
Improved SNARK Frontend for Highly Repetitive Computations
Sriram Sridhar1 and Yinuo Zhang1

1University of California, Berkeley
srirams@berkeley.edu,yinuo.yz@gmail.com

Abstract

Modern SNARK designs usually feature a frontend-backend paradigm: The frontend compiles
a user’s program into some equivalent circuit representation, while the backend calls for a SNARK
specifically made for proving circuit satisfiability. While the circuit may be defined over small fields,
the backend prover often needs to lift the computation to much larger fields for achieving soundness.
This gap results in concrete overheads, for example, when proving SHA2 programs with pairing-based
SNARKs.

For a class of computations that are highly repetitive, we propose an improved frontend that
partially bridges this gap. Compared with existing works, our frontend yields circuit representations
defined over larger fields but of smaller size. Our implementation shows that for ≈ 100 iterations of
SHA2-256 instances, our improved frontend boosts prover runtime by over 3.8×.

Central to our result and of independent interest, is an efficient technique for proving non-native
ring arithmetic.

1 Introduction
Succinct arguments [Kil92] allow a prover to convince a verifier that an NP statement is true through
some interactive protocols, with communication and verifier running time sub-linear in the size of the
prover’s witness. Soundness requires that no computationally bounded prover can convince a verifier
of a false statement. Those arguments can also be paired with an additional zero knowledge (ZK)
property [GMR85], which requires that the verifier does not learn anything beyond the veracity of
the statement. Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) are
succinct arguments which are zero-knowledge and do no involve any interactions. Enjoying all these great
properties, zkSNARKs have found numerous real-world applications, e.g., in the design of blockchains
[BCG+14]. This has led to extensive research towards improving the efficiency of zkSNARKs in practice
[CMT12, Tha13, AHIV17, BBB+18, XZZ+19, BCR+19, Set20, COS20, BFS20, ZXZS20, ZLW+21], both
in terms of prover and verifier running times. As the time of writing, the best SNARK prover running
time is already asymptotically linear in the size of the statement [GLS+21, XZS22, CBBZ22] while still
maintaining sublinear verifier running time.

Modern SNARK Paradigm: Frontend v.s. Backend Modern SNARKs are general-purpose and
engineered to prove the correctness of any computer programs via following two steps:

First, the program is complied into a special kind of circuit representation which is amenable to the
current SNARK technology. This process is often called the SNARK frontend. Importantly, the
satisfiability of such circuit should reflect the correct evaluation of the computer program. In practice,
this circuit representation resembles the original program and they often share the same input and output
values.

Subsequently, this circuit representation is fed into a SNARK which is specifically designed to prove cir-
cuit satisfiability. This process is often called the SNARK backend. Most aforementioned constructions
of SNARKs are examples of such. For example, some popular ones [Gro16, CHM+20, BCR+19] target
a special circuit representation called Rank-1 Constraint Systems (R1CS).

1

Measuring Prover Efficiency The prover efficiency remains a core bottleneck in the real-world
deployment of SNARKs. In the view of above paradigm, we can separate our consideration with respect
to the frontend and backend.

Frontend Efficiency is mainly measured by the size of the circuit representation, relative to the size
of the original computer program. For example, in R1CS, this size is determined by three main charac-
teristics: the length and width (hence dimension) of the matrices, and the number of non-zero entries in
these matrices.

Backend Efficiency is almost always dictated by the number of Cryptographic Operations required.
For example, in [Gro16], those operations correspond to multi-scalar exponentiations (MSM) in an el-
liptic curve group of large order. One can abstractly view those cryptographic operations as computing
arithmetics over some very large field. Furthermore, this number is usually proportional to the frontend
size.

A Dichotomy of Fields Interestingly, there exists an inconspicuous dichotomy between frontend and
backend: For most computer programs, the circuit representations outputted by the frontend are natu-
rally defined over some small finite fields. Its size is comparable to the size of the variables living inside
the computer program. For example, the circuit representation of the SHA2-256 binary computation
can be defined over a field of size ≈ 28 (for example, F253). Nonetheless, for the sake of soundness, the
backend field must be very large. For example, [Gro16] uses the field Fp∗ where p∗ is around 255 bit
prime, hence orders of magnitude larger than F253.

This size dichotomy is often solved by simply embedding the circuit representation defined over small
fields inside the larger field. When the two fields substantially differ in size (as for most computer
programs), this creates a noticeable inefficiency. For example, consider the circuit which checks that
a bit b takes binary values: b2 − b = 0. It is indeed sufficient to check for this arithmetic relation over
any non-trivial field. Yet the backend prover needs to treat this relation over certain gigantic field Fp∗

and subsequently perform multiplications by large random numbers in this field in order to argue this
relation. Conceptually speaking, a significant portion of field Fp∗ is wasted.

In this work we seek to incorporate this aspect into frontend design consideration. More specifically, for
any circuit representation defined over some small field, we wonder if one can ’squeeze’ the circuit at
the expense of expanding the field that it must be defined over. Since the prover must pay for the cost
of large field either way, a smaller-sized circuit would strictly improve its performance. This motivates
us to study the following question:

For certain programs, can we improve their frontend efficiency by exploiting full power of backend field?

1.1 Our Contributions
In this work we answer above question positively for a special class of programs which are highly repet-
itive. Informally speaking, a computation is highly repetitive if the same sub-computation is repeated
multiple times with different inputs. One ubiquitous example is data-parallel (SIMD) computation.
More concretely, our main contributions are as follows:

Techniques for Packing Highly Repetitive Circuits We introduce a packing technique for ver-
ifying highly repetitive computations. More specifically, for any computation consisting of ℓ copies of
sub-computations. Our packing technique allows us to reduce the size of overall circuit representation by
ℓ-fold compared to that of naive representation, at the cost of defining it over some large and non-native
ring. 1

Techniques for Efficiently Proving Non-native Arithmetic Crucial to our main results, and
of independent interests, is an information theoretic emulation technique which allows the prover to
efficiently emulate arithmetic behaviors of a non-native ring Zq inside some fixed prime field Fp∗ .

1Although our plain packing technique yields circuit size reduction by l-fold, in practice the reduction is also limited by
the backend field size.

2

Improved Frontend for Highly Repetitive Computations We combine our techniques into an
improved frontend compiler for highly repetitive computations. It can be integrated with a class of popu-
lar backends called commit-and-prove SNARKs. We implement our frontend and instantiate it with two
commit-and-prove backends: Marlin [CHM+20] and Nova [KST22], and benchmark our improvements.

1.2 Applications
Our improved frontend can be used to speed up a number of zero-knowledge proof applications which
involve highly repetitive computations. For example, in zkRollup [rol]/zk-EVM, a prover needs to prove
the opening of some Merkle Tree commitment, which involves proving the knowledge of a root-to-leaf path
which corresponds to some sequential hash computations (such as SHA3/keccak). As another example,
in many Proof-of-Stake blockchains, the proof involves verifying hundred of signatures. In Cosmos, each
corresponds to an EdDSA signature, whose verification involves computing SHA2-512 hash functions.

1.3 Related Works
We give a survey of related works which seek to mitigate the dichotomy of field between SNARK frontend
and backend. Some of these techniques are ”backend oriented” while others are ”frontend oriented”.

Backend Oriented There are a number of works aiming to allow the backend prover to run over any
finite field (even very small fields) to improve prover’s efficiency. The line of works [RZR22, BCGL22]
achieve this by building some specific Interactive Oracle Proof (IOP). However, they currently only
remain theoretically interesting since the verifier’s running time and proof size are linear in [RZR22],
and sublinear but still very large in [BCGL22]. Furthermore, these constructions only work with very
specific circuit representations which are not used in practice. Other works [AHIV17, KKW18] try
to achieve this via ”MPC in the head”, but these protocols also yield considerably large proof size. Fi-
nally, [WYKW21, WYY+22] considers VOLE-based efficient zero-knowledge proofs but does not achieve
sublinear verification.

Frontend Oriented Look-up arguments [GW20, ZBK+22] aim to reduce the task of checking multiple
bit-wise operations in computer programs with look-up of a single value in a large truth table. For
example, the bit-wise XOR operation between two 16-bit strings is replaced with a table consisting of all
232 possible outputs, each entry in the table being a 16-bit integer value. Look-up arguments can help
frontend design as follows: Suppose in the circuit representation, a sub-computation involving multiple
of binary gates is repeated frequently. Then one can batch these gates into a single ”look-up gate” with
respect to some table, thus reducing each sub-computation effectively into a ”look-up gate”. On one
hand, since the values in this table are large, this ”look-up gate” must be defined over larger fields. On
the other hand, the size of the circuit becomes much smaller due to reduced number of gates.

We compare our work with look up arguments as follows: First, known lookup arguments are limited by
the table size due to the expensive cost of cryptographically committing to the lookup table. For example,
in [GW20], to perform m lookups into a table of size N , the prover has to commit to 5 ∗ max(m,N)
field elements. [ZBK+22] pushes the bulk of this work into a pre-processing phase, but still requires
prover committing to N field elements in the table and additional pre-processing involving O(N log(N))
exponentiations in a cryptographic group. It also uses a large structured reference string (SRS) as big as
the lookup table. In practice, the table size is often less than 216, thus allowing to ’pack’ at most 8 binary
gates. For example, for SHA2-256 program which operates on 32-bit words, each word operation needs
to be further broken down into 8 ∗ 4 bits chunks in order to apply lookup arguments. In comparison,
our method does not need a table and has more tolerance for ’packing’. For example, we can ’pack’ 12
of SHA2-256 circuits easily. Furthermore, no one needs to pay for the cost of committing to the table
as well as storing the large CRS required for commitment. Secondly, look-up gates are specialized to
the Plonk-style [GWC19] circuit representation. This raises two concerns: 1. The use of look-up gates
requires rewriting the circuit topology, thus prone to errors in implementation. 2. Only some specialized
SNARKs are designed to work with such circuit representation. In comparison, our method can be
naturally extended to support all circuit representations as well as preserving the circuit topology. This
makes our method easier to implement, and readily compatible with almost all backends.

3

Other Optimizations on Highly Repetitive Computations The work of [Tha13] improves the
techniques of [GKR08] in the setting of data-parallel (a.k.a. SIMD) computations. The work of [KST22,
BC23, KS23] consider folding schemes for incrementally verifiable computation that improves prover’s
running time. Furthermore, the work of [XZC+22] leverages multiple provers to speed up proving SIMD
computations. We point out that the improvements behind all these works do not rely on mitigating the
field discrepancy, hence orthogonal to our contributions. In fact we show in section 8.2 that our improved
frontend can be used in conjunction with those works so as to achieve a double prover-speed-up.

2 Preliminaries
Notation: We use λ for the security parameter and let negl(λ) denote a negligible function: That is,
for all polynomial p(λ), it holds that negl(λ) < 1/p(λ) for large enough λ. We use z to denote a vector,
z[i] to denote the ith element in z. We use the notation < z1 · z2 > to denote the inner product between
two vectors z1 and z2. For an integer n, we shall use [n] for the set {1, 2, . . . , n}. Let pZ be the ideal
generated by some number p ∈ Z and correspondingly let Fp denote the field Z/pZ, which corresponds
to all the integers modulo p. We use diagm(a) to denote the m-by-m diagonal matrix where the values
along the diagonal is filled with a. We use the term PPT to stand for all efficient adversaries which runs
in probabilistic polynomial time in the security parameter λ. We sometimes refer to these algorithms as
efficient algorithms.

2.1 Chinese Remainder Theorem
Let (q1, . . . , qn) ∈ Zn be a list of n prime numbers and let q =

∏n
i=1 qi. The Chinese Remainder Theorem

(CRT) states that there exists the following ring isomorphism:

Zq
∼= Fq1 × · · · × Fqn ,

where the isomorphism is given by the mapping f : Zq → Fq1 × · · · × Fqn as follows:

f(a) = (a mod q1, . . . , a mod qn).

where the inverse mapping f−1 : Fq1 × · · · × Fqn → Zq is given as follows:

f−1(a1, . . . , an) =

n∑
i=1

ai · λi mod q.

