
How to Recover a Cryptographic Secret From the Cloud

David Adei, Chris Orsini, Alessandra Scafuro∗, and Tanner Verber†

North Carolina State University

May 21, 2024

Abstract

Clouds have replaced most local backup systems as they offer strong availability and reliability guar-
antees. Clouds, however, are not (and should not be) used as backup for cryptographic secrets. Cryp-
tographic secrets might control financial assets (e.g., crypto wallets), hence, storing such secrets on the
cloud corresponds to sharing ownership of the financial assets with the cloud, and makes the cloud a
more attractive target for insider attacks.

Can we have the best of the two worlds, where a user, Alice, can conveniently store a copy of her
cryptographic secrets on the cloud and she is the only one who can recover them (without trusting any
entity)? Can she do so even when she loses her devices and forgets all credentials, while at the same
time retaining full ownership of her secrets?

In this paper, we provide a cloud-based secret-recovery mechanism where confidentiality is always
guaranteed when Alice has not lost her credentials, even in the presence of a malicious cloud. If Alice
loses all her credentials, she can still recover her secrets (in most circumstances). This is in contrast with
all previous work that relies on the assumption that Alice remembers some authentication secret. We
prove our system secure in the Universally Composable framework. Further, we implement our protocols
and evaluate their performance.

1 Introduction

Some digital assets, such as cryptocurrencies [44] or encrypted databases [49], require the knowledge of a
cryptographic secret (e.g., a signing key, a decryption key) to be accessed and used by its owner. The security
of such digital assets hinges on the cryptographic secret being known only by its owner, and, if the owner
loses the secret, she loses access to this asset1.

To avoid this loss, could a user, Alice, store a backup copy of her cryptographic secrets on a cloud, while
retaining full ownership of her secrets? It seems that the answer to this question should be a definitive no.
Firstly, by sending the cryptographic secrets s to the cloud, the user is effectively giving the cloud the ability
to access the asset associated with s, defeating the purpose of using a cryptographically secured digital asset
to begin with. However, even if we trust the cloud to not illegitimately access users’ assets, another potential
point of failure is the authentication method that Alice uses to connect to the cloud. The security of the
cryptographic systems for which Alice is using her cryptographic secrets (e.g., her wallet) is downgraded to
the security of the authentication system Alice uses with the cloud. Finally, if Alice uses a strong two-factor
authentication (2FA) involving her physical devices as second factors, there is still a chance that Alice will
lose access if she loses all her physical devices.

In this paper, we revisit the concept of break-glass encryption, introduced by Scafuro [50], to provide an
efficient and concrete mechanism that allows Alice to use the convenience of a cloud to store a cryptographic
secret, in such a way that (1) the cloud does not learn the secret (2) Alice can recover her secret even when
she loses all credentials and devices, while no one else can recover the secret.

∗Alessandra Scafuro and Tanner Verber are supported by a research grant from Horizen Labs.
†Author contact tverber@ncsu.edu.
1This is a severe problem in cryptocurrencies where losing access to the signing key results in losing the ability to create

transactions and hence use the money.

1

Such a mechanism seems to have two contradicting security requirements. On the one hand, we must
provide provable cryptographic guarantees that no one, not even the cloud, can learn the cryptographic
secret that Alice is storing. On the other hand, we must guarantee that if Alice loses all her devices and
secrets – which puts Alice in a position of being like anyone else – she can connect to the cloud and recover
her secret. While seemingly irreconcilable, we show that this can be achieved.

To better frame the ideas behind our scheme, we present the overarching approach we take in this paper
to achieve the security requirements outlined above. The first requirement asks that Alice stores her secret
s on the cloud, in such a way that the cloud will never learn the secret. This would be easily achieved by
having Alice store an encryption of s under some key retK that Alice knows which we call the “retrieval key”.
As long as Alice remembers retK, she will be able to retrieve and decrypt her cryptographic secret. The
second requirement is that if Alice loses everything, she can recover and decrypt s. This is impossible unless
Alice gave retK to someone else, but we want that no one can access this secret besides Alice. Note that
this requirement rules out any solution based on escrowing the key to trusted parties [43, 52, 15, 29, 16]. In
particular, we want that no one can ever access Alice’s secret without her detecting it (which would happen
if the key is escrowed to others 2).

To overcome this challenge we use the aid of a trusted execution environment (TEE) [41, 47]. TEE is a
technology that allows a client to create her own private space on an untrusted cloud machine (also called
host). The assumption is that every computation and piece of data stored in the enclave is opaque to the
host.3 Hence, we require that the cloud is equipped with a TEE and Alice can create her own secure enclave
to privately store retK. The TEE can be seen as the trusted party that knows about Alice’s key and can use
it in case of emergency to decrypt Alice’s ciphertext, recover her secret s, and re-encrypt it under a new key,
say pk, that Alice freshly created. This is done obliviously to the cloud who just observes the ciphertext c
as input to the enclave, and then the fresh ciphertext c′ in output, which is a re-encryption of c under the
new pk.

However, the most challenging question remains unanswered. How does the TEE know that pk is a key
chosen by Alice, and not by the cloud or another party who is pretending to be Alice?

This brings us to the second, and most challenging, tool that we build in this paper: a mechanism to
obtain credential-less cryptographically secured permission. This mechanism, inspired by a similar definition
presented, but not realized, by Scafuro [50] allows only Alice to legitimately authenticate, even when she loses
all cryptographic secrets. Permission should be publicly verifiable and is given to the TEE to authenticate a
recovery request from Alice. This again seems improbable, since any mechanism that allows Alice to obtain
a certificate without any particular secret, should also allow any party to do the same. However, Scafuro
observed that there is a difference between Alice and the others. Alice would ask for a certificate only in the
rare case that she lost her credentials. Most of the time, Alice does have such credentials and can use them
to authenticate. In contrast, other parties are never able to authenticate. This asymmetry can be leveraged
to create a permission mechanism that guarantees that Alice can use her keys to stop any malicious requests
for permission and that, in the case where Alice lost everything, her attempt to create permission cannot be
(cryptographically) stopped by anyone.

Our solution requires that Alice uses her credentials (as long as she has them) to actively participate in
stopping illegitimate attempts at recovery, as well as initiate a recovery request as soon as she realizes that
she lost them. The latter is necessary as without her credentials, Alice does not have the power to stop any
future illegitimate requests.

There is a possibility of a non-cryptographic attack that blocks Alice, whereby an adversary guesses that
Alice will make a recovery request at a specific time, and will initiate a recovery request in parallel. As
we discuss later, this attack would prevent Alice from recovering, but will never compromise the security
of Alice’s secrets since two competing requests result in aborting permission generation. Likewise, if Alice
fails to reject a malicious request, she will lose her confidentiality. Therefore, Alice needs to ensure that she
watches for any requests made on her behalf.4

2We note that even using trusted escrows does not completely solve the problem. Indeed, such parties must make sure that
the real Alice is asking to retrieve the secret. This is the problem of credentials-less authentication that we discuss later.

3In practice, TEEs are still not bulletproof since hardware side-channel attacks exist. Nevertheless, this technology is still
developing and it is used in several works [28, 36, 57, 34, 25]

4As we will see, this watching can be outsourced.

2

Our Contributions. We build upon the ideas presented in [50] to provide a full protocol that allows clients
to securely recover cryptographic secrets stored on a cloud without requiring credentials while guaranteeing
that no one else, not even the cloud, learns the secret. Our protocol requires the construction of two tools: a
tool to cryptographically authenticate a client when she loses all her credentials (Credential-less Permission
Mechanism) and a tool to allow the cloud to obliviously recover a secret for the client, without learning
the secret. We define the two tools in a modular way and we realize them independently. We provide the
following contributions:
1. First Realization of Credential-less Permission Mechanism GPerm Using Blockchains. We pro-

vide the first concrete protocol that securely realizes the GPerm functionality first defined by Scafuro [50].
In proving UC security of such a protocol many subtleties arise, highlighting issues with previous defi-
nitions and proposed instantiations. We therefore revisited and improved the definition of GPerm. Our
realization leverages blockchain technology. To highlight the importance of this contribution, note that
any protocol for recovering data requires authentication, else the data can be stolen. Since our proto-
col, to our knowledge, is the first to realize credential-less permission, it is the first to allow for truly
credential-less data recovery.

2. UC-Definition of Credential-less Secret Recovery FSecRec. We provide a formal definition of
Credential-less Secret-Recovery, in the UC-framework, by introducing the FSecRec ideal functionality.

3. UC-Protocol Realizing FSecRec in the GPerm Hybrid World Using TEE. We instantiate FSecRec

with a very efficient protocol that leverages the security of TEE, and requires minimal overhead for the
cloud. We provide a formal UC-security proof of our protocol, and hence we use the UC-formalization of
TEE [47], Gatt (Fig. 8). Our protocol is modular and uses GPerm as a module that can be instantiated
with other realizations besides the one we provide in this paper.

4. Software Implementation and Evaluation of Permission Mechanism and Secret Recovery.
We provide a concrete software implementation of our system. We instantiate the TEE with AWS Nitro
Enclave [12] and a simulation of Hyperledger Fabric [1]. More details about the implementation can be
found in Sec. 7.

2 Our Techniques

Here we give a high-level description of the techniques used to provide our contributions.

2.1 First Realization of Credential-less Permission Mechanism GPerm Using
Blockchains

We revisit the definition of credential-less permission provided by Scafuro [50] in our own ideal functionality
GPerm (Fig. 2) making technical changes to improve modularity. Among these changes, our formulation
defines the role of clients and servers, and their connection, and better defines the role of external parties
in requesting permission. The verification of the permission is defined as an external predicate. These
changes make GPerm usable as a building block in any application that requires authenticated credential-less
permission. Our main contribution on this front, however, is in our UC-realization of GPerm. While Scafuro
provided a definition and a discussion of potential realizations, this work is the first to concretely realize
GPerm with our protocol ΠPerm and prove security.

At a high level, our blockchain-based realization is as follows. To register to the permission system, Alice
posts a transaction indicating the identifier she wants to use perm-info, a public key vkC that she wants to use
to block/accept permission requests, and the server(s) that are allowed to use her permissions. Only servers
that have published their verification key to the blockchain can be chosen by Alice. In this registration
transaction, Alice also establishes timing parameters related to the creation of the permission: topen, twait,
and tchal, which will become clear later in the description.

To have a transaction posted on the blockchain, Alice may need to create a blockchain account (e.g.,
wallet). However, in ΠPerm, Alice need not remember the secret key associated with this wallet and can
create accounts on the fly. ΠPerm uses the blockchain as a public bulletin board and does not use any
account information inherent to the chain. We do not consider the expenses of posting on the blockchain,

3

but they could be leveraged to discourage malicious parties from posting illegitimate requests and to reward
Alice’s attempt to stop them (see Competing Requests paragraph Sec. 2).

Now, say Alice loses the keys she used to access the server S. She must now create permission for S.
First, she posts a transaction tx on the blockchain containing perm-info, the public key of her server S, and
a request field that we call req, which contains additional information for S.5.

Once Alice’s transaction appears on the blockchain, she must wait for twait blocks to pass, then there are
two cases. If Alice does remember the signing key skC associated with vkC that was registered in perm-info,
Alice can endorse by signing this transaction.6 If Alice does not remember any key, then Alice waits for
tchal blocks to be added to the ledger after the waiting period of twait blocks has passed. These tchal blocks
represent valid permission that we call a silent proof. Note that constructing this sequence required no
secrets from Alice.

Since this required no secret, a malicious party, Jeff, could attempt to create permission by following the
procedure above. Jeff can create a transaction tx∗ containing perm-info and attempt to construct a silent
proof. The key observation here is that, if Alice did not lose her secrets, then she still has skC and can post
a signature to deny the request and stop Jeff from obtaining a silent proof. In this case, when Alice sees the
transaction tx∗, she will wait the twait blocks and follow up with a transaction where she denies tx∗ with a
signature that verifies under vkC. The ability to deny is why we consider silence to be proof of accepting
permission.

Note that this requires that Alice monitors the blockchain and is on the lookout for illegitimate permission
requests. While this might seem taxing for Alice, monitoring the ledger could be offloaded to a server who
notifies Alice in the case of a request. Further, the following observations show that this work can move
from taxing to rewarding. The parameter twait plays an important role in the frequency of the monitoring
activity. Alice could choose twait to be long enough (e.g., one week) so that she does not have to monitor the
blockchain constantly, but has a monitoring procedure going off once a week. Likewise, tchal should be set to
be long enough that Alice can reliably post a denial within that period. Second, while we do not explicitly
implement this in the paper, every permission request can have a required request fee that is automatically
paid to the wallet associated with perm-info when denied, as is done in KELP [20]. In this way, every denial
yields Alice a reward.

The last, most challenging, case is where Alice loses her keys and posts a transaction tx requesting
permission for perm-info, S, req, and at the same time Jeff posts a transaction tx∗ for the same perm-info, S,
req′. Since Alice lost her keys, she cannot stop tx∗. This attack is similar to “front-running attacks” that
plague blockchain applications.

Luckily the front-running problem can be greatly mitigated using a commit-and-reveal approach. In
this approach, clients first post a commitment to their transaction. Once the transaction containing the
commitment is posted, the party posts a transaction containing the opening of the commitment. Thanks to
the hiding of the commitment, when Alice publishes the commitment to perm-info,S, and req, Jeff will not
know what perm-info is committed and will not be able to front-run Alice. The commit-and-reveal approach
increases the overhead on the blockchain and the users, however, for our setting, this is not problematic
since permission transactions are expected to be infrequent. Hence, the protocol discussed above is slightly
modified to follow commit-and-reveal. A parameter topen is then used to establish how many blocks may
pass before the opening must be posted7. If Alice is concerned with Jeff using network traffic to determine
the source of her commitment, she could use an anonymous network such as Tor [9] or, if the ledger is a
bitcoin-like ledger, Dandelion [54].

A Non-Cryptographic Attack. Note that although hiding guarantees that Jeff cannot detect which
perm-info is committed in the permission request, there is still a possibility that Jeff tries to mount a denial
of service attack to the system by publishing commitments to all perm-infos, with the hope of guessing the
one that is committed in an honest transaction8. Furthermore, Jeff might be someone that knows that Alice
was robbed of their phone and could be the one posting the request.

5This field is specific to the application for which the permission is used. Looking ahead to Secret Recovery, req will be a
fresh public key pk that the TEE will use to re-encrypt the secret it holds for Alice

6This step might seem redundant but it will become clear later why we break it down into two transactions.
7This prevents Jeff from posting a commitment and waiting to front-run Alice’s opening, even if it occurs long after Jeff’s

commitment.
8Note that request fees would financially deter Jeff from mounting this type of attack.

4

All such attacks are not cryptographic in nature, as they concern the ability of Jeff to predict which
perm-info will be lost. The consequence of this is that two transactions with the same perm-info will appear
on the blockchain. In this case, our protocol will ignore the request and no permission will be created.
Note that this approach guarantees that in case of doubts, no one gets permission, which means that Alice’s
secrets remain protected (although they are not recoverable by Alice).

2.2 UC-Definition of Credential-less Secret Recovery FSecRec

We model secret recovery via the ideal functionality FSecRec (Fig. 25), where a client Client can store a
secret s with FSecRec and a cloud Cloud is informed that Client has stored a secret and has a public identity
perm-info. Client can ask FSecRec to retrieve s at anytime. Upon this request, FSecRec, before sending s to
Client, will first need the approval from Cloud. This step models the fact that in the real world, a cloud can
refuse to provide service.

Any party P can request Recovery. If this request is associated with a valid permission perm, FSecRec

accepts and sends the secret s to this credential-less party P – again assuming that Cloud has agreed to
provide this service. Thanks to our modular UC-definition, perm can be checked in FSecRec by accessing
GPerm. Finally, we also allow a client to remove her secrets from the cloud.

2.3 UC-Protocol Realizing FSecRec in the GPerm Hybrid World Using TEE

We provide a realization ΠSecRec of FSecRec in the GPerm hybrid world and using a TEE, modeled as an
ideal functionality Gatt [47] (Fig. 8). In the realization, the first step for Alice is to register with GPerm,
choosing a public id perm-info and communicating the identity of the cloud Cloud she wants to associate the
permission to.

