Homomorphic Encryption. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA ’22, page 711–725,
New York, NY, USA, 2022. Association for Computing Machinery.

[KKL+23a] Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo
Song. Asymptotically faster multi-key homomorphic encryption from ho-
momorphic gadget decomposition. In Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2023,
Copenhagen, Denmark, November 26-30, 2023, pages 726–740. ACM, 2023.

[KKL+23b] Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo
Song. Asymptotically faster multi-key homomorphic encryption from ho-
momorphic gadget decomposition. In Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2023,
Copenhagen, Denmark, November 26-30, 2023, pages 726–740. ACM, 2023.

[KLK+22] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, John Kim, Minsoo
Rhu, and Jung Ho Ahn. ARK: Fully Homomorphic Encryption Accelerator
with Runtime Data Generation and Inter-Operation Key Reuse, 2022.

[KMP+21] Gokul Krishnan, Sumit K. Mandal, Manvitha Pannala, Chaitali Chakrabarti,
Jae-Sun Seo, Ümit Y. Ogras, and Yu Cao. SIAM: chiplet-based scalable
in-memory acceleration with mesh for deep neural networks. ACM Trans.
Embed. Comput. Syst., 20(5s):68:1–68:24, 2021.

[KPP22] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate
homomorphic encryption with reduced approximation error. In Steven D.
Galbraith, editor, Topics in Cryptology - CT-RSA 2022 - Cryptographers’
Track at the RSA Conference 2022, Virtual Event, March 1-2, 2022, Proceed-
ings, volume 13161 of Lecture Notes in Computer Science, pages 120–144.
Springer, 2022.

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Cheon.
Logistic regression model training based on the approximate homomorphic
encryption. BMC Medical Genomics, 11, 10 2018.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: an integrated power, area, and tim-
ing modeling framework for multicore and manycore architectures. In David H.

42 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Albonesi, Margaret Martonosi, David I. August, and José F. Martínez, edi-
tors, 42st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-42 2009), December 12-16, 2009, New York, New York, USA, pages
469–480. ACM, 2009.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[LLL+15] Dong-Uk Lee, Kang Seol Lee, Yongwoo Lee, Kyung Whan Kim, Jong-Ho
Kang, Jaejin Lee, and Jun Hyun Chun. Design considerations of HBM
stacked DRAM and the memory architecture extension. In 2015 IEEE
Custom Integrated Circuits Conference, CICC 2015, San Jose, CA, USA,
September 28-30, 2015, pages 1–8. IEEE, 2015.

[LSL20] James Andrew Lewis, Zhanna L. Malekos Smith, and Eugenia Lostri. The
Hidden Costs of Cybercrime. Technical Report, 2020.

[LWY+23] Tao Lu, Chengkun Wei, Ruijing Yu, Chaochao Chen, Wenjing Fang, Lei
Wang, Zeke Wang, and Wenzhi Chen. cuzk: Accelerating zero-knowledge
proof with A faster parallel multi-scalar multiplication algorithm on gpus.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):194–220, 2023.

[MAK+23] Ahmet Can Mert, Aikata, Sunmin Kwon, Youngsam Shin, Donghoon Yoo,
Yongwoo Lee, and Sujoy Sinha Roy. Medha: Microcoded Hardware Accelera-
tor for computing on Encrypted data. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(1):463–500, 2023.

[Man22] Tobias Mann. Amd was right about chiplets, intel’s gelsinger all but says.
Technical report, AMD, 2022.

[MNLK23] Rasoul Akhavan Mahdavi, Haoyan Ni, Dimitry Linkov, and Florian Ker-
schbaum. Level up: Private non-interactive decision tree evaluation using
levelled homomorphic encryption. In Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2023,
Copenhagen, Denmark, November 26-30, 2023, pages 2945–2958. ACM, 2023.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[Mor20] Steve Morgan. McAfee Vastly Underestimates The Cost Of Cybercrime.
Cybersecurity Report, 2020.

[MÖS19] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. Design and implementa-
tion of a fast and scalable ntt-based polynomial multiplier architecture. In
2019 22nd Euromicro Conference on Digital System Design (DSD), pages
253–260. IEEE, 2019.

[Mur23] Brett Murdock. What Designers Need to Know About HBM3. Synopsys,
Accessed on July 11, 2023.

[MUS] MUSE Semiconductor. TSMC UNIVERSITY FINFET PROGRAM. https:
//www.musesemi.com/university-finfet-program. Accessed July 27th
2023.

