
FlexiRand: Output Private (Distributed) VRFs and Application to
Blockchains

Aniket Kate

Supra Research/Purdue University, USA

aniket@purdue.edu

Easwar Vivek Mangipudi

Supra Research, USA

e.mangipudi@supraoracles.com

Siva Maradana

Indian Statistical Institute, India

msivakumar.1431@gmail.com

Pratyay Mukherjee

Supra Research, India

p.mukherjee@supraoracles.com

ABSTRACT
Web3 applications based on blockchains regularly need access to

randomness that is unbiased, unpredictable, and publicly verifi-

able. For Web3 gaming applications, this becomes a crucial selling

point to attract more users by providing credibility to the "ran-

dom reward" distribution feature. A verifiable random function

(VRF) protocol satisfies these requirements naturally, and there is a

tremendous rise in the use of VRF services. As most blockchains

cannot maintain the secret keys required for VRFs, Web3 applica-

tions interact with external VRF services via a smart contract where

a VRF output is exchanged for a fee.While this smart contract-based

plain-text exchange offers the much-needed public verifiability im-

mediately, it severely limits the way the requester can employ the

VRF service: the requests cannot be made in advance, and the output
cannot be reused. This introduces significant latency and monetary

overhead.

This work overcomes this crucial limitation of the VRF service by

introducing a novel privacy primitive Output Private VRF (Pri-VRF)

and thereby adds significantly more flexibility to the Web3-based

VRF services. We call our framework FlexiRand. While maintain-

ing the pseudo-randomness and public verifiability properties of

VRFs, FlexiRand ensures that the requester alone can observe the

VRF output. The smart contract and anybody else can only ob-

serve a blinded-yet-verifiable version of the output. We formally

define Pri-VRF, put forward a practically efficient design, and pro-

vide provable security analysis in the universal composability (UC)

framework (in the random oracle model) using a variant of one-

more Diffie-Hellman assumption over bilinear groups.

As the VRF service, with its ownership of the secret key, be-

comes a single point of failure, it is realized as a distributed VRF

with the key secret-shared across distinct nodes in our framework.

We develop our distributed Pri-VRF construction by combining

approaches from Distributed VRF and Distributed Oblivious PRF

literature. We provide provable security analysis (in UC), imple-

ment it and compare its performance with existing distributed VRF

schemes. Our distributed Pri-VRF only introduces a minimal com-

putation and communication overhead for the VRF service, the

requester, and the contract.

CCS CONCEPTS
• Security and privacy→ Public key (asymmetric) techniques.

KEYWORDS
Verifiable Random Functions, Distributed VRFs, Privacy

1 INTRODUCTION
Randomness is a precious resource in computing. Its utility ranges

from generating cryptographic keys to performing simulations to

facilitating online gaming. With the gigantic rise of blockchain tech-

nology and Web3-based applications such as decentralized finance

and GameFi [15, 21], the demand for reliable sources of randomness

has increased enormously. In many of these applications involving

multiple parties, it is important to ensure that the employed ran-

domness is not predictable to, or not biased towards, any particular

party. However, given that the secure on-chain randomness genera-

tion within a smart contract is inefficient, if not infeasible, for most

blockchains, a natural approach is to delegate this to off-chain com-

putation. Off-chain computations, nevertheless, must be verified

on-chain to ensure the integrity of computation. Verifiable random

functions (VRFs) enable such functionality.

A Verifiable Random Function, 𝑉 is a keyed deterministic func-

tion which, on an input tag/string 𝑥 , outputs a string 𝑦 = 𝑉𝑠𝑘 (𝑥).
The secret-key 𝑠𝑘 is selected uniformly at random. Intuitively, the

VRF provides two main security guarantees: (i) pseudorandomness,
which implies that, as long as the secret-key is hidden, the output

is indistinguishable from a uniform random string; (ii) verifiability,
which implies that given 𝑥 , 𝑦 and a proof 𝜋 , anyone can publicly
verify that 𝑦 is indeed computed correctly as𝑉𝑠𝑘 (𝑥) – such proof is

produced using the secret-key 𝑠𝑘 . Thanks to these guarantees, VRFs

are sought after in blockchains, online gaming, and online lotteries:

the use of a VRF allows the service providers to demonstrate to

anyone interested that they are running their services unbiasedly.

VRF Services via Smart Contract. A few firms [14, 47] in the

blockchain industry offer VRF as a service for a fee, in that VRF ser-
vice and a randomness requester, such as a gaming platform, commu-

nicate via a smart contract. Here, as shown in Figure 1, the requester

makes a randomness request to the VRF service via a smart contract.

The smart contract then forms an input tag (INP) of a specific for-
mat (for more details on the input formation, see Appendix A) and

sends it to the VRF service. Upon receiving the response from the

VRF service, the smart contract verifies the response, records the

VRF output, invokes the callback function provided by the requester,

and pays the VRF service.

We observe a couple of key practical issues with this approach:

the VRF output appears on the public blockchain via the smart

contract interaction immediately upon the protocol completion.

This public nature of the VRF output puts significant restrictions on

how the requester can employ it: (i) the requester cannot make its

request in advance towards having the randomness ready when the

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

1.Requester input

2.Create INP
Requester

Smart Contract

VRF Service

5.VRF output

 6. Verify VRF
output

3.Fetch INP

 7.Invoke the
requester call back
function with the

output

4.Compute
VRF

Figure 1: Flow of messages for computing (distributed) VRF
via Smart Contract

play begins. The request has to be synchronized with the applica-

tion. As a result, the use of publicly verifiable external randomness

introduces a significant latency overhead for the requester: It has to

put the play on hold as it initiates and completes the VRF request.

(ii) as the output is public, it cannot be re-used by the requester in

the future (for example using a PRG to generate multiple random

values to be used at different times when needed), which also results

in significant overhead w.r.t. gas cost and VRF service fee as the re-

quester has to make individual requests each time new randomness

is required.
1
In a nutshell, this compels the requesting platforms to

carefully design their games/services such that their players/clients

cannot exploit the public VRF outputs, and furthermore, the latency

and monetary overheads stay affordable. This limits the utility of

smart-contract-based VRF services significantly.

Introducing Output-Private VRF. Towards overcoming the is-

sues with the existing VRF services in the blockchain ecosystem,

we introduce a new primitive called Output-Private VRF (Pri-VRF)

and provide an efficient construction. The design is supported by

our provable security analysis with respect to our newly formalized
definitions in the universal composability (UC) framework [10]. In

Pri-VRF, only the requester can obtain the output 𝑦 = 𝑉𝑠𝑘 (𝑥). Ev-
erybody else can only see a blinded (a.k.a. masked) output, which

only the requester can unblind. Crucially, anyone can still publicly
verify that the requester’s request was legitimate and ensure the

legitimacy of the response (the final VRF output, when revealed,

can still be verified as usual).

Output-private VRF allows the requester to overcome the above-

mentioned restrictions as follows. As the public value is blinded, the

requester can compute the necessary randomness asynchronously
(ahead of time) to be used at any later point as needed – this resolves

the first issue.
2
Furthermore, due to privacy, one may extend the pri-

vate output 𝑦 = 𝑉𝑠𝑘 (𝑥) to generate multiple pseudorandom values

𝑧1 = PRG(𝑦, 1), 𝑧2 = PRG(𝑦, 2), . . . using a pseudorandom genera-

tor. The randomnesses 𝑧1, 𝑧2 can be used (asynchronously) at a later

1
Chainlink’s VRF service [14] actually supports generating multiple randomnesses

by using the VRF output as a PRG seed. However, all randomnesses must be used

together at the same time to remain unpredictable. This domain extension strategy

maybe helpful in specific applications, but it does not address the issue fundamentally.

2
We stress that the requester gains no advantage by obtaining output 𝑦 early because

of public verifiability with respect to a well-formatted (along with a timestamp) 𝑥 ,

which was already made public. E.g., this ensures that the requester may not reject

this 𝑦 in favor of a 𝑦′ as that requires querying with another 𝑥 ′ .

1.Requester input

2.Create INP

Requester

Smart Contract

VRF Service

5.VRF output

 6.(Pre)Verify
VRF output

3.Fetch
Blinded INP

 7.Invoke the
requester call back
function with the
blinded output

3.Blinded INP
(with ZKP)

2.INP

4.Verify Blinding
ZKP and compute

VRF

Figure 2: FlexiRand: Flow ofmessages for computing Output-
private (distributed) VRF via Smart Contract

point when needed. It thus can offer a cost-efficient randomness

generation mechanism.
3

Output-Private Distributed VRF. For VRFs, the computing node,

which knows the secret key and computes the VRF output, becomes

a single point of failure for secrecy as well as liveness: VRF outputs

are completely predictable to this node and the VRF computation

discontinues if the specific node crashes. Therefore, instead of using

a centralized VRF, we can opt for a distributed VRF (DVRF), an

extension of VRF in the decentralized setting.

In contrast to a centralized VRF, no single node has access to

the entire secret key in the DVRF framework. In particular, the

secret-key is shared among many parties (let us denote them by

𝑃1, 𝑃2, . . . , 𝑃𝑛 and together call them the VRF committee), for exam-

ple, using Shamir’s secret sharing scheme [46], implemented using

an appropriate Distributed Key-generation (DKG) protocol [29]. On

an input 𝑥 , each party 𝑃𝑖 computes a partial evaluation-proof pair
(𝑦𝑖 , 𝜋𝑖) using their shares of secret-key 𝑠𝑘𝑖 . An aggregator, who

(possibly one of the servers in the VRF committee) may not hold

any secret-key, can publicly gather 𝑡+1 ≤ 𝑛 such partial evaluations
to aggregate them into the final output 𝑦 and an accompanying

proof 𝜋 – this procedure is public.

A 𝑡 out of 𝑛 distributed (threshold) procedure is, in fact, resilient

to 𝑓 ≤ 𝑡 malicious corruptions, who may collude. Therefore, this

setting, compared to the centralized setting, provides a number of

enhanced guarantees: (i) consistency, which guarantees that, any
𝑡 + 1 parties may collaborate to produce a unique and consistent

output 𝑦; (ii) robustness, that ensures that if there is a wrongly com-

puted partial evaluation, it must be detected before aggregation;

(iii) liveness (alternatively availability), which ensures that corrupt

parties can not prevent the output from being computed. Further-

more, the pseudorandomness guarantee is now much stronger as

that must be achieved in the presence of ≤ 𝑡 malicious corruptions.

We extend our Pri-VRF notion to the 𝑡 out of𝑛 distributed setting,

which we call Pri-DVRF – the extension is analogous to distributed

VRFs, albeit with added privacy guarantee. In particular, in addition

to the above guarantees, we need (iv) output privacy, even when

≤ 𝑡 servers are malicious. So, each server now computes a partially

blinded value, that are aggregated publicly (possible only if there

are ≥ 𝑡 + 1 legitimate responses), and then the final blinded 𝑦 is

3
Let us stress that each such randomness 𝑧𝑖 can only be verified using 𝑦. Given that

one can compute all 𝑧𝑖 s, this approach can only be useful in a setting where the

verifiability can be deferred to a later point when all 𝑧𝑖 ’s were already used; after that,

a new VRF request must be made.

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

sent to the requester, which then unblinds it to obtain 𝑦. All DVRF

guarantees must hold on the blinded values. Our UC definition cap-

tures all these informal guarantees formally. Our design combines

approaches from distributed VRFs (DVRF) [28] and Distributed

Oblivious PRFs [35], and easy to extend from our centralized con-

struction as well (we stress on the ease of decentralization while

designing the centralized version).

Implementation. We implement the Pri-DVRF construction by

extending the GLOW-DVRF [27, 28], written in C++. Our reference
implementation indicates that the construction is highly practical,

taking less than 0.5msec for the partial evaluation on each VRF

node in a single-threaded implementation. The time taken is not

too high compared to the non-private DVRF – 400𝜇sec (vs 253𝜇sec)

for the BN256 curve using the mcl library [2]. The requester takes

∼ 300𝜇 sec for blinding and generating the zero-knowledge proof

of correct blinding before forwarding it to the VRF service.

Contribution. This work is motivated by a contemporary real-

world problem currently most visible in the blockchain game sector

(see Section 2). In this work we adapt the existing techniques care-

fully in order to resolve that practically while providing rigorous

theoretical analysis. We summarize our contributions here:

– We introduce the notions of (distributed) Output-private VRF

that guarantees the privacy of the VRF output. Our formalization

is based on UC framework and thus provides a strong security

guarantee.

– We provide a Pri-VRF construction and a Pri-DVRF construc-

tion, both based on bilinear pairing. We give provable security

analysis within our UC-based definitions. Our constructions bor-

row idea from the DVRF construction by Galindo et al. [28] and the

Oblivious (D)PRF construction of Jarecki et al. [35]. We outline an

enhanced smart contract based Pri-(D)VRF framework that we call

FlexiRand, which incorporates the flexibility of our constructions.

– We show the practical efficiency of our constructions by pro-

viding simple implementation on top of GLOW-DVRF [28]; the

VRF committee nodes incur an overhead of about 1.6x in compu-

tation time compared to GLOW-DVRF. This is a very reasonable

trade-off compared to the benefits offered by FlexiRand.

– We provide a concrete real-world use-case where using Flexi-

Rand instead of standard DVRF service is significantly beneficial.

Our use-case stems from a real-world requirement of DeFi gam-

ing platform such as DeFi Kingdoms [21], which crucially requires

distributing random rewards (e.g. NFTs) in Blockchain Games [15].

2 USE CASE
In this section we describe a specific use-case, which is the primary

motivation for this work. DeFi gaming (GameFi) platforms are

increasingly becoming more popular in the Web3 world. They need

access to randomness that is sensitive with respect to latency as

well as cost. Precisely, cross-chain gaming platforms such as DeFi

Kingdoms [21] attract customers by providing virtual assets (such

as NFTs) to the players randomly at regular intervals within a game.

Its philosophy is to offer the gamer an experience of "fun with

surprises".

As explained in [15], a platform that engages in random reward

distribution acquires significantly more credibility by providing

publicly verifiable proof that the randomness is generated correctly.

A smart-contract-based VRF service (as depicted in Figure 1) ex-

actly provides that. Nevertheless, based on our discussion with

DeFi Kingdoms [22], the service suffers from the aforementioned

problems: (i) since the request can not be made in advance, there

is a latency involved which is beyond the control of the platform;

(ii) the overall fees to avail such a service become prohibitively

expensive. In particular, they are interested in a service, in that

the VRF output can be made in advance to avoid an unpredictable

latency during the game and can be (re-)used as a seed to generate

multiple random values over a period of time because a gamer is

rewarded with a randomly chosen virtual asset after completing a

few steps. Of course, one may think about re-using the VRF output,

exposed on the contract, to generate random values, but then all

those values are predictable defying the "surprise" aspect. Instead,

in our framework, the VRF output remains hidden/blinded on-chain,

and the verifiability can be deferred until all the random values,

derived from a VRF request, are exhausted.

3 TECHNICAL OVERVIEW
Our framework and input formatting. In our non-private DVRF
framework (cf. Figure 1), a requester sends a request to the smart

contract, which then crafts an input INP carefully – the input is

composed of many parameters, important for practical deployment

of both DVRF framework and FlexiRand (for more details, we refer

to Appendix A) and crucially prevent attacks as explained below.

The input is sent to the VRF committee (consider the centralized

version as a special case of DVRF where 𝑛 = 1, 𝑡 = 0). The servers

interact to produce an output, which is then sent to the contract.

The contract verifies the output and on success, forwards that to the

requesting platform. The main change in the FlexiRand framework

comes in the initial phase when the smart contract sends back the

input INP to the requester (Step-2 of Figure 2), who then sends a

blinded input (along with a NIZK proof of knowledge of exponent)

to the contract. From this point onwards, the rest of the flow is pretty

much the same, except that the contract now runs a verification

over the blinded values.

Repeating input attack. One easy way to break the privacy

might be to observe the input 𝑥 , and then make the same request

pretending to be the “owner” of 𝑥 and legitimately derive 𝑦. The

framework would prevent this by carefully crafting the input INP
such that it has a component reflecting the owner’s identity (for

example, the requester’s public key) – this can be checked at the

server’s end to avoid such an attack. This is incorporated in our

construction by assuming a unique owner for input and is captured

within our UC definition explicitly.

OurPri-VRF construction.Our constructions combine techniques

from the Oblivious PRF by Jarecki et al. [35] with the GLOW-

DVRF by Galindo et al. [28]. We first describe how our Pri-VRF

construction works. Consider a bilinear pairing group structure

𝑒 : G1 × G2 → G𝑇 , each a cyclic group of prime order 𝑝 . The VRF

secret-key 𝑠𝑘 is chosen at random from Z𝑝 , whereas the public

verification key 𝑣𝑘 is pair of group elements (𝑣𝑘1 = 𝑔𝑠𝑘
1
, 𝑣𝑘2 = 𝑔𝑠𝑘

2
)

where 𝑔1, 𝑔2 are random generators of groups G1 and G2 respec-

tively. A requester with an input 𝑥 first blinds her input to generate

𝜓 = H1 (𝑥)𝜌 ∈ G1 for a hash function H1 (·), random blind/mask

𝜌 in Z𝑝 and produces a NIZK proof of knowledge of 𝜌 (Schnorr’s

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

proof for knowledge of exponent [45]) and sends that over to the

smart-contract, which forwards it to the VRF server. The server

first verifies the NIZK proof, and if that succeeds, sends back 𝑦 =

(H1 (𝑥)𝜌)𝑠𝑘 . The contract verifies the response by using bilinear

pairing 𝑒 (𝜓,𝑔𝑠𝑘
2
) = 𝑒 (𝑦,𝑔2) (exactly the same as BLS signatures [8])

and if that succeeds, then it forwards 𝑦 to the requester, who then

unblinds to get 𝜋 = 𝑦1/𝜌= H1 (𝑥)𝑠𝑘 ; then derives 𝑦 as H2 (𝜋). The
final VRF verification is again running the BLS verification, but now

with different components: 𝑒 (H1 (𝑥), 𝑔𝑠𝑘
2
) = 𝑒 (𝜋,𝑔2) plus the hash

H2 (𝜋) = 𝑦. Note that there are three verifications in total: one for

the requester’s message, one for the server’s message, and finally,

one for the VRF triple – all of them can be done publicly. Further-

more, using these three verifications together, one could verify not

only the output 𝑦 is correct but the entire flow of communication

with the input 𝑥 is associated with the output 𝑦 – this might be

desirable in some applications.

Our Pri-DVRF construction. We extend our centralized solution

to a 𝑡 out of 𝑛 setting by using a VRF committee consisting of 𝑛

nodes, each of which holds a secret-key share 𝑠𝑘𝑖 of 𝑠𝑘 (this can

be typically achieved through a distributed key-generation (DKG)

protocol such as [30]). The verification key now is of the form

𝑣𝑘 = (𝑝𝑘 = 𝑔𝑠𝑘
2
, 𝑣𝑘1 = 𝑔

𝑠𝑘1

1
, 𝑣𝑘2 = 𝑔

𝑠𝑘𝑖
1
, . . .). The requester’s steps

are identical – in fact, the requester may be completely agnostic

of whether a centralized or a decentralized service is being used

(or what 𝑛, 𝑡 are being used). The smart-contract now sends the

blinded request to each server in the committee. So, once a VRF

server within VRF committee receives a blinded request 𝜓 along

with 𝑥 and a NIZK proof, each of them checks the proof as before,

and if that succeeds, now uses its share 𝑠𝑘𝑖 to compute a partial

value𝑤𝑖 = 𝜓
𝑠𝑘𝑖

. Additionally, it computes another NIZK for equal-

ity of exponent (we use Chaum-Pederson [16]) between 𝑤𝑖 and

𝑣𝑘𝑖 . Then it sends over the partial evaluation 𝑤𝑖 plus the proof

to the aggregator, who verifies each NIZK proof, and if at least

𝑡 + 1 of them succeeds, then combines the corresponding partial

evaluations via Lagrange interpolation in the exponent to compute

𝑦 = H1 (𝑥)𝜌 ·𝑠𝑘 . Given 𝑥,𝜓,𝑦, the contract verifies using the bilinear
map and then sends that over to the requester on success. The

overall computational overhead for the VRF committee servers is

less than 2x compared to GLOW-DVRF, and is incurred due to the

blinded-input NIZK verification by each server. Importantly, in our

framework the smart-contract’s work is exactly the same (a single

pairing computation) and hence the gas cost remains the same.

