
Pisces: Private and Compliable Cryptocurrency
Exchange

Ya-Nan Li
The University of Sydney
yanan.li@sydney.edu.au

Tian Qiu
The University of Sydney

tqiu4893@uni.sydney.edu.au

Qiang Tang
The University of Sydney
qiang.tang@sydney.edu.au

Abstract—Cryptocurrency exchange platforms such as Coin-
base, Binance, enable users to purchase and sell cryptocurren-
cies conveniently just like trading stocks/commodities. However,
because of the nature of blockchain, when a user withdraws
coins (i.e., transfers coins to an external on-chain account), all
future transactions can be learned by the platform. This is in
sharp contrast to conventional stock exchange where all external
activities of users are always hidden from the platform. Since
the platform knows highly sensitive user private information
such as passport number, bank information etc, linking all (on-
chain) transactions raises a serious privacy concern about the
potential disastrous data breach in those cryptocurrency exchange
platforms.

In this paper, we propose a cryptocurrency exchange that
restores user anonymity for the first time. To our surprise, the
seemingly well-studied privacy/anonymity problem has several
new challenges in this setting. Since the public blockchain and
internal transaction activities naturally provide many non-trivial
leakages to the platform, internal privacy is not only useful in
the usual sense but also becomes necessary for regaining the
basic anonymity of user transactions. We also ensure that the
user cannot double spend, and the user has to properly report
accumulated profit for tax purposes, even in the private setting.
We give a careful modeling and efficient construction of the
system that achieves constant computation and communication
overhead (with only simple cryptographic tools and rigorous
security analysis); we also implement our system and evaluate
its practical performance.

I. INTRODUCTION

Just like stocks and other commodities, people buy or sell
cryptocurrencies on exchange platforms, mostly, on centralized
platforms such as Coinbase, which are essentially marketplaces
for cryptocurrencies. There, customers can pay fiat money like
U.S dollars to get some coin, e.g, Bitcoin, or transfer their coin
in the platform to an external account (withdrawal) 1. Despite
the promise of decentralized exchange, those centralized trad-
ing platforms still play a major role for usability and even
regulatory reasons. For example, the annual trading volume of

1Or transfer coins into accounts in the platform from an external account
(deposit), then sell for fiat money; and exchange one coin, e.g., BTC, to get
some other coin, e.g., ETH. See Fig.1, and Sec.IV-A for details.

Binance was up to 9580 billion USD in 2021 [2], and Coinbase
also had 1640 billion USD in 2021 [3].

Like conventional stock exchanges, these exchange plat-
forms must comply with regulations including Know Your
Customer (KYC). They require businesses to verify the identity
of their clients. Essentially, when a client/user registers an
account at the exchange platform, he is normally required to
provide a real-world identification document, such as passport,
or a stamped envelope with address, for the platform to verify.
Also for trading purposes, bank information is also given.

Serious privacy threats. Despite provided convenience, those
centralized cryptocurrency exchange platforms cause a much
more serious concern on potential privacy breaches.

As we have witnessed, many data breach instances exist
[4]. A more worrisome issue in the exchange setting is that
exchange can be seen as a bridge between the real world
and the cryptocurrency world, which amplify the impacts of
potential privacy breach (in exchange, of user records including
identities and accounts). Users may deposit coins into the
platform from, or withdraw coins (transfer out of the platform)
to, his personal account on a blockchain.

Since most of the blockchains are transparent (except very
few number of chains such as Zcash [8]) and publicly ac-
cessible (e.g., Bitcoin, Ethereum), the platform can essentially
extract all transaction history knowing the real identity of a
user. In the former case, the platform immediately links the real
identity to his incoming addresses, and trace back all previous
transactions on-chain; while even worse in the latter case,
the platform, knowing the real identity of a user, and knows
exactly which account/address of the cryptocurrency the user
requested to withdraw (transfer to), and all future transactions.
For instance, the platform could easily deduce that a user Alice
bought a Tesla car with Bitcoin, as she withdrew them from the
platform and then transferred them to Tesla’s Bitcoin account
(which could be public knowledge).

It follows that existing centralized cryptocurrency ex-
change immediately “destroys” the pseudonym protection of
blockchains, and the platform could obtain a large amount
of information that is not supposed to be learned, e.g., the
purchase/transaction histories of clients outside of the plat-
form. This is even worse than conventional stock/commodity
exchange where privacy may be breached within the system,
but user information outside of the system is not revealed.

We would like to design a cryptocurrency exchange system
that at least restores user anonymity/privacy so that external

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23xxx
www.ndss-symposium.org

records are not directly linked to the real identity.

Insufficiency of external anonymity mechanisms. The first
potential method is keeping the existing exchange unchanged,
and cutting the link between the exchange and external
blockchain by making on-chain payments/transfers (for coin
deposits and withdrawals) on every blockchain anonymous, so
that nobody can link the payer and the payee. Unfortunately,
all those external anonymity solutions are insufficient.

First, fully anonymous on-chain payments such as Zcash
only support its own native coins, while in most exchange
platforms, Bitcoin, Ethereum and many other crypto tokens
are the main objects of exchange, and cannot be supported.

More exotic solutions like anonymous layer-2 payment
solutions [28], [25], [35], [31] and private smart contract
enabled private payment solutions [16], [22] also exist. One
may wonder whether we can let the platform be the payer
in those solutions during coin withdrawal. However, existing
solutions mainly consider k-anonymity (where k is the number
of active users in an epoch) against the hub in [28], [25], [35]
and the leader in [31] and other outsiders, not against the
payer himself. In our case, the platform is the payer and knows
exactly the payee address during a coin withdrawal.

Recent works of [36], [25] even considered anonymous
(k-anonymity) payment hub against payers, assuming fixed
denomination. Besides that k is usually small, the withdraw
transactions in exchange platform can hardly be of a fixed
amount. When two users withdraw different amount of coins,
the platform again can trivially tell them apart.

Unexplored anonymity within exchange platform. The
above analysis hints that relying on external anonymity mech-
anism alone is insufficient, we need to further strengthen the
anonymity protection within the platform. Anonymity issues
are classical topics that have been extensively studied in
different settings, including in cryptocurrencies; yet, we will
demonstrate that large body of those works are not applicable
to our setting of exchange system.

First, not only anonymous payment hub solutions cannot
be directly applicable, even the techniques (e.g., viewing the
exchange platform as the hub instead, while each user can
be both a payer and payee) are not sufficient either for the
“internal” anonymity. The key difference, again, lies in the
functionality difference of payment hubs (and other payment
related solutions in general) and exchange platforms.

Usually, in an anonymous payment hub, payer-payee ex-
change some information first, and then each runs some form
of (blockchain facilitated) fair exchange protocol with the hub.
For anonymity, they would require a bunch of payers and
payees to have some on-chain setup first with the hub, and k
active payments, so that the link between each pair of payer-
payee can be hidden among those k transactions; otherwise,
each individual incoming transaction can be recognized by the
hub. But in an exchange platform, there is no other entity
for such setup, each individual request would be independent
from the view of the platform: when user A, B purchase some
BTCs from the exchange platform, these purchase requests can
trivially be distinguished by the platform (i.e., k = 1).

Another issue (not covered in the payment solutions)
in anonymous exchange is that every exchange transaction

between a user and the platform contains two highly correlated
parts: the transaction from user to platform and that from
platform to user. The amounts are based on the exchange rate,
e.g., A pays 1 BTC, for 15 ETHs. While in (anonymous)
payment solutions, any two transactions can be completely
independent, e.g., A pays 10 BTCs to B (e.g. platform here),
while B pays 1 ETH to A.

There are also some works on private Decentralized EX-
change (DEX for short) [15], [11] where users exchange
cryptocurrencies with each other. The privacy model in DEX
is different from that of our centralized setting. It keeps the
transaction information secret except for the trading parties.
Again, in our setting, the platform is one of the trading parties
who can learn the information of the other trivially.

Atomic swap across different ledgers supports the ex-
change between different cryptocurrencies. While atomic swap
pays much effort on ensuring fairness, the only privacy-
preserving atomic swap work [21] reduces the confidentiality
and anonymity properties to the underlying blockchains. If
the swap protocol involves cryptocurrencies on transparent
blockchains, like Bitcoin and Ethereum, these two transactions
can be linked easily via their amounts. There is only one
private fiat-to-Bitcoin exchange [41]. During withdraws, the
client chooses one UTXO and mixes it among k transactions.
To prevent linkability by the transaction amount, it requires
each withdrawal to be fixed for 1 BTC. And if two clients
choose the same BTC, only one of them would get paid.

It follows that the natural question of anonymous cryp-
tocurrency exchange is still open.

Further challenges. Besides the issues mentioned above not
covered in existing studies, the anonymous cryptocurrency ex-
change setting has several other features that bring about more
challenges: since the exchange system is always connected
with external blockchain (e.g., via the deposit and withdrawal
of coins), it automatically leaks highly non-trivial information
(e.g., 3 BTCs has been deposited, and 2.9 BTCs has been
withdrawn/transferred out 2 minutes later) such that how to
best deal with them requires care.

The right anonymity/privacy goal. From a first look, we
may just handle the withdrawal operation and define a basic,
direct anonymity notion, that breaks the link between the
receiving account and user identity, and leave other operations
unchanged for efficiency. A bit more formally, given two
different users and a specified withdraw transaction, we can
require that it is infeasible to distinguish which one conducts
the withdrawal if both of them are eligible. However, if we
examine the anonymity set of the withdrawal, it only consists
of users who have enough amount of the specified coin, which
could be few. For example, for some unpopular assets, maybe
only a very small number of users own such kinds of coins;
or one user may hold a significantly larger amount of the coin
than others. When a large-volume withdrawal of such token is
taken place, it is easy for the platform to identify the user.

We then turn to consider stronger anonymity. One may sug-
gest to gradually strengthening anonymity by allowing fewer
unnecessary leakages (keeping some internal transaction data
private such as amount) and leave seemingly safe information
such as coin names as now (to avoid potentially complex

2

solutions for protecting such info). Unfortunately, many of
remaining transaction metadata, together with the inherent
leakages such as 3 BTCs have been withdrawn by someone to
an external address, can still reduce anonymity set. It is hard
to have a reasonably stronger anonymity without full internal
transaction privacy (excluding the inherent leakage during
withdraw/deposit), as it is unclear what is the actual conse-
quence of each specific leakage. For these reasons, we choose
a definition that insists the system does not leak anything more
than necessary to the exchange platform (essentially requiring
privacy). We will explain more in Sec. V-A.

Preserving major compliance functionalities. We also need to
preserve all the critical functionalities that are currently pro-
vided by centralized exchange platforms, including compliance
such as generating tax reports for users and checking sufficient
reserve for the platform. 2

There are many types of assets/coins in an exchange
system, and their prices fluctuate over time. Users gain a
profit by capitalizing on the price difference between buying
and selling. It is often mandatory for users to pay taxes
on their accumulated profits over time. At each year end,
users obtain a tax report from the platform so that they can
report their annual profit, e.g., to Internal Revenue Service
for tax filing. For example, based on the suggested tax policy
of Coinbase [7], transactions that result in a tax are called
taxable events. Taxable events as capital gains include selling
cryptocurrency for cash, converting one cryptocurrency to
another, and spending cryptocurrency on goods and services
(e.g., withdrawing cryptocurrency).

In the current transparent exchange system, the platform
records the whole transaction history for each account and
extract easily their taxable events. The platform can also check
the reserve easily as it knows the asset details of each account.
This ensures that the platform possesses sufficient assets to
meet the withdrawal requests of users.

However, in the anonymous setting (now also requires
privacy), the platform has no idea about the asset detail of
each account. It cannot prove solvency in the same way as
before. Furthermore, the platform knows neither the actual
profit nor the relationship between these transactions with
any user. Without careful designs to calculate accumulated
profit (without violating privacy/anonymity), some users could
always claim they made no profit.

Striving for practical performance. Privacy preserving con-
structions normally use zero-knowledge proofs. Although the
deposit and withdrawal assets are public, the exchange details
(e.g., 1 BTC for 15 ETHs) should be hidden and proven in
zero-knowledge that the transaction is valid and the prices
are recorded correctly. In theory, zkSNARK [13] may enable
succinct proof size and verification time. But the proof gen-
eration incur heavy computation for users. Σ-protocols may
also be useful, but hiding the exchanged asset types in all n
kinds assets usually requires communication/computation cost

2There are some related works in accountable privacy (e.g., PGC [17], UTT
[37], Platypus [40], etc), but they only focus on the payment with a single
kind of asset and enforce limits on one transaction amount or account balance
or sum of all sent or received values. Note that these compliance requirements
cannot cover the profit computation which uses the specific buying price
without linking to that transaction.

growing at least linear in n. For a practical design, we need
to reduce the communication and computation overhead to be
as small as possible (e.g., ideally constant cost).

A. Our contributions

Modeling. We for the first time formally define the private
and compliable cryptocurrency exchange. We give a basic
version of anonymity first as a warm up, which only cares
about the withdrawal operation. As we briefly discussed above,
hiding only part of transaction data may not give a reasonably
strong anonymity. In the end, we define the security model
insisting that the exchange leaks essentially no information
to the platform. In this way, we obtain the best possible
anonymity (given that public withdrawal is always there). We
also carefully define soundness properties such as overdraft
prevention, and compliance. For details, we refer to Sec. V.

Constructions. We first give a very simple construction satis-
fying the basic withdraw anonymity, and showcase its limita-
tions. We then design the first private and compliable exchange
system which is provably secure in the full private model.
Users are hidden in a large anonymity set, and they cannot
withdraw more asset than they own, or report false compliance
information. To obtain full anonymity, user’s information are
concealed as much as possible in each transaction, including
user identities and the exchanged assets details. Soundness
properties are ensured via efficient NIZK proofs specially
designed for our purposes. Note that proving correctness of a
exchange request usually leads to a proof whose size is linear
to the total number of asset types; instead, we propose an
efficient construction with constant cost in both communica-
tion and computation which is independent with the number
of asset types and users in the system.

Performance evaluations. We implement and evaluate our
Pisces system and test the cost breakdown in each opera-
tions, and compare with those in plain exchange (without
anonymity). Considering the presence of TLS communication,
our overhead is minimal. We also compare with other relevant
systems3 for further evidence. See Sec. VII for details.

II. TECHNICAL OVERVIEW

We first provide a high-level overview of the technique.
Typically, there are two main parties involved: the platform
and the user. However, in certain cases such as tax filing, there
may also be an external authority involved.

Workflow of exchange system. First, the user provides the
real identity to the platform during registration. Then the
user interacts with the platform to deposit, exchange (e.g.,
1 BTC for 15 ETHs) and withdraw asset. For compliance,
the user generates his compliance report, gets it certified by
the platform and reports to an authority. The platform also
generates information to check its own solvency.

We use Fig 1 to visualize these (simplified) procedures.
Each interactive protocol can be expressed by ➀ ➁ ➂ steps.
The user sends compliance report to the authority who verifies

3There is a concept of updatable anonymous credential [14], that share
similar theoretical structure of proving properties of attributes in anonymous
credential; however, their main application to incentive systems supports only
limited functionalities and the achieved anonymity is weak, see Sec. IX. We
have to design more complicated compliance functions.

3

it in step ➃. The platform checks in step ➄ whether its internal
state satisfies the platform compliance rule.

Fig. 1: Overview of exchange system: ➀ Transaction request;
➁ Transaction processing: platform verifies the transaction

and process it; ➂ Transaction completion: user completes the
transaction; ➃ Compliance verification: authority verifies the
compliance report of the user; ➄ Compliance check: platform

checks internal state with the platform compliance rule

Constructions. Based on the workflow above, we illustrate the
design idea of our efficient system Pisces step by step.

Basic anonymity. As a warm-up, to just break the link between
outgoing transaction (withdraw) and the history within the
platform, we can introduce a preparation step. There, users ask
for one-time anonymous credentials (as tokens) with amounts
hidden to the platform (simply via a “partially” blind signature)
that later can be used to do withdrawal. Users also submit a
committed record containing asset details of the token for com-
pliance purposes. Now, the user balance becomes hidden, and
users should prove that the sum of all hidden amounts is valid
depending on his previous balance via zero-knowledge range
proof. When withdraw, users could directly reveal such one-
time credential (a valid signature on a random identifier and
transaction etc), which easily prevents double-spending. Since
now user balance is also hidden, all future operations including
exchange, withdraw preparation will involve (efficient) zero-
knowledge proofs of validity.

Full anonymity. Additional protection on the exchanges and
deposits is needed. Especially, the exchanges should not only
be anonymous but also keep asset type and amount private.
Each exchange transaction requires the value of exchange-in
and exchange-out to be equal. To calculate the value, users
need to show the used prices (now committed) are two of all
current prices and correspond to the two exchanged assets.
Further zero-knowledge proofs on membership and equality
will be leveraged. But doing them efficiently requires care and
will be explained soon in practical considerations.

Supporting compliance. The above full anonymity construction
is over-simplified, as we have not considered compliance
issues. For example, since each user can have multiple cre-
dentials, he could give one credential with, say 10 Bitcoins,
as a gift to any person, who may not even registered with the
platform. Then the gift receiver could use the credential to do
the anonymous trading with the platform without revealing his
real-world identity, which is not compliant even with the basic
KYC regulation. Moreover, we would support common com-
pliance goals without hurting anonymity/privacy. In particular,
we use tax filing as an example of client-compliance.

First, all transactions from the same user should be bind
together (without revealing the content) to derive accumulated

profit; we thus let each user maintain one long-term registra-
tion credential that contains two attributes “cost” and “gain”
to record the buying cost, and selling gain for exchange-out
and withdraw transactions (the taxable transactions in e.g.,
Coinbase). Such a credential is issued when user registered to
the system, and will be updated properly after each transaction.
To conveniently update it, transaction metadata would also be
recorded in a secure way, e.g., each coin type, buying/selling
price and amount, etc (as in current exchange platform such
as Coinbase). Each transaction corresponds to two one-time
asset credentials w.r.t the exchanged assets which contain the
corresponding trading prices and amounts.

When users request to exchange or withdraw, they need to
provide proof of ownership for a valid asset credential with
sufficient amounts, a valid registration credential, evidence of
fair exchange, and accurate records of updated costs and gains.
However, when generating the compliance report, revealing
this information directly to the platform would compromise
user privacy. For instance, if a user has a substantial profit,
it increases the likelihood of being linked to previous large-
scale withdrawals. To address it, we employ a workaround by
having the platform blindly sign (thus providing validity proof)
to generate the report without revealing sensitive information.

Practical considerations. With above considerations, the users
and platform have to engage in multiple non-interactive zero-
knowledge proofs, some of which may be heavy if not done
properly. Particularly, for each exchange transaction (e.g., user
wants to buy 1 BTC using 15 ETHs), the user takes his ETH
asset certificate, proves in zero-knowledge that the asset type
belongs to [n] via a membership proof (as asset type needs
to be kept private); and proves the used prices (committed
in the new asset certificates) are exactly the current prices
of the exchange-in and exchange-out assets, which also need
membership proofs. To facilitate such a proof, one idea is to let
the user to commit to a vector v⃗ with n dimension, and prove
that v⃗ is a vector of bits and contains only one entry (corre-
sponding to his asset certificate) as 1. Then homomorphically
evaluating the linear combinations may get commitments of
price×amount of BTC, and ETH respectively, the user can
further prove the resulting committed values are equal. The
proof size is already at least O(n), and computation cost even
more. Recent work of one-out-of-many proof or many-of-many
proof may reduce the proof size to logarithmic in n but the
computation cost of proof generation and verification is still
(super)linear in n [27], [22].

Instead, we let the platform generate signatures on each
asset name and the price and make them public, called price
credential. To capture the price fluctuation and avoid users
using out-of-date price credentials, each price credential con-
tains the timestamp of the latest price update. In the exchange
transaction, the user proves that the new exchanged asset
record contains the name and price and she knows the valid
signature on them and the latest timestamp. It can be verified
by the platform’s single public key, and we can bring down
the communication and computation cost to be constant. For
details, please refer to Sec. VI.