Each coefficient λi is an integer such that

λi mod qi = 1 and ∀j ̸= i, λi mod qj = 0.

Those integers can be efficiently computed as follows. Let Q =
∏

j ̸=i qj be the product of qj ’s except for
qi. Then,

λi = Q ·Q−1,

where Q−1 is such that Q ·Q−1 = 1 mod qi.

We formalize the above discussion into a set of packing interface:

Definition 2.1 (CRT Packing Scheme). Let there be a set of prime numbers (q1, . . . , qn) and let
q =

∏
i∈[n] qi. A CRT Packing Scheme with respect to this set consists of the two algorithms

(CRT.Pack,CRT.Unpack) with the following syntax:

• CRT.Pack(a1, . . . , an) → a: The packing algorithm takes as input ai ∈ Fqi from each field, and
packs them into a number a ∈ Zq.

• CRT.Unpack(a)→ (a1, . . . , an): The unpacking algorithm takes as input some number a ∈ Zq and
recovers a set of n numbers (a1, . . . , an) where ai ∈ Fqi for each field i ∈ [n].

As described above, the packing and unpacking algorithm naturally correspond to the mapping function
f induced by ring isomorphism Zq

∼= Fq1 × · · · × Fqn .

4

2.2 Vector Commitment Scheme
A vector commitment scheme is a pair of algorithms (KeyGen,Commit), with the following syntax.

• KeyGen(1λ)→ ck : The commitment key generation algorithm take as input the security parameter,
outputs a commitment key ck and specifies an allowed message space Fn

p∗ .

• Commit(ck, z) → c : The commitment algorithm takes as input a commitment key ck, an vector
z ∈ Fn

p∗ , and outputs a commitment c.

We require the following properties to hold:

Succinct Commitment The size of commitment c is independent of the length of vector n.

Binding: Due to the size shrinking of commitments, there must exist vectors which collide to the
same commitment. Nevertheless, we require that for all efficient algorithm A, finding such collision is
intractable:

Pr

[
Commit(ck, z1) = Commit(ck, z2) ∧ z1 ̸= z2 :

ck← KeyGen(1λ);
(z1, z2)← A(1λ, ck).

]
≤ negl(λ)

Additive Homomorphic Vector Commitment. We observe that most of existing vector commit-
ment scheme such as [BBB+18, KZG10] have the following “additive homomorphism” structure, which
allows to any two commitments Commit(ck, z1), Commit(ck, z2) to be ’added’ so as to obtain a new
commitment Commit(ck, z1 + z2).

2.3 Non-interactive Argument of Knowledge
We denote any relation by R(, ·,) and say that a pair of instance X and witness w is in the relation if
R(X, w) = 1. For any relation R, an argument of knowledge for R consists of the following triple of
algorithms (Gen,Prove,Verify) with the following interface:

• Gen(1λ,R)→ (pk, vk) : The Gen algorithm takes as input the security parameter λ, the description
of relation R, and outputs a (public) proving key pk as well as a verification key vk.

• Prove(pk,X, w)→ π : The proving algorithm takes as input the proving key pk, the instance X and
some alleged witness w, and outputs some proof π.

• Verify(vk,X, π) → {0, 1} : The verification algorithm takes as input the verification key vk, the
instance X and proof π, and outputs a bit.

We require the argument of knowledge to further satisfy the following list of properties:

Completeness: Completeness requires that for all relation R, we have:

Pr

[
Verify(vk,X, π) = 1 :

(pk, vk)← Gen(1λ,R);
π ← Prove(pk,X, w);

]
= 1.

Knowledge Soundness: Informally, knowledge soundness states that whenever a prover convinces
the verifier of some instance X in the relation R, the prover must also know an explicit witness w such
that R(X, w) = 1. More formally, for any efficient adversary A, there must exist an efficient extractor
E such that:

Pr

Verify(vk,X, π) = 1 ∧ R(X,W) ̸= 1 :

R← A(1λ);
(pk, vk)← Gen(1λ,R);

(π,X)← A(pk);
W← EA(vk, π);

 ≤ negl(λ).

Honest Verifier Zero-Knowledge We say the argument of knowledge is honest-verifier zero-knowledge,
if there exists a PPT simulator S such that, for any instance-witness pair (X, w) in relation R,

{(pk, vk)← Gen(1λ,R), π ← Prove(pk,X, w)} : (pk, vk, π)λ,X ≈ {S(1λ,X)}λ,X.

5

Succinct, Non-interactive Argument of Knowledge (SNARK) We further say that the argu-
ment is succinct and non-interactive if both the proof size |π| and the running them of Verify are sublinear
in the size of the instance-witness pair (|X|+ |w|).

We are especially interested in the following special class of SNARKs which builds on top of vector
commitment schemes:

Definition 2.2 (Commit-and-Prove SNARKs). A commit-and-prove SNARK associated with a vector
commitment scheme (KeyGen,Commit) and a relation R∗(, ·,) is a succinct non-interactive argument of
knowledge (Gen,Prove,Verify) for the following relation, Rck((X, c), w) = 1 ⇐⇒ R∗(X, w) = 1 ∧ c =
Commit(ck, w), where ck← KeyGen(1λ) is the commitment key.

2.3.1 A Brief Survey of SNARK Field Choices

Most existing commit-and-prove SNARKs are inherently designed to support proving arithmetic relations
over certain field. Nonetheless, depending on the underlying vector commitment schemes, the field
choices can vary a lot. Here we give a brief survey about different vector commitment schemes and
their corresponding field choices. Readers may also consult the survey of [Tha23], Chapter 19.3 for more
details.

• The first category utilizes a commitment scheme that is based on certain algebraic hardness in
a known-order group. The examples of such are [KZG10] [BBB+18]. These schemes are widely
adopted in many blockchain applications due to their extremely small commitment size. However,
the choice of field is very limited due to many required properties of the group. Popular choices
are elliptic curve groups BLS12-381 and BN-254, where the group order p∗ is a fixed ≈ 255-bit
prime. The corresponding field is naturally Fp∗ .

• The second category utilizes a commitment scheme that is based on collision-resistant hash func-
tions. The examples of such are [COS20][ZXZS20]. Here the field choice is rather flexible but
ideally needs to support efficient FFT operations. Very often we choose F∗p such that p∗ is ≈ 64-bit
prime number.

• The third category utilizes hardness of unknown order groups [BFS20, CFKS22, AGL+23, SB23].
These systems are only of theoretical interests due to slow running time hence out of our scope.

In this paper we mainly consider the first category as they are among the most popular SNARKs today.
Nevertheless, due to the prime p∗ (hence order of elliptic curve) being very large, each group operation
is very slow. For this reason the prover’s efficiency in these systems is often determined solely by the
number of group operations that she needs to perform.

2.4 Existentially Quantified Circuits
Existentially quantified circuits (EQCs) [OBW22] are circuits which consist of sets of wires taking values
from some domain (such as the prime field Fp) and constraints that express certain relationships among
wire values (such as the constraint x · y = z). EQCs have two kinds of wire values: explicit inputs values
which are assigned to input wire values at the start of execution, and existentially quantified wire values,
which may take any value consistent with the explicit input values and the set of constraints.

In this work we are mainly interested in a family of ”arithmetic EQCs” where the constraints are over
the arithmetic operators (∗/·,+,−) corresponding to multiplication/addition/subtraction in some given
field.

2.5 Rank-1 Constraint Systems
Definition 2.3 (R1CS). Rank-1 Constraint Systems is a type of commonly used arithmetic EQC in
cryptographic proof systems. An R1CS instance consists of a tuple X = (F, A,B,C, io,m, n) where io
denotes the public input and output of the instance, and three matrices A,B,C ∈ Fm×(1+n) with n ≥ |io|.

An R1CS instance is said to be satisfiable if there exists a witness w ∈ Fn−|io| such that (A · z) ◦ (B · z) =
(C · z), where z = (1, io, w) ∈ Fn+1 (sometimes called extended witness), · is the matrix-vector product

6

and ◦ is the Hadamard (entry-wise) product. We denote the satisfiable condition by RR1CS(X, w) = 1.

In this work we introduce another useful property whose importance will later become clear: We say that
an R1CS instance is k-bounded if for every witness w that makes R1CS satisfiable, each entry of the
following vectors (matrices) (z, A, B, C, A · z, B · z, C · z) is within [0, k] (here one must consider the
operation (A · z) ◦ (B · z) = (C · z) over the integers, not over field F).

2.5.1 EQC Compiler

An EQC compiler is a compiler infrastructure which takes a computer program as input, and produces
an EQC instance such that the resulting EQC instance encodes the satisfiability of the program. In
particular, consider the EQC compiler that outputs an R1CS instance:

Definition 2.4 (R1CS-type EQC compiler). Let P be a computer program which takes some value x
as input, and let y be the alleged output. A R1CS-type EQC compiler takes as input the program P , its
input/output values (x, y) and produces an R1CS instance X = (F, A,B,C, io = x||y,m, n). The EQC
compiler must satisfy completeness and soundness as follows: The instance X is satisfiable if and only if
P (x) = y.

We consider two additional properties of EQC compiler which meet our interests:

• k-bounded: The compiler always output a k-bounded R1CS instance.

• p-satisfiable: The compiler output a R1CS instance over certain prime field Fp (i.e. X =
(Fp, A,B,C, . . .)). Furthermore, for any prime p′ ≥ p, the field Fp′ can be used to substitute
Fp in the sense that the instance X is satisfiable over Fp if and only if it is satisfiable over Fp′ .

We observe that most EQC compilers [OBW22] [KPS18] [cir] admit those properties by design for certain
values of k and p. Furthermore, for computer programs where all the variables are sufficiently small,
such as AES, SHA2 and SHA3, these EQC compilers are naturally k-bounded and p-satisfiable for small
values of k and p (for example, in AES and SHA2-256, [cir] admits k = p = 28). For all other programs,
these compilers can still be equipped with small values of k and p by allowing to output larger EQC
instances.

SNARK Backend and Frontend In the modern language of SNARKs, the process of compiling a
computer program into a suitable EQC instance (such as R1CS) is often referred to as the SNARK fron-
tend. These instances are then consumed by various SNARKs schemes targeting for circuit satisfiability.
Such process of proving EQC instance is often referred to as the SNARK backend.

2.6 Highly Repetitive Computation
A computation is highly repetitive if it can be viewed as some fixed subcomputation being applied to
multiple pieces of input which may or may not depend on each other. Examples of such computations
are Data Parallel (SIMD) Computation and Incremental Computation.

2.6.1 Data Parallel (SIMD) Computation

Data parallel computation, or same instruction multiple data (SIMD) is a common type of highly repet-
itive computation where the same sub-computation is applied to multiple pieces of independent inputs.
This format of computation is ubiquitous in many real world applications.

As a concrete example, consider the SIMD computation C where the sub-computation G is repeated ℓ
times with ℓ different independent inputs (x1, . . . , xℓ). That is: C(x1, . . . , xℓ) = (G(x1), . . . , G(xℓ)).

2.6.2 Incremental Computation

Incremental computation captures most recursions (and while loops) in the program: It involves a fixed
sub-computation being applied to multiple pieces of dependent inputs.

7

As a concrete example, consider the incremental computation C where the sub-computation G is repeated
ℓ times iteratively: That is: C(x) = G(G . . .G(x))︸ ︷︷ ︸

ℓ times

.

3 Roadmap
The following sections are organized as follows: In section 4, we release the initial blueprint of our
improved frontend by introducing our first core technique: CRT Packing for SIMD circuits. Naively
applying such packing technique indeed yields an ”improved frontend”, but it isn’t directly compatible
with most backends due to a mismatch between the frontend ring and backend field. Therefore we
introduce in section 5 our second core technique: Fast Ring Emulation. It allows prover to efficiently
emulate any ’non-native’ ring arithmetics inside any fixed, large prime field. In section 6 we show how to
use those compilers to build a more prover efficient, commit-and-prove SNARK for SIMD computations.
Finally we provide detailed implementation and evaluation in section 8.