SecurityAnalysis. Consistency is guaranteed easily using Shamir’s

secret sharing. Robustness is guaranteed by the soundness of NIZK

proof of equality computed during partial evaluations. Then we

restrict our setting such that 𝑛 ≥ 2𝑡 + 1 – this, combined with

robustness immediately gives liveness. The pseudorandomness of our
constructions require that, if the server is not corrupt, no one else

can predict the output 𝑦 unless explicitly obtained from the server.

For the distributed setting, the same should hold even if at most

𝑡 servers are maliciously corrupt additionally. This is no different

from the same scenario in the Jarecki et al.’s [35] oblivious PRF

construction. So, our proof closely follows theirs and relies on a

similar assumption, namely a variant of (threshold) one-more DH

assumptions. However, since we are in bilinear pairing groups, we

require a version that holds in a pairing source group. Nevertheless,

in contrast to them,we do not need a gap version due to the presence

of pairing. The output-privacy part is new to our setting and is

carefully handled using the CDH assumption over bilinear groups

(known as Co-CDH). Intuitively, this part works because of the

unpredictability of H1 (𝑥)𝑠𝑘 , given 𝑔𝑠𝑘
1
, H1 (𝑥)𝑠𝑘 ·𝜌 and H1 (𝑥)𝜌 (in

the centralized case), which is somewhat similar to the proof of BLS

signature unpredictability but requires more care due to exposure of

many exponents of H1 (𝑥). When the server is compromised (in the

decentralized case, that is equivalent to corruption of > 𝑡 servers),

then the only guarantee one may hope for is that the output 𝑦 is

correct, although not unpredictable – this is not hard to see because

of the soundness of the NIZK proof (in the decentralized setting)

or correctness of bilinear pairing (for centralized case). We model

all hash functions as random oracles and carefully program them

in the proofs.

Alternative approaches: Encryption plus NIZK. One way to

generically convert any (D)VRF to a Pri-(D)VRF is to use (fully ho-

momorphic) encryption and any non-interactive zero-knowledge

proof (NIZK): the requester simply sends the input to the VRF

committee (via the smart-contract) who computes the partial evalu-

ations and provides a NIZK proof of correct evaluations. The aggre-

gation can be done using homomorphism (for some constructions,

additive homomorphism may suffice) plus by producing another

succinct NIZK (such as SNARKs) of correct verification of at least

𝑡 + 1 ciphertexts. While this may be a potential solution, the effi-

ciency of this may be significantly worse than our approach. In

particular, producing NIZK proof of a specific encryption scheme

(even efficient ones such as ElGamal [32]) already adds significant

overhead; on top of that, producing an aggregated proof during ag-

gregation seems to incur even more computational inefficiency. Of

course, this approach may be reasonably efficient (though still prob-

ably much behind our centralized version) in the centralized setting,

but since we prefer a scheme that supports easy decentralization,

we do not follow this.

Alternative without the bilinear pairing?. One may wonder

whether the bilinear pairing is necessary here. In particular, what

happens if we replace the pairing verification with a NIZK veri-

fication: the server would send 𝜋 as above, plus a NIZK proof of

the equality of exponent with 𝑔𝑠𝑘
1

(Chaum-Pederson’s proof [45]) –

basically adding output-privacy on top of [31]. The issue here is that

the requester can not have a publicly verifiable triple (𝑥,𝑦, 𝜋), as
the NIZK proof does not immediately support the “homomorphism”

in bilinear pairing like above. Furthermore, such an approach would

not be easy to decentralize because the NIZK proofs must be aggre-

gated using, for example, a SNARK proof, leading to a significant

challenge in terms of constructing an efficient SNARK for that spe-

cific language. In contrast, our approach is readily extendable into

a decentralized setting.

Bilinear vs NIZK in Pre-verification. As shown by Galindo et

al. [28], an alternative to using Chaum-Pederson’s NIZK could be

to use bilinear pairing for verifying server’s response akin to our

centralized construction. However, as shown in the same work,

this would incur a computational overhead of about 2.5x compared

to the NIZK proof – as in the case for Dfinity-DVRF vs GLOW-

DVRF. This is because the NIZK proof works in the group G1 and

supports faster operation than bilinear pairing. We remark that the

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

idea of using Chaum-Pederson’s proof for verifying the server’s

partial response during aggregation can also be incorporated in the

centralized setting (albeit the final verification of (𝑥,𝑦, 𝜋) should
still be done using pairing). However, in practice, the benefit is

much less as only one pre-verification is done compared to at least

𝑡 + 1 pre-verification performed in the distributed setting. So we

choose to leave the centralized construction simple and use the

NIZK-based optimization only in the distributed version (though it

can be realized as a special case: 𝑛 = 1, 𝑡 = 0).

4 RELATEDWORK
Verifiable Random Functions. The concept of VRF was intro-

duced by Micali, Rabin and Vadhan [40]. They first noticed the sim-

ilarities between VRFs and unique signatures (produces a unique
signature for each message). Their construction is based on RSA

signatures. Later, this was improved by the work of Dodis and Yam-

polskiy [24] – this construction is based on bilinear pairing and

collision-resistant hash functions and is more efficient than Micali

et al.’s construction. Feasibility of “theoretically optimal”
4
VRFs was

settled by Hofheinz and Jager [34] – as expected, the design is not

practical. This was later improved by Kohl [38] and very recently

by Niehues [42]. Nir Bitansky [7] explores the relations between

VRFs and other cryptographic concepts such as non-interactive

zero-knowledge proofs. Post-quantum secure VRFs were explored

by Esgin et al. [25].

In the practical regime, the most relevant construction was pro-

posed by Goldberg et al. [31], which is being used by many enter-

prises such as Algorand and is now in the process of IETF standard-

ization. The VRF design combines a pseudorandom function and a

simple zero-knowledge proof of exponent (namely Schnorr’s [45]).

The designs elaborated on in this paper are conceptually related to

this approach.

Distributed VRF. Distributed VRF was first considered by the

work of Dodis [23], which requires a trusted dealer. Kuchta and

Manulis [39] proposed a generic construction based on aggregate

signatures. However, the most relevant to us is the work by Galindo

et al. [27, 28] who formalized the security properties and analyzed

three constructions. The first construction is a variant of distributed

PRF [4, 41], which is essentially a distributed counterpart of the

Goldberg et al. [31] construction with appropriately adjusted zero-

knowledge proofs and a specific distributed key-generation protocol

(a variant of Gennaro et al. [30]) – this is termed as DDH-DVRF.

While the computation is very efficient, the size of the final proof is

proportional to the number of participants. The second construction

they considered is the one that was proposed and also used by

Dfinity [33] – this is similar to DDH-DVRF, but uses bilinear pairing

to enable a compact proof. However, the use of bilinear groups

comes with a cost over discrete log groups (as mentioned later).

The construction is very similar to BLS signatures [9] and is used in

many places [17, 18, 20, 44]. Their final construction is called GLOW-

DVRF – this was proposed in that paper. GLOW-DVRF uses bilinear

pairing for final verification, but Schnorr’s proof of exponent for

partial verification – as a result not only is the security improved

4
By theoretically optimal we mean that the design was proposed only to satisfy

theoretical interest with the minimal assumption, standard model (for example, not in

random oracle model), adaptive security etc.

but the computation time is also improved by about 2.5x. The only

cost is in terms of the size of partial proofs, which increases a little,

but still stays well within the allowed bandwidth. Our Pri-DVRF

construction is based on this.

VRFs in Blockchain. Many blockchain services use VRFs inter-

nally as a crucial source of randomness. For example, Cardano [13]

and Polkadot [43] implement VRFs for block production. Dfin-

ity [33] uses a DVRF (namely Dfinity-DVRF, as mentioned above)

for producing a decentralized random beacon. Chainlink offers a

popular VRF service that employs the VRF algorithm from Gold-

berg et al. [31] along with some optimizations. However, from their

description [14], it seems that their VRF secret-key is not decen-

tralized (in other words, they do not use a DVRF), and therefore is

susceptible to a single point of failure.
Oblivious PRF (OPRF). The notion of Oblivious PRF (OPRF) is

quite pertinent to our notion of Pri-VRF. OPRF is an extension

of PRF to two-party setting where a server holds the secret key

and a client holds an input – the notion was introduced in [26]

and found numerous interesting applications, such as in key-word

search, private set intersections etc. The main guarantees provided

by OPRF are twofold: (i) the server should not learn the input

(which we do not require); (ii) a client should not be able to break

the pseudorandomness of the output (which we also need). Our

Pri-VRF instantiations are similar to the (Distributed) OPRF used in

the Jarecki et al. [35] and [3]. And we use a very similar BOMDH

(T-BOMDH for Pri-DVRF) assumptions to prove the pseudoran-

domness of our construction. However output-privacy part is a

new addition and requires new analysis.

5 PRELIMINARIES
Notation. We use N to denote the set of positive integers, Z to

denote the set of all integers and [𝑛] to denote the set {1, 2, . . . , 𝑛}
(for 𝑛 ∈ N). A tuple of values is denoted by the vector notation

v = (𝑣1, 𝑣2 . . .). For a boolean vector v ∈ {0, 1}𝑛 , its hamming

weight is given by the number of 1s in v. For any set S, |S| denotes
its cardinality.

We denote the security parameter by 𝜅. We assume that every

algorithm takes 𝜅 as an implicit input, and all definitions work for

any sufficiently large choice of 𝜅 ∈ N. We will omit mentioning the

security parameter explicitly except in a few places. We use negl(𝜅)
to denote a negligible function in the security parameter; a function

𝑓 : N → N is considered negligible if for every polynomial 𝑝 , it

holds that 𝑓 (𝑛) < 1/𝑝 (𝑛) for all large enough values of 𝑛. Similarly,

we use poly(𝜅) to denote a polynomial function of the security

parameter 𝜅.

We use D(𝑥) =: 𝑦 or 𝑦 := D(𝑥) to denote the evaluation of a

specifically deterministic algorithm D on input 𝑥 to produce output

𝑦. Often we use 𝑥 := val to denote the assignment of a value val
to the variable 𝑥 . We write R(𝑥) → 𝑦 or 𝑦 ← R(𝑥) to denote

evaluation of a probabilistic algorithm R on input 𝑥 to produce

output 𝑦. We mostly consider probabilistic polynomial time (PPT)

algorithms, which are randomized and run in polynomial time.

For a boolean condition 𝑏 := (𝑥 = 𝑦), we denote that if 𝑥 = 𝑦 is

satisfied, 𝑏 gets the value 1, otherwise, if 𝑥 ≠ 𝑦 and the check fails,

it gets the value 0.

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

Computational Hardness. When we say a problem is computa-
tionally hard, we mean that given a problem instance, generated

using the security parameter 𝜅, for any probabilistic algorithm A
that runs in 𝑂 (poly(𝜅)) time, the probability that A can solve the

given problem instance is upper bounded by ≤ negl(𝜅).
Polynomial Interpolation. A polynomial 𝑃 (𝑥) over a finite field
F of degree 𝑡 can be expressed as 𝑃 (𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 . . . 𝑐𝑡𝑥
𝑡
,

where each coefficient is in F. Given any ℓ ≥ 𝑡 + 1 evaluation points

𝑃 (𝑗1), . . . , 𝑃 (𝑗ℓ), where 𝑆 = { 𝑗1, . . . , 𝑗ℓ } there are scalars 𝜆𝑖, 𝑗,𝑆 such

that for any 𝑖 ∈ N: 𝑃 (𝑖) = ∑
𝑗 𝜆𝑖, 𝑗,𝑆𝑃 (𝑗) Importantly, the Lagrange

coefficient 𝜆𝑖, 𝑗,𝑆 corresponding to 𝑗 depends only on the set 𝑆 and

the evaluation point at 𝑖 .

The function Rand(·). For compact presentation we use a on-the-

fly random function, denotedRand(·), in our Pri-VRF and Pri-DVRF
definitions. For a given domain Dom and Rng, the function, has a
table 𝑇 containing pairs (𝑥,𝑦) where 𝑥 ∈ Dom and is initialized to

∅. It works as follows:

Rand(𝑥 ∈ Dom).
• If there exists (𝑥,𝑦) ∈ 𝑇 , return 𝑦.
• Else return a uniform random 𝑦 ←

$
Rng and append (𝑥,𝑦)

to 𝑇 .

5.1 Universal Composability
In the UC framework, a PPT algorithm called the environment

(which is adversarial) is trying to distinguish between a real and

an ideal world. The adversary in the protocol can corrupt parties

in the real world, whereas an ideal adversary, called the simulator,

simulates the adversarial behavior in the ideal world. The ideal

world comprises an ideal functionality (a.k.a. trusted third party)

that is directly connected to all the parties, among which the simu-

lator fully controls the corrupt ones. The honest ideal world parties

are called dummy parties because they are interfaces between the

environment and the ideal functionality. The objective is to design

a simulator in the ideal world such that no environment providing

inputs to and observing the outputs from the computing entities

can distinguish between the real world and the ideal world, given

the adversary’s view of both worlds. The simulator typically simu-

lates the real world to an instance of the real-world adversary by

providing messages on behalf of the honest parties while accessing

the ideal functionality and finally outputs whatever the adversary

outputs. The simulator can schedule messaging and outputs in the

ideal world to prevent trivial distinctions by timing. All entities are

formally modeled as instances of an interactive Turing machine, or

ITI. For a detailed formalization, we refer to [10, 12].

Discrete Log, CDH, DDH. For a cyclic group G of prime order

𝑝 (where |𝑝 | = 𝑂 (𝜅)) with any elements 𝑔 and ℎ = 𝑔𝑥 , we denote

𝑥 = DLOG𝑔 (ℎ) to denote the discrete logarithm of ℎ to the base

𝑔. We assume that given (𝑔, ℎ), computing DLOG𝑔 (ℎ) is computa-

tionally hard – this is called Discrete Log assumption over G.
Furthermore, for random 𝑔, ℎ ←

$
G and random 𝛼 ←

$
Z𝑝 , we say

that the Computational Diffie-Hellman (CDH) assumption holds

when it is computationally hard to compute ℎ𝛼 , given (𝑔, ℎ, 𝑔𝛼).
The corresponding decisional version (DDH) states that it is com-

putationally hard to distinguish between the tuples (𝑔, ℎ, 𝑔𝛼 , ℎ𝛼)
and (𝑔, ℎ, 𝑔𝛼 , ℎ′) for a uniform random ℎ ←

$
G.

Bilinear Pairing, Co-CDH, XDH. Our constructions rely on

bilinear pairing.We consider three groupsG0,G1,G𝑇 , amongwhich

the source groups G0, G1 and G𝑇 all are multiplicative groups of

prime order 𝑝 . The corresponding generators are denoted by 𝑔0, 𝑔1,

and 𝑔𝑇 . There is an efficiently computable map 𝑒 : G0 × G1 → G𝑇
which is:

• bilinear: for any 𝑎, 𝑏 ∈ Z𝑝 :

𝑒 (𝑔𝑎
0
, 𝑔𝑏

1
) = 𝑒 (𝑔0, 𝑔

𝑏
1
)𝑎 = 𝑒 (𝑔𝑎

0
, 𝑔1)𝑏 = 𝑒 (𝑔0, 𝑔1)𝑎𝑏

• non-degenerate: 𝑒 (𝑔0, 𝑔1) ≠ 1𝑇 where 1𝑇 is the (multi-

plicative) identity of group G𝑇 .

We require the Co-CDH assumption over bilinear groups. The

assumption states that: for uniform random 𝑔1, ℎ1 ←$
G1 and

𝑔2 ←$
G2 and uniform random 𝛼 ←

$
Z𝑝 : given (𝑔1, ℎ1, 𝑔

𝛼
1
, 𝑔2, 𝑔

𝛼
2
)

it is computationally hard to compute ℎ𝛼
1
. The corresponding de-

cisional assumption, which requires the adversary to distinguish

between ℎ𝛼
1
and a random ℎ′

1
←

$
G1 given 𝑔1, 𝑔

𝛼
1
, 𝑔2, 𝑔

𝛼
2
as above is

called the XDH assumption and is used to build the NIZK proofs

(see Sec 5.3).

Unless mentioned otherwise we assume Type-3 pairings where
not only the source groups G0 and G1 are distinct, but also there is

no efficiently computable isomorphism between them.

5.2 Shamir’s Secret Sharing [46].
We use Shamir’s secret sharing scheme. Let 𝑝 be a prime, and

𝑛, 𝑡 be positive integers such that 𝑡 < 𝑛. An (𝑛, 𝑡, 𝑝)-Shamir’s Se-

cret Sharing ((𝑛, 𝑡, 𝑝)-SSS for short) scheme is a pair of algorithms

(Share,Recon) that work as follows.

• Share(𝑠) → (𝑠1, . . . , 𝑠𝑛). This randomized algorithm takes

any field element 𝑠 ∈ Z𝑝 as input. Then it works as follows:

– Sample a uniform random polynomial 𝑃 (𝑥) = 𝑠 +𝑐1𝑥 +
. . . 𝑐𝑡𝑥

𝑡
of degree 𝑡 . This is done by sampling each of

the coefficients 𝑐1, . . . , 𝑐𝑡 uniformly at random from

Z𝑝 . Note that 𝑃 (0) = 𝑠 .
– Output shares 𝑠1, . . . , 𝑠𝑛 where 𝑠𝑖 = 𝑃 (𝑖). The tuple

(𝑠1, . . . , 𝑠𝑛) is also denoted by Sharing(𝑠, 𝑛, 𝑡).
• Recon(𝑠 𝑗1 , . . . , 𝑠 𝑗ℓ) =: 𝑠/⊥. The reconstruction is a deter-

ministic procedure which takes a bunch of shares 𝑠 𝑗1 , . . . , 𝑠 𝑗ℓ
each from the field Z𝑝 as input and then executes the fol-

lowing steps:

– If ℓ ≤ 𝑡 , then output ⊥;
∗ Otherwise, if ℓ > 𝑡 , use the Lagrange coefficients

to compute: 𝑠 = 𝑃 (0) :=
∑
𝑘 𝜆0,𝑘,𝑆𝑠 𝑗𝑘 ;

∗ Finally output 𝑠 .

Security: The scheme provides the following security guar-

antee: For any uniform random secret 𝑠 ←
$
Z𝑝 , if (𝑠1, . . . , 𝑠𝑛) ←

Share(𝑠), then any ≤ 𝑡 shares {𝑠𝑖 }𝑖∈𝑆 such that |𝑆 | ≤ 𝑡 do
not reveal any information about the secret 𝑠 . More for-

mally, given any ≤ 𝑡 shares, 𝑠 is still distributed uniformly

at random. This is an information theoretic fact.

5.3 NIZK proofs
We require two simple and efficient non-interactive zero-knowledge

proof (NIZK) systems. Both were proven to be complete, sound, and
zero-knowledge based on the DDH assumption on the underlying

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

cyclic group G of prime order 𝑝 in the random oracle model. How-

ever, in this paper, we use these in one of the source groups of a

triple of Type-3 bilinear pairing groups, and hence the correspond-

ing assumption we need is XDH. A NIZK proof system satisfying

all these properties is called a secure NIZK proof system.

NIZK for Knowledge of Exponent [45]. Our construction uses

non-interactive zero-knowledge (NIZK) proof for knowledge of

exponents. In particular, given an instance inst = (𝑔, ℎ) ∈ G2
and

witness wit = 𝑘 ∈ Z𝑝 such that 𝑘 = DLOG𝑔 (ℎ). Also, consider a
hash function H : {0, 1}∗ → Z𝑝 . So the set of public parameters

is defined as pp := (H,G), which is provided as an input to all

algorithms below. Then the proof system consists of the following

two algorithms and a simulator:

• KExpProve(inst,wit) → 𝜋 . This randomized algorithm

takes an instance-witness pair (inst,wit) = ((𝑔, ℎ), 𝑘) as
input. Then it executes the following steps:

– randomly choose 𝑟 ←
$
Z𝑝 ;

– compute 𝛼 := 𝑔𝑟 ∈ G;
– compute 𝑐 := H(𝑔, ℎ, 𝛼) ∈ Z𝑝 and 𝑠 := 𝑟 + 𝑘 · 𝑐 ∈ Z𝑝 .
– output the NIZK proof 𝜋 = (𝑐, 𝑠)

• KExpVer(inst, 𝜋) =: 1/0. This deterministic algorithm takes

an instance inst = (𝑔, ℎ) and a candidate proof 𝜋 = (𝑐, 𝑠) as
input. Then:

– compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1 ∈ G;
– output (𝑐 = H(𝑔, ℎ, 𝛼)) ∈ {0, 1}.