Extensions and open questions. For client-compliance, there
are many other regulation rules such as limiting the transac-
tion frequency, transaction amounts, all sending or receiving
amounts and scrutinizing the receiver addresses in case of fi-

4

nancing terrorism. Our techniques can be extended very easily
to also support those. See Sec. VI-A for more discussions.

Solvency issues. There are also many platform-compliance
requirements. One notable one is the solvency problem that the
platform should be able to check it has sufficient reserve. Now,
transaction details are hidden in privacy-preserving exchange,
which may increase the risk of solvency issues, and users may
exchange/withdraw a large amount of certain cryptocurrency
privately that exceeds the platform’s reserve, thus causing a
potential “bank run”. According to the Basel Accords [1] for
the banking industry (we also use it as the platform-compliance
rule in Sec. VI), it usually requires the banks to (i) provide
sufficient liquidity (e.g., keep enough asset to cover the total
withdraws of last month), and (ii) keep a sufficient minimal
reserve (e.g., 0-10% of the total assets held by all users in the
platform, in the form of a major currency such as USD [5];
in our setting, Bitcoin). We show that our Pisces system
with full anonymity also satisfies the first platform-compliance
requirement. As the platform is still aware of the total amount
of incoming/outgoing Bitcoins (and any other cryptocurrency
tokens), thus the needed information could still be derived.

For maintaining a minimal reserve, there might be some
practical mitigation, e.g., actively monitoring the total with-
drawal amount/pattern for each coin, limiting the exchange and
withdrawal amount/frequency, etc, or involving a third-party
auditor (similar to the tax authority to keep the aggregated
information to manage risks). Those can be supported by
extending our design. But a more rigorous solution remains
open. Also, there could be even more strict and complicated
rules that may require the platform to keep sufficient reserve
and liquidity for every single type of coins [12]; or require the
platform to generate publicly verifiable proofs of solvency.

We remark that with our basic anonymity, the platform
knows all the holdings of each account (except the link
between the inside and external onchain accounts), thus can
still derive all needed information for both requirements and
the more strict rules.

However, a more systematic investigation of solvency is-
sues in the fully anonymous setting (e.g., allowing the platform
to gain extra side information for solvency purposes) may
again have further impact on the anonymity.

As a first step studying privacy in exchange system with
efficient compliance support, there are many interesting ques-
tions and challenges to explore (e.g., supporting broader com-
pliance rules). For a more systematic investigation, we leave
them as interesting open problems.

III. PRELIMINARY

Notations. Throughout this paper, we denote with λ ∈ N
the security parameter, and by poly(λ) any function which
bounded by a polynomial in λ. An algorithm A is said to
be PPT if it is modeled as a probabilistic Turing machine
that runs in time polynomial in λ. Informally, we say that
a function is negligible if it vanishes faster than the inverse
of any polynomial. A function f : N→ R is negligible if for
every positive integer c, there exists an integer x0 such that
|f(x)| < 1/xc for all x > x0. It is denoted by negl. For a finite
set S, x←$ S means that x is chosen uniformly from S. If n is

an integer, [n] denotes the set of positive integers 1, 2, . . . , n.
We use v⃗ to denote a vector. We write ⟨A,B⟩ to denote
interactive algorithms A,B engage in an interactive protocol,
take their respective inputs, and share some transcripts.

We briefly introduce some cryptographic primitives here
for completeness and defer their details to the Appendix X.

Commitments. A commitment scheme allows one to commit
to a chosen value secretly, with the ability to only open to
the same committed value later. A commitment scheme Πcmt

consists of the following PPT algorithms:

Setup(1λ)→ pp: generates the public parameter pp.
Com(pp,m; r) → com: generates the commitment for the
message m using the randomness r. For ease of notation, we
omit pp in the input.

We require a commitment scheme to be hiding and bind-
ing. A commitment is additively homomorphic if it satis-
fies that for any messages m1,m2 and randomnesses r1, r2:
Com(m1; r1) + Com(m2; r2) = Com(m1 +m2; r1 + r2).

Blind signatures. A blind signature scheme Πbs for signing
committed n messages has the following algorithms:

KeyGen(pp) → (pk, sk): takes public parameter pp as input,
outputs a key pair (pk, sk). pp, pk are implicit inputs of
others.Com(m⃗, r) → c: given messages m⃗ ∈ Mn and
randomness r, computes a commitment c.
⟨BlindSign,BlindRcv⟩: it is an interactive protocol between the
signer and user, with inputs (sk, c) and (m⃗, r) respectively.
User outputs a signature σ.
Vrfy(m⃗, σ)→ b: it checks (m⃗, σ) pair and outputs 0/1.

We require a blind signature scheme to be correct and have
the properties of unforgeability and blindness.

Zero-knowledge argument of knowledge (ZKAoK). The
prover proves knowledge of w such that (x,w) is in some
NP relation R. Here x is the statement and w is the witness.
The zero-knowledge argument of knowledge [30] can be
simulated perfectly and there exists an expected polynomial-
time extractor E that, given black-box access to a successful
prover, computes a witness w with probability 1. It is denoted
by ZKAoK[(w); (x,w) ∈ R].

IV. SYNTAX

In this section, we define the syntax that is abstracted from
real exchange systems and is general for both plain and private
centralized exchange systems. Basically, an exchange system
supports users depositing multiple kinds of assets (including
fiat money), exchanging assets with the platform, and with-
drawing assets. To comply with regulations, the system also
checks compliance with platform rules and supports users in
filing their compliance documents.

A. Syntax

An exchange system involves three entities: the platform
P, the user U and an authority A. The system consists of the
following PPT algorithms: Setup, PKeyGen, Verify, Check as
well as interactive protocols: ⟨Join, Issue⟩, ⟨Deposit,Credit⟩,
⟨Exchange, Update⟩, ⟨Withdraw,Deduct⟩, ⟨File,Sign⟩. To
present the syntax, we prepare some data structures.

5

Transaction requests reqs. For each transaction, U’s input
includes a transaction request to specify details. We denote it as
a data structure and consider five kinds of requests as follows.
To keep the syntax general and simple, we add an optional
attribute aux to each request. aux could contain several sub-
attributes required by the operation but not included in the
listed attributes, be different for different operations, and be
specified by the detail construction.
- reqjoi := (info, aux) denotes join request, where reqjoi .info

is user’s information for joining the system.
- reqdep := (name, amt , aux) denotes deposit request, where
reqdep .name is asset name, reqdep .amt is asset amount.

- reqexc := (namein , amtin ,nameout , amtout), aux denotes
exchange request, where reqexc .namein is exchange-in
asset name, reqexc .amtin is exchange-in asset amount,
reqexc .nameout is exchange-out asset name, reqexc .amtout
is exchange-out asset amount.

- reqwit := (name, amt , aux) is withdraw request, where
reqwit .name is asset name, reqwit .amt is asset amount.

- reqfil := (uid , cp, aux) denotes file request, where reqfil .uid
is user identifier, reqfil .cp is compliance information.

Transaction records Rdreg and Rdast. Each record is an
information credential pair, where the information contains
several attributes. It is generated or updated during trans-
actions, and kept privately by users. We denote record Rd
as a data structure and consider two kinds of records: the
registration record Rdreg and the asset record Rdast.
- Rdreg := (non, uid , cp, cred) denotes a registration record,

including three attributes and the credential Rdreg .cred
on the three attributes. Rdreg .non is the random nonce
to uniquely identify it. Rdreg .uid is the owner’s unique
identifier. Rdreg .cp is the compliance information. Each user
holds only one valid Rdreg , which is initialized in join
transaction, updated in exchange, and withdraw transaction
via revoking the old one and generating a new one.

- Rdast := (non, uid ,name, amt , acp, cred) denotes an as-
set record, including five attributes and a credential
Rdast .cred on the five attributes. Similar to Rdreg ,
Rdast .non is the random nonce and Rdast .uid is the owner’s
identifier. Rdast .name is the asset name, Rdast .amt is the
amount of asset, and Rdast .acp is asset-related compliance
information. Notably, in a private yet compliable setting,
assets cannot be accumulated trivially in terms of quantity
since they are tied to different asset kinds and compliance-
related information such as selling prices. Thus each user
could hold multiple asset records.

Concrete algorithms.

• Setup: The public parameters epp for the exchange system
is set. epp includes the public parameters for cryptographic
primitives. For simplicity of syntax, we let epp also include
some publicly available information, such as the external
blockchain, all coin prices in the exchange system, some
metadata like the time, etc.

• PKeyGen: P runs the key generation algorithm to generate a
key pair (pk, sk) and makes pk public to users. It initializes
its internal state st as ∅.

• ⟨Join, Issue⟩: It is a register protocol. U runs the interactive
algorithm Join(epp, pk, reqjoi), and P runs the interactive
algorithm Issue(epp, pk, sk, st), where st denotes the in-
ternal state of P. After the interaction, P outputs a signal

bit b indicating whether the operation succeeds or not, and
updates its internal state to st′. If b = 1, the user outputs the
unique user identifier uid and the registration record Rdreg .
• ⟨Deposit,Credit⟩: It is a deposit transaction for users to

deposit assets to P. P runs Credit(epp, pk, sk, st) and U
runs Deposit(epp, pk, uid,Rdreg , reqdep). The asset name
and amount are specified in reqdep . After the interaction,
P outputs a signal bit b indicating whether the operation
succeeds or not, and updates its internal state to st′. If b = 1,
U gets a new asset record Rdout

ast for the deposited asset.
• ⟨Exchange,Update⟩: It is an exchange transaction for users

to exchange assets with P. The names and amounts of
exchange-in and exchange out assets are specified by reqexc .
U runs Exchange(epp, pk, uid,Rdreg ,Rdast , reqexc), and P
runs Update(epp, pk, sk, st). After the interaction, P outputs
a signal bit b, indicating whether the operation succeeds
or not, and updates its internal state to st′. If b = 1, U
outputs three records: the updated ones Rd ′

reg and Rd ′
ast ,

and a newly generated asset record Rdout
ast for exchange-out

asset with name reqexc .nameout .
• ⟨Withdraw,Deduct⟩: It is a withdraw transaction for users

to withdraw a kind of asset from P to the blockchain. The
name and amount of withdrawn asset are specified in reqwit .
U runs Withdraw(epp, pk, uid,Rdreg ,Rdast , reqwit), and P
runs Deduct(epp, pk, sk, st). After the interaction, P outputs
a signal bit b, indicating whether the operation succeeds or
not, and updates its internal state to st′. If b = 1, U outputs
two updated records Rd ′

reg ,Rd
′
ast .

• ⟨File,Sign⟩: It is a two-party protocol in which U files
compliance information periodically and requests P to
sign it. U runs File(epp, pk, uid,Rdreg , reqfil) and P runs
Sign(epp, pk, sk, st). After the interaction, P outputs a sin-
gle bit b, indicating whether the operation succeeds or not,
and updates its internal state to st′. If b = 1, U outputs
an updated record Rd ′

reg and a compliance document doc
certified by P. Similar to transaction record Rd , doc :=
(uid, cp,mt, sig) is also a data structure including three
attributes and a signature doc.sig on them, where doc.uid
is the user identifier, doc.cp is the reported compliance
information, and doc.mt is the metadata such as time.

• Verify: The authority runs Verify(epp, pk, doc) to check the
validity of the submitted compliance document, including
the consistency of metadata in epp and doc.mt, and the valid
signature. It outputs a bit b with b = 1 indicating a passing
check, and vice versa.

• Check: P runs Check(epp, st) for self-checking the internal
state’s compliance with platform rules specified in epp. The
output is a single bit b, with b = 1 indicating a passing
check and vice versa.

V. SECURITY MODELS

In this section, we formally define security models to cap-
ture the desired security properties of a private yet compliable
exchange system. Along the way, we show the motivation,
importance, and ideas of defining such properties.

To the best of our knowledge, this is the first security
modeling of the centralized exchange system. Security mod-
eling of this work is involved in four aspects. (1) we put less
trust in the platform than in existing plain exchange systems
where the platform is always assumed to be honest. While

6

our model gives the platform more power in some security
definitions, especially for anonymity, the platform can be
completely malicious; (2) When modeling privacy/anonymity,
naive attempts for a “direct” anonymity (without privacy on
other parts of transactions, or trying to strive a best balance
between efficiency and hiding only part of the transactions)
may not work well because of potential consequences of each
seemingly benign leakage (within the exchange system). We
will elaborate on it in Sec. V-A; (3) Besides desired anonymity,
we also define soundness properties of overdraft prevention
and client compliance security that require care too; (4) For
platform compliance, we require that the honest platform
can always self-check whether its internal state satisfies the
platform compliance rule.

We first give a high-level description of the security re-
quirements of the system.

Correctness. The honest user gets the correct balance amount
in his account from deposit, exchange, and withdrawal, also
gets the correct number of real assets from withdrawal, and
gets a valid signature on his compliance information that can
be verified by the authority.

Anonymity. Given a withdraw/deposit transaction, the mali-
cious platform should not link it to any specific user, except the
user has to expose the identity, such as depositing/withdrawing
fiat money from/to bank. We start discussing it from the basic
anonymity where only focusing on the withdraw or deposit
transactions. Although the basic anonymity scheme could be
simple and not bring extra challenges to compliance (espe-
cially platform compliance), we show that the basic withdraw
anonymity may not be sufficient, since the platform could
narrow down the anonymity set based on other transactions,
such as deposit, exchange, and file. Thus we further explore
the best possible (full) anonymity and model it.

Overdraft prevention. It ensures users cannot possess or spend
more assets than they actually own in the system. It pre-
vents malicious users from conducting fraudulent deposits,
exchanges, or withdrawals.

Compliance. It requires that both users and the platform to
comply with the regulations expressed as functions, and we
call the corresponding compliance F-client-compliance and
G-platform-compliance. All entities are required to provide
compliance information according to respective compliance
rules, and none of them can deceive the authority with incorrect
information as long as the user does not collude with the
platform. For example, F could be a tax report function on
accumulated profit, and G could be a solvency-related function
on the coin reserve and liquidity. Tax-report-client-compliance
ensures that the user cannot cheat with a value less than
his latest accumulated profit this year. Solvency-platform-
compliance ensures that the platform maintains appropriate
liquidity based on the monthly assets inflow and outflow.

A. Preparations for the models

Note that the bank accounts leak the user’s identity when
depositing or withdrawing fiat money which is unavoidable.
So we consider privacy only during cryptocurrency trading.
Besides, the deanonymization attack in the network layer is
out of the scope of our work. The attacker links multiple

transactions by IP address, but users can protect themselves
using an anonymous network like Tor [23], [6].

We provide oracles to capture the adversary’s capability. To
model the capabilities of the malicious platform, we provide
oracles: O1

Join, O1
Deposit, O1

Exchange, O1
Withdraw, O1

File. To model
the capabilities of malicious users, we define the oracles:
O2

PKeyGen, O2
Issue, O2

Credit, O2
Update, O2

Deduct, O2
Sign. We also

provide OPublic for every party to model access to some public
ongoing information, such as a secure blockchain system, the
prices of all assets, currencies, stocks, cryptocurrencies, and a
global clock, etc.

Reference-record map MAP : (uid, ref) → Rd: When A
acts as a malicious platform, it is allowed to induce honest
users to conduct transactions by querying oracles. However,
some oracles require specifying records as input, which are
private to honest users and unavailable to A. To enable A to
identify different records without knowing what they are, we
let A specify the reference string ref 4 for each record and
Oracles keep the map MAP from key tuple (uid, ref) to value
Rd for A’s later queries. For notational convenience, we let
MAP(uid, ref) denote the record Rd. In the queries, ref reg is
the reference for the registration record, ref inast is the reference
for the spending asset record, and ref outast is the reference for
the buying asset record.
• OPublic: when queried, it returns the public information pub,

such as the registration information, bank account, asset
prices and related wallet addresses, etc. For all queries to
other oracles, they inherently invoke OPublic at first. We do
not repeat these moves in the oracle descriptions.
• O1

Join(reqjoi , ref reg): it interacts with A by running
the protocol ⟨Join, Issue⟩, where oracle runs
Join(epp, pk, reqjoi) → (uid,Rdreg). If Join algorithm
outputs ⊥, then oracle outputs ⊥. Otherwise, oracle adds
(uid , ref reg,Rdreg) to MAP and outputs uid to A.
• O1

Deposit(uid, reqdep , ref reg, ref
out
ast): oracle first gets record

Rdreg =MAP(uid, ref reg) from MAP per references. Then
it interacts with A by running ⟨Deposit,Credit⟩ protocol,
where oracle runs Deposit(epp, pk, uid,Rdreg , reqdep) →
(Rd ′

reg ,Rd
out
ast). If Deposit algorithm outputs ⊥, then or-

acle outputs ⊥; otherwise, oracle updates the map by
setting MAP(uid, ref reg) ← Rd ′

reg and adds a new tuple
(uid, ref outast ,Rd

out
ast) to MAP. A gets interaction transcripts

but no more output from oracle.
• O1

Exchange(uid, reqexc , ref reg, ref
in
ast, ref

out
ast): oracle first gets

records Rdreg = MAP(uid, ref reg), Rdast = MAP(uid,

ref inast) from MAP per references. Then it interacts with
A by running ⟨Exchange,Update⟩ protocol, where or-
acle runs Exchange(epp, pk, uid,Rdreg ,Rdast , reqexc) →
(Rd ′

reg ,Rd
′
ast ,Rd

out
ast). If Exchange algorithm outputs ⊥,

then oracle outputs ⊥; otherwise, oracle updates the map by
setting MAP(uid, ref reg)← Rd ′

reg and MAP(uid, ref inast)←
Rd ′

ast , and adds a new tuple (uid, ref outast ,Rd
out
ast) to MAP. A

gets interaction transcripts but no more output from oracle.
• O1

Withdraw(uid, reqwit , ref reg, ref
in
ast): oracle first gets records

Rdreg = MAP(uid, ref reg), Rdast = MAP(uid, ref inast)
from MAP per references. Then it interacts with A

4Note that the reference string ref used by A is different from the
identifier(nonce) of the record which is privately chosen by the honest user
or oracle randomly.

7

by running ⟨Withdraw,Deduct⟩ protocol, where ora-
cle runs Withdraw(epp, pk, uid,Rdreg ,Rdast , reqwit) →
(Rd ′

reg ,Rd
′
ast). If Exchange algorithm outputs ⊥, then ora-

cle outputs ⊥; otherwise, oracle updates the map by setting
MAP(uid, ref reg) ← Rd ′

reg , MAP(uid, ref inast) ← Rd ′
ast . A

gets interaction transcripts but no more output from oracle.
• O1

File(uid, reqfil , ref reg): oracle first get records
Rdreg =MAP(uid, ref reg) from MAP per references. Then
it interacts with A by running ⟨File,Sign⟩ protocol, where
oracle runs File(epp, pk, uid,Rdreg , reqfil) → (Rd ′

reg , doc).
If File algorithm outputs ⊥, then oracle outputs
⊥; otherwise, oracle updates the map by setting
MAP(uid, ref reg) ← Rd ′

reg . A gets interaction transcripts
but no more outputs from oracle.

• O2
PKeyGen: It can only be invoked once. When triggered, run

(pk, sk) ← PKeyGen(epp). It initializes the internal state
as st← ∅. It outputs pk.

• O2
Issue: A runs Join algorithm and interacts with the O2

Issue
oracle. O2

Issue runs Issue algorithm, takes (epp, pk, sk) as
input, and receives user’s transcript ts as external input.
It outputs a signal bit b indicating whether the operation
succeeds or not. If b = 0, it outputs ⊥.

• O2
Update: A runs Exchange algorithm and interacts with

the O2
Update oracle. O2

Update runs Update algorithm, takes
(epp, pk, sk) as input, and receives user’s transcript ts as
external input. It outputs a signal bit b indicating whether
the operation succeeds or not. If b = 0, it outputs ⊥.