4 First Technique: CRT Packing
In this section we build on an information theoretic technique called CRT packing and show how to
apply this technique so as to design a better frontend compiler for any computation that is data-parallel
(SIMD). We first illustrate using a toy example, and then move to the general case. The resulting
frontend, although drastically improved over naive frontend, raises a concern of backend-compatibility
as we will discuss lastly.

4.1 CRT Packing
Intuitively, our starting point is to develop an efficient, information theoretic mechanism which allows
to ’pack’ several small, distinct prime fields into one big arithmetic ring, such that those individual field
arithmetic behavior can all be explained by single behavior of the final ring. Thankfully, CRT provides
exactly such mechanism we’re looking for.

4.2 A Toy Example
Consider the following SIMD computation C which computes the XOR of two length ℓ bit strings:
x ∈ {0, 1}ℓ, y ∈ {0, 1}ℓ : C(x,y) → z = x ⊕ y ∈ {0, 1}ℓ. We can view the computation C as ℓ
parallel executions of the sub-computation G which outputs two-bitwise XOR: xi ∈ {0, 1}, yi ∈ {0, 1} :
G(xi, yi)→ zi = xi ⊕ yi ∈ {0, 1}. In order to check the correctness of computation C, we could naively
check all G(xi, yi)’s are computed correctly. More specifically, we build an arithmetic EQC for each
sub-computation Gi on input wires (xi, yi): It first enforces all wires to be binary (i.e. they are all in
{0, 1}), and then it checks that the output wire is the XOR of input wires. This circuit representation
can be arithmetically described by the following wire constraints:

• x2
i − xi = 0; (Which enforces xi to be binary.)

• y2i − yi = 0; z2i − zi = 0;

• xi + yi − 2xi · yi = zi. (Which enforces zi = xi ⊕ yi.)

Notice that these constraints are implicitly defined over the whole integer ring. Nonetheless, observe
that it is also sufficient to ask these constraints to hold over any prime field Fp where p ≥ 2. This is
because the first three constraints implicitly ensure that all of x1, y1, z1 ≤ 1 whenever p ≥ 2. Therefore
x1 + y1 − 2x1 · y1 ≤ 2 ≤ p. In other words, if the fourth constraint holds over Fp, then it already holds
over the integers as there are no ’wrap around’ happening over Fp.

In order to express the correctness of all copies of Gi into some EQC, one can simply repeat the above
wiring constraints for each copy Gi(xi, yi). This naive approach yields an EQC consisting of 4ℓ wire
constraints defined over Fp.

8

Can we do better than this? Indeed, recall that if we have ℓ different prime fields and they all perform the
same arithmetic operation, then CRT allows us to reduce them into just one single arithmetic operation.
This suggests a natural way to pack all the ℓ EQCs together. For each i ∈ [ℓ], we will pick a different
prime number (for example, we pick q1 = 2, q2 = 3, and so on). Then we ’lift’ the ith EQC into its
respective field by defining the ith set of wiring constraints over the prime field Fqi . Importantly, since
each qi ≥ 2, the lifted ith EQC still represents the correct execution of Gi.

Let q be the product of those ℓ primes. We are ready to ’pack’ all of ℓ EQCs together: firstly we pack
their the input/outputs: Let’s use the interface CRT.Pack(x1, . . . , xℓ) → x ∈ Zq to denote the CRT
packing for all the xis, and similarly for yis → y and zis → z. Now consider the following ’packed’
EQC with respect to three ’packed’ input/output values defined over the ’packed’ ring Zq. Due to CRT
isomorphism, if these packed wire values (x, y, z ∈ Zq) satisfy the above EQC, then for each i ∈ [ℓ], we
must have those unpacked values (xi = x mod qi, yi = y mod qi, zi = z mod qi) satisfying the same
EQC defined over individual prime field Fqi . That is to say, it must hold that G(xi, yi) = zi for all i.

To briefly summarize what we have done so far, compared to the naive method of constructing ℓ EQCs,
we packed all of them into one single EQC at the expense of expanding the field (in fact, the ring)
where this EQC is defined over. Due to CRT isomorphism, the packed EQC is information theoretically
equivalent to having all previous ℓ EQCs. Nonetheless it enjoys ℓ× less wiring constraints.

4.3 Handling General SIMD Computations
We now design a frontend compiler which can pack general SIMD computations. Let’s consider any
SIMD computation C(x1, . . . , xℓ) = (G(x1), . . . , G(xℓ)).

Again, we first represent those subcomputations in their EQCs. For ease of implementation and ex-
plaining, from now on we only work with R1CS-type EQC. Let’s apply an R1CS-type EQC compiler
on G, which outputs some instance XG = (Fp, AG, BG, CG, io = ⊥,m, n). For each sub-computation
i ∈ [ℓ] with input xi, let yi be its alleged output. We denote by XGi where we substitute the empty
input/output values io with the corresponding value (xi, yi): That is, ioi = xi||yi. It follows that XGi

encodes the correctness (or satisfiability) of the sub-computation G over input value xi and output yi.

In order to enable ’lifting’ each instance XGi into a separate prime field, we additionally require the above
compiler to be p-satisfiable2. This guarantees that ’lifting’ won’t hurt the encoded correctness/satisfi-
ability condition of R1CS so long as the lifted prime field is larger than Fp.

Now let wi be prover’s alleged witness for the ith R1CS instance XGi . Let zi = (1, ioi, wi) ∈ Zn+1
k be its

extended witness vector.

We want to use CRT packing to pack all instances {XGi}i∈[ℓ] into just one instance. To achieve this, first
choose ℓ smallest different prime numbers (q1, . . . , qℓ) such that each qi ≥ p , and let q =

∏ℓ
i=1 qi. Then

pack the input/outputs as ioC = CRT.Pack(io1, . . . , ioℓ), and similarly pack all (extended) witness into
(wC , zC). Notice that zC = (1, ioC , wC). Finally define the packed instance as XC = (Zq, AG, BG, CG,
ioC ,m, n).

Observe that due to CRT isomorphism, we have:

∃ wC : (AG · zC) ◦ (BG · zC) = CG · zC over Fq

if and only if
∀i ∈ [ℓ], ∃ wi : (AG · zi) ◦ (BG · zi) = CG · zi over Fqi .

Moreover, due to p-satisfiability, this implies the second part also holds over Fp. In other words, the
packed instance XC is satisfiable if and only if all instances {XGi}i∈[ℓ] are satisfiable. As a result, XC

indeed encodes the satisfiability of the whole SIMD computation C.

Acute readers may already observe that as the number of packed EQC grows, the size of ring Zq also
increases. Jumping ahead, due to some size restriction of Zq, we cannot continue packing at some point.

2As we will discuss in section 5, this compiler also needs to be k-bounded.

9

For this reason we will first fix a maximum quantity for packing, and from now on we refer to this as
the packing factor, denoted by ℓ. For general SIMD computation C consisting of N total copies of G,
we will split them into N/ℓ batches, and apply packing to each batch.

In figure 1 we formalize the above packing technique into a frontend compiler. We slightly abuse our
previous notation and still denote it by CRT.Pack. It takes as input ℓ × R1CS instances, where each
instance is assumed to be outputted by some k-bounded and p-satisfiable R1CS-type EQC compiler. It
outputs one single packed R1CS instance.

CRT.Pack(XG1 , . . . ,XGℓ)

1. For i ∈ [ℓ], parse XGi = (Fp, AG, BG, CG, ioi,m, n).
2. Choose ℓ smallest different prime numbers (q1, . . . , qℓ) such that each qi ≥ p. Let q =

∏ℓ
i=1 qi.

3. Pack the input/output values {ioi}i∈[ℓ] via CRT packing: CRT.Pack({ioi}i∈[ℓ])→ io.
4. Output Xq

C = (Zq, AG, BG, CG, io,m, n).

Figure 1: CRT.Pack Compiler for SIMD Instances

4.4 Ensuring Backend Compatibility
The aforementioned frontend compiler for SIMD almost yields an ’improved’ frontend. More specifically,
for any SIMD computation, the compiler yields an R1CS instance whose size is ℓ times smaller than that
of the naive method.

The only caveat now is that the resulting frontend instance XC is defined over some specifically chosen
ring Zq, whereas most backends only works with a fixed prime field Fp∗ . As a result, despite we have
an improved instance XC after CRT packing, we don’t have any SNARK backends which can be used to
prove the satisfiability of such instance. That is to say, we now face a backend compatibility issue.

In fact, the difficulty we’re facing is to prove arithmetic operations that are ’non-native’ to the backend
field. This turns out to be one of major annoying issues in SNARKs. Although some existing solutions
have been proposed to deal with this, none of them is efficient. Some utilize bit decomposition, such
as [KPS18], but this introduces a large number of constraints, thus jeopardize efficiency. Others utilize
certain special ring encodings, such as [GNSV21], but has to give up an desirable SNARK feature called
public verifiablity and still poses many constraints onto the backend. The bottom line is, using any of
those solutions, we will immediately give up all the efficiency gain we’ve achieved through packing.

5 Second Technique: Fast Ring Emulation
Our second contribution is to propose an efficient solution to above problem. We call such technique
Fast Ring Emulation. As the name suggests, it allows the prover to quickly ’emulate’ the arithmetic
behaviors of some non-native ring, such as Zq in our example, inside a fixed prime field Fp∗ . The core of
such technique is an information theoretic, ”degree-2 homomorphic” embedding scheme: It allows the
prover to embed an element of Zq inside a (potentially non-unique) element of Zp∗ . Furthermore, due
to a degree-2 homomorphism, the prover can efficiently emulate any degree-2, Zq arithmetic operations
which involve any finite number of additions/constant multiplications, or one single multiplication in
Zq, so long as size restriction q <<

√
p∗ holds. Crucially, the aforementioned operations are considered

to be ’R1CS-complete’ since such EQC is exactly degree-2.

5.1 A Toy Example
Let’s again start with a toy example: Suppose the prover holds three witness values (a, b, c) and wants
to prove some constraint relation a · b = c over Zq. This corresponds to the modulo arithmetic relation
a·b = c mod q. On the other hand, the native arithmetics are over Fp∗ , hence enforcing above constraint
implicitly mod p∗. Readers may already notice that even if a·b = c holds over Zq, it does not necessarily
imply that a · b = c mod p∗. This becomes an issue even for an honest prover! In order to help honest

10

provers, let’s allow the prover to supply an additional shift value k and instead prove that a · b = c+ k · q
mod p∗. Notice that honest prover can always find shift k such that a · b = c + k · q is true over the
integers, hence also true over Fp∗ . Nonetheless, a dishonest prover may pick a ’cheating’ shift value k′

such that even if a · b ̸= c mod q, the relation a · b = c+ k′ · q mod p∗ still holds!

To circumvent all those problems, we will in fact use a different representation of Fp∗ elements, called
rational representatives. This notion has been used in early literature [FS01] and more recently leveraged
to build efficient range proofs [CKLR21]. Informally, we say that an element a ∈ Fp∗ can be represented
by a rational a1

a2
if it holds that a = a1

a2
mod p∗. For the sake of simplicity let’s assume for now that p∗

must be a prime so that this relation is always well-defined. We defer all related concepts about rational
representatives to section 5.2.

Recall that prover has witness values (a, b, c, k). Since the native field is Fp∗ , we must consider all of
them to be Fp∗ elements. Let’s see what happens when substituting those elements with their rational
representatives in the previous constraint relation:

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q mod p∗,

Now observe the following: If all these rational representatives admit small numerators and small de-
nominators (e.g. (a1, a2, b1, . . .) are relatively small), then this arithmetic relation indeed holds over the
field of rational numbers, instead of just holding over modulo p∗. To see this, notice that we can first
multiply both the left and right hand sides by the LCM of denominators, which yields:

a1 · b1 · c2 · k2 = c1 · a2 · b2 · k2 + k1 · a2 · b2 · c2 · q mod p∗.

