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Abstract
On-chain mixers, such as Tornado Cash (TC), have become a popular privacy solution for many

non-privacy-preserving blockchain users. These mixers enable users to deposit a fixed amount of
coins and withdraw them to another address, while effectively reducing the linkability between these
addresses and securely obscuring their transaction history. However, the high cost of interacting
with existing on-chain mixer smart contracts prohibits standard users from using the mixer, mainly
due to the use of computationally expensive cryptographic primitives. For instance, the deposit cost
of TC on Ethereum is approximately 1.1M gas (i.e., 66 USD in June 2023), which is 53× higher than
issuing a base transfer transaction.

In this work, we introduce the Merkle Pyramid Builder approach, to incrementally build the
Merkle tree in an on-chain mixer and update the tree per batch of deposits, which can therefore
decrease the overall cost of using the mixer. Our evaluation results highlight the effectiveness of
this approach, showcasing a significant reduction of up to 7× in the amortized cost of depositing
compared to state-of-the-art on-chain mixers. Importantly, these improvements are achieved without
compromising users’ privacy. Furthermore, we propose the utilization of verifiable computations to
shift the responsibility of Merkle tree updates from on-chain smart contracts to off-chain clients,
which can further reduce deposit costs. Additionally, our analysis demonstrates that our designs
ensure fairness by distributing Merkle tree update costs among clients over time.
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1 Introduction

Permissionless blockchains, such as Bitcoin [30] and Ethereum [41], provide pseudonymity
rather than complete anonymity. Each transaction is openly recorded in plaintext on the
public ledger, revealing details such as the transaction amount, timestamp, and the addresses
of the sender and recipient. While this information alone may not directly expose the
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individuals involved, it poses a risk as malicious actors can exploit it to analyze and link
addresses, potentially compromising the anonymity of users [16, 44, 38, 39].

To enhance the privacy on non-privacy-preserving blockchains, on-chain mixers [4, 6, 1, 24]
have been proposed. On-chain mixers are Decentralized Applications running on a blockchain
with smart contracts, in which users deposit a fixed amount of coins into a pool, and
subsequently withdraw those coins to a different address. When being used properly, on-
chain mixers enable unlinkability between the deposit and the withdrawal addresses. The
most active on-chain mixer, Tornado Cash (TC), has accumulated more than 51K unique
deposit addresses for its largest pool [39]. The set of deposit addresses is similar to k-
anonymity, which allows a withdrawal to be hidden among a set of k other deposits. The
larger anonymity set size is accumulated, the harder it can link a user’s withdrawal address
to the corresponding deposit address.

However, achieving unlinkability through on-chain mixers comes at the cost of expensive
deposit operations, making it difficult for regular users to use them. In particular, on-chain
mixers use Merkle tree with Snark-friendly hash functions such as MiMC [7] and Poseidon [19]
to record deposit and withdrawal history. When a deposit happens, the new leaf is appended
sequentially to the Merkle tree. This update operation is the most expensive operation for
on-chain mixers. In particular, depositing into TC costs approximately 1.1m gas, equating
to roughly 66 USD as of June 2023. Such high costs can potentially discourage users from
utilizing the mixer, thereby impeding the growth rate of the anonymity set size. Consequently,
it becomes crucial to address these expensive deposit costs to ensure wider adoption and
encourage the continued expansion of the anonymity set size.

In this paper, we propose two approaches to reduce the overall deposit costs in on-chain
mixers. Firstly, we introduce the Merkle Pyramid Builder approach, in which we batch
the deposits together and renew the Merkle tree per batch. This approach provides a
promising solution to the scalability and efficiency challenges of on-chain mixers. Secondly,
we propose the utilization of off-chain verifiable computation to further minimize deposit costs.
This approach empowers clients to perform Merkle tree updating computations locally and
provide cryptographic proofs to validate the accuracy of these computations. By shifting the
responsibility of updating the Merkle tree from on-chain smart contracts to off-chain clients,
we can significantly reduce the associated costs, enhancing the overall system efficiency.

Our contributions can be summarized as follows.
1. Merkle Pyramid Builder. We propose the Merkle Pyramid Builder (MPB) approach,
which batches the deposits in a queue and reduces the Merkle tree update times in an on-chain
mixer. This approach decreases the average number of times to execute the expensive Merkle
tree with smart contracts per deposit. We locally implement the improved mixer with MPB
construction, and our evaluation results demonstrate its remarkable ability to reduce deposit
costs by 7× compared to the widely adopted TC mixer.
2. Off-Chain Deposit Proof Generation. We employ Verifiable Computation (VC)
techniques to further minimize the cost of updating the Merkle tree. This is accomplished by
offloading computations to the off-chain environment, effectively eliminating the computa-
tional requirements imposed on the smart contract. Our empirical evaluation results indicate
that this approach further reduces the cost of a single deposit update.
3. Formal On-Chain Mixer Analysis Framework. We provide a formal framework to
analyze the on-chain mixers by considering the properties of correctness, privacy, availability,
efficiency, and fairness. We prove that our deposit-cost-reduction approaches offer enhanced
efficiency without deteriorating other properties. Particularly, our analysis shows that the
improved mixers can also guarantee fairness, with which the clients’ costs for interacting with
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the mixer can be amortized over time. Furthermore, our analysis framework is of independent
interest and could be applied to analyze other mixer designs.

2 Preliminaries

2.1 On-chain Mixers
On non-privacy-preserving blockchains, transactions are recorded in plaintext on the public
ledger. On-chain mixers, inspired by Zerocash [33], are one of the most widely-used privacy
solutions for non-privacy-preserving blockchains. On-chain mixers are running on top of
blockchains with smart contracts, e.g., Ethereum and Binance Smart Chain (BSC). Upon
using a mixer, a user deposits a fixed denomination of coins into a pool and later withdraws
these coins to another address [4, 5, 6, 1, 24]. When used properly, mixers can break the
linkability between addresses, and thus enhance users’ privacy. The largest on-chain mixer,
TC, has accumulated over 3.54M ETH from more than 39K Ethereum addresses [39].

2.2 Cryptographic Primitives
In the following, we present the cryptographic primitives used in on-chain mixers, which are
followed from existing work [24].

Notation. We denote by 1λ the security parameter and by negl(λ) a negligible function in
λ. We express by (pk, sk) a pair of public and private keys. Moreover, we require that pk can
always be efficiently and deterministically derived from sk, and denote extractPK(sk) = pk
to be the deterministic function to derive pk from sk. We denote Z≥a as the set of integers
that are greater or equal a, {a, a + 1, . . . }. We let PPT denote probabilistic polynomial time.
We denote st[a, b, c . . . ] as an instance of the statement st where a, b, c . . . have fixed and
public values. We use a shaded area i, j, k to denote the private inputs in the statement
st : {(a, b, c; i, j, k) : f(a, b, c, x, y, z) = true}.

Collision Resistant Hash Functions. A family H of hash functions is collision-resistant,
iff for all PPT A, given h

$←− H, the probability that A finds x, x′, such that h(x) = h(x′) is
negligible. We refer to the cryptographic hash function h as a fixed function, h : {0, 1}∗ →
{0, 1}λ. For the formal definitions of the hash function family, we refer readers to [32].

zk-SNARK. A zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-
SNARK) is a “succinct” non-interactive zero-knowledge proof (NIZK) for arithmetic circuit
satisfiability. The construction of zk-SNARK is based on a field F and an arithmetic
circuit C. An arithmetic circuit satisfiability problem of a circuit C : Fn × Fh → Fl is
captured by the statement stC : {(x, wit) ∈ Fn × Fh : C(x, wit) = 0l}, with the language
LC = {x ∈ Fn | ∃ wit ∈ Fh s.t. C(x, wit) = 0l}.

▶ Definition 1 (zk-SNARK). zk-SNARK for arithmetic circuit satisfiability is a triple of
efficient algorithms (Setup, Prove, Verify):

(ek, vk)← Setup(1λ, C) takes as input the security parameter and the arithmetic circuit
C, outputs an evaluation key ek, and a verification key vk.
π ← Prove(ek, x, wit) takes as input the evaluation key ek and (x, wit) ∈ stC , outputs a
proof π for the statement x ∈ LC .
0/1← Verify(vk, π, x) takes as input the verification key vk, the proof π, the statement
x, outputs 1 if π is valid proof for the statement x ∈ LC .
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Commitment Scheme. A commitment scheme allows an entity to commit to a value
while keeping it hidden, with the option of later revealing the value. A commitment scheme
contains two rounds: committing and revealing. During the committing round, a client
commits to selected values while concealing them from others. The client can choose to
reveal the committed value during the revealing round, and another entity can verify its
consistency.

▶ Definition 2 (Commitment Scheme). A commitment scheme includes two algorithms:

cm ← Commit(m, r) accepts a message m and a secret randomness r as inputs and
returns the commitment string cm.
0/1← Verify(m, r, cm) accepts a message m, a commitment cm and a decommitment
value r as inputs, and returns 1 if the commitment is opened correctly and 0 otherwise.

A secure commitment scheme satisfies two requirements: (i) Binding: Except for a negli-
gible probability, no adversary can efficiently create cm, (m1, r1), and (m2, r2) such that
Verify(m1, r1, cm) = Verify(m2, r2, cm) = 1 and m1 ̸= m2. (ii) Hiding: Except for a
negligible probability, cm does not reveal any information about the committed data.
Authenticated Data Structure. An Authenticated Data Structure (ADS) is a data
structure that not only stores information but also provides a cryptographic proof of the
integrity and authenticity of its contents. It allows for efficient verification of data integrity
without requiring the entire data structure to be transmitted or stored alongside the proof.
In this work, we adopt the Merkle tree as an ADS for set membership proof.