• KepSimu(inst) → 𝜋 . The simulator samples 𝑠 ←
$
Z𝑝 and

𝑐 ←
$
Z𝑝 , then compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1

then program the

random oracle as: 𝑐 := H(𝑔, ℎ, 𝛼).

NIZK for Equality of Discrete Log [16]. Our construction uses

non-interactive zero-knowledge (NIZK) proof for equality of dis-

crete logarithms, which is quite similar to the above proof. We

highlight the crucial differences in black. In particular, consider an

instance inst = (𝑔, ℎ, 𝑥,𝑦) ∈ G4
and witness wit = 𝑘 ∈ Z𝑝 such that

𝑘 = DLOG𝑔 (𝑥) = DLOGℎ (𝑦) and a hash functionH : {0, 1}∗ → Z𝑝 .
So the set of public parameters is defined as pp := (H,G), which is

provided as an input to all algorithms implicitly. Then, the proof

system consists of the following two algorithms and a simulator:

• EqProve(inst,wit) → 𝜋 . This randomized algorithm takes a

statement-witness pair (inst,wit) = ((𝑔, ℎ, 𝑥,𝑦), 𝑘) as input.
Then it executes the following steps:

– randomly choose 𝑟 ←
$
Z𝑝 ;

– compute 𝛼 := 𝑔𝑟 ∈ G; 𝛽 := ℎ𝑟 ∈ G;
– compute 𝑐 := H(𝑔, ℎ, 𝑥,𝑦, 𝛼, 𝛽) ∈ Z𝑝 and 𝑠 := 𝑟 +𝑘 · 𝑐 ∈
Z𝑝 .

– output the NIZK proof 𝜋 = (𝑐, 𝑠)
• EqVer(inst, 𝜋) =: 1/0. This deterministic algorithm takes a

statement inst = (𝑔, ℎ, 𝑥,𝑦) and a candidate proof 𝜋 = (𝑐, 𝑠)
as input. Then:

– compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1 ∈ G;
– compute 𝛽 := ℎ𝑠 · (𝑦𝑐)−1 ∈ G;
– output (𝑐 = H(𝑔, ℎ, 𝑥,𝑦, 𝛼, 𝛽)) ∈ {0, 1}.

• EqSimu(inst) → 𝜋 . The simulator samples 𝑠 ←
$
Z𝑝 and

𝑐 ←
$
Z𝑝 , then compute 𝛼 := 𝑔𝑠 · (𝑥𝑐)−1

and 𝛽 := ℎ𝑠 · (𝑦𝑐)−1
.

Finally, program the random oracle as 𝑐 := H(𝑔, ℎ, 𝛼).

5.4 Our Model
We follow the Universal Composability Framework [10], in that a

real-world multi-party protocol realizes an ideal functionality. Simi-

lar to the simplified UC framework [12] we assume the existence of

a default authenticated channel in the real world. This significantly

simplifies our definitions and can easily be removed using an ideal

authenticated channel functionality [11].

We consider a fixed number of parties in the system and a static
corruption model, that is, neither the set of participants nor the

set of corrupt parties can change during the execution. The corrupt

parties can behave in a completely malicious manner and may

collude with each other.

For more details on the UC framework see Section 5.1.

5.5 (Threshold) One-More Diffie-Hellman
Assumptions

We use a variant of threshold one-more Diffie-Hellman assumptions

used in [3, 35]. In particular, our assumption will be over bilinear
pairing groups, and for that, we also do not need the gap-versions.

A proof in the generic group model is included in Appendix B.3.

Notations. We use notations fromAgrawal et al. [3]. For 𝑡, 𝑓 , 𝑛 ∈ N
(where 𝑓 ≤ 𝑡 < 𝑛) and q = (𝑞1, . . . , 𝑞𝑛) ∈ N𝑛 , define Max𝑡,𝑓 (q)
to be the largest value of ℓ for which there exists binary vectors

u1, . . . , uℓ ∈ {0, 1}𝑛 such that each u𝑖 has hamming wight ≥ 𝑡 −
𝑓 and q satisfies q ≥ ∑ℓ

𝑖=1
u𝑖 . Next, we define the T-BOMDH –

Threshold-Bilinear One-more Diffie Hellman assumption.

Definition 1 (T-BOMDH). Consider polynomial (in 𝜅) size in-
tegers 𝑛, 𝑡, 𝑓 , 𝑁 such that 𝑓 ≤ 𝑡 < 𝑛 and consider bilinear pairing
groups G1 × G2 → G𝑇 where each group has prime order 𝑝 . Let 𝑔1

and 𝑔2 be two random generators of the groups G1 and G2 respec-
tively. Then we say that the T-BOMDH assumption holds, if for all
PPT adversaryA the probability of the following game returning 1 is
≤ negl(𝜅).

• Sample uniform random secret 𝛼 ←
$
Z𝑝 .

• Sample random group elements 𝑔1, . . . 𝑔𝑁 ∈ G1.
• Provide 𝑔1, 𝑔

𝛼
1
, 𝑔2, 𝑔

𝛼
2
, (𝑔1, . . . , 𝑔𝑁) to A.

• On receiving {(𝑖, 𝛼𝑖)}𝑖∈[𝑓] from A choose an 𝑡-degree poly-
nomial 𝐷 uniformly at random such that for all 𝑖 ∈ [𝑓]:
𝐷 (𝑖) = 𝛼𝑖 and 𝐷 (0) = 𝛼 .

• Set q := 0
𝑛 .

• Give the following oracle access O(𝑖, 𝑥) to the adversary:
O(𝑖, 𝑥 ∈ G)

– Increment 𝑞𝑖 by 1.
– Output 𝑥𝛼𝑖 where 𝛼𝑖 := 𝐷 (𝑖).

• On receiving {(𝑔, ¯ℎ)}𝑖∈[ℓ] from A, return 1 if and only if all
of the following conditions are met:
– All 𝑔𝑖 are distinct and ℓ > Max(®𝑞).
– For all 𝑖 ∈ [ℓ] : 𝑔 ∈ {𝑔1, . . . , 𝑔𝑁 } and ¯ℎ𝑖 = 𝑔

𝛼
𝑖
.

Discussion and BOMDH assumption. The main difference of

our assumption with the versions used in [3, 35] is that instead

of a gap-version we use a bilinear pairing group. Intuitively it has

a similar effect because one can use bilinear pairing to check (a

specific form of) DDH across source groups. The basic intuition

of the above assumption is to give the adversary the oracle access

to individual polynomial points in such a manner that, unless the

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

adversary gathers enough, that is (𝑡 + 1), evaluation points on a

certain input, it can not compute that evaluation point in the expo-

nent of a randomly chosen element. The complexities in notation

arise as the oracle has no way to distinguish whether the adversary

is hiding the actual input with some known randomizer (such as

instead of 𝑥 the adversary can query on 𝑥𝑟 to obtain the same result

for a known 𝑟). For more intuition, we refer to [3, 35]. We also use a

specific version of the above assumption, when 𝑛 = 1 and 𝑓 = 𝑡 = 0,

which has found more usage in the literature (e.g. [6, 37]) and is

called simply the BOMDH assumption.

6 OUTPUT PRIVATE VRF (Pri-VRF)
In this section, we put forward the formal definition of Output Pri-

vate VRFs (Pri-VRF). Our definition follows the UC-framework [10]

and is based on ideas from the UC-based VRF definitions provided

by Coretti et al. [19]. We then present our construction and security

analysis with respect to the proposed definition.

6.1 Definition: Pri-VRF
We consider a general setting, in that many instances of Pri-VRF

protocols are executed among multiple parties connected by point-

to-point authenticated (but public) channels. In a specific execution

of a VRF, a party (called client) with an input 𝑥 interacts with an-

other party (called server) with a public verification key 𝑣𝑘 . The

server holds a long-term secret key 𝑠𝑘 corresponding to 𝑣𝑘 , and

at the end, the client obtains 𝑦 = 𝑉𝑠𝑘 (𝑥) and a proof 𝜋 , where

𝑉 : {0, 1}∗ × {0, 1}𝜅 → {0, 1}𝛾 denotes the VRF function. The

output should be pseudorandom to the client. There is public ver-
ifiability, which means that given the triple (𝑥,𝑦, 𝜋), anyone can
verify whether 𝑦 is indeed equal to 𝑉𝑠𝑘 (𝑥). Furthermore, the pro-

tocol should satisfy uniqueness, which guarantees that, there does

not exist another 𝑦′ ≠ 𝑉𝑠𝑘 (𝑥) and a proof 𝜋 ′ such that (𝑥,𝑦′, 𝜋 ′)
verifies successfully. These are the standard properties offered by

any VRF. In Pri-VRF, we additionally require output-privacy, which
guarantees that only the client and the server knows the output 𝑦

in this case. Moreover, this should be guaranteed while maintaining

public verifiability with respect to the transcript of the communica-

tion – if the client’s message to server is 𝑥 and server’s response is

𝑦, then the pair (𝑥,𝑦) must be publicly verifiable as well. We call

this crucial property public pre-verifiability.
Ideal Functionality Fpvrf . All guarantees are captured by the

ideal functionality Fpvrf , which is detailed in Figure 3. The ideal

functionality interacts with parties, generally denoted by 𝑃 and a

simulator S. The phrase “any ITI”, denoted by𝑀 , refers to either

a party 𝑃 or the simulator S. The ideal functionality keeps track

of the following variables, all of which are initialized to ⊥ (or ∅)
implicitly.

(1) 𝐾𝑒𝑦𝑠 [𝑀]: contains the verification keys owned by any ITI𝑀 .

We say that a verification key 𝑣𝑘 is unique if there exists a unique

𝑀 , for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑀].
(2) 𝑇 [𝑣𝑘, 𝑥]: contains entries of the form (𝑦,Π, B) corresponding

to a verification key 𝑣𝑘 and an input 𝑥 . Each entry contains an

output 𝑦, and sets Π = {𝜋1, 𝜋2, . . .}, B = {𝛽1, 𝛽2 . . .} etc. The set
Π contains all proofs for the tuple (𝑣𝑘, 𝑥,𝑦), whereas the set B

contains the corresponding server messages. We say that a proof

𝜋 is unique whenever there exists a unique pair (𝑣𝑘, 𝑥) such that

Ideal Functionality Fpvrf
Key-registration. Upon (RegKey, 𝑣𝑘, 𝑃) from S: If 𝑣𝑘 is unique add

it to 𝐾𝑒𝑦𝑠 [𝑃], send (Key, 𝑣𝑘) to 𝑃 , else exit.
Input: Upon (Input, 𝑣𝑘, 𝑥) from any client𝑄 :

(1) If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥, and there is a 𝑃 such that 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃],
then set 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] := 𝑄 and forward the message to S;
when S returns the same message, then send it to 𝑃 .

(2) Else exit.

Evaluation: Upon (Eval, 𝑥, 𝑣𝑘) from any server 𝑃 : If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] =
⊥ or 𝑣𝑘 ∉ 𝐾𝑒𝑦𝑠 [𝑃] then exit; otherwise let 𝑄 be such that 𝑄 :=

𝐼𝑛𝑝 [𝑣𝑘, 𝑥] and forward the request to S. If S returns ⊥, then send

(Val, 𝑣𝑘, 𝑥,⊥) to𝑄 and 𝑃 . Otherwise:

(1) When S returns (𝜋, 𝛽) , if each of them is unique append

the triple (𝑦 := Rand(𝑣𝑘, 𝑥), 𝜋, 𝛽) to 𝑇 [𝑣𝑘, 𝑥], otherwise
exit.

(2) Send (Val, 𝑣𝑘, 𝑥, 𝑦, 𝜋, 𝛽) to 𝑃 and𝑄 .

Pre-Verification: Upon (Pre-Verify, 𝑣𝑘, 𝑥, 𝛽) from any ITI 𝑀 :

Send (Pre-Verify, 𝑣𝑘, 𝑥, 𝛽) to S, and upon receiving 𝜙 from S:
(1) If there is a 𝑃 for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃]and 𝑇 [𝑣𝑘, 𝑥] =

(𝑦,Π, B) is defined then do as follows:

(a) If 𝛽 ∈ B set 𝑓 := 1.

(b) Else, if 𝜙 = 1 and 𝛽 is unique: then append 𝛽 into

𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.

(c) Else, set 𝑓 := 0.

(2) Else, set 𝑓 := 0.

(3) Finally return 𝑓 to𝑀 .

Reveal: Upon (Reveal, 𝑣𝑘, 𝑥) from any client 𝑄 : send this to S,
when S returns the message, then mark (𝑣𝑘, 𝑥) as Revealed.
Unblind: Upon (Unblind, 𝑥, 𝛽) from any ITI 𝑀 : Only if there is a

triple (𝑄, 𝑃, 𝑣𝑘) such that 𝛽 ∈ 𝑇 [𝑣𝑘, 𝑥] and 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃] and
𝑄 = 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] then go to the next step, otherwise exit:

(1) If either (𝑣𝑘, 𝑥) is marked Revealed or𝑀 = 𝑄 then return

(𝑦, 𝜋) to𝑀 where (𝑦, 𝜋) ∈ 𝑇 [𝑣𝑘, 𝑥]. Else exit.
Verification: Upon (Verify, 𝑣𝑘, 𝑥, 𝑦, 𝜋) from any 𝑀 forward this

to S, and upon receiving 𝜙 from S:
(1) If there is a 𝑃 for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃] and 𝑇 [𝑣, 𝑥] is de-

fined then do as follows:

(a) If (𝑦, 𝜋) ∈ 𝑇 [𝑣𝑘, 𝑥] set 𝑓 := 1.

(b) Else, if 𝜙 = 1 and 𝜋 is unique: then append 𝜋 to

𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.

(c) Else, set 𝑓 := 0.

(2) Else, set 𝑓 := 0.

(3) Finally return 𝑓 to𝑀 .

Figure 3: Ideal Functionality of Pri-VRF

𝜋 ∈ 𝑇 [𝑣𝑘, 𝑥]. Similarly, uniqueness of transcript and a pair (𝜋, 𝛽)
are defined. When we say append (𝜋, 𝛽) to a list 𝑇 it means that

updating the sets Π := Π ∪ {𝜋} and B := B ∪ {𝛽}. When we say

that the list 𝑇 [𝑣𝑘, 𝑥] is defined, that implies 𝑇 [𝑣𝑘, 𝑥] ≠ ⊥.
(3) 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]: Contains identity of a party, who is the sender/client

for the execution specific to (𝑣𝑘, 𝑥). If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = 𝑄 , that implies

𝑄 holds the input 𝑥 in the execution.

Some intuitions on Fpvrf . We follow the overall approach taken

by Coretti et al. and therefore do not include session id for simplicity

– note that an execution session can be indeed uniquely identified

by a pair (𝑣𝑘, 𝑥) due to the uniqueness criteria, which makes a

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

session id redundant. The major difference with their definition

comes obviously from the output-privacy requirement. We capture

that through replacing the output with another variable 𝛽 , which

works as a placeholder for the server’s message and is used in the

pre-verification. For the same purpose, we also introduce a Reveal
and Unblind phase. A minor difference with their approach is that

we merge the Eval and RegKey queries from the simulator and any

other party as the simulator controls the corrupt parties and can

make those queries through them.

Also note that in the ideal functionality Fpvrf the output is given
to both 𝑃 and 𝑄 – at a first glance, it may appear to be a violation

of output-privacy. However, we stress that, this is not the case.

This phenomenon is specific in the centralized setting where 𝑃

holds the whole secret-key. So, given 𝑥 it can locally compute 𝑦.

The output-privacy in this case would guarantee secrecy of 𝑦 from

eavesdroppers. Looking ahead, in the distributed setting (i.e. Fpdvrf)
𝑦 is not given to anyone but 𝑄 as long as at most 𝑡 parties are

compromised. However, if there are more than 𝑡 corruptions it does

give away 𝑦 to the simulator – this becomes analogous to giving 𝑦

to 𝑃 in the centralized setting.

Real-world for Pri-VRF. In the real world we assume a structured

protocol execution. Towards that, first consider the following set

of algorithms:

• Keygen(1𝜅) → (𝑠𝑘, 𝑣𝑘): The key-generation algorithm out-

puts a pair of keys (𝑠𝑘, 𝑣𝑘) – 𝑠𝑘 is the secret key and 𝑣𝑘 is

the verification key.

• Blind(1𝜅 , 𝑥) → (st, 𝑥): This algorithm processes the input

𝑥 to offer a secret state st and a public output 𝑥 .

• InpVer(1𝜅 , (𝑥, 𝑥)) =: 1/0. The input verification algorithm

verifies whether the pair (𝑥, 𝑥) is correctly computed, and

returns 1 if and only if the check succeeds.

• Eval(𝑣𝑘, 𝑠𝑘, 𝑥) → 𝑦: The evaluation algorithm uses the

secret key 𝑠𝑘 (and possibly also the verification key 𝑣𝑘) on

the blinded input 𝑥 to produce a blinded output 𝑦.

• PreVer(𝑣𝑘, (𝑥, 𝑥,𝑦)) =: 1/0: The pre-verification algorithm

verifies whether the computed blinded value 𝑦 is correct

for the pair (𝑥, 𝑥) and verification key 𝑣𝑘 .

• Unblind(𝑥,𝑦, st) =: (𝑦, 𝜋): The deterministic unblinding

algorithm takes a blinded output 𝑦 and a secret-state st
(typically generated during the blinding procedure) plus an

input 𝑥 as inputs and outputs an output-proof pair (𝑦, 𝜋).
• Verify(𝑣𝑘, (𝑥,𝑦, 𝜋)) =: 1/0 : The verification algorithm

takes the public verification key 𝑣𝑘 and a pair (𝑥,𝑦) as
input and outputs a decision bit.

In a real-world with parties connected by pairwise authenticated

channels, any party 𝑃𝑆 may run Keygen and publish a verification

key 𝑣𝑘 while keeping the secret key 𝑠𝑘 private – 𝑃𝑆 will be called

a server. Any other party 𝑃𝐶 may have an input 𝑥 and is called

a client – she wants to derive a VRF 𝑦 = 𝑉𝑠𝑘 (𝑥). A party can be

a server or a client in different executions. The client runs Blind
and sends over the pair (𝑥, 𝑥) to the server, which first checks

whether the blinded input was correctly computed using InpVer on
the pair (𝑥, 𝑥). In fact, anyone else can perform this check. If the

verification succeeds, then the server runs Eval on 𝑥 to produce 𝑦

and subsequently sends that over to 𝑃𝐶 . Anyone (may or may not

be the same as 𝑃𝐶) can run PreVer on (𝑣𝑘, 𝑥,𝑦) to publicly verify

whether the server’s computation was correct. At any point, the

client may unblind by running Unblind on (𝑥,𝑦) to get the final

output-proof pair (𝑦, 𝜋). Once the pair (𝑦, 𝜋) is made public, anyone

can check whether 𝑦 was correctly computed from 𝑥 by publicly

runningVerify on (𝑥,𝑦, 𝜋). Importantly a combination of the checks

Verify, PreVer, and InpVer together allow public verification of the

full transcript (𝑥, 𝑥,𝑦,𝑦).
The real world execution is described in a protocol Π (Figure 4)

Pri-VRF Protocol Π
– Key Generation: Any party 𝑃𝑆 , who would be a server runs key-

generation (𝑠𝑘, 𝑣𝑘) ← Keygen(1𝜅) .
– Request: Any client 𝑃𝐶 with an input 𝑥 runs (st, 𝑥) ←
Blind(1𝜅 , 𝑥) . Then it sends 𝑥 to a particular server 𝑃𝑆 .

– Response: The server 𝑃𝑆 , on receiving a request on a blinded input

𝑥 executes the following steps:

• Run InpVer(1𝜅 , (𝑥, 𝑥)) , if it returns 0, then do nothing. Else

go to the next step.

• Run 𝑦 ← Part.Eval(𝑣𝑘, 𝑠𝑘, 𝑥) and then send 𝑦 back to 𝑃𝐶 .