Since each individual variables are assumed to be small, the product of them should still be small. As
long we we have max(a1 · b1 · c2 ·k2, c1 ·a2 · b2 ·k2+k1 ·a2 · b2 · c2 · q) < p∗, then in fact the above equation
holds over the integers!

a1 · b1 · c2 · k2 = c1 · a2 · b2 · k2 + k1 · a2 · b2 · c2 · q .

At this point we can divide back the previous LCM, and get

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q.

The key take away so far is the following: whenever the prover utilizes rational representatives that
have small numerators and denominators, then she can completely get rid of the dependence on the
field Fp∗ . Whatever relations the prover manages to prove using those representatives, those relations
must hold unconditionally over the rational numbers. The same observation has also been made in
[CGKR22, GJJZ22] for the purpose of proving relations over rational numbers.

In this work, we take one step further: On top of viewing them as rational relations, we again treat those
rational numbers as elements from a ’different’ ring. Since the eventual goal of prover is to prove relations
over Zq, let’s conceptually view these rational numbers again as rational representatives, nonetheless of
Zq elements instead of Zp∗ elements. This is equivalent to taking this equation over modulo q. Let’s
assume for now that q is also a prime for simplicity. Concretely, let a′ = a1

a2
mod q (similarly for b, c, k),

then it holds that:
a′ = b′ · c′ mod q,

That is to say, the prover conceptually manages to prove the relation a′ = b′ · c′ over Zq, despite that
her witness values (a, b, c, k) are all in fact elements from Fp∗ .

To summarize, whenever the prover utilizes Fp∗ elements (a, b, c, k) such that they admit rational repre-
sentatives where the denominators and numerators are sufficiently small (we will call such representatives
bounded rational representatives), then in fact we can view these elements as embedded Zq elements.
Furthermore, this embedding is ”somewhat homomorphic”: Arithmetic operations over Fp∗ elements
correspond to the same operations over their embedded Zq elements. This homomorphism thus allows
the prover to emulate the behavior of non-native ring Zq inside Fp∗ . However, as we will see later,

11

multiplicative homomorphism comes at the expense of ensuring a sufficient gap between q and p∗. In
order to maximize our packing factor, we will only allow one multiplication to be emulated, which is still
sufficient for degree-2 constraint system like R1CS.

Importantly, honest provers can safely use Zq elements to prove this relation since any element a ∈ Zq

can be trivially written as its representative a
1 . Since we assume a < q << p∗, this representative is

indeed a bounded rational, thus allowed to be used. In other words, such embedding creates no overheads
for honest provers.

Enforcing Bounded Rationals with Batch-PoSO Recall that in order for aforementioned embed-
ding technique to work, we need to ensure that the prover’s witness values only consist of Fp∗ elements
which can be represented by bounded rationals. For example, when working with F7, if we demand ra-
tionals with numerator and denominator both be bounded by [−1, 1], then the element (2, 3, 4, 5) can not
be represented by such rationals. To enforce bounded rationals, we rely on a recent information the-
oretic technique called Batch Proof-of-Short-Opening (batch-PoSO) [CGKR22, GJJZ22]. Informally,
let w ∈ Fn

p∗ be prover’s witness vector. Batch-PoSO uses the following test procedure: Sample a short
random vector r where each entry is small. Then check if the inner product < r,w > is a small value.
Intuitively, since an honest prover will only use ’trivial’ rational representative with small numerator
and ′1′ being the denominator, this inner product should remain small. On the other hand, if the inner
product is small with high probability, then by averaging argument, for each index i ∈ [n], there must
exist two short vectors that only differ at the ith index such that their inner products with z are both
small. Thus one can extract each z[i] as a bounded fraction by taking the difference. We defer the details
and security proofs of this protocol to section 5.3.

Enforcing Well-defined Rationals Lastly, since our CRT packing mandates q to be a composite
number, the rational representatives of Zq are not all well-defined due to lack of inverse. To prevent a
dishonest prover from taking such advantage, we make another simple observation: So long as the de-
nominator is sufficiently bounded such that it’s less than the smallest divisor of q, then the corresponding
rational must be well-defined. Therefore, Batch-PoSO can also be used to enforce well-defined rationals.
We defer the details to lemma 5.4.

5.2 Related Concepts of Rational Representative
Consider the prime field Fp. Other than the usual way to represent its elements: [0, p− 1], one can also
represent them as a set of rational numbers. We take the following definition of rational representatives
from [CKLR21, CGKR22]:

Definition 5.1 (Rational Representative). Let Q be the set of rationals (we always assume the numerator
and denominator are coprime), that is:

Q =
{n

d
| n, d ∈ Z, gcd(n, d) = 1

}
Then for any element x ∈ Fp, we say that x is represented by some rational n

d ∈ Q if it holds that
x = n · d−1 mod p.

Note that for each x ∈ Fp, it can have multiple rational representatives.

One can also generalize this notion to any quotient ring Zq, where q is not necessarily a prime number.
In this case we must restrict ourselves to the set of rational numbers whose denominators are invertible
modulo q, thus being well-defined.

Definition 5.2 (q−Invertible Rational Representative). Let Qq be the following set of rationals:

Qq =
{n

d
| n, d ∈ Z, gcd(n, d) = 1, gcd(q, d) = 1

}
Then for any value x ∈ Zq, we say that x is represented by the rational n

d ∈ Qq if x = n · d−1 mod q.

Another useful set of rational representatives, as hinted in the previous section, are the set of rationals
with small denominators and numerators:

12

Definition 5.3 (Bounded Rational Representative). The set of bounded rational QN,D ⊆ Q contains all
the rationals whose numerator is bounded by N and denominator bounded by D, that is:

QN,D =
{n

d
⊆ Q | |n| ≤ N, |d| ≤ D

}
⊆ Q.

Bounded Representative Is All You Need We make a simple observation of the following rela-
tionship between the set Qq and QN,D:

Lemma 5.4 (Criterion for q-invertible). Let qmin be the smallest divisor of q. If D < qmin, then all
rationals in QN,D are also q-invertible. In other words, we have QN,D ⊆ Qq.

Proof. Since any denominator smaller than qmin must be coprime to q, the corresponding rational number
must be q-invertible. Jumping ahead, in our setting we only consider q whose smallest divisor is still
”relatively large”.

Now we slightly abuse the notation: For x ∈ Fp∗ , we denote by x ∈ QN,D if there is a representative
in QN,D of x. Recall that in our application we want to enforce the prover to only use a set of Fp∗

elements such that their representatives are bounded. Furthermore, those elements are given as a vector
commitment. In general, we ask the following question: For any choice of (N,D), and for any vector of
elements z ∈ Fn

p∗ given as its commitment: c← Commit(ck, z), how can we design a test which enforces
that this committed vector satisfies z ⊆ QN,D?

5.3 Proof of Short Opening (PoSO)
In [CKLR21] and subsequent works [CGKR22, GJJZ22], the authors provide a solution to the above
question with a one-round commit-and-prove protocol called Batch Proof of Short Opening (Batch-
PoSO). The name arises from the fact that the proof shows the existence of some ’short’ (bounded)
rational representative that can be used to open the committed vector, hence short opening. More
formally, it is a commit-and-prove protocol for the following gap language (LR,1, LN,D):

• A vector z ∈ Zn
p∗ is said to be in the language LR,1 if z ⊆ QR,1.

• A vector z ∈ Zn
p∗ is said to be in the language LN,D if z ⊆ QN,D.

In the setting of gap language, we require the verifier to always accept all instance in LR,1, and reject all
instance not in LN,D with high probability. Intuitively, when the ring to be emulated is chosen to be Zq,
we will just set R = q << N . This ensures that all elements of emulated ring belong to the accepting
instance, which helps an honest prover to always succeed in the protocol.

Overview Before presenting the details of batch-PoSO, we first present a high level overview. It is
an one-round interactive protocol which builds on top of any commit-and-prove SNARK as follows:
Let c = Commit(z) be the committed vector which the prover first sends the verifier. Upon seeing the
commitment, verifier will send a short random vector r ∈ Zn

p∗ such that each entry r[i] is small (i.e.
∀i ∈ [n], r[i] ∈ [0, D)). The prover then uses the commit-and-prove SNARK to produce a proof attesting
the statement that v :=< z · r > over Fp∗ , with respect to the committed witness z. Notice that this
relation is over the native field Fp∗ , hence it can be directly proved. The verifier then accepts if SNARK
proof is valid and also v ∈ [N]. The formal description of Batch-PoSO protocol is provided in figure 2.

5.3.1 Security proof for Batch-PoSO

We prove that the Batch-PoSO protocol described in figure 2 satisfies completeness and soundness via
the following two claims:

Claim 5.5 (Completeness of Batch-PoSO). Whenever N ≥ R · D · n, the above Batch-PoSO satisfies
completeness.

Proof. It is easy to see that if for each i ∈ [n], z[i] ∈ [R], then v := (< z · r >) < (R ·D · n) ≤ N . Thus
v ∈ [N] and the verifier will always accept.

13

Batch-PoSO: A Commit-and-Prove Construction
• Ingredients: Let (Gen,Prove,Verify) be a commit-and-prove SNARK with respect to some

vector commitment scheme (KeyGen,Commit) with native field Fp∗ .
• Instance and Language: The prover holds some vector z ∈ Zn

p∗ and its commitment
c = Commit(ck, z). The gap language (LR,1, LN,D) is parametrized by (R,N,D).

• Protocol Description:
1. The prover sends commitment c to the verifier.
2. The verifier samples r ∈ Zn

p∗ such that each entry r[i] is small (i.e. ∀i ∈ [n], r[i] ∈ [0, D)),
and then sends them to the prover.

3. The prover and verifier define the relation R∗((r, v), z) = 1 ⇐⇒ v :=< z · r >, and
then prove the instance (r, v) in this relation as follows:

– Prover and verifier convert the above relation into following R1CS relation: XPoSO =
(Fp∗ , A,B,C, io = [1, v], 1, n + 1), where A = [r[1], . . . , r[n], 0, 0], B = [0, . . . , 0, 1]
and C = [0, . . . , 1, 0].

– The prover uses the commit-and-prove SNARK to produce a proof π attesting that
RR1CS(XPoSO, z) = 1 ∧ c = Commit(ck, z).

4. The verifier checks that π is a valid proof and v ∈ [N]. If so, the verifier accepts,
otherwise it rejects.

Figure 2: Description of Batch-PoSO.

Claim 5.6 (Soundness of Batch-PoSO). For any fixed constant N , and for any {zi}i∈[n] with zi ∈ Fp∗

for each i, if

Pr

[
r1, r2, . . . , rn ← [0, D) :

n∑
i=1

ri · zi ∈ [N]

]
> 1/D,

then for each i, there exists two integers zi,1 ∈ [−N,N] and zi,2 ∈ [1, D] such that zi = zi,1
zi,2

mod p∗.

As a consequence of this claim, the soundness error of Batch-PoSO is at most 1/D plus the soundness
error of the underlying commit-and-prove SNARK.

Proof. The proof relies on probabilistic method. More specifically, since we have:

Pr
r1,r2,...,rn←[0,D)

[
n∑

i=1

ri · zi ∈ [N]

]
> 1/D,

by averaging argument, for each i ∈ [n], there must exist (r∗1 , r∗2 , . . . , r∗i−1, r∗i+1, . . . , r
∗
n) such that

Pr
ri←[0,D)

 n∑
j ̸=i

r∗j · zj + ri · zi ∈ [N]

 > 1/D.

Since there are only D choices of ri, there exists r1i , r2i ∈ [0, D), (r1i > r2i) such that
n∑

j ̸=i

r∗j · zj + r1i · zi ∈ [N]
∧ n∑

j ̸=i

r∗j · zj + r2i · zi ∈ [N].