▶ Definition 3 (Merkle Tree). A Merkle tree leverages a collision-resistant hash function h

to construct the data structure. The four algorithms work as follows:

root ← Init(1λ, X) takes the security parameter and a list X = (x1, . . . , xn) as inputs,
constructs a tree that stores x1, . . . , xn in the leaves, and finally outputs a root, root.
pathi ← Prove(i, x, X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and a list X = (x1, . . . , xn)
as inputs, and outputs the proof pathi, which can prove that x is in X. The proof generation
time is proportional to n, while the proof size grows logarithmically with n.
0/1 ← Verify(i, xi, root, pathi) takes an element, xi ∈ {0, 1}∗, an index 1 ≤ i ≤ n, y ∈
{0, 1}λ and a proof π as inputs, and outputs 1 if π is correctly verified and 0 otherwise.
y′ ← Update(i, x, X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and X as inputs, and
outputs y′ = Init(1λ, X ′) where X ′ is X but xi ∈ X is replaced by x.

A Merkle tree should satisfy correctness and security [13].
Cost for Appending to Merkle tree. Let T be a Merkle hash tree of size n and assume
that all internal nodes are stored. If a single element is appended, the computational cost of
updating a Merkle hash tree is O(log n) if the internal tree nodes are stored. This can be
done by traversing the right-most path of the tree and modifying at most O(log n) internal
nodes of the tree.
Inefficiency of Multiple Appending Operations in Existing On-Chain Mixers.
We observe that despite the theoretically efficient append operation, the utilization of a
SNARK-friendly hash function still leads to a log n cost of appending that amounts to around
1M gas. For k deposits, this operation is repeated k times, raising the cost to O(k · log n).

However, in a conventional mixer, to assimilate within a sufficiently large anonymity
set, users often wait several days before withdrawing funds [39, 24]. Consequently, this
suggests that the Merkle tree update operation could be processed in a batch rather than
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individually each time. This adjustment could potentially decrease the cost from O(k log(n))
to O(k + log(n)). Further details on this improvement will be provided in Section 5.
Efficient Replace. The update algorithm described previously needs the entire set X to be
able to recalculate the root. Nevertheless, it is feasible to update the root without knowing
the entire set. Specifically, we can update the root in O(log(|X|)) operations using only the
information about the node membership that one wants to replace and the current root.
This update will allow an efficient on-chain update of the Merkle tree.

root′
dep/⊥ ← Replace(i, x, rootdep, pathi, x′): takes as input the index i, the old element

x and its membership proof pathi, and the new element, x′ that we want to put in the
i-th position. The algorithm verifies the membership of both x in the old rootdep using
pathi, abort otherwise. Once the verification returns 1, it recomputes the root root′

dep

using x′ and pathi.

This efficient update is needed for the construction using verifiable computation.

3 On-chain Mixer System

This section presents the on-chain mixer system’s components and the algorithms for the
setup phase, the client, and the smart contract.

3.1 System Components
The system consists of two components: the client and the smart contract. A client controls
blockchain addresses to interact with the smart contract, which governs a pool of assets. A
client can either deposit/withdraw coins into/from the pool. The smart contract manages
both deposit and withdrawal actions. The contract keeps track of various data structures
and parameters to verify the validity of transactions that are sent to the contract.

3.2 Contract Setup
In the setup phase, all public parameters and the mixer smart contract are generated. The
contract will be initialized with different data structures to avoid double withdrawal.

Furthermore, the deposit amount is specified as a fixed deposit amount of coins, amt. The
smart contract is set up with two empty lists: (i) DepositList, which includes all commitments
cm contained in depositing transactions; (ii) NullifierList, which contains all unique identifiers
(i.e., sn) appeared in withdrawal transactions. We refer to pph as the state of the contract at
block height h. The state includes all data structures of the contract, which were initialized
in the setup phase. This state is implicitly provided to all client and contract algorithms.
Finally, the smart contract is deployed on-chain in this phase.

3.3 Client Algorithm
A client can interact with the smart contract using the following algorithms. Note that
each transaction is signed by the client using the private key associated with the blockchain
address which issues the transaction.

(wit, txdep) ← CreateDepositTx(sk, amt) takes a private key sk and an amount amt as
inputs, and outputs a witness wit and a deposit transaction txdep.
txwdr ← CreateWithdrawTx(sk′, wit) takes as input a private key sk′ (which can be
different from sk) and a witness wit, and outputs a withdrawal transaction txwdr.
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3.4 Smart Contract Algorithm
The smart contract handles mixer deposits and withdrawals, with the following algorithms:

0/1 ← AcceptDeposit(txdep) takes as an input the deposit transaction txdep, and
outputs 1 if the transaction was successful and 0 otherwise.
0/1 ← IssueWithdraw(txwdr) takes the withdrawal transaction txwdr as the input,
and outputs 1 and transfers amt coins to the sender txwdr.sender if the transaction was
successful. Otherwise, the algorithm outputs 0.

3.5 System Goals
A secure on-chain mixer aims to satisfy the following properties.
Privacy. An on-chain mixer can break the linkability between user addresses. Consider an
adversary with access to the entire history of all deposit and withdrawal transactions made
to the mixer contract. Given a client who deposits into and withdraws from the mixer, the
system ensures that the adversary cannot (i) link the deposit and withdrawal transactions
issued by the client, and (ii) link the deposit and withdrawal addresses used by the client.
Correctness. A client cannot withdraw more coins from the contract than the client
deposits. Moreover, a client cannot withdraw coins from the mixer prior to the deposit. The
property prevents a client from stealing coins from the contract or other clients.
Availability. Clients should always be able to use the mixer. No entity can prevent clients
from depositing or withdrawing coins.
Efficiency. The system should efficiently update clients’ deposits and withdrawals, without
causing expensive costs.
Fairness. Given a time interval, the costs of clients who deposit into (resp. withdraw from)
the mixer during the interval remain approximately equal. This property allows for the
amortization of costs over time, contributing to a balanced and equitable user experience.

4 Basic On-chain Mixer

4.1 Cryptographic Building Blocks
In the following, we present the cryptographic building blocks to construct on-chain mixers.

Deposit Commitments. Let (Com, Verify) be a commitment scheme that satisfies
the hiding and binding properties. To deposit into the contract, a client samples two
randomnesses kdep, r, and computes the commitment cm = Com(m, r) as a part of a deposit
transaction. In practice, the commitment scheme can be realized using a secure hash function
Hp : {0, 1}λ × {0, 1}λ → F.

Merkle Tree for Deposits. In an on-chain mixer, the leaves of the Merkle tree are
initialized with zero values. The mixer smart contract preserves the Merkle tree Tdep of all
deposit commitments. When deposit transactions occur, the smart contract keeps track of
the total number of deposit transactions and updates the tree using the AcceptDeposit
algorithm. We define the Merkle proof for commitment cmi as pathi. In addition, we define
the root of the Merkle tree at block h as rootcurr

wdr. We also denote rootdep.blockheight as the
height of the blockchain block at the moment when rootdep is updated. Figure 14 presents
a visual illustration, and Definition 4 formally defines a deposit Merkle tree. Note that
H2p : F× F→ F is a collision-resistant hash function.
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Mixer Smart Contract

... 0 0 0

Merkle Tree

(a) Basic on-chain mixer. The Merkle tree
is updated for every successful deposit.

Mixer Smart Contract

Merkle Treequeue

(b) Improved on-chain mixer with MPB. The Merkle tree is
updated once the leaves in the subtree corresponding to the
deposit queue are full.

Figure 1 Overview of basic and improved on-chain mixer systems.

▶ Definition 4 (Deposit Merkle Tree). A deposit Merkle tree encompasses three essential
algorithms, namely T.Init(), T.Prove(), and T.Verify(), as defined in Definition 3. Addi-
tionally, the tree can be efficiently updated in a batch using the following algorithm:

rootnew ← T.Update(Q) takes a list Q containing new hashes as input. The algorithm
inserts the elements in Q into the existing Merkle tree, and thus the new root will be
updated. The output is the new root, rootnew.

Withdrawal Proof. To withdraw coins from the smart contract, a client needs to satisfy:

1. The client has committed values for certain existing deposit commitments utilized to
construct the tree root using zk-SNARK.

2. The nullifier in the withdrawal transaction has not been used to withdraw previously.
3. The private key used to issue the withdrawal transaction is known by the client.

In short, a client needs to provide a proof showing the following statement for a Merkle tree
Tdep with the root rootdep:

stwdr : {(pk, sn, rootdep;sk, kdep, r, pathi) : pk = extractPK(sk) ∧ sn = Hp(kdep, 0λ)∧
cm = Com(kdep, r) ∧ T.Verify(i, cm, rootdep, pathi))} (1)

where pk, sn, rootdep are public values and sk, kdep, r, pathi are private values2.

4.2 Workflow of Basic On-chain Mixer
Fig. 1a shows a basic solution for an on-chain mixer system, which is adopted by existing
on-chain mixers, e.g., TC [4], Typhoon Network (TN) [6], and Cyclone [1]. In a nutshell, the
high-level workflow of a basic on-chain mixer is as follows:

1. For each deposit transaction, a client adopts an address to issue a transaction, which
transfers a fixed amount of coins into the mixer smart contract and generates a deposit
commitment. The contract uses the Merkle trees of one pool to record the deposit
commitments. Whenever a new deposit is made, the corresponding tree is updated,
generating a new root. The recently updated roots are stored in a root list.