• O2
Credit: it is similar to O2

Update except that here they run the
⟨Deposit,Credit⟩ protocol and A gets {Rdasti}.

• O2
Deduct: it is similar to O2

Update except that here they run
⟨Withdraw,Deduct⟩ and A gets {Rd ′

reg ,Rd
′
asti}.

• O2
Sign: it is similar to O2

Update except that here they run the
⟨File,Sign⟩ protocol and A gets doc.

B. Basic anonymity

Basic anonymity guarantees that even a malicious platform
cannot link the wallet address with any honest user. It consists
of basic withdraw anonymity and deposit anonymity.

Basic withdraw anonymity. We define the model in Fig-
ure 2, the adversary A interacts with any honest user
by querying the anonymity oracle set: Oanony = {O1

Join,
O1

Deposit,O1
Exchange,O1

Withdraw,O1
File, OPublic} oracles. The ad-

versary submits (uid0, uid1, ref
0
ast, ref

1
ast, reqwit) as the chal-

lenge. It also outputs some internal state information st.

Definition 1 (Basic withdraw anonymity). We say that an
exchange system provides basic withdraw anonymity if for all
PPT A and λ, in the experiment shown in Fig. 2, it holds that

|Pr[Expano−wit(A, λ) = 1]− 1/2| ≤ negl(λ)

Warm-up construction. To achieve the basic withdraw
anonymity, an intuitive idea is cutting the link to the user’s real
identity within the withdraw operation, and leaving all other
operations plain. Our warm-up construction follows this simple
idea by partitioning the withdraw operation into two separate
steps: first, users log in their plain account and request for a
one-time anonymous credential (just use blind signatures) on
the coin they plan to withdraw; second, they could show an
anonymous credential without login to get the asset withdrawn
on-chain. If the withdrawn amount is arbitrary and different

Expano−wit(A, λ)
epp← Setup(G(1λ))
(pk, st)← A(epp)

(uid0, uid1, ref
0
ast, ref

1
ast, reqwit , st)← AOanony(st)

if MAP(uid0, ref
0
ast) = ⊥ or MAP(uid1, ref

1
ast) = ⊥

return 0 //no record mapped by references ref 0ast, ref
1
ast

if reqwit.amt ̸= MAP(uid0, ref
0
ast).amt or

reqwit.amt ̸= MAP(uid1, ref
1
ast).amt return 0

else b←$ {0, 1}
Interacts with A by running

Withdraw(epp, pk, uidb, MAP(uidb, ref
b
ast), reqwit)

b̂← AO∗
anony(st)

// * requires no query with references ref 0ast, ref
1
ast

return (b̂ == b)

Fig. 2: Basic withdraw anonymity experiment

users withdraw different amounts of assets, the special amount
helps the platform identify a specific withdrawal. To handle
this problem, our method is hiding the withdrawn amount in
the first step where the user request the anonymous credential
with a committed amount. We introduce a brief idea here and
defer the detailed description to the Appendix XI.

For example, Alice has 50 BTCs in her account and Bob
has 100 BTCs. Alice wants to withdraw 5 BTCs and Bob wants
to withdraw 2 BTCs. Firstly, they commit on these values and
prove they have enough balance and request the platform to
issue credentials. Once the proof gets verified, the platform
signs blindly and stores these commitments in their accounts.
Alice unblinds the signature and shows it to the platform
for withdrawing 5 BTCs. The platform cannot distinguish
it is Alice or Bob since both of them have enough BTCs
and have requested. Afterwards, if they want to withdraw or
exchange, they should prove that they have enough balance
after deducting all committed amounts from the plain balance.

Basic deposit anonymity. This property prevents the platform
from linking the user’s past on-chain transactions to his identity
via deposit operations. Modeling it can be regarded as a
symmetric work of basic withdraw anonymity except that all
deposit requests are achievable naturally for any user.

To add deposit anonymity, one more one-time anonymous
credential can be employed. Its workflow is an inverse version
of anonymous withdraw. When depositing assets, the user, as
an anonymous guest, initializes the process by requesting the
platform to issue a one-time use anonymous credential, which
contains the asset name and amount. Then he requires the
platform to credit the asset balance to his account using that
credential without showing the asset details.

Limitations of basic withdraw anonymity. The above construc-
tions are efficient and satisfy the basic anonymity model, but
we observe that the anonymity is limited.

It is well-known that the anonymity strength depends on
the size of the anonymity set. The greater the anonymity set
is, the higher the level of anonymity a user can achieve. When

8

considering the anonymity set for a withdrawal transaction,
it comprises users who can withdraw from the view of the
platform. In the above scheme, anonymous credentials are
requested from real-name accounts. The anonymity set consists
of users who have requested credentials for the same asset
and their account balance exceeds the withdrawn amount. The
following example narrows down the set size to one.

Example 1: Alice deposits 50 BTCs, Bob deposits 100 XRPs
and 100 BTCs, and Clare deposits 1000 BTCs. Only Alice
and Bob request anonymous credentials for BTCs. Later, a
withdrawal of 51 BTCs occurs, it can thus be linked to Bob
as he is in possession of a sufficient amount of BTCs.

C. Full anonymity

As we mentioned above, the anonymity set of basic
anonymity could be quite small. So we explore the stronger
anonymity of the withdrawal. We first attempt to get perfect
anonymity with all users in the anonymity set. Unfortunately,
it is impossible due to some unavoidable leakage. We will
elaborate it later. For other kinds of leakage, we check that
whether it is even worth to prevent, as any protective measure
comes with cost. After some attempts, it turns out that any
other leakage could be used to reduce the anonymity set. We
explain that with some examples. Finally, we define the best
possible anonymity called interactive indistinguishability by by
constraining the information leakage to the minimum.

Stronger anonymity is needed. Basic withdraw anonymity
only ensures the anonymity set includes those eligible users
who own enough of the withdrawn asset and are capable to
withdraw. It is acceptable for some popular assets that a lot of
people own and the withdrawn amount is small such that the
anonymity set is large enough. But it rules out many interesting
scenarios, such as withdrawing some special assets owned by
a small number of people or a comparatively large amount of
assets that few people have so much. Thus we aim to explore
a stronger model which provides larger anonymity set.

Perfect anonymity is impossible. In the ideal case, the
anonymity set of each withdraw transaction consists of all
registered users in the system which is called the perfect
anonymity. Unfortunately, it cannot be true since the platform
always can exclude some users using some public information.
For example, given a withdrawal of 100 Bitcoins and a newly
enrolled user Alice, she is in no way the user of this withdrawal
if there is no such big amount deposit in the system after her
registration.

Due to the special setting of exchange platform, some
information is unavoidably public to the platform, which we
call unavoidable leakage, like transaction types (deposit or
exchange or withdraw), users’ registration information (due to
KYC requirement), deposited and withdrawn asset details (the
asset name and amount, bank accounts, and wallet addresses),
and even some out-of-band information like the users’ behav-
ioral preference.

To achieve the best possible anonymity, it seems that only
the unavoidable leakage is acceptable. But a series of natural
questions are: why do we need to hide so many? Can we
leak a little bit more, like the privacy (identity, coin name,
and amount) of the exchange? Does it hurt the best possible
anonymity?

Necessity of privacy and towards best possible anonymity. To
answer the above questions, we identify the avoidable leakage
information which can be concealed using some cryptographic
tools. Concretely, we assort the avoidable leakage into five
classes according to the transaction: the identity in depositing
coins, the identity in exchange, the contents in exchange
including the coin name and amount, and the identity in
withdrawing coins, and the compliance information in filing
operation. We hide each of them and leak the other part to
test whether the anonymity set is affected.

It is easy to see the identity in withdrawal cannot be leaked.
For the three leakages occurring in the deposit and exchange,
we show an example of the exchange system with a series
of transactions and check the anonymity set if any avoidable
leakage is allowed.

Example 2: In a cryptocurrency exchange system, there are
a bunch of users registered and doing transactions, then
David and Ella joined. After that somebody (David) deposits
10 BTCs. Then there is an exchange transaction: somebody
(Alice, a registered user) exchanges some coins (2 BTCs to
20 ETHs). Then a withdrawal happens: somebody withdraws
5 XRPs. Check its anonymity set:

1. If the identity of deposit is leaked, then the platform knows
that David deposits 10 BTCs, and Ella is excluded from the
anonymity set and David is included.

2. If the identity of exchange is leaked, the platform knows that
David and Ella cannot withdraw 5 XRPs, then both David
and Ella are excluded from the anonymity set.

3. If the content of exchange is disclosed, the platform knows
it is a BTC-to-ETH exchange and excludes David and Ella.

As for the compliance information in the filing operation,
someone may consider just leaking the summary of compliance
information is fine. But in this case, many users might have
not generated any transactions in a year which can be inferred
from their zero profit. Excluding these sleeping users reduces
the anonymity set. Therefore, the privacy of compliance in-
formation should also be protected. The identity of the filing
operation could be leaked by the regulatory authority to the
platform which is an unavoidable leakage.

In a nutshell, protecting privacy is necessary. We need to
go toward the best possible anonymity.

When modeling the best possible anonymity, we want to
prevent any avoidable leakage. However, since public infor-
mation could have various and complicated relationships with
the events in the exchange system, it is tricky to exactly
quantify the potential influence, which may be leveraged by the
adversary to win trivially. Instead, we define the full anonymity
via interaction indistinguishability.

Interaction indistinguishability. This property requires that the
interaction between the user and platform leak nothing except
the public information. To include the interaction of all kinds
of transactions, we design the experiment as follows. In a high
level, the adversary A acts as the malicious platform and the
experiment simulates two worlds with the same initialization.
A can add honest users to both worlds and interact with
them by submitting different query pairs. The queries are
sent to the worlds via a challenger C who forwards query
pair to two worlds depending on a random bit b. To model
the unavoidable leakage, the queries should contain the same

9

public information. After a series of interactions, A still cannot
distinguish which world is based on which one of the query
pair. It means that for any kind of transaction the interaction
does not leak more than the unavoidable leakage. Otherwise,
A can send different queries for the transaction and distinguish
the two worlds successfully.

The two worlds are simulated via two sets of oracles:
Oa

IND = {O1,a
Join, O1,a

Deposit, O
1,a
Exchange,O

1,a
Withdraw,O

1,a
File, Oa

Public}
with separated internal map MAPa for a ∈ {0, 1}. C chooses
one bit b randomly at the beginning. A sends queries to
the challenger C which are in pair (Q0, Q1) to interact with
oracles. For each query pair, C checks that they could be
different but must contain the same public information which
represents the unavoidable leakage as we discussed before (see
Def. 2). Then C forwards Qb to the oracle inO0

IND and forwards
Q1−b to the oracle in O1

IND.

With these queries as input, these oracles interact with
A with different states, and we denote it in terms of
⟨A(st0),O0

IND(Q
b)⟩ and ⟨A(st1),O1

IND(Q
1−b)⟩. But it cannot

distinguish which are induced by which queries. Therefore, the
interaction leaks nothing but public information. We formally
define the interactive indistinguishability in Fig 3.

Definition 2 (Publicly consistent queries). A submits a pub-
licly consistent query pair (Q0, Q1), which satisfy all the
following conditions:
• First of all, both queries would succeed, and are for the

same type of oracle.
• For queries to O1

Join, with the same the request info reqjoi
and they get the same user identifier uid as output.

• For queries to O1
File, both with the same user identifier uid.

• For queries to O1
Deposit and O1

Withdraw, the users can be
different but the name and amount of the assets and the
on-chain addresses are the same in both queries. For fiat
money deposit/withdraw, the users and bank accounts are
the same.

ExpIND(A, C, λ)
epp← Setup(G(1λ))
(pk, st)← A(epp)
C randomly chooses b←$ {0, 1}

Run AC(O0
IND,O

1
IND)(st) for N steps: // N=poly(λ)

In each step:

(Q0, Q1, st0, st1)← A(st)
if (Q0, Q1) are not publicly consistent, then return 0;

else C forwards Qb to O0
IND, Q1−b to O1

IND,

Run ⟨A(st0),O0
IND(Q

b)⟩ and ⟨A(st1),O1
IND(Q

1−b)⟩
// It simulates A induces honest users’ behaviors

Finally, A halts, and outputs b̂

return (b̂ == b)

Fig. 3: Interaction indistinguishability experiment

Definition 3 (Interaction indistinguishability). The interaction
indistinguishability is described in Fig 3. We say that an
exchange system provides interaction indistinguishability if for

all PPT A and λ it holds that∣∣Pr[ExpIND(A, λ) = 1]− 1/2
∣∣ ≤ negl(λ)

Remark 1 (Relation with basic anonymity). The interaction
indistinguishability implies the basic anonymity if the exchange
identity, and exchange content are public and identical in both
queries. Only the withdraw identity is concealed like in the
basic withdraw anonymity experiment.

Remark 2 (Best possible anonymity). We claim that the
interaction indistinguishability achieves the best of possible
anonymity. The interaction indistinguishability covers all kinds
of transactions with specific public information. When we
specify that the public information exclusively comprises the
unavoidable leakage as defined in Def 2, we can ensure that the
platform learns nothing about the user from their interactions,
except for the unavoidable leakage. Recall the Example 2, we
can see any avoidable leakage in these cases excludes some
users. If all avoidable leakages are prevented, the anonymity
set expands to encompass a broader range of users, now
including both David and Ella.

D. Soundness definitions

Extractor. In overdraft prevention and client-compliance exper-
iments, adversary A who acts as a malicious user, gets some
valid records after querying oracles and keeps them secret.
It means that after some successful anonymous transactions,
the experiment does not know how many assets the users
actually own and their correct compliance information. So it is
hard to decide whether A breaks the overdraft prevention or
compliance properties. To deal with this dilemma, in those
security experiments, we introduce an extractor E that can
output the user identity and detailed information for each
transaction. Note that both overdraft prevention and compli-
ance are soundness properties. We mimic the classic proof-of-
knowledge style of definition, and the extractor can rewind A
to the former state and A reuses its randomness rA, similar to
the proof of knowledge extractor [30]. Then the experiment is
able to check if any overdraft or compliance cheating happens.

1) Overdraft prevention: Overdraft prevention requires that
users cannot spend more than they own within the platform.
Concretely it ensures no malicious users could exchange or
withdraw more assets than they actually own. Using the
transaction details extracted by the extractor E , the experiment
can check whether an overdraft happens: (1) the user gets
credited more assets than his deposit or exchange-in; (2) the
user gets deducted less asset than his withdrawal or exchange-
out; (3) the remainder amount of asset is negative; (4) the
exchange is unfair; (5) the user steals others’ asset.

We formally define overdraft prevention via the fol-
lowing experiment. A acts as malicious users and in-
teracts with extractor E via querying oracles: Ood =
{O2

Issue,O2
Credit,O2

Deduct,O2
Update, O2

Sign,Opublic}. A can query
at most N = poly(λ) times, then it halts. E extracts a
set of successful transaction histories {ht} for t ∈ [N],
where each transaction history ht = (uid,Rdreg ,Rdast ,Rd

′
reg ,

Rd ′
ast ,Rd

out
ast , tst , pubt) includes user id uid, the input records

(Rdreg ,Rdast), the output records (Rd ′
reg ,Rd

′
ast , Rdout

ast),
the transaction transcript tst , and the related public in-
formation pubt , where some records could be empty for

10

some transactions. For example, Rdout
ast is empty in with-

draw transaction. Especially, transaction transcript tst :=
(name, amt, . . .) is a tuple of attributes including the asset
name tst.name and amount tst.amt, etc. Public information
pubt := (prin, prout, . . .) is a tuple of attributes including
input-asset price pubt .prin, output-asset price pubt .prout, etc.
Please note, there could be some other metadata per the
implementation need, so we cannot specify all the attributes
and some attributes could be empty for different transactions.
Finally, the experiment sequentially checks each transaction
history to figure out whether any one of the above overdraft
cases happens. Especially, in deposit and withdraw transac-
tions, tst contains the deposited or withdrawn asset informa-
tion: tst.name = i, tst.amt = ki denotes that the user deposits
or withdraws the asset i with amount ki. To facilitate the check,
the experiment maintains a list RdSet for tracking asset records
that have not been spent till the checkpoint, which is initialized
as empty.

Expod(A, E , λ)
epp← Setup(G(1λ)), (1n, st)← A(epp), for some n ∈ N
(pk, sk)← PKeyGen(epp, 1n)

Run AOod(epp, pk, st)
if any oracle aborts then return 0;

else continue until A halts

Run {ht} ← EA(epp)
// E could control the randomness of A
Set RdSet← ∅
For t = 1 to N, check ht :

Parse ht = (uid ,Rdreg ,Rdast ,Rd
′
reg ,Rd

′
ast ,Rd

out
ast , tst , pubt)

For Deposit transaction :

if Rdoutast .name ̸= tst .name or Rdoutast .amt ̸= tst .amt
then return 1

// the name or amount of credited asset record is wrong

else let RdSet← {Rd ′
reg ,Rd

out
ast } ∪ RdSet

For Exchange transaction :

if any of the followings happens, then return 1 :

− {Rdreg ,Rdast} ̸⊆ RdSet; // invalid records
−Rd′ast.amt < 0 // deducted amount exceeds asset amount
− (Rdast .amt − Rd ′

ast .amt) · pubt .prin ̸=
Rdast .amt · pubt .prout

// the deducted value is not equal to the credited value

else RdSet← RdSet \ {Rdreg ,Rdast} ∪ {Rd ′
reg ,Rd

′
ast ,Rd

out
ast }

For Withdraw transaction :

if any of the followings happens, then return 1 :

− {Rdreg ,Rdast} ̸⊆ RdSet;

− Rdast .name ̸= tst .name

− Rd ′
ast .amt < 0 or Rdast .amt − Rd ′

ast .amt < tst .amt

// withdraws more asset than the deducted amount;
else let RdSet← RdSet \ {Rdreg ,Rdast} ∪ {Rd ′

reg ,Rd
′
ast}

return 0

Fig. 4: Overdraft prevention experiment.

Definition 4 (Overdraft Prevention). As shown in Figure 4, we

say that an exchange system can prevent overdraft if for all
PPT A and λ, there exists E such that it holds that

Pr[Expod(A, E , λ) = 1] ≤ negl(λ)

2) Compliance: This property requires both clients and the
platform to comply with the regulation rules. Here we represent
these rules using compliance functions, and formalize both
client compliance and platform compliance.

In the client compliance experiment, A acts as malicious
users and interacts with extractor E via querying oracles:
Oclie−comp = {O2

Issue,O2
Credit,O2

Deduct,O2
Update,O2

Sign,Opublic}.
A outputs a certified document doc∗ with four attributes
(uid, cp,mt, sig). E extracts a set of successful trans-
action histories {ht} as in overdraft prevention experi-
ment. A wins, if doc∗ passes the authority verification, i.e.,
Verify(epp, pk, doc∗) → 1, but there exists extracted trans-
action history that does not follow basic client-compliance
rules (we will specify in the following), or the submitted valid
document doc∗ is inconsistent with the extracted transaction
histories {ht}. Concretely, each transaction in {ht} satisfy
that: (1) the user has already registered (KYC rule); (2) all
records in one transaction belong to the same user (AML rule
to avoid secretly transferring assets to other accounts); (3) the
compliance-related information in each asset record, such as
buying and selling price, is correct (general compliance rule).
To facilitate the check, the experiment maintains a list RU of
all registered users, which is initialized as empty.

If all transaction histories in {ht} pass the above check,
consistency checks between doc∗ and {ht} per function F will
also be done. Specifically, in one transaction, the compliance
information cpt is collected from {ht} (e.g., the asset prices
and amount) and is added to the user’s the compliance infor-
mation set {cp}uid. Then F is applied to {cp}doc∗.uid to get
the final result c̃pdoc∗.uid . See Fig 5 for details.