Now we set zi,2 := r1i − r2i ∈ [1, D), and set

zi,1 :=

 n∑
j ̸=i

r∗j · zj + r1i · zi

−
 n∑

j ̸=i

r∗j · zj + r2i · zi


as the difference between previous two sums. Notice that zi,1 ∈ [−N,N]. Now observe that zi =

zi,1
zi,2

mod p∗, where zi,1 ∈ [−N,N], zi,2 ∈ [1, D] as desired.

14

Due to one technicality of our frontend, we also prove a stronger statement regarding the least common
multiple of all the denominators of those rationals in appendix section 9.1.

5.4 FRE: Bringing Fast Ring Emulation into Frontend
In this section we show how to incorporate fast ring emulation technique into any frontends involving
arithmetic in some non-native field. In particular, let Xq be some R1CS instance defined over some non-
native ring Zq. We design a compiler such that it compiles Xq into another instance Xp∗ which is defined
over the native field Fp∗ . Importantly, we require that Xp∗ inherits the same satisfiability condition as
Xq with high probability. We call such compiler Fast Ring Emulator (FRE).

Workflow At a high level, FRE is a two-stage compiler that is designed to work with any commit-and-
prove SNARKs. The first stage of FRE is denoted by FRE.Fit: It takes as input some ’non-native’ instance
Xq, and outputs a native instance Xp∗

Fit. This is done by ’fitting’ each constraint over Zq into another
constraint over Fp∗ . As a result, if Xq is satisfiable, then Xp∗

Fit must also be satisfiable. Nonetheless, the
reverse implication does not necessarily hold.

After applying the first stage of FRE, the prover will compute all witness values for Xp∗

Fit, and then
commit to its extended witness using the associated vector commitment scheme. Upon receiving the
commitment, we will proceed to the second stage of FRE, which we denote by FRE.Emulate: It takes
as input the previous instance Xp∗

Fit and outputs a final instance Xp∗

Emulate. This instance shares the same
witness value as that being previously committed. Importantly, we have the guarantee that Xp∗

Emulate is
satisfiable over Fp∗ if and only if Xq is satisfiable over Zq, except with negligible probability. Now the
prover can just use the commit-and-prove SNARK to show that Xp∗

Emulate is satisfiable with respect to the
committed witness.

We now give an overview of details in each stage.

Fitting Stage: In this stage, we will add a shift value to each constraint so as to help the honest provers
proving those constraint relations. For example, recall that in the toy example, in order for honest prover
to prove a · b = c mod q, we allow for a shift k and modify the constraint to be a · b = c+ k · q mod p∗.
The full description of FRE.Fit is provided in figure 3.

FRE.Fit(Xq)
1. Parse Xq = (Zq, A,B,C, io,m, n).
2. Let A′ = A||diagm(0), B′ = B||diagm(0), C ′ = C||diagm(q).
3. Output Xp∗

Fit = (Fp∗ , A′, B′, C ′, io,m, (n+m)).

Figure 3: Fitting Stage of FRE

Emulating Stage: Intuitively, the goal of second stage is to ensure that the witness values being
committed after the first stage are all valid embeddings of Zq elements. As discussed in section 5.2, this
is equivalent to enforcing all witness values to be some bounded rational representatives, which can be
done via Batch-PoSO protocol. Therefore, we will augment the previous instance Xp∗

Fit to incorporate all
the new R1CS constraints involved in this protocol. This is achieved through the following steps:

1. First, we set the parameters for Batch-PoSO.

2. Then sample some short random vector as specified by the protocol.

3. Let XPoSO be the corresponding R1CS instance of Batch-PoSO, as described in figure 2.

4. Recall that at the end of Batch-PoSO, it is required that the verifier checks that the claimed result
of inner product is small. This check will be incorporated into the final XPoSO instance in the form
of range proof constraints. Notice that we only need one single range proof.

5. Now augment instance Xp∗

Fit to incorporate XPoSO.

15

Finally, since a single invocation of Batch-PoSO incurs statistical soundness error 1/D, we will repeat
those constraints λ/ log(D) times to achieve negligible soundness error. The description of FRE.Emulate
is provided in figure 4.

FRE.Emulate(Xp∗

Fit)

1. Parse Xp∗

Fit = (Fp∗ , A′, B′, C ′, io,m, (n+m)).
2. Set PoSO parameters:

Let qmin be the smallest divisor of q. Define the gap language (LR,1, LN,D), where R = q,
D = qmin − 1, N = q · (qmin − 1) · (m+ n).

3. Incorporate λ/ log(D) Batch-PoSO:
(a) Sample r = r1|| . . . ||rλ/ log(D), where each rj ← [0, D)(m+n).
(b) Add PoSO Constraints: Define instance XPoSO = (Fp∗A,B,C, io = ⊥, λ/ log(D),m+n),

where A =

 r1||0||0
. . .

rλ/ log(p)||0||0

, B =

0 . . . ||0||1. . .
0 . . . ||0||1

 and C =

0 . . . ||1||0. . .
0 . . . ||1||0

.
(c) Add Range Proof Constraints: Let vj :=< z · rj > for all i ∈ [λ/ log(D)]. To enforce

vj < N , we use bit-decomposition method, informally:
i. For each entry vj , we denote by b1, . . . , blog(N) its bit-decomposition. Now add

following constraints to XPoSO:
ii. Add the R1CS constraint that b2i − bi = 0 for each bit bi, which enforces bi take

binary values.
iii. Add the R1CS constraint that vj =

∑log(N)
i=1 2i · bi, which shows the correct bit-

decomposition.
4. Augment Xp∗

Fit:
Output Xp∗

Emulate as the vertical matrix-wise concatenation of Xp∗

Fit and XPoSO.

Figure 4: Emulating Stage of FRE

6 More Efficient zk-SNARK for SIMD Computations
To recap our discussion so far, in section 4 and 5 we introduced two information theoretic frontend
compilers:

• Packing compiler CRT.Pack: For any SIMD computations, it packs many copies of R1CS instances
into one single instance. Nonetheless the packed instance is defined over some non-native ring Zq.

• Fast Ring Emulator (FRE.Fit,FRE.Emulate): It compiles any non-native instance Xq into a na-
tive instance Xp∗ . The compilation process is two-stage and works with any commit-and-prove
SNARKs.

In this section we illustrate how to combine those two frontend compilers to build more efficient SNARK
frontend for SIMD computations. We instantiate such frontend with commit-and-prove SNARKs as
backends, thus obtaining more efficient commit-and-prove SNARK for all SIMD computations.

Let’s again suppose the SIMD computation C consist of N identical copies of the sub-computation G.
Let ℓ be our packing factor, we will split these N copies into N/ℓ batches, each batch consisting of ℓ
copies. Below we describe the commit-and-prove SNARK for each batch.

Required Frontend/Backend Compilers:

• A k-bounded and p-satisfiable R1CS-type EQC compiler.

• The packing compiler CRT.Pack and fast ring emulator FRE.

• A commit-and-prove SNARK backend with respect to some vector commitment scheme (KeyGen,Commit)
with native field Fp∗ .

16

Preprocessing Phase:

1. For i ∈ [ℓ], apply the EQC compiler to the programG with ith input ioi, and let XGi = (AG, BG, CG,
ioi,m, n) be the resulting R1CS instance.

2. Apply Packing Compiler:
Let Xq

C ← CRT.Pack(XG1 , . . . ,XGℓ) be the packed instance.

3. FRE Fitting Stage:
First assert that k · p2 · (q · (m+ n))2 < p∗. Then let Xp∗

Fit ← FRE.Fit(Xq
C) be the fitted instance.

Commit-and-Prove Phase:

1. Prepare Witness Values:

• Let zi be the extended witness for XGi . Prover packs these values as z = CRT.Pack(z1, . . . , zℓ).

• Prover then computes a shift vector k ∈ Zm
q such that (A′G · z||k) ◦ (B′G · z||k) = (C ′G · z||k)

holds over the integers. Now reset the extended witness as z = z||k.

2. Commit Phase:
Prover commits to extended witness as c := Commit(ck, z||k).

3. FRE Emulating Stage:
Both prover and verifier apply Xp∗

Emulate ← FRE.Emulate(Xp∗

Fit).

4. Prove Phase:
The prover uses the commit-and-prove SNARK to produce a proof π attesting thatRR1CS(Xp∗

Emulate, z||k) =
1 ∧ c = Commit(ck, z||k)3.

Fiat-Shamir Transform One caveat in the above protocol is that in the FRE emulating stage, the
compiler needs to sample random vectors for Batch-PoSO. To make the prover and verifier agree on the
randomness, we will instantiate the Fiat-Shamir transform by setting the randomness as the output of a
cryptographic hash functions, which takes as input the previous commitment of prover’s witness vector.
The security can be proved in the random oracle model.

Security Proofs We defer the security proofs to appendix section 9.2.

Efficiency Gain Recall that R1CS frontend size is determined by the dimension of the matrices, and
the number of non-zero entries in these matrices. For ease of illustration, here let’s just consider the
dimension. Without applying CRT.Pack and FRE, the naive R1CS frontend XG1 , . . . ,XGℓ has dimension
ℓ × (m × n). Applying CRT.Pack and FRE yields a R1CS frontend Xp∗

Emulate with dimension roughly
(m + O(λ)) × (m + n). Therefore we have a dimension reduction of O(ℓ) as a result of applying those
frontend compilers. We refer the reads to implementation section 8 for actual numbers obtained from
concrete instances.

Succinct Verification The aforementioned construction is almost a commit-and-prove SNARK, ex-
cept that the verification is not succinct. More specifically, this is due to the emulating stage of FRE: It
involves sampling a random vector as long as the prover’s witness size, then feeding it to a Batch-PoSO
instance XPoSO, and finally concatenating the instance with Xp∗

Fit. To deal with the this issue, we propose
two modifications to FRE:

1. Instead of sampling a long random vector, we show how to reuse a short random vector while
achieving the same statistical soundness error.

3In fact, the witness vector will be appended with additional witness involved in the range proof constraints in Xp∗

Emulate.
The prover will commit to this additional witness as well and combine it with old commitment value c using the homo-
morphism in the vector commitment.

17

2. We notice that in almost all commit-and-prove SNARKs, the verifier only needs a vector commit-
ment of any R1CS instance. Furthermore, this commitment scheme is additively homomorphic.
This allows us to design a fast augmentation technique which enables quickly preparing the com-
mitment instance XPoSO, and concatenating it with commitment of Xp∗

Fit.

As a result of those two modifications, the verifier runtime only depends on λ, hence becoming succinct.
We refer the readers to section 9.3 for more details.

Honest Verifier Zero-knowledge: If the underlying commit-and-prove SNARK satisfies honest ver-
ifier zero-knowledge, then so is our protocol.

7 Beyond SIMD: Highly Repetitive Computations
The aforementioned frontend compilers can be easily modified so as to support any highly repetitive
computations. We again start with a simple example: Consider the incremental computation C(x) =
G(G . . .G(x))︸ ︷︷ ︸

ℓ times

. Let’s further denote by xi the input to the ith iteration of sub-computation G and yi the

corresponding output. That is, G(xi) = yi. Notice that due to the iterative structure, it is require that
xi = yi−1 for all i ∈ [ℓ].

In the paradigm of EQC, let’s add the following existentially quantified wire values {(xi, yi)}i∈[ℓ]. Then
we can equivalently view the EQC of incremental computation as a SIMD-type EQC, plus additional
consistency constraints:

• Consider the EQC for SIMD computation C ′(x1, . . . , xℓ) : (y1 = G(x1), . . . , yℓ = G(xℓ)). For this
component, we can use again use the packing compiler to pack all the ℓ × R1CS instance into
Xq

C ← CRT.Pack(XG1 , . . . ,XGℓ).

• Now let’s add constraints to Xq
C which enforces consistency between transitions from output value

yi to input value xi+1. However, since both values are packed, we must first unpack these values
by adding the following:

– Unpacking Constraints: x =
∑ℓ

i=1 xi ·λi, where λi’s are apriori fixed Lagrange coefficients
as defined in section 2.1. Similarly we add these unpacking constraints for y.