[MWW+22] Xiaohan Ma, Ying Wang, Yujie Wang, Xuyi Cai, and Yinhe Han. Survey on
chiplets: interface, interconnect and integration methodology. CCF Trans.
High Perform. Comput., 4(1):43–52, 2022.

https://www.musesemi.com/university-finfet-program
https://www.musesemi.com/university-finfet-program

Aikata, Mert, Kwon, Deryabin, Sinha Roy 43

[NJO+17] S. Narasimha, B. Jagannathan, A. Ogino, D. Jaeger, B. Greene, C. Sheraw,
K. Zhao, B. Haran, U. Kwon, A. K. M. Mahalingam, B. Kannan, B. Morgan-
feld, J. Dechene, C. Radens, A. Tessier, A. Hassan, H. Narisetty, I. Ahsan,
M. Aminpur, C. An, M. Aquilino, A. Arya, R. Augur, N. Baliga, R. Bhelkar,
G. Biery, A. Blauberg, N. Borjemscaia, A. Bryant, L. Cao, V. Chauhan,
M. Chen, L. Cheng, J. Choo, C. Christiansen, T. Chu, B. Cohen, R. Coleman,
D. Conklin, S. Crown, A. da Silva, D. Dechene, G. Derderian, S. Desh-
pande, G. Dilliway, K. Donegan, M. Eller, Y. Fan, Q. Fang, A. Gassaria,
R. Gauthier, S. Ghosh, G. Gifford, T. Gordon, M. Gribelyuk, G. Han, J.H.
Han, K. Han, M. Hasan, J. Higman, J. Holt, L. Hu, L. Huang, C. Huang,
T. Hung, Y. Jin, J. Johnson, S. Johnson, V. Joshi, M. Joshi, P. Justison,
S. Kalaga, T. Kim, W. Kim, R. Krishnan, B. Krishnan, K. Anil, M. Kumar,
J. Lee, R. Lee, J. Lemon, S.L. Liew, P. Lindo, M. Lingalugari, M. Lipinski,
P. Liu, J. Liu, S. Lucarini, W. Ma, E. Maciejewski, S. Madisetti, A. Mali-
nowski, J. Mehta, C. Meng, S. Mitra, C. Montgomery, H. Nayfeh, T. Nigam,
G. Northrop, K. Onishi, C. Ordonio, M. Ozbek, R. Pal, S. Parihar, O. Patter-
son, E. Ramanathan, I. Ramirez, R. Ranjan, J. Sarad, V. Sardesai, S. Saudari,
C. Schiller, B. Senapati, C. Serrau, N. Shah, T. Shen, H. Sheng, J. Shepard,
Y. Shi, M.C. Silvestre, D. Singh, Z. Song, J. Sporre, P. Srinivasan, Z. Sun,
A. Sutton, R. Sweeney, K. Tabakman, M. Tan, X. Wang, E. Woodard, G. Xu,
D. Xu, T. Xuan, Y. Yan, J. Yang, K.B. Yeap, M. Yu, A. Zainuddin, J. Zeng,
K. Zhang, M. Zhao, Y. Zhong, R. Carter, C.-H. Lin, S. Grunow, C. Child,
M. Lagus, R. Fox, E. Kaste, G. Gomba, S. Samavedam, P. Agnello, and D. K.
Sohn. A 7nm cmos technology platform for mobile and high performance
compute application. In 2017 IEEE International Electron Devices Meeting
(IEDM), pages 29.5.1–29.5.4, 2017.

[NSA+22] Mohammed Nabeel, Deepraj Soni, Mohammed Ashraf, Mizan Abraha Ge-
bremichael, Homer Gamil, Eduardo Chielle, Ramesh Karri, Mihai Sanduleanu,
and Michail Maniatakos. CoFHEE: A Co-processor for Fully Homomorphic
Encryption Execution, 2022.

[PLC+23] Myeong-Jae Park, Jinhyung Lee, Kyungjun Cho, Ji Hwan Park, Junil Moon,
Sung-Hak Lee, Tae-Kyun Kim, Sanghoon Oh, Seokwoo Choi, Yongsuk Choi,
Ho Sung Cho, Tae-Sik Yun, Young Jun Koo, Jae-Seung Lee, Byung Kuk
Yoon, Young Jun Park, Sangmuk Oh, Chang Kwon Lee, Seong-Hee Lee,
Hyun-Woo Kim, Yucheon Ju, Seung-Kyun Lim, Kyo Yun Lee, Sang-Hoon
Lee, Woo Sung We, Seungchan Kim, Seung Min Yang, Keonho Lee, In-Keun
Kim, Younghyun Jeon, Jae-Hyung Park, Jong Chan Yun, Seonyeol Kim,
Dong-Yeol Lee, Su-Hyun Oh, Junghyun Shin, Yeonho Lee, Jieun Jang, and
Joohwan Cho. A 192-Gb 12-High 896-GB/s HBM3 DRAM With a TSV
Auto-Calibration Scheme and Machine-Learning-Based Layout Optimization.
IEEE J. Solid State Circuits, 58(1):256–269, 2023.