2. To withdraw, the client provides a withdrawal proof. The proof essentially shows that the
client knows the secret to open a commitment in a deposit transaction and a membership
proof by providing a path from the commitment to one root stored in the roots list
(cf. Equation 1). The client will receive coins after the contract verifies the proof. The
contract also records all withdrawal transactions’ unique nullifiers.

2 sk is not needed in the private values if the zk-SNARK has simulation extractability property [8].
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4.3 System Goals of Basic On-chain Mixer
The basic mixers satisfy correctness, privacy, availability, and fairness when used properly:
Correctness: To issue a withdrawal, a client is required to present a proof associated with a
unique nullifier. The mixer smart contract maintains a record of all unique nullifiers associated
with withdrawals. Consequently, a client is restricted from issuing more withdrawals than
the number of deposits they have previously conducted with the mixer.
Privacy: Considering the presence of n deposits within a mixer, a client’s new deposit
transaction becomes concealed amidst the n transactions sharing the same deposit amount.
Furthermore, by employing separate deposit and withdrawal addresses, the probability of an
adversary successfully linking the accurate deposit and withdrawal transactions is 1

n .
Availability: As the mixer operates on a permissionless blockchain, which utilizes a global
peer-to-peer network, adversaries are unable to impede clients from engaging with the mixer.
Fairness: The Merkle tree is updated for each deposit, resulting in equal gas fees for clients.
When clients withdraw from the mixer, they incur costs for proof verification. These deposit
and withdrawal costs are dependent on the gas price. Therefore, assuming the gas price does
not fluctuate over a short timeframe, the mixer ensures fairness of costs.

However, we contend that the existing basic on-chain mixer design lacks efficiency since
clients are required to pay a high deposit cost for updating the entire Merkle tree. In typical
basic mixers such as TC, whenever a deposit request is made, the new coin is sequentially
inserted into the Merkle tree, necessitating an update to the entire tree. This update
operation becomes even more costly due to the utilization of Snark-friendly hash functions.
For instance, by analyzing the 156,466 deposit transactions in the TC 0.1, 1, 10, and 100
ETH pools from block 9,117,019 (December 16th, 2019) to 16,329,600 (January 3rd, 2023),
we discovered that the average deposit cost for a TC ETH pool is approximately 1,111,030
gas, which is roughly 53 times higher than the Ethereum base fee of 21,000 gas.

5 Improving On-chain Mixers via Merkle Pyramid Builder

Existing on-chain mixers suffer from expensive deposit costs due to the frequent update of
the Merkle tree for each deposit transaction. However, the one-deposit-one-update approach
appears redundant since it is advisable to wait for other clients to deposit before initiating a
withdrawal [39, 24]. To reduce the update time of the Merkle tree, we draw inspiration from
the concept of Merkle tree mountain range [31, 34] (refer to Definition 15). Accordingly, we
propose a novel method called MPB.
Deposit-Queuing. To optimize the cost of deposits, we introduce a deposit-queuing
method that batches transactions, resulting in less frequent updates of the Merkle tree.

▶ Definition 5 (Deposit-Queuing). A deposit-queuing method consists of three algorithms:

qempty ← CreateQueue(l) takes as input an integer l, which specifies the number of
deposit transactions to be batched. It returns an empty queue qempty with a size of
l, designed to store the nodes in a subtree with a height of log2 l. A deposit queue is
considered full when all the leaves in the corresponding subtree are occupied.
q′ ← Enqueue(q, cm) takes as input a queue q containing internal nodes of the subtree
that can be used as helpers for an efficient update and a new commitment cm. As shown
in Fig. 2, this procedure resembles the storage of internal nodes in the Merkle Mountain
Range [34] and accumulator construction outlined in [31]. The function produces a new
output queue q′ containing internal nodes that enable the subtree to perform efficient
updates during subsequent deposits.
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Rootdeposit-queue
1. iteration

2. iteration

3. iteration

4. iteration

Figure 2 Graphical illustration of the Merkle Pyramid Builder approach with a deposit queue
size of four. cmi represents the deposit commitment. In the first iteration, a deposit is made and
included in the deposit queue. For subsequent deposits, the client combines the new deposit with
the previously stored deposit, generating a new value that replaces the previous deposit in the queue.
The second and third deposits are appended to the queue. Upon the fourth deposit, all hashes,
including the root, are computed using all the values in the deposit queue. Finally, the deposit
queue is cleared, and the process restarts from the beginning for the next deposit.

qempty ← ClearQueue(q) takes as input a queue q. The algorithm returns an empty
queue corresponding to a new subtree.

Merkle Pyramid Builder Approach. As shown in Fig. 1b, the key concept is to avoid
frequent updates of the Merkle tree by aggregating deposit transactions and performing
collective updates. In this approach, a deposit queue of size l corresponds to a subtree with
a height of log2 l, as illustrated in Fig. 2. Notably, every even deposit in the sequence incurs
no additional computational cost. However, each odd deposit requires hashing all the hashes
up to the tree until no values remain on the left side within the same subtree. Finally, every
l-th deposit necessitates computing all the hashes up to the root.

5.1 Contract Setup
The contract setup phase is to generate all the cryptographic parameters used in the protocol.
In the setup phase (cf. Fig. 3), the algorithm ContractSetUp samples two secure hash
functions Hp and H2p from the collision-resistant hash families. The procedure further
initializes amt as the fixed amount of coins that can be deposited into the mixer contract.
Setup Merkle Tree. We denote T as the deposit commitment Merkle tree with depth d.
The algorithm T.Init initializes T as described in Section 4.1. The algorithm also initiates
RootListwdr,k to be the list of k most recent roots of T , which helps address the concurrency
issue for withdrawal transactions.
Setup zk-SNARK Parameters. We initialize a zk-SNARK instance Π with the algorithm
Π.Setup with Cwdr as input, which can output two keys (ekdep, vkdep).
Setup Commitments and Nullifier Lists. The contract initializes two empty lists: (i)
DepositList, which contains all cm included in deposit transactions; (ii) NullifierList, which
contains all unique nullifiers sn committed in withdrawal transactions.
Setup Deposit Queue. The DepositQueue is initialized to track the number of deposit
transactions in the queue and the number of transactions that have been hashed. This
information determines whether the subsequent client needs to bear the cost of updating the
Merkle tree. Note that the queue size log2 l is the height of the subtree.
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ContractSetUp(1λ)

1 : Sample Hp : {0, 1}λ × {0, 1}λ → F and H2p : F× F→ F
2 : Choose amt ∈ Z>0 to be a fixed deposit amount
3 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d} where xi = 0 for all xi ∈ X

4 : Initialize an empty tree rootdep = T.Init(1λ, X),
5 : Choose k ∈ Z>0, set RootListwdr,k[i] = rootdep, for 1 ≤ i ≤ k

6 : Construct Cwdr for statement described in Equation 1

7 : Let Π be the zk-SNARK instance. Run (ekdep, vkdep)← Π.Setup(1λ, Cwdr)
8 : Initialize: DepositList = {}, NullifierList = {}, TotalFee = 0
9 : Initialize: DepositQueue← CreateQueue(l)

10 : Deploy smart contract with parameters :
pp = (F, Hp, H2p, amt, feed, T, index, RootListwdr,k, DespositQueue,

(ekdep, vkdep), DepositList, NullifierList, TotalFee)

Figure 3 Pseudocode for the smart contract setup in a mixer with MPB.

Functionality of RootListwdr,k. Similar to existing on-chain mixers [4, 24], our mixer
contract maintains a list of the k most recent roots, denoted as RootListwdr,k. This list serves
as an “AllowList” [17] to maintain a list of authorized parties (i.e., roots), which can address
the concurrency issue.

Consider a scenario where user Bob attempts to withdraw using the most recently updated
root rootk−1 from the RootListwdr,k. If an attacker, Alice, manages to make k deposits prior
to Bob’s withdrawal, these deposits would prompt k updates to the Merkle tree, effectively
removing rootk−1 from the refreshed RootListwdr,k and invalidating it for withdrawal.

However, as demonstrated in [24], this attack’s cost is at least k× (amt + fee), where amt
represents the number of coins supported by the mixer pool (e.g., 0.1, 1, 10, and 100 for the
TC ETH pools), and fee denotes the deposit fee. Moreover, the cost is higher in our improved
mixer with MPB, as it typically requires k × l deposits to trigger k Merkle tree updates.

Importantly, the RootListwdr,k presence does not introduce any vulnerability to double
withdrawals. The only downside is that users might experience a marginally smaller anonymity
set than the actual one. For instance, a user might use the root root0 (corresponding to
|CmpSeth| deposits), but due to concurrency, the latest root available may be rootk−1
(corresponding to |CmpSeth|+ k deposits). In reality, k ≪ |CmpSeth| (e.g., in TC, k is set
to 1003, while there are more than 26, 000 deposits in each ETH pool [39]), rendering the
difference in the anonymity set negligible.

5.2 Deposit Interaction
Fig. 4 shows the deposit process of a client in the mixer. This step allows the client to deposit
coins into the mixer pool and obtain the witness for future withdrawal.
Client. A client deposits coins into the contract using the algorithm CreateDepositTx.
The client first randomly selects two parameters kdep and r, which are used to construct the
commitment cm. The lengths of kdep and r are defined and fixed during the initial setup.