Definition 5 (Client Compliance). The client compliance ex-
periment is shown in Figure 5. We say that an exchange system
is client-compliant w.r.t. a compliance function F if for all PPT
A and λ, there exists E such that

Pr[Expclie−comp(A, E , F, λ) = 1] ≤ negl(λ)

For platform compliance, it is similar with the correctness,
and we require that the internal state of the honest platform
is always satisfied with the platform compliance rule. For
example, the platform can self-check whether it owns sufficient
cash and assets to cover fund outflows for the previous 30 days
according to the regulation rule [1].

VI. PRIVATE AND COMPLIABLE EXCHANGE SYSTEM

In this section, we present the generic construction of the
private and compliable exchange system ΠPisces that achieves
full anonymity, overdraft prevention, and compliance, and we
provide formal proofs of its security. Before that, we give
concrete compliance rules that our system aims to comply with
for both clients and the platform. Following that, we introduce
the concept of price credentials and illustrate the high-level
idea about the construction.

Concrete compliance rules. For F-client-compliance, we take
the tax report as an example of F, called tax-report-client-
compliance. It requires clients to report the investment profit

11

Expclie−comp(A, E , F, λ)
epp← Setup(G(1λ)), (1n, st)← A(epp), for some n ∈ N
(pk, sk)← PKeyGen(epp, 1n),RU← ∅
Run doc∗ := (uid, cp,mt, sig)/⊥ ← AOclie−comp(epp, pk, st)

if oracle aborts or Verify(epp, pk, doc∗) = 0 then return 0

Run {ht} ← EA(epp) // E controls the randomness of A
For t = 1 to N, check ht :

Parse ht = (uid ,Rdreg ,Rdast ,Rd
′
reg ,Rd

′
ast ,Rd

out
ast , tst , pubt)

For Join transaction :

let RU← {uid} ∪ RU, {cp}uid = ∅
For Deposit transaction :

if any of the followings happens, then return 1 :

− single transaction involves different user identifiers;
− uid /∈ RU;

// also check them in exchange and withdraw transactions

− Rdout
ast .acp ̸= pubt .prout // price was wrong

For Exchange transaction :

if Rd ′
ast .acp ̸= Rdast .acp or Rdout

ast .acp ̸= pubt .prout

then return 1

else collect cpt from ht, add cpt to {cp}uid
For Withdraw transaction :

if Rd′ast.acp ̸= Rdast.acp then return 1

else collect cpt from ht, add cpt to {cp}uid
if {cp}doc∗.uid = ∅, then return 0

else compute c̃pdoc∗.uid ← F ({cp}doc∗.uid)
// F is a function specified by the compliance rule
if doc∗.cp ̸= c̃pdoc∗.uid then return 1

else return 0

Fig. 5: F-Client-Compliance experiment.

yearly (total gain minus total cost). The taxable profit is calcu-
lated when clients sell their assets via exchange or withdraw
transactions. Concretely, cost = pri · ki and gain = pri · ki,
where ki is the exchange-out or withdrawn asset amount, pri
is the buying price and pri is the selling price of the asset.
Then he reports the accumulated cost cp1 =

∑
pri · ki and

gain cp2 =
∑

pri · ki to the authority.

For G-platform-compliance, we refer to the liquidity cov-
erage ratio (LCR) requirement of Basel Accords [1], a series
of banking regulations established by representatives from
major global financial centers. LCR mandates that banks hold
sufficient cash and liquid assets to cover fund outflows for 30
days. The platform always knows clearly the inflows/outflows
for each coin including fiat money transfers (as the platform
receives or transfers them out) by checking its internal state.
It can prepare enough amount of coins for all kinds of assets.
Thus this LCR-platform-compliance is compatible with our
fully anonymous setting.

About price credential and price fluctuation. To achieve ef-
ficient private exchange with compliance, we introduce price
credentials denoted as px := (time,name, pr , sig), where the
signature px .sig is signed by the platform on the current
time px .time , the coin name px .name , and the correspond-
ing current price px .pr . To tackle price fluctuation without

leaking coin information, the platform keeps signing the latest
prices for all coins at the same timestamp. In the exchange
transaction, the user proves that the newly exchanged asset
record contains the name and price, and they know a valid
signature on these values from the latest timestamp’s price
credential. The user also ensures that the exchange is fair based
on these prices and amounts. This approach enables the user
to prove with just a single credential. It significantly reduces
communication and computation costs to a constant level.

High-level idea. Before giving the formal algorithms, let us
illustrate the high-level construction idea with five concrete
transaction examples as follows. The platform only knows
some public information, like all registered users and their
bank accounts, the name and amount of deposited and with-
drawn assets, as shown in Fig 6.

Fig. 6: Platform’s view in the exchange system

• When deposits 1000 USD, the bank account reveals Alice’s
identity. Then Alice gets an asset credential or signature
generated by the platform. To prevent double-spending and
ensure regulatory compliance, the signed message must
contain additional attributes beyond asset details. These
attributes include a unique asset identifier, Alice’s user
identifier. They should be hidden from the platform to
keep the user anonymous. Alice is required to prove in
zero-knowledge that the blinded user identifier is equal to
that in her registration credential. To meet tax-report-client-
compliance, the profit of selling assets in exchange and
withdraw transactions need to be computed. This necessi-
tates including the exact cost of the assets when they were
purchased in deposit and exchange transactions. To this end,
we introduce the buying price as an additional attribute in
asset credentials.
• When Bob deposits 10 BTC, the only difference from a fiat

deposit is that the platform does not know Bob’s identity.
• When Alice exchanges 800 USD for 0.5 BTC, she uses a

1000 USD asset credential to request two new credentials for
the remaining 200 USD and 0.5 BTC, keeping their details
hidden. The platform grants her request under specific con-
ditions, including demonstrating in zero-knowledge that she
has enough USD, ensuring the credentials share the same
user identifier, confirming the non-negative remaining USD
amount, matching the BTC’s price with the latest credential,
and verifying the total exchange value equivalence.
We give each asset one separate asset credential for practi-
cality especially with compliance. Intuitively, if all assets are
in one credential their attributes would increase linearly with
the asset names. Compliance makes it more complicated,
because every asset transaction would have to be recorded as
an attribute in the credential. This means that the credential
attributes would keep growing. It is practical to separate each

12

transaction asset, but it is hard to collect all transactions to
calculate the total profit. We solve it by accumulating profit
for each transaction involving exchanged-out or withdrawn
assets, and recording it on user’s exclusive registration cre-
dential as two attributes: accumulated cost and accumulated
gain. Concretely, Alice shows her registration credential, and
requests the platform to issue a new registration credential
on a new index, updated cost and gain which are consistent
with real cost (amount times buying price) and gain (amount
times selling price).

• When withdraws 0.3 BTC, it is similar to the exchange
operation, except for the exchanged-in asset. Alice also
verifies the receipt of the withdrawn BTC on the blockchain.

• When files all cost 480 and all gain 600, Alice shows a
valid registration credential with her identity, and requests
an updated registration credential with a new index, reset
cost and gain as zeros, and a file credential used to show to
the regulatory authority. The file credential contains Alice’s
real identity, the correct cost 480 and gain 600, and some
regulatory auxiliary information. Since the cost and gain
are hidden from the platform to avoid information leakage,
Alice should prove the committed cost and gain are equal to
the ones in her registration credential, and the platform signs
blindly. Alice unblinds it and submits the message signature
pair to the authority for tax report.

A. An efficient Pisces construction

In this section, we give an efficient Pisces construc-
tion from additive homomorphic commitment, blind signa-
ture and zero-knowledge proof5. Let Com be an additively
homomorphic commitment scheme, Πbs = (KeyGen, Com,
⟨BlindSign,BlindRcv⟩,Vrfy) be a blind signature scheme using
Com to blind messages, and ZKAoK is the underlying proof
system. The platform maintains the registered user set USet
and the identifier set ID which are initially empty. Formal
construction is in Fig 7. The concrete instantiation is presented
in section VII.

Extended compliance support. Our construction also easily
supports other regulation policies. We just give sketches here
due to the page limitation. For example, AML requires that
users cannot exchange or withdraw too many times in a
time period. It can be achieved by adding a counter in the
registration record. In each exchange or withdraw transaction,
the user proves that the counter in his latest registration record
is smaller than some value and the counter is credited by one
in the newly issued record. Other rules are similar, such as
transaction amounts, and (total) value of exchanged assets.

We can also enforce tax filing by prohibiting users who
have not filed tax last year from exchanging and withdrawing.
It can be achieved by adding a year number in the registration
record indicating the year when the user filed tax last time.
In each exchange or withdraw transaction, the user shows the
year number in his latest registration record and this number
is credited by one when the user has filed his tax.
B. Security analysis

Theorem 1 (Interaction indistinguishability). If Πbs has blind-
ness and the underlying ZKAoK is zero-knowledge, the com-

5Note that these primitives are also used for updatable anonymous creden-
tials and an incentive system in [14]. As we explain in detail in App.IX, they
do not support the exchange operation and compliance rule in our setting.

mitment is hiding, then ΠPisces has interaction indistinguisha-
bility.

Proof: We prove this theorem by a sequence of hybrid
experiments (Greal,G1,Gsim). Greal is the original IND ex-
periment. G1 modifies Greal by simulating the ZKAoK proof.
Gsim modifies G1 by replacing the original commitments
with commitments on random strings. Since the underlying
ZKAoK is zero-knowledge, G1 can be distinguished from Greal

with only negligible probability. Due to that the commitment
scheme is hiding and the blind signature has blindness, Gsim

can be distinguished from G1 with only negligible probability.
Thus Gsim can be distinguished from Greal with only negligible
probability. Furthermore, in Gsim, A’s view is fully simulated,
independent of b, A’s advantage in Gsim is 0. So A wins in
Greal with at most negligible probability. We describe G1,Gsim

as follows.

G1: This experiment modifies Greal by simulating the ZKAoK
proof. It works as follows: at the beginning, C chooses b ←$

{0, 1} and generates pp ← Setup(1λ) and zero-knowledge
trapdoor td ← Sim(1λ). C sends pp to A and initializes two
sets of oracles O0

IND and O1
IND. In the following oracle queries,

the proofs are generated by C using td: π ← Sim(td, x). G1

proceeds in steps, and each time A queries an oracle, it sends C
a pair of queries (Q0, Q1). C first checks that they are publicly
consistent according to Def. 2, then simulates different oracles.

- For O1
Join oracle, Q0 = (req0joi , ref

0
reg) and

Q1 = (req1joi , ref
1
reg) . To answer them, C behaves as

in Greal except for the following modification. The
ZKAoK proofs π0, π1 are simulated using td. C replies
A with (comb, π0) and (com1−b, π1). If A accepts
the proofs, it runs σ̂0 ← BlindSign(pp, pk, com0) and
σ̂1 ← BlindSign(pp, pk, com1) and sends them to C and
continues.

- For O1
Deposit oracle, Q0 = (uid0 , req0dep ,ref

0
reg, ref

out1
ast)

and Q1 = (uid1 , req1dep ,ref
1
reg, ref

in1
ast , ref

out1
ast). To answer

them, C behaves as in Greal except the following modifi-
cation: It simulates the ZKAoK proofs π0, π1 using td. C
replies A with ({comb

u}2u=1, π
0) and ({com1−b

u }2u=1, π
1).

If A accepts the proofs, it runs the BlindSign algorithm and
sends the respective blinded signatures to C and continues.

- For O1
Exchange oracle, Q0 = (uid0 , req0exc ,ref

0
reg, ref

in0
ast ,

ref out0ast) and Q1 = (uid1 , req1exc ,ref
1
reg, ref

in1
ast , ref

out1
ast). To

answer them, C behaves as in Greal except that it simu-
lates the ZKAoK proofs π0, π1 using td. C replies A with
({comb

u}7u=1, π
0) and ({com1−b

u }7u=1, π
1). If A accepts the

proofs, it runs the BlindSign algorithm and sends the blinded
signatures to C and continues.

- For O1
Withdraw oracle, Q0 = (uid0 , req0wit ,ref

0
reg, ref

in0
ast) and

Q1 = (uid1 , req1wit ,ref
1
reg, ref

in1
ast). To answer them, C be-

haves as in Greal except that it simulates the ZKAoK proofs
π0, π1 using td. C replies A with ({comb

u}4u=1, π
0) and

({com1−b
u }4u=1, π

1). If A accepts the proofs, it runs the
BlindSign algorithm and sends the blinded signatures to C
and continues.

- For O1
File oracle, Q0 = (uid0 , req0fil , ref

0
reg), and

Q1 = (uid1 , req1fil , ref
1
reg). To answer them, C behaves

as in Greal except that it simulates the ZKAoK proofs
π0, π1 using td. C replies A with ({comb

u}3u=1, π
0) and

({com1−b
u }3u=1, π

1). If A accepts the proofs, it runs the

13

• Setup(1𝜆) → epp
epp is the system public parameter containing both static pa-
rameters such as the blind signature public parameter 𝑝𝑝 , the
total assets kinds 𝑛, the maximum balance number 𝑣max = 𝑝 − 1
for some super-poly 𝑝 , and dynamic parameters such as current
price 𝑝𝑟 𝑖 and the price credential px(𝑖) of each asset i ∈ [𝑛].
• PKeyGen(epp) → (pk, sk)
P: (pk, sk) ← KeyGen(1𝜆, 𝑝𝑝)
• ⟨Join(epp,pk,reqjoi), Issue(epp,pk,sk)⟩ → (uid, Rdreg, 𝑏):

//U outputs Rdreg , P outputs b
U: uid, rid, 𝑟 ←$ Z𝑝 , sends (reqjoi, uid, com, 𝜋) to P
reqjoi = (info), com = Com(uid, rid, cp1, cp2; 𝑟), 𝜋 proves:
−com contains uid, rid, 𝑟 and (cp1, cp2) = (0, 0).
P: if uid ∈ USet or the proof 𝜋 is invalid, outputs𝑏 = 0. Otherwise,
adds uid to USet, replies with �̂�reg:
�̂�reg ← BlindSig(𝑝𝑝, 𝑝𝑘, 𝑠𝑘, 𝑐𝑜𝑚)

U: outputs Rdreg = (uid, rid, cp1, cp2, 𝜎reg)
𝜎reg ← BlindRcv(𝑝𝑝, 𝑝𝑘, �̂�reg, 𝑟)

• ⟨Deposit(epp,pk,uid, Rdreg, reqdep),Credit(epp, pk, sk)⟩ → (Rdoutast , 𝑏):
//Rdreg = (uid, rid, cp1, cp2, 𝜎reg)
//U outputs Rdoutast , P outputs b

U: aid, 𝑟1, 𝑟2 ←$ Z𝑝 , sends (reqdep, com1, com2, 𝜋) to P, where
reqdep = (i, k𝑖), com1 = Com(uid, rid, cp1, cp2; 𝑟),
com2 = Com(uid, aid, 𝑖, 𝑘𝑖 , 𝑝𝑟𝑖 ; 𝑟2), 𝜋 proves that:
− he owns a valid signature 𝜎reg w.r.t. 𝑐𝑜𝑚1;
− com2 contains 𝑢𝑖𝑑, 𝑎𝑖𝑑, 𝑖, 𝑘𝑖 , 𝑝𝑟𝑖 , where 𝑢𝑖𝑑 is the same as that
in 𝑐𝑜𝑚1 and 𝑖, 𝑘𝑖 are the same as those in reqdep .
P: if does not receive asset or the proof 𝜋 is invalid, outputs 𝑏 = 0.
Otherwise, replies with �̂�ast and outputs 𝑏 = 1.

//�̂�ast ← BlindSig(𝑝𝑝, 𝑝𝑘, 𝑠𝑘, 𝑐𝑜𝑚2)
U: outputs Rdoutast = (uid, aid, 𝑖, 𝑘𝑖 , 𝑝𝑟𝑖 , 𝜎ast)

//𝜎ast ← BlindRcv(𝑝𝑝, 𝑝𝑘, �̂�ast, 𝑟2)
• ⟨Exchange (epp, 𝑝𝑘, uid, Rdreg, Rdast, reqexc),Update(epp, pk, sk)⟩ →
(Rd′reg, Rd′ast, Rdoutast , 𝑏):

//epp contains price credentials: px (𝑖) = (𝑚𝑡, 𝑖, 𝑝𝑟 𝑖 , 𝜎𝑖)
//px (𝑗) = (𝑚𝑡, 𝑗, 𝑝𝑟 𝑗 , 𝜎 𝑗),𝑚𝑡 is the timestamp as metadata

//reqexc = (𝑖, 𝑘𝑖 , 𝑗, 𝑘 𝑗)
U: rid′, aid′, aidout, {𝑟𝑢 }7𝑢=1 ←$ Z𝑝 , sends (rid, aid, {com𝑢 }7𝑢=1, 𝜋)
to P, where
com1 = Com(uid, rid, cp1, cp2; 𝑟),
com2 = Com(uid, aid, 𝑖, 𝑣𝑖 , 𝑝𝑟𝑖 ; 𝑟2),
com3 = Com(uid, rid′, cp′1, cp′2; 𝑟3),
com4 = Com(uid, aid′, 𝑖, 𝑣 ′𝑖 , 𝑝𝑟𝑖 ; 𝑟4),
com5 = Com(uid, aidout, 𝑗, 𝑣 𝑗 , 𝑝𝑟 𝑗 ; 𝑟5),
com6 = Com(mt, 𝑖, 𝑝𝑟 𝑖 ; 𝑟6),
com7 = Com(mt, 𝑗, 𝑝𝑟 𝑗 ; 𝑟7), 𝜋 proves that:
– he owns valid platform’s signaturesw.r.t. 𝑐𝑜𝑚1, 𝑐𝑜𝑚2, 𝑐𝑜𝑚6, 𝑐𝑜𝑚7;
– the revealed rid and aid are identifiers in 𝑐𝑜𝑚1 and 𝑐𝑜𝑚2;
– there are identifiers 𝑎𝑖𝑑′, 𝑟𝑖𝑑′, aidout in 𝑐𝑜𝑚3, 𝑐𝑜𝑚4, 𝑐𝑜𝑚5;
– the 𝑖-th asset in 𝑐𝑜𝑚2 is enough, i.e., 𝑘𝑖 ≥ 0 and 𝑣𝑖−𝑘𝑖 = 𝑣 ′𝑖 ≥ 0;
– 𝑐𝑜𝑚2, 𝑐𝑜𝑚4 and 𝑐𝑜𝑚6 share the same asset kind 𝑖;
– 𝑐𝑜𝑚2 and 𝑐𝑜𝑚4 share the same price 𝑝𝑟𝑖 ;
– 𝑐𝑜𝑚5 and 𝑐𝑜𝑚7 share the same kind 𝑗 and price 𝑝𝑟 𝑗 ;
– 𝑐𝑜𝑚3 contains cp′1 = cp1 + 𝑘𝑖 · 𝑝𝑟𝑖 , cp′2 = cp2 + 𝑘𝑖 · 𝑝𝑟 𝑖 ;
– fairness: com5 contains number 𝑣 𝑗 = 𝑘 𝑗 > 0 and price 𝑝𝑟 𝑗
satisfying 𝑝𝑟 𝑖 · 𝑘𝑖 = 𝑝𝑟 𝑗 · 𝑘 𝑗 , which also implies 𝑘𝑖 > 0;

– {com𝑢 }5𝑢=1 share the same 𝑢𝑖𝑑 .
P: if 𝑟𝑖𝑑 or 𝑎𝑖𝑑 ∈ ID or 𝜋 is invalid, outputs 𝑏 = 0. Otherwise,
replies with blind signatures �̂�reg, �̂�ast, �̂�outast on com3, com4, com5
respectively, adds rid, aid to ID outputs 𝑏 = 1.
U: outputs Rd′reg, Rd′ast, Rdoutast ,
Rd′reg = (𝑢𝑖𝑑, 𝑟𝑖𝑑′, cp′1, cp′2, 𝜎′reg),
Rd′ast = (uid, aid′, 𝑖, 𝑣 ′𝑖 , 𝑝𝑟𝑖 , 𝜎′ast),
Rdoutast = (𝑢𝑖𝑑, aidout , 𝑗, 𝑘 𝑗 , pr𝑗 , 𝜎outast).