Then, to store a secret s on Cloud’s machine, Alice interacts with the TEE hosted by Cloud. Gatt executes
a simple program. (1) perform key agreement with Client with id perm-info, (2) process recovery requests
for Client if they are authenticated with a valid permission perm.

After engaging in the key agreement9, Alice and Gatt have a shared “retrieval key” retK. This key is
used by Alice to encrypt s, via a INT-CTX-secure encryption scheme, and obtain the ciphertext c, which
is then stored by Cloud. As long as Alice remembers retK, she can retrieve s by simply downloading c and
decrypting it with retK.

If Alice loses her key(s), she will use GPerm to obtain perm for request req. In our protocol, perm represents
permission for Gatt to recover the secret and re-encrypt it under a new public key pk that Alice picks. Hence,
in our protocol req = (“recover“||pk).

After obtaining perm from GPerm, Alice sends the pair (req, perm) to the cloud which will be used to
operate Gatt. Gatt is queried with input (req, perm, perm-info, c) and will first check that perm verifies for
perm-info. If the permission is valid, Gatt will decrypt c with retK and re-encrypt under pk.

Finally, to remove the stored secret from the system, Alice simply sends a signed removal request to Gatt
to remove her secrets from the enclave.

In Fig. 1, we illustrate the high-level flow of our secret recovery system implemented with ΠPerm and
ΠSecRec

2.4 Software Implementation and Evaluation of Permission Mechanism and Se-
cret Recovery

We implemented our Credential-less Secret Recovery system using the AWS NITRO enclave [12] and a simu-
lation of Hyperledger Fabric [1] by following the BFT consensus algorithm [14], block validation, and default
configuration provided in their documentation. Our implementation is written in the Python programming
language using standard packages and demonstrates that all procedures of secret recovery, aside from re-
covery which is rare, are very fast (tens of milliseconds). Details of our implementation can be found in
Sec. 7.

We chose to use the AWS Nitro Enclave primarily due to the ease of configuration. With Nitro, we
are able to quickly adjust the memory and CPU allocation provided to the enclave. We chose to simulate

9Note that any secure key exchange would work, we chose DHKA for simplicity.

5

… txS txC

12

3 4

56

7

(a) Registration and Storage Procedures: 1 Cloud reg-

isters via ledger 2 Client registers with cloud via ledger

3 Client begins key exchange with TEE 4 Cloud for-

wards client message 5 TEE responds to key exchange

6 Cloud forwards TEE message 7 Client sends en-
cryption of secret under shared key with TEE

…… txcom txopen

1 2
3

4

56

(b) Recovery Procedure: 1 Party posts commitment

to request to ledger 2 Party opens request 3 After
waiting period, cloud takes ledger blocks as permission
(commitment window in blue, challenge window in red)
4 Cloud inputs permission to TEE 5 After verify-
ing permission, TEE outputs a fresh encryption of the
stored secret 6 Cloud forwards fresh encryption to re-
questing party

Figure 1: Secret Recovery Protocol ΠSecRec Implemented with Permission Protocol ΠPerm

Hyperledger, as opposed to launching a Hyperledger testbed, due to the fact that our protocols use the
blockchain as a simple bulletin board. Further, the simulation allows us to jump ahead of the wait period
and quickly run our experiments.

We ran our protocols 100 times and provide the average runtime of the client, cloud, and enclave for each
of the four procedures of Secret Recovery in Table 1. Our results show that the client, cloud, and enclave
require less than one second to Store a secret, Retrieve the secret, and Remove the secret. Recover is
the most time-intensive task in our protocol, and we found that even this procedure requires just over one
minute of compute time (excluding the waiting period).

This implementation demonstrated the importance of keeping permission small. The default preferred
block size in Hyperledger is 2MB, with blocks being posted at most every two seconds. This is at odds
with the need to give clients enough time to respond to malicious requests. If we give a client one week to
deny a request, and allow them to deny at any time, then permission includes over 300,000 blocks, totaling
about 600GB. Clearly, we cannot expect the enclave to verify this amount of data in a timely fashion. Hence
our decision to include the waiting period, giving the client enough time to respond to a malicious request,
but providing a much shorter window to post the response keeping permission to a reasonable size. It is
important to note that this decision means that the compute time of Recover is independent of the size of
twait. We discuss further optimizations of our implementation in Sec. 7.3.

2.5 Areas for Improvement.

Lastly, we discuss the weak points of our protocols and suggest future improvements to strengthen the results.
Monitoring the Ledger. The client must detect requests made on their behalf, else they could lose their
secret. The monitoring, and only the monitoring could be offloaded to a hired server, who notifies the client
that they need to post a denial.
Proof of Silence. In a proof of silence, it could be the case that the client simply did not see the request.
Our solution has the goal of providing a route for recovery when the client has forgotten everything, however
in practice it may be worthwhile to introduce a measure that allows a client to recover with a short secret
(e.g. PIN, password) before defaulting to a proof of silence.
Competing Requests. If two users claim the same identity, neither will have a way to prove themselves.
One possible approach is to accept the first request, as is done in KELP [20]. However, if Jeff learned of
credential-loss in real time (e.g., by stealing Alice’s devices), he could request immediately and potentially
steal Alice’s secret. Therefore we opt to protect Alice’s privacy and accept neither request. Note that

6

Functionality: GPerm

Participants: A set of servers S, a set of clients C, a party P, the adversary A
Variables: L, the set of registered servers, LS the list of clients registered to server S
External Functionalities: GrefClock the global clock functionality (Fig. 7)
Algorithms: VerifyPerm checks the validity of permissions
Procedures:
• Registration - Server Upon receipt of (register server,S) from S ∈ S for the first time, add
S to L, set LS = ∅, and send (registered,S) to C and A

• Registration - Client Upon receipt of (register client,C,S) from C ∈ C for the first time,
send (registration request,C,S) to A
1. Upon receipt of (client perm-info,C, perm-info) from A add (perm-info,S,⊥) to LS and send

(perm-info,S) to C,S, and A
• Generate Permission Upon receipt of (generate permission, perm-info,S, req) from party P,
send (permission request, perm-info) to S and A
1. If (perm-info,S, req∥res∥perm) /∈ LS then output (nonexistent client, perm-info) to P, S, and
A

2. Else send (permission requested, perm-info,S, req) to C and receive a response res, where res
can be accepted, denied, or silent and let telapse be the time between sending and receiving
a response according to GrefClock

(a) If res = (accepted) send (acceptance proof, perm-info,S, req, telapse) to A and receive
perm

(b) Else if res = (denied) send (denial proof, perm-info,S, req, telapse) to A and receive perm
(c) Else send (silent, perm-info,S, req) to A and receive perm
(d) Add (perm-info,S, req∥res∥perm) to LS and send (permission, perm-info,S, req∥perm) to P,

S, and A
• Verify Permission Upon receipt of (verify permission, perm-info,S, req, perm) from party P, if
there exists (perm-info,S, req∥res∥perm) ∈ LS

1. Let VerifyPerm(perm-info,S, req, perm) = bver
2. If res = accepted output (accepted, perm-info,S, req∥perm) to P and A
3. Else if res = denied output (denied, perm-info,S, req∥perm) to P and A
4. Else if res = silence, if bver = 1 output (accepted, perm-info,S, req∥perm) to P and A. Else

output (denied, perm-info,S, req∥perm) to P and A
5. Else output (denied, perm-info,S, req∥perm) to P and A

Figure 2: GPerm The Global Functionality for Verifiable Permission

7

competing requests are unlikely: two parties must make a request within the same short window. KELP
also includes “request fees” to dissuade an adversary from sending out requests for all, or most, clients in
the hopes of a client being unable to deny the request. The same could be implemented here to reduce the
likelihood of competing requests. The fees would be paid to either Alice, if she denies, or whichever party
successfully earns permission. This would make monitoring the ledger and denying transactions rewarding
for Alice, and also makes the above guessing attack costly to an adversary.
Avoiding Trusted Execution Environment. The work performed by the TEE could be replaced with
a secure-two-party protocol between two non-colluding servers. This can be performed using a two-out-of-
two secret sharing scheme. Note that, while this resembles a simple threshold escrow approach, the main
difference is that in escrow approaches, there is still an implicit assumption that the client who asks the
server to reconstruct her secret must still be authenticated in some manner. Indeed, if this was not the case,
then anyone can ask the server to perform reconstruction.

Instead, in our approach a client would authenticate with the server using the credential-less permission
system. We discuss the fundamental difference between our setting and the escrow setting in Sec. 3.

3 Related Work

Break-glass Encryption. Our work is inspired by the concept of “Break-glass Encryption” introduced by
Scafuro [50], which we compare to here.

Break-glass encryption allows Alice to decrypt her ciphertexts stored on the cloud, even when she loses her
decryption key. Break-glass encryption does not provide confidentiality in the presence of a malicious cloud,
even if Alice possesses her credentials, but only detectability. In other words, in [50] at any point, the cloud
can ask the TEE to “decrypt” Alice’s ciphertext without having any valid permission. The only guarantee is
that such behaviour will be detectable because the TEE will “leave a mark” on Alice’s ciphertext, and Alice
will recognize this mark when she tries to download her ciphertext. To leave such a mark, the cloud must
continuously update Alice’s ciphertext. Instead, in our work we demand that confidentiality is guaranteed
even in the presence of a malicious cloud (when Alice possesses her credentials).

[50] uses the credential-less permission in a very different way. In [50] the permission is used to protect
an honest cloud against a malicious client that attempts to accuse them of malicious behavior. In [50], the
TEE uses the permission as a string that needs to be encrypted in the ciphertext provided in the output.
The permission is communicated to the user as a proof that the break-glass procedure was performed in
response to a permission. In contrast, in our work, the TEE must verify the permission before accessing the
secret. This protects Alice’s confidentiality even when the cloud is malicious (when Alice has her credentials).
On the downside, for the TEE to be able to verify the permission, the latter must be fully verifiable by a
constrained machine such as TEE that is not connected to the internet.

Besides these major differences in how credential-less permission is used, our work improves on [50] in
several ways. We provide a concrete realization of the permission functionality GPerm (which we revised and
improved its modularity) and we prove its security in the UC-framework, while [50] provides only an informal
description. Since we provide a concrete instantiation, we also unveil issues that were not foreseen in [50],
such as the front-running attacks. Compared to [50], our recovery protocol is very practical, requiring
our cloud to only store one ciphertext and query the TEE only four times: twice upon storage, once in
the case of removal, and once in case of emergency recovery. In contrast, [50] requires the cloud to use
the TEE continuously to update the client’s ciphertexts with bookkeeping information, necessary to achieve
detectability.
Recovery of Cryptowallets. The problem of recovery is most popular in blockchain settings, as in our
previous example of a user losing the key to their cryptocurrency wallet and subsequently their funds. Some
approaches aim to solve this specific example, by providing a method for recovering funds in a wallet without
regaining access to that account [51, 21]. One approach to this is pre-signing a transaction that transfers all
funds to a secondary account [53]. However, this requires management of the second account, and it is not
clear how this approach for UTXO wallets. The work by Blackshear et al. [20] also focuses on this specific
problem, and provides a mechanism that allows the owner of a wallet, who forgot the key, to replace her old
wallet with a fresh wallet for which she does know the key. Their approach uses time-lock commitments and

8

smart contracts [20]. These solutions, however, only apply to cryptocurrency wallets and do not let the user
regain access to their account, only transfer the funds.

For users who want to regain access to their account, some wallets come equipped with their own recovery
mechanism [3, 4, 7, 8, 11, 39]. We refer the reader to [24] for more detail on these solutions, as our work
solves the more general problem of recovering any kind of secret stored on a cloud.
Key-Escrow. Other approaches for recovering a forgotten key are based on key-escrow. Key-escrow is an
approach to key recovery where a trusted party stores the key on behalf of the key-owner [15, 29]. The key
can also be split into parts and shared among trustees of the authority so that cooperation from a threshold
amount of the trustees is required [43, 52]. Similarly, a user might escrow only part of their key, say half of
the bits of the key, so the user need only remember half of the key, and the authority is not given the full
key [16]. Due to the trusted nature of the authority, the key can be used by the authority at any time. In
fact, many applications of key escrow involve law enforcement playing the role of the authority and using the
key for “authorized wiretaps”. Key escrow might be the best approach for settings where the users and the
escrow entities are well-known to each other or have real-world/physical addresses that can be reached (e.g.,
they have established businesses with established trust). However, when the user has only a digital identity,
there is a problem in identifying whether a recovery request is coming from the legitimate user. Hence, even
with escrow one needs to use a credential-less permission mechanics to protect the users.

Acsesor [23] provides a solution where Alice encrypts her secret and shares the key among a set of
guardians. In Acsesor, Alice chooses her own policy, which defines the circumstances under which recovery
can occur. This solution, however, requires that Alice authenticates with a server, who acts as a middleman
between Alice and the guardians, to initiate recovery. In our solution, we provide a way for Alice to recover
her secret even when she has no way of authenticating
Multi-Cloud Storage. In a recent work, KAPRE and KAME [37] provide the latest in a string of work [55,
19, 48, 42, 45, 56] on multi-cloud storage systems. Both protocols involve a user storing data privately on
a set of cloud service providers (CSPs) through an untrusted proxy. This proxy handles all communication
and most of the computation on behalf of the client. In KAPRE, the client samples a symmetric key and
encrypts their data. Next, the client prepares and encrypts the coefficients for Shamir secret sharing under
an additively homomorphic re-encryption scheme, and prepares a share in plaintext for the proxy. The
proxy then uses these encryptions of coefficients to compute and distribute shares of the key to the CSPs
and shares the ciphertext of the data via an Information Dispersal Algorithm. Re-encryption is used to
convert the homomorphically computed shares to be under the public key of the respective CSP, so they
may decrypt and hold a share in the clear. This prevents the proxy from violating privacy from seeing
any share other than their own in the clear. KAPRE follows a similar approach, however it uses multikey
additively homomorphic encryption in place of re-encryption.

The two protocols have the same download phase. To download, the client sends nonces, encrypted under
CSP public keys respectively, to the proxy for distribution. Upon decrypting their nonce, each CSP uses
the nonce to mask their share. Then, each CSP can send their masked share to the proxy. The proxy is
then able to use these masked shares to compute a masked version of the client’s symmetric key. Finally,
the proxy returns the masked key and the reconstructed ciphertext to the client, who unmasks the key and
decrypts the data.

KAPRE achieves privacy against an adversary corrupting all of the CSPs assuming an honest proxy and
KAME achieves privacy against the proxy colluding with all but one of the CSPs. The main contribution
of these protocols is that much of the workload is offloaded to a proxy and the client need not remember a
key at any point after storage assuming the client has some method of authenticating. We are still the first
to provide a method of recovery including authentication that requires no key, although our protocol does
require the client remember a signing key up to the point of recovery. Further, KAPRE and KAME assume
that at least the proxy or at least one CSP are honest, whereas we do not assume our cloud is honest, only
that the TEE is created correctly.
Authentication from Alternative Credentials. Another popular approach is to lock secrets behind
a password, passphrase, or passcode, as these are often easier to remember than a key. For example, in
Torus [10], users provide an email for them to receive a backup passphrase to recover their wallet. Similarly,
users of the Trezor Hardware Wallets are able to recover their wallets using a seed phrase of 12, 18, 20, 24,
or 33 words [6]. While seed phrases are meant to be made up of easily remembered words, it can still be a
challenge to remember that many words. Rather than longer seed phrases, in SafetyPin [27], users are able

9

to recover their cloud-based mobile backups using a short PIN. This paper also provides a safeguard against
brute-force guessing attacks against these PINs. Lastly, there are approaches based on password-protected
secret sharing [32, 33]. These protocols allow a client to prove knowledge of a password to a server, without
revealing said password, to obtain a previously stored secret. Furthermore, we aim to provide a route for
users who have forgotten everything, including any password, passphrase, or passcode.

To provide support for these users who have forgotten everything, there is also the method of biometric-
based recovery. One approach to using biometrics in this space is to use biometric-based encryption to
encrypt the key, that way it can always be decrypted using a fingerprint upon recovery [13]. The user thus
need not remember anything, however, in this solution, the encrypted key is split among a set of “stewards”
who are trusted and must be online for recovery. Our solution has a single cloud, who is not trusted but
does run a TEE, and we do not require costly biometric encryption, rather standard encryption.