3 https://etherscan.io/address/0x910...dbf#code

https://etherscan.io/address/0x910cbd523d972eb0a6f4cae4618ad62622b39dbf#code
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Client(sk, amt) Smart Contract

CreateDepositTx(sk, amt) :

1 : Sample (kdep, r) $←− {0, 1}λ

2 : Compute cm = Hp(kdep, r)
3 : return txdep = (amt, cm, feed),

wit = (kdep, r)

txdep AcceptDeposit(txdep)

1 : Parse txdep = (amt′, cm, fee′
d)

2 : Require: amt=amt′, feed = fee′
d, index < 2d

3 : Append cm to DepositList
4 : Increment index = index + 1
5 : DepositQueue = Enqueue(DepositQueue, cm)
6 : TotalFee = TotalFee + feed

// The subtree is full
7 : if DepositQueue is full:
8 : Compute rootnew from DespositQueue
9 : ClearQueue(DespositQueue)

10 : Append rootnew to RootListwdr,k

// Compensate the tree updater
11 : Do txdep.sender.transfer(TotalFee)
12 : TotalFee = 0
13 : else :
14 : Enqueue(DespositQueue, cm)
15 : return 1

Figure 4 Deposit interactions between the client and the smart contract in a mixer with MPB.
The computation of rootnew (in line 8) can be done via the efficient replace function Def.2.2.

The deposit transaction txdep consists of the commitment cm and the coins amt that the
client wants to deposit. Moreover, the client needs to specify the deposit fee feed in the
transaction. To issue the transaction txdep, the client must use their private key sk to sign it.
In addition, a witness wit is issued, which will be used to withdraw the coins in the future.

Contract. Upon receiving a deposit transaction txdep, the smart contract verifies that (i)
the amount of coins and fees are as requested, and (ii) there is available space in the Merkle
tree. If both conditions are met, the commitment in txdep is added to the DepositList. If
the deposit queue is not full, the deposit fee will be added to the current total fee TotalFee.
Otherwise, the total fee will be transferred to the last client and be reset as 0. With the
algorithm Enqueue, the list DespositQueue will be updated. Moreover, if this deposit queue
is full, the Merkle tree will be updated using the algorithm T.Update, and the smart contract
will clear the deposit queue and finally add the new root to the list RootListwdr,k.

Note that the last client in a deposit queue will pay the gas cost for updating the
Merkle tree. To guarantee fairness, the previous clients in the queue need to transfer
additional deposit fees feed to the smart contract, which will be accumulated and serve as the
reimbursement for the last client. A more comprehensive analysis of the deposit fee design
will be presented in Section 6.4.

5.3 Withdrawal Interaction
Fig. 5 shows the mixer withdrawal interaction. This step allows the client to use the secret
witness to generate a proof which is used to withdraw the corresponding deposited coins.

Client. A client needs to create a withdrawal proof πwdr with the secret witness wit, and
the private key sk′, to withdraw amt to the public key pk′. The proof πwdr should be able to
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Client(sk) Smart Contract

CreateWithdrawTx(sk, wit) :

1 : Parse wit = (kdep, r)

2 : Obtain pph from the contract

3 : Compute snwdr = Hp(kdep, 0λ)
4 : Compute cm = Hp(kdep, r)

5 : Get index i of cm from DepositListh

6 : Choose rootdep ∈ RootListwdr,k

7 : Compute pathh
dep,i s.t.:

T.Verify(i, cm, rootdep, pathh
dep,i) = 1

8 : Form witdep = (sk, kdep, r, pathh
dep,i)

9 : πwdr ← Π.Prove(ekdep, witdep,

st[pk, snwdr, rootdep])
10 : return txwdr = (snwdr, rootdep, πwdr)

txwdr IssueWithdraw(txwdr) :

1 : Parse: txwdr = (snwdr, rootdep, πwdr)
2 : Require:
3 : rootdep ∈ RootListwdr,k

4 : snwdr /∈ NullifierList
5 : Π.Verify(vkdep, πwdr, st[txwdr.sender,

snwdr, snwdr, rootdep]) = 1
6 : Append snwdr to NullifierList

// Send the original deposit back
7 : Do txwdr.sender.transfer(amt)
8 : return 1

Figure 5 Withdrawal interactions between the client and the smart contract in a mixer with
MPB. The state of the contract at block height h is denoted by pph. The withdrawal transaction
txwdr contains the proof πwdr that proves the client’s knowledge of cm = Hp(kdep, r) which is a valid
member of the Merkle tree with the root rootwdr.

prove the three conditions mentioned in Section 4.1. The client then issues the withdrawal
transaction txwdr, which consists of the nullifier snwdr, the root rootdep, and the proof πwdr.

Contract. When receiving a withdrawal transaction txwdr = (snwdr, rootdep, πwdr), the
contract checks the proof, πwdr, and confirms that the nullifier snwdr is not in the NullifierList.
The contract then appends snwdr to NullifierList to avoid future double withdrawals. Finally,
the smart contract transfers amt coins to the withdrawal address specified by the client.

5.4 Further Improvement with Verifiable Computation Techniques
In this section, we employ verifiable computation techniques [18, 23] to enhance the efficiency
of deposit costs. In an on-chain mixer utilizing VC, the key idea is to conduct the computation
off-chain. In this approach, the client evaluates the Merkle tree root and transmits both the
result and a proof of correct computation to the smart contract. The contract subsequently
verifies the validity of the proof to ensure the accuracy of the computation.

5.4.1 Building Blocks for On-Chain Mixer with VC

Verifiable Computation Scheme. In a VC scheme (cf. Definition 6), the verifier selects
a function and an input to send to the prover. The prover evaluates the function on the
input and returns the result, along with proof attesting to the result’s validity. The verifier
then verifies that the output provided by the prover indeed corresponds to the result of
the function evaluated on the given input. The objective is to achieve efficient verification,
significantly faster than the actual computation of the function itself.

▶ Definition 6 (Verifiable Computation Scheme). Let f be a function, expressed as an
arithmetic circuit over a finite field F, and let λ be a security parameter.
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ContractSetUp(1λ)

1 : Sample Hp : {0, 1}∗ → F and H2p : F× F→ F
2 : Choose amt ∈ Z>0 to be a fixed deposit amount

3 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d} where xi = 0λ for all xi ∈ X

4 : Initialize an empty tree rootdep = T.Init(1λ, X),
5 : Choose k ∈ Z>0, set RootListwdr,k[i] = rootdep, for 1 ≤ i ≤ k

6 : Construct Cwdr for statement described in Equation 1

7 : Construct Cdep for statement described in Equation 2

8 : Let Πdep be the Verifiable Computation instance .

− Run (ekvc
dep, vkvc

dep)← Πdep.VcInit(1λ, Cdep)

9 : Let Πwdr be the zk-SNARK instance.

− Run (ekdep, vkdep)← Πwdr.Setup(1λ, Cwdr)
10 : Initialize: DepositList = {}, NullifierList = {}, TotalFee
11 : Initialize: DepositQueue← CreateQueue(l)
12 : Deploy smart contract with parameters :

pp = (F, Hp, H2p, amt, feed, T, index, RootListwdr,k, DespositQueue,

(ekdep, vkdep), (ekvc
dep, vkvc

dep), DepositList, NullifierList, TotalFee)

Figure 6 Pseudocode for the smart contract setup in a mixer with verifiable computations.

(ek, vk) ← VcInit(1λ, f) takes a security parameter and an arithmetic circuit as input
and generates two public keys: an evaluation key ek and a verification key vk.

(y, π) ← VcProve(ek, x) takes as input an element x and the evaluation key ek and
computes y = f(x) and a proof π that y has been correctly computed.

0/1← VcVerify(vk, x, y, π) takes the verification key vk, the input/output (x, y) of the
computation f and the proof π and outputs 1 if y = f(x) and 0 otherwise.

Any SNARK instance (e.g., Groth16 [20]) can be used to construct a VC scheme.

Deposit Proof. To deposit coins to the smart contract, a client needs to give a proof
showing the following relation for a Merkle tree T with a root rootdep:

stdep : {pk, cm, rootold
dep, rootnew

dep , pathi : rootnew
dep = T.Replace(index, 0, rootold

dep, pathi, cm)} (2)

In this construction, the function f that we want to verify is the replacement algorithm (i.e.,
Replace) defined for the Merkle tree.
Concurrent Updating Operations. During the construction process using VC, it is
possible to encounter a situation where two users are simultaneously updating the tree.
However, this does not present a problem. Both deposits will be processed since the smart
contract only accepts the VC proof when the queue is full. Consequently, only one user (the
faster one) is required to pay and is subsequently compensated for the computation cost.
Meanwhile, the other deposit will be placed as the first element of the queue.
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Client(sk, amt) Smart Contract

CreateDepositTx(sk, amt) :

1 : Sample (kdep, r) $←− {0, 1}λ

2 : Compute cm = Hp(kdep, r)

3 : Read DepositQueue, RootListwdr,k

4 : rootold
dep = RootListwdr,k[−1]

5 : Compute pathindex from DepositQueue

6 : input := (index, 0, rootold
dep, pathindex, cm)

7 : rootnew, πdep ← VcProve(ekvc
dep, input)

8 : return wit = (kdep, r),
txdep = (amt, rootnew, πdep, cm, feed)

txdep AcceptDeposit(txdep)

1 : txdep = (amt′, rootnew, πdep, cm, fee′
d)

2 : Require:

amt = amt′, feed = fee′
d, index < 2d

3 : Append cm to DepositList
4 : index = index + 1
5 : TotalFee = TotalFee + feed

6 : // The subtree is full
7 : if DepositQueue is full:

8 : rootold
dep = RootListwdr,k[−1]

9 : Compute pathindex from DepositQueue

10 : input := (index, 0, rootold
dep, pathindex, cm)

11 : Require VcVerify(vkvc
dep, input,

rootnew, πdep) = 1

12 : Append rootnew to RootListwdr,k

// Compensate the tree updater
13 : Do txdep.sender.transfer(TotalFee)
14 : TotalFee = 0
15 : ClearQueue(DespositQueue)
16 : else :
17 : Enqueue(DespositQueue, cm)
18 : return 1

Figure 7 Deposit interactions between the client and the smart contract in a mixer with VC.