[PMSW18] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P.
Wellman. Sok: Security and privacy in machine learning. In 2018 IEEE
European Symposium on Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018, pages 399–414. IEEE, 2018.

[PZM+23] Gianna Paulin, Florian Zaruba, Stefan Mach, Manuel Eggimann, Matheus
Cavalcante, Paula Scheffler, Yichao Zhang, Tim Fischer, Nils Wistoff, Luca
Bertaccini, Thomas Benz, Luca Colagrande, Alfio Di Mauro, Andreas Kurth,
Samuel Riedel, Noah Huetter, Gianmarco Ottavi, Zerun Jiang, Beat Muheim,

44 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

Frank K. Gurkaynak, Davide Rossi, and Luca Benini. Occamy: A 432-
core, Multi-TFLOPs RISC-V-Based 2.5D Chiplet System for Ultra-Efficient
(Mini-)Floating-Point Computation . PULP Platform, ETH Zurich, 2023.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press, pages
169–179, 1978.

[Ram] Rambus. HBM3 Memory: Break Through to Greater Bandwidth.

[RCK+20] Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu-Yeon Wei,
Hsien-Hsin S. Lee, and David Brooks. Cheetah: Optimizing and Accelerating
Homomorphic Encryption for Private Inference, 2020.

[RD24] United Kingdom Robert Dimond, System Architect ARM. Keynote: Chiplet
standards: A new route to arm-based custom silicon. Technical report, ARM,
2024.

[RJV+15] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede.
Modular hardware architecture for somewhat homomorphic function evalua-
tion. In Cryptographic Hardware and Embedded Systems - CHES, 2015.

[RJV+18] S. Sinha Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede.
HEPCloud: An FPGA-based multicore processor for FV somewhat homo-
morphic function evaluation. IEEE Transactions on Computers, 2018.

[RKRB] Midia Reshadi, Ahmad Khademzadeh, Akram Reza, and Maryam Bahmani.
A novel mesh architecture for on-chip networks.

[RLPD20] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. HEAX: an architec-
ture for computing on encrypted data. In James R. Larus, Luis Ceze, and
Karin Strauss, editors, ASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020,
pages 1295–1309. ACM, 2020.

[Sco17a] Michael Scott. A note on the implementation of the number theoretic
transform. In Cryptography and Coding - 16th IMA International Conference,
IMACC 2017, Oxford, UK, December 12-14, 2017, Proceedings, pages 247–258.
Springer, 2017.

[Sco17b] Michael Scott. A note on the implementation of the number theoretic
transform. In Cryptography and Coding - 16th IMA International Conference,
IMACC 2017, Oxford, UK, December 12-14, 2017, Proceedings, pages 247–258.
Springer, 2017.

[Sco20] Michael Scott. Linear regression - insurance dataset, 2020.

[SCV+21] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Ross
Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally,
Joel S. Emer, C. Thomas Gray, Brucek Khailany, and Stephen W. Keck-
ler. Simba: scaling deep-learning inference with chiplet-based architecture.
Commun. ACM, 64(6):107–116, 2021.

[SFK+22] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and
Daniel Sanchez. CraterLake: A hardware accelerator for efficient unbounded

Aikata, Mert, Kwon, Deryabin, Sinha Roy 45

computation on encrypted data. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’22, page 173–187, New
York, NY, USA, 2022. Association for Computing Machinery.

[Sie14] Mark Siegesmund. Chip memory. Technical report, ScienceDirect, 2014.

[SRTJ+19] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. Fpga-based high-performance parallel architecture for
homomorphic computing on encrypted data. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
387–398, 2019.

[Syn23] Synopsys. How universal chiplet interconnect express changes soc design,
2023.

[SYY+23] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang, and
Nam Sung Kim. Demystifying CXL memory with genuine cxl-ready systems
and devices. CoRR, abs/2303.15375, 2023.

[TCDM21] Zhanhong Tan, Hongyu Cai, Runpei Dong, and Kaisheng Ma. Nn-baton:
DNN workload orchestration and chiplet granularity exploration for multi-
chip accelerators. In 48th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2021, Virtual Event / Valencia, Spain, June
14-18, 2021, pages 1013–1026. IEEE, 2021.

[TGF09] Thorlindur Thorolfsson, Kiran Gonsalves, and Paul D. Franzon. Design
automation for a 3DIC FFT processor for synthetic aperture radar: a case
study. In Proceedings of the 46th Design Automation Conference, DAC 2009,
San Francisco, CA, USA, July 26-31, 2009, pages 51–56. ACM, 2009.