//𝜎′reg, 𝜎′ast𝑖 , 𝜎
out
ast are unblinded signatures of �̂�reg, �̂�ast, �̂�outast

• ⟨Withdraw(epp, pk, uid, Rdreg, Rdast , reqwit),Deduct (epp, 𝑝𝑘, 𝑠𝑘)⟩ →
(Rd′reg, Rd′ast , 𝑏):
U: rid′, aid′, {𝑟𝑢 }4𝑢=1 ←$ Z𝑝 , sends (reqwit , rid, aid, {com𝑢 }4𝑢=1, 𝜋)
to P, where reqwit = (𝑖, 𝑘𝑖),
𝑐𝑜𝑚1 = Com(𝑢𝑖𝑑, 𝑟𝑖𝑑, cp1, cp2; 𝑟1),
𝑐𝑜𝑚2 = Com(𝑢𝑖𝑑, 𝑎𝑖𝑑, 𝑖, 𝑣𝑖 , 𝑝𝑟𝑖 ; 𝑟2),
𝑐𝑜𝑚3 = Com(𝑢𝑖𝑑, 𝑟𝑖𝑑′, cp′1, cp′2; 𝑟3),
𝑐𝑜𝑚4 = Com(𝑢𝑖𝑑, 𝑎𝑖𝑑′, 𝑖, 𝑣 ′𝑖 , 𝑝𝑟𝑖 ; 𝑟4), 𝜋 proves that:
– he owns valid platform’s signatures w.r.t. 𝑐𝑜𝑚1, 𝑐𝑜𝑚2;
– 𝑟𝑖𝑑 and 𝑎𝑖𝑑 are identifiers in 𝑐𝑜𝑚1 and 𝑐𝑜𝑚2;
– there are new identifiers 𝑟𝑖𝑑′, 𝑎𝑖𝑑′ in 𝑐𝑜𝑚3, 𝑐𝑜𝑚4 respectively;
– all these commitments share the same 𝑢𝑖𝑑 ;
– the 𝑖-th asset in 𝑐𝑜𝑚2 is enough, i.e., 𝑣𝑖 ≥ 0 and 𝑣𝑖 −𝑘𝑖 = 𝑣 ′𝑖 ≥ 0;
– 𝑐𝑜𝑚2 and 𝑐𝑜𝑚4 share the same asset kind 𝑖 (as that in reqwit)
and price 𝑝𝑟𝑖 ;

– 𝑐𝑜𝑚3 contains cp′1 = cp1 + 𝑘𝑖 · 𝑝𝑟𝑖 , cp′2 = cp2 + 𝑘𝑖 · 𝑝𝑟 𝑖 , 𝑝𝑟 𝑖 is
the current price of asset 𝑖 .

P: if 𝑟𝑖𝑑 or 𝑎𝑖𝑑 ∈ ID or 𝜋 is invalid, outputs 𝑏 = 0. Otherwise,
replies with blind signatures �̂�reg, �̂�ast w.r.t. com3, com4, adds
rid, aid to ID, outputs 𝑏 = 1.
U: outputs Rd′reg, Rd′ast , where
Rd′reg = (uid, rid′, cp′1, cp′2, 𝜎′reg), Rd′ast = (𝑢𝑖𝑑, 𝑎𝑖𝑑′, 𝑖, 𝑣 ′𝑖 , 𝑝𝑟𝑖 , 𝜎′ast).
• ⟨File(𝑒𝑝𝑝, 𝑝𝑘,𝑢𝑖𝑑, Rdreg, reqfil), Sign(epp, 𝑝𝑘, 𝑠𝑘)⟩ → (Rd′reg, doc, 𝑏):

//Rdreg = (uid, rid, cp1, cp2, 𝜎reg), reqfil = (𝑢𝑖𝑑, 𝑐𝑝1, 𝑐𝑝2)
U: rid′, {𝑟𝑢 }3𝑢=1 ←$ Z𝑝 , sends (uid, rid, {com𝑢 }3𝑢=1, 𝜋) to P, where
𝑐𝑜𝑚1 = Com(𝑢𝑖𝑑, 𝑟𝑖𝑑, cp1, cp2; 𝑟1),
𝑐𝑜𝑚2 = Com(𝑢𝑖𝑑, 𝑟𝑖𝑑′, cp′1, cp′2; 𝑟2),
𝑐𝑜𝑚3 = Com(𝑢𝑖𝑑, cp1, cp2, 𝑚𝑡 ; 𝑟3), 𝜋 proves that:
– he owns a valid platform’s signature w.r.t. com1;
– the revealed rid is the identifier in com1;
– 𝑐𝑜𝑚1, 𝑐𝑜𝑚2, 𝑐𝑜𝑚3 share the same 𝑢𝑖𝑑 ;
– 𝑐𝑜𝑚2 contains an identifier 𝑟𝑖𝑑∗ and (cp∗1, cp∗2) = (0, 0);
– 𝑐𝑜𝑚3 contains cp1, cp2 which are the same as those in 𝑐𝑜𝑚1;
– 𝑐𝑜𝑚3 contains the timestamp metadata𝑚𝑡 and the 𝑢𝑖𝑑 in reqfil .
P: if 𝑟𝑖𝑑 ∈ ID or 𝑢𝑖𝑑 ∉ USet or 𝜋 is invalid, outputs 𝑏 = 0.
Otherwise, replies with blind signatures �̂�reg on com2, �̂�cp on
com3, adds rid to ID, outputs 𝑏 = 1.
U: outputs Rd′reg, doc, where
Rd′reg = (𝑢𝑖𝑑, 𝑟𝑖𝑑′, cp′1, cp′2, 𝜎′reg), doc = (𝑢𝑖𝑑, cp1, cp2,𝑚𝑡, 𝜎𝑐𝑝).

//𝜎′reg, 𝜎cp are unblinded signatures of �̂�reg, �̂�cp
• Verify(𝑒𝑝𝑝, 𝑝𝑘, doc) → 𝑏: //doc = (𝑢𝑖𝑑, cp1, cp2,𝑚𝑡, 𝜎)
Authortiy: gets the current timestamp𝑚𝑡 ′ from epp. If𝑚𝑡 =𝑚𝑡 ′
and Vrfy(𝑝𝑘, (𝑢𝑖𝑑, cp1, cp2,𝑚𝑡), 𝜎) → 1, then it outputs 𝑏 = 1
indicating the verification succeeds. Otherwise, outputs 𝑏 = 0.
• Check(𝑒𝑝𝑝, 𝑠𝑡) → 𝑏:
P: monitors the fund outflows and checks if it owns enough asset
for the LCR-platform-compliance.

Fig. 7: Our efficient construction of Pisces

14

BlindSign algorithm and sends the blinded signatures to C
and continues.

Note that from Greal to G1, the only difference is that
the ZKAoK proofs are simulated. Due to that the ZKAoK
scheme is zero-knowledge, we have that |Pr[Greal(A, λ) =
1]− Pr[G1(A, λ) = 1]| ≤ negl(λ).

Gsim: This experiment modifies G1 by replacing the original
commitments with commitments on random strings. Gsim

proceeds in steps, and each timeA invokes an oracle, it sends C
a pair of queries (Q0, Q1). C first checks that they are publicly
consistent, then simulates different oracles as follows.
- For O1

Join oracle, to answer queries Q0, Q1, C behaves as
in G1 except that it produces commitment com0, com1 on
random strings r0, r1.

- For O1
Deposit oracle, to answer Q0, Q1, C behaves as in

G1 except that it produces commitments {com0
u}2u=1 and

{com1
u}2u=1 on random strings.

- For O1
Exchange oracle, to answer Q0, Q1, C behaves as in

G1 except that it produces commitments {com0
u}7u=1 and

{com1
u}7u=1 on random strings.

- For O1
Withdraw oracle, to answer Q0, Q1, C behaves as in

G1 except that it produces commitments {com0
u}4u=1 and

{com1
u}4u=1 on random strings.

- For O1
File oracle, to answer Q0, Q1, C behaves as in

G1 except that it produces commitments {com0
u}3u=1 and

{com1
u}3u=1 on random strings.

In each of the above cases, A’s view is independent of b.
Thus, A just outputs a random guess b̂ in Gsim, so its advantage
is 0: Pr[Gsim(A, λ) = 1]− 1/2 = 0

Note that from G1 to Gsim, we change that the commit-
ments are on the random strings. Due to the hiding property
of the commitment scheme and the blindness of Πbs (which
is also based on the hiding property of the commitment), we
have that |Pr[G1(A, λ) = 1]−Pr[Gsim(A, λ) = 1]| ≤ negl(λ).
In summary, we have that

|Pr[ExpIND(A, λ) = 1]− 1/2| = |Pr[Greal(A, λ) = 1]− 1/2|
≤|Pr[Greal(A, λ) = 1]− Pr[G1(A, λ) = 1]|
+ |Pr[G1(A, λ) = 1]− Pr[Gsim(A, λ) = 1]|
+ |Pr[Gsim(A, λ) = 1]− 1/2|
≤negl(λ)

Theorem 2 (Overdraft prevention). If the underlying ZKAoK
has argument of knowledge, the commitment is binding and
Πbs is unforgeable, then ΠPisces has overdraft prevention.

Proof: In the overdraft prevention experiment, the
adversary A wins if it withdraws more asset than it
has deposited or exchanged. Given the transaction his-
tories ht = (uid ,Rdreg ,Rdast ,Rd

′
reg ,Rd

′
ast ,Rd

out
ast , tst , pubt)

extracted by E for t ∈ [N]. If A wins, there exists at least
one transaction has issues which means the input or output
records in it are problematic such that one of the following
events happens:
1. The record used in this transaction is not generated from

previous transactions, i.e., Rd /∈ RdSet;
2. The user steals other honest users’ assets;
3. The generation of asset record is wrong in one of the

following cases:
Deposit: Rdout

ast .name ̸= tst.name or Rdout
ast .amt ̸= tst.amt;

Exchange: Rd ′
ast .name ̸= Rdast .name or Rd ′

ast .amt < 0
or (Rdast .amt − Rd ′

ast .amt) · pubt .prin ̸= Rdout
ast .amt ·

pubt.prout;
Withdraw: Rdast .name ̸= tst .name or Rd ′

ast .amt < 0 or
Rdast .amt− Rd ′

ast.amt < tst .amt.

For events 1 and 2, the input records are problematic which
are forged or stole by A. A may forge the asset records or
reuse records with a different identifier. In order to use others’
asset, A must guess the aid correctly. For event 3, the new
generated asset records are problematic, A gets these records
by cheating the issuer. The security of our scheme can be
reduced to the underlying cryptographic building blocks. This
includes standard primitives like commitment, blind signature,
and non-interactive ZKAoK. We elaborate it case by case.
(1) Suppose that Pr[A wins and event 1 happens] is non-
negligible. In this case, it leads to at least one of the following
contradictions:
• The record Rd is valid but was not generated via querying

oracles, which breaks the unforgeability of Πmathrmbs;
• The asset record Rd is reused with another identifier. In

this case, since the used identifier would be detected, the
revealed identifiers must be different aid ̸= aid′. It means
one commitment produces two different openings which
contradicts the binding property of the commitment.

(2) Suppose that Pr[A wins and event 2 happens] is non-
negligible. Here the input records are valid records generated
from previous transaction but belong to other honest users. If
A uses this asset record, it must know the respective aid which
is kept privately by the honest user. It contradicts that A can
only guess it correctly with negligible probability.
(3) Suppose that Pr[A wins and event 3 happens] is non-
negligible. In this case, A generates a valid transaction but
gets asset records with wrong attributes. It leads to at least
one of the following contradictions:
• For deposit transaction, A gets an asset record which is

different from the deposit request. It happens only if one
commitment produces two different openings which contra-
dicts the binding property or A uses the incorrect witness
to generate a valid proof, which breaks the argument of
knowledge of underlying ZKAoK.
• For exchange transaction, A gets new exchange-out asset

record which is different from the old one or gets exchange-
in asset with more amount by breaking the fair exchange
rule. It leads to at least one of the following contradictions:

- for the commitments of records, A generates a valid proof
with incorrect witness, which breaks the argument of
knowledge of underlying ZKAoK;

- A opens the commitment to different values and gener-
ates the proof. It means one commitment produces two
different openings which contradicts the binding property
of the commitment scheme;

- the price credentials are forged by A, thus the platform’s
signatures. It contradicts to the unforgeability of Πbs.

• For withdraw transaction, the user should prove that it owns
enough asset for the withdraw request by committing on the
old asset and new asset. Then he proves that the opening
of the asset name is the same as that in the request and
the deducted amount is the same as the withdrawal amount
and the new amount is non-negative. Now the new asset
record does not meet at least one of these requirements.
It happens only if one commitment produces two different

15

openings which contradicts the binding property or A uses
the incorrect witness to generate a valid proof, which breaks
the argument of knowledge of underlying ZKAoK.

Theorem 3 (Compliance). If the underlying ZKAoK is secure
with argument of knowledge, the commitment is binding,
and Πbs is unforgeable, then ΠPisces has tax-report-client-
compliance.

Proof: We prove the tax-report-client-compliance as fol-
lows. In this experiment, A wins if it outputs doc which
passes the authority verification but is inconsistent with the
transaction histories. Given that E extracts transaction his-
tories ht = (uid ,Rdreg ,Rdast , Rd

′
reg ,Rd

′
ast ,Rd

out
ast , tst , pubt)

for t ∈ [N]. A wins if one of the following events happens:
1. doc was not obtained from queries but passed the authority

verification.
2. The user uses others’ registration record: the user identities

of asset and registration records are not the same;
3. The price was inconsistent as follows: In deposit transac-

tion, Rdout
ast .acp ̸= pubt.prout; or in exchange transaction,

Rd′
ast.acp ̸= Rdast.acp or Rdout

ast .acp ̸= pubt.prout; Or in
withdraw transaction, Rd ′

ast .acp ̸= Rdast .acp.
4. doc was obtained by interacting with OSign, but the incon-

sistency happens since the compliance information was up-
dated incorrectly in some exchange or withdraw transaction;

5. The user identifier has not been registered : uid /∈ RU in
any transaction expect for Join;
In a high level, event 1 happens meaning that A forges a

valid signature which is contradicted by the unforgeability of
Πbs. Events 2,3,4, happens meaning that A finds the collisions
of commitment that violate the binding property of commit-
ment, or A proves on a wrong statement that violates the
argument of knowledge property of non-interactive ZKAoK.
Event 5 happens which contains three possible cases. The
first is A forges a record with new uid, which violates the
unforgeability of Πbs. The second is A finds collisions on uid,
which violates the binding property of commitment. The third
is that A proves a wrong statement including the unregistered
uid, which violates the argument of knowledge property of
non-interactive ZKAoK. So, we reduce the security of our
scheme to the unforgeability of Πbs, the binding property of
commitment, and the argument of knowledge property of non-
interactive ZKAoK. We elaborate it case by case.
(1) Suppose that Pr[A wins and event 1 happens] is non-
negligible. In this case, A works honestly for each transaction
but sends a doc to the authority which contains the incorrect
cp1, cp2 and a forged signature on them. It breaks the unforge-
ability of the blind signature.
(2) Suppose that Pr[A wins and event 2 happens] is non-
negligible. In this case, a valid transaction is generated but
the records belong to different users. However, the user needs
to prove that all records belong to himself by proving they
contain the same uid which is a contradiction. So it breaks
the argument of knowledge of the underlying ZKAoK.
(3) Suppose that Pr[A wins and event 3 happens] is non-
negligible. In this case, A generates a commitment for its
new asset containing its uid, asset identifier aid, asset name
i, amount ki and price pri. Here pri is different from the real
price w.r.t the output of OPublic. For the deposit transaction,
the price is different from the public price. For the exchange
transaction, the price is different from that of the old asset

record or the price credential. For the withdraw transaction,
the price is different from that of the old asset record. The
occurrence of the incorrect price leads to at least one of the
following contradictions:
• A uses the incorrect witness to generate a valid proof, which

breaks the argument of knowledge of underlying ZKAoK;
• A opens the commitment to different values and generates

the proof. It means one commitment produces two different
openings which contradicts the binding property of the
commitment scheme;

• In the exchange transaction, A manipulates the price by
using the price credential forged by itself. It breaks the
unforgeability of the blind signature scheme Πbs.

(4) Suppose that Pr[A wins and event 4 happens] is non-
negligible. In this case, for at least one exchange or withdraw
transaction the new compliance information cp∗

1, cp∗2 was in-
correct but the proof is valid. It leads to at least one of the
following contradictions:

• When computing cp∗1, cp∗
2, A uses some incorrect selling

prices different from the output of OPublic. Its success
implies that it breaks the argument of knowledge of un-
derlying ZKAoK, or breaks the binding property of the
commitment scheme, or forges a price credential (in the
exchange transaction) which breaks the unforgeability of the
blind signature.

• When proving the correctness of cp∗
1, cp∗

2, A just uses the
incorrect witness to generate a valid proof, which breaks the
argument of knowledge of underlying ZKAoK;

• A opens the commitment to different compliance informa-
tion values and generates the proof. It means one commit-
ment produces two different openings which contradicts the
binding property of the commitment scheme.

(5) Suppose that Pr[A wins and event 5 happens] is non-
negligible. In this case, uid has not registered but A generates
a valid transaction on it which leads to at least one of the
following contradictions:
• A forges a registration record in which the σreg should be

issued by the platform via a blind signature scheme, so A
breaks the unforgeability of the blind signature;

• A does not have the σreg but generates a valid proof in
the deposit, exchange or withdraw protocol, so it breaks the
argument of knowledge of the underlying ZKAoK.

VII. PERFORMANCE EVALUATIONS

In this section, we describe our instantiation, prototype im-
plementation and the performance evaluation. The evaluation
results show that our design is efficient and practical.

Instantiation and implementation. We instantiate the anony-
mous exchange system using the Pointcheval Sanders blind
signatures [33] and Pedersen commitment [32]. The ZKAoKs
are instantiated with Σ-protocol on the knowledge of DLog,
its equality, and range. We implement this instantiation of
the anonymous exchange system with Java. We use the open
source Java library upb.crypto6 and the bilinear group provided
by mcl(bn256)7. We run experiments on MacBook Air (1.6
GHz Dual-Core Intel Core i5, 16GB memory).

6upb.crypto: https://github.com/upbcuk.
7mcl: https://github.com/herumi/mcl.

16

https://github.com/upbcuk
https://github.com/herumi/mcl

TABLE I: Avg. computation cost in milliseconds.

Party Join Deposit Exchange Withdraw
Pisces-user 9 11 46 37

Pisces-platform 7 14 88 62

Performance. We test the pure computation time cost and
communication cost of each procedure to show the efficiency.
Then to show the practicality, we make two comparisons. One
is to compare the secure exchange with plain exchange to show
the overhead is truly small. The other is to compare with other
anonymous credential applications, including Privacy Pass and
the privacy-preserving incentive system (PPIS for short).

Computation cost. We test the computation time cost of each
party in each procedure of the anonymous exchange system.
As shown in table I, we can see that each party’s time cost for
each procedure is less than 88ms, which is quite efficient.

Communication cost. We measure the communication cost of
each procedure and none of them exceeds 12kb. Concretely,
in the Join and deposit procedures, the user adds ˜2.6kb and
˜3.3kb data to the request, respectively. The platform adds a
˜1.8kb data to both responses. In the exchange and withdraw
procedure, the user adds ˜12kb and ˜8.7kb data to the request,
respectively. The platform adds ˜2.3kb and ˜2.8kb data to the
response, respectively.