5.4.2 Algorithms for On-Chain Mixer with VC

Contract Setup. The ContractSetUp algorithm of a mixer with VC differs from the
MPB method (cf. Section 5.1): An additional instance must be initialized for the verifiable
computation (cf. Lines 8 and 9 in Fig. 6). The rest remains unchanged: We initialize a
verifiable computation instance Πdep with the algorithm Πdep.VcInit with Cdep as input.
We obtain two keys (ekvc

dep, vkvc
dep).

Deposit Interaction. Fig. 4 shows the deposit interaction between a client and the mixer
with VC, in which the client computes the updated root when depositing into the mixer.

Client. The only difference between a mixer with the MPB and the one with VC is that
the last client must compute and prove the valid computation of the new root in addition to
cm and amt. The rest remains unchanged.

Contract. In contrast to MPB, the smart contract now performs fewer calculations. The
smart contract checks the client’s proof of the validity of the new root. If the proof is valid,
the root of the contract is modified to match the client’s root.

Withdraw Interaction. Because the verifiable computation only alters the deposit method,
the way to withdraw coins in a mixer stays the same as in Section 5.1.
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6 System Analysis

In this section, we prove that our improved mixers with MPB and VC both can guarantee
privacy, correctness, availability, and fairness, while they achieve different degrees of efficiency.

6.1 Privacy
Our improved on-chain mixers achieve the privacy goals as follows.

6.1.1 Linking deposit and withdrawal transactions
Using a similar definition proposed in the AMR system [24], we first investigate the potential
for an adversary to establish a link between a withdrawal transaction and its associated deposit
transaction. We denote h as the height of the blockchain. Given a block height h, we define
CmpSeth as the set of commitments of deposits made by honest users within a mixer pool.
Within this context, for a given cm ∈ CmpSeth, we denote txdep(cm) as the deposit transaction
which includes cm. Given a deposit transaction txdep including the commitment cm, and a
withdrawal transaction txwdr with the nullifier sn, we say sn is originated from cm (denoted
as sn origin← cm) if ∃(k, r) ∈ {0, 1}λ, s.t., cm = Com(k, r) ∧ snwdr = Hp(k, 0λ). Therefore,
the adversarial advantage of linking the withdrawal transaction txwdr to its corresponding
deposit transaction txdep, can be quantified as the probability that an adversary correctly
guesses the commitment that originates the nullifier value in txwdr (cf. Definition 7).

▶ Definition 7. (Adversarial Advantage in Transaction Linking) Let A be a PPT adversary,
and txh

wdr be a valid withdrawal transaction issued at block h by an honest user. Let snh
wdr be

the nullifier included in txh
wdr. We define the adversarial advantage as follows:

Advh
A,tx = Pr[A(txh

wdr)→ txdep(cm), s.t. cm ∈ CmpSeth ∧ snh
wdr

origin← cm]

6.1.2 Linking deposit and withdrawal addresses
In practice, a user may utilize the same address to make multiple deposits or withdrawals
within a mixer pool [39]. Rather than linking individual deposit and withdrawal transactions,
the adversary may choose to target the linkability between addresses, specifically linking
deposit and withdrawal addresses controlled by the same user.

Given a block height h, we denote DepAddrSeth as the set of addresses that are used to
deposit coins into a mixer pool from honest users, and WdrAddrSeth as the set of withdrawal
addresses of honest users.

Given a deposit address addrd ∈ DepAddrSeth and a withdrawal address addrw ∈
WdrAddrSeth, we say addrd and addrw are linked if they belong to the same user, i.e., the
user controls both the private keys of addrd and addrw. We denote this as addrd

link↔ addrw.
Therefore, the adversarial advantage of linking the withdrawal address addrw to the

corresponding deposit address addrd, is the probability that an adversary can correctly
determine if they are controlled by the same user (cf. Definition 8).

▶ Definition 8. (Adversarial Advantage in Addresses Linking) Let A be a PPT adversary,
and addrw ∈WdrAddrSeth be an address that has been previously used to withdraw coins from
the mixer pool before the block height h. We define the adversarial advantage as follows:

Advh
A,addr = Pr[A(addrw)→ addrd, s.t. addrd ∈ DepAddrSeth ∧ addrd

link↔ addrw]
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6.1.3 Privacy Analysis
Following existing work [24, 39], we present the following claims to analyze the adversarial
advantages of linking transactions and addresses in our improved mixers.

▷ Claim 9. Under the assumption that all underlying cryptographic primitives are secure,
the adversarial advantage in linking a withdrawal transaction at block height h to the
corresponding deposit transaction (cf. Definition 7) satisfies: Advh

A,tx ≤ 1
|CmpSeth| + negl(λ).

Proof Sketch. Because we assume that the underlying cryptographic primitives are secure,
the adversarial advantage in guessing correctly by breaking those primitives is negligible, i.e.,
negl(λ). Moreover, since each deposit transaction in the mixer pool adds a leaf to the Merkle
tree, the probability of guessing a correct leaf is equal to the number of Merkle leaves that
are not controlled by the adversary, i.e., 1/|CmpSeth|). Therefore, the adversarial advantage
is Advh

A,wdr ≤ 1/|CmpSeth|+ negl(λ). Intuitively, the more deposits in the mixer pool, the
harder the adversary can correctly link the deposit and withdrawal transactions.

▷ Claim 10. Under the assumption that all underlying cryptographic primitives are
secure, the adversarial advantage in linking a withdrawal address at block height h to the
corresponding deposit address (cf. Definition 8) satisfies: Advh

A,addr ≤ 1
|DepAddrSeth| + negl(λ).

Proof Sketch. Analogously, the adversarial advantage in breaking the underlying secure
cryptographic primitive is negligible negl(λ). Furthermore, each new deposit address will in-
crease the size of the set DepAddrSeth. Given a withdrawal address addrw at block height h, the
probability that the adversary can guess its corresponding deposit address is 1/|DepAddrSeth|.
Therefore, the overall adversarial advantage is Advh

A,addr ≤ 1/|DepAddrSeth|+ negl(λ).
Remark. Note that the increase in deposit transactions will not always decrease the
adversarial advantage in linking deposit and withdrawal addresses, because an address can
be used to deposit multiple times in a mixer pool. We also remark that the deposits in the
queue are not considered in our privacy analysis, because they are not finalized and do not
contribute to the set of commitments CmpSeth and the set of deposit addresses DepAddrSeth.

6.2 Correctness
Following existing work [24], we prove that our system can guarantee correctness by demon-
strating that the probability that an adversary can withdraw more times than deposits is
negligible.

Consider an adversary who deposits into the mixer via a transaction txh
dep at block h, and

the transaction includes the commitment cm. We define the adversarial advantage of double
withdrawing as the probability that the adversary can generate two withdrawal transactions
linking to txh

dep (cf. Definition 11).

▶ Definition 11. (Adversarial Advantage in Double Withdrawing) Let A be a PPT adversary,
which issues a deposit transaction txh

dep at block h. Let cm be the commitment included in
txh

dep. We define the adversarial advantage as follows:

Advh
A,ww = Pr[A(txh

dep(cm))→
(

tx0
wdr

(
snh0

wdr

)
, tx1

wdr

(
snh1

wdr

))
s.t. snh0

wdr

origin← cm ∧ snh1
wdr

origin← cm ∧ h0 > h ∧ h1 > h ∧ snh0
wdr ̸= snh1

wdr]

Intuitively, double withdrawals occur when the adversary manages to generate two different
nullifiers, snh0

wdr and snh1
wdr, both originating from the same commitment cm. However, the

probability of this event is negligible if the underlying cryptographic primitives are secure.
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▷ Claim 12. Assuming that all underlying cryptographic primitives are secure, the adversarial
advantage in successfully generating two distinct withdrawal transactions which correspond
to the same deposit transaction (cf. Definition 11) satisfies: Advh

A,ww ≤ negl(λ).

Proof Sketch. Because we assume that the underlying cryptographic primitives are secure,
the adversarial advantage in guessing correctly by breaking those primitives is negligible, i.e.,
negl(λ). Moreover, since each deposit transaction in the mixer pool adds a leaf to the Merkle
tree, the probability of guessing a correct leaf is equal to the number of Merkle leaves that
are not controlled by the adversary, i.e., 1/|CmpSeth|). Therefore, the adversarial advantage
is Advh

A,wdr ≤ 1/|CmpSeth|+ negl(λ). Intuitively, the more deposits in the mixer pool, the
harder the adversary can correctly link the deposit and withdrawal transactions.