– Pre-verification: 𝑃𝐶 , once gets 𝑦 runs PreVer(𝑣𝑘, (𝑥, 𝑦)) – if it

outputs 0, then discard 𝑦, otherwise unblind (𝑦, 𝜋) := Unblind(𝑦, st) .
When necessary it publishes (𝑥, 𝑦, 𝜋) .

– Verification: Anyone, on input (𝑥, 𝑦, 𝜋) can run

Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) and if and only if that returns 1 con-

cludes that the triple is legitimate.

Figure 4: A real world Pri-VRF protocol Π.

Definition 2 (UC-security of Pri-VRF). Let Π be a protocol

that works as above and provides the algorithm specifications. Then

we say that Π UC-realizes the ideal functionality Fpvrf if for any
real-world static, malicious PPT adversary A, there exists a PPT

simulator S in the ideal world, such that for all environment E:

RealΠ,A,E≈𝑐 IdealFpvrf ,S,E

Unique Input Ownership. We assume that in the protocol each

input 𝑥 is unique to a the client who provides it – therefore if

client 𝑄 provides input 𝑥 , we call 𝑄 the owner. Without this, one

may think about the following attack. Another client 𝑄 ′ observes
the input 𝑥 and separately executes a legitimate VRF protocol to

compute 𝑦 – this is not desirable. This can be ensured simply by

appending the unique party identity to the input, which would be

checked during evaluation by each server – this is possible due

to the presence of pairwise authenticated channels.
5
We also note

that, in our ideal functionality, the ownership is with respect to the

session, defined by (𝑣𝑘, 𝑥), and formalized by 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]. So, our
protocol would provide a slightly stronger guarantee than what is

required by the definition.

6.2 Our Pri-VRF Construction
We now present our Pri-VRF construction. (See Figure 5.) This

construction is based on a non-threshold version of the BLS-based

5
Note that, a similar issue arises in Distributed Encryption setting, as mentioned in

Agrawal et al. [4]. In fact, this was resolved exactly by appending the party identity in

presence of pairwise authenticated channels.

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

Ingredients

Public parameters: The security parameter 𝜅 . An efficiently com-

putable Type-3 bilinear pairing 𝑒 : G1 ×G2 → G𝑇 , where the groups
G1,G2,G𝑇 are multiplicative groups and each of prime order 𝑝 . 𝑔1

and 𝑔2 are randomly chosen generators of G1 and G2 respectively.

Without loss of generality we assume that all algorithms have the

public parameters as input.

Hash functions H1 : {0, 1}∗ → G1; H2 : G1 → {0, 1}𝛾 ; H3 :

{0, 1}∗ → Z𝑝 .
A secureNIZK proof system (KExpProve,KExpVer) for knowledge
of exponent in group G1. The public parameter for this proof system

is {H3,G1}.
Construction

– Keygen(1𝜅) → (𝑠𝑘, 𝑣𝑘) : Sample 𝑠𝑘 ←
$
Z𝑝 and set 𝑣𝑘 =

(𝑣𝑘1, 𝑣𝑘2) := (𝑔𝑠𝑘
1
, 𝑔𝑠𝑘

2
) .

– Blind(1𝜅 , 𝑥) → (st, 𝑥) : Sample a uniform random 𝜌 ←
$
Z𝑝 and

set𝜓 := H1 (𝑥)𝜌 . Then:
• Produce the proof 𝜇 using KExpProve on instance

(H1 (𝑥),𝜓) and witness 𝜌 .

• Set st := 𝜌 and 𝑥 := (𝜓, 𝜇) .
– InpVer(𝑥, 𝑥) =: 1/0:

• Parse (𝜓, 𝜇) := 𝑥 .

• Then run KExpVer on the instance (H1 (𝑥),𝜓) – if it fails

output 0; otherwise output 1.

– Eval(𝑣𝑘, 𝑠𝑘, 𝑥) → 𝑦:

• Parse (𝜓, 𝜇) := 𝑥 .

• Compute 𝑦 := 𝜓𝑠𝑘
.

– PreVer(𝑣𝑘, (𝑥, 𝑦)) → 1/0 : Return the check:

• 𝑒 (𝑦,𝑔2) = 𝑒 (𝑥, 𝑣𝑘2)
– Unblind(𝑦, st) =: (𝑦, 𝜋) .

• Parse 𝜌 := st
• Compute 𝜋 := 𝑦𝜌

−1

.

• Compute 𝑦 := H2 (𝜋) .
– Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) =: 1/0 : Return the check:

• (𝑒 (H1 (𝑥), 𝑣𝑘2) = 𝑒 (𝜋,𝑔2)) ∧ (H2 (𝜋) = 𝑦)) .

Figure 5: Our Pri-VRF construction

DVRF proposed in [28]. We argue it satisfies our Pri-VRF definition

as captured by our ideal functionality Fpvrf . Formally we state the

following theorem, which is proven in Appendix B.1.

Theorem 1. Our Pri-VRF construction, described in Fig. 5, UC-
realizes Fpvrf with overwhelming probability as long as the one-more
BDH assumption (BOMDH) and the Co-CDH assumption hold over the
underlying bilinear groups; the hash functions are modeled as random
oracles; and the underlying NIZK proof is secure (which requires XDH
over the same groups).

Here we provide some intuitions. We consider a simpler setting

comprising of three parties: a client, a server and an eavesdropper.

And, correspondingly we consider three scenarios for a particular

execution with a fixed (𝑣𝑘, 𝑥), in each of which there is exactly one

corrupt party (as we argue in the analysis that this is without loss

of generality). Now, when only the eavesdropper is corrupt, we

want to guarantee exactly "output-privacy". We show that in this

case the simulator is able to simulate the communication between

the honest server and the honest in a way which is computationally

indistinguishable from the real world as long as Co-CDH holds

in the underlying bilinear pairing group and the NIZK proof is

zero-knowledge. We argue this by providing an explicit reduction

to Co-CDH (plus the zero-knowledge property of the NIZK). The

second case, in which the client is the only corrupt party, we want

to guarantee pseudorandomness of the VRF output – this case is

quite similar to the pseudorandomness of the Oblivious PRF and

is reduced similarly to the BOMDH assumption. The third case

considers the server to the only corrupt party – in this case since 𝑠𝑘

is leaked, the only guarantee we can hope for is the output 𝑦 is still

computed correctly (that is "unbiased"). We provide a simulation

strategy involving careful programming of the random oracles in

this case.

7 DISTRIBUTED Pri-VRF (Pri-DVRF)
In this section we introduce the Distributed variant of Pri-VRF,

which we call Pri-DVRF in short. First, we present our UC-based

definition, first describing the ideal functionality and later providing

a specifically structured real-world execution. Later in this section,

we provide our Pri-DVRF construction.

7.1 Definition: Pri-DVRF
In the distributed setting, no server alone holds the entire key.

Instead, the VRF secret-key 𝑠𝑘 is distributed among multiple parties.

Let us call the set of 𝑛 servers S = {𝑃1, . . . , 𝑃𝑛} who jointly hold

a VRF key 𝑠𝑘 jointly in a 𝑡 out of 𝑛 fashion, for example using a

secret-sharing scheme.
6
Now, even if 𝑡 servers are compromised

(and potentially collude with each other), the key is hidden from the

adversary. Any client then can interact with 𝑡 +1 servers to evaluate

𝑦 = 𝑉𝑠𝑘 (𝑥) and an associated proof 𝜋 privately, such that no one

except the client knows 𝑦 or 𝜋 . More concretely, the client sends a

message containing the input 𝑥 to all servers in the set S. As long as

𝑡 + 1 replies correctly with blinded responses, the client should be

able to aggregate the responses to compute an aggregated blinded

response. The client later can unblind to obtain the output-proof

pair (𝑦, 𝜋), where 𝑦 must be pseudorandom and publicly verifiable

(and remains so even if 𝑠𝑘 is completely leaked) even when up

to 𝑡 parties are controlled by a malicious adversary. However, in

addition to these standard VRF properties, we need more properties

in the distributed setting. First, we need consistency which means

that the final output 𝑦 is independent of the participating set. We

also need availability/liveness which means that no matter what

the malicious parties do, the protocol will execute correctly (a.k.a.

guaranteed output delivery). These two requirements are easy to

achieve, the first one by using a 𝑡 out of 𝑛 secret sharing scheme,

such as Shamir’s [46] (which we use in our constructions) and the

second one by assuming 𝑛 ≥ 2𝑡 + 1, which is ensured within our

ideal functionality Fpdvrf. Another requirement, considered in prior

works [28], is robustness, which guarantees that if the aggregation

is successful, then the final verification would also be successful

– this is captured within the ideal functionality by a partial pre-
verification mechanism which ensures that any incorrect response

from a server can be caught during aggregation. Like in the Pri-VRF

6
The access structure can be generalized to other settings, but in this paper, we stick

to 𝑡 out of 𝑛 threshold access structure.

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

setting, we assume multiple parties, any of which can play the role

of server or client for any particular execution. A group of parties

can collaborate to execute a key-generation to have a common

(public) verification key 𝑣𝑘 and shares 𝑠𝑘1, 𝑠𝑘2, . . . of a secret-key

𝑠𝑘 .

Ideal Functionality Fpdvrf . All guarantees, informally described

above, are captured by the ideal functionality Fpdvrf in Figure 6.

The ideal functionality interacts with parties, denoted generally by

𝑃 or𝑄 and a simulator S. Sometimes, to stress on to the distributed

aspect, servers are denoted as 𝑃𝑖 . A set of 𝑛 servers 𝑃1, 𝑃2 . . . , 𝑃𝑛 is

denoted by S, which plays a similar role to that of a single server in

Fpvrf . Sometimes to distinguish a client is denoted by𝑄 . The phrase

“any ITI”, denoted by𝑀 , refers to either a party or the simulator.

The ideal functionality keeps track of the following variable, all

of which are initialized to ⊥ (or ∅) implicitly.

(1) 𝐾𝑒𝑦𝑠 [𝑀], 𝐾𝑒𝑦𝑠 [S]: contains the public verification keys

owned by any entity𝑀 or a set of servers S = {𝑃1, . . . , 𝑃𝑛}.
We note that, if 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] then 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑖] for each
𝑃𝑖 ∈ S. We say that a verification key 𝑣𝑘 is unique if there

exists a unique set of servers S, for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S]
– this is extended from Fpvrf , which considers uniqueness

corresponding to parties.

(2) 𝑇 [𝑣𝑘, 𝑥]: contains entries of the form (𝑦, (𝜋, 𝛽), (𝜋 ′, 𝛽′), . . .)
corresponding to a verification key 𝑣𝑘 and an input 𝑥 ex-

actly like in the case for Pri-VRF. The uniqueness is also

defined exactly in the same manner.

(3) 𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] : extends the above definition to the partial

setting, where each partial list corresponds to a server 𝑃𝑖 . A

list 𝑇part contains entries 𝛽, 𝛽
′, . . ., which is slightly differ-

ent from lists 𝑇 . Uniqueness of 𝛽 is defined naturally with

respect to the triple (𝑣𝑘, 𝑥, 𝑃𝑖). Note that, since 𝑣𝑘 is unique

to a set of servers S, we do not need to specify the set of

servers.

(4) 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]: denotes the party (client) who sent the pair

(𝑣𝑘, 𝑥) for evaluation. This contains exactly one element,

unless marked ⊥ (while undefined) by default.

The real world execution. Consider the following set of algo-

rithms exclusive to the distributed setting:

• Keygen(1𝜅 , 𝑛, 𝑡) → (𝑣𝑘, 𝑠𝑘1, . . . , 𝑠𝑘𝑛): The key-generation
algorithm (implemented by a DKG protocol) outputs a veri-

fication key 𝑣𝑘 and 𝑛 shares 𝑠𝑘1, . . . , 𝑠𝑘𝑛 of the secret-key

𝑠𝑘 where the sharing is 𝑡 out of 𝑛 threshold.

• Blind(1𝜅 , 𝑥) → (st, 𝑥): This algorithm processes an input

𝑥 to offer a secret state st and a public output 𝑥 .

• InpVer(1𝜅 , (𝑥, 𝑥)) =: 1/0. The input verification algorithm

verifies whether a pair (𝑥, 𝑥) is correctly formed and returns

1 if and only if the check succeeds.

• Part.Eval(𝑣𝑘, 𝑠𝑘𝑖 , 𝑥) → 𝑦𝑖 : The partial evaluation algo-

rithm uses the partial secret-key 𝑠𝑘𝑖 on the blinded input 𝑥

to produce a blinded partial output 𝑦𝑖 .

• PartPreVer(𝑣𝑘, (𝑥,𝑦𝑖)) =: 1/0 : There is a partial pre-verification

algorithm which verifies whether the computed blinded

partial value 𝑦𝑖 is correct for the input 𝑥 and verification

key 𝑣𝑘 .

• Aggregate(𝑣𝑘, {(𝑦𝑖)}𝑖∈𝑆) =: 𝑦. The aggregation algorithm

gathers a set of blinded values to produce an aggregated

blinded value 𝑦.

• PreVer(𝑣𝑘, (𝑥,𝑦)) =: 1/0 : There is a pre-verification algo-

rithm, similar to PVRF, which verifies whether the com-

puted blinded value 𝑦 is correct for the blinded input 𝑥 and

verification key 𝑣𝑘 .

• Unblind(𝑦, st) =: (𝑦, 𝜋). The deterministic unblinding algo-

rithm takes a blinded output𝑦 and a secret-state st (typically
generated during the blinding procedure) and then outputs

an output-proof pair (𝑦, 𝜋).
• Verify(𝑣𝑘, (𝑥,𝑦, 𝜋)) =: 1/0 : The verification algorithm

takes the public verification key 𝑣𝑘 and a pair (𝑥,𝑦) as
input and outputs a decision bit.

In the real-world, parties are connected by pairwise authenti-

cated channels. A set of 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 successfully run

a distributed key-generation protocol,
7
that securely implements

Keygen such that the verification key 𝑣𝑘 is made public and each

𝑃𝑖 gets a secret key share 𝑠𝑘𝑖 . Let us denote this set of parties by

S := {𝑃1, . . . , 𝑃𝑛}. At any point, a client 𝑄 with an input 𝑥 may run

Blind to generate 𝑥 and subsequently sends over (𝑥, 𝑥) for evalua-
tion to the servers in S (with verification key 𝑣𝑘). Server 𝑃𝑖 in set

S first runs the input-verification InpVer on (𝑥, 𝑥), and if that suc-

ceeds, runs Part.Eval on (𝑥, 𝑥) with (𝑣𝑘, 𝑠𝑘𝑖) to generate a blinded

partial output 𝑦𝑖 , which it sends back. The values (𝑦1, 𝑦2, . . .) are
supposed to be collected by an aggregator 𝐴 (which may or may

not be the same as 𝑄 or any 𝑃𝑖), who then runs PartPreVer on each

𝑦𝑖 with respect to (𝑣𝑘, 𝑥), and if there are at least 𝑡 many correct

such values, then it may produce a blinded output 𝑦 (otherwise it

outputs ⊥). The client, when obtaining 𝑦, may first run PreVer to
check whether the aggregation was done correctly (in particular

when 𝐴 ≠ 𝑄), and if that succeeds, it may unblind using Unblind
to obtain (𝑦, 𝜋). The triple (𝑥,𝑦, 𝜋) can be publicly verified at any

point by anyone to confirm that 𝑦 was correctly produced. Further-

more, combining this with InpVer, PartPreVer, and PreVer anyone
can verify whether this value is computed via a particular interac-

tion defined by the entire transcript (𝑥, 𝑥, {𝑦𝑖 })𝑖, 𝑦,𝑦, 𝜋). The real
world execution is described in a protocol Π (Figure 7)

Definition 3 (Distributed Pri-VRF (Pri-DVRF)). Let Π be a

protocol that works as above and provide the algorithm specifica-

tions. We say that Π UC-realizes the ideal functionality Fpdvrf if for
any static, malicious PPT adversaryA in the real world, there exists

a PPT simulator S in the ideal world, such that for all environment

E:
RealΠ,A,E≈𝑐 IdealFdpvrf ,S,E

Remark 2. Note that our aggregation is a public procedure, and
therefore can be done by any of the nodes – this is similar to all

threshold protocols. Consequently, compromising the aggregator does
not allow one to break any security property (in particular, public
verifiability ensures that a malicious aggregation is not possible).
However, if we rely on a single aggregator node, that may hurt the
7
In the description, we do not present a distributed key-generation (DKG) formally. We

stress that it would be straightforward to extend the construction in a hybrid model

that uses an ideal DKG functionality, for example, a variant of the one provided in [35].

The changes in the proof will also be analogous to theirs. We avoid this for simplicity

of the exposition.

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

Ideal Functionality Fpdvrf
Key Generation. Upon (KeyGen, 𝑣𝑘, S) where S ⊆ {𝑃1, . . . , 𝑃𝑛 } from S when 𝑣𝑘 is unique:

(1) Define CS := C ∩ S and HS := S \ CS and set 𝑛S := |S |
(2) If 𝑛S < 2𝑡 + 1, then exit the procedure.

(3) Append 𝑣𝑘 to 𝐾𝑒𝑦𝑠 [S] and for each 𝑃𝑖 ∈ S 𝐾𝑒𝑦𝑠 [𝑃𝑖].
(4) If |CS | ≥ 𝑡 + 1, then mark S as Corrupt.
(5) Send (KeyGen, 𝑣𝑘, S) to each 𝑃𝑖 ∈ HS.

Input: Upon (Input, 𝑣𝑘, 𝑥) from any client𝑄 :

(1) If 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥, and there is a 𝑃 such that 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃], then set 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] := 𝑄 and forward the message to S; when S returns the

same message, then send it to 𝑃 .

(2) Else exit.

Partial Evaluation. Upon (PartEval, 𝑣𝑘, 𝑥) from any 𝑃𝑖 : If 𝑣𝑘 ∉ 𝐾𝑒𝑦𝑠 [𝑃𝑖] or 𝐼𝑛𝑝 [𝑣𝑘, 𝑥] = ⊥ then exit; otherwise send (PartEval, 𝑣𝑘, 𝑥, 𝑃𝑖) to S.
If S returns ⊥ then send ⊥ to 𝑃𝑖 ; otherwise:

(1) When S returns 𝛽𝑖 , then if it is unique then append it to𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖]; otherwise exit.
(2) Send 𝛽𝑖 to 𝑃𝑖 .

Partial Pre-Verification: Upon (PartPreVerify, 𝑣𝑘, 𝑥, 𝛽𝑖) from any𝑀 , forward this to S, and when S returns 𝜙 , then do as follows:

(1) If there is a party 𝑃𝑖 such that 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑖] and𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] is defined then:

(a) If 𝛽𝑖 ∈ 𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] then set 𝑓 = 1

(b) Else if 𝜙 = 1 and 𝛽𝑖 is unique, then append 𝛽𝑖 into𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖] and set 𝑓 := 1.

(c) Else set 𝑓 := 0

(2) Otherwise set 𝑓 := 0.

(3) Finally return 𝑓 to𝑀 .

Aggregation: Upon (Aggregate, 𝑣𝑘, 𝑥, 𝛽1, . . . , 𝛽ℓ) from any ITI𝑀 : if ℓ < 𝑡 + 1, then return ⊥ to𝑀 , else forward the message to S, when S returns 𝛽

and 𝜋 , if either of 𝛽 or 𝜋 is not unique, then exit, otherwise:

(1) Initialize a temporary list 𝐽 := ∅ and append 𝛽𝑖 into 𝐽 only if there is a 𝑃𝑖 for which 𝛽𝑖 ∈ 𝑇part [𝑣𝑘, 𝑥, 𝑃𝑖]. If | 𝐽 | ≤ 𝑡 , then append

(𝑦 := Rand(𝑣𝑘, 𝑥), 𝜋, 𝛽) into𝑇 [𝑣𝑘, 𝑥].
(2) Return 𝛽 to𝑀 .

(3) If 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] such that S is marked Corrupt, then return (𝑦, 𝜋) to S.
Pre-Verification: Upon (PreVerify, 𝑣𝑘, 𝑥, 𝛽) from any𝑀 , forward this to S, and when S returns 𝜙 , do:

(1) If𝑇 [𝑣𝑘, 𝑥] is defined then:

(a) If 𝛽 ∈ 𝑇 [𝑣𝑘, 𝑥] then set 𝑓 = 1

(b) Else if 𝜙 = 1 and 𝛽 is unique, then append 𝛽 into𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.