The work by Maram, Kelkar, and Eyal [40] considers a related problem that they call the authentication
problem. The authors consider a scenario of two parties, an honest party and an adversary, both interacting
with a mechanism to prove identity. This mechanism will use some set of credentials, or other facts that
the honest party should know, to verify the identity. We instead consider the case where the user has no
credentials left, rather the user has lost everything, and can still recover a stored secret.

4 Background

In this section we present the tools that our constructions are built on.

4.1 Symmetric key encryption

We revisit the definition from Chapter 3 of [35]. Let Π := (Gen,Enc,Dec) be a symmetric key encryption
scheme where:
• Gen is the key generation algorithm that takes as input 1λ and outputs a key k. Concretely, k ←$ Gen(1λ).
• Enc is the encryption algorithm that takes as input a key k and a message m ∈ {0, 1}∗ and outputs a
ciphertext c. That is, c←$ Enc(k,m).

• Dec is the decryption algorithm that takes as input a key k and a ciphertext c and outputs a message m
or an error (⊥). That is m = Dec(k, c).

For completeness, it is required that for every λ ∈ N, every k ←$ Gen(1λ), and every m ∈ {0, 1}∗, it holds
that Deck(Enck(m)) = m.

In Fig. 3, we show the IND-CPA game presented in [35] for a symmetric encryption scheme as described
before. This game is between a challenger and a PPT adversary A.

PrivKcpa
A,Π(λ)

1. k ←$ Gen(1λ).
2. m0,m1 ← AEnck(·)(1λ) s.t. |m0| = |m1|.
3. b←$ {0, 1}, c∗ ←$ Enck(mb).
4. b′ ← AEnck(·)(c∗).
5. If b′ = b output 1, else output 0.

Figure 3: IND-CPA for Π

We say an encryption scheme Π is IND-CPA secure if:

Pr[PrivKcpa
A,Π(λ) = 1] ≤ 1

2
+ negl(λ).

Additionally, we provide the INT-CTX experiment [17, 50] in Fig. 4 for a symmetric encryption scheme
Π := (Gen,Enc,Dec) for reference.

10

ExpINT−CTX
A,Π (1λ)

• K ←$ Π.Gen(1λ). Initialize S = ∅, win = false and provide oracle access to Π.EncK(·) to A.
• For any query Mi, Ci ←$ Π.EncK(Mi), S = S ∪ {Ci}.
• For any query V F (C), M ←$ Π.DecK(C). If M ̸= ⊥ and C /∈ S return 1 and set win = true.
• After receiving “Finalize”, output win.

Figure 4: INT-CTX for Π

We say an encryption scheme Π is INT-CTX secure if:

Pr[ExpINT−CTX
A,Π (1λ) = win] ≤ negl(λ).

4.2 Public key encryption.

Next we discuss the definition from Chapter 11 of [35]. Let Πpub := (Gen,Enc,Dec) be a public key encryption
scheme and M be a message space where:
• Gen is the key generation algorithm that takes as input 1λ and outputs a key pair (pk, sk). Concretely,
(pk, sk)←$ Gen(1λ).

• Enc is the encryption algorithm that takes as input a public key pk and a message m from M and outputs
a ciphertext c. That is, c←$ Enc(pk,m).

• Dec is the decryption algorithm that takes as input a secret key sk and a ciphertext c and outputs a
message m or an error (⊥). That is m = Dec(sk, c).

For completeness, it is required that for every λ ∈ N, every (pk, sk)←$ Gen(1λ), and every m ∈M , it holds
that Decsk(Encpk(m)) = m except with negligible probability.

PubKcpa
A,Πpub

(λ)

1. (pk, sk)←$ Gen(1λ).
2. m0,m1 ← A(pk) s.t. |m0| = |m1| and m0,m1 ∈M .
3. b←$ {0, 1}, c∗ ←$ Encpk(mb).
4. b′ ← A(c∗).
5. If b′ = b output 1, else output 0.

Figure 5: IND-CPA for Πpub

We capture the IND-CPA experiment for public key encryption in Fig. 5. We say an encryption scheme
Πpub is IND-CPA secure if:

Pr[PubKcpa
A,Πpub

(λ) = 1] ≤ 1

2
+ negl(λ).

4.3 Digital signature schemes.

Now we revisit the definition from chapter 12 of [35]. A digital signature scheme Σ := (Gen,Sig,Vf) for a
message space M is a tuple of three PPT algorithms such that:
• Gen is the key generation algorithm that takes 1λ as input and outputs a pair of public and private keys
(pk, sk). Concretely (pk, sk)←$ Gen(1λ).

• Sig is the signing algorithm that takes a private key sk and a message m from the message space M as
input and outputs a signature σ. We write this as σ ←$ Sig(sk,m).

• Vf is the verification algorithm that takes a public key pk, a message m, and a signature σ as input and
outputs 1 if a valid signature and 0 if an invalid signature. We write this as b = Vf(pk,m, σ).

11

For completeness, we require that for (pk, sk) ←$ Gen(1λ), m ∈ M , it holds that 1 = Vf(pk,m, Sig(sk,m))
except with a negligible probability.

We present the game in Fig. 6 to capture unforgeability. We say a signature scheme Σ is existentially
unforgeable against chosen-message attacks (i.e. secure) if for all PPT A we have that
Pr[Sig-ForgeA,Σ(λ) = 1] ≤ negl(λ).

Sig-ForgeA,Σ(λ)

1. (pk, sk)←$ Gen(1λ).
2. m,σ ← ASigsk(·)(pk) let Q be the set of queries A asked to the oracle.
3. If 1 = Vf(pk,m, σ) and m /∈ Q output 1; otherwise output 0.

Figure 6: EUF-CMA forΣ

4.4 Commitment Schemes

A commitment scheme COM is a tuple of algorithms (Commit,Open) that allows a party to produce a com-
mitment com to a value x. We make use of a statistically hiding and computationally binding commitment
scheme [26], defined as:
• A commitment scheme is considered statistically hiding if for any x, x′ Commit(x) and Commit(x′) are
statistically indistinguishable (as defined by [30]) [26]

• A commitment scheme is considered computationally binding if the probability that any PPT adversary
can produce com, open, open′, such that open ̸= open′ but both open com is less than negl(λ) [35]

4.5 Global Clock Functionality

Next, we present the global reference clock functionality GrefClock [22] (Fig. 7). This functionality is used
by our ideal functionality GPerm to determine the amount of time that has passed between notifying a client
of a request for permission on their behalf, and the client responding with an acceptance, denial, or silence.

Functionality: GrefClock

Participants: The environment Z, some party P
Variables: An integer G representing the time, initially 0

Procedures:
• Increment Time
– Upon receipt of (increment time) from Z, set G = G+1 and send (incremented) to Z. Ignore

any (increment time) from any other party
• Get Time
– Upon receipt of (get time) from a party P, send (time, G) to P

Figure 7: GrefClock The Global Functionality for a Reference Clock

4.6 Proof-of-Publication Ledger L.
We assume that the parties have access to an unforgeable, verifiable ledger L as modeled in [34]. The concept
of unforgeability here is the same as the unforgeability of signatures. Upon posting a transaction tx to a
ledger with chain ID cid, the posting party receives an authentication tag σ such that it is hard to compute

12

Gatt[Σ, reg]

On initialize: (msk,mvk) := Σatt.Gen(1
λ), T = ∅.

On receive: getpk() from some P: send mvk to P.

Enclave Operations

On receive install(idx, prog) from some P ∈ reg: if P is honest, assert idx = sid generate
nonce eid ∈ {0, 1}λ, store T [eid,P] := (idx, prog, 0⃗), send eid to P.
On receive resume(eid, inp) from some P ∈ reg: let (idx, prog,mem) := T [eid,P], abort if
not found let (outp,mem) := prog(inp,mem) update T [eid,P] = (idx, prog,mem) let σatt :=
Σ.Sigmsk(idx, eid, prog, outp) and send (outp, σatt) to P.

Figure 8: Gatt The Ideal Functionality of a TEE

σ without posting tx to the ledger. cid allows us to identify a specific chain of posts, and for the purpose
of our permission protocol we will assume that only posts pertaining to the permission protocol and server
S will be made to the chain with ID cid. The structure of cid is dependent on the instantiation of L. At a
high level, L provides the following:
• (tx, σ) ← L.Post(z, cid): This allows a user to post data = z on the append only ledger for the chain
identifier, cid. The output of this interface is the transaction, tx, and an authentication tag σ for verifying
that the data was posted on the ledger. We will often use tx.data to refer to the contents posted, in this
case z. Further, we use tx.idx to refer to the integer index identifying the block that tx appears in on the
ledger

• {0, 1} ← L.Verify(tx, σ): This allows any user to verify that the pair (tx, σ) were the result of the L.Post
procedure above
We use this ledger due to the public verifiability, which allows our TEE to verify transactions without

having access to the ledger. It is vital that the TEE be able to verify transactions so that a malicious server
is not able to produce forged permission.

4.7 Trusted Execution Environment.

The Cloud has access to a trusted execution environment (TEE) represented as the ideal functionality Gatt
(Fig. 8) presented in [47]. Recall that a TEE is an enclave on a computer that can securely perform
computation and store data. In Fig. 8 all Blue activation points are activation points that can be executed
more than once. However, Green activation points can be only executed once. Let prog be the program run
by the enclave. Upon performing this computation, the TEE returns an attestation, which is a signature
based on keys provided by the manufacturer.

At a high level, Gatt is defined for a signature scheme Σatt and registry reg that lists the parties equipped
with a processor containing the TEE, these parties are known as the host. Upon initialization (at the
factory) the TEE enabled processor is initialized with a signature key pair msk,mvk. This initialization is
only performed once, and the signature pair is used for attesting the execution of a program in the TEE.
Gatt allows parties to query the public verification key, mvk. In practice, this is often implemented as an
online trusted resource where users can verify an attestation from the TEE.

To use the TEE, the host P first calls install(idx, prog) to install the defined program, prog. Gatt checks
that P ∈ reg and idx = sid, where idx is provided by the host and sid is the session ID stored by the TEE.
Then it generates a random identifier, eid, to identify the installed enclave and returns eid to party, P.

Next to run the program on any input, inp, the host calls resume(eid, inp), and the TEE runs the
program defined for eid on the input inp. Finally, it returns the output along with a signature under msk as
its attestation, which can be verified using the public mvk.

13

5 Credential-less Permission Mechanism via Blockchain

Protocol: ΠPerm - Register and Manage Permissions

• Register - Server
– S: Upon receiving (register server,S) from Z

1. Set TS = ∅
2. Generate signature keys: (vkS, skS)← Σ.Gen(1λ) and choose a chain id cid.
3. Post verification key on the ledger: txS, σS ← L.Post(“register”∥vkS, cid)

• Register - Client
– C: Upon receiving (register client,S) from Z, find txS, σS on L with tx.data = “register”∥vkS

1. Generate keys: Set (vkC, skC)← Σ.Gen(1λ)
2. Choose topen, twait, tchal as the number of blocks allotted to open a commitment, the number

of blocks to wait, and the number of blocks allotted to challenge a permission respectively
3. Set permission identity: perm-info = (vkC, topen, twait, tchal, vkS)
4. Post registration on the ledger: txC, σC ← L.Post(perm-info, cid) and send txC, σC to S

– S : Upon receiving (txC, σC) from C
1. Check for prior registration: If perm-info ∈ LS abort
2. Authorize registration: Compute σsig = Σ.Sign(skS, txC.data), post (txreg, σreg) =
L.Post(txC.data∥σsig, cid), and send (txreg, σreg) to C

– C : Upon receipt of (txreg, σreg) from S
1. If Σ.Vf(vkS, σsig, txC.data) ̸= 1 abort

• Manage Permissions: (Run continuously by C upon registration)
– C : Upon seeing any request tx referencing C posted to the ledger wait twait blocks

1. If Z sends (accepted, tx)
(a) Sign the transaction to accept: σgranted = Σ.Sign(skC, “accepted”∥tx.data)
(b) Post acceptance: (txaccept, σaccept) = L.Post(“accepted”∥tx.data∥σgranted)

2. Else if Z sends (denied, tx)
(a) Sign the transaction to deny: σrefuse = Σ.Sign(skC, “denied”∥tx.data)
(b) Post denied: (txdenied, σdenied) = L.Post(“denied”∥tx.data∥σrefuse)

3. Else do nothing

Figure 9: Registration and Manage Permissions Procedures of Verifiable Permission Protocol ΠPerm

Revisiting Definition of Credential-less Permissions in the UC-framework. In Fig. 2 we present
GPerm the ideal functionality for authenticated credential-less permission generation. In this functionality, a
client C registers to a server S with public information perm-info. This information is not secret and should
be accessible to the client even after losing all secrets. Any party can request publicly-verifiable, unforgeable
permissions on behalf of C. C has the opportunity to accept or deny the permission, or to request that it be
generated by silence.
Credential-less Permission Protocol. Here we present our protocol ΠPerm to realize GPerm. ΠPerm is
shown in Fig. 9 and 10, and we give the permission verification procedure in Fig. 11. We consider a setting
in which we have many clients C where each C ∈ C contracts some server S ∈ S, such that S needs permission
to perform some task req. Because permission requires no secret, they can be requested by any party. For
all requests, there is a brief buffer ζ added to the commitment window to ensure that there are not two valid
requests in the same window.

Our protocol makes use of a proof-of-publication ledger L [34] (Sec. 4.6). L is a ledger such that upon
posting a transaction tx to the ledger with id cid, an unforgeable tag σ10 is output that verifies that the
transaction is on the ledger. Further, σ is a publicly verifiable tag, that is, any party can verify the pair
(tx, σ), even without access to the ledger.

10Unforgeability here is the same concept as the unforgeability of signatures

14

Protocol: ΠPerm - Generate and Verify Permission

• Generate Permission
– A party P: Upon receiving (generate permissions, perm-info,S, req) from Z

1. Compute a commitment to the request: (com, open) = Commit(perm-info∥req∥txC.idx)
2. Post commitment to the ledger: txcom, σcom ← L.Post(com, cid)
3. Open the commitment and post the opening: Upon seeing txcom posted to the ledger, post

txopen, σopen ← L.Post(open, cid)
– C: Upon seeing txopen on L where perm-info ∈ txopen.data, wait twait blocks, then

1. If Z sends (accepted)
(a) Sign the opening to accept the request: σgranted = Σ.Sign(skC, “accepted”∥txopen.data)
(b) Post the acceptance: txaccept, σaccept = L.Post(“accepted”∥txopen.data∥σgranted, cid)

2. Else if Z sends (denied)
(a) Sign the opening to deny the request: σrefuse = Σ.Sign(skC, “denied”∥txopen.data)
(b) Post the denial: txdenied, σdenied = L.Post(“denied”∥txopen.data∥σrefuse, cid)

3. Else if Z sends (silence), do nothing
– S: Upon seeing txopen on L where perm-info ∈ txopen.data, if perm-info /∈ LS abort. Else,

1. Set ledger blocks as challenge windows:
(a) Let comwindowreq be the topen blocks before and the topen + ζ blocks after txopen, and

chalwindowreq be the tchal blocks occurring twait blocks after txopen
2. Check for valid commitment: If there does not exist txcom ∈ comwindowreq such that

txopen.data is a valid opening of txcom.data, output ⊥ and abort
3. Verify permission request:

(a) Check for acceptance: If there exists txaccept ∈ chalwindowreq such that
Σ.Vf(vkC, σgranted, “accepted”∥txopen.data) = 1 for σgranted ∈ txaccept.data, set
chalwindowreq to be the ledger blocks from txopen to txaccept

(b) Check for denial: Else if there exists txdenied ∈ chalwindowreq such that
Σ.Vf(vkC, σrefuse, “denied”∥txopen.data) = 1 for σrefuse ∈ txdenied.data, set chalwindowreq

to be the ledger blocks from txopen to txdenied
(c) Check for competing requests: Else if there exists tx′open ∈ chalwindowreq such that

there exists tx′com ∈ comwindowreq where tx′open.data is a valid opening of tx′com.data for
the same perm-info or a valid opening of txcom, the distance between tx′open and the
commitment it opens is less than or equal to topen, output ⊥ and abort