6.3 Availability
Our system, comprising either MPB or VC, ensures availability. Similar to existing on-chain
mixers such as TC [4] on Ethereum and TN [6] on BSC, our improved mixer can operate
autonomously on smart-contract-enabled blockchains. It should be noted that a centralized
regulator could affect the availability of an on-chain mixer. For instance, the regulator can
impose sanctions [37] on on-chain mixers and require decentralized application frontends
or Front-running as a Service (e.g., Flashbots MEV-boost relays) to censor mixer-related
transactions [15]. However, users still have the option to utilize the command line interface
or intermediary addresses to bypass the censorship and interact with the on-chain mixer
smart contracts [40].

6.4 Fairness
To ensure fairness, our improved mixer employs a mechanism that ensures nearly equal fees
are paid by all l clients in the same deposit queue when updating the Merkle tree. The
approach involves each client in the queue, except the last one, paying an additional gas fee
of d0 in their deposit transactions to the smart contract. The contract then keeps track of
the accumulated fees, totaling (l − 1) · d0. When it is the turn of the l-th client to update
the Merkle tree and clear the queue, the client will be responsible for paying the remaining
gas fees, denoted as d1.

Note that gas prices can vary over time, which means that the cost for each client needs
to be adjusted accordingly. To achieve this, the payment fees for clients in the li-th deposit
queue are calibrated based on the total cost of the li−1-th queue, where i ≥ 1. Specifically,
if the total update cost of the li−1-th queue is Ci−1, then the average cost for the previous
l − 1 clients in the li-th deposit queue is calculated as Ci−1

l . Table 1 illustrates the deposit
costs for clients in a queue. It is worth noting that while the cost of the last client technically
differs slightly from that of the remaining l− 1 clients, we can prove that the improved mixer
achieves fairness through the following analysis.

We first provide the definition of fairness for an on-chain mixer.

▶ Definition 13. (ϵ-Fairness) Given two blocks b0, b1, and their corresponding gas prices
price(b0) and price(b1), we say a mixer achieves ϵ-fairness if the deposit costs cost(b0)
and cost(b1) in blocks b0 and b1 satisfy |cost(b0)− cost(b1)| ≤ ϵ · |price(b0)− price(b1)|.

We proceed to prove that our improved mixer can achieve ϵ-fairness when adopting the
deposit cost calibration design in Table 1.
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Table 1 Deposit cost calibration over time. The first l− 1 clients’ cost in the li-th deposit queue
is calibrated by the total cost in the previous queue.

deposit queue li−1 li

Cost
first l − 1 clients d0

i−1 d0
i = Ci−1

l

last client d1
i−1 d1

i

total Ci−1 = (l − 1) · d0
i−1 + d1

i−1 Ci = (l − 1) · d0
i + d1

i

▷ Claim 14. Given a timeframe T covers at least two deposit queues li−1 and li, whose final
deposits occur in block bli−1 and bli

respectively. Assuming that the deposit gas for updating
the Merkle tree in different queues is constant, denoted as gasupdate, then our improved
mixer can achieve ϵ-fairness in the timeframe, where ϵ = gasupdate.

Proof Sketch. The total deposit costs in the two queues li−1 and li satisfy: |Ci−1 − Ci| =
gasupdate ·

∣∣price(bli−1)− price(bli)
∣∣.

We further calculate the deposit cost differences of clients in the same queue. Note
that the first l − 1 clients’ cost in the li-th queue is determined by the total cost in
the previous queue. We thus have: |d0

i − d1
i | =

∣∣∣ Ci−1
l − d1

i

∣∣∣ =
∣∣∣Ci−1 − (l−1)·Ci−1

l − d1
i

∣∣∣ =∣∣Ci−1 − (l − 1) · d0
i − d1

i

∣∣ = |Ci−1 − Ci| = gasupdate ·
∣∣price(bli−1)− price(bli

)
∣∣.

Therefore, similar to the basic design (cf. Section 4), assuming that the gas price does not
change in a short timeframe, i.e.,

∣∣price(bli−1)− price(bli
)
∣∣ ≈ 0, the difference between the

last client’s deposit cost and the first l − 1 clients’ is approximately zero, i.e., |d0
i − d1

i | ≈ 0.
Our improved mixer can thus guarantee fairness. We will provide a more detailed empirical
analysis in Section 7.3.

6.5 Efficiency

6.5.1 Efficiency for On-Chain Mixer with MPB
Compared to the basic on-chain mixer design (cf. Section 4), our improved mixer system
offers enhanced efficiency. We consider a deposit Merkle tree with a size of n. In a basic
on-chain mixer, the computation cost for l deposits is l · O (log(n)) as the entire Merkle
tree for each deposit needs to be updated. However, in our improved mixer design with
an l-length deposit queue, the Merkle tree only needs to be updated once per l deposits.
Therefore, the computation cost for l deposits is l + O (log(n)).

We further define the ratio as γ = l+O(log(n))
l·O(log(n)) to quantify the times of the saving deposit

cost in our improved mixer compared to the basic mixer solution. Note that the deposit
queue size l is much smaller than the Merkle tree size n; therefore, γ = l

O(log(n)) + O(log(n))
l ≈

O(log(n))
l . The larger the queue size l, the more deposit cost clients can save. However, the

finalization time of the deposit is also increasing over l. We should properly choose the size l

to deal with the trade-off between the deposit cost and finalization time. We will provide
the detailed evaluation results in Section 7.2.

6.5.2 Efficiency for On-Chain Mixer with VC
Thanks to VC, the deposit cost in a mixer can further be reduced. Consider that the
computation cost of verifying an updated Merkle tree root is costVc, and the cost of generating
an updated Merkle tree root is costGc. Therefore, in a basic on-chain mixer, the computation
cost for l deposits is l · O (log(n)) · costGc as the Mekle tree is updated per deposit. The
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computation cost for l deposits in an improved mixer with VC is l+O (log(n))·costVc+costGc.
The deposit cost saving is γvc = l+O(log(n))·costVc+costGc

l·O(log(n))·costGc = l
O(log(n))·costGc +

costVc+ costGc
O(log(n))

l·costGc ≈
costVc+ costGc

O(log(n))
l·costGc . Note that in verifiable computations, the computation cost of verification

costVc is inferior to the cost of proof generation costGc. Therefore, an on-chain mixer with
verifiable computations can reduce deposit costs more than one with MPB. Section 7.4 will
provide more quantification results.

7 Evaluation

In this section, we implement our improved mixer designs and evaluate their performance.

Cryptographic Primitives. We adopt Groth’s zk-SNARK, Groth16 [20], as our instance
of zk-SNARK owing to its efficiency in terms of its proof size and the calculations required
by the verifier. We note that although the original Groth16 has malleable proofs, it can be
implemented to achieve weak simulation extractability in practice [8]. We will elaborate
more on the discussion in Section 9. We employ the Pedersen hash function [27] for Hp

and the MiMC hash function [7] for H2p, as cryptographic hash functions. Compared to
arithmetic circuits that rely on other hash functions, such as Jubjub [3], arithmetic circuits
that employ MiMC hash can produce a smaller number of constraints and operations. In
addition to being created exclusively for SNARK applications, MiMC hash functions are also
very gas-efficient for Ethereum smart contract applications.

Software Setup. For the arithmetic circuit design, we leverage the Circom library [9]
to build the withdrawal circuit, Cwdr, for the relation specified in Equation 1. We utilize
Groth16[20] proof system implemented by the snarkjs package [10] to construct the client’s
algorithms.. We establish a trusted environment for evaluating the mixer smart contract
and clients. We deploy the on-chain mixer system on the EVM ganache [2]. Hardware
Setup. We perform our experiment on a standard desktop system with an 11th Gen Intel(R)
Core(TM) i7-11800H with 2.30G CPU and 16GB RAM in configuration.

7.1 Evaluating Merkle Pyramid Builder Costs

We evaluate the performance of the MPB system using different configurations of Merkle
tree depths (i.e., d = 10, 15, 20, 25, 30) and deposit queue lengths (l = 2, 4, 8, 16, 32, 64, 128).

On-chain Deployment Costs. Fig. 8 shows the expense associated with deploying smart
contracts. The Merkle tree depth does not have a huge influence on the deployment costs:
the total cost is always between 6M and 7M gas. However, the deployment cost is a one-time
expense that can be amortized over the duration of the contract.

On-chain Deposit Costs. Figure 10 provides a visualization of the cost reduction achieved
by increasing the size of the deposit queue. We observe that after reducing or raising the
depth of the Merkle tree, the cost decreases or increases, accordingly. Note that reducing the
depth of the Merkle tree reduces the number of users, while raising the depth significantly
increases the time required to compute the withdrawal proof. We can also observe that for a
deposit queue of length 128, the gas costs are around 146k, which is consistent amongst the
various Merkle tree depths. Figure 10 also shows that this cost is merely 1

7 of the cost of
depositing in TC. Note that the costs associated with the deposit queue with a size of one,
would roughly correspond to those of TC.
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Figure 8 Cost of deploying the MPB smart
contract with different Merkle tree sizes.
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7.2 Evaluating Deposit Finalization Time
The deposit queue sizes will affect the deposit finalization time, i.e., the time that users need
to wait for their deposits to be updated in the Merkle tree. To quantify the waiting time,
we crawl the historical deposits in the TC four ETH pools (i.e., 0.1, 1, 10, and 100 ETH
pools) over time. As shown in Fig. 15 in Appendix B, from October 1st, 2020 to August 8th,
2022 (i.e., the date when Office of Foreign Assets Control (OFAC) announced the sanctions
against TC), the average number of daily deposits in the four pools is 51± 25. Even after
the OFAC sanctions’ announcement, the average number is still 9± 8. Therefore, when the
deposit queue size is set as 32, users merely need to wait for less than 4 days on average to
ensure their deposits are finalized in a TC pool adopting our MPB method.