(c) Else set 𝑓 := 0

(2) Otherwise set 𝑓 := 0.

(3) Finally return 𝑓 to𝑀 .

Reveal: Upon (Reveal, 𝑣𝑘, 𝑥) from any client𝑄 : send this to S, when S returns the message, mark (𝑣𝑘, 𝑥) as Revealed.
Unblind: Upon (Unblind, 𝑥, 𝛽) from any ITI𝑀 : Only if there is a triple (𝑄, S, 𝑣𝑘) such that 𝛽 ∈ 𝑇 [𝑣𝑘, 𝑥] and 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] and 𝑄 = 𝐼𝑛𝑝 [𝑣𝑘, 𝑥]
then go to the next step, otherwise exit:

(1) If either (𝑣𝑘, 𝑥) is marked Revealed or𝑀 = 𝑄 then return (𝑦, 𝜋) to𝑀 where𝑇 [𝑣𝑘, 𝑥] = (𝑦, · · ·) and 𝑃𝑟𝑣 [𝛽] = 𝜋 . Else exit.
Verification: Upon (Verify, 𝑣𝑘, 𝑥, 𝑦, 𝜋) from any𝑀 forward this to S, and upon receiving 𝜙 from S:

(1) If there is a S for which 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [S] and𝑇 [𝑣, 𝑥] is defined then do as follows:

(a) If (𝑦, 𝜋) ∈ 𝑇 [𝑣𝑘, 𝑥] set 𝑓 := 1.

(b) Else, if 𝜙 = 1 and 𝜋 is unique: then append 𝜋 to𝑇 [𝑣𝑘, 𝑥] and set 𝑓 := 1.

(c) Else, set 𝑓 := 0.

(2) Else, set 𝑓 := 0.

(3) Finally return 𝑓 to𝑀 .

Figure 6: Ideal Functionality of Pri-DVRF

liveness/availability. To remedy that, one may either deploy t+1 aggre-
gator nodes (to ensure at least one honest aggregator node) or design
a simple reward mechanism to incentivize aggregation. We do not
formalize this here.

7.2 Our Pri-DVRF construction
We present our Pri-DVRF construction in this section. The construc-

tion is a natural extension to our centralized Pri-VRF construction

(cf. Figure 5) except that the partial evaluation now produces a zero-

knowledge proof of correct partial computation, which is verified by

the partial pre-verification algorithm. Our construction is presented

in Figure 8. The construction is based on the GLOW-DVRF, pro-

posed in [28]. This construction is based on a non-threshold version

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

Pri-DVRF Protocol Π
– DKG: Parties in set S, that are 𝑃1, . . . , 𝑃𝑛 run a distributed key-

generation, after which each party 𝑃𝑖 obtains a secret key 𝑠𝑘𝑖 and

everyone gets a public key 𝑣𝑘 as a output of Keygen(1𝜅 , 𝑛, 𝑡) .
– Request: Any party𝑄 (which may or may not be part of 𝑆) with

an input 𝑥 runs (st, 𝑥) ← Blind(1𝜅 , 𝑥) . Then it sends 𝑥 to all parties

𝑃1, . . . , 𝑃𝑛 in set S.

– Response: Each party 𝑃𝑖 , on receiving a request on a blinded input

𝑥 executes the following steps:

• Run InpVer(1𝜅 , (𝑥, 𝑥)) , if it returns 0, then do nothing. Else

go to the next step.

• Run 𝑦𝑖 ← Part.Eval(𝑣𝑘, 𝑠𝑘𝑖 , 𝑥) and then send 𝑦 to an ag-

gregator 𝐴 (which may or may not be the same as𝑄 or any

𝑃𝑖).

– Aggregation: The aggregator 𝐴, once collects the values

(𝑦1, 𝑦2, . . .) executes the following steps:
• Initiate a set 𝑆 := ∅.
• For each 𝑖 run PartPreVer(𝑣𝑘, (𝑥, 𝑦𝑖)) – if it returns 1, then

append 𝑖 into 𝑆 , else do nothing.

• If 𝑆 contains at least 𝑡 + 1 elements, then run 𝑦 :=

Aggregate(𝑣𝑘, {𝑦𝑖 }𝑖∈𝑆) .
• If 𝐴 ≠ 𝑄 then send 𝑦 to𝑄 , otherwise store 𝑦.

– Pre-verification: 𝑄 , once gets 𝑦 runs PreVer(𝑣𝑘, (𝑥, 𝑦)) – if it

outputs 0, then discard 𝑦, otherwise unblind (𝑦, 𝜋) := Unblind(𝑦, st) .
When necessary it publishes (𝑥, 𝑦, 𝜋) .

– Verification: Anyone, on input (𝑥, 𝑦, 𝜋) can run

Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) and if and only if that returns 1 con-

cludes that the triple is legitimate.

Figure 7: A real world Pri-DVRF protocol Π.

of the BLS-based DVRF proposed in [28]. We argue our Pri-DVRF

construction satisfies our Pri-DVRF definition as captured by our

ideal functionality Fpdvrf. Formally we state the following theorem,

which is proven in the Appendix B.2 .

Theorem 3. Our Pri-DVRF construction, described in Fig. 8, UC-
realizes Fpdvrf with overwhelming probability as long as the threshold
one-more BDH assumption (T-BOMDH) and the co-CDH assumption
hold over the underlying bilinear groups; the hash functions are mod-
eled as random oracles; and the NIZK proof systems are secure (that,
in turn, require XDH).

The proof extends naturally from the centralized case. However,

each time we need to deal with up to 𝑡 malicious servers. However,

since they do not possess the secret-key, this case essentially be-

comes analogous to the scenario in the centralized setting, when

the server is honest. For example, when the client is honest and

there is at most 𝑡 server corruption, output privacy must be guar-

anteed. To argue that, now we reduce this to a threshold variant

of the BOMDH problem, called T-BOMDH. Analyses of the other

cases are similar to the centralized setting.

Remark 4. We stress that the VRF servers do not need to maintain
states. To ensure uniqueness of the input, the smart contract crafts
an input (INP as detailed in Appendix A) which is used by the VRF
servers – this is done precisely to avoid this sort of “statefulness”,
because among other things, this input contains the identity of the
requester. Hence, unique ownership is easily ensured by a signature

Ingredients

Public parameters: The security parameter 𝜅 , the total number of

parties 𝑛, a threshold 𝑡 < ⌈𝑛/2⌉. An efficiently computable Type-3

bilinear pairing 𝑒 : G1 × G2 → G𝑇 , where the groups G1,G2,G𝑇
are multiplicative groups and each of prime order 𝑝 . 𝑔1 and 𝑔2 are

randomly chosen generators of G1 and G2 respectively.

Hash functions H1 : {0, 1}∗ → G1; H2 : G1 → {0, 1}𝛾 ; H3 :

{0, 1}∗ → Z𝑝 .
A Shamir’s secret sharing scheme (that has two algorithms Share
and Recon).
A secure NIZK proof system (EqProve, EqVer) for equality of
discrete log over group G1. The public parameter for this NIZK

system is given by {H3,G1} .
A secureNIZKproof system (KExpProve,KExpVer) forknowledge
of exponent in groupG1. The public parameter for this proof system

is {H3,G1}.
Construction

– Keygen(1𝜅 , 𝑛, 𝑡) → (𝑣𝑘, 𝑠𝑘1, . . . , 𝑠𝑘𝑛) :

• Sample 𝑠𝑘 ←
$
Z𝑝 ; generate (𝑠𝑘1, . . . , 𝑠𝑘𝑛) ←

$

Share𝑛,𝑡,𝑝 (𝑠𝑘) .
• Set 𝑝𝑘 := 𝑔𝑠𝑘

2
, and ∀ 𝑖 ∈ [𝑛]: 𝑣𝑘𝑖 := 𝑔

𝑠𝑘𝑖
1

.

• Set 𝑣𝑘 := (𝑝𝑘, 𝑣𝑘1, . . . , 𝑣𝑘𝑛) .
– Blind(1𝜅 , 𝑥) → (st, 𝑥) : Sample a uniform random 𝜌 ←

$
Z𝑝 and

set𝜓 := H1 (𝑥)𝜌 . Then:
• Produce the proof 𝜇 using KExpProve on instance

(H1 (𝑥),𝜓) and witness 𝜌 .

• Set st := 𝜌 and 𝑥 := (𝜓, 𝜇) .
– InpVer(𝑥, 𝑥) =: 1/0:

• Parse (𝜓, 𝜇) := 𝑥 .

• Then run KExpVer on the instance (H1 (𝑥),𝜓) – if it fails

output 0; otherwise output 1.

– Part.Eval(𝑣𝑘, 𝑠𝑘𝑖 , 𝑥) → 𝑦𝑖 : Parse (𝜓, 𝜇) := 𝑥 and:

• Compute 𝑤𝑖 := 𝜓𝑠𝑘𝑖 .

• Run EqProve on the instance (𝜓, 𝑤𝑖 , 𝑔1, 𝑣𝑘𝑖) with witness

𝑠𝑘𝑖 to produce proof of equal exponent 𝜋𝑖 .

• Set 𝑦𝑖 := (𝑤𝑖 , 𝜋𝑖) .
– PartPreVer(𝑣𝑘, (𝑥, 𝑦)) =: 1/0 : Output the result of EqVer on the

instance (𝜓, 𝑤𝑖 , 𝑔1, 𝑣𝑘𝑖) and proof𝜋 where (𝜓, 𝜇) := 𝑥 and (𝑤, 𝜋) :=

𝑦.

– Aggregate(𝑣𝑘, { (𝑦𝑖) }𝑖∈𝑆) =: 𝑧. If |𝑆 | < 𝑡 + 1 then output ⊥, other-
wise run the Lagrange interpolation in the exponent on 𝑤𝑖 ’s where

(𝑤𝑖 , 𝜋𝑖) := 𝑦𝑖 :

• Compute 𝑦 :=
∏

𝑖∈𝑆 𝑤
𝜆𝑖,𝑆
𝑖

– PreVer(𝑣𝑘, (𝑥, 𝑦)) → 1/0 : Return the check:

• 𝑒 (𝑦,𝑔2) = 𝑒 (𝑥, 𝑣𝑘2)
– Unblind(𝑦, st) =: (𝑦, 𝜋) .

• Parse 𝜌 := st
• Compute 𝜋 := 𝑦𝜌

−1

.

• Compute 𝑦 := H2 (𝜋) .
– Verify(𝑣𝑘, (𝑥, 𝑦, 𝜋)) =: 1/0 : Return the check:

• (𝑒 (H1 (𝑥), 𝑣𝑘2) = 𝑒 (𝜋,𝑔2)) ∧ (H2 (𝜋) = 𝑦)) .

Figure 8: Our Pri-DVRF Construction

(or, more generally, an authenticated channel a la DiSE [4]) which
can be checked by the VRF servers.

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

Input-Generation Partial-Eval.

GLOW-DVRF (MCL) - 253.304 𝜇sec

Pri-DVRF (MCL) 307.079 𝜇sec 403.059 𝜇sec

GLOW-DVRF (RELIC) - 1.30304 msec

Pri-DVRF (RELIC) 1.67658 msec 2.5978 msec

Table 1: Average time taken for each step for GLOW-DVRF
and Pri-DVRF for the BN256 curve, over 100 iterations. In
the Pri-DVRF construction, the partial evaluation includes
verifying the ZKP forwarded by the requester.

Another construction based on Dfinity-DVRF. We note that

the NIZK proof of equality computed in the partial evaluation could

just be omitted, if each 𝑔
𝑠𝑘𝑖
2

was publicly available, and PartPreVer

was performed using bilinear pairing 𝑒 (𝑥,𝑔𝑠𝑘𝑖
2
) = 𝑒 (𝑦,𝑔2). However,

this would incur concrete computation overhead because verify-

ing a NIZK proof of equality amounts to 4 exponentiations in the

groupG1, and that is about 2.5𝑥 more efficient than a single bilinear

pairing verification. A DVRF scheme constructed using this alter-

native approach was deployed by Dfinity [33] and was analyzed

by Galindo et al. [28]. We stress that adding output-privacy to that

construction is straightforward. Moreover, the issue of strong vs

weak pseudorandomness for the DVRF constructions does not seem

to appear for the respective Pri-DVRF constructions. Recall that,

in the same paper the authors show that Dfinity-DVRF can not

be proven strongly pseudorandom, which allows an adversary to

make honest partial evaluation queries on the challenge input (the

weaker notion was called simply pseudorandomness and does not

allow those queries). And they showed that GLOW-DVRF can actu-

ally be proven to satisfy the stronger notion. For the corresponding

Pri-DVRF construction, this does not seem to be the case, because

our approach relies on T-BOMDH oracles for simulating partial

evaluation queries.

8 PERFORMANCE ANALYSIS
We evaluate the performance of our Pri-DVRF construction and

compare it with the GLOW-DVRF [28] construction. We imple-

ment [1] our Pri-DVRF by extending the GLOW-DVRF frame-

work [27, 28] written in C++. The framework supports mcl [2]

and RELIC [5] cryptographic libraries.

In our Pri-DVRF construction, for a given input, the requester

generates a random blinding value and a NIZK proof of the correct-

ness of the blinded input. The proof is a Schnorr signature-based

proof of knowledge of the DLog exponent. The proof consists of

two elements, one scalar and one groupG1 element. After receiving

the blinded input, each VRF node verifies the zero-knowledge proof

before computing the partial evaluation of the VRF. The requester

receives the aggregated evaluation and unblinds the output private

VRF using the pre-computed blinding value to obtain the final VRF

output. The NIZK proof is the only additional input forwarded to

the VRF nodes in Pri-DVRF protocol when compared to the non-

private version of the protocol. The proof amounts to an overhead

of 513 bits.

We benchmark the different steps of the VRF computation using

mcl [2] and RELIC libraries [5] for the BN256 curve. We run our

single-threaded implementation on Mac OSX 2015 with an Intel

i7-3.1GHz processor with 16GB RAM. With the MCL library, the

requester takes ∼ 307𝜇 sec on an average for computing 𝐻 (𝑥)𝑟 (for
the input 𝑥 and the blinding factor 𝑟) and the zero-knowledge proof

of exponent 𝑟 . Each VRF node verifies the zero-knowledge proof

(ZKP) and then computes the𝐻 (𝑥)𝑟 ·𝑠𝑘𝑖 for the secret share 𝑠𝑘𝑖 . The
partial evaluation, including verifying the ZKP per node, takes ∼
403𝜇 sec. Unblinding by the requester involves one exponentiation

and takes on an average ∼ 146𝜇sec. The GLOW-DVRF, which is

non-private, does not involve any input blinding, and the input

message 𝑥 is forwarded to the VRF nodes. Each VRF node computes

the partial evaluation 𝐻 (𝑥)𝑠𝑘𝑖 , which takes ∼ 253𝜇 sec per node on

average.

The computation times for input-blinding at the requester and

partial evaluation at the VRF node have been presented in table 1;

the table provides the timings for the operations using both the mcl

and the RELIC libraries. The reported values are taken as a mean

over 100 iterations over each operation. A smart contract would

verify the VRF output; though we do not deploy the smart contract,

our estimates indicate that the gas cost for the VRF verification

on the BN256 curve would be ∼ 250𝑘 gwei (more on the gas cost

below).

We also benchmark the average time taken to generate one PVRF

value for varying VRF committee sizes. Table 2 indicates the av-

erage total time taken to generate one PRVF value. The time for

partial evaluation by each VRF node is constant, irrespective of the

committee size. The table also indicates the time taken to combine

the partial evaluations. The total time without network delays is

the summation of the partial evaluation time and the time taken

to aggregate the evaluations of the VRF committee nodes. That in-

volves verifying each proof of the correctness of the evaluation and

then combining the partial outputs through Lagrange interpolation.

This process is similar to both the Pri-DVRF and the non-private

GLOW-DVRF protocols. Only the partial evaluation of the nodes

differs as far as the VRF committee is concerned. Since the overhead

is just checking a Schnorr-based zero-knowledge proof, the time

difference between the two approaches is minor.

To simulate a real-network deployment, we also induce network

delays of ∼ 120 msec between each pair of nodes and compute

the total time taken to generate the aggregate VRF output. Table 3

denotes the average time taken to evaluate Pri-DVRF for different

committee sizes. Each VRF node forwards the partial evaluation to

all the other committee nodes, and each produces the aggregated

output value.

Estimate of the gas cost. The base cost for creating and deploying
a smart contract is 32𝑘 gwei on Ethereum. In the FlexiRand proto-

col, the partial evaluations by each VRF node are combined, and the

blinded VRF output along with the proof, is published through the

smart contract. The smart contract verifies the proof before pub-

lishing it, which is the pre-verification step of the protocol. It per-

forms a pairing-based verification of the blinded VRF output. Since

the blinded value is of the form 𝐻 (𝑥)𝑟 , the verification simply in-

volves the equality of two pairing computations: 𝑒 (𝐻 (𝑥)𝑟 , 𝑔𝑠𝑘
2
) ==

𝑒 (𝐻 (𝑥)𝑟 ·𝑠𝑘 , 𝑔2). It must be noted that in the non-private version,

while performing the pairing check (𝑒 (𝐻 (𝑥), 𝑔𝑠𝑘
2
) == 𝑒 (𝐻 (𝑥)𝑠𝑘 , 𝑔2)),

the hash value 𝐻 (𝑥) is computed on the smart contract using 𝑥 . In

Pri-DVRF, this hash is not computed, as the (blinded) input value is

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

n Total

GLOW-DVRF (MCL) 8 1.71 msec

Pri-DVRF (MCL) 8 1.89 msec

GLOW-DVRF (RELIC) 8 10.39 msec

Pri-DVRF (RELIC) 8 11.71 msec

GLOW-DVRF (MCL) 16 2.97 msec

Pri-DVRF (MCL) 16 3.12 msec

GLOW-DVRF (RELIC) 16 18.42 msec

Pri-DVRF (RELIC) 16 19.89 msec

GLOW-DVRF (MCL) 32 5.47 msec

Pri-DVRF (MCL) 32 5.66 msec

GLOW-DVRF (RELIC) 32 35.63 msec

Pri-DVRF (RELIC) 32 36.77 msec

GLOW-DVRF (MCL) 64 10.46 msec

Pri-DVRF (MCL) 64 10.66 msec

GLOW-DVRF (RELIC) 64 72.87 msec

Pri-DVRF (RELIC) 64 74.34 msec

Table 2: Average time taken to evaluate Pri-DVRF andGLOW-
DVRF for varying 𝑛. The time is indicated by the summation
of the partial evaluation time and the time to combine the
evaluations of the VRF nodes. Network communication de-
lays are not considered here.

n Total

MCL 8 0.159 sec

RELIC 8 0.171 sec

MCL 16 0.244 sec

RELIC 16 0.277 sec

MCL 32 0.399 sec

RELIC 32 0.695 sec

MCL 64 1.08 sec

RELIC 64 2.33 sec

Table 3: Average time taken to evaluate Pri-DVRF for vary-
ing 𝑛 with artificial network delay of 120 msec added to the
communication.

𝐻 (𝑥)𝑟 , and the verification involves just two pairings. Each pairing

operation costs 108K gwei; hence, the pairing-based verification

which involves two pairing operations, costs ∼ 250𝐾 gwei includ-

ing 20K gwei for storing a 256 bit value. The requester forwards

the input message to the smart contract and, after obtaining the

formatted INP (141 bytes as per the description given in the full

version [36]), blinds it and forwards it along with the proof of

correctness. Compared to the GLOW-based non-private case, this

constitutes two additional transactions amounting to ∼ 42K gwei.

The storage of the additional bit-length of the proof amounts to

an additional gas cost of 40K gwei. The total gas cost for each re-

quest in the GLOW-based non-private version would be ∼ 410K

gwei which would amount to roughly $0.77 USD (as of April 2023).

Compared to this, the cost of Pri-DVRF request would be ∼ 450K

gwei amounting to $0.84 USD. However, as Pri-DVRF enables re-

usability without breaking predictability (as explained in Section 1,

for example, by using PRGs), the amortized cost turns out to be

significantly cheaper – re-using just twice is already cheaper than

the non-private counter-part, and re-using, say ten times would

make the amortized cost $0.084 USD, which becomes significantly

cheaper.