Fig. 8: Comparison between plain exchange system and
Pisces

Comparison with plain exchange. To demonstrate its practical-
ity, we have taken into consideration the cost of secure commu-
nication and have provided a comparison of the estimated time
costs between plain operations and secure operations, as shown
in Figure 8. For plain operations, we have estimated the lower-
bound time costs by considering only communication cost and
on-chain transaction confirmation time, assuming computation
cost to be 0. We detail the estimation of plain and secure join,
deposit, exchange, and withdraw in the following. Consider the
optimal network performance, 30−40ms is the desired round-
trip time (RTT)8. In the estimation, we pick RTT = 30ms.
a) Join operation: For a new user, the plain join includes the
sign-up procedure and identity verification for KYC without
on-chain confirmation cost. The communication cost includes
one TLS handshake with at least 2 round-trip time (RTT for
short) cost, 2 RTTs for sign-up setting username and password,
and at least 1 RTT for identity verification. Totally the time
cost is 5 RTT say 150ms. The secure join runs all the plain
join process and additionally runs the ⟨Join, Issue⟩ protocol.
The time overhead includes 1 RTT for interaction latency,
user and platform computation time 16ms, and data transfer
time 2.6kb

10MB/s/ + 1.8kb
100MB/s ≈ 0.278ms. (We assume for a

8Network latency:https://www.ir.com/guides/what-is-network-latency.

user device the uploading speed is 10MB/s and downloading
speed is 100MB/s) The total time cost is 196.278ms

b) Deposit operation: A plain ETH deposit includes one
handshake with platform costing at least 2 RTTs, log-in pro-
cedure to get receipt address costing 1 RTT, on-chain payment
request costing at least 1 RTT, and an Ethereum transaction
confirmation time 12.21s. The total time cost of the plain
deposit is 12.33s. In an anonymous ETH deposit, users do not
log in the platform saving 1 RTT, but run all other procedures
of plain deposit. Then users additionally interact with the
platform running ⟨Deposit,Credit⟩ where the total computation
cost is 25ms, the interaction with the platform costs 1 RTT,
and the data transfer time is 3.4kb

10MB/s/+
1.8kb

100MB/s ≈ 0.358ms.
The total time cost of the secure deposit is around 12.355s.
c) Exchange operation: A plain exchange includes server
authentication via TLS handshaking at least 2 RTTs, user
login costing 1 RTT, price fetching with 1 RTT, and sending
exchange request with 1 RTT. The total time cost of a plain ex-
change is at least 5 RTT, around 150ms. The secure exchange
removes login, but additionally runs the ⟨Exchange,Update⟩
protocol, where the computation cost is 134ms, interaction
equals the exchange request sending, and data transfer costs

12kb
10MB/s/+

2.8kb
100MB/s ≈ 1.228ms. The total time cost of secure

exchange is around 255.228ms.
d) Withdraw operation: A plain withdraw of ETH includes
server authentication via TLS handshaking at least 2 RTTs,
user login costing 1 RTT, sending withdraw request with 1
RTT, and waiting the on-chain confirmation with 12.21s. The
total time cost of a plain withdraw is around 12.33s. The secure
exchange gets rid of the login, saving 1 RTT, but additionally
requests the price with 1 RTT, and run the ⟨Withdraw,Deduct⟩
protocol, where the computation cost is 99ms, interaction
equals the withdraw request sending, and data transfer costs

8.7kb
10MB/s/ + 2.3kb

100MB/s ≈ 0.893ms. The total time cost of a
secure exchange is about 12.43s.

The results show that the time costs for plain and secure
operations are similar, with the overhead of each secure
operation being less than 0.11s. Notably, the overhead ratio
of secure deposit and withdrawal is less than 1%.

Comparison with Privacy Pass and PPIS. To provide a better
understanding of the practicality of our system, we conduct
performance comparisons with widely used anonymous user-
authentication mechanism Privacy Pass [20]. Privacy Pass
published preliminary tests on consumer hardware, indicating
that creating a pass in the extension takes less than 40ms9.
Although the test environments may not be identical to ours, as
both are on consumer hardware, the key takeaway is that each
procedure of our system incurs similar time costs as Privacy
Pass, showcasing its practicality. It’s important to note that our
system offers additional functionalities beyond Privacy Pass’s
anonymous authentication. We also test the time cost of the
privacy-preserving incentive system (PPIS) [14]. The results,
as shown in table II, demonstrate that our system is more
complicated and more private, yet similarly practical to PPIS.

VIII. CONCLUSION

In this paper, we give the first study of cryptocurrency
exchange that supports user anonymity and compliance re-

9Privacy Pass FAQ: https://privacypass.github.io/faq/

17

https://www.ir.com/guides/what-is-network-latency
https://privacypass.github.io/faq/

TABLE II: Avg. computation cost of each party per
procedure over 100 runs in milliseconds.

Party Join Earn Exchange Spend
PPIS [14]-user 10 8 N/A 30

PPIS [14]-provider 9 12 N/A 72

quirements simultaneously. The platform cannot get more in-
formation from the transactions other than that has to be public.
Users cannot get more assets from the platform so double
spending is prohibited and they have to correctly report their
accumulated profits for tax purposes, even in a private setting.
Also, critical compliance functions are to be supported. Our
construction is efficient and achieves constant computation and
communication overhead with only simple cryptographic tools
and rigorous security analysis. Additionally, we implement our
system and evaluate its practical performance.

Acknowledgement. We would like to thank our shepherd
and anonymous reviewers of NDSS24 for valuable feedbacks.
This work was supported in part by research awards from
Stellar Development Foundation, Ethereum Foundation, Pro-
tocol Labs, SOAR Prize, and University of Sydney’s Digital
Sciences Initiative through the Pilot Research Project Scheme.

REFERENCES

[1] “Basel accords: Purpose, pillars, history, and member countries,” https:
//www.investopedia.com/terms/b/basel accord.asp, April 2022.

[2] “Binance revenue and usage statistics (2022),” https://www.
businessofapps.com/data/binance-statistics/, September 2022.

[3] “Coinbase revenue and usage statistics (2022),” https:
//www.businessofapps.com/data/coinbase-statistics/, September 2022.

[4] “Data breaches,” https://www.coindesk.com/tag/data-breaches/, October
2022.

[5] “Currency composition of international foreign reserves,” https://data.
imf.org/?sk=e6a5f467-c14b-4aa8-9f6d-5a09ec4e62a4, April 2023.

[6] “Tor browser,” https://www.torproject.org/, 2023.
[7] “Understanding crypto taxes,” https://www.coinbase.com/learn/

crypto-basics/understanding-crypto-taxes, 2023.
[8] “Zcash,” 2023. [Online]. Available: https://z.cash
[9] M. Abe and T. Okamoto, “Provably secure partially blind signatures,”

in CRYPTO. Springer, 2000, pp. 271–286.
[10] E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya,

K. Elkhiyaoui, and B. Tackmann, “Privacy-preserving auditable token
payments in a permissioned blockchain system,” in AFT. Association
for Computing Machinery, 2020, p. 255–267.

[11] C. Baum, B. David, and T. K. Frederiksen, “P2DEX: privacy-preserving
decentralized cryptocurrency exchange,” in ACNS. Springer, 2021, pp.
163–194.

[12] Binance, “Proof of reserves,” https://www.binance.com/en/
proof-of-reserves, July 2023.

[13] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky, “Suc-
cinct non-interactive arguments via linear interactive proofs,” in TCC.
Springer, 2013, pp. 315–333.

[14] J. Blömer, J. Bobolz, D. Diemert, and F. Eidens, “Updatable anonymous
credentials and applications to incentive systems,” in CCS. ACM, 2019,
pp. 1671–1685.

[15] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “Zexe:
Enabling decentralized private computation,” in IEEE S&P. IEEE,
2020, pp. 947–964.

[16] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards
privacy in a smart contract world,” in FC. Springer, 2020, pp. 423–
443.

[17] Y. Chen, X. Ma, C. Tang, and M. H. Au, “PGC: Decentralized
confidential payment system with auditability,” in ESORICS. Springer,
2020, pp. 591–610.

[18] S. Chu, Q. Xia, and Z. Zhang, “Manta: Privacy preserving decentralized
exchange,” Cryptology ePrint Archive, p. 1607, 2020.

[19] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions:
Privacy-preserving proofs of solvency for bitcoin exchanges,” in CCS.
ACM, 2015, pp. 720–731.

[20] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda,
“Privacy Pass: Bypassing internet challenges anonymously,” PoPETs,
vol. 2018, no. 3, pp. 164–180, 2018.

[21] A. Deshpande and M. Herlihy, “Privacy-preserving cross-chain atomic
swaps,” in FC. Springer, 2020, pp. 540–549.

[22] B. E. Diamond, “Many-out-of-many proofs and applications to anony-
mous zether,” in IEEE S&P. IEEE, 2021, pp. 1800–1817.

[23] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation onion router,” in USENIX Security. USENIX Association,
2004.

[24] K. Gjøsteen, M. Raikwar, and S. Wu, “PriBank: Confidential blockchain
scaling using short commit-and-proof NIZK argument,” in CT-RSA.
Springer, 2022, pp. 589–619.

[25] N. Glaeser, M. Maffei, G. Malavolta, P. Moreno-Sanchez, E. Tairi, and
S. A. K. Thyagarajan, “Foundations of coin mixing services,” in CCS.
ACM, 2022, pp. 1259–1273.

[26] M. Green and I. Miers, “Bolt: Anonymous payment channels for
decentralized currencies,” in CCS. ACM, 2017, pp. 473–489.

[27] J. Groth and M. Kohlweiss, “One-out-of-many proofs: Or how to leak
a secret and spend a coin,” in EUROCRYPT. Springer, 2015, pp.
253–280.

[28] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub,”
in NDSS. The Internet Society, 2017.

[29] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, and A. Ger-
vais, “Commit-chains: Secure, scalable off-chain payments,” Cryptology
ePrint Archive, Paper 2018/642, 2018.

[30] Lindell, “Parallel coin-tossing and constant-round secure two-party
computation,” Journal of Cryptology, vol. 16, pp. 143–184, 2003.

[31] L. K. L. Ng, S. S. M. Chow, D. P. H. Wong, and A. P. Y. Woo, “LDSP:
shopping with cryptocurrency privately and quickly under leadership,”
in ICDCS. IEEE, 2021, pp. 261–271.

[32] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in CRYPTO. Springer, 1991, pp. 129–140.

[33] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in CT-
RSA. Springer, 2016, pp. 111–126.

[34] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
https://plasma.io/plasma.pdf, Working draft, August 2017.

[35] X. Qin, S. Pan, A. Mirzaei, Z. Sui, O. Ersoy, A. Sakzad, M. Esgin,
J. K. Liu, J. Yu, and T. H. Yuen, “Blindhub: Bitcoin-compatible privacy-
preserving payment channel hubs supporting variable amounts,” in IEEE
S&P. IEEE, 2023, pp. 2020–2038.

[36] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A2L: Anonymous atomic
locks for scalability in payment channel hubs,” in IEEE S&P. IEEE,
2021, pp. 1834–1851.

[37] A. Tomescu, A. Bhat, B. Applebaum, I. Abraham, G. Gueta, B. Pinkas,
and A. Yanai, “UTT: decentralized ecash with accountable privacy,”
Cryptology ePrint Archive, p. 452, 2022.

[38] N. Van Saberhagen, “Cryptonote v 2.0,” 2013.
[39] B. Whitehat, “Roll up token: Snark based multi erc20 side chain,” 2019.

[Online]. Available: https://github.com/barryWhiteHat/roll up token
[40] K. Wüst, K. Kostiainen, N. Delius, and S. Capkun, “Platypus: a

central bank digital currency with unlinkable transactions and privacy-
preserving regulation,” in CCS. ACM, 2022, pp. 2947–2960.

[41] X. Yi and K.-Y. Lam, “A new blind ECDSA scheme for bitcoin
transaction anonymity,” in AsiaCCS. ACM, 2019, pp. 613–620.

18

https://www.investopedia.com/terms/b/basel_accord.asp
https://www.investopedia.com/terms/b/basel_accord.asp
https://www.businessofapps.com/data/binance-statistics/
https://www.businessofapps.com/data/binance-statistics/
https://www.businessofapps.com/data/coinbase-statistics/
https://www.businessofapps.com/data/coinbase-statistics/
https://www.coindesk.com/tag/data-breaches/
https://data.imf.org/?sk=e6a5f467-c14b-4aa8-9f6d-5a09ec4e62a4
https://data.imf.org/?sk=e6a5f467-c14b-4aa8-9f6d-5a09ec4e62a4
https://www.torproject.org/
https://www.coinbase.com/learn/crypto-basics/understanding-crypto-taxes
https://www.coinbase.com/learn/crypto-basics/understanding-crypto-taxes
https://z.cash
https://www.binance.com/en/proof-of-reserves
https://www.binance.com/en/proof-of-reserves
https://github.com/barryWhiteHat/roll_up_token

APPENDICES

IX. RELATED WORKS

Private payment. Payment is a basic transaction format which
supports one kind of asset, and the private payment systems are
built on a single private closed blockchain [38], [8] or smart
contract [16], [22]. It does not imply the exchange between
different kinds of cryptocurrencies especially for some public
cryptocurrencies (like Bitcoin, Ether).

In the off-chain setting, many solutions have been pro-
posed. They perform as opt-in tools that enhance privacy for
existing cryptocurrencies. They aim to prevent an adversary
from linking a payment from a particular payer to a particular
payee. Bolt [26] is an anonymous payment channel was intro-
duced by Green and Miers. It aims to offer privacy-preserving
payment channels such that multiple payments on a single
channel are unlinkable to each other. Assuming the funded
cryptocurrency is anonymous (e.g. Zerocash), the payments in
Bolt are also anonymous.

TumbleBit [28] is a unidirectional payment channel hub
(PCH) relying on an untrusted intermediary called Tumbler
and Hashed Timelock Contracts (HTLCs). The Tumbler issues
anonymous payments that users can cash-out to Bitcoins.
Every payment conducted through TumbleBit is backed by
Bitcoins, ensuring that there is no possibility of linking indi-
vidual pairs of payments. Furthermore, it is guaranteed that the
Tumbler cannot engage in theft of Bitcoins, or make payments
to itself.

Anonymous atomic locks (A2L) is introduced in [36]
where the authors propose a PCH upon it. This PCH functions
as a three-party protocol designed for conditional transactions,
in which an intermediary (referred to as the hub) disburses
funds to the recipient contingent upon the recipient’s successful
resolution of a puzzle, aided by the sender. This arrangement
signifies that the sender compensates the hub. The utilization
of a randomized puzzle ensures that the hub cannot establish
a connection between the sender and the recipient involved
in a payment. The authors define unlinkability in terms of an
interaction multi-graph [28]. It is a mapping of transactions
from a set of senders to a set of receivers in an epoch.
An interaction graph is called compatible if it explains the
view of tumbler. The unlinkability requires that all compatible
interaction graphs are equal and the anonymity set depends
on the number of compatible interaction graphs in the epoch.
Since the payment amount can be used to link the sender and
receiver trivially, the unlinkability requires the amount to be
fixed [28], [36], [25] or concealed [35].

The star topology of PCH is very similar to the exchange
scenario where the user sends one kind of asset to the exchange
platform and receives another kind from it. And there are
some works adding anonymity on the PCH to prevent the
tumbler from linking the sender and receiver. Regarding the
exchange user as the sender and receiver at the same time,
the anonymous PCH seems related to our goal that cutting the
link between two accounts. Unfortunately, it is not suitable to
be used to design a private exchange system due to the model
differences, operation restrictions and limited privacy:

(i) PCH requires the establishment of payment channels on
the blockchains by the tumbler and users. It means each

exchange needs the deployment of two channels in two
blockchains. The channel is only valid before the expiration
time, so the establishment work should be done repeatedly
to make sure that they can exchange freely. The fund locked
in the channel is fixed and the user cannot transact more than
that locked amount. So the exchange amount is limited by
the money locked in the channel rather than the money that
the user owns. Even if the user has a huge amount of BTC,
he cannot exchange them into ETH more than the amount
locked in the Ethereum channel.

(ii) The anonymity set of PCH is just the active users in an
epoch. Some constructions require the off-chain transaction
amount is a fixed denomination [36], [25] which is inconve-
nient. BlindHub [35] is a recent work that supports variable
amounts. But it still assumes that there are many active users
and each of them transacts many times during the epoch. If
the sender just sends once and the receiver just receives
once before closing the channel, the changed amounts of
their channels would link them easily.

(iii) An exchange system consists of deposit, exchange and with-
draw operations where the deposit and withdrawal amount
must be public and variable. We consider the anonymity
in the whole system. The interaction graph model is not
enough since it only focuses the payments in one epoch and
only supports the k-anonymity of active users. It drives us
to define a stronger model of interaction indistinguishability
with larger anonymity set.

LDSP [31] is a layer-2 cryptocurrency payment system
that supports payer privacy. It is designed in the setting of
shopping with cryptocurrency where the payer is customer
and the receiver is merchant. There is also an untrusted entity
called leader who is in charge of issuing coins for customers
and merchants. Customers can transfer coins off-chain with
low-latency. Since the coins are issued in a blind way, the
leader cannot link the spent coin with any customer. At the
same time, the merchants are guaranteed to receive the coins.

Additionally, there exist several off-chain solutions, includ-
ing Plasma [34], NOCUST [29], and ZK-Rollup [39], which
are designed to enhance blockchain scalability by relocating
resource-intensive computations and redundant data off-chain,
conducted by an untrusted operator.

To enhance privacy within these scalability-focused frame-
works, the PriBank system has been introduced by Galbraith
et al. [24]. This system incorporates an efficient Commit-
and-Prove Non-Interactive Zero-Knowledge (NIZK) protocol
tailored for quadratic arithmetic programs. It ensures that
users’ balances and transaction values remain confidential,
accessible only to the operator and not to other entities.

Fiat to cryptocurrency (F2C) exchange. In general, the
centralized F2C exchange platform does not consider user’s
privacy, like Coinbase, Binance. They collect user’s personal
information when they register to meet the KYC requirement.
However, the user’s accounts are transparent for the platform.
It knows their asset profile, i.e., which kinds and how many
assets they own. In the case of cryptocurrency, it would also
know how the user spend their cryptocurrency which violates
user’s privacy outsides the platform.

To prevent the linkability by the transaction amount, the
amount of withdrawn cryptocurrency is fixed for all transac-

19

tions. For example, let all transactions worth 1 Bitcoin. To
prevent the linkability by the input UTXO, it should be chosen
by the client. But two clients may choose the same UTXO and
the conflict leads to only one of them would receive the bitcoin.
Besides, it is not accountable. The users do not need to provide
any compliance information, otherwise their privacy cannot be
preserved.

A privacy-preserving fiat-to-Bitcoin exchange scheme is
proposed in [41]. In this scheme, a user can acquire a fixed
quantity of cryptocurrency from an exchange platform using
fiat currency, all the while ensuring that the platform remains
unaware of the connection between the user’s genuine identity
and the associated Bitcoin address. To achieve this, a blind
signature mechanism is employed, allowing the user to receive
Bitcoin from the platform without revealing the output address
linked to the transaction. Subsequently, this transaction is
recorded on the Bitcoin blockchain, divulging details such
as the output address, transaction amount, and the Unspent
Transaction Output (UTXO) utilized by the platform at that
moment. To mitigate the risk of linkability through transaction
amounts, a constant withdrawal amount is maintained across
all transactions. For example, all transactions could be set at
a fixed value of 1 Bitcoin. To counteract the potential issue
of linkability through input UTXOs, clients are required to
select their preferred UTXOs. However, a challenge arises
when multiple clients opt for the same UTXO, potentially
resulting in a conflict where only one of them receives the
Bitcoin. Furthermore, this approach lacks accountability. Cru-
cially, users are not obligated to furnish any compliance-related
information. Failure to do so would compromise their privacy
preservation.