4. Set permission: Set perm = txS∥σS∥txC∥σC∥txreg∥σreg∥open∥comwindowreq∥chalwindowreq

5. Post permission: Let txcom1
be the first transaction in comwindowreq.

Let txchal1 be the first transaction in chalwindowreq. Post txfin, σfin =
L.Post(txreg.data∥txreg.idx∥open∥txcom1 .idx∥txchal1 .idx, cid)

• Verify Permission
– A party P : Upon receipt of (verify permission, perm-info,S, req, perm) from Z

1. Run VerifyPerm(perm-info,S, req, perm)

Figure 10: Generate and Verify Permission Procedures of Verifiable Permission Protocol ΠPerm

15

Algorithm: {0, 1} ← VerifyPerm(perm-info,S, req, perm)

1. Parse perm = txS∥σS∥txC∥σC∥txreg∥σreg∥open∥comwindowreq∥chalwindowreq

2. Parse txS.data = “register”∥vkS and txC.data = perm-info′

3. If perm-info′ ̸= perm-info = (vkC, topen, twait, tchal, vkS) output 0
4. Check perm-info of permission: If perm-info in txC is not the same as the perm-info in open, output

0
5. Check request: If req /∈ open, output 0
6. Verify registration transaction: If L.Vf(txreg, σreg) ̸= 1 output 0
7. Verify transactions from commitment window and challenge window: If ∃ any pair (tx, σ) in

comwindowreq or chalwindowreq s.t. L.Vf(tx, σ) ̸= 1 output 0
8. Verify order of the transactions: If the transactions in comwindowreq or chalwindowreq are not a

direct sequence, output 0
9. Check client registration:

(a) Parse txreg = txC.data∥σsig. If Σ.Vf(vkS, σsig, txC.data) ̸= 1 output 0
10. Check opening and commitment: If there does not exists txopen ∈ comwindowreq s.t. txopen.data =

open is a valid opening of txcom ∈ comwindowreq, output 0
11. Else

(a) If ∃txdenied ∈ chalwindowreq s.t. Σ.Vf(vkClient, σrefuse, “denied”∥txopen.data) = 1 for σrefuse ∈
txdenied.data output 0

(b) If ∃txaccept ∈ chalwindowreq s.t. Σ.Vf(vkClient, σgranted, “accepted”∥txopen.data)
= 1 for σgranted ∈ txaccept.data output 1

(c) Else if ∃tx′open ∈ comwindowreq s.t. ∃tx′com ∈ comwindowreq where tx
′
open.data is a valid opening

of tx′com.data for the same perm-info, and tx′com.idx < txopen.idx+ ζ, output 0
12. Else if |comwindowreq| = 2topen + ζ, |chalwindowreq| = tchal, and txchal1 .idx = txopen.idx + twait

output 1

Figure 11: The Algorithm VerifyPerm for Local Verification of Permission

16

Simulator: SimS∗ - Registration

• Register - Server: Upon query (“register”∥vkS) to OLedger
1. Send (register server,S∗) to GPerm

2. Forward the query to OLedger and receive txS∗ , σS∗ , store this in Lcid and forward to S∗

• Register - Client: Upon receipt of (registration request,C,S∗) from GPerm

1. Set (vksim, sksim)← Σ.Gen(1λ)
2. Choose topen, twait, tchal as the number of blocks allotted to open a commitment, the number of

blocks to wait, and the number of blocks allotted to challenge a permission respectively
3. Set perm-info = (vksim, topen, twait, tchal, vkS) and send (client perm-info,C, perm-info)
4. Query OLedger with (perm-info), receive txC, σC, store in Lcid, and send txC, σC to S∗

5. Upon query (txC.data∥σsig) to OLedger by S∗, if Σ.Vf(vkS, σsig, txC.data) ̸= 1 abort, else forward
the query to receive (txreg, σreg) and store in Lcid

Figure 12: Simulation of the Register Procedure of ΠPerm for a Malicious Server S∗

UC-Security of Credential-less Permission Protocol. We give our main theorem, Theorem 1, and a
UC-proof of security.

Theorem 1. If L is a SUF-AUTH ledger represented as an oracle OLedger, COM = (Commit,Open) is a
statistically hiding, computationally binding commitment scheme, and Σ = (Gen,Sign,Vf) is a EUF-CMA
signature scheme, then ΠPerm realizes the ideal functionality GPerm

Case: Malicious Server First we consider the case of a malicious server. To prove security in this case,
we present the simulator SimS∗ (Fig. 12, 13, 14) that generates the view for a malicious S∗ in the ideal world.
We then prove, through a series of hybrids, that the view generated by this simulator is indistinguishable
from the view of a malicious server in the real world executing ΠPerm.

Proof by Hybrids
We prove that the view simulated by SimS∗ is indistinguishable from a view of the adversary in the real

world through a series of hybrids, starting from the real world protocol and moving step-by-step until we
reach the ideal world. By proving that each hybrid is indistinguishable from the last, we will prove that the
real and ideal world are indistinguishable to a malicious S∗.
• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0, except that SimS∗ aborts with ForgeFail when S∗ submits forget blocks
as permissions

• Hyb2 : This is the same as Hyb1 except that SimS∗ aborts with SigForge when S∗ submits a signature
on behalf of an honest client

• Hyb3 : This is the same as Hyb2 except that SimS∗ aborts with CommitFail when there are two valid
requests for the same perm-info in the permissions

Lemma 1. If OLedger is realized as a SUF-AUTH secure ledger L, Hyb0 is indistinguishable from Hyb1

Proof. Note that the concept of unforgeability here is the same as the concept of unforgeability of signatures.
That is, the adversary wins if they are able to produce a pair (tx∗, σ∗) that verifies, but was not the result
of a call L.Post.

Towards a contradiction, assume that there exists a PPT adversary A such that |Pr[A(Hyb1) = 1] −
Pr[A(Hyb0) = 1]| > negl(λ). The only difference between these two hybrids is that in Hyb1, SimS∗ aborts
if S∗ submits permissions that include blocks that were not the result of a query to OLedger. The only way
A could distinguish between these two hybrids is if they can produce blocks (tx∗, σ∗) that verify but were
not posted on the ledger.

Therefore, we can use A to construct a reduction D such that D can win the unforgeability game for a
SUF-AUTH ledger. We define D in Fig. 15.

17

Simulator: SimS∗ - Generate Permission Honest Request

• Generate Permission: Upon receipt of (permission request, perm-info) from GPerm

1. Upon receipt of (res, perm-info,S∗, req, telapse) from GPerm

2. Query OLedger with com, where (com, open) = Commit(perm-info∥req∥txC), receive txcom, σcom

and store in Lcid

3. After time telapse, query OLedger with open, and store txopen, σopen in Lcid

4. If res = acceptedf, wait twait blocks then
(a) Compute σgranted = Σ.Sign(sksim, “accepted”∥txopen.data), query OLedger with

“accepted”∥txopen.data∥σgranted, receive txaccept, σaccept and store in Lcid

(b) Upon query txreg.data∥txreg.idx∥open∥txcom1
.idx∥txchal1 .idx to OLedger by S∗, use Lcid to

construct perm

i. If (txaccept, σaccept) /∈ chalwindowreq abort with ForgeFail

ii. If there exists (txdenied, σdenied) ∈ chalwindowreq with σrefuse ∈ txdenied.data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.data) = 1 abort with SigForge

5. Else if res = denied, wait twait blocks then
(a) Compute σrefuse = Σ.Sign(sksim, “denied”∥txopen.data), query OLedger with

“denied”∥txopen.data∥σrefuse, receive txdenied, σdenied and store in Lcid

(b) Upon query txreg.data∥txreg.idx∥open∥txcom1 .idx∥txchal1 .idx to OLedger by S∗, use Lcid to
construct perm

i. If (txdenied, σdenied) /∈ chalwindow abort with ForgeFail

ii. If there exists (txaccept, σaccept) ∈ chalwindowreq with σgranted ∈ txaccept.data and
Σ.Vf(vksim, σgranted, “accepted”∥txopen.data) = 1 abort with SigForge

6. Else
(a) Upon query txreg.data∥txreg.idx∥open∥txcom1 .idx∥txchal1 .idx to OLedger by S∗, use Lcid to

construct perm

i. If there exists (txaccept, σaccept) ∈ chalwindowreq with σgranted ∈ txaccept.data
and Σ.Vf(vksim, σgranted, “accepted”∥txopen.data) = 1 or there exists
(txdenied, σdenied) ∈ chalwindowreq with σrefuse ∈ txdenied.data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.data) = 1 abort with SigForge

7. If there exists any pair (tx, σ) ∈ comwindowreq or chalwindowreq such that (tx, σ) /∈ Lcid,
(txcom, σcom) /∈ comwindowreq, or (txopen, σopen) /∈ comwindowreq abort with ForgeFail

8. Else if there exists tx′open ∈ chalwindowreq such that there exists tx′com ∈ comwindowreq where
tx′open.data is a valid opening of tx′com.data for a request for the same perm-info, and the
distance between tx′open and the commitment it opens is less than or equal to topen abort with
CommitFail

9. Else forward the query to OLedger, receive (txfin, σfin) and store in Lcid and store in Lcid and
send perm to GPerm

Figure 13: Simulation of an Honest Request to Generate Permission in ΠPerm for a Malicious Server S∗ and
Party P∗

18

Simulator: SimS∗ - Generate Permissions Malicious Request

• Generate Permission: Upon query com to OLedger by P∗

1. Forward com to OLedger, receive (txcom, σcom), and store in Lcid

2. Upon query open = perm-info∥req∥S∥txC; r to OLedger by P∗, forward open to OLedger, receive
(txopen, σopen) and store in Lcid

3. Send (generate permissions, perm-info,S∗, req) to GPerm

4. If res = accepted, wait twait blocks then
(a) Compute σgranted = Σ.Sign(sksim, “accepted”∥txopen.data), query OLedger with

“accepted”∥txopen.data∥σgranted, receive txaccept, σaccept and store in Lcid

(b) Upon query txreg.data∥txreg.idx∥open∥txcom1
.idx∥txchal1 .idx to OLedger by S∗, use Lcid to

construct perm

i. If (txaccept, σaccept) /∈ chalwindowreq abort with ForgeFail

ii. If there exists (txdenied, σdenied) ∈ chalwindowreq with σrefuse ∈ txdenied.data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.data) = 1 abort with SigForge

5. Else if res = denied, wait twait blocks then
(a) Compute σrefuse = Σ.Sign(sksim, “denied”∥txopen.data), query OLedger with

“denied”∥txopen.data∥σrefuse, receive txdenied, σdenied and store in Lcid

(b) Upon query txreg.data∥txreg.idx∥open∥txcom1 .idx∥txchal1 .idx to OLedger by S∗, use Lcid to
construct perm

i. If (txdenied, σdenied) /∈ chalwindowreq abort with ForgeFail

ii. If there exists (txaccept, σaccept) ∈ chalwindowreq with σgranted ∈ txaccept.data and
Σ.Vf(vksim, σgranted, “accepted”∥txopen.data) = 1 abort with SigForge

6. Else
(a) Upon query txreg.data∥txreg.idx∥open∥txcom1 .idx∥txchal1 .idx to OLedger by S∗, use Lcid to

construct perm

i. If there exists (txaccept, σaccept) ∈ chalwindowreq with σgranted ∈ txaccept.data
and Σ.Vf(vksim, σgranted, “accepted”∥txopen.data) = 1 or there exists
(txdenied, σdenied) ∈ chalwindowreq with σrefuse ∈ txdenied.data and
Σ.Vf(vksim, σrefuse, “denied”∥txopen.data) = 1 abort with SigForge

7. If there exists any pair (tx, σ) ∈ comwindowreq or chalwindowreq such that (tx, σ) /∈ Lcid,
(txcom, σcom) /∈ comwindowreq, or (txopen, σopen) /∈ comwindowreq abort with ForgeFail

8. Else if there exists tx′open ∈ chalwindowreq such that there exists tx′com ∈ comwindowreq where
tx′open.data is a valid opening of tx′com.data for a request for the same perm-info, and the
distance between tx′open and the commitment it opens is less than or equal to topen abort with
CommitFail

9. Else forward the query to OLedger, receive (txfin, σfin) and store in Lcid and store in Lcid and
send perm to GPerm

Figure 14: Simulation of a Malicious Request to Generate Permission in ΠPerm for a Malicious Server S∗

and Party P∗

19

D(cid):
1. Activate A(1λ)
2. Emulate Hyb0 for A, posting all queries to

OLedger to L
3. If A submits a pair (tx∗, σ∗) as a part of the per-

missions such that L.Vf(tx∗, σ∗) = 1 but was not
a result of a query to OLedger, submit (tx∗, σ∗) to
the challenger, else abort

Figure 15: D, the Adversary for the Unforgeability of a SUF-AUTH Ledger

Because A can distinguish between the two hybrids, we know that the pair (tx∗, σ∗) must verify. Therefore
we know that D wins the unforgeability game for a SUF-AUTH ledger with the same non-negligible probability
that A has of distinguishing between the two hybrids.

Lemma 2. If Σ is a EUF-CMA secure signature scheme, Hyb2 is indistinguishable from Hyb1

Proof. Assume towards a contradiction that there exists an adversary A such that |Pr[A(Hyb2) = 1] −
Pr[A(Hyb1) = 1]| > negl(λ). The only difference between these two hybrids is that the simulator aborts
with SigForge when there is a signed acceptance or denial transaction that was not computed by the
simulator.

Therefore, we can use A to construct a reduction D that can win the unforgeability game for a EUF-CMA
signature scheme Σ. We define D in Fig. 16.

D(vk):
1. Activate A(1λ)
2. Emulate Hyb1 for A
3. If A submits permissions containing a signed ac-

ceptance σ∗ = σgranted or denial σ∗ = σdenied,
send σ∗ and the message it signs to the challenger,
else abort

Figure 16: D, the Adversary for the Unforgeability of Σ

Because A can distinguish between the two hybrids, we know that the signature σ∗ will verify. Therefore
we know that D wins the unforgeability game for a EUF-CMA signature scheme with the same non-negligible
probability that A has of distinguishing between the two hybrids.

Lemma 3. If COM = (Commit,Open) is a statistically hiding commitment scheme, Hyb3 is indistinguishable
from Hyb2

Proof. Because COM is statistically hiding, we know that an adversary cannot determine the contents of the
commitment based on txcom. Therefore, the only way the adversary can post a competing commitment is
by guessing which client the request is for.

Case: Malicious Client Next we consider the case of a malicious client. Towards this, we present the
simulator SimC∗ (Fig. 17, 18). Note that the case of a malicious client covers the case of a malicious party
P. This is because C can perform any procedure that P can and more, and with more knowledge. We do
still, however, consider the possibility that the permissions were requested by some malicious party P∗.

Proof by Hybrids
We prove that the view simulated by SimC∗ is indistinguishable from a view of the adversary in the real

world through a series of hybrids, starting from the real world protocol and moving step-by-step until we
reach the ideal world. By proving that each hybrid is indistinguishable from the last, we will prove that the
real and ideal world are indistinguishable to a malicious C∗.