9 CONCLUSION
Randomness is an indispensable resource in Web3 gaming. With a

growing demand for on-chain verifiable randomness, new problems

are arising. This work addresses one such problem and proposes a

practical solution with formal analysis. We expect more problems

to arise in this space in the near future with more innovation hap-

pening. Also, as the first work, in this paper, we only formalize the

core primitive, namely output-private (distributed) VRF, and leave

the formalization of the entire smart-contract-based framework for

future work.

REFERENCES
[1] [n. d.]. FlexiRand - Code. https://github.com/easwarvivek/FlexiRand.git.

[2] [n. d.]. mcl - A portable and fast pairing-based cryptography library. . https:

//github.com/herumi/mcl.

[3] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.

2018. PASTA: PASsword-based Threshold Authentication. In ACM CCS 2018: 25th
Conference on Computer and Communications Security, David Lie, Mohammad

Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON,

Canada, 2042–2059. https://doi.org/10.1145/3243734.3243839

[4] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal.

2018. DiSE: Distributed Symmetric-key Encryption. In ACM CCS 2018: 25th
Conference on Computer and Communications Security, David Lie, Mohammad

Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON,

Canada, 1993–2010. https://doi.org/10.1145/3243734.3243774

[5] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. [n. d.].

RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/

relic.

[6] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Threshold

BLS Signature Scheme. Cryptology ePrint Archive, Paper 2022/534. https:

//eprint.iacr.org/2022/534 https://eprint.iacr.org/2022/534.

[7] Nir Bitansky. 2020. Verifiable Random Functions from Non-interactive Witness-

Indistinguishable Proofs. Journal of Cryptology 33, 2 (April 2020), 459–493.

https://doi.org/10.1007/s00145-019-09331-1

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In Advances in Cryptology — ASIACRYPT 2001, Colin Boyd (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 514–532.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In Advances in Cryptology – ASIACRYPT 2001 (Lecture Notes in
Computer Science, Vol. 2248), Colin Boyd (Ed.). Springer, Heidelberg, Germany,

Gold Coast, Australia, 514–532. https://doi.org/10.1007/3-540-45682-1_30

[10] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Las Vegas, NV, USA, 136–145. https:

//doi.org/10.1109/SFCS.2001.959888

[11] Ran Canetti. 2004. Universally Composable Signature, Certification, and Authen-

tication. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004),
28-30 June 2004, Pacific Grove, CA, USA. IEEE Computer Society, Los Alamitos,

CA, USA, 219. https://doi.org/10.1109/CSFW.2004.24

[12] Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A Simpler Variant of Univer-

sally Composable Security for Standard Multiparty Computation. In Advances in
Cryptology – CRYPTO 2015, Part II (Lecture Notes in Computer Science, Vol. 9216),
Rosario Gennaro and Matthew J. B. Robshaw (Eds.). Springer, Heidelberg, Ger-

many, Santa Barbara, CA, USA, 3–22. https://doi.org/10.1007/978-3-662-48000-

7_1

[13] Cardano. [n. d.]. Ouroboros Protocol. https://cardano-foundation.gitbook.io/

stake-pool-course/lessons/introduction/ouroboros.

[14] Chainlink. [n. d.]. Chainlink VRF: On-Chain Verifiable Randomness. https://

developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html.

[15] Chainlink Lab. [n. d.]. Random Rewards in Blockchain Games. https://blog.chain.

link/random-rewards-in-blockchain-games/.

[16] David Chaum and Torben P. Pedersen. 1993. Wallet Databases with Observers. In

Advances in Cryptology – CRYPTO’92 (Lecture Notes in Computer Science, Vol. 740),
Ernest F. Brickell (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA,

89–105. https://doi.org/10.1007/3-540-48071-4_7

[17] Cloudflare. [n. d.]. Decentralized Verifiable Randomness Beacon. https://

developers.cloudflare.com/randomness-beacon/.

[18] Corestar. [n. d.]. Corestar Arcade: Tendermint-based Byzantine Fault Tolerant

(BFT) middleware with an embedded BLS-based random beacon. https://github.

com/corestario/tendermint.

https://github.com/easwarvivek/FlexiRand.git
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1145/3243734.3243774
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2022/534
https://eprint.iacr.org/2022/534
https://eprint.iacr.org/2022/534
https://doi.org/10.1007/s00145-019-09331-1
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/ouroboros
https://cardano-foundation.gitbook.io/stake-pool-course/lessons/introduction/ouroboros
 https://developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html
 https://developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html
https://blog.chain.link/random-rewards-in-blockchain-games/
https://blog.chain.link/random-rewards-in-blockchain-games/
https://doi.org/10.1007/3-540-48071-4_7
https://developers.cloudflare.com/randomness-beacon/
https://developers.cloudflare.com/randomness-beacon/
https://github.com/corestario/tendermint
https://github.com/corestario/tendermint

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

[19] Sandro Coretti, Aggelos Kiayias, Cristopher Moore, and Alexander Russell. 2022.

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols. In ACM CCS
2022: 29th Conference on Computer and Communications Security, Heng Yin,

Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press, Los Angeles,

CA, USA, 595–608. https://doi.org/10.1145/3548606.3560638

[20] DAOBet (ex—DAO.Casino). [n. d.]. ToDeliver On-Chain Ran- domBeacon Based

on BLS Cryptography. https://daobet.org/blog/on-chain-random-generator/.

[21] DeFi Kingdom. [n. d.]. Official DeFi Kingdoms Whitepaper. https://docs.

defikingdoms.com/.

[22] Defi Kingdom. 2023. Unaffordability of existing VRF service framework. Personal

Communication.

[23] Yevgeniy Dodis. 2003. Efficient Construction of (Distributed) Verifiable Random

Functions. In PKC 2003: 6th International Workshop on Theory and Practice in
Public Key Cryptography (Lecture Notes in Computer Science, Vol. 2567), Yvo
Desmedt (Ed.). Springer, Heidelberg, Germany, Miami, FL, USA, 1–17. https:

//doi.org/10.1007/3-540-36288-6_1

[24] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In PKC 2005: 8th International Workshop on Theory
and Practice in Public Key Cryptography (Lecture Notes in Computer Science,
Vol. 3386), Serge Vaudenay (Ed.). Springer, Heidelberg, Germany, Les Diablerets,

Switzerland, 416–431. https://doi.org/10.1007/978-3-540-30580-4_28

[25] Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld, Zhenfei

Zhang, Shifeng Sun, and Shumo Chu. 2021. Practical Post-quantum Few-Time

Verifiable Random Function with Applications to Algorand. In Financial Cryp-
tography and Data Security - 25th International Conference, FC 2021, Virtual
Event, March 1-5, 2021, Revised Selected Papers, Part II (Lecture Notes in Computer
Science, Vol. 12675), Nikita Borisov and Claudia Diaz (Eds.). Springer, 560–578.

https://doi.org/10.1007/978-3-662-64331-0_29

[26] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word Search and Oblivious Pseudorandom Functions. In Theory of Cryptography,
Joe Kilian (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 303–324.

[27] David Galindo. [n. d.]. Distributed Verifiable Random Functions: an Enabler of

Decentralized Random Beacons. https://github.com/fetchai/research-dvrf.

[28] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. 2021. Fully Dis-

tributed Verifiable Random Functions and their Application to Decentralised

Random Beacons. In IEEE European Symposium on Security and Privacy, EuroS&P
2021, Vienna, Austria, September 6-10, 2021. IEEE, 88–102. https://doi.org/10.

1109/EuroSP51992.2021.00017

[29] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2003. Secure

Applications of Pedersen’s Distributed Key Generation Protocol. In Topics in
Cryptology – CT-RSA 2003 (Lecture Notes in Computer Science, Vol. 2612), Marc

Joye (Ed.). Springer, Heidelberg, Germany, San Francisco, CA, USA, 373–390.

https://doi.org/10.1007/3-540-36563-X_26

[30] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology 20, 1 (Jan. 2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

[31] Sharon Goldberg, Jan Vcelak, Dimitrios Papadopoulos, and Leonid Reyzin. 2018.

Verifiable random functions (VRFs). (2018).

[32] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.

Cryptology ePrint Archive, Paper 2021/339. https://eprint.iacr.org/2021/339

https://eprint.iacr.org/2021/339.

[33] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY

Technology Overview Series, Consensus System. CoRR abs/1805.04548 (2018).

arXiv:1805.04548 http://arxiv.org/abs/1805.04548

[34] Dennis Hofheinz and Tibor Jager. 2016. Verifiable Random Functions from

Standard Assumptions. In TCC 2016-A: 13th Theory of Cryptography Conference,
Part I (Lecture Notes in Computer Science, Vol. 9562), Eyal Kushilevitz and Tal

Malkin (Eds.). Springer, Heidelberg, Germany, Tel Aviv, Israel, 336–362. https:

//doi.org/10.1007/978-3-662-49096-9_14

[35] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. 2017. TOPPSS:

Cost-Minimal Password-Protected Secret Sharing Based on Threshold OPRF. In

ACNS 17: 15th International Conference on Applied Cryptography and Network
Security (Lecture Notes in Computer Science, Vol. 10355), Dieter Gollmann, Atsuko

Miyaji, and Hiroaki Kikuchi (Eds.). Springer, Heidelberg, Germany, Kanazawa,

Japan, 39–58. https://doi.org/10.1007/978-3-319-61204-1_3

[36] Aniket Kate, Easwar Vivek Mangipudi, Siva Mardana, and Pratyay Mukher-

jee. 2023. FlexiRand: Output Private (Distributed) VRFs and Application to

Blockchains. Cryptology ePrint Archive, Paper 2023/1339. https://eprint.iacr.

org/2023/1339 https://eprint.iacr.org/2023/1339.

[37] Neal Koblitz and Alfred Menezes. 2008. Another look at non-standard discrete

log and Diffie-Hellman problems. J. Math. Cryptol. 2, 4 (2008), 311–326. https:

//doi.org/10.1515/JMC.2008.014

[38] Lisa Kohl. 2019. Hunting and Gathering - Verifiable Random Functions from

Standard Assumptions with Short Proofs. In PKC 2019: 22nd International Con-
ference on Theory and Practice of Public Key Cryptography, Part II (Lecture Notes
in Computer Science, Vol. 11443), Dongdai Lin and Kazue Sako (Eds.). Springer,

Heidelberg, Germany, Beijing, China, 408–437. https://doi.org/10.1007/978-3-

030-17259-6_14

[39] Veronika Kuchta and Mark Manulis. 2013. Unique Aggregate Signatures with

Applications to Distributed Verifiable Random Functions. In CANS 13: 12th
International Conference on Cryptology and Network Security (Lecture Notes
in Computer Science, Vol. 8257), Michel Abdalla, Cristina Nita-Rotaru, and Ri-

cardo Dahab (Eds.). Springer, Heidelberg, Germany, Paraty, Brazil, 251–270.

https://doi.org/10.1007/978-3-319-02937-5_14

[40] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random

Functions. In 40th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, New York, NY, USA, 120–130. https://doi.org/10.1109/

SFFCS.1999.814584

[41] Moni Naor, Benny Pinkas, and Omer Reingold. 1999. Distributed Pseudo-random

Functions and KDCs. In Advances in Cryptology – EUROCRYPT’99 (Lecture Notes
in Computer Science, Vol. 1592), Jacques Stern (Ed.). Springer, Heidelberg, Ger-

many, Prague, Czech Republic, 327–346. https://doi.org/10.1007/3-540-48910-

X_23

[42] David Niehues. 2021. Verifiable Random Functions with Optimal Tightness. In

Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on
Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12711), Juan A. Garay

(Ed.). Springer, 61–91. https://doi.org/10.1007/978-3-030-75248-4_3

[43] Polkadot. [n. d.]. Polkadot Wiki – Randomness. https://wiki.polkadot.network/

docs/learn-randomness.

[44] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2019.

ETHDKG: Distributed Key Generation with Ethereum Smart Contracts. Cryptol-

ogy ePrint Archive, Report 2019/985. https://eprint.iacr.org/2019/985.

[45] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. InAdvances in Cryptology – CRYPTO’89 (Lecture Notes in Computer Science,
Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 239–252. https://doi.org/10.1007/0-387-34805-0_22

[46] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[47] Wax. [n. d.]. WAX RNG Basics. https://blog.chain.link/chainlink-vrf-on-chain-

verifiable-randomness/.

A SMART-CONTRACT BASED VRF SERVICE
FRAMEWORK

We depict the message flow in the VRF service framework in Fig-

ure 1. To avail of the service any user first forwards their own

input to the smart contract along with the callback function to be

called with the VRF output; this is indicated by step 1 in Figure 1.

The smart contract may be running on any blockchain service like

Ethereum. When input from the user is sent to the smart contract,

after verifying the input format and checking that the same value

has not been requested previously, the smart contract combines it

with additional information (detailed below) forming the VRF input

INP. The VRF service fetches the formatted request from the smart

contract. Each of the nodes of the service computes a partial evalu-

ation of the user input by running the Part.Eval𝑠𝑘𝑖 (INP) and also

generates the (zero-knowledge) proof of correctness of the compu-

tation. At least 𝑡 + 1 partial evaluations are aggregated (typically

using aggregator nodes) by running the Aggregate(·) algorithm
after verifying the zero-knowledge proofs. The final VRF output

and an accompanying proof are sent to the smart contract, which

then verifies the correctness of the VRF output. If that succeeds, it

invokes the user-specified callback function with the VRF value as

the input. Below we summarize the steps of Figure 1:

(1) The user forwards its own input to the smart contract.

(2) The smart contract combines user input with other values

and produces the VRF input INP.
(3) The VRF service nodes fetch the input, and verify the le-

gitimacy of INP (for example, by verifying the signature

provided by the contract), and whether it was previously

used.

• Each node in the VRF committee computes the partial

evaluation on INP with the zero-knowledge proof of

https://doi.org/10.1145/3548606.3560638
 https://daobet.org/blog/ on-chain- random-generator/
https://docs.defikingdoms.com/
https://docs.defikingdoms.com/
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-64331-0_29
https://github.com/fetchai/research-dvrf
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/s00145-006-0347-3
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://arxiv.org/abs/1805.04548
http://arxiv.org/abs/1805.04548
https://doi.org/10.1007/978-3-662-49096-9_14
https://doi.org/10.1007/978-3-662-49096-9_14
https://doi.org/10.1007/978-3-319-61204-1_3
https://eprint.iacr.org/2023/1339
https://eprint.iacr.org/2023/1339
https://eprint.iacr.org/2023/1339
https://doi.org/10.1515/JMC.2008.014
https://doi.org/10.1515/JMC.2008.014
https://doi.org/10.1007/978-3-030-17259-6_14
https://doi.org/10.1007/978-3-030-17259-6_14
https://doi.org/10.1007/978-3-319-02937-5_14
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-030-75248-4_3
https://wiki.polkadot.network/docs/learn-randomness
https://wiki.polkadot.network/docs/learn-randomness
https://eprint.iacr.org/2019/985
https://doi.org/10.1007/0-387-34805-0_22
 https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
 https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

correct evaluation. They send them to the aggregator

nodes of the VRF service.

(4) When more than 𝑡 partial evaluations are obtained at an

aggregator node, they are aggregated to compute the VRF

output and accompanying proof of correctness. The pair is

then sent to the smart contract as a response.

(5) The smart contract verifies the VRF output.

(6) If the verification succeeds, it invokes the user-specified

callback function.

Output-private VRF. For the Pri-VRFcomputation, the frame-

work stays similar to the above non-private case. However, the

workflow changes slightly. In particular, initially, when the user

forwards its input to the smart contract, the smart contract creates

the VRF input INP and sends it back to the user, who then blinds

INP and sends a pair consisting of blinded INP and an accompa-

nying zero-knowledge proof of correct blinding. The VRF service

nodes fetch this zero-knowledge proof and the blinded input. The

rest of the workflow is similar to before; the smart contract will run

Pre-verification PreVer instead of Verification Verify now. This is

depicted in Figure 2. The callback function should run the Unblind
algorithm on the blinded output inside it to obtain the VRF output.

Here we describe all the fields included in the VRF input INP. Con-
structing the VRF input, INP.. The VRF input is produced by the
smart contract. Each input INP is a concatenation of the following

values:

• User input – this is the user’s chosen input and may be

empty.

• Block-hash – this is included to ensure that no one can

request the input before the block-hash is computed. This

prevents one from pre-computing a VRF output to be used

at a later time.

• Unique nonce –a unique nonce generated at the specific

smart contract each time a VRF is called. This ensures that

each VRF input is different. For this, the smart contract

must keep a state (for example, a counter).

• Chain id – this distinguishes inputs generated at two dif-

ferent blockchains (for example, Ethereum and Solana).

• User address – this is user-specific information to distin-

guish between requests from different users.

• Callback function name – this is included to distinguish

between two different functions coming from the same user

at about the same time.

• VRF or Pri-VRF– this is a flag distinguishing between a

Pri-VRFand VRF. Without this, a PVRF request may be ma-

liciously processed as a DVRF, leading to exposure of the

output.

A.1 GLOW-DVRF Framework [27, 28]
The Distributed Verifiable Random Functions implementation [27],

which we call GLOW-framework, realizes the three DVRFs, Dfinity-

DVRF, the DDH-DVRF, and the GLOW-DVRF [28]. The framework

is written inC++ and provides implementations of the pairing-based

GLOW-DVRF and Dfinity-DVRF protocols with curves BN256,
BN384, and BLS12-381, and DDH-DVRF with curve Ristretto255.
The pairing-based protocols are implemented using mcl [2] and

RELIC [5] cryptographic libraries and the DDH-DVRF protocol

with Libsodium. The code compares the performance of the DVRFs

for three curves, BN256, BN384 and BL12-381. It realizes distributed
key generation protocol of Gennaro et al.[30] along the consensus

layer for reliable broadcast.

B MISSING PROOFS
In this section, we present the proofs that are missing from the

main body.

B.1 Proof of Theorem 1
We consider a simpler case consisting of three parties, who are

performing specific tasks: a client 𝑃𝐶 who’s sending/receiving in-

puts, a server 𝑃𝑆 who’s holding VRF keys and is performing the

evaluations and an eavesdropper 𝑃𝐸 who has no input, and is just

observing the communications (we assume authenticated but no

secure channels). All three parties may perform the public opera-

tions such as verifications based on the publicly available values.

We build three distinct simulators S𝐸 , S𝑆 and S𝐶 for three distinct

cases

• Case-1: S𝐸 : a corrupt 𝑃𝐸 , when 𝑃𝐶 and 𝑃𝑆 are honest.

• Case-2: S𝐶 : a corrupt 𝑃𝐶 , when 𝑃𝐸 and 𝑃𝑆 are honest.

• Case-3: S𝑆 : a corrupt 𝑃𝑆 , when 𝑃𝐸 and 𝑃𝐶 are honest.

We argue that this is without loss of generality because, in a multi-

player scenario, any corruption can be simulated by a combination

of these when a party can in fact act as any of the three roles or a

combination of them. Nevertheless, for a particular execution, de-

fined by (𝑣𝑘, 𝑥), a party can have exactly one of the three roles – the

input provider, who provides 𝑥 , is a client, the VRF-evaluator, who

owns the key 𝑣𝑘 , is a server and everyone else is an eavesdropper.

Therefore, for any scenario, the generic simulation strategy would

be to identify the role of each corrupt party corresponding to an

execution and then use the corresponding simulation strategy from

above as a sub-routine. Therefore, it is sufficient to describe each

simulator and argue why the simulations work, which we present

next.

Case-1. 𝑃𝐸 corrupt. In this case, we need to ensure that no eaves-

dropper can learn the VRF output until it is revealed, even if it

can access the input 𝑥 , the verification-key 𝑣𝑘 plus the entire tran-

script. Essentially this case specifically captures the output-privacy

property we formalize in this paper. For any standard VRF scheme

without output-privacy, this step can not be simulated.