Private decentralized exchange. Decentralized exchange al-
lows users to exchange cryptocurrencies with each other di-
rectly or with smart contract. However, it is very different from
our setting. In the one hand, the private DEX focuses on the
trade anonymity and trade confidentiality. It aims to keep the
transaction information secret except for the trading parties.
But in the CEX the platform is one of the trading party who
can learn the information of the other one. On the other hand, it
does not support fiat money transactions and they are generally
deployed in the decentralized setting like smart contract that
is unaffected by the KYC requirement. Users are free to join
the DEX without providing their real identities as long as they
have cryptocurrencies. It is hard to directly enforce compliance
requirement on it since the enrollment does not require real-
world identities.

There are some works on the private exchange in the de-
centralized setting like Zexe [15], P2DEX [11] and Manta [18],
but they do not consider any compliance issue. P2DEX [11]
is a privacy preserving exchange system for cryptocurrency
tokens cross different blockchains while preserving order pri-
vacy to avoid front-running attack and ensuring users never
lose tokens. They use MPC for privately matching exchange
orders and deploy smart contract to reimburse affected clients
with the collateral deposit from the cheating server. Manta
[18] is a decentralized anonymous exchange scheme based
on automated market maker (AMM). They design a mint
mechanism to convert base coins to private coins, then achieve
the decentralized anonymous exchange by trading private coins
anonymously.

Accountable privacy. There are some works in studying
to achieve privacy-preserving and accountability at the same
time. PGC [17] is an auditable decentralized confidential
payment system. It offers transaction confidentiality and two
levels of auditability, namely regulation compliance and global
supervision at the same time. Androulaki et al. [10] present
a privacy-preserving token payment system for permissioned
blockchains that with auditing. The content of transactions is
concealed and only some authorized parties can inspect them.

UTT [37] stands as a decentralized electronic cash payment
system designed to incorporate accountable privacy measures.
One of its key features is the integration of anonymous budgets,
which contribute to maintaining a balance between privacy
and accountability. Within the UTT framework, senders are
empowered to generate payments in an anonymous manner, but
this is subject to a predefined monetary limit per month. Once
this limit is exceeded, the system mandates that their trans-
actions must become visible and transparent to a governing
authority. This approach ensures that while users can transact
with a certain degree of privacy, their financial activities
remain accountable when they surpass the specified budgetary
threshold.

Platypus [40] is a payment system designed for use within
the context of a central bank digital currency (CBDC) envi-
ronment. It focuses on enabling transactions that are unlink-
able, ensuring privacy while also accommodating regulatory
requirements. The system introduces a versatile regulatory
framework, which can be applied across various scenarios, and
it effectively enforces limitations on holdings and receipts as
specific instances of regulatory control.

Exchange platform compliance. Provisions, as outlined in
[19], presents a privacy-centric approach to validating solvency
within a financial exchange, particularly in the context of
cryptocurrencies like Bitcoin. This scheme enables an ex-
change platform to demonstrate its solvency without needing
to disclose sensitive information such as its Bitcoin addresses,
total holdings, liabilities, or customer details. The concept
of proof of solvency entails the exchange providing evidence
that it possesses sufficient cryptocurrencies to cover each
customer’s account balance. This proof is composed of two
primary components: (i). proof of Liabilities: The exchange
commits to the collective quantity of Bitcoin it owes to all of
its users. This commitment establishes the total liabilities of
the exchange. (ii). proof of Assets: The exchange commits to
the total value of Bitcoin over which it holds signing authority.
If the value of assets under the exchange’s control is equal to
or greater than its total liabilities, the exchange is considered
solvent.

Privacy-preserving incentive system. An incentive system
allows users to collect points which they can redeem later.
Blömer et al [14] proposed a privacy-preserving incentive sys-
tem from an updatable anonymous credential. The collection
and redemption are similar with the deposit and withdrawal.
But it does not support the exchange operation and compliance
regulation. Additionally, the achieved anonymity is a weak
game-based unlinkability, where the anonymity set is limited
to the eligible users.

20

X. CRYPTOGRAPHIC PRIMITIVES

Commitments. A commitment scheme allows one to commit
to a chosen value secretly, with the ability to only open to
the same committed value later. A commitment scheme Πcmt

consists of the following PPT algorithms:

Setup(1λ)→ pp: generates the public parameter pp.
Com(m; r) :→ com generates the commitment for the mes-
sage m using the randomness r.

Hiding. A commitment scheme is said to be hiding if for all
PPT adversaries A and λ, it holds that

∣∣∣∣∣∣∣∣∣Pr
b = b′

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ);

(m0,m1)← A(pp), b←$ {0, 1},
r ←$Rpp, com← Com(mb; r),

b′ ← A(pp, com)

− 1

2

∣∣∣∣∣∣∣∣∣ ≤ negl(λ)

If negl(λ) = 0, we say this scheme is perfectly hiding.

Binding. A commitment scheme is said to be binding if for all
PPT adversaries A and λ, it holds that

Pr

com0 = com1

∧m0 ̸= m1

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ);

(m0,m1, r0, r1)← A(pp),
Com(m0; r0) = com0,

Com(m1; r1) = com1

 ≤ negl(λ)

If negl(λ) = 0, we say this scheme is perfectly binding.

Blind signatures. A blind signature scheme Πbs for signing
committed n messages has the following algorithms:

KeyGen(pp) → (pk, sk): takes public parameter pp as input,
outputs a key pair (pk, sk). pp, pk are implicit input of other
algorithms for simplicity.

Com(m⃗, r) → c: given messages m⃗ ∈ Mn and randomness
r, computes a commitment c.

⟨BlindSign,BlindRcv⟩: it is an interactive protocol between the
signer and user, with inputs (sk, c) and (m⃗, r) respectively.
User outputs a signature σ.

Vrfy(m⃗, σ)→ b: it checks (m⃗, σ) pair and outputs 0/1.

We require a blind signature scheme to be correct and have
the properties of unforgeability and blindness.

Correctness. The following probability is negligible.

Pr

Vrfy(m⃗, σ) = 0

∣∣∣∣∣∣
(pk, sk)← KeyGen(pp);

c← Com(m⃗; r),

σ ← ⟨BlindSign,BlindRcv⟩

Unforgeability. A blind signature scheme is unforgeable if
for any q = poly(λ) and any PPT A who can query the
blind signature oracle for at most q − 1 times, the following
probability is negligible.

Pr

∀i, j ∈ [q],

Vrfy(m⃗i, σi) = 1∧
m⃗i ̸= m⃗jif i ̸= j

∣∣∣∣(pk, sk)← KeyGen(pp);

{m⃗i, σi}i∈[q] ← AO(pp, pk)

]

Blindness.A blind signature scheme is blind if for any PPT A
there exists a challenger C who interacts with A by running
Com and BlindRcv and A runs BlindSign, the following
probability is negligible.

∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ);

(m0,m1)← A(pp), b ∈ {0, 1} ←$ C
C interacts with A using mb,m1−b,

and gets σb, σ1−b, respectively

b′ ← A(σ0, σ1)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
Partially blind signature. A partially blind signature is a
variant of the blind signature, where the signed message is
partially blind. Here we briefly introduce the definition and
security properties following [9]. A partially blind signature
Πpbs consists following three algorithms:

KeyGen(pp, 1n)→ (pk, sk): generates a public and secret key
pair (pk, sk).

⟨PartialBlindRcv,PartialBlindSign⟩: it is an interactive proto-
col between the user and signer with inputs (pp, pk,msg, info)
and (pp, pk, sk, info) respectively, where msg denotes the
blind part of signed message, and info denotes the unblind part
of signed message. User outputs ⊥ or the message signature
pair (msg, info, σ), and signer outputs b = 0/1 indicating
whether it fails or not.

Vrfy(pp, pk,msg, info, σ) → b: it checks (msg, info, σ) pair
and outputs 0/1.

We require a partially blind signature scheme to have the
properties of completeness, unforgeability, and partial blind-
ness as defined in [9].

Zero-knowledge argument of knowledge (ZKAoK)[30]. A
zero-knowledge argument of knowledge is a cryptographic
protocol involving two participants: a prover and a verifier.
In this protocol, the prover’s primary aim is to convince the
verifier that a specific statement is true, all while ensuring that
the evidence supporting this statement, known as the witness,
remains confidential. The central objective is to furnish a
compelling proof without disclosing any information about the
underlying witness. This system encompasses three algorithms,
namely Setup, P , and V , all of which run in probabilistic poly-
nomial time. The Setup algorithm takes a security parameter λ
as input and generates a shared reference string σ. The prover
P and the verifier V are interactive algorithms. The transcript
produced by P and V when interacting on inputs x and y is
denoted by tr ← ⟨P,V⟩. As the output of this protocol, we
use the notation ⟨P,V⟩ = b, where b = 1 if V accepts and
b = 0 if V rejects.

Let R be a polynomial-time verifiable ternary relation
for common reference string σ, statement x, and witness
w, and let L be the corresponding language, i.e., L =
{x | ∃w, s.t., (σ, x, w) ∈ R}. The argument of knowledge
is defined as follows.

Argument of Knowledge. The triple (Setup,P,V) is called an
argument of knowledge for the relation R if it satisfies the
following two definitions.

21

- Perfect completeness. (Setup,P,V) has perfect complete-
ness if for any (σ, x, w) ∈ R, ⟨P(σ, x, w),V(σ, x)⟩ always
outputs 1.

- Knowledge Soundness. (Setup,P,V) has knowledge sound-
ness with error κ if there exists a knowledge extractor E , s.t.
for any deterministic polynomial-time prover P∗, if P∗ con-
vinces V of x with probability ϵ > κ, then E⟨P∗(·),V(·)⟩(x)

outputs w s.t. (σ, x, w) ∈ R in expected time poly(|x|)
ϵ(|x|)−κ(|x|) .

Here E has access to the oracle ⟨P∗(·),V(·)⟩ that permits
rewinding to a specific round and rerunning with V using
fresh randomness.

The protocols in this paper require the zero-knowledge
property. We define it as follows.

Zero-knowledge. A public coin argument (Setup,P,V) is zero-
knowledge for R if there exists probabilistic polynomial-time
simulator S such that for all non-uniform polynomial-time
interactive adversaries A and any λ ∈ N,∣∣∣∣Pr

[
A(tr) = 1 ∧
(σ, x, w) ∈ R

∣∣∣∣ σ ← Setup(1λ);
(x,w, ρ)← A(σ);

tr ← ⟨P(σ, x, w),V(σ, x, ρ)⟩

]

−Pr

[
A(tr) = 1 ∧
(σ, x, w) ∈ R

∣∣∣∣ (x,w, ρ)← A(σ);
tr ← S(x, ρ)

] ∣∣∣∣≤ negl(λ)

where ρ is the randomness used by V .

XI. BASIC WITHDRAW ANONYMITY CONSTRUCTION

In this section, we first give a construction of basic with-
draw anonymity and analyze its security. Then we discuss its
anonymity set which is bigger than what the defined basic
withdraw anonymity could provide. So we show a simpler
construction satisfying the basic withdraw anonymity and
analyze the security of the simper version.

A. The construction

In the following, we construct the basic withdraw
anonymity scheme ΠBWA with an additively homomorphic
commitment scheme Com, a blind signature scheme Πbs =
(KeyGen,Com, ⟨BlindSign,BlindRcv⟩,Vrfy) using Com to
blind messages, and a ZKAoK scheme.

Setup(1λ) → epp: It sets up the system parameter epp that
includes public parameters of all involved cryptographic prim-
itives, some specific public parameters about the system, such
as the total assets kinds n, the maximum balance vmax = p−1
for some super-poly p, and some dynamic parameters such as
the current price pri of each asset i ∈ [n]. For simplicity, epp
will be an input of all the following algorithms and protocols
implicitly.

PKeyGen(epp) → (pk, sk): The platform generates a key
pair (pk, sk)← Πbs.KeyGen(epp), and initializes the platform
internal state st including but not restricted to the registered
user set USet = ∅, the identifier set ID = ∅. For simplicity,
the public key pk will be an implicit input of the following
algorithms of both user and the platform.

⟨Join(reqjoi), Issue(sk, st)⟩ → (uid,Rdreg/⊥; b, st′): In this
procedure, a user registers into the system to get a unique id
uid and a registration record Rdreg . Here Rdreg is an access
token for authentication where Rdreg .cred = tk. We do not

specify the authentication method, which could be any secure
one widely used in existing exchange systems. reqjoi = info
contains all the information for registration, especially some
real identity and bank information for compliance. The plat-
form updates the internal state st′ accordingly and outputs
a bit b indicating whether the registration succeeds. b = 1
means the user uid registered successfully, and a record will
be added to st′ to store the state related to uid, such as
the metadata, the following transactions, the balance, etc. The
record is visible when the user logs into the system. Right
when the user registers successfully, the balance is zero and
finished transactions are empty.

⟨Deposit(uid,Rdreg , reqdep),Credit(sk, st)⟩ → (; b, st′): It is
a plain deposit where users deposit assets as they did in
plain exchange system and the platform updates state st′

accordingly. Concretely, users first authenticate themselves to
the system with user id uid and access token Rdreg , which
is the login process. Then users submit deposit request reqdep
which includes all the information for deposit. The platform
outputs b = 1 indicating the transaction succeeds and updates
the state st′ so that the user could see this deposit transaction,
updated balance, and other related metadata.

⟨Exchange(uid,Rdreg , reqexc),Update(sk, st)⟩ →
(Rdast ; b, st

′): This procedure includes two separate
operations specified by the request attribute reqexc .op,
where reqexc.op = pln indicates a plain exchange operation
between different assets, and reqexc .op = prv indicates a
private exchange of one asset from a plain version to a private
version where the amount of exchange is hidden. The private
exchange is a preparation for later anonymous withdraw.
Both two kinds of withdraw operations are done in the plain
account, which means the user logs into the system so that the
platform knows whom it is interacting with. The difference
is in plain exchange, the platform knows the details about
the transaction including the exact amounts and assets names,
whereas the amount is hidden from the platform in private
exchange.

Concretely, the user logs into the system with uid and
Rdreg and gets the state of his account. If a user with the
identifier uid has previously withdrawn asset i, his balance
state consists of two components: the plain balance denoted as
bali, and a set of committed values {comj

i}j∈[l] of withdrawn
asset i. Here, l is an integer indicating the overall count of
commitments that the user has made pertaining to asset i.
For the plain exchange, the user exchanges with the request
reqexc = (i, ki, j, kj , pln). He proves that the balance of
asset i is greater than ki. Given the balance state balancei =
(bali, {comj

i}j∈[l]) on asset i, he shows that he has enough
balance to exchange-out amount ki for asset i by generat-
ing a proof π = ZKAoK[{(vii , r

j
i)}j∈[l];∀j ∈ [l], comj

i =

Com(vji ; r
j
i)∧bali−ki ≥

∑
j∈[l] v

j
i]. Then he sends (reqexc , π)

to the platform. If the proof π is valid, then the platform
outputs b = 1 and updates the state to st′, including balance
state update bali ← bali − ki, balj ← balj + kj , and adding
this exchange transaction and other metadata. Otherwise, the
platform outputs b = 0, aborts this transaction, and updates
the state st′ with related metadata.

For the private exchange, the exchange request is
reqexc = (i, ki, prv). After logging into the system, the

22

user gets the balance state balancei = (bali, {comj
i}j∈[l])

about asset i. The user commits to the amount ki by
com∗

i ← Com(ki; r
∗) and ci ← Πbs.Com(rid, i, ki; r1),

and generates a proof π for enough balance π =
ZKAoK[(ki, r

∗, rid, r1, {vji , r
j
i }j∈[l]); com

∗
i = Com(ki; r

∗) ∧
ci = Πbs.Com(rid, i, ki; r1) ∧ ki ≥ 0 ∧ ∀j ∈
[l], comj

i = Com(vji ; r
j
i) ∧ bali − ki ≥

∑
j∈[l] v

j
i]. If the

proof π is valid, the platform interacts with the user by
running Πbs.⟨BlindSign(sk, ci),BlindRcv((rid, i, ki), r1)⟩ →
(b;σ∗/⊥). If Πbs.Vrfy(rid, i, ki, σ

∗) = 1 and the platform
outputs b = 1, then the transaction succeeds. The platform
updates the state st′ by adding the commitment com∗

i to the
user’s balance state of asset i, recording the private exchange
transaction and related metadata. The user obtains a new asset
record Rdast = (rid, i, ki, σ

∗) and can see his own updated
state in the system. Otherwise, the platform outputs b = 0, and
the transaction fails. The user aborts the transaction and the
platform updates the internal state accordingly.

⟨Withdraw(reqwit ,Rdast), Deduct (sk, st)⟩ → (; b, st′): This
is an anonymous transaction, which means the user does not
log into his account and just acts as an anonymous guest, and
the platform does not know whom he is interacting with. In
the withdraw operation, the user takes the request reqwit =
(i, ki,meta) and an asset record Rdast as input, where meta
contains the on-chain address and other metadata possibly
required for the transaction. The user sends (reqwit ,Rdast)
directly to the platform. The platform parses Rdast =
(rid, i, ki, σ). If rid /∈ ID which means the asset record has
never been used before, and Πbs.Vrfy(rid, i, ki, σ) = 1, the
platform does the on-chain transfer to the specified address
in meta, output b = 1 indicating the transaction succeeds,
and updates the internal state accordingly including adding
rid to the set ID. Otherwise, the user and platform abort the
transaction.

⟨File(uid,Rdreg , reqfil),Sign(sk, st)⟩ → (doc; b, st′): This op-
eration is done for client compliance. In our basic construc-
tion, we follow the same client compliance rule as our full
construction specified in VI. So the user needs to file tax for
the transactions occurring in a time period. The user logs
into the system with uid and Rdreg , and gets compliance
state, his balance state, and transaction histories from the
system internal state st. Based on the transaction histories
and the state of balance, the user computes the commitment
c = Πbs.Com(id, cp1, cp2,mt; r) on the user’s real identity id,
the total cost cp1, the total gain cp2 during the time period mt
and generates a proof of correct identity, total cost and gain,
and time period calculation in the commitment.

According to the rule, the correct total cost and gain
during mt are only related to the assets the user sells by
exchanging out (including plain exchange and private exchange
for anonymous withdraw) during mt. The user should show the
total amount sumi of each asset i he sells during mt that is the
sum of exchange-out in plain exchange and private exchange
which is committed. It is easy to add the amount in plain
exchange. In private exchange, the amount is committed with
additive homomorphic commitment. So the commitment of the
sum is the sum of each commitment. The user could open
the commitment of the sum to show the total amount. Then
the user needs to specify the transactions he buys them in,
which occurs in deposit and plain exchange operations. With

all the related deposit, plain exchange, and private exchange
transaction histories, the user could calculate the gain and cost
by multiplying each amount and the corresponding price and
adding them. Since the price is plain value and some amount
of gain is committed with additive homomorphic commitment,
the scalar multiplication and addition on the commitment could
get the committed value c2 of the total gain. The total cost cp∗1
could be calculated with price and amount in plain.

To prove the correctness of c, the user generates the
proof that in c, cp1 is equal to plain calculation cp∗1,
cp2 is the value c2 commits to, id is the user uid’s real
identity (which involves the proof of same real identity),
and mt is the exact time period. If the user’s compliance
state cmpmt = false for the time period mt and the proof
is valid, the platform interacts with the user by running
Πbs.⟨BlindSign(sk, c),BlindRcv((id, cp1, cp2,mt), r)⟩ →
(b;σ∗/⊥). If the user passes the final check, i.e.,
Πbs.Vrfy(id, i, ki, σ

∗) = 1 the transaction succeeds and
the platform outputs b = 1. For the platform, it updates
the internal state, including the user’s balance state
balancei = (bali ← bali − sumi, ∅) for each asset i,
and compliance state cmpmt ← true. For the user, he outputs
doc = (id, cp1, cp2,mt , σ∗). Otherwise, none of the checks
pass, the user aborts the transaction and the platform outputs
b = 0.