20

Simulator: SimC∗ - Register

• Register - Server: Upon receipt of (registered,S) from GPerm

1. Set vksim, sksim ← Σ.Gen(1λ)
2. Choose cid
3. Query OLedger with “register′′∥vksim, receive (txS, σS) and store in Lcid

• Register - Client: Upon query perm-info = vkC∥topen∥twait∥tchal∥vksim from C∗ to OLedger
1. Forward the query, receive (txC∗ , σC∗), store in Lcid and receive (txC∗ , σC∗) from C∗

2. Send (register client,C∗,S) to GPerm, receive (registration request,C∗,S) from GPerm

and respond with (client perm-info,C∗, perm-info)
3. If this is the first registration request from C∗, compute σsig = Σ.Sign(sksim, txC∗ .data), query

OLedger with (txC∗ .data∥σsig), receive (txreg, σreg) and store in Lcid

Figure 17: Simulation of the Register Procedure of ΠPerm for a Malicious Client C∗

Simulator: SimC∗ - Generate Permission

• Generate Permission: Upon query com to OLedger by C∗ or P∗

1. Forward com to OLedger, receive (txcom, σcom), and store in Lcid

2. Upon query open = perm-info∥req∥S∥txC∗ ; r to OLedger by C∗ or P∗, forward open to OLedger,
receive (txopen, σopen), and store in Lcid

3. Send (generate permission, perm-info,S, req) to GPerm

4. If C∗ queries OLedger with “accepted”∥txopen.data∥σgranted where
Σ.Vf(vkC, σgranted, “accepted”∥txopen.data) = 1, send (accepted) to GPerm

(a) Forward the query to OLedger, receive (txaccept, σaccept), and store in Lcid

(b) Let comwindowreq be the topen blocks before and topen + ζ blocks after txopen and
chalwindowreq be the tchal blocks occurring twait blocks after txopen

5. Else if C∗ queries OLedger with “denied”∥txopen.data∥σrefuse where
Σ.Vf(vkC, σrefuse, “denied”∥txopen.data) = 1, send (denied) to GPerm

(a) Forward the query to OLedger, receive (txdenied, σdenied), and store in Lcid

(b) Let comwindowreq be the topen + ζ blocks before and topen blocks after txopen and
chalwindowreq be the tchal blocks occurring twait blocks after txopen

6. Else if C∗ does nothing, send (silent) to GPerm

(a) If any party queries OLedger with com′ and open′ such that req′ ∈ open′ is a request for the
same perm-info, the distance between the queries is less than topen, and com′ was queried
no more than ζ blocks after open output ⊥ and abort

(b) Else if any party queries OLedger with open′ such that open′ ̸= open is an opening
for com, abort with BindingFail

(c) Let comwindowreq be the topen blocks before and topen + ζ blocks after txopen and
chalwindowreq be the tchal blocks occurring twait blocks after txopen

7. Set perm = txS∥σS∥txC∗∥σC∗∥txreg∥σreg∥open∥comwindowreq∥chalwindowreq query OLedger with
txreg.data∥txreg.idx∥open∥txcom1

.idx∥txchal1 .idx, receive (txfin, σfin), store in Lcid, and send perm
to GPerm

Figure 18: Simulation of the Generate Permission Procedure of ΠPerm for a Malicious Client C∗

21

• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0, except that SimC∗ aborts with BindingFail when a commitment is
opened to a different value than the committed value

Lemma 4. If COM = (Commit,Open) is a binding commitment scheme, Hyb1 is indistinguishable from
Hyb0

Proof. Assume towards a contradiction that there exists an adversary A such that |Pr[A(Hyb1) = 1] −
Pr[A(Hyb0) = 1]| > negl(λ). The only difference between these two hybrids is that in Hyb1, the simulator
aborts when a commitment is opened to two different values. Therefore, we can use A to construct a
reduction D that can break the binding property of COM. We define D in Fig. 19.

D(1λ):
1. Activate A(1λ)
2. Emulate Hyb0 for A
3. If A provides open′ such that open′ is a second

opening for com, send (com, open, open′) to the
challenger, else abort

Figure 19: D, the Adversary for Binding of COM

Because A is able to distinguish between Hyb0 and Hyb1, we know that open and open′ will be valid
openings with the same probability that A has of distinguishing between the two hybrids. Therefore D breaks
binding with the same non-negligible probability that A has of distinguishing between the two hybrids.

Case: Malicious Server and Client Now we consider the case of a malicious server colluding with a
malicious client.

Proof by Hybrids
We prove that the view simulated by SimS∗,C∗ is indistinguishable from a view of the adversary in the

real world through a series of hybrids, starting from the real world protocol and moving step-by-step until
we reach the ideal world. By proving that each hybrid is indistinguishable from the last, we will prove that
the real and ideal world are indistinguishable to a malicious S∗ and C∗.
• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0 except SimS∗,C∗ aborts with BindingFail when a commitment is opened
to a different value than the committed value

• Hyb2 : This is the same as Hyb1 except SimS∗,C∗ aborts with ForgeFail if there are any forged transac-
tions in the permissions

Simulator: SimS∗,C∗ - Register

• Register - Server: Upon query (“register”∥vkS) to the ledger
1. Send (register server,S∗) to GPerm

2. Forward the query to OLedger and receive txS∗ , σS∗ , store this in Lcid and forward to S∗

• Register - Client: Upon query perm-info = vkC∥topen∥twait∥tchal∥vkS from C∗ to OLedger
1. Forward the query, receive txC∗ , σC∗ and store in Lcid

2. Send (register client,C∗,S∗) to GPerm, receive (registration request,C∗,S∗) from GPerm,
and respond with (client perm-info,C∗, perm-info)

3. Upon query (txC∗ .data∥σsig) to OLedger by S∗, forward the query to receive (txreg, σreg) and
store in Lcid

Figure 20: Simulation of the Register Procedure of ΠPerm for a Malicious Server S∗ and Client C∗

22

Simulator: SimS∗,C∗ - Generate Permission

• Generate Permission: Upon query com to OLedger by C∗ or P∗

1. Forward com to OLedger, receive (txcom, σcom) and store in Lcid

2. Upon query open = perm-info∥req∥S∥txC∗ ; r to OLedger from C∗ or P∗ forward open to OLedger,
receive (txopen, σopen) and store in Lcid

3. Send (generate permissions, perm-info,S∗, req) to GPerm

4. If C∗ queries with (“accepted”∥txopen.data∥σgranted) where
Σ.Vf(vkC, σgranted, “accepted”∥txopen.data) = 1, send (accepted) to GPerm

(a) Forward the query to OLedger and receive (txaccept, σaccept)
(b) Upon query txreg.data∥txreg.idx∥open∥txcom1

.idx∥txchal1 .idx to OLedger by S∗, use Lcid to
construct perm

5. Else if C∗ queries with (“denied”∥txopen.data∥σrefuse) where
Σ.Vf(vkC, σrefuse, “denied”∥txopen.data) = 1, send (denied) to GPerm

(a) Forward the query to OLedger and receive (txdenied, σdenied)
(b) Upon query txreg.data∥txreg.idx∥open∥txcom1

.idx∥txchal1 .idx to OLedger by S∗, use Lcid to
construct perm

6. Else if C∗ does nothing, send (silent) to GPerm

(a) If any party queries OLedger with com′ and open′ such that req′ ∈ open′ is a request for the
same perm-info, the distance between the queries is less than topen, and com′ was queried
no more than ζ blocks after com output ⊥ and abort

(b) Else if any party queries OLedger with open′ such that open′ ̸= open is an opening
for com, abort with BindingFail

(c) Upon query txreg.data∥txreg.idx∥open∥txcom1
.idx∥txchal1 .idx to OLedger by S∗, use Lcid to

construct perm

7. If there exists any pair (tx, σ) ∈ comwindowreq or chalwindowreq with (tx, σ) /∈ Lcid,
(txcom, σcom) /∈ comwindowreq, or (txopen, σopen) /∈ comwindowreq abort with ForgeFail

8. Else forward the query to OLedger, receive (txfin, σfin) and store in Lcid and store in Lcid and
send perm to GPerm

Figure 21: Simulation of the Generate Permission Procedure of ΠPerm for a Malicious Server S∗, Client C∗,
and Party P∗

23

Simulator: SimH - Register

• Registration - Server: Upon receipt of (registered,S) from GPerm

1. Set vkS, skS ← Σ.Gen(1λ)
2. Choose cid
3. Query OLedger with “register′′∥vkS∥cid, receive (txS, σS) and store in Lcid

• Registration - Client: Upon receipt of (register client,C,S) from GPerm

1. Set (vkC, skC)← Σ.Gen(1λ)
2. Choose topen, twait, tchal as the number of blocks allotted to open a commitment, the number of

blocks to wait, and the number of blocks allotted to challenge a permission respectively
3. Set perm-info = (vkC, topen, twait, tchal, vkS) and send (client perm-info,C, perm-info)
4. Query OLedger with perm-info, receive txC, σC, store in Lcid

5. Compute σsig = Σ.Sign(skS, txC.data), query OLedger with (txC.data∥σsig), receive (txreg, σreg)
and store in Lcid

Figure 22: Simulation of the Registration Procedure of ΠPerm for Honest Client C, Server S, and Party P

Lemma 5. If COM = (Commit,Open) is a binding commitment scheme, Hyb1 is indistinguishable from
Hyb0

Proof. Follows from the proof of Lemma 4.

Lemma 6. If OLedger is realized by a SUF-AUTH secure ledger L, Hyb2 is indistinguishable from Hyb1

Proof. Follows from the proof of Lemma 1.

Case: All Honest Parties Finally, we consider the case where all parties are honest, and show the
simulator SimH for this case.

Lemma 7. The view generated by SimH is indistinguishable from the view generated by honest parties in
the real world

Proof. SimH honestly generates signing keys on behalf of S and C, honestly signs the correct messages
based on the commands of Z, honestly commits to the request and posts the opening, posts the correct
information to the ledger, and honestly generates the permission. Therefore, the two views are statistically
indistinguishable.

Verifying Permission Next we prove that verification of permission in the real world is indistinguishable
from verification of permission in the ideal world using the predicate VerifyPerm by presenting the simulator
Sim.

Lemma 8. The probability that Simvf aborts with VerifyFail is negl(λ)

Proof. Simvf only aborts with VerifyFail in two cases:
• Case: res = accepted and bver = 0
In this case, GPerm accepts the permission while VerifyPerm rejects the permission. GPerm will accept
permission only if the permission was generated through GPerm and accepted by the client, or if the
permission is generated through silence and VerifyPerm outputs 1. In the case of silence permission,
GPerm defers to VerifyPerm, therefore the probability that the output differs is 0. In the case of accepted
permission, an adversary would need to either forge ledger blocks to remove the acceptance transaction, or
forge a denial signature on behalf of the client, which we have proved happens with negligible probability
in the proofs of Lemmas 1 and 2 respectively.

24

Simulator: SimH - Generate Permission

• Generate Permission Upon receipt of (permission request, perm-info) from GPerm

1. Upon receipt of (res, perm-info,S, req, telapse) from GPerm

2. Query OLedger with com where (com, open) = Commit(perm-info∥req∥S∥txC), receive txcom, σcom,
and store in Lcid

3. After time telapse, query OLedger with (open), and store txopen, σopen in Lcid

4. If res = accepted

(a) Compute σgranted = Σ.Sign(skC, “accepted”∥txopen.data), query OLedger with
“accepted”∥txopen.data∥σgranted, receive txaccepted, σaccepted, and store in Lcid

(b) Let comwindowreq be the topen blocks before and topen + ζ blocks after txopen and
chalwindowreq be the tchal blocks occurring twait blocks after txopen

5. If res = denied

(a) Compute σrefuse = Σ.Sign(skC, “denied”∥txopen.data), query OLedger with
“denied”∥txopen.data∥σrefuse, receive txdenied, σdenied, and store in Lcid

(b) Let comwindowreq be the topen blocks before and topen + ζ blocks after txopen and
chalwindowreq be the tchal blocks occurring twait blocks after txopen

6. Else
(a) Let comwindowreq be the topen blocks before and topen + ζ blocks after txopen and

chalwindowreq be the tchal blocks occurring twait blocks after txopen
7. Set perm = txS∥σS∥txC∥σC∥txreg∥σreg∥open∥comwindowreq∥chalwindowreq∥vkS, query OLedger

with txreg.data∥txreg.idx∥open∥txcom1
.idx∥txchal1 .idx, receive (txfin, σfin), store in Lcid, and send

perm to GPerm

Figure 23: Simulation of the Generate Permission Procedure of ΠPerm for Honest Client C, Server S, and
Party P

Simulator: Simvf - Verify Permission

• Verify Permission: Upon receipt of (res, perm-info,S, req, perm) from GPerm

1. Run VerifyPerm(perm-info,S, req, perm) = bver
2. If res = accepted and bver = 0 or res = denied or not verified and bver = 1 abort with

VerifyFail

3. Else output bver

Figure 24: Simulation of the Verification of Permission VerifyPerm

25

Functionality: FSecRec

Participants: The Client, the Cloud, the adversary A, and some party P
Variables: TF a table of keys indexed by identity
External Functionalities: GPerm the ideal permissions functionality
Procedures:
• Store Upon receiving (store, perm-info,Cloud, s) from Client, send (storage request, perm-info)
to Cloud and A
1. If TF [perm-info] ̸= ⊥, output ⊥ to Client and send (existing entry, perm-info) to Cloud and A
2. If Cloud is corrupt:

(a) Upon receipt of (res, perm-info) from Cloud, if res = denied send ⊥ to Client
(b) Else store TF [perm-info] = (s,⊥), send (stored, perm-info) to Client, Cloud, and A

3. Else store TF [perm-info] = (s,⊥), send (stored, perm-info) to Client, Cloud, and A
• Remove Upon receipt of (remove, perm-info) from Client, set TF [perm-info] = ⊥ and send
(removed, perm-info) to Cloud and A

• Retrieve Upon receipt of (retrieve, perm-info) from Client, if TF [perm-info] ̸= ⊥, send
(retrieve, perm-info) to Cloud and A.
1. If a retrieval request is received from any party other than Client, send

(retrieval denied, perm-info) to Cloud and A
2. Else send (s) to Client and (retrieved, perm-info) to Cloud and A

• Recover Upon receiving (recover, perm-info) from a party P, if TF [perm-info] ̸= ⊥, send
(recover, perm-info) to Client,Cloud, and A
1. Upon receiving (recover, perm-info, req, perm) from A send

(verify permission, perm-info,Cloud, req, perm) to GPerm

2. Upon receipt of (res, perm-info,Cloud, req∥perm) from GPerm, if res ̸= accepted output ⊥ to P
3. Else Send (s, req∥res∥perm) to P, set TF [perm-info] = (s, req∥res∥perm), and send

(recovery accepted, perm-info, req∥res∥perm) to Client,Cloud,A

Figure 25: FSecRec The Ideal Functionality for Secret Recovery

• Case: res = denied and bver = 1
In this case, GPerm denies the permission while VerifyPerm accepts. GPerm will deny the permission only
if the permission was not generated through GPerm, was generated through GPerm but denied by the
client, or was generated through silence and VerifyPerm output 0. Again in the case of silence GPerm

defers to VerifyPerm, therefore the probability that the output differs is 0. If the permission was not
generated through GPerm, an adversary must have forged blocks from the ledger, as we have shown that
permission generation can be simulated in all cases, and we know that blocks can only be forged with
negligible probability in the proof of Lemma 1. In the case of denied permission, an adversary would again
have to either forge ledger blocks to remove the denial transaction, or forge an acceptance signature on
behalf of the client. We know this happens with negligible probability from the proofs of Lemmas 1 and
2 respectively.
Therefore, in both cases, the probability that Simvf aborts with VerifyFail is negligible.