– Consistency Constraints: xi = yi−1 ∀i ∈ [ℓ].

For any other highly repetitive computations, we can adopt similar methodology by adding these un-
packing constraints and certain consistency constraints which enforce correct relationship between inter-
mediate wire values.

8 Implementations and Evaluations
We implement our improved frontend compilers and evaluate its performance when instantiating with
suitable commit-and-prove SNARK backends. Pursuing an application-level impact, we select SHA2-256
and SHA3-512 (keccak) instances used in Type-I zk-EVM projects for benchmarking our performance.

8.1 Experiment I: SHA2 and Keccak Speedup with Marlin
In this experiment we benchmark our frontend compiler as follows: We use SHA2-256 and SHA3-512
R1CS instances that are obtained from the circomlib package and github library. To further ensure that
those instances are k-bounded, we make non-black box usage of circom’s code to modify those instances
to ensure smallness of all matrix and witness entries. The experiment is taken over N = (12, 48, 96, 192)
of repeated copies of SHA2/SHA3 instances. For our method, we choose certain optimal packing factor ℓ,
then apply our frontend compiler to output those N/ℓ packed instances as the frontend. For the baseline
method, we consider the naive frontend compiler which directly outputs N instances in the library.

18

https://vitalik.ca/general/2022/08/04/zkevm.html
https://github.com/vocdoni/keccak256-circom

We then implement a modified version of Marlin’s commit-and-prove protocol [CHM+20] in Rust from
the Marlin backend arkworks library [ac22]. For the sake of estimating the real prover running time, we
add the additional components of the protocol, including updating the commitment of R1CS instances in
FRE.Emulate, on top of the Marlin prover. This is relatively lightweight, and the main prover cost comes
from the additional non-zero entries and constraints that are added. To estimate the verifier runtime, we
implement the verification procedure as base verification and a similar updation procedure for the R1CS
commitment in FRE.Emulate. Importantly, this is a fixed cost regardless of the instance size. Finally, we
benchmark the prover’s runtime as well as its memory usage when proving circuits output by the two
different methods above.

Hardware Setup We run this code on Amazon Linux EC2 instance (i4i.8xlarge) with 32 vCPUs and
256GB RAM. Note that we could run these programs on a machine with less memory, but this would
incur swapping memory and thus affect benchmarking accuracy.

Determine Optimal Packing Factor In all our experiments, we use the elliptic curve bls12-381
where the order of the scalar field is p∗ ≈ 2254. Recall that in the emulating stage of FRE, in order for one
single Batch-PoSO to achieve statistical soundness error of ≈ 1/p, it is required that kp2(q(m+n)2) < p∗,
where p arises from the p-satisfiability of R1CS compiler, k arises from its k-bounded property, (m,n)

are the dimension of R1CS instance, and q =
∏ℓ

i=1 qi is the product of primes used by the CRT packing
compiler with qmin > p. Thus to determine the optimal packing factor, one first needs to bound the size
of q, and then rewrites q as the product of as many distinct primes as possible, so long as all primes are
larger than p.

We notice that both SHA2-256 and SHA3-512 R1CS instances (with minor modifications) satisfy the
k-bounded property with k = 4 and p-satisfiability with p < 28. Furthermore, both instances have
dimensions satisfying (m + n) < 220. Using the condition that kp2(q(m + n)2) < p∗, one need to
constrain q < 297. As a result, we can write q as a product of at most 12 primes that are larger than p.
We set the statistical soundness error to be 2−70.4

Evaluations We report the Marlin prover runtime as well as efficiency measurements of R1CS instances
in Table 5.

Marlin SHA2-256 Packed/Baseline
Copies Ptime(s) Mem Usage(GB) Dim. Non-Zero
12 96/204 3.46/4.8 70702/350785 886336/1618752
48 301/750 12.52/18 279076/1403137 3530461/6475008
96 543/1502 24.5/34.5 558151/2806273 7060911/12950016
192 1058/3010 47.15/69.3 1116301/5612545 14121811/25900032

SHA3(Keccak) Packed/Baseline
Copies Dim. Non-Zero
12 240238 / 1790976 5461867 / 8680200
24 479414 / 3600000* 10917131 / 17300000*
36 718590 / 5400000* 16402513 / 26000000*
Nova IVC (N Steps of SHA2-256) Packed/Baseline

Steps Foldings Ptime(s) Constraints Variables
12 1/12 7.5/27.3 528766/6310452 1042870/6304344
24 2/24 13.8/51.3 1057532/12620904 2085740/12608688
48 4/48 26.1/99.6 2115064/25241808 4171480/25217376
96 8/96 51.2/196 4230128/50483616 8342960/50434752

Figure 5: Table values of prover time, memory usage, R1CS dimension (m,n), where m is number of
constraints, and n is number of variables. ”Dim” refers to max (m,n) and ”Non-zero” refers total number
of non-zero entries in A,B,C. *Estimated numbers.

4The computational soundness error is still 2−128, due to underlying elliptic curve.

19

https://aws.amazon.com/ec2/instance-types/i4i/

We obtain a final verification time of approximately 900 milliseconds, most of which is taken up by
computing the updated commitment in FRE. Specifically this corresponds to an MSM of size 10000×11,
which we fix to keep the verification time constant regardless of the instance size. This is a trade-off with
the prover time, as decreasing the PoSO size helps verification, but increases the number of constraints
and non-zero entries and affects the prover time.

The proof size of unmodified Marlin is 904 bytes, and our proof adds at most 4 additional group elements
to the proof, bringing us to a larger but constant proof size around 1KB.

8.2 Experiment II: Double Speedup with Nova
In this experiment we demonstrate that our improvement for repetitive computation is purely ’fron-
tendish’: More specifically, it does not overlap with any existing backend optimization techniques for
repetitive computations. For this purpose, we select Nova[KST22], a heavily optimized backend targeting
for incremental verifiable computation (IVC). We first give a brief overview of this scheme and show how
to integrate our frontend compilers with Nova. We refer the readers to appendix section 9.4 for overview
and corresponding implementation details.

The experiment is designed as follows: The goal is to prove an IVC consisting of N = (12, 24, 48, 96)
steps, where each step executes 20 copies of SHA2-256 instances. For our method, we split those N steps
into ℓ · (N/ℓ) steps, where ℓ = 12 is the same packing factor as in the previous experiment. Then we
pack every ℓ steps using our frontend compiler, resulting in an IVC consisting of N/ℓ steps in total. For
the baseline method, we consider the naive frontend compiler which directly outputs 20 copies per step,
for all N steps. We also benchmark the prover time to notice the effect of our improvement on the final
time. Furthermore, we benchmark the number of foldings required in Nova.

Hardware Setup We run this code on a machine with 16GB RAM and a 8-core AMD Ryzen 7 5800H
CPU.

Evaluations For each IVC of N steps (proving N computations), we report the Nova prover runtime,
the number of foldings required, as well as the total number of constraints and variables in the R1CS.
The numbers are given in table 5.

20

References
[ac22] arkworks contributors. arkworks zksnark ecosystem, 2022.

[AGL+23] Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri, and Sriram Sridhar. Dew: A
transparent constant-sized polynomial commitment scheme. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages 542–571, Cham,
2023. Springer Nature Switzerland.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
2087–2104. ACM Press, October / November 2017.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334. IEEE Computer Society Press, May
2018.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for special
sound protocols. Cryptology ePrint Archive, Paper 2023/620, 2023. https://eprint.iacr.
org/2023/620.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society
Press, May 2014.

[BCGL22] Jonathan Bootle, Alessandro Chiesa, Ziyi Guan, and Siqi Liu. Linear-time probabilistic
proofs with sublinear verification for algebraic automata over every field. Cryptology ePrint
Archive, Paper 2022/1056, 2022. https://eprint.iacr.org/2022/1056.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner.
Proof-carrying data without succinct arguments. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 681–710, Virtual Event, August 2021.
Springer, Heidelberg.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
103–128. Springer, Heidelberg, May 2019.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK com-
pilers. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Paper 2022/1355,
2022. https://eprint.iacr.org/2022/1355.

[CFKS22] Hien Chu, Dario Fiore, Dimitris Kolonelos, and Dominique Schröder. Inner product func-
tional commitments with constant-size public parameters and openings. In Clemente Galdi
and Stanislaw Jarecki, editors, Security and Cryptography for Networks, pages 639–662,
Cham, 2022. Springer International Publishing.

[CGKR22] Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, and Michael Reichle. Sharp: Short
relaxed range proofs. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 609–622. ACM Press, November 2022.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.

21

https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2022/1056
https://eprint.iacr.org/2022/1355

In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[cir] circom. https://github.com/iden3/circom.

[CKLR21] Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. Efficient range proofs
with transparent setup from bounded integer commitments. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages
247–277. Springer, Heidelberg, October 2021.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified compu-
tation with streaming interactive proofs. In Shafi Goldwasser, editor, ITCS 2012, pages
90–112. ACM, January 2012.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transpar-
ent recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidelberg, May
2020.

[FS01] Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold RSA under standard
assumptions. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 310–
330. Springer, Heidelberg, December 2001.

[GJJZ22] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang. Succinct zero knowledge
for floating point computations. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 1203–1216. ACM Press, November 2022.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, Heidelberg,
August 2008.

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby.
Brakedown: Linear-time and post-quantum snarks for r1cs. Cryptology ePrint Archive,
Paper 2021/1043, 2021. https://eprint.iacr.org/2021/1043.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press,
May 1985.

[GNSV21] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: Snarks for ring
arithmetic. Cryptology ePrint Archive, Paper 2021/322, 2021. https://eprint.iacr.org/
2021/322.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Heidelberg, May 2016.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for
lookup tables. Cryptology ePrint Archive, Paper 2020/315, 2020. https://eprint.iacr.
org/2020/315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953, 2019. https://eprint.iacr.org/2019/953.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In 24th ACM STOC, pages 723–732. ACM Press, May 1992.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press,
October 2018.

22

https://github.com/iden3/circom
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953

[KPS18] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A framework for
efficient verifiable computation. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 944–961, 2018.

[KS23] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for customizable
constraint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. https://eprint.
iacr.org/2023/573.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 359–388. Springer, Heidelberg,
August 2022.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[OBW22] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. Circ: Compiler infrastructure for proof
systems, software verification, and more. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 2248–2266, 2022.

[rol] circom.

[RZR22] Noga Ron-Zewi and Ron D. Rothblum. Proving as fast as computing: Succinct arguments
with constant prover overhead. In Proceedings of the 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2022, page 1353–1363, New York, NY, USA, 2022.
Association for Computing Machinery.

[SB23] István András Seres and Péter Burcsi. Behemoth: transparent polynomial commitment
scheme with constant opening proof size and verifier time. Cryptology ePrint Archive,
Paper 2023/670, 2023. https://eprint.iacr.org/2023/670.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 704–737. Springer, Heidelberg, August 2020.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for succinct
arguments. Cryptology ePrint Archive, Paper 2023/552, 2023. https://eprint.iacr.org/
2023/552.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 71–
89. Springer, Heidelberg, August 2013.

[Tha23] Justin Thaler. Proofs, arguments, and zero-knowledge, 2023.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Shaun Wang. Wolverine: Fast, scal-
able, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
2021 IEEE Symposium on Security and Privacy (SP), pages 1074–1091, 2021.

[WYY+22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan: Interac-
tive zero-knowledge proofs with sublinear communication. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2901–2914. ACM Press,
November 2022.

[XZC+22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia,
Dan Boneh, and Dawn Song. zkBridge: Trustless cross-chain bridges made practical. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
3003–3017. ACM Press, November 2022.

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear
prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV,
volume 13510 of LNCS, pages 299–328. Springer, Heidelberg, August 2022.

23

https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/670
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 733–764. Springer, Heidelberg, August 2019.

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and
Mark Simkin. Caulk: Lookup arguments in sublinear time. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 3121–3134. ACM Press,
November 2022.