[TRG+20] Jonathan Takeshita, Dayane Reis, Ting Gong, Michael Niemier, X. Sharon Hu,
and Taeho Jung. Algorithmic acceleration of b/fv-like somewhat homomorphic
encryption for compute-enabled ram. Cryptology ePrint Archive, Report
2020/1223, 2020. https://ia.cr/2020/1223.

[UCI23] UCIe. For the first time, ucie shares bandwidth speeds between chiplets,
2023.

[VGT+20] Pascal Vivet, Eric Guthmuller, Yvain Thonnart, Gaël Pillonnet, Guillaume
Moritz, Ivan Miro-Panades, César Fuguet Tortolero, Jean Durupt, Christian
Bernard, Didier Varreau, Julian J. H. Pontes, Sébastien Thuries, David
Coriat, Michel Harrand, Denis Dutoit, Didier Lattard, Lucile Arnaud, Jean
Charbonnier, Perceval Coudrain, Arnaud Garnier, Frédéric Berger, Alain
Gueugnot, Alain Greiner, Quentin L. Meunier, Alexis Farcy, Alexandre
Arriordaz, Séverine Cheramy, and Fabien Clermidy. 2.3 A 220gops 96-core
processor with 6 chiplets 3d-stacked on an active interposer offering 0.6ns/mm
latency, 3tb/s/mm2 inter-chiplet interconnects and 156mw/mm2@ 82%-peak-
efficiency DC-DC converters. In 2020 IEEE International Solid- State Circuits
Conference, ISSCC 2020, San Francisco, CA, USA, February 16-20, 2020,
pages 46–48. IEEE, 2020.

[VJHH23] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. HECO:
fully homomorphic encryption compiler. In Joseph A. Calandrino and Carmela
Troncoso, editors, 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023, pages 4715–4732. USENIX
Association, 2023.

https://ia.cr/2020/1223

46 REED: Chiplet-based Accelerator for Fully Homomorphic Encryption

[WH13] Wei Wang and Xinming Huang. Fpga implementation of a large-number
multiplier for fully homomorphic encryption. In 2013 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 2589–2592, 2013.

[WHEW14] Wei Wang, Xinming Huang, Niall Emmart, and Charles Weems. Vlsi design
of a large-number multiplier for fully homomorphic encryption. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 22(9):1879–1887,
2014.

[XZH21] Guozhu Xin, Yifan Zhao, and Jun Han. A multi-layer parallel hardware
architecture for homomorphic computation in machine learning. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5,
2021.

[YCH22] Zewen Ye, Ray C. C. Cheung, and Kejie Huang. Pipentt: A pipelined number
theoretic transform architecture. IEEE Trans. Circuits Syst. II Express Briefs,
69(10):4068–4072, 2022.

[YLK+18] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew Poremba, Muhammad
Shoaib Bin Altaf, Natalie D. Enright Jerger, and Gabriel H. Loh. Modular
Routing Design for Chiplet-Based Systems. In Murali Annavaram, Timo-
thy Mark Pinkston, and Babak Falsafi, editors, 45th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2018, Los Angeles,
CA, USA, June 1-6, 2018, pages 726–738. IEEE Computer Society, 2018.

[ZSB21] Florian Zaruba, Fabian Schuiki, and Luca Benini. Manticore: A 4096-Core
RISC-V Chiplet Architecture for Ultraefficient Floating-Point Computing.
IEEE Micro, 41(2):36–42, 2021.

[ZWZ+21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk:
Accelerating zero-knowledge proof with a pipelined architecture. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 416–428. IEEE, 2021.

	Introduction
	Background
	FHE schemes and CKKS routines
	FHE Hardware design goals
	Monolithic vs Chiplet packaging
	NTT Design Techniques

	FHE-tailored Multi-Chiplet Design
	REED 2.5D Architecture

	Architecture Design of One Chiplet
	The Hybrid NTT (Frankenstein's Approach)
	Multiply-Add-Subtract (MAS) and Automorphism (AUT)
	PRNG-Based Partial Key-Switching Key Generation
	Programmable Instruction-Set Architecture
	REED Processing Unit (PU)
	Throughput Computation for KeySwitch
	Streamlined Prefetch for On-Chip Storage

	Techniques for exploiting Comm-Comp Parallelism
	Communication cost-analysis
	Limb-wise vs Coefficient-wise distribution
	Data Distribution across Multiple Chiplets
	Efficient Non-Blocking C2C Communication
	ModDown/Rescaling Task flow

	Implementation Results
	Power and Performance Modelling
	What to expect from higher-throughput configurations?
	Comparison with Related Works
	Higher Chiplet-Integration Study

	Application benchmarks
	Precision-loss Experimental Study

	Future Scope: Journey from 2.5D to 3D
	Conclusion
	KeySwitch Task Distribution for dnum<L+1 (k>1)
	Throughput Computation of KeySwitch for dnum<L+1