To further quantify the expected finalization time, we define ∆ as the average timeframe
between two deposits. Therefore, the expected finalization time Efinal(∆, l) of a client in a
deposit queue with the size l is Efinal(∆, l) =

∑l
i=1

1
l · (l − i) ·∆ = (l−1)·∆

2 .
Based on our empirical data, we can calculate that the average timeframes between two

deposits in the TC 0.1, 1, 10, and 100 are 269, 136, 156, and 232 blocks respectively. Fig. 9
shows the expectation of the deposit finalization time when choosing different deposit queue
sizes for TC ETH pools. Note that we set the block timeframe as 12s, which corresponds to
the slot time in the post-merge Ethereum. The results indicate that the expected deposit
finalization time increases linearly over the deposit queue size.

7.3 Evaluating Deposit Gas Prices
In the following, we leverage the gas prices of TC historical deposit transactions to quantify
our improved mixer’s fairness.

Fig. 13 shows the average gas price of TC deposit transactions and all Ethereum trans-
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actions over time. We observe that generally, the TC deposit transactions have almost the
same average gas price as other Ethereum transactions. To further measure the variance
of gas price, we calculate the differences between sequential daily deposits in TC ETH pools.
As shown in Fig. 12, we plot the distribution of the gas price differences for the deposits
in sequential n days, where n = 1, 2, 3 and 7. We observe that more than 80% gas price
differences in n(n ≤ 7) days are inferior to 30 GWei. Therefore, if we set the expected deposit
finalization time as less than 7 days, the deposit cost differences between the last client and
other clients in the same queue are inferior to 30 GWei × gasupdate. Recall that gasupdate is
the total gas consumed for updating the Merkle tree in an on-chain mixer (cf. Section 6.4).

When setting the deposit queue size as 25, and the Merkle tree depth as 20, we have
gasupdate = 25 × 1.78 × 105 = 5.69M gas (cf. Fig. 10). We can further calculate that the
cost difference is 5.69× 106 × 30× 109 Wei = 1.7× 1017 Wei = 0.17 ETH.

7.4 Evaluating Verifiable Computation Costs
TC supports anonymity mining [36] to incentivize users to user their ETH mixer pool. In
order to claim the anonymity mining rewards, users can provide the Merkle tree roots to
show their deposit and withdrawal transactions have already been successfully performed.
This design is similar to our deposit with off-chain proof generation. Therefore, to evaluate
the deposit cost of VC, we adopt a similar circuit of TC anonymity mining4 to implement
the VC deposit contract and test it locally. Our evaluation shows that the average deposit
cost of VC is approximately 436k gas. Thus, the saving deposit cost ratio of a client in a
deposit queue of size l can be estimated as 1m

436k·l = 2.29
l .

Note that in the improved mixer with VC, the smaller the queue size (i.e., l) is, the more
cost per client can save (cf. Fig. 11). Therefore, when combining VC and MPB approaches,
our improved mixer enables a significant improvement in the cost with a small deposit queue
size (e.g., 4 or 8), which allows a short waiting time for deposit finalization.

8 Related Work

Blockchain Add-On Privacy Solutions. To enhance the privacy of non-privacy-preserving
blockchains such as Bitcoin and Ethereum, numerous mixers are proposed in academic works
or deployed in practice. For instance, Meiklejohn et al. [26] propose a smart-contract-based
mixer named Möbius, which adopts linkable ring signatures and stealth addresses [29] to
hide the addresses of transaction senders and recipients. However, the anonymity set size of

4 https://github.com/tornadocash/tornado-anonymity-mining

https://github.com/tornadocash/tornado-anonymity-mining


22 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

Möbius is limited by the ring size, and the withdrawal cost increases linearly with the ring
size. CoinJoin [25] is a Bitcoin mixer, which enables a user can collaborate with others to
merge multiple transactions, thereby breaking the linkability between addresses.

State-of-the-art on-chain mixers [4, 6, 5, 1] are inspired by Zerocash [33] and are running
on smart-contract-enabled blockchains to obfuscate the link between the users’ deposit and
withdrawal using zero-knowledge proof. Le et al. propose an on-chain mixer design [24],
which incentivizes users to participate in a mixer. Shortly after [24], TC follows by adding
anonymity mining as a deposit reward scheme for attracting users [36].

In addition to blockchain add-on privacy solutions, several existing works have proposed
privacy-enhanced and regulated solutions for Central Bank Digital Currencies (CBDCs).
These solutions include UTT [35], PEReDi [22], and Platypus [43]. Despite their theoretical
promise, the practicality of implementing and running these solutions efficiently on the
Ethereum platform remains unclear.
Blockchain Mixer Analysis. Although mixers can break the linkability among user
addresses by design, in practice, mixers are not being used properly. Wu et al. [42] propose a
generic abstraction model for Bitcoin mixers. They identify two mixing mechanisms, i.e.,
swapping and obfuscating, and present a method to reveal mixing transactions that leverage
the obfuscating mechanism. Through analyzing the mixing activities in TC and TN, Wang et
al. [39] proposes five heuristics to link the deposit and withdrawal addresses of on-chain
mixers. Their heuristics can reduce a mixer’s anonymity set size by more than 34.18%.
Moreover, Wang et al.’s measurement work [39] also indicates that the reward mechanism
of on-chain mixers tends to attract profit-driven but privacy-ignorant users, who do not
contribute to the anonymity set size.

9 Discussion

Trade-Off Between Latency and Cost. In our MPB mixer design, typically, the last
depositor in a deposit queue initiates the Merkle tree update when the queue is full. However,
we recognize the potential for including an optional function that allows any user to pay and
trigger this update. This functionality would enable users to achieve faster-verified deposits
by updating the tree without waiting for the queue to be filled. In such cases, the tree
updater must strike a balance between latency and cost since the accumulated fees in an
unfilled queue may not fully compensate for the updater’s expenses.
Trade-Off Between Storage and Computation. In MPB, the subtree is updated with
every deposit to optimize on-chain storage costs while maintaining a balance between storage
and update efficiency. Specifically, in MPB, the total computation cost of updating a queue
with l deposits is l + O (log(n)), and the storage cost is O (log l). An alternative approach is
to use a more “naive” batch update, where the mixer contract keeps a record of all l deposits
in the queue and updates the subtree per queue. In this case, the total computation cost is
still l + O (log(n)), and the storage cost is O (l).
Comparison with Other Data Structures. In addition to MPB, we have also conducted
tests on other data-authenticated structures, such as dynamic RSA accumulators [11, 28, 12].
Accumulators offer the capability to generate proofs that demonstrate the membership of
potential items in a specific set. One notable advantage of RSA accumulators is their efficiency
in adding new items to an existing set. However, we observe that they do not effectively
reduce deposit appending costs, as the mixer contract is required to perform expensive
primality testing to identify prime numbers [21] as commitments on-chain. Furthermore, the
process of proving membership in zero knowledge will incur significantly higher expenses.
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Weak Simulation Extractability of Groth16. It is well-known that Groth16 zk-SNARK
is malleable. Hence, one needs to use a deterministic nullifier to prevent double withdrawing.
Also, in our design (refer to Eq. 1), it is necessary for a user to supply the associated private
key sk as part of the private input (i.e., witness). This measure is taken to mitigate the risk
that an adversary can replace a public key with his public key. However, in practice, we
only need to use the public as a parameter to the public input. This is considered secure,
given that Groth16 is recently proven to have the weak simulation extractability property [8].
This means that an adversary cannot produce a valid proof for a different input instance.
Adopting this approach can notably reduce the proof generation costs for provers.

10 Conclusion

This paper investigates how to reduce the deposit cost of on-chain mixers. We first propose a
design named MPB, which batches deposits in a queue and updates the Merkle tree per batch.
This methodology reduces the Merkle tree update times and, thus, decreases the deposit cost.
Specifically, our evaluation results show that MPB can achieve 7× fewer costs for depositing
than state-of-the-art on-chain mixers. Moreover, we leverage off-chain verification to reduce
the cost further. We also prove that our improved on-chain mixer designs can guarantee
correctness, privacy, availability, efficiency, and fairness. We hope our work can engender
further research into more secure and user-friendly on-chain mixers.

References
1 Cyclone. Available at: https://cyclone.xyz/bsc.
2 Ganache. Available at: https://trufflesuite.com/ganache/.
3 Jubjub. Available at: https://z.cash/technology/jubjub/.
4 Tornado cash. Available at: https://tornado.cash/, before August 8th, 2022.
5 Typhoon.cash. Available at: https://typhoon.cash/.
6 Typhoon.network. Available at: https://app.typhoon.network/.
7 Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc:

Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory
and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 191–219. Springer, 2016.

8 Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another look at
extraction and randomization of groth’s zk-snark. In Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised
Selected Papers, Part I 25, pages 457–475. Springer, 2021.