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 159–177. ACM
Press, November 2021.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. In 2020 IEEE Symposium on
Security and Privacy, pages 859–876. IEEE Computer Society Press, May 2020.

24

9 Appendix
9.1 LCM Bound for Batch-PoSO
Lemma 9.1 (LCM bound for Batch-PoSO). Given {zi}i∈[n] and zi,1 ∈ [−N,N], zi,2 ∈ [1, D] such that
zi = zi,1 · z−1i,2 mod p∗, define L := LCM{zi,2}i∈[n]. Also suppose that L > D > 4 and that NDn < p∗.
Then, we additionally have

Pr
r1,r2,...,rn←[0,D)

[
n∑

i=1

ri · zi < N mod p∗

]
≤ 1

D
+

b

L

where b = gcd(z1, . . . , zn, L).

Importantly, when b = 1, this says that whenever the prover succeeds in the Batch-PoSO, then we must
have L < D with high probability.

Proof. Note that the condition in the probability statement above is equivalent to (for some c ∈ [N])
n∑

i=1

ri · zi = c mod p∗ =⇒
n∑

i=1

ri · zi,1
L

zi,2
= cL mod p∗

where L = LCM{zi,2}i∈[n]. Here, both LHS and RHS are lesser than p∗ (due to the condition in the
statement of the lemma), hence this equation holds over Z. We can rewrite this in the following form:

n∑
i=1

ri
zi,1
zi,2
∈ Z =⇒

n∑
i=1

rizi,1
L

zi,2
= 0 mod L

The proof is by induction. WLOG, let b = 1. If not, we can divide all coefficients and c by b, and
consider the probability mod k/b. (If c is not divisible by b, the probability is 0, which is smaller than
the required upper bound)

Consider the base case n = 1. Here,

Pr
r←[0,D)

[rz = c mod L] = Pr
r←[0,D)

[r = cz−1 mod L] ≤ 1

D
+

1

L

since z is invertible modulo L.

Suppose the statement is true for n− 1. For n, notice that

Pr
r1,r2,...,rn←[0,D)

[
n∑

i=1

ri · zi = c mod L

]
=

1

D

∑
θ←[0,D)

Pr

[
n−1∑
i=1

ri · zi = c− znθ mod L

]

Here, let b′ = gcd(z1, . . . , zn−1, L). Then, gcd(b′, zn) = b = 1. Notice that any probability term in the
above summation is zero if c− znθ is not divisible by b′. Since c− znθ is an arithmetic progression with
common difference coprime to b′, we can upper bound the number of θs for which b′ | (c− znθ) - this is
at most ⌈D/b′⌉.

25

Hence, the above summation can be bounded as

1

D

∑
θ←[0,D)

Pr
r←Dn

[
n−1∑
i=1

ri · zi = c− znθ mod L

]

≤ 1

D
·
⌈
D

b′

⌉
·
(

1

D
+

b′

L

)
<

1

D
·
(
D

b′
+ 1

)
·
(

1

D
+

b′

L

)
=

(
1

b′
+

1

D

)
·
(

1

D
+

b′

L

)
=

1

L
+

1

D

(
1

b′
+

b′

L
+

1

D

)
Notice that when L > D > 4, we have

1

b′
+

b′

L
+

1

D
<

1

2
+

2

L
+

1

D
< 1

This completes the proof.

9.2 Security Proofs of SNARK for SIMD Computations
We show that the construction of SNARK for SIMD computations described in section 6 satisfies com-
pleteness and soundness.

Completeness Suppose that all ℓ copies of the sub-computation G is executed correctly. Due to the
correctness of EQC compiler, we know that the ℓ×R1CS instances XG1 , . . . ,XGℓ are all satisfiable. Due
to the correctness of CRT packing, we must have Xq

C being a satisfiable instance. Let W be its witness.
It’s easy to see that the prover can always compute some vector k ∈ Zm

q such that (A ·z||k) ◦ (B ·z||k) =
(C · z||k) over the integers, where z = (1, io,W) ∈ Zn+1

q . Since this equation holds over the integers,
it also holds over modulo p∗. Thus the concatenated witness W||k is a valid witness for the instance
Xp∗

Fit. Furthermore, since (W||k) ∈ Z(m+n)
q and R = q, all witness values are in the language LR,1. Due

to the completeness of Batch-PoSO, XPoSO must also be a satisfiable instance with respect to witness
W||k. Therefore, the concatenated instance Xp∗

Emulate consisting of Xp∗

Fit and XPoSO, must be satisfiable
with respect to the same witness W||k. Therefore, the prover can always produce a valid SNARK proof
π using this witness.

Soundness Assuming that k · q2min · (q · (m+ n))2 < p∗, we show that this construction has soundness
error at most 1/2λ. Recall that the language LN,D is set to be D = qmin− 1, N = q · (qmin− 1) · (m+n).

Let’s first split into two cases:

• Case I: Assume the prover’s concatenated witness W||k do not belong to the language LN,D. Then
by soundness of Batch-PoSO, the prover can pass each Batch-PoSO protocol with probability at
most 1/D, thus the soundness error in this case is at most 1

D

λ/ log(D)
= 1/2λ.

• Case II: Assume the prover’s concatenated witness W||k are all in language LN,D. We argue that
if the Xp∗

Emulate is satisfiable, then all of XG1 , . . . ,XGℓ must also be satisfiable.

Since Xp∗

Emulate is satisfiable, this implies that Xp∗

Fit must also be satisfiable. Consider each constraint
i ∈ [m] in Xp∗

Fit:
A′G[i] · z ·B′G[i] · z = C ′G[i] · z+ k[i] · q mod p∗

Let z||k ∈ Zn+m
q be the extended witness vector such that z, k[i] will pass the above constraint.

Since the extended witness is also in LN,D, both z and k[i] admit representative in QN,D. We

26

slightly abuse the notation and write z1

z2
as the corresponding vector of rational representatives for

z (and similarly for k), then we have:

A′G[i] ·
z1
z2
·B′G[i] ·

z1
z2

= C ′G[i] ·
z1
z2

+
k1[i]

k2[i]
· q mod p∗

Let’s multiply both sides by LCM ’L’ of denominators, we have:

A′G[i] · z1 ·B′G[i] · z1 · L = (C ′G[i] · z1 + k1[i] · q) · L mod p∗

Let’s first examine the left hand side. Since Xp∗

Fit is also k-bounded, the value of A′G[i] ·z1 ·B′G[i] ·z1
is at most k assuming z1 ∈ Zn+1

k . In this case, we have the guarantee that z1 ∈ Zn+1
N . Therefore

this value will be blown up by at most a factor of (N/k)2. Thus we can can still bound this value
by k · (N/k)2 < k ·D · (q · (m + n))2. Similarly, the right hand side value C[i] · z1 + k1[i] · q is at
most (k + q2) ·D · (m+ n). We can always assume that left term k ·D · (q · (m+ n))2 dominates.

Furthermore, by the LCM lemma 9.1, L is at most D with all but negligible probability. As a
result, both sides of equation have value at most k ·D2 · (q · (m+n))2 < k · q2min · (q · (m+n))2 < p∗.
Therefore this equation must also hold over the integers. Let’s divide back the LCM,

A′G[i] ·
z1
z2
·B′G[i] ·

z1
z2

= C ′G[i] ·
z1
z2

+
k1[i]

k2[i]
· q

Moreover, since D = qmin − 1, by invertibility lemma 5.4, the following values are well defined:
z′ = z1

z2
mod q. Now take the above equation over the ring Zq, we have:

A′G[i] · z′ ·B′G[i] · z′ = C ′G[i] · z′ mod q

Since this is true for eacg constraint i ∈ [m], we have:

(AG · z′) ◦ (BG · z′) = CG · z′ mod q

Thus Xq
C = CRT.Pack(XG1 , . . . ,XGℓ) is satisfiable. Therefore all of XG1 , . . . ,XGℓ are satisfiable.

9.3 Succinct Verification
The construction in section 6 does not meet succinct verification. More precisely, the verifier’s running
time in this protocol is linear in the length of the prover’s witness. This is undesirable in many practical
use cases where we demand succinct verification.

We observe that the ’non-succinctness’ arises from the fact that the verifier needs to perform the following
steps in the FRE emulating stage:

1. Let’s denote by K the number of repetitions of Batch-PoSO. In this case K = λ/ log(qmin). The
verifier first needs to use hash function to generate K random vectors, each of which has length
(m+ n).

2. The verifier needs to prepare the Batch-PoSO instance XPoSO and then concatenates it with Xp∗

Fit.
The first instance has dimension K × (m+ n) and the second has dimension m× (m+ n).

For the sake of succinct verification, we want verifier’s work to be independent of both m and n. In other
words, its runtime should be p(λ) for some apriori fixed polynomial p(·).

We now explain how to modify the FRE compiler in the emulating stage so as to meet succinct verification.

1. Reusing Randomness: In the Batch-PoSO protocol, the prover holds a witness vector z of length
m + n. Instead of executing a single Batch-PoSO protocol on the vector z, we will break z into
c = m+n

p(λ) number of chunks, each chunk with size p(λ). Let z = z1|| . . . zc. Then we execute a
Batch-PoSO protocol for each chunk zi. Importantly, we sample only one random vector r ∈ Zp(λ)

D ,
and reuse this vector across all c Batch-PoSO protocols. By union bound, this incurs a soundness
error of at most c/D for the original vector z. To amplify the final soundness error to 1/2λ, we
will instead perform K = λ

log(p)−log(c) repetitions of Batch-PoSO. To conclude, the randomness
complexity can be reduced to K · p(λ) ≈ O(p(λ)).

27

2. Fast Augmentation of R1CS Instance: We suggest a fast augmentation technique to prepare,
and then concatenate Batch-PoSO instance XPoSO with Xp∗

Fit. We observe that in almost all commit-
and-prove SNARKs, the R1CS instances are given as vector commitments to the verifier, so as to
achieve holography. For example, in [CHM+20] [COS20] [Set20], the commitment of R1CS is often
done by first committing to the positions (indices) of all non-zero entries in the three (A,B,C)
matrices, and then the values of these non-zero entries. As a result we can always assume that
after the prepossessing phase, the Xp∗

Fit is given to the verifier as a succinct commitment.

Furthermore, most existing commit-and-prove SNARKs utilize a special type of vector commitment
scheme that is linearly homomorphic. This suggests a fast augmentation method as follows:

(a) During the preprocessing phase, we first commit to the positions of all non-zero entries of
XPoSO. Notice that this is doable since we can fix apriori the indices of non-zero entries of
XPoSO.

(b) Recall that the non-zero entries of XPoSO (almost) entirely depend on the random vector r.
For each repetition j ∈ [c·K], the non-zero entries have the form rj||rj|| . . . ||rj. Leveraging the
homomorphic property of vector commitments, we can generate p(λ) number of committed
masks in the preprocessing phase, where these masks take the following form:

c1 = Commit(ck, [1, 0, . . . , 0︸ ︷︷ ︸
p(λ)

, . . . 1, 0, . . . , 0︸ ︷︷ ︸
p(λ)

]),

c2 = Commit(ck, [0, 1, . . . , 0︸ ︷︷ ︸
p(λ)

, . . . 0, 1, . . . , 0︸ ︷︷ ︸
p(λ)

]),

...
cp(λ) = Commit(ck, [0, 0, . . . , 1︸ ︷︷ ︸

p(λ)

, . . . 0, 0, . . . , 1︸ ︷︷ ︸
p(λ)

]).

Now verifier can commit to the non-zero entries by computing crj =
∑p(λ)

i=1 ci · rj[i]. It thus
takes only a total of p(λ) operations to derive the commitment of a single repetition. In
order to combine the commitments of non-zero entries for all repetitions of PoSO, we again
use the homomorphic property of vector commitments. Overall, it takes the verifier O(p(λ))
operations to commit to all the non-zero entries in the instance XPoSO. Now verifier is done
with preparing the commitment of XPoSO.

(c) Finally, the verifier will concatenate the two committed instances (Xp∗

C , XPoSO) using the
homomorphism of the vector commitment.