The main idea here is that S𝐸 simulates honest client 𝑃𝐶 and

honest server 𝑃𝑆 just as honest parties and also simulates all random

oracle (RO) queries. For the server, it runs Keygen to generate

(𝑠𝑘, 𝑣𝑘) and then registers 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑆]. When it receives the

message (Input, 𝑣𝑘, 𝑥) from the ideal functionality, it generates

uniform random 𝜌 and correctly computes the blinded input 𝑥 . It

is then given to the adversary (corrupt 𝑃𝐸). From the server side,

the simulator computes 𝑦 correctly and knows 𝑠𝑘 . So the corrupt

eavesdropper obtains the following values before unblinding:

• public key 𝑣𝑘 = (𝑣𝑘1 = 𝑔𝑠𝑘
1
, 𝑣𝑘2 = 𝑔𝑠𝑘

2
);

• input 𝑥 , and subsequently H1 (𝑥) through RO query;

• blinded input𝜓 = H1 (𝑥)𝜌 and the NIZK proof 𝜇;

• blinded output 𝑦 = H1 (𝑥)𝜌𝑠𝑘 .
After the unblinding phase 𝑃𝐸 additionally gets 𝑦 = H2 (𝜋) and 𝜋 =

H1 (𝑥)𝑠𝑘 . The simulator only gets a uniform random 𝑦 after making

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

an explicit unblinding query on 𝛽 = 𝑦, namely (Unblind, 𝑥, 𝛽) to
the ideal functionality. So it needs to program 𝑦 as H2 (𝜋). This is
easily done as long as the adversary makes a random oracle query

after the unblinding phase. However, if the simulator receives a

random oracle query on H2 (𝜋) before the unblinding phase, then it

fails. This is because the only way for the simulator to obtain (𝑦, 𝜋)
is through an explicit Unblind query. In particular, since both 𝑃𝐶
and 𝑃𝑆 are honest, the simulator does not get the output during

Eval or by any other means. So, before the unblind phase, there was

no (Reveal, 𝑣𝑘, 𝑥) query from the honest client, and hence at this

point the pair (𝑣𝑘, 𝑥) is not marked Revealed, and consequently,

the simulator can not obtain 𝑦. So, for a successful simulation,

we need to prove that the probability that the eavesdropper can

predict the value 𝜋 = H1 (𝑥)𝑠𝑘 (and subsequently make a RO query

with that) must be negligible. We argue that, unless it is so, we

can construct a PPT algorithm to break the co-CDH assumption

over bilinear groups with non-negligible probability. The reduction

works as follows:

Given a co-CDH instance:

𝑔1, 𝑔
𝑠𝑘
1
, ℎ1 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2
∈ G2

for uniform random generators 𝑔1, ℎ1, 𝑔2 and a uniform random

field element 𝑠𝑘 ∈ Z𝑝 . The reduction’s goal is to compute ℎ𝑠𝑘
1
. For

that, the reduction simulates as follows:

• Let 𝑠𝑘 be the secret-key of the scheme (implicitly), then

𝑣𝑘1 = 𝑔𝑠𝑘
1

and 𝑣𝑘2 = 𝑔𝑠𝑘
2

and 𝑣𝑘 := (𝑣𝑘1, 𝑣𝑘2) is the ver-
ification key. Note that the reduction can not mimic the

simulator as it does not know 𝑠𝑘 .

• Program the RO query H1 (𝑥) := ℎ1. However, for 𝑞 =

poly(𝜅) many queries, this 𝑥 must be guessed by the reduc-

tion, which is correct with probability 1/𝑞, incurring a loss

by the same factor.

• Choose uniform random 𝑟 ←
$
Z𝑝 , and compute 𝑔1 = 𝑔𝑟

1

and 𝑔𝑠𝑘
1

:= 𝑔𝑟𝑠𝑘
1

. Then implicitly define𝜓 := 𝑔1 and 𝑦 := 𝑔𝑠𝑘
1
.

• Finally NIZK proof 𝜇 is simulated using the simulatorKepSimu
on the instance (ℎ1,𝜓 = 𝑔1) .

We argue that the above simulation is correct. Most part of this is

straightforward to see. However, the simulation of𝜓 is done in a

manner such that the blind state 𝜌 for which𝜓 = H1 (𝑥)𝜌 remains

unknown, though H1 (𝑥) is known. This is possible because the

client is honest and therefore 𝜌 must come from a uniform random

distribution. By setting 𝑔 = 𝑔𝑟
1
= H1 (𝑥)𝜌 , the simulator is implicitly

setting 𝑟 = 𝜌𝜔 whereℎ1 = 𝑔𝜔
1
knowing neither𝜔 (which is basically

DLOGℎ1
(𝑔1)) nor 𝜌 , but only 𝑟 , which is again distributed uniformly

at random. Now, clearly if the adversary makes a RO query H2 (𝜋)
where 𝜋 = ℎ𝑠𝑘

1
, the reduction checks whether 𝑒 (ℎ1, 𝑣𝑘2) = 𝑒 (𝜋,𝑔2),

and if it satisfies the reduction output 𝜋 as the answer to the Co-

CDH challenger.

So, we have that:

Pr[E1] ≥
1

𝑞
· Pr[E2]

where the probabilities are over the randomnesses of the reduction

and the adversary and the events E1 and E2 are defined as:

• E1 : The reduction breaks Co-CDH.

• E2 : The adversary (corrupt 𝑃𝐸) makes a RO queryH2 (ℎ𝑠𝑘
1
).

and the loss 𝑞 was introduced due to guessing in programming the

correct challenge. This concludes the proof of this case, because

𝑞 = poly(𝜅).
Case-2: 𝑃𝐶 corrupt.. In this case, the simulator simulates the hon-

est server to corrupt client. There are twomain objectives of the cor-

rupt client: (i) to produce a malformed pair (𝜓, 𝜇); (ii) to distinguish
𝑦 from a uniform random string. The first attack is prevented easily

by the soundness of NIZK used. Handling the second scenario is

more involved. Nevertheless, it can be proven using techniques sim-

ilar to Jarecki et al. [35] and Agrawal et al. [3] who provide proofs

of pseudorandomness of a very similar OPRF construction. In par-

ticular, we need to prove that if a corrupt client makes 𝑞 = poly(𝜅)
many complete evaluation queries to the server, it is unable to

produce more than 𝑞 “valid” triples (𝑥1, 𝑦1, 𝜋1), . . . , (𝑥𝑞, 𝑦𝑞, 𝑦𝑞). We

will argue, unless this is true, there is a PPT reduction which would

break the Bilinear One-more DH (BOMDH) problem in the under-

lying pairing-supported groups.

The simulator simulates the honest server by sampling a key pair

(𝑠𝑘, 𝑣𝑘) using Keygen and registering 𝑣𝑘 for 𝑃𝑆 as 𝑣𝑘 ∈ 𝐾𝑒𝑦𝑠 [𝑃𝑆].
In this case, the adversary sends client’s message (𝑥,𝜓, 𝜇). The
simulator sends back 𝑦 = 𝑥𝑠𝑘 and set 𝛽 := 𝑦. Now, due to the

soundness of the zero-knowledge proof, the adversary is bound to

send 𝜓 = (𝑥,H1 (𝑥)𝜌) with overwhelming probability. So, in the

end it obtains 𝜋 = H1 (𝑥)𝑠𝑘 from the server interaction and then

subsequently H2 (𝜋). The hash functions H1 and H2 are simulated

as random oracles on-the-fly in a straightforward manner. This is

repeated for 𝑞 = 𝑂 (poly(𝜅)) many times, after which the adversary

obtains 𝑞 triples 𝑋 = {(𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖)}𝑖∈[𝑞] . We want to bound the

following probability by the probability of breaking BOMDH.

Pr[E1 |E2]
where the events are defined as:

• E1: Verify(𝑣𝑘, (𝑥∗, 𝑦∗, 𝜋∗)) = 1 ∧ (𝑥∗, 𝑦∗, 𝜋∗) ∉ 𝑋
• E2: 𝑃𝐶 outputs (𝑥∗, 𝑦∗, 𝜋∗)

The reduction to BOMDH works as follows: Given an Bilinear

OMDH instance

𝑔1, 𝑔
𝑠𝑘
1
, 𝑔1, 𝑔2, . . . , 𝑔𝑘 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2
∈ G2

for uniform generators 𝑔1, {𝑔𝑖 }𝑖∈[𝑞] , 𝑔2 and uniform random field

element 𝑠𝑘 ∈ Z𝑝 , and an exponentiation oracle, which on input

any element 𝑔 ∈ G1 returns 𝑔𝑠𝑘 (let us call this 𝑠𝑘-exp oracle), the

reduction’s goal is to compute 𝑞 + 1 pairs

(𝑔1, 𝑔
𝑠𝑘
1
), . . . , (𝑔𝑞+1, 𝑔𝑠𝑘𝑞+1)

by making at most 𝑞 (𝑘 ≥ 𝑞 + 1) queries to the 𝑠𝑘-exp oracle such

that for all 𝑖 ∈ [𝑞 + 1], 𝑔𝑖 ∈ {𝑔1, . . . , 𝑔𝑚}.
Towards that the reduction simulates our setting to the adversary

(corrupt 𝑃𝐶) as follows:

(1) Let the secret-key be (implicitly) 𝑠𝑘 , and then the verifica-

tion key becomes 𝑣𝑘 := (𝑣𝑘1, 𝑣𝑘2) where 𝑣𝑘1 = 𝑔𝑠𝑘
1

and

𝑣𝑘2 = 𝑔𝑠𝑘
2
.

(2) Each RO query H(𝑥𝑖) is responded with 𝑔𝑖 . Store such 𝑥𝑖
into a list 𝐿.

(3) When the client sends (𝑥𝑖 ,𝜓𝑖 , 𝜇𝑖), then first verify the proof

using KExpVer, and if it succeeds then use the 𝑠𝑘-exp oracle

to obtain 𝑦𝑖 := 𝜓𝑠𝑘
𝑖

and return that to the adversary. Keep a

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

counter cnt to keep track of the number of distinct access

to 𝑠𝑘-exp oracle.

(4) Each RO query H2 (𝛼) is responded with Rand(𝛼). For
each such query, check if there exists any 𝑥𝑖 ∈ 𝐿 such

that 𝑒 (H1 (𝑥𝑖), 𝑣𝑘2) = 𝑒 (𝛼,𝑔2). If yes, then store the triple

(𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖) to a list 𝐹 , where 𝑦𝑖 := Rand(𝛼) and 𝜋𝑖 := 𝛼 . At

any time |𝐹 | > cnt, output 𝐹 as the answer to the BOMDH

challenger.

We argue that the above simulation is correct despite the fact that

the reduction, unlike the simulator, does not have access to the

secret-key 𝑠𝑘 . However, this was resolved using the 𝑠𝑘-exp oracle.

The random oracles are simulated perfectly too by plugging in

the values from the challenge. Now, since the counter cnt is incre-
mented only when a evaluation query is completed, whenever the

adversary is able to produce one more valid triple, |𝐹 | > |cnt| and
the reduction wins the BOMDH game.

So, we can claim that:

Pr[E] ≥ Pr[E1 | E2]
where E defines the event when the reduction wins the BOMDH

game. This concludes the proof of this case.

Case-3. 𝑃𝑆 corrupt. When the server is corrupt, the “unpredictabil-

ity aspect” of the construction is off the table. However, even in

that case, the public verifiability guarantees that the server can not

produce an output that is incorrect, for example, biased towards a

specific value. In other words, though unpredictability can not be

guaranteed, the so-called “unbiasability” would continue to hold.

The simulator, in this case, receives the verification key 𝑣𝑘 from

the adversarial server 𝑃𝑆 and registers it with the ideal functional-

ity within 𝐾𝑒𝑦𝑠 [𝑃𝑆] while controlling the ideal server 𝑃𝑆 . Then it

simulates the honest client to the corrupt server as follows:

(1) The simulator maintains two lists 𝐼 and 𝐿, where 𝐼 contains

pairs (𝑥,𝜓), that is the information with respect to the

input and corresponding client’s message (generated by

the simulator); and 𝐿 contains tuples (𝑥, 𝜋, 𝛽,𝑦), that is
information from the entire evaluation, including server’s

message and the output with respect to an input.

(2) On receiving (Input, 𝑣𝑘, 𝑥) sample a uniform random 𝜌 ←
$

Z𝑝 and then construct (𝑥, 𝑥) just like an honest party, where
𝑥 = (𝜓 := H1 (𝑥)𝜌 , 𝜇). Append (𝑥,𝜓) to a list 𝐼 .

(3) On receiving a message 𝑦 from the server:

(a) If there is an (𝑥,𝜓) ∈ 𝐼 such that 𝑒 (𝑦,𝑔2) = 𝑒 (𝜓, 𝑣𝑘2):
(i) If (𝑥, ∗, ∗, ∗) ∉ 𝐿: then issue an evaluation query

(Eval, 𝑥, 𝑣𝑘) to the ideal functionality, and when
the ideal functionality returns the same query,

reply with (𝜋 := 𝑦1/𝜌 , 𝛽 := 𝑦). Finally, on re-

ceiving an output 𝑦 from the ideal functionality

store (𝑥, 𝜋, 𝛽,𝑦) into 𝐿.
(ii) If there is (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿: reply the evaluation

query with (𝜋, 𝛽).
(b) Otherwise, on receiving the evaluation query from the

ideal functionality, reply with ⊥.
(4) On receiving an RO query H2 (𝜋):

(a) If there is an (𝑥,𝜓) ∈ 𝐼 , such that 𝑒 = (𝜋,𝑔2) =

𝑒 (H1 (𝑥), 𝑣𝑘2) but (𝑥, ∗, ∗, ∗) ∉ 𝐿 : thenmake a (Eval, 𝑣𝑘, 𝑥)
query to the ideal functionality and respondwith (𝜋, 𝛽 :=

𝜋𝜌). On the completion of the evaluation query, re-

ceive 𝑦 from the ideal functionality which it programs

as an answer H2 (𝜋) := 𝑦. Append (𝑥, 𝜋, 𝛽,𝑦) into 𝐿.
(b) If there exists a tuple (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿, then answer with

H2 (𝜋) := 𝑦.

(c) Otherwise just respond with Rand(𝜋).
Other queries are straightforward to handle in this case. We argue

that the above simulation is correct with overwhelming probability.

In particular, unless the adversarial server can guessH1 (𝑥)𝑠𝑘 before
observing 𝑥 , the simulation would be perfect. Note that, once the

server obtains 𝑥 , a pair (𝑥,𝜓) gets listed in 𝐼 . And then there are

two cases: (i) The adversary makes a RO query H2 (𝜋), with a valid

𝜋 for which the verification equation holds, before it returns 𝑦: in

this case, the simulator first executes Step 4a. Later when it receives

𝑦, it executes Step 3(a)ii. Clearly, in this case, the simulator is able

to consistently program the random oracle and then subsequently

finish the evaluation using ideal functionality. (ii) In the other case,

the adversary first sends 𝑦 and later makes a RO query H2 (𝜋):
the simulator now first executes Step 3(a)i, and later Step 4c. In

this case, since the pre-verification must satisfy, the simulation

would be perfect. Of course, in case the pre-verification does not

satisfy, the simulator would not allow to complete the evaluation,

which it ensures by sending ⊥ to the ideal functionality. However,

if the adversary can correctly predict the output of H1 (𝑥) without
explicitly making RO query H1 (𝑥), the simulation would fail, as it

could not have 𝑦 without making an evaluation query to the ideal

functionality – this clearly happens only with negligible probability.

This concludes the proof.

B.2 Proof of Theorem 3
Similar to the proof of the non-threshold case (Theorem 1) we con-

sider a simpler setting consisting of a single client 𝑃𝐶 who has

inputs, 𝑛 servers S = {𝑃1, . . . , 𝑃𝑛} each of whom holds a partial VRF

secret-key (that is, 𝑃𝑖 holds 𝑠𝑘𝑖) after a successful DKG execution

and they perform the evaluations jointly, an aggregator 𝑃𝐴 who

observes all communications and performs any verification just

like the eavesdropper in the proof of Theorem 1, but additionally

aggregates the partial responses, and sends the aggregated value

to the client, and an eavesdropper 𝑃𝐸 . Note that, neither the eaves-

dropper’s functionality is a subset of the aggregator’s functionality

and hence we can often consider them as a single entity. We again

note that for each execution corresponding to a specific (𝑣𝑘, 𝑥) a
party plays exactly one role, although across different executions

that can change. Again we argue that considering this specific set-

ting is without loss of generality. To see that fix a specific (𝑣𝑘, 𝑥).
Then, the overall objectives of different entities can be described as

follows for the above setting:

• The honest 𝑃𝐶 and an uncorrupted set S (that has no more

than 𝑡 corrupt servers) intend to compute a VRF 𝑦 = 𝑉𝑠𝑘 (𝑥)
correctly and securely, so that no one else can recover/predict

𝑦, given the entire transcripts that include 𝑥 , without query-

ing explicitly on 𝑥 (which is prevented as (𝑣𝑘, 𝑥) is unique
to each party.

• If the client is corrupt, and colludes with up to 𝑡 malicious

servers in S then she tries to break the pseudorandomness

of 𝑦. In this case, the protocol should guarantee that unless

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

the client derives 𝑦 explicitly by interacting with honest

servers, the value 𝑦 remains pseudorandom.

• If only the client is honest, and everyone else in the system

is corrupt, then the client’s objective would be to ensure

that, the value 𝑦 is, nevertheless, computed correctly by

the server (and forwarded by the aggregator), where the

adversarial server would try to produce an incorrect (and

potentially biased) value 𝑦′ ≠ 𝑉𝑠𝑘 (𝑥) such that it appears

legitimate to the client. Obviously, the unpredictability of

𝑦 is impossible to guarantee in this case.

It is not hard to see that this exhausts the objectives of all parties in

the system. In a more complex system, for each execution (defined

by (𝑣𝑘, 𝑥)), the strategy would be to assign roles to each party, and

then deal with them separately by different simulation strategies

corresponding to each case respectively as described below:

• Case-1: S𝐸 : 𝑃𝐴 , 𝑃𝐸 and a set C ⊂ S of servers are corrupt

such that |C| ≤ 𝑡 (recall, 𝑡 is the threshold of the system).

The client and other servers in H = S \ C are honest.

• Case-2: S𝐶 : 𝑃𝐶 and the set C ⊂ S of servers are corrupt

such that |C| ≤ 𝑡 . The aggregator (and the eavesdropper)

and rest of the servers in H are honest.

• Case-3: S𝑆 : |C| ≥ 𝑡 + 1 and the aggregator 𝑃𝐴 (plus 𝑃𝐸) are

corrupt. The client 𝑃𝐶 and the servers in H (|H| < 𝑡) honest.
Case-1: Corrupt 𝑃𝐸 , 𝑃𝐴 and severs in C with |C| ≤ 𝑡 . We remark

that this case is analogous to Case-1 in the non-threshold setting

(Theorem 1), because since less than 𝑡 servers are corrupted, the

secret-key 𝑠𝑘 is hidden information theoretically and hence the

adversary should not see the output before the Reveal phase even

if it is provided with (𝑣𝑘, 𝑥) and the entire transcripts – this case

specifically captures the “output-privacy” property introduced in

this work.

The simulation strategy can be extended straightforwardly from

the centralized PVRF analysis, except for the following two things:

• In contrast to the centralized case, here the blinded output

is sent by a potentially corrupt aggregator. However, this

is rather easy to simulate due to the pre-verification check.

In particular, once the simulator receives an aggregated

value from the corrupt aggregator, it uses pre-verification

to determine the correctness of that, and if the check fails,

return ⊥ to the request (Aggregate, 𝑣𝑘, 𝑥, . . .).
• Since there are 𝑓 ≤ 𝑡 corrupt servers, the simulator needs

to provide them the key shares {𝑠𝑘𝑖 }𝑖∈[𝑓] (for simplicity

denote the corrupt servers by 𝑃1, . . . , 𝑃𝑓). The simulator

does this by computing each share using Shamir’s secret

sharing. Furthermore, the corrupt server’s response can be

checked using partial pre-verification.

The adversary obtains the following values in total before the

Reveal phase:

• public key 𝑣𝑘 = (𝑝𝑘 = 𝑔𝑠𝑘
2
, {𝑝𝑘𝑖 = 𝑔

𝑠𝑘𝑖
1
}𝑓 <𝑖≤𝑛);

• corrupt secret-keys {𝑠𝑘𝑖 }𝑖∈[𝑓]
• input 𝑥 , and subsequently H1 (𝑥) through RO query;

• blinded input𝜓 = H1 (𝑥)𝜌 and the NIZK proof of knowledge

of exponent 𝜇;
• blinded partial outputs 𝑦𝑖 = (𝑤𝑖 = 𝜓𝑠𝑘𝑖 , 𝜋𝑖) for 𝑖 ∈ {𝑓 +

1, . . . , 𝑛}, where 𝜋𝑖 is a NIZK proof of equal exponent with

respect to 𝑣𝑘𝑖 .