6 Credential-less Secret Recovery

In this section, we present our definition of secret recovery, followed by our protocol realizing our definition
and the proof of security.
Definition of Secret Recovery. In Fig. 25 we present the ideal functionality for secret recovery FSecRec.
With this functionality we capture a client storing a secret with a cloud, such that this secret can be recovered
only using permission obtained through GPerm. The cloud learns nothing about the secret during storage,

26

Protocol: ΠSecRec - Set Up, Store, Manage Permissions, and Remove

• Set Up
– Cloud: Upon receipt of (register server,Cloud) from Z

1. Send (register server,Cloud) to GPerm

• Store
– Client: Upon receipt of (store,Client, s,Cloud) from Z

1. Send (register client,Client,Cloud) to GPerm and receive (perm-info,Cloud)

2. Set (vkClient, skClient)← Σ.Gen(1λ), get mvk = Gatt.getpk(), sample a
$←− Zq, and let A = ga

3. Send (A, perm-info, vkClient) to Cloud
– Cloud: Upon receipt of (A, perm-info, vkClient) from Client

1. Let eid = Gatt.install(perm-info, progSecRec)
2. Let (eid, progSecRec, B, vkko, A, σatt) = Gatt.resume(eid, (“store”, A, vkClient))
3. Send (eid, progSecRec, B, vkko, A, σatt) to Client

– Client : Upon receiving (eid, progSecRec, B, vkClient, A, σatt) from Cloud
1. If Σatt.Vf(mvk, eid∥progSecRec∥B∥vkClient∥A, σatt) ̸= 1, output ⊥ and abort, else store retK =

Ba

2. Compute c = Π.Enc(retK, (perm-info, s)) and send c to Cloud
– Cloud: Upon receipt of c from Client

1. Let (batt, σatt) = Gatt.resume(eid, (“verify ciphertext”, perm-info, c))
2. If batt ̸= 1, output ⊥ and abort
3. Else set T[perm-info] = (eid, vkClient, c)

• Manage Permissions (Run continuously by Client upon registration)
– Client : Upon receipt of any (generate permission, perm-info,Cloud, req) from GPerm such that

Client did not request the permission
1. If Z sends (accepted, req), send (accepted) to GPerm

2. Else if Z sends (denied, req), send (denied) to GPerm

3. Else send (silent) to GPerm

• Remove
– Client : Upon receipt of (remove, perm-info) from Z

1. Compute σremove = Σ.Sign(skClient, “remove”∥perm-info) and send
(remove, perm-info, σremove) to Cloud

– Cloud : Upon receipt of (remove, perm-info) from Client
1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 abort
2. Else let (“removed”, perm-info, σremove, σatt) = Gatt.resume(eid, (“remove”, perm-info, σremove)
3. Set T[perm-info] = ⊥ and send (“removed”, perm-info, σatt) to Client

– Client : Upon receipt of (“removed”, perm-info, σremove, σatt) from Cloud
1. If Σatt.Vf(mvk, σatt, “removed”∥perm-info∥σremove) ̸= 1 abort

Figure 26: Set Up, Store, Manage Permissions, and Remove Procedures for the Secret Recovery Protocol
ΠSecRec

retrieval, or recovery. Further, a client is able to request removal from the secret recovery system, at which
point the secret will no longer be stored.
Secret Recovery Protocol. In this protocol, we assume that Cloud, the party storing the secret, is fitted
with a trusted execution environment (TEE) [47]. We model our TEE as the global functionality Gatt [47]
(Fig. 8). At a high level, a program (Fig. 28) is installed on the host, Cloud. Cloud runs this program, and
any output provided by Gatt includes an attestation of the form of an unforgeable signature. For details, see
Appx. 4.7.

We present the our protocol ΠSecRec (Fig. 26, 27), as well as the program run by Gatt (Fig. 28), and
provide a sketch of the proof that ΠSecRec realizes FSecRec in the GPerm,Gatt-hybrid world.

27

Protocol: ΠSecRec - Retrieve and Recover

• Retrieve
– Client : Upon receipt of (retrieve, perm-info) from Z

1. Compute σret = Σ.Sign(skClient, retrieve∥perm-info)
2. Send (retrieve, perm-info, σret) to Cloud

– Cloud: Upon receipt of (retrieve, perm-info) from Client
1. Get T[perm-info] = (eid, vkClient, c)
2. If Σ.Vf(vkClient, σret, retrieve∥perm-info) ̸= 1 abort
3. Send c to Client

– Client: Upon receipt of c from Cloud
1. Compute (perm-info′, s) = Π.Dec(retK, c), if perm-info′ ̸= perm-info output ⊥ and abort

• Recover
– Client : Upon receipt of (recover, perm-info) from Z

1. Let (pk, sk)← Πpub.Gen(1
λ) and let req = “recover”∥pk

2. Send (generate permission, perm-info,Cloud, req) to GPerm

3. Upon receipt of (permission requested, perm-info,Cloud, req) from GPerm, if the request was
not made by Client defer to Manage Permissions

4. If Z sends (accepted, req) send (accepted) to GPerm

5. Else if Z sends (denied, req) send (denied) to GPerm

6. Else send (silent) to GPerm

7. Receive (permission, perm-info,Cloud, req∥perm) from GPerm

– Cloud : Upon receipt of (permission, perm-info,Cloud, req∥perm) from GPerm

1. Let (eid, cfin, σatt) = Gatt.resume(eid, (“recover”, pk, c, req, perm))
2. Set T[perm-info] = (eid, vkClient, cfin)
3. Send (eid, cfin, σatt) to Client

– Client : Upon receipt of (eid, cfin, σatt) from Cloud
1. Get mvk = Gatt.getpk(), if Σatt.Vf(mvk, σatt, outp) ̸= 1 output ⊥ and abort
2. Compute (perm-info′, s) = Πpub.Dec(sk, cfin)
3. If perm-info′ ̸= perm-info output ⊥ and abort

Figure 27: Retrieve and Recover Procedures for the Secret Recovery Protocol ΠSecRec

28

Program: progSecRec

• On input(“store”, A, vkClient):

1. Let b
$←− Zq

2. Let B = gb

3. Store retK = Ab

4. Output (eid, progSecRec, B, vkClient, A)
• On input(“verify ciphertext”, perm-info, c):
1. Compute (perm-info′, s) = Π.Dec(retK, c)
2. If perm-info′ = perm-info output 1 and store perm-info, else output 0

• On input(“remove”, perm-info, σremove)
1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info)
̸= 1 output ⊥

2. Set retK = ⊥
3. Output “removed” ∥perm-info∥σremove

• On input(“recover”, pk, c, req, perm):
1. If VerifyPerm(perm-info,Cloud, req, perm) = 0 or req ̸= “recover”∥pk output ⊥ and abort
2. Else (perm-info′, s) = Π.Dec(retK, c)
3. If perm-info′ ̸= perm-info output ⊥ and abort
4. cfin = Πpub.Enc(pk, (perm-info, s)) store
5. Output (eid, cfin)

Figure 28: The Program Run by Gatt for Secret Recovery

UC-Security of Secret Recovery Protocol. Here we present our second main theorem, Theorem 2.

Theorem 2. If Π = (Gen,Enc,Dec) is an INT-CTX and IND-CPA secure symmetric key encryption
scheme, Gatt is parameterized by an EUF-CMA signature scheme, the DDH assumption holds in group
G of prime order q, Πpub = (Gen,Enc,Dec) is an IND-CPA secure public key encryption scheme, and
Σ = (Gen,Sign,Vf) is an EUF-CMA secure signature scheme, then ΠSecRec realizes the ideal functionality
FSecRec in the (Gatt,GPerm) - hybrid model

To prove Theorem 2, we consider four cases: a malicious Cloud∗, a malicious Client∗, both malicious
Cloud∗ and Client∗, and both honest Cloud and Client. We make use of the same techniques of simulating a
secure enclave presented by Pass et al. [47]. Specifically, we provide our simulator with a backdoor to the
TEE that allows the simulator to obtain signatures on values that are not the true output of the program.

Case: Malicious Cloud∗ In Fig. 29 we present the simulator in the case of a malicious Cloud∗ and prove
through a series of hybrids that the view generated by SimCloud∗ is indistinguishable from the view generated
in the real world.

Proof by Hybrids
We prove indistinguishability through a series of hybrids:

• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0 except that a random key is used for retK instead of the result of the
Diffie Hellman Key Exchange

• Hyb2 : This is the same as Hyb1 except that 0 is stored instead of the actual secret and the simulator
aborts with CTXFail when the ciphertext retrieved is not the ciphertext that was stored

• Hyb3 : This is the same as Hyb2 except that the simulator aborts with AttestFail if Cloud∗ does not
make the correct calls to Gatt

• Hyb4 : This is the same as Hyb3 except that the simulator aborts with SigForge if Cloud∗ makes a
remove call to Gatt using a signature that the simulator did not compute

29

Simulator: SimCloud∗

• Set Up: Upon receipt of (register server,Cloud∗) from Cloud∗ to GPerm

1. Send (register server,Cloud∗) to internally simulated GPerm

• Store: Upon receipt of (registration request,Client,Cloud∗) from GPerm

1. Run internally simulated GPerm to obtain perm-info and send (perm-info,S) to Cloud∗

2. Upon receipt of (storage request, perm-info) from FSecRec

3. Set (vkClient, skClient)← Σ.Gen(1λ)

4. Sample a
$←− Zq and set A = ga

5. Send (A, perm-info, vkClient) to Cloud∗

6. Upon call Gatt.install(perm-info, progSecRec) by Cloud∗, run internally simulated Gatt and forward
response eid to Cloud∗

(a) If no such call is made, abort with AttestFail

7. Upon call Gatt.resume(eid, (“store”, A, vkClient)) by Cloud∗, run internally simulated Gatt and
forward response (eid, progSecRec, B, vkClient, A, σatt) to Cloud∗

(a) If no such call is made, abort with AttestFail

8. Upon receipt of (eid, progSecRec, B, vkClient, A, σatt) from Cloud∗, store retK
$←− Zq

9. Compute c = Π.Enc(retK, (perm-info, 0,⊥)) and send c to Cloud∗

10. Upon call Gatt.resume(eid, (“verify ciphertext”, perm-info, c)) by Cloud∗, run internally simu-
lated Gatt and use the backdoor to obtain a signature on batt = 1 if the correct inputs are
supplied and forward response (batt, σatt) to Cloud∗

(a) If no such call is made, abort with AttestFail

• Remove: Upon receipt of (removed, perm-info) from FSecRec

1. If Cloud∗ calls Gatt.resume(eid, (“remove”, perm-info, σ∗
remove)) where σ∗

remove was not
computed by the simulator, abort with SigForge

2. Compute σremove = Σ.Sign(skClient, “remove”∥perm-info)
3. Send (remove, perm-info, σremove) to Cloud∗

4. Upon call Gatt.resume(eid, (“remove”, perm-info, σremove)) by Cloud∗, run internally simulated
Gatt to receive output (“removed”, perm-info, σremove, σatt) and forward the output to Cloud∗

(a) If no such call is made, abort with AttestFail

• Retrieve: Upon receipt of (retrieve, perm-info) from FSecRec

1. Compute σret = Σ.Sign(skClient, retrieve∥perm-info)
2. Send (retrieve, perm-info, σret) to Cloud∗

3. Receive ciphertext c′

4. If c′ ̸= c abort with CTXFail

5. Else compute Π.Dec(retK, c) ̸= (perm-info′, 0, req∥res∥perm)
6. If perm-info′ ̸= perm-info or req∥res∥perm ̸= ⊥ abort

• Recover: Upon receipt of (recover, perm-info) from FSecRec

1. Let (pk, sk)← Πpub.Gen(1
λ)

2. Let req = “recover”∥pk
3. Send (generate permission, perm-info,S, req) to internally simulated GPerm and receive perm
4. Send (recover, perm-info, req, perm) to FSecRec

5. Send perm to Cloud∗

6. Upon call Gatt.resume(eid, (“recover”, pk, c, req, perm)) by Cloud∗, run internally simulated Gatt
and forward response (eid∥cfin, σatt) where cfin = Πpub.Enc(pk, 0), and σatt is obtained via
backdoor if perm is the correct permissions to Cloud∗

(a) If no such call is made, abort with AttestFail

7. Receive (eid∥cfin, σatt) from Cloud∗

Figure 29: Simulation of ΠSecRec for a Malicious Cloud∗
30

Lemma 9. If the DDH assumptions holds in the group G of prime order q, Hyb1 is indistinguishable from
Hyb0

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb1) = 1] −
Pr[A(Hyb0) = 1]| > negl(λ). Then we can construct a reduction D that can distinguish between a random
tuple and a DDH tuple with the same non-negligible probability. We define D in Fig. 30.

D(g,A,B,C) :

1. Activate A(1λ)
2. Emulate Hyb0 for A using A in step 2 of the

storage procedure, B in step 5 of the storage pro-
cedure11 and C as retK

3. Output whatever A outputs

Figure 30: D, the Adversary for the Decisional Diffie-Hellman Problem

The only difference between the two hybrids is whether retK is random or gab. Therefore, if C is random
this is exactly Hyb1 and if C = gab this is exactly Hyb0. Therefore D wins the DDH game with the same
non-negligible probability that A has of distinguishing between the two hybrids.

Lemma 10. If Π = (Gen,Enc,Dec) is INT-CTXT and IND-CPA secure and Πpub = (Gen,Enc,Dec) is
IND-CPA secure, Hyb2 is indistinguishable from Hyb1

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb2) = 1] −
Pr[A(Hyb1) = 1]| > negl(λ). The only difference between these two hybrids is that the stored value is 0
and not the secret. Therefore, A must be able to distinguish between a ciphertext of 0 and an encryption of
k under the encryption scheme Πpub or under the encryption scheme Π.

Case: Πpub

First suppose that A can distinguish between the two hybrids because they can distinguish between an
encryption of 0 under Πpub and an encryption of the secret s under Πpub. Then we can construct a reduction
Dpub that wins the IND-CPA game against the encryption scheme Πpub. We define Dpub in Fig. 31.

Dpub(pk) :

1. Activate A(1λ)
2. Emulate Hyb1 for A
3. Upon recovery, query the challenger with m0 =

(perm-info, 0,⊥) and m1 = (perm-info, s,⊥) to re-
ceive c∗, and use c∗ as cfin

12

4. Output whatever A outputs

Figure 31: Dpub, the CPA Adversary Against Πpub

If c∗ is an encryption of 0, this is exactly what A would expect to see at this point in Hyb2 and if c∗

is an encryption of k, this is exactly what A expects to see in Hyb1. Therefore Dpub wins the CPA game
with the same non-negligible probability that A has of distinguishing between the two hybrids, and we have
reached our contradiction.

Case: Π
Now suppose that A is able to distinguish between the two hybrids by submitting a ciphertext c′ ̸= c.

That is, A is able to produce a new ciphertext that decrypts, else Hyb1 would abort at the same point. Then
we can construct a reduction DCTXT that can win the INT-CTXT game [18] with the same non-negligible
probability. We define DCTXT in Fig. 32.

31

D(1λ) :
1. Activate A(1λ)
2. Emulate Hyb1 for A
3. Upon storage, query the challenger with

(perm-info, s,⊥) and receive c
4. Upon retrieval, if A submits a ciphertext c′ ̸= c,

submit c′ to the challenger
5. Submit “Finalize” to the challenger

Figure 32: DCTXT , the INT-CTXT Adversary against Π

Because A is able to distinguish between the two hybrids by submitting a ciphertext that is not equal
to the ciphertext stored but decrypts, we know that DCTXT wins the game, also by submitting a ciphertext
that was never queried yet decrypts, with the same non-negligible probability that A has of distinguishing
between the two hybrids, and have reached our contradiction.

Suppose instead that A distinguishes between the two hybrids by distinguishing between an encryption
of 0 under Π and encryption of the secret s under Π. Then we can construct a reduction DCPA that can
win the IND-CPA game [18] with the same non-negligible probability. We define DCPA in Fig. 33.

DCPA(1
λ) :

1. Activate A(1λ)
2. Emulate Hyb1 for A
3. Upon storage, query the challenger with m0 =

(perm-info, 0,⊥) and m1 = (perm-info, s,⊥) and
receive c∗, and use c∗ as the ciphertext for storage

4. Output whatever A outputs

Figure 33: DCPA, the CPA Adversary Against Π

If c∗ is an encryption of 0, this is exactly what A would expect to see at this point in Hyb2 and if c∗

is an encryption of s, this is exactly what A expects to see in Hyb1. Therefore DCPA wins the CPA game
with the same non-negligible probability that A has of distinguishing between the two hybrids, and we have
reached our contradiction.

Therefore, in each case, we can construct a reduction that either wins the IND-CPA game against Πpub,
the INT-CTXT game against Π, or the CPA game against Π, and have a contradiction. Therefore Hyb2 is
indistinguishable from Hyb1.

Lemma 11. If Gatt is parameterized by a EUF-CMA secure signature scheme Σatt = (Gen,Sign,Vf), Hyb3

is indistinguishable from Hyb2

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb3) = 1] −
Pr[A(Hyb2) = 1]| > negl(λ). Then we can construct a reduction D with the goal of winning the unforge-
ability game against the signature scheme Σatt. We define D in Fig. 34.

D(vk):
1. Activate A(1λ)
2. Emulate Hyb2 for A
3. Upon submission of a signature σ∗ by A that was

not the result of a call to Gatt, submit σ∗ and the
message it signs to the challenger

Figure 34: D, the Adversary for the Unforgeability of Σatt

32

The only difference between the two hybrids is that in Hyb3 the simulator aborts with AttestFail when
the adversary does not make the proper calls to Gatt. Therefore, A must be able to produce forged signatures
that verify, else Hyb2 would abort at the same point, and we know that D must then win the unforgeability
game with the same non-negligible probability.