9.4 Integration with Nova
We choose a special backend named Nova [KST22], which is a folding scheme that targets for incremental
verifiable computation (IVC). As pointed out in section 2.6, incremental computation is a common type of
highly repeititive computation. Furthermore, IVC has been extensively used in many Type-I/II zk-EVM
projects due to its ability to capture state transitions of RISC-V based machinery.

We choose Nova as our example in this section due to two reasons: Firstly, Nova (along with its following
works [BC23, KS23]) maintains the state-of-art of proving incremental computation in terms of proving
time. For this reason, its open source implementation has been deployed into certain zk-EVM projects.
Therefore a fruitful combination of Nova with our improved frontend will likely make an impact towards
further speeding up those zk-EVMs projects. Secondly, Nova also utilizes R1CS as its building block,
which makes it conceptually simpler to combine Nova with our improved frontend. With that being said,
we believe our frontend technique can be easily applied to constraint systems other than R1CS, such as
CCS, introduced in [STW23], and thus be combined with other folding schemes [BC23, KS23].

28

https://github.com/microsoft/Nova#nova-recursive-snarks-without-trusted-setup

9.4.1 A Brief Overview of Nova

Folding Scheme The core of Nova is a non-interactive folding scheme which folds two R1CS instances
into one single instance. Importantly, the folded instance should encode the satisfiability of these two
instances. Since the exact details of this scheme is irrelevant to our discussion, here we treat the non-
interactive folding scheme as a black-box, and describe its grammar in the following figure 6:

Non-interactive Folding Scheme (NIFS)
• Ingredients:

– A linearly homomorphic commitment scheme over message space Fn. For any vector
m ∈ Fn, we use m to denote the commitment of such vector.

– A hash function H (modeled as random oracle).
• Inputs:

– Let there be two R1CS instances X1 = (F, A,B,C, io1 = x1||y1,m, n) and X2 =
(F, A,B,C, io2 = x2||y2,m, n). Both X1 and X1 must have the same matrices A,B,C
but potentially different inputs.

– Let (w1, w2) be the corresponding witnesses and let z1 = (1, io1, w1), z2 ∈ Fn+1 be the
corresponding extended witnesses. Let (z1, z2) be their commitments.

• Outputs:
NIFS outputs the following:
1. A folded instance XF = (F, A,B,C, ioF,m, n), where the matrices (A,B,C) are un-

changed.
2. Folded (extended) witness and its commitment: zF, zF. For sake of simplicity, we use

the folded extended witness to represent the entire folded instance, since the matrices
are always unchanged after each folding.

Figure 6: Simplified Description of Non-interactive Folding Scheme.

Remark 9.2. For ease of explaining, we made a couple of simplifications in above descriptions. In fact,
NIFS makes use of a ”relaxed” type of R1CS which has a different formation of extended witness and
additional error terms. However, we observe that these differences do not matter when combining with
our frontends.

9.4.2 From Folding Scheme to IVC

Assuming above NIFS, we can build an IVC with the following standard methodology. Let’s suppose
that the IVC corresponds to incremental computation C(x) = G(G . . .G(x))︸ ︷︷ ︸

N times

.

Let’s first apply the R1CS-type EQC compiler to G: for all i ∈ [N], let XGi = (F, A,B,C, ioi,m, n) be
the R1CS instance corresponding to the ith invocation of G where the input/output is ioi. We set the
initial input to be io1 = x and final output to be ioN = C(x). For all other ioi (1 < i < N), we shall let
them unassigned for now. Intuitively, those intermediate input/output values will be assigned ”on the
fly” during consecutive foldings. Furthermore, notice that the (A,B,C) matrices are the same across all
instances.

The next goal is to fold all the instances {XGi
}i∈[N] into one single instance using NIFS. The final

instance shall encode the satisfiability of all N instances due to NIFS. As a result, we are only left
with one instance in the end to prove satisfiability, whose size only depends on G, in particular being
independent of the total number of copies N × |G|, which fits the requirement of IVC.

In order to fold these instances, we define a new EQC G′ which captures the ”folding” aspect on top of
G: First, it runs one more iteration of G, and second, folds one more R1CS instance with NIFS, where
the instance is the result of applying the R1CS compiler to G′ itself. To prevent the input size to G′

from growing per folding, those inputs are always hashed per iteration. We give a simplified view of this
EQC in figure 7.

29

From NIFS to IVC: The Augmented EQC G′

• Preliminary: Let there be some iterative computation C(x) = G(G . . .G(x))︸ ︷︷ ︸
N times

.

• Ingredients:
– The NIFS as described in figure 6.
– Description of a hash function H(·).

• Inputs:
– Some hash value hi.

• Non-deterministic Witness:
1. A round index number i indicating the ith run of G.
2. Some alleged input xi corresponding to the ith iteration input to G.
3. A running folded instance XF which already folds all previous i−1 rounds G′ instances,

represented as zF, zF.
4. The current round G′ instance, expressed as zi, zi.

• Program Specification: Then the following steps are performed over the inputs and wit-
nesses:
1. Assert that H(i, xi, zF, zF) = hi.
2. Run one more iteration of G: xi+1 ← G(xi).
3. Update the folding: (zF, zF)← NIFS((zF, zF), (zi, zi)).
4. Update the hash: hi+1 ← H(i+ 1, xi+1, zF, zF).

• Outputs:
– The newest hash value hi+1.

Figure 7: Simplified Description of Augmented EQC G′

9.4.3 Combining Improved Frontend with Nova

We now describe how to apply our improved frontend to Nova: First we show that our improved frontend
is indeed ”almost” compatible with NIFS, due to a nice property as we explain below. Next we show
that with some little tweak in the EQC of G′, we can make sure that our frontend is fully compatible
with NIFS. Then one can follow the same approach to build a full-fledged IVC.

CRT Packing is Topology Preserving Our improved frontend consists of two components: CRT.Pack
and FRE. We first observe that the CRT packing enjoys a useful property: It preserves the topology
of circuits. More specifically, let’s take ℓ × R1CS instances corresponding to the same computation G.
Let (A,B,C) be the matrices in those R1CS instance (notice that all instances have same matrices).
One may think of these matrices as capturing the topology of the circuit representation of G. Now
observe that after applying CRT.Pack to these ℓ instances, the packed R1CS instance still admits the
same matrices (A,B,C). This implies that the topology of circuit is preserved after packing.

Again, we will first split those N instances into N/ℓ batches and apply packing compiler and FRE.Fit to
each batch of ℓ instances. This leaves us with X1

Fit, . . . ,X
N/ℓ
Fit . Ideally, if we don’t proceed the emulating

stage of FRE, then we can just fold those packed N/ℓ instances via NIFS. Recall that one crucial
requirement of NIFS is that the two folded instances must have the same topology (that is, they have
the same (A,B,C) matrices). Critically, since CRT packing is topology preserving, our packed instances
can still be folded via NIFS.

Dealing with FRE.Emulate The above approach almost works, however we have to also account for
the effect of applying FRE.Emulate. Unfortunately, naively applying this compiler breaks the topology-
preserving guarantee: More specifically, for each packed instance Xi

Fit, FRE.Emulate requires sampling
independent randomness ri. Then the R1CS matrices (A,B,C) of Xi

Fit will be augmented with those
randomness. Consequently, after this step, all these packed instances will have different matrices, thus
no longer topology preserving.

To deal with this issue, we will reuse the same randomness across each batch of packed instance. This

30

will make sure that those packed instances still share the same set of matrices, thus compatible with
NIFS.

Of course the prover must not learn the randomness before she sends over her commitment of the
extended witnesses. Naively, she must send the commitments of all witnesses zi for all the i ∈ [N/ℓ]
packed instances beforehand to the verifier. This would incur O(N · λ) communication, which becomes
unacceptable for IVC. To solve this issue, we instead ask the prover to provide a hash chain of these
commitments: h ← H(H(H(z1), z2), . . .). Only the final hash value h is provided to the verifier, upon
seeing which they will proceed with FRE.Emulate and sample one single piece of randomness that is
reused across all packed instances.

Upon seeing the randomness, the prover will then update her extended witness for each packed instance.
For all i ∈ [N/ℓ], let zi be the previous commitment of extended witness, and let z∗i be the updated
commitment of extended witness.

Similar to the discussion in section 9.3, the prover must first show that z∗i and zi are consistent. In other
words, z∗i is a commitment to the value zi||v||b. We refer to this part as consistency check. On top of
this, prover must also prove the correct computation of hash chain.

Tweak G′ with Hash Chain and Consistency Check To accommodate for above modifications,
we need to slightly tweak the EQC G′ to perform two additional checks at each step of folding:

• (Hash chain): Check that the hash is updated correctly: hi+1 ← H(zi, hi).

• (Consistency check): Check that z∗i and zi are consistent.

The updated description of G′ is provided in the following figure 8.

The Updated EQC G′

• Inputs:
– Some hash value hi.

• Non-deterministic Witness:
1. A round index number i.
2. Some alleged input xi.
3. A running folded instance XF represented as z∗F, z∗F.
4. The current round G′ instance z∗i, z∗i.
5. The previous value in hashchain h∗i .
6. The commitment zi which is used to form the hash chain.
7. A proof πi that zi and z∗i are consistent.

• Program Specification: Then the following steps are performed over the inputs and wit-
nesses:
1. Assert that H(i, xi, zF, zF, h

∗
i) = hi.

2. Run one more iteration of G: xi+1 ← G(xi).
3. Update the folding: (z∗F, z∗F)← NIFS((z∗F, z∗F), (z

∗
i, z∗i)).

4. Verify the consistency proof πi.
5. Include zi in the hash chain: h∗i+1 ← H(zi, h

∗
i).

6. Update the hash: hi+1 ← H(i+ 1, xi+1, zF, zF, h
∗
i+1).

• Outputs:
– The newest hash value hi+1.

Figure 8: Updated EQC G′

More Optimizations For the consistency proof πi, one can rely on a KZG opening proof which makes
the verification procedure into a pairing equation check. The pairing check, however, can introduce
additional overhead in each folding. To remedy this overhead, we suggest use an accumulation scheme
[BCL+21] to accumulate these pairing equations into one single pairing equation which will be checked
by the verifier at the end.

31

Implementation Details We follow the aforementioned paradigm to modify Nova’s folding scheme.
More specifically, we first apply CRT.Pack and FRE to the R1CS instance and make sure to reuse the
same randomness for each batch. Then for the sake of estimating the real prover runtime, we add the
following constraints to the NIFS: 1. We append another hash chain using Poseidon hash function. 2.
We add extra constraints to simulate the additional cost due to applying an accumulation scheme.

32

	Introduction
	Our Contributions
	Applications
	Related Works

	Preliminaries
	Chinese Remainder Theorem
	Vector Commitment Scheme
	Non-interactive Argument of Knowledge
	A Brief Survey of SNARK Field Choices

	Existentially Quantified Circuits
	Rank-1 Constraint Systems
	EQC Compiler

	Highly Repetitive Computation
	Data Parallel (SIMD) Computation
	Incremental Computation

	Roadmap
	First Technique: CRT Packing
	CRT Packing
	A Toy Example
	Handling General SIMD Computations
	Ensuring Backend Compatibility

	Second Technique: Fast Ring Emulation
	A Toy Example
	Related Concepts of Rational Representative
	Proof of Short Opening (Lg)
	Security proof for Batch-PoSO

	FRE: Bringing Fast Ring Emulation into Frontend

	More Efficient zk-SNARK for SIMD Computations
	Beyond SIMD: Highly Repetitive Computations
	Implementations and Evaluations
	Experiment I: SHA2 and Keccak Speedup with Marlin
	Experiment II: Double Speedup with Nova

	Appendix
	LCM Bound for Batch-PoSO
	Security Proofs of SNARK for SIMD Computations
	Succinct Verification
	Integration with Nova
	A Brief Overview of Nova
	From Folding Scheme to IVC
	Combining Improved Frontend with Nova