9 Jordi Baylina, Kobi Gurkan, Roman Semenov, Alexey Pertsev, adria0, Ehud Ben-Reuven,
arnaucube, Eduard S., and Marta Bellés. circomlib, 2020. Available at: https://github.com/
tornadocash/circomlib#c372f14d324d57339c88451834bf2824e73bbdbc.

10 Jordi Baylina, Kobi Gurkan, Roman Semenov, Alexey Pertsev, adria0, Ehud Ben-Reuven,
arnaucube, Eduard S., and Marta Bellés. snarkjs, 2020. Available at: https://github.com/
tornadocash/snarkjs#869181cfaf7526fe8972073d31655493a04326d5.

11 Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Advances in Cryptology—EUROCRYPT’93: Workshop on the Theory
and Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings
12, pages 274–285. Springer, 1994.

12 Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with
applications to iops and stateless blockchains. In Advances in Cryptology–CRYPTO 2019:

https://cyclone.xyz/bsc
https://trufflesuite.com/ganache/
https://z.cash/technology/jubjub/
https://tornado.cash/
https://typhoon.cash/
https://app.typhoon.network/
https://github.com/tornadocash/circomlib#c372f14d324d57339c88451834bf2824e73bbdbc
https://github.com/tornadocash/circomlib#c372f14d324d57339c88451834bf2824e73bbdbc
https://github.com/tornadocash/snarkjs#869181cfaf7526fe8972073d31655493a04326d5
https://github.com/tornadocash/snarkjs#869181cfaf7526fe8972073d31655493a04326d5


24 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22,
2019, Proceedings, Part I 39, pages 561–586. Springer, 2019.

13 Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.6, 2023.
14 Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients

for cryptocurrencies. In 2020 IEEE Symposium on Security and Privacy (SP), pages 928–946.
IEEE, 2020.

15 Chainalysis. Understanding tornado cash, its sanctions implications, and key com-
pliance questions, 2022. Available at: https://blog.chainalysis.com/reports/
tornado-cash-sanctions-challenges/.

16 Dmitry Ermilov, Maxim Panov, and Yury Yanovich. Automatic bitcoin address clustering. In
2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
pages 461–466. IEEE, 2017.

17 Davide Frey, Mathieu Gestin, and Michel Raynal. The synchronization power (consen-
sus number) of access-control objects: The case of allowlist and denylist. arXiv preprint
arXiv:2302.06344, 2023.

18 Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Advances in Cryptology–CRYPTO 2010:
30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings
30, pages 465–482. Springer, 2010.

19 Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A new hash function for zero-knowledge proof systems. In USENIX Security
Symposium, volume 2021, 2021.

20 Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology–
EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35, pages
305–326. Springer, 2016.

21 Joe Hurd. Verification of the miller–rabin probabilistic primality test. The Journal of Logic
and Algebraic Programming, 56(1-2):3–21, 2003.

22 Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. Peredi: Privacy-enhanced,
regulated and distributed central bank digital currencies. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 1739–1752, 2022.

23 Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 839–858. IEEE, 2016.

24 Duc V Le and Arthur Gervais. Amr: Autonomous coin mixer with privacy preserving reward
distribution. ACM Conference on Advances in Financial Technologies (AFT’21), 2021.

25 Greg Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin forum, 2013.
26 Sarah Meiklejohn and Rebekah Mercer. Möbius: Trustless tumbling for transaction privacy.

Proceedings on Privacy Enhancing Technologies, 2018(2):105–121, 2018.
27 Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th Symposium on

Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings, pages 80–91. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238183.

28 Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy (SP),
pages 397–411. IEEE, 2013.

29 Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,
Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, et al. An empirical analysis
of traceability in the monero blockchain. Proceedings on Privacy Enhancing Technologies,
2018(3):143–163, 2018.

30 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at:
https://bitcoin.org/bitcoin.pdf.

https://blog.chainalysis.com/reports/tornado-cash-sanctions-challenges/
https://blog.chainalysis.com/reports/tornado-cash-sanctions-challenges/
https://doi.org/10.1109/SFCS.2003.1238183
https://bitcoin.org/bitcoin.pdf


Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 25

31 Leonid Reyzin and Sophia Yakoubov. Efficient asynchronous accumulators for distributed pki.
In Security and Cryptography for Networks: 10th International Conference, SCN 2016, Amalfi,
Italy, August 31–September 2, 2016, Proceedings 10, pages 292–309. Springer, 2016.

32 Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and collision
resistance. In International workshop on fast software encryption, pages 371–388. Springer,
2004.

33 Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy (SP), pages 459–474. IEEE, 2014.

34 Peter Todd. Merkle mountain ranges, 2018. Available at: https://github.com/
opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md.

35 Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta, Benny Pinkas,
and Avishay Yanai. Utt: Decentralized ecash with accountable privacy. Cryptology ePrint
Archive, Paper 2022/452, 2022. https://eprint.iacr.org/2022/452. URL: https://eprint.
iacr.org/2022/452.

36 TornadoCash. Tornado.cash governance proposal, 2020. Available at: https://tornado-cash.
medium.com/tornado-cash-governance-proposal-a55c5c7d0703.

37 U.S. DEPARTMENT OF THE TREASURY. U.s. treasury sanctions notorious virtual currency
mixer tornado cash, 2022. Available at: https://home.treasury.gov/news/press-releases/
jy0916.

38 Friedhelm Victor. Address clustering heuristics for ethereum. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February
10–14, 2020 Revised Selected Papers 24, pages 617–633. Springer, 2020.

39 Zhipeng Wang, Stefanos Chaliasos, Kaihua Qin, Liyi Zhou, Lifeng Gao, Pascal Berrang,
Benjamin Livshits, and Arthur Gervais. On how zero-knowledge proof blockchain mixers
improve, and worsen user privacy. In Proceedings of the ACM Web Conference 2023, pages
2022–2032, 2023.

40 Zhipeng Wang, Xihan Xiong, and William J. Knottenbelt. Blockchain transaction censorship:
(in)secure and (in)efficient? Cryptology ePrint Archive, Paper 2023/786, 2023. URL: https:
//eprint.iacr.org/2023/786.

41 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 2014. URL: https://ethereum.github.io/yellowpaper/paper.pdf.

42 Lei Wu, Yufeng Hu, Yajin Zhou, Haoyu Wang, Xiapu Luo, Zhi Wang, Fan Zhang, and Kui
Ren. Towards understanding and demystifying bitcoin mixing services. In Proceedings of the
Web Conference 2021, pages 33–44, 2021.

43 Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. Platypus: a central bank
digital currency with unlinkable transactions and privacy-preserving regulation. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages
2947–2960, 2022.

44 Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. Tracing transactions across cryptocur-
rency ledgers. In 28th USENIX Security Symposium (USENIX Security 19), pages 837–850,
2019.

A Additional Building Blocks

Zero-Knowledge Proof. Zero-knowledge proof (ZKP) is a cryptographic primitive that
allows a prover to convince the verifier about the correctness of some assertions without
providing any meaningful information to the verifier. A zero-knowledge proof of some
statement satisfies the following three properties [20]:

Completeness: If st is true, an honest verifier will always be convinced by an honest prover.

https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://tornado-cash.medium.com/tornado-cash-governance-proposal-a55c5c7d0703
https://tornado-cash.medium.com/tornado-cash-governance-proposal-a55c5c7d0703
https://home.treasury.gov/news/press-releases/jy0916
https://home.treasury.gov/news/press-releases/jy0916
https://eprint.iacr.org/2023/786
https://eprint.iacr.org/2023/786
https://ethereum.github.io/yellowpaper/paper.pdf


26 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

Soundness: For false statements, a prover cannot convince the verifier (even if the prover
cheats and deviates from the protocol)
Zero-knowledge: No verifier learns anything other than the fact that the statement st is
valid if it is true. In other words, knowing the statement, but not the secret, is enough to
construct a scenario in which the prover knows the secret.

Apart from correctness, soundness, and zero-knowledge properties of ZKPs, a zk-SNARK
requires two additional properties, i.e., succinctness and simulation extractability [8].
Deposit Merkle Tree. Fig. 14 shows an illustrative example of the deposit Merkle tree.

Figure 14 Illustrative example of the deposit Merkle tree, Tdep. The tree keeps track of
commitments from clients’ deposit transactions. The root of the tree, rootdep is used to verify the
NIZK proofs from withdrawing transactions.

Merkle Mountain Range. Merkle Mountain Range (MMR) is a unique variety of
Merkle tree which provides an efficient append function to maintain a balanced binary tree.
Appending a new element to a MMR with n leaves requires traversing the right-most path
of the tree and creating or modifying at most O(log(n)) nodes in the tree. We adopt the
definition from [14] to formally define a Merkle Mountain Range.

▶ Definition 15 (Merkle Mountain Range (MMR)). A Merkle Mountain Range (MMR), M ,
is a tree with a n(n > 1) leaves, a root r, and the following properties:

M is a binary Merkle hash tree.
M has a depth of ⌈log2 n⌉.
Let n = 2i + j, where i = ⌊log2 (n− 1)⌋, then (i) the subtree in r’s left is a MMR with 2i

leaves, and (ii) the subtree in r’s right is a MMR with j leaves.

B Additional Evaluation Results

We provide the additional TC measurement results in Fig. 15, which can help us evaluate
our improved mixers.
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Figure 15 TC daily deposits over time. The average daily deposit number is 51 ± 25 during
October 1st, 2020 and August 8th, 2022. The number decreases to 9± 8 due to the OFAC sanctions.
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