Lemma 12. If Σ = (Gen,Sign,Vf) is an EUF-CMA secure signature scheme, then Hyb4 is indistinguishable
from Hyb3

Proof. Towards a contradiction assume that there exists an adversary A such that |Pr[A(Hyb3) = 1] −
Pr[A(Hyb2) = 1]| > negl(λ). Then we can construct a reduction D such that D can win the unforgeability
game against the signature scheme Σ with the same non-negligible probability. We define D in Fig. 35.

D(vk):
1. Activate A(1λ)
2. Emulate Hyb3 for A, querying the challenger to

compute signatures
3. If A makes a remove call to Gatt using a signature

σ∗ that is not the result of a query, submit
(σ∗, “remove”∥perm-info) to the challenger

Figure 35: D, the Adversary for the Unforgeability of Σ

Because A can distinguish between the two hybrids, and the only difference is that in Hyb4 the simulator
aborts when A submits a signature that was not computed by the simulator, A must be able to compute
forgeries that verify, else Hyb3 would abort at the same point. Therefore D wins the unforgeability game
against Σ with the same non-negligible probability that A has of distinguishing between the two hybrids.

Case: Malicious Client∗ In Fig. 36 we present the simulator in the case of a malicious Client∗ and prove
through a series of hybrids that the view generated by SimClient∗ is indistinguishable from the view generated
in the real world.

Indistinguishability

Lemma 13. The view generated by SimClient∗ is indistinguishable from the view generated by the real world
adversary controlling a malicious Client∗

Proof. SimClient∗ behaves as an honest Cloud, and needs no special abort cases. Therefore the view generated
by SimClient∗ is indistinguishable from the view generated by a real world adversary controlling a malicious
Client∗.

Case: Malicious Cloud∗ and Client∗ In Fig. 37 present the simulator in the case where both Cloud∗

and Client∗ are malicious and prove through a series of hybrids that the view generated by SimCC∗ is
indistinguishable from the view generated in the real world.

Proof

Lemma 14. The view generated by SimCC∗ is indistinguishable from the view generated by the real world
adversary

Proof. SimCC∗ honestly simulates Gatt towards Cloud∗, and because we know that a simulator exists for
GPerm, is able to generate perm-info as expected for Client∗. Therefore the view generated by SimCC∗ is
indistinguishable from that of a real world adversary.

Case: Honest Cloud and Client Finally, in Fig. 38 we present the simulator in the case where all parties
are honest and prove through a series of hybrids that the view generated by SimH is indistinguishable from
the view generated in the real world.

Proof by Hybrids
We prove indistinguishability through a series of hybrids:

33

Simulator: SimClient∗

• Set Up: Upon receipt of (registered,Cloud) from GPerm

1. Send (registered,Cloud) to Client∗

• Store: Upon receipt of (register client,Client∗,Cloud) from Client∗ intended for GPerm

1. Forward (register client,Client∗,Cloud) to internally simulated GPerm to obtain perm-info
2. Upon receipt of (A, perm-info, vkClient) from Client∗ run Gatt.install(perm-info, progSecRec) = eid

on internally simulated Gatt
3. Run Gatt.resume(eid, (“store”, A, vkClient)) = (eid, progSecRec, B, vkClient, A, σatt) on internally

simulated Gatt and store retK
4. Send (eid, progSecRec, B, vkClient, A, σatt) to Client∗

5. Receive c from Client∗ and compute Π.Dec(retK, c) = (perm-info′, s, req∥res∥perm)
6. If perm-info′ ̸= perm-info or req∥res∥perm ̸= ⊥ output ⊥ and abort
7. Else send (store, perm-info, s) to FSecRec and store TSim[perm-info] = (eid, c,⊥)

• Remove: Upon receipt of (remove, perm-info, σremove) from Client∗

1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 abort
2. Else send (remove, perm-info) to FSecRec and receive (removed, perm-info)
3. Run internally simulated Gatt.resume(eid, (“remove”, perm-info, σremove)) =

(“removed”, perm-info, σremove, σatt) and send the output to Client∗

• Retrieve: Upon receipt of (retrieve, perm-info, σret) from Client∗

1. If Σ.Vf(vkClient, σret, retrieve∥perm-info) ̸= 1 abort
2. Else send (retrieve, perm-info) to FSecRec

3. If FSecRec sends (recovered, perm) forward (recovered, perm) to Client∗

4. Else receive (s) from FSecRec and send c to Client∗

• Recover: Upon receipt of (generate permission, perm-info,Cloud, req) from Client∗ intended for
GPerm

1. Send (generate permission, perm-info,Cloud, req) to internally simulated GPerm, receive
(permission, perm-info,Cloud, req∥res∥perm), and send to Client∗

2. Send (recover, perm-info, req, perm) to FSecRec

3. Upon receipt of req′∥res′∥perm′ from Client∗, if req′ ̸= req, res′ ̸= res, or perm′ ̸= perm abort
4. Run Gatt.resume(eid, (“recover”, pk, c, req, perm)) = (eid∥cfin, σatt) on internally simulated Gatt
5. Send (eid∥cfin, σatt)

Figure 36: Simulation of ΠSecRec for a Malicious Client∗

34

Simulator: SimCC∗

• Set Up: Upon receipt of (register server,Cloud∗) from Cloud∗ intended for GPerm

1. Send (register server,Cloud∗) to internally simulated GPerm

• Store: Upon receipt of (register client,Client∗,Cloud∗) from Client∗ intended for GPerm

1. Forward (register client,Client∗,Cloud) to internally simulated GPerm to obtain perm-info,
and send (perm-info,Cloud∗) to Client∗

2. Upon call Gatt.install(perm-info, progSecRec) by Cloud∗, run internally simulated Gatt and forward
response eid to Cloud∗

3. Upon call Gatt.resume(eid, (“store”, A, vkClient)) by Cloud∗, run internally simulated Gatt and
forward response (eid, progSecRec, B, vkClient, A, σatt) to Cloud∗ and store retK

4. Upon call
Gatt.resume(eid, (“verify ciphertext”, perm-info, c)) by Cloud∗

(a) Compute Π.Dec(retK, c) = (perm-info, s, req∥res∥perm)
(b) Send (store, perm-info, s) to FSecRec

(c) Run internally simulated Gatt and forward response (batt, σatt) to Cloud∗

• Remove: Upon call Gatt.resume(eid, (“remove”, perm-info, σremove)) by Cloud∗

1. If Σ.Vf(vkClient, σremove, “remove”∥perm-info) ̸= 1 abort
2. Send (remove, perm-info) to FSecRec

3. Run internally simulated Gatt and forward the output (“removed”, perm-info, σremove, σatt) to
Cloud∗

• Recover: Upon receipt of (generate permission, perm-info,Cloud∗, req) from Client∗ intended for
GPerm

1. Send (generate permission, perm-info,Cloud∗, req) to internally simulated GPerm, receive
(permission, perm-info,Cloud∗, req∥res∥perm), and send to Client∗

2. Send (recover, perm-info) to FSecRec

3. Send (recover, perm-info, req, perm) to FSecRec

4. Upon call Gatt.resume(eid, (“recover”, pk, c, req, perm)) by Cloud∗ run internally simulated Gatt
and forward response (eid∥cfin, σatt) to Cloud∗

Figure 37: Simulation of ΠSecRec for a Malicious Cloud∗ and Client∗

35

Simulator: SimH

• Set Up: Receive (registered,Cloud) from GPerm

• Store: Upon receipt of (registration request,Client,Cloud∗) from GPerm

1. Run internally simulated GPerm to obtain perm-info and send (perm-info,S) to Cloud∗

2. Upon receipt of (storage request, perm-info) from FSecRec

3. Set (vkClient, skClient)← Σ.Gen(1λ)

4. Sample a
$←− Zq and set A = ga

5. Run internally simulated Gatt to receive eid = Gatt.install(perm-info, progSecRec)

6. Run internally simulated Gatt to receive (eid, progSecRec, B, vkClient, Aσatt) =

Gatt.resume(eid, (“store”, A, vkClient)) and store retK
$←− Zq

7. Compute c = Π.Enc(retK, (perm-info, 0,⊥)) and send c to Cloud∗

8. Run internally simulated Gatt to receive (batt, σatt) =
Gatt.resume(eid, (“verify ciphertext”, perm-info, c)) using the backdoor to receive a signa-
ture on batt = 1

• Remove: Upon receipt of (removed, perm-info) from FSecRec

1. Compute σremove = Σ.Sign(skClient, “remove”∥perm-info)
2. Run internally simulated Gatt to receive (“removed”, perm-info, σremove, σatt) =
Gatt.resume(eid, (“remove”, perm-info, σremove))

• Recover: Upon receipt of (recover, perm-info) from FSecRec

1. Upon receipt of (permission, perm-info,S, req∥res∥perm)
2. Parse req = “recover”∥pk
3. Send (recover, perm-info, req, perm) to FSecRec

4. Run internally simulated Gatt to receive (eid∥cfin, σatt) =
Gatt.resume(eid, (“recover”, pk, c, req, perm)) where cfin is an encryption of 0

Figure 38: Simulation of ΠSecRec for Honest Cloud and Client

36

• Hyb0 : The real world protocol
• Hyb1 : This is the same as Hyb0 except that a random key is used as retK instead of the result of the
DHKE

• Hyb2 : This is the same as Hyb1 except that the value stored upon storage is 0 instead of the secret

Lemma 15. If the DDH assumption holds in the group G of prime order q, Hyb1 is indistinguishable from
Hyb0

Proof. Follows from the proof of Lemma 9

Lemma 16. If Πpub = (Gen,Enc,Dec) is a CPA secure encryption scheme and Π = (Gen,Enc,Dec) is a
CCA secure encryption scheme, Hyb2 is indistinguishable from Hyb1

Proof. Follows from the proof of Lemma 10

Proof Sketch The secret is stored under an INT-CTXT and IND-CPA secure encryption scheme, so we
know that a malicious Cloud cannot learn anything about the secret during storage, and cannot modify
the ciphertext at any point. Since Gatt is parameterized by an EUF-CMA secure signature scheme Σ, we
know that the output of Gatt cannot be forged, unless the adversary can compute forged signatures that
verify. Our Client executes a DHKA with Gatt to obtain a shared key. Because we assume that the DDH
assumption holds in the group G, the simulator is able to use a random key in place of this shared key, which
is indistinguishable from a key computed during the key exchange. The ciphertext returned upon recovery is
encrypted under an IND-CPA secure encryption scheme, therefore a malicious Cloud cannot learn anything
about the secret upon recovery, and we know that this ciphertext cannot be modified during recovery, as it
is the output of Gatt. Finally, because Client signs removal requests, we know that a malicious Cloud cannot
perform a removal without the client’s consent.

7 Evaluation

In this section, we provide the results of our experimental evaluation of our protocols. We simulated the
Hyperledger fabric blockchain with real-world parameters and implemented ΠPerm and ΠSecRec using the
Python programming language. Our implementation shows that all procedures, aside from Recover, are
very fast (tens of milliseconds). Recover is a slower procedure, with the cloud/enclave side taking about
66 seconds, excluding the waiting period and the latency of the blockchain. However, Recover would only
be run in the rare case that the client has lost their retrieval key or signing key. See Table 1.

Our implementation only measures the processing time of the client and the cloud/TEE and does not
include the time it takes for transactions to be posted. This is because this time depends on the latency of
the client and the blockchain network.

We provide our implementation through an anonymous repository https://anonymous.4open.science/
r/SKR-DB10/README.md

7.1 Implementation

Our implementation used existing libraries from the pypi [5] repository and we implemented both ΠPerm

and ΠSecRec as Python scripts. We use symmetric and asymmetric encryption schemes provided by the
pycryptodome [38] library and digital signatures by blspy [2] library . Finally, we used the oblivious [46]
Python package to implement the Diffie-Helman key exchange and commitment schemes.
Cryptographic Primitives. For symmetric encryption, we used the AES cipher in EAX (encrypt-then-
authenticate-then-translate) mode with 256 bits private key size. With this, each ciphertext is associated
with a Message Authentication Code (MAC) for authentication. For asymmetric encryption, we used a
hybrid approach where we sample a random 2048-bit RSA private key and a 256-bit session key, then
encrypt the plaintext under AES with the session key, and finally encrypt the session key with RSA. Here,
the AES encryption process is also in EAX mode with an associated MAC. For our digital signatures scheme,
we use BLS signatures implemented by the blspy library with a private key size of 256 bits.
Hyperledger Simulation. Our protocols are designed to be independent of any specific ledger systems.
ΠPerm uses the blockchain simply as a public bulletin board. Therefore, we chose to forego deploying the

37

https://anonymous.4open.science/r/SKR-DB10/README.md
https://anonymous.4open.science/r/SKR-DB10/README.md

Hyperledger testbed and opted to simulate the Hyperledger chain instead. This choice further allowed us to
run more experiments as the simulation eliminated the need to wait according to twait.

Our simulation adheres to the real-world parameters of Hyperledger implementations. The structure
of transactions in our simulation matches those found in actual Hyperledger transactions [1]. We have
configured each transaction in our simulation to require 15 endorsements from a pool of 25 peers before it is
submitted to the Ordering Service Nodes (OSN). We have 7 OSNs collaborating to form blocks at 2-second
intervals, the default batch timeout time. Each block in our simulation is 2MB, which is the preferred
size in the default configuration of Hyperledger[31]. To simulate normal transaction traffic, we have also
implemented several parallel processes that generate noise transactions – transactions that do not contribute
to our protocol – thereby ensuring continuous activity on our blockchain.

In Sec. 7.3, we discuss how, if an instance of Hyperledger is launched with the specific purpose of
supporting secret recovery, Hyperledger can be configured to further reduce the runtime of our protocols.
Protocol Configuration. In our implementation and benchmarks, we intentionally omitted the communi-
cation latency between the client and the cloud, as well as the latency incurred by posting to the blockchain,
to focus on the compute time and interactions between the cloud and the enclave. Specifically, we included
the latency occurring between the cloud and its enclave to better understand the impact of transferring data
from the cloud’s memory to the enclave’s memory on performance.

We configured the enclave as a non-blocking virtual socket server that continuously listens to incoming
connections at a designated port. This setup ensures that the server can handle requests asynchronously
without delay. We also established a simple socket communication protocol to facilitate interactions between
the cloud and the enclave. Each communication cycle begins with transmitting a 64-byte header, which
specifies the total length of the data payload that the enclave should expect. Following this, the data
transfer proceeds while the socket connection remains open. The connection is only terminated once the
cloud confirms the reception of a success or failure response from the enclave. In practical deployment
considerations, both the enclave and the cloud could be configured to make such a request asynchronously
and thus can continue to execute other processes for other clients.

7.2 Protocol Runtime

Table 1: Performance for Procedures Measured in Seconds, Taken Over 100 Experiments

Store Retrieve Recover Remove

Mean SD Mean SD Mean SD Mean SD

Client 0.0363 0.0034 0.0011 0.0002 0.5617 0.3332 0.0177 0.0015

Cloud 0.0538 0.0036 0.0198 0.0030 66.2481 1.7835 0.0412 0.0047

Enclave 0.0301 0.0002 0.00 0.00 48.9244 0.1139 0.0015 ∼ 0.0

Experimental Setup. Our experiments were run on an Amazon EC2 m5.xlarge parent VM instance
having 4 vCPU, 16GiB of memory, and EBS-only (Elastic Block Store) storage. This machine is the bare
minimum specification (specs) required to run the AWS nitro system. We allocated 2 of the 4 vCPU and
4GiB out of 16GiB of RAM to the enclave, leaving the parent with 2 vCPU and 12GiB of memory.

The primary objective of our experiment is to measure the runtime performance of Register, Store,
Retrieve, Recover, and Remove protocols in ΠSecRec. For Register, we configured the client to have a
topen of 30 seconds corresponding to 15 blocks, twait of 1 week corresponding to 302,400 blocks, and a tchal
of 10 minutes corresponding to 300 blocks. For Store protocol, we presumed that the secret information
that the client prefers to store is a Bitcoin wallet private key with a size of 256 bits. We chose to store
Bitcoin private keys due to the prevalence of the problem of recovery in the cryptocurrency space. We ran
each experiment 100 times and calculated the mean and standard deviation (SD) of the runtime for each
protocol.