Verify(epp, pk, doc)→ b: The authority sets the correct times-
tamp as mt ′ from epp and parses doc = (id, cp1, cp2,mt , σ∗),
if mt ̸= mt ′ or id is invalid (which involves some real identity
check) or Πbs.Vrfy((id, cp1, cp2,mt), σ∗) → 0, it outputs
b = 0 indicating the verification fails. Otherwise, it is valid
and updates id’s compliance state of mt to true, which is
maintained by the authority.

Check(epp, st): P runs Check(epp, st) for self-checking the
internal state’s compliance with platform rules specified in epp.
The output is a single bit b, with b = 1 indicating a passing
check and b = 0 otherwise.

Anonymity set of ΠBWA. The anonymity set that Πbs provides
is larger than the set provided by the security definition
of basic withdraw anonymity. Because the security defini-
tion of basic withdraw anonymity only captures that for an
adversary-specified amount and two eligible users (both could
successfully withdraw the specified amount of coin), it is
indistinguishable from which user executing the withdraw op-
eration. This security could be achieved by purely anonymous
withdraw operations with all other operations plain (or un-
protected). Our construction ΠBWA includes both anonymous
withdraw and private exchange via committing the transaction
amount, which increases the anonymity set by adding users
who privately exchange some coins with an amount different
from the specified amount. For example, there are two users
doing private exchange twice during a tax report year, where
the user U1 privately exchanges twice for 5 bitcoins, and the
user U2 privately exchanges once for 3 bitcoins and once for
7 bitcoins. Later, one person withdrew 5 bitcoins which is
unlinkable to U1 or U2 for a platform using ΠBWA. That is, the
anonymity set is larger than the number of users who exchange
exactly the same amount of coins as withdrawal.

We will present a much simpler construction with the plain
deposit, plain exchange, and only anonymous withdraw later

23

in XI-C, where the anonymity set is exact among users ex-
changing the same number of coins for anonymous credentials
for later withdraw.

B. Security analysis of ΠBWA

We briefly analyze the security of the above basic withdraw
anonymity construction ΠBWA.

Theorem 4 (Basic withdraw anonymity). Let Πbs have blind-
ness, and ZKAoK be zero-knowledge, ΠBWA satisfies the basic
withdraw anonymity defined in Def 1.

Proof sketch: We say ΠBWA satisfies the basic withdraw
anonymity if A cannot gain any advantage to link the withdraw
transaction with the user identity. We prove this theorem
according to Def 1.

Note in the experiment A provides two identities with
valid credentials for withdrawal respectively. It means A has
successfully queried the credential on the same asset with
the same amount for both identities, and the commitments
on identical withdrawal amounts, which stem from private
exchanges, are present in both users’ accounts. While A has
the ability of querying the O1

File oracle to ascertain the total
amount of commitments for asset i held by both users, these
commitments are determined by the private exchanges that are
common to both users. Therefore, A is unable to gain any
benefit from querying O1

File oracle in this context. A wins
only if it can link the credential showing for withdrawal of
the challenger to one of the private exchanges correctly with
overwhelming probability. In the private exchange phase, the
view of A consists of the commitments com∗

i , ci, the proof
π and the blind signature transcript trans. We define the
following hybrid games:

- G0: it is identical with the experiment in Def 1;
- G1: it is identical with G0 except that π is replaced by π′

which is simulated with random strings;
- G2: it is identical with G1 except that C acts as the adversary

on the blindness of Πbs: it chooses rid0, rid1 randomly
w.r.t. references ref0, ref1 and sends (rid0, i, ki), (rid1, i, ki)
as the challenge to the challenger B in Πbs’s blindness
experiment. Then C interacts with B and forwards the
transcripts trans to A. Finally, B chooses a random bit
b and interacts with C who blind sign (ridb, i, ki) and
(rid1−b, i, ki), respectively. Then B send two message sig-
nature pairs to (ridb, i, ki, σb) and (rid1−b, i, ki, σ1−b) to C.
C forwards (rid0, i, ki, σ0) to A. C forward A’s guess b′ to
B. If b′ = b say A win the game by linking the withdraw
operation with the credential issuance in a private exchange,
which means C could attack the blindness of underlying
blind signature Πbs.

If A wins in G2 with non-negligible probability, then C wins
the blindness experiment of Πbs also with non-negligible
probability which leads to a contradiction. So A wins in G2

with only negligible probability. Compared with G1, Chits
the correct challenge of Awith the probability 1/q2 where
q ∈ poly(λ) denotes the total number of A’s queries. So
there is at most 1/q2 reduction loss from G1 to G2. Since
ZKAoK is zero-knowledge, G1 can be distinguished from G0

with only negligible probability. Thus A wins in G0 also with
only negligible probability.

Theorem 5 (Overdraft prevention). Let Πbs be unforge-
able, commitment be binding, and ZKAoK be argument-of-
knowledge. ΠBWA satisfies the overdraft prevention defined in
Def 4.

Proof sketch: Intuitively, overdraft means A spends more
than he owns. Note that all transactions are plain which can
be checked by the platform except the withdraw transactions.
So the event that A spends more asset only happens in one of
the following three cases:

(1) In the withdraw transaction, A withdraws asset with a
valid credential but it has never queried the deduct oracle
on it which means it is forged by itself. It violates the
unforgeability of Πbs.

(2) A guess other users’ valid credentials which is negligible
due to the randomness of credential unique identifier.

(3) The credential is issued by the platform, but the revealed
asset amount is larger than the deducted amount in the
commitment or the account plain balance. In this case,
A could get it by finding collisions in the commitment,
which could be reduced to the binding property of
commitment. A could also get it by proving a wrong
statement, which is negligible due to the argument-of-
knowledge property of ZKAoK.

Since any of the above cases happens only with negligible
probability, A also wins with negligible probability.

Theorem 6 (Tax-report-client-compliance). Let Πbs be un-
forgeable, commitment be binding, and ZKAoK is an argument
of knowledge. ΠBWA satisfies the Tax-report-client-compliance
defined in Def 5 where F is the tax-report function.

Proof sketch: Intuitively, tax-report-client-compliance
requires any user to report the exact cost and gain for his
account. A generates a valid doc that contains a signature σ∗

on (id, cp1, cp2,mt) that can be verified by the platform’s
pk. A wins if the total cost value cp1 or total gain value
cp2 is wrong. Note that cp1, cp2 are computed from the
user’s transaction histories which are recorded by the platform.
So, for deposit and plain exchange transactions, the platform
knows the plain transaction details and could directly compute
the cost and gain. For the private exchange transactions that
contribute to a portion of the user’ gain, the platform knows
the plain price and the commitment to the amount and could
calculate the commitment of the sum gain. With the platform
knowing the plain cost, plain gain, and committed gain, and
blind-signing the compliance information based on them, A
wins only in one of the following cases:

(1) The signature σ∗ of the platform was forged by A on
the wrong cp1 or cp2. If it happens, it violates the
unforgeability of Πbs.

(2) In the file protocol, A opens commitments recorded in
his account to different values, which violates the binding
property of commitment.

(3) In the file protocol, A proves a wrong statement on his
compliance information to get less tax, which violates the
argument-of-knowledge property of ZKAoK.

Since any of the above cases happens only with negligible
probability, A also wins with negligible probability.

24

For platform compliance. We observe that our basic withdraw
anonymity construction does not bring any more challenges to
platform compliance than existing plain exchange schemes.
The reason is platform could know the exact total amount of
each asset in all accounts. The transaction amount is known
to the platform in deposit, plain exchange, and withdraw with
one-use anonymous credential. The only case that the platform
does not know the amount is the exchange preparation, while it
does not exchange assets but changes the asset form from plain
to anonymous version. Thus it satisfies the strictest platform
compliance rule in [12].

C. Simpler construction with basic withdraw anonymity

We construct a simpler basic withdraw anonymity scheme
denoted by ΠS−BWA via the partially blind signature Πpbs =
(Keygen, ⟨PartialBlindSign, PartialBlindRcv⟩,Vrfy).

The main idea to achieve basic anonymous withdraw is
that before withdrawing, the user gets an anonymous credential
issuance for the asset so that showing an anonymous credential
in the withdraw is unlinkable to the credential issuance. The
credential issuance is done as a special exchange transforming
the asset form from plain asset to asset credential. ΠS−BWA is
simpler than ΠBWA because its credential issuance does not
protect the amount of asset, which is committed in ΠBWA

and brings additional proof for the user’s balance in the plain
exchange and private exchange. ΠS−BWA uses the partially
blind signature Πpbs to enable credential issuance where the
asset amount is public but only the random index unique for
the credential is hidden from the platform. Since the asset info
is public for the user and the platform, the user does not need to
prove enough balance for the following exchange. Accordingly,
a withdraw operation is unlinkable to the previous special
exchange operations with the same amount, which causes
quite limited anonymity that ΠS−BWA could provide. But we
stress ΠS−BWA is very simple and we will prove that ΠS−BWA

satisfies the basic withdraw anonymity we define in 1.

The concrete construction is shown in the following, where
for the same steps as ΠBWA, we will specify it and refer to
ΠBWA’s construction description for simplicity.

Setup(1λ) → epp: This step is same as ΠBWA.Setup. It sets
up the system parameter epp that includes public parameters
of all involved cryptographic primitives, some specific public
parameters about the system, such as the total assets kinds n,
the maximum balance vmax = p − 1 for some super-poly p,
and some dynamic parameters such as the current price pri of
each asset i ∈ [n]. For simplicity, epp will be an input of all
the following algorithms and protocols implicitly.

PKeyGen(epp) → (pk, sk): The platform generates a key
pair (pk, sk) ← Πpbs.KeyGen(epp). The internal state st
initialization is the same as in ΠBWA.Setup. Concretely, the
platform initializes the platform internal state st including but
not restricted to the registered user set USet = ∅, the identifier
set ID = ∅. For simplicity, the public key pk will be an implicit
input of the following algorithms of both the user and the
platform.

⟨Join(reqjoi), Issue(sk, st)⟩ → (uid,Rdreg/⊥; b, st′): This
step is the same as ΠBWA.⟨Join, Issue⟩. In this procedure, a
user registers into the system to get a unique id uid and a

registration record Rdreg . Here Rdreg is an access token for
authentication where Rdreg .cred = tk. We do not specify the
authentication method, which could be any secure one widely
used in existing exchange systems. reqjoi = info contains all
the information for registration, especially some real identity
and bank information for compliance. The platform updates
the internal state st′ accordingly and outputs a bit b indicating
whether the registration succeeds. b = 1 means the user
uid registered successfully, and a record will be added to
st′ to store the state related to uid, such as the metadata,
the following transactions, the balance, etc. The record is
visible when the user logs into the system. Right when the
user registers successfully, the balance is zero and finished
transactions are empty.

⟨Deposit(uid,Rdreg , reqdep),Credit(sk, st)⟩ → (; b, st′): This
deposit step is the same as ΠBWA.⟨Deposit,Credit⟩. It is a
plain deposit where users deposit assets as they did in a
plain exchange system and the platform updates state st′

accordingly. Concretely, users first authenticate themselves to
the system with user id uid and access token Rdreg , which
is the login process. Then users submit deposit request reqdep
which includes all the information for deposit. The platform
outputs b = 1 indicating the transaction succeeds and updates
the state st′ so that the user can see this deposit transaction,
updated balance, and other related metadata.

⟨Exchange(uid,Rdreg , reqexc),Update(sk, st)⟩ → (Rdast ;
b, st′): The exchange operation is simpler than
ΠBWA.⟨Exchange,Update⟩. This plain exchange procedure
includes two separate operations specified by the request
attribute reqexc .op, where reqexc.op = pln indicates a plain
exchange between different assets, and reqexc .op = cred
indicates a plain exchange of one asset from a number in the
user account to an anonymous credential of that asset where
the amount of exchange is plain. Both two kinds of withdraw
operations are done in the plain account, which means the
user logs into the system so that the platform knows whom it
is interacting with. Concretely, the user logs into the system
with uid and Rdreg and gets the state of his account including
balance and all deposit and exchange transaction histories.

When reqexc.op = pln, reqexc = (i, ki, j, kj , pln), the
user does the plain exchange with the platform as usual in
any plain exchange platform. When reqexc.op = cred, the
request reqexc = (i, ki, cred), the user sends the request reqexc
to the platform and randomly chooses an id rid. Then they
run Πpbs.⟨PartialBlindRev,PartialBlindSign⟩ with the inputs
(rid, info) and (sk, info), where rid is the private message of
Πpbs and info = (reqexc.name, reqexc.amount) is the public
information for the user and the platform. The user’s private
output is ⊥ or (rid, info, σ) and the platform public output
is 0/1 to indicate whether the interaction fails or not. If the
interaction succeeds, the user running the exchange algorithm
outputs Rdreg = (rid, i, ki, σ) and the platform outputs b = 1
and update the internal state st′ accordingly, e.g., the user
uid’s balance of asset i is deducted by ki, and the transaction
is added to the history.

⟨Withdraw(reqwit ,Rdast), Deduct (sk, st)⟩ → (; b, st′): The
withdraw operation is the same as ΠBWA.⟨Withdraw,Deduct⟩.
This is an anonymous transaction, which means the user
does not log into his account and just acts as an anony-
mous guest, and the platform does not know whom he is

25

interacting with. In the withdraw operation, the user takes
the request reqwit = (i, ki,meta) and an asset record Rdast
as input, where meta contains the on-chain address and
other metadata possibly required for the transaction. The
user sends (reqwit ,Rdast) directly to the platform. The plat-
form parses Rdast = (rid, i, ki, σ). If rid /∈ ID which
means the asset record has never been used before, and
Πpbs.Vrfy(rid, (i, ki), σ) = 1, the platform does the on-chain
transfer to the specified address in meta, output b = 1
indicating the transaction succeeds, and updates the internal
state accordingly including adding rid to the set ID. Otherwise,
the user and platform abort the transaction.

⟨File(uid,Rdreg , reqfil),Sign(sk, st)⟩ → (doc; b, st′): This op-
eration is done for client compliance, which is simpler than
ΠBWA.⟨file, sign⟩, and as easy as filing compliance in plain
exchange platform because all compliance-related information
is plain for the platform. We follow the same client compliance
rule as our full construction specified in VI. So the user needs
to file tax for the transactions occurring in a time period.
The user logs into the system with uid and Rdreg , and gets
compliance state, his balance state, and transaction histories
from the system internal state st. Based on the transaction
histories and the state of balance shown in the platform,
the platform could compute the user’s cost cp1 and profit
cp2 during the specified time period mt, where the cost cp1
comes from the buying in asset in deposit and plain exchange
multiplied the corresponding price, the profit cp2 comes from
selling out asset in plain exchange and special exchange to
anonymous credentials during mt multiplied the corresponding
price. The mapping between the buying-in asset to the selling-
out asset for tax reporting could be specified by the user or the
platform depending on the rules. Here our construction does
not introduce restriction, as all needed information is plain
and could be dealt as in any plain exchange. Then the platform
interacts with the user to partially blind sign on empty message
msg = ⊥ and the public informatio info = (id, cp1, cp2,mt),
where id is the user’s real identity he showed in the regis-
tration. The user gets doc = (id, cp1, cp2,mt, σ) or ⊥, and
the platform outputs b = 1/0 and updates the internal state
accordingly.

Verify(epp, pk, doc) → b: The verification operation is the
same as ΠBWA.Verity. The authority sets the correct timestamp
as mt ′ from epp and parses doc = (id, cp1, cp2,mt , σ∗), if
mt ̸= mt ′ or id is invalid (which involves some real identity
check) or Πpbs.Vrfy(∅, (id, cp1, cp2,mt), σ∗) → 0, where the
message msg = ∅, it outputs b = 0 indicating the verification
fails. Otherwise, it is valid and updates id’s compliance state
of mt to true, which is maintained by authority

Check(epp, st): The self-checking operation is the same as
ΠBWA.Check. P runs Check(epp, st) for self-checking the
internal state’s compliance with platform rules specified in epp.
The output is a single bit b, with b = 1 indicating a passing
check and vice versa.

D. Security analysis of ΠS−BWA

We briefly analyze the security of the above basic withdraw
anonymity construction ΠS−BWA.

Theorem 7 (Basic withdraw anonymity). Let Πpbs have par-
tial blindness. ΠS−BWA satisfies the basic withdraw anonymity

defined in Def 1.

Proof sketch: We say ΠS−BWA satisfies the basic with-
draw anonymity if A cannot gain any advantage to link the
withdraw transaction with the user identity. We prove this
theorem according to Def 1.

Note in the experiment Expano−wit(A, λ), A acts as
malicious platform, C acts as honest users. A provides two
identities with valid credentials for withdrawal respectively. It
means A has successfully queried the credential on the same
asset with the same amount for both identities. One of them
chosen randomly by the challenger will show the credential
in the withdraw transaction. This is the same as the blindness
experiment of the partially blind signature. That means C could
act as the adversary of the blindness experiment of the partially
blind signature to interact with challenger B, forwarding A’s
queries and challenges to B, and B’s responses to A. Then if
A could link the withdraw with the exact credential issuance
in exchange, then C could the blindness game of partial blind
signature, which contradicts the blindness of partially blind
signature. So ΠS−BWA satisfies the basic withdraw anonymity
if Πpbs has blindness.

Theorem 8 (Overdraft prevention). Let Πpbs be unforgeable.
ΠS−BWA satisfies the overdraft prevention defined in Def 4.

Proof sketch: Intuitively, overdraft means A spends more
than he owns. Note that all the transaction details in each plain
transaction including deposit and exchange could be checked
by the platform. So the event that A spends more assets than
he owns only happens in the withdraw transaction with the
following two cases:

(1) A forges a new credential to withdraw. It violates the
unforgeability of Πpbs.

(2) A guess other users’ valid credentials which is negligible
due to the randomness of credential identifier rid.

Since any of the above cases happens only with negligible
probability, A also wins with negligible probability.

Theorem 9 (Tax-report-client-compliance). Let Πpbs be un-
forgeable. ΠS−BWA satisfies the Tax-report-client-compliance
defined in Def 5 where F is the tax-report function.

Proof sketch: Intuitively, tax-report-client-compliance re-
quires any user to report the exact cost and gain for his account.
A generates a valid doc∗ that contains a signature σ∗ on
(id, cp∗1, cp

∗
2,mt) that can be verified by the platform’s pk. A

wins if the total cost value cp∗1 or total gain value cp∗2 is wrong.
Note that in this experiment, the platform is assumed honest,
cp1, cp2 are computed from the user’s transaction histories
which are recorded in plaintext by the platform. So, the user
should get only one valid doc with id on the specific time
period mt, where doc includes a valid partially blind signature
σ on correct public information info = (id, cp1, cp2,mt). A
wins if doc ̸= doc∗. The challenger C could leverage the
winning case to attack the unforgeability of the underlying
signature.

Since the partially blind signature scheme Πpbs is unforge-
able, A wins with negligible probability.

For platform compliance. We observe that the construction

26

ΠS−BWA does not bring any more challenges to platform
compliance than existing plain exchange schemes. The reason
is platform could know the exact total amount of each asset in
all accounts. The transaction amount is known to the platform
in deposit, all exchanges, and withdraw transactions. Thus it
satisfies the strictest platform compliance rule in [12].

27

	Introduction
	Our contributions

	Technical overview
	Preliminary
	Syntax
	Syntax

	Security models
	Preparations for the models
	Basic anonymity
	Full anonymity
	Soundness definitions
	Overdraft prevention
	Compliance

	Private and Compliable Exchange System
	An efficient Pisces construction
	Security analysis

	Performance Evaluations
	Conclusion
	References
	Related works
	cryptographic primitives
	Basic Withdraw Anonymity Construction
	The construction
	Security analysis of BWA
	Simpler construction with basic withdraw anonymity
	Security analysis of S-BWA