38

Table 1 presents our results. Note that the runtime of Recover omits the waiting period as there are
no computations performed during the waiting period. Note also that cloud runtime includes the runtime
of the enclave.
Store Procedure. The Store procedure took 0.0363seconds (s) for the client with an SD of 0.0034s. It
took 0.0538s with an SD of 0.0036s for the cloud and 0.0301s and an SD of 0.0002s for the enclave. Here,
the cloud runtime includes the cloud’s computations, the bidirectional socket communication latency with
the enclave, and the enclave’s own processing time.
Retrieve Procedure. The Retrieve procedure took 0.0011s for the client with an SD of 0.0002s. It took
0.0198s with an SD of 0.0030s for the cloud. The enclave does not run for retrieval.
Recover Procedure. The Recover procedure took 0.5617s for the client with an SD of 0.3332s. It took
66.2481s with an SD of 1.7835s for the cloud and 48.9244s and an SD of 0.1139s for the enclave. Like the
Store protocol above, the runtime of the cloud includes that of the enclave and communication latency. The
times provided exclude the waiting period, as no computation is performed during this time. It is important
to note that the compute time of Recover is independent of twait.
Remove Procedure. Finally, the Remove procedure took 0.0177s for the client with an SD of 0.0015s. It
took 0.0412s with an SD of 0.0047s for the cloud and 0.0015s and an SD of ∼ 0.0 s for the enclave. Again,
the cloud runtime includes the that of the enclave and communication latency.

It is essential to mention that the runtimes discussed here for the client and cloud include the latency
associated with accessing data from the local ledger. These latencies can vary depending on the proximity
of the client and server within the Hyperledger network and the operations of the ledger.

7.3 Deployment Considerations

Our implementation shows that credential-less secret recovery is not only feasible, but fast. Here, we discuss
potential improvements to further improve the runtime of the protocols.

The AWS Nitro system supports running multiple enclave instances under one parent instance. In
a practical deployment, the cloud can process requests from multiple clients simultaneously, and enclave
operations could also be parallelized to handle various clients at once. Specifically, a major bottleneck is
in Recover during the verification of the blocks comprising comwindow and chalwindow. Block verification
consists of verifying the signatures of the OSNs and verifying continuity when given a sequence of blocks.
This verification can be parallelized to allow the enclave to parse permission more efficiently and optimize
resource utilization, leading to more efficient protocol execution.

Further, in deployment, the default configuration of Hyperledger would not be optimal. Specifically, with
the parameters we set, permission consists of blocks totaling over 600MB. This can be reduced by reducing
the size of the windows (reducing topen and/or tchal), or by reducing the overall block size. It is important
to note that while we suggest reducing the size of topen and/or tchal, it is paramount that these values be set
high enough that a client has enough time to post an opening and commitment respectively. An advantage
of Hyperledger is that it is extremely configurable, so one can reduce the preferred block size to reduce
the overall size of permission. The largest transaction posted in our implementation is txfin, consisting of
about 4206 bits, therefore a block size of 2MB may be unnecessarily large. Reducing the block size is more
attainable in the case that an instance of Hyperledger is launched with the sole purpose of supporting Secret
Recovery.

Lastly, our implementation can be improved on the client side through the use of smart contracts. Our
protocol requires that a client wait for twait blocks to pass before responding to a malicious request. With
smart contracts, the client could instead schedule their denial transaction to be posted within the denial
window.

References

[1] https://hyperledger-fabric.readthedocs.io/en/latest/index.html. pages 3, 5, 38

[2] https://pypi.org/project/blspy/. pages 37

[3] Hardware protected signer faqs. https://braavos.notion.site/

Hardware-Protected-Signer-FAQs-5d5ae07e999e45ddaf8a7f5c4abbad80. pages 9

39

https://hyperledger-fabric.readthedocs.io/en/latest/index.html
https://pypi.org/project/blspy/
https://braavos.notion.site/Hardware-Protected-Signer-FAQs-5d5ae07e999e45ddaf8a7f5c4abbad80
https://braavos.notion.site/Hardware-Protected-Signer-FAQs-5d5ae07e999e45ddaf8a7f5c4abbad80

[4] How to recover my wallet with guardians: complete guide. https://support.argent.xyz/hc/en-us/
articles/360007338877-How-to-recover-my-wallet-with-guardians-complete-guide. pages 9

[5] Python package index - pypi. https://pypi.org/. pages 37

[6] Recovery process for the trezor model t. https://trezor.io/learn/a/recover-wallet-on-model-t.
pages 9

[7] Sequence documentation: Key management. https://docs.sequence.xyz/key-management/. pages
9

[8] Set up wallet recovery wizard. https://developers.bitgo.com/guides/wallets/recover. pages 9

[9] Tor project anonymity online. https://www.torproject.org/. pages 4

[10] Torus labs: Open-source key management. https://tor.us/. pages 9

[11] Understand the difference: Zengo wallet recovery vs. ledger recover. https://zengo.com/

understand-the-difference-zengo-wallet-recovery-vs-ledger-recover/. pages 9

[12] Amazon Web Services. The security design of the aws nitro system. https://docs.

aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/

security-design-of-aws-nitro-system.pdf, 2022. pages 3, 5

[13] Mehmet Aydar, Salih Cemil Cetin, Serkan Ayvaz, and Betül Aygün. Private key encryption and recovery
in blockchain. CoRR, abs/1907.04156, 2019. pages 10

[14] Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. A byzantine fault-tolerant consensus
library for hyperledger fabric. In IEEE International Conference on Blockchain and Cryptocurrency,
ICBC 2021, Sydney, Australia, May 3-6, 2021, pages 1–9. IEEE, 2021. pages 5

[15] M. Bellare and S. Goldwasser. Encapsulated key escrow, 1996. pages 2, 9

[16] Mihir Bellare and Shafi Goldwasser. Verifiable partial key escrow. In Richard Graveman, Philippe A.
Janson, Clifford Neuman, and Li Gong, editors, CCS ’97, Proceedings of the 4th ACM Conference on
Computer and Communications Security, Zurich, Switzerland, April 1-4, 1997, pages 78–91. ACM,
1997. pages 2, 9

[17] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Advances in Cryptology
- ASIACRYPT 2000, 6th International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000. pages 10

[18] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. J. Cryptol., 21(4):469–491, 2008. pages 31, 32

[19] Alysson Neves Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Ferreira Neves, Miguel Correia, Marcelo
Pasin, and Paulo Veŕıssimo. SCFS: A shared cloud-backed file system. In Garth Gibson and Nickolai
Zeldovich, editors, 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA,
USA, June 19-20, 2014, pages 169–180. USENIX Association, 2014. pages 9

[20] Sam Blackshear, Konstantinos Chalkias, Panagiotis Chatzigiannis, Riyaz Faizullabhoy, Irakliy
Khaburzaniya, Eleftherios Kokoris-Kogias, Joshua Lind, David Wong, and Tim Zakian. Reactive key-
loss protection in blockchains, 2021. pages 4, 6, 8, 9

[21] Vitalik Buterin, Yoav Weiss, Dror Tirosh, Shahaf Nacson, Alex Forshtat, Kristof Gazso, and Tjaden
Hess. EIP-4337: Basefee Network Upgrade, 2021. pages 8

40

https://support.argent.xyz/hc/en-us/articles/360007338877-How-to-recover-my-wallet-with-guardians-complete-guide
https://support.argent.xyz/hc/en-us/articles/360007338877-How-to-recover-my-wallet-with-guardians-complete-guide
https://pypi.org/
https://trezor.io/learn/a/recover-wallet-on-model-t
https://docs.sequence.xyz/key-management/
https://developers.bitgo.com/guides/wallets/recover
https://www.torproject.org/
https://tor.us/
https://zengo.com/understand-the-difference-zengo-wallet-recovery-vs-ledger-recover/
https://zengo.com/understand-the-difference-zengo-wallet-recovery-vs-ledger-recover/
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf

[22] Ran Canetti, Kyle Hogan, Aanchal Malhotra, and Mayank Varia. A universally composable treatment
of network time. In 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara,
CA, USA, August 21-25, 2017, pages 360–375. IEEE Computer Society, 2017. pages 12

[23] Melissa Chase, Hannah Davis, Esha Ghosh, and Kim Laine. Acsesor: A new framework for auditable
custodial secret storage and recovery. IACR Cryptol. ePrint Arch., page 1729, 2022. pages 9

[24] Panagiotis Chatzigiannis, Konstantinos Chalkias, Aniket Kate, Easwar Vivek Mangipudi, Mohsen Mi-
naei, and Mainack Mondal. Sok: Web3 recovery mechanisms. IACR Cryptol. ePrint Arch., page 1575,
2023. pages 9

[25] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M. Johnson, Ari Juels,
Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving, trustworthy, and
performant smart contracts. In IEEE European Symposium on Security and Privacy, EuroS&P 2019,
Stockholm, Sweden, June 17-19, 2019, pages 185–200. IEEE, 2019. pages 2

[26] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In Yuliang Zheng, editor, Advances in Cryptology - ASIACRYPT 2002, 8th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Queenstown,
New Zealand, December 1-5, 2002, Proceedings, volume 2501 of Lecture Notes in Computer Science,
pages 125–142. Springer, 2002. pages 12

[27] Emma Dauterman, Henry Corrigan-Gibbs, and David Mazières. Safetypin: Encrypted backups with
human-memorable secrets. In 14th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2020, Virtual Event, November 4-6, 2020, pages 1121–1138. USENIX Association, 2020.
pages 9

[28] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang Zhang. M2R:
enabling stronger privacy in mapreduce computation. In Jaeyeon Jung and Thorsten Holz, editors, 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015,
pages 447–462. USENIX Association, 2015. pages 2

[29] Ravi Ganesan. How to use key escrow (introduction to the special section). Commun. ACM, 39(3):32–33,
1996. pages 2, 9

[30] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989. pages 12

[31] Hyperledger. Hyperledger/fabric. https://github.com/hyperledger/fabric. pages 38

[32] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, Applied Cryptography and Network Security - 15th International Conference, ACNS
2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, volume 10355 of Lecture Notes in Computer
Science, pages 39–58. Springer, 2017. pages 10

[33] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 456–486. Springer, 2018. pages 10

[34] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the stateless: Augmenting trustwor-
thy computation with ledgers, 2019. pages 2, 12, 14

[35] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC Press,
2014. pages 10, 11, 12

41

https://github.com/hyperledger/fabric

[36] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play decentralized poker.
In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, pages
195–206. ACM, 2015. pages 2

[37] Pascal Lafourcade, Lola-Baie Mallordy, Charles Olivier-Anclin, and Léo Robert. Secure keyless multi-
party storage scheme. In ESORICS, 2024. pages 9

[38] Legrandin. Legrandin/pycryptodome: A self-contained cryptographic library for python. https://

github.com/Legrandin/pycryptodome?tab=readme-ov-file. pages 37

[39] Yehuda Lindell. Cryptography and mpc in the coinbase prime web3 wallet. Online, 2023. pages 9

[40] Deepak Maram, Mahimna Kelkar, and Ittay Eyal. Interactive authentication. IACR Cryptol. ePrint
Arch., page 1682, 2022. pages 10

[41] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software model for isolated ex-
ecution. In Ruby B. Lee and Weidong Shi, editors, HASP 2013, The Second Workshop on Hardware
and Architectural Support for Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013, page 10. ACM,
2013. pages 2

[42] Leila Megouache, Abdelhafid Zitouni, and Mahieddine Djoudi. Ensuring user authentication and data
integrity in multi-cloud environment. Hum. centric Comput. Inf. Sci., 10:15, 2020. pages 9

[43] Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brickell, editor, Advances in Cryptology
- CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 113–138.
Springer, 1992. pages 2, 9

[44] Ujan Mukhopadhyay, Anthony Skjellum, Oluwakemi Hambolu, Jon Oakley, Lu Yu, and Richard R.
Brooks. A brief survey of cryptocurrency systems. In 14th Annual Conference on Privacy, Security and
Trust, PST 2016, Auckland, New Zealand, December 12-14, 2016, pages 745–752. IEEE, 2016. pages 1

[45] Ahad Niknia, Miguel Correia, and Jaber Karimpour. Secure cloud-of-clouds storage with space-efficient
secret sharing. Journal of Information Security and Applications, 59:102826, 2021. pages 9

[46] Nthparty. Nthparty/oblivious: Python library that serves as an api for common cryptographic primitives
used to implement oprf, ot, and psi protocols. https://github.com/nthparty/oblivious. pages 37

[47] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution secure proces-
sors. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in
Computer Science, pages 260–289, 2017. pages 2, 3, 5, 13, 27, 29

[48] Riccardo Di Pietro, Marco Scarpa, Maurizio Giacobbe, and Antonio Puliafito. Secure storage as a ser-
vice in multi-cloud environment. In Antonio Puliafito, Dario Bruneo, Salvatore Distefano, and Francesco
Longo, editors, Ad-hoc, Mobile, and Wireless Networks - 16th International Conference on Ad Hoc Net-
works and Wireless, ADHOC-NOW 2017, Messina, Italy, September 20-22, 2017, Proceedings, volume
10517 of Lecture Notes in Computer Science, pages 328–341. Springer, 2017. pages 9

[49] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb: pro-
cessing queries on an encrypted database. Commun. ACM, 55(9):103–111, 2012. pages 1

[50] Alessandra Scafuro. Break-glass encryption. In Dongdai Lin and Kazue Sako, editors, Public-Key
Cryptography - PKC 2019 - 22nd IACR International Conference on Practice and Theory of Public-
Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II, volume 11443 of Lecture
Notes in Computer Science, pages 34–62. Springer, 2019. pages 1, 2, 3, 8, 10

42

https://github.com/Legrandin/pycryptodome?tab=readme-ov-file
https://github.com/Legrandin/pycryptodome?tab=readme-ov-file
https://github.com/nthparty/oblivious

[51] Ricardo Guilherme Schmidt, Miguel Mota, Vitalik Buterin, and naxe. Eip-2429: Add ability for recovery
of burned keys used in multisig wallets, 2019. pages 8

[52] Adi Shamir. Partial key escrow: A new approach to software key escrow. In Key escrow conference,
1995. pages 2, 9

[53] Jacob Swambo and Antoine Poinsot. Risk framework for bitcoin custody operation with the revault pro-
tocol. In Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon, Thomas Haines, Ariah Klages-Mundt,
Shin’ichiro Matsuo, Daniel Perez, Massimiliano Sala, and Sam Werner, editors, Financial Cryptogra-
phy and Data Security. FC 2021 International Workshops - CoDecFin, DeFi, VOTING, and WTSC,
Virtual Event, March 5, 2021, Revised Selected Papers, volume 12676 of Lecture Notes in Computer
Science, pages 3–20. Springer, 2021. pages 8

[54] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath. Dandelion: Redesigning the
bitcoin network for anonymity. Proc. ACM Meas. Anal. Comput. Syst., 1(1):22:1–22:34, 2017. pages 4

[55] Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: the least-authority filesystem. In Yongdae Kim and
William Yurcik, editors, Proceedings of the 2008 ACM Workshop On Storage Security And Survivability,
StorageSS 2008, Alexandria, VA, USA, October 31, 2008, pages 21–26. ACM, 2008. pages 9

[56] Elizabeth Nathania Witanto, Brian Stanley, and Sang-Gon Lee. Correction: Witanto et al. dis-
tributed data integrity verification scheme in multi-cloud environment. sensors 2023, 23, 1623. Sensors,
23(12):5566, 2023. pages 9

[57] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and Ion
Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In Aditya Akella and Jon
Howell, editors, 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2017, Boston, MA, USA, March 27-29, 2017, pages 283–298. USENIX Association, 2017. pages 2

43

	Introduction
	Our Techniques
	First Realization of Credential-less Permission Mechanism GPerm Using Blockchains
	UC-Definition of Credential-less Secret Recovery FSecRec
	UC-Protocol Realizing FSecRec in the GPerm Hybrid World Using TEE
	Software Implementation and Evaluation of Permission Mechanism and Secret Recovery
	Areas for Improvement.

	Related Work
	Background
	Symmetric key encryption
	Public key encryption.
	Digital signature schemes.
	Commitment Schemes
	Global Clock Functionality
	Proof-of-Publication Ledger L.
	Trusted Execution Environment.

	Credential-less Permission Mechanism via Blockchain
	Credential-less Secret Recovery
	Evaluation
	Implementation
	Protocol Runtime
	Deployment Considerations