• blinded output 𝑦 = H1 (𝑥)𝜌𝑠𝑘 .
Again, we need to ensure that the probability that the adversary

can ask an RO query to H2 (·) on 𝜋 = H1 (𝑠𝑘) is negligible. We

reduce this again to Co-CDH akin to the centralized case. Given a

Co-CDH instance:

𝑔1, 𝑔
𝑠𝑘
1
, ℎ1 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2
∈ G2

for uniform random generators 𝑔1, ℎ1, 𝑔2 and a uniform random

field element 𝑠𝑘 ∈ Z𝑝 . The reduction’s goal is to compute ℎ𝑠𝑘
1
. For

that, the reduction simulates as follows:

• Let 𝑠𝑘 be the secret-key of the scheme (implicitly), then

𝑝𝑘 = 𝑔𝑠𝑘
2
. Let the corrupt set be {𝑃1, . . . , 𝑃𝑓 }. Then choose

𝑡 random 𝑠𝑘𝑖 ←$
Z𝑝 and set for each 𝑖 ∈ [𝑡]: 𝑣𝑘𝑖 := 𝑔

𝑠𝑘𝑖
1

.

For ∈ {𝑡 + 1, . . . , 𝑛} use the Lagrange interpolation in the

exponent to construct 𝑣𝑘𝑖 := 𝑔
𝑠𝑘𝑖
1

where implicitly using 𝑠𝑘

at point 0 and for each 𝑖 ∈ [𝑡]: 𝑠𝑘𝑖 as the 𝑖-th polynomial

output. Set 𝑣𝑘 := (𝑝𝑘, {𝑣𝑘𝑖 }𝑖∈[𝑛]) as the verification key.

• Program the RO query H1 (𝑥) := ℎ1.

• Choose uniform random 𝑟 ←
$
Z𝑝 , and compute 𝑔1 = 𝑔𝑟

1

and 𝑔𝑠𝑘
1

:= 𝑔𝑟𝑠𝑘
1

. Define𝜓 := 𝑔. Then for 𝑖 ∈ [𝑛] define for
each 𝑖 ∈ [𝑛] 𝑤𝑖 := 𝑔

𝑠𝑘𝑖
1

. The associated NIZK proof 𝜋𝑖 is

simulated using EqSimu if 𝑠𝑘𝑖 is unknown, otherwise, it is

computed correctly.

• Finally NIZK proof 𝜇 is simulated using the simulatorKepSimu
on the instance (ℎ1,𝜓 = 𝑔1) .

Similar to the centralized case, we can argue that the above sim-

ulation is correct. Note that, since no partial evaluation H1 (𝑥)𝑠𝑘𝑖
is given to the adversary, the issue (which comes up in [4, 28]) in

simulating the honest partial evaluations on the challenge input

does not arise. The rest of the proof for this case mimics that of the

centralized case.

Case-2: Corrupt client 𝑃𝐶 plus servers in C with |C| ≤ 𝑡 . This
case is again analogous to the Case-2 in the non-threshold setting

(Theorem 1), as ≤ 𝑡 corrupt servers essentially implies the secret-

key is unknown to the adversary. Therefore, although the output is

revealed immediately through an explicit query (no output privacy

is guaranteed), the pseudorandomness of the output should still

hold. In particular, we need to argue that, unless the client explicitly

queries on 𝑥 , it does not know 𝑦 = 𝑉𝑠𝑘 (𝑥). The simulation strategy,

in this case, can be adapted from the centralized case.

In this case, the simulator simulates the honest server to corrupt

client and corrupt servers in C. Again, there are two main objectives

of the adversary: (i) to produce a malformed pair (𝜓, 𝜇); (ii) to
distinguish 𝑦 from a uniform random string, while controlling up

to 𝑡 servers. The first attack is prevented easily by the soundness

of NIZK used. To handle the second attack, we use techniques

similar to Jarecki et al. [35] and Agrawal et al. [3] provide proofs of

pseudorandomness of a very similar Distributed OPRF construction.

In fact, we use a proof technique similar to the centralized case, but

now in the threshold setting. In particular, we need to prove that if a

corrupt client makes 𝑞 = poly(𝜅) many complete (here it means for

each 𝑥𝑖 it completes at least 𝑡+1−𝑓 honest partial evaluation queries,
and the aggregation query subsequently) evaluation queries to the

honest servers, it is unable to produce more than 𝑞 “valid” triples

(𝑥1, 𝑦1, 𝜋1), . . . , (𝑥𝑞, 𝑦𝑞, 𝑦𝑞). We will argue unless this is true, there

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

is a PPT reduction that would break the Threshold Bilinear One-

more DH (T-BOMDH) problem in the underlying pairing-based

groups.

So, following the footsteps of the proof of Theorem 1, we want

to bound the following probability by the probability of breaking

BOMDH.

Pr[E1 |E2]
where the events are defined as:

• E1: Verify(𝑣𝑘, (𝑥∗, 𝑦∗, 𝜋∗)) = 1 ∧ (𝑥∗, 𝑦∗, 𝜋∗) ∉ 𝑋 where 𝑋

lists all𝑞 triples that are generated after making𝑞 “complete

evaluation” queries.

• E2: 𝑃𝐶 outputs a new triple (𝑥∗, 𝑦∗, 𝜋∗)
The reduction to BOMDH works as follows: Given a T-BOMDH

instance

𝑔1, 𝑔
𝑠𝑘
1
, 𝑔1, 𝑔2, . . . , 𝑔𝑘 ∈ G1; 𝑔2, 𝑔

𝑠𝑘
2
∈ G2

for uniform generators 𝑔1, {𝑔𝑖 }𝑖∈[𝑞] , 𝑔2 and uniform random field

element 𝑠𝑘 ∈ Z𝑝 , and an oracle that, on query (𝑗, 𝑔) for any element

𝑔 ∈ G1 and any index 𝑗 ∈ [𝑛] returns 𝑔𝐷 (𝑗) where 𝐷 is a 𝑡-degree

polynomial such that 𝐷 (0) = 𝑠𝑘 , when any 𝑓 ≤ 𝑡 points are fixed
by the adversary (let us call this 𝐷-poly-exp oracle). In this case,

since |C| = {𝑃1, . . . , 𝑃𝑓 }, the reduction chooses 𝑓 uniform random

𝑠𝑘 𝑗 and set 𝐷 (𝑗) := 𝑠𝑘 𝑗 . The reduction’s goal is to compute 𝑞 + 1

pairs

(𝑔1, 𝑔
𝑠𝑘
1
), . . . , (𝑔𝑞+1, 𝑔𝑠𝑘𝑞+1)

by making at most 𝑞 (𝑘 ≥ 𝑞 + 1) “complete queries” to the 𝐷-poly-

exp oracle such that for all 𝑖 ∈ [𝑞 + 1], 𝑔𝑖 ∈ {𝑔1, . . . , 𝑔𝑚} and each

complete query means at least querying for ≥ 𝑡 ′ := 𝑡 +1− 𝑓 distinct
𝑗 . Towards that the reduction simulates our setting to the adversary

as follows:

(1) Let 𝑠𝑘 be the secret-key of the scheme (implicitly), then

𝑝𝑘 = 𝑔𝑠𝑘
2
. For the corrupt set C = {𝑃1, . . . , 𝑃𝑓 } choose 𝑓

random 𝑠𝑘 𝑗 ←$
Z𝑝 and set for each 𝑗 ∈ [𝑓]: 𝑣𝑘 𝑗 := 𝑔

𝑠𝑘 𝑗

1
.

For 𝑗 ∈ {𝑓 + 1, . . . , 𝑡} use the 𝐷-poly-exp oracle to get

𝑣𝑘 𝑗 := 𝑔
𝐷 (𝑗)
1

where implicitly using 𝐷 (0) = 𝑠𝑘 and for each

𝑗 ∈ [𝑓]: 𝐷 (𝑗) = 𝑠𝑘 𝑗 . Note that for 𝑔1 the oracle was queries

only 𝑡 ′ − 1 times, it will not be counted towards the budget.

Set 𝑣𝑘 := (𝑝𝑘, {𝑣𝑘 𝑗 } 𝑗∈[𝑛]) as the verification key.

(2) Each RO query H(𝑥𝑖) is responded with 𝑔𝑖 . Store such 𝑥𝑖
into a list 𝐿.

(3) When the corrupt client sends (𝑥𝑖 ,𝜓𝑖 , 𝜇𝑖 , 𝑃 𝑗), then first ver-

ify the proof using KExpVer, and if it succeeds then use the

𝐷-poly-exp oracles to obtain𝑤 𝑗 := 𝜓
𝑠𝑘 𝑗

𝑖
for honest 𝑃 𝑗 and

return that to the adversary. Keep a counter cnt[𝑥𝑖] to keep
track of the number of distinct access to 𝐷-poly-exp oracle.

Also keep another counter cnt to track the total number of

completed query. The NIZK proof of equality of exponent

is simulated.

(4) Each RO query H2 (𝛼) is responded with Rand(𝛼). For
each such query, check if there exists any 𝑥𝑖 ∈ 𝐿 such

that 𝑒 (H1 (𝑥𝑖), 𝑣𝑘2) = 𝑒 (𝛼,𝑔2). If yes, then store the triple

(𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖) to a list 𝐹 , where 𝑦𝑖 := Rand(𝛼) and 𝜋𝑖 := 𝛼 . At

any time |𝐹 | > cnt, output 𝐹 as the answer to the T-BOMDH

challenger.

We argue that the above simulation is correct despite the fact that

the reduction, unlike the simulator, does not have access to the

secret-key 𝑠𝑘 . However, this was resolved using the 𝐷-poly-exp

oracle. The random oracles are simulated perfectly too by plugging

in the values from the challenge. Now, since the counter cnt is
incremented only when an evaluation query is completed, that

is whenever the adversary has acquired sufficient information to

produce one more valid triple, |𝐹 | > |cnt| and the reduction wins

the BOMDH game.

So, we can claim that:

Pr[E] ≥ Pr[E1 | E2]
where E defines the event when the reduction wins the BOMDH

game. This concludes the proof of this case.

Case-3. 𝑃𝐴 corrupt, |C| ≥ 𝑡 + 1. In this case, (analogous to Case-

2 in the centralized setting) the “unpredictability aspect” of the

construction is off the table. However, even in this case the “public

verifiability” guarantees that the server can not produce an output

that is incorrect, for example, biased towards a specific value. In

other words, though unpredictability can not be guaranteed, the

so-called “unbiasability” would continue to hold.

The simulator, in this case, receives the verification key 𝑣𝑘 from

the adversary and registers it with the ideal functionality within

𝐾𝑒𝑦𝑠 [S] while controlling the servers in the C. Then it simulates

the honest client to the servers in C as follows:

(1) The simulator maintains two lists 𝐼 and 𝐿, where 𝐼 contains

pairs (𝑥,𝜓), that is the information with respect to the

input and corresponding client’s message (generated by

the simulator); and 𝐿 contains tuples (𝑥, 𝜋, 𝛽,𝑦), that is
information from the entire evaluation, including server’s

message and the output with respect to an input.

(2) On receiving (Input, 𝑣𝑘, 𝑥) sample a uniform random 𝜌 ←
$

Z𝑝 and then construct (𝑥, 𝑥) just like an honest party, where
𝑥 = (𝜓 := H1 (𝑥)𝜌 , 𝜇). Append (𝑥,𝜓) to a list 𝐼 .

(3) On receiving a message 𝑦 from the aggregator 𝑃𝐴:

(a) If there is an (𝑥,𝜓) ∈ 𝐼 such that 𝑒 (𝑦,𝑔2) = 𝑒 (𝜓, 𝑣𝑘2):
(i) If (𝑥, ∗, ∗, ∗) ∉ 𝐿: then issue an evaluation query

(Eval, 𝑥, 𝑣𝑘) to the ideal functionality, and when
the ideal functionality returns the same query,

reply with (𝜋 := 𝑦1/𝜌 , 𝛽 := 𝑦). Finally, on re-

ceiving an output 𝑦 from the ideal functionality

store (𝑥, 𝜋, 𝛽,𝑦) into 𝐿.
(ii) If there is (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿: reply the evaluation

query with (𝜋, 𝛽).
(b) Otherwise, on receiving the evaluation query from the

ideal functionality, reply with ⊥.
(4) On receiving an RO query H2 (𝜋):

(a) If there is an (𝑥,𝜓) ∈ 𝐼 , such that 𝑒 = (𝜋,𝑔2) =

𝑒 (H1 (𝑥), 𝑣𝑘2) but (𝑥, ∗, ∗, ∗) ∉ 𝐿 : thenmake a (Eval, 𝑣𝑘, 𝑥)
query to the ideal functionality and respondwith (𝜋, 𝛽 :=

𝜋𝜌). On the completion of the evaluation query, re-

ceive 𝑦 from the ideal functionality which it programs

as an answer H2 (𝜋) := 𝑦. Append (𝑥, 𝜋, 𝛽,𝑦) into 𝐿.
(b) If there exists a tuple (𝑥, 𝜋, 𝛽,𝑦) ∈ 𝐿, then answer with

H2 (𝜋) := 𝑦.

(c) Otherwise just respond with Rand(𝜋).

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

Other queries are straightforward to handle in this case.We argue

that the above simulation is correct with overwhelming probability.

In particular, unless the adversarial server can guessH1 (𝑥)𝑠𝑘 before
observing 𝑥 , the simulation would be perfect. Note that, once the

server obtains 𝑥 , a pair (𝑥,𝜓) gets listed in 𝐼 . And then there are

two cases: (i) The adversary makes a RO query H2 (𝜋), with a valid

𝜋 for which the verification equation holds, before it returns 𝑦: in

this case, the simulator first executes Step 4a. Later when it receives

𝑦, it executes Step 3(a)ii. Clearly, in this case, the simulator is able

to consistently program the random oracle and then subsequently

finish the evaluation using ideal functionality. (ii) In the other case,

the adversary first sends 𝑦 and later makes a RO query H2 (𝜋):
the simulator now first executes Step 3(a)i, and later Step 4c. In

this case, since the pre-verification must satisfy, the simulation

would be perfect. Of course, in case the pre-verification does not

satisfy, the simulator would not allow to complete the evaluation,

which it ensures by seding ⊥ to the ideal functionality. However,

if the adversary can correctly predict the output of H1 (𝑥) without
explicitly making RO query H1 (𝑥), the simulation would fail, as it

could not have 𝑦 without making an evaluation query to the ideal

functionality – this clearly happens only with negligible probability.

This concludes the proof.

B.3 (Threshold) One-More Diffie-Hellman
Assumptions in Generic Group Model

We use a variant of threshold one-more Diffie-Hellman assumptions

used in [3, 35]. In particular, our assumption will be over bilinear
pairing groups, and for that, we also do not need the gap-versions.

Notations. We use notations fromAgrawal et al. [3]. For 𝑡, 𝑓 , 𝑛 ∈ N
(where 𝑓 ≤ 𝑡 < 𝑛) and q = (𝑞1, . . . , 𝑞𝑛) ∈ N𝑛 , define Max𝑡,𝑓 (q)
to be the largest value of ℓ for which there exists binary vectors

u1, . . . , uℓ ∈ {0, 1}𝑛 such that each u𝑖 has hamming wight ≥ 𝑡 −
𝑓 and q satisfies q ≥ ∑ℓ

𝑖=1
u𝑖 . Next, we define the T-BOMDH –

Threshold-Bilinear One-more Diffie Hellman assumption.

Definition 4. (f, t, n, N, l) - T-BOMDH. Consider polynomial (in
𝜅) size integers 𝑛, 𝑡, 𝑓 , 𝑁 such that 𝑓 ≤ 𝑡 < 𝑛 and consider bilinear
pairing groups G1 × G2 → G𝑇 where each group has prime order
𝑝 . Let 𝑔1 and 𝑔2 be two random generators of the groups G1 and G2

respectively. Then we say that the T-BOMDH assumption holds, if for
all PPT adversary A the probability of the following game returning
1 is ≤ negl(𝜅).

• Sample uniform random secret 𝛼 ←
$
Z𝑝 .

• Sample random group elements 𝑔1, . . . 𝑔𝑁 ∈ G1.
• Provide 𝑔1, 𝑔

𝛼
1
, 𝑔2, 𝑔

𝛼
2
, (𝑔1, . . . , 𝑔𝑁) to A.

• On receiving {(𝑖, 𝛼𝑖)}𝑖∈[𝑓] from A choose an 𝑡-degree poly-
nomial 𝐷 uniformly at random such that for all 𝑖 ∈ [𝑓]:
𝐷 (𝑖) = 𝛼𝑖 and 𝐷 (0) = 𝛼 .

• Set q := 0
𝑛 .

• Give the following oracle access O(𝑖, 𝑥) to the adversary:
O(𝑖, 𝑥 ∈ G)

– Increment 𝑞𝑖 by 1.
– Output 𝑥𝛼𝑖 where 𝛼𝑖 := 𝐷 (𝑖).

• On receiving {(𝑔, ¯ℎ)}𝑖∈[ℓ] from A, return 1 if and only if all
of the following conditions are met:
– All 𝑔𝑖 are distinct and ℓ > Max(®𝑞).
– For all 𝑖 ∈ [ℓ] : 𝑔 ∈ {𝑔1, . . . , 𝑔𝑁 } and ¯ℎ𝑖 = 𝑔

𝛼
𝑖
.

Theorem 5. [35] (𝑓 , 𝑡, 𝑛, 𝑁 , 𝑙) − T-BOMDH is equivalent to (f, t,
n, l, l)-T-BOMDH

Proof. Given an (𝑓 , 𝑡, 𝑛, 𝑁 , 𝑙) − T-BOMDH adversary,A, let us

construct B, a (𝑓 , 𝑡, 𝑛, 𝑙, 𝑙) − T-BOMDH adversary using A.

Let 𝛼 ←−
$

Z𝑝 and 𝑔1, 𝑔
𝛼
1
, 𝑔2, 𝑔

𝛼
2
, (𝑔1, 𝑔2, · · · , 𝑔𝑙) ←−

$

G𝑙
1
be a chal-

lenge vector forB. NowB chooses𝑁 randomvectors (𝛽𝑖,1, 𝛽𝑖,2, · · · , 𝛽𝑖,𝑙) ←−
$

Z𝑙𝑝 for all 1 ⩽ 𝑖 ⩽ 𝑁 (Note that choosing N random vectors is noth-

ing but randomly selecting a 𝑁 × 𝑙 matrix over Z𝑝 so let’s call the

matrix formed by these 𝛽 vectors as M.) and defines 𝑔′
𝑖

:= Π𝑙
𝑘=1

𝑔
𝛽𝑖,𝑘
𝑘

and sends 𝑔1, 𝑔
𝛼
1
, 𝑔2, 𝑔

𝛼
2
, (𝑔′

1
, 𝑔′

2
, · · · , 𝑔′

𝑁
) as a challenge vector to A.

𝑀 ×
©­­­­«
𝑔1

𝑔2

.

.

.

𝑔𝑙

ª®®®®¬
=

©­­­­«
𝑔′

1

𝑔′
2

.

.

.

𝑔′
𝑁

ª®®®®¬
(1)

First A chooses a corrupt set of parties along with the corrupt

values 𝐹 = {(𝑖, 𝛼𝑖)} of size 𝑓 . ThenA passes 𝐹 to B, then B passes

it to it’s challenger. Then the challenger fixes a random t-degree

polynomial 𝐷 (𝑥) ∈ Z𝑝 [𝑥] such that 𝐷 (𝑖) = 𝛼𝑖 for all indices 𝑖 in 𝐹 ,
𝐷 (0) = 𝛼 and rest of the evaluations are all randomly fixed.

B answers a T-BOMDH oracle query to O𝐷 (., .) ofA by making

the same query to itself.

Finally, if A outputs some 𝑙− element 𝐽 ⊆ [𝑁] and 𝑣 𝑗 = (𝑔′𝑗)
𝛼

for all 𝑗 ∈ 𝐽 .
Now let 𝑈 be the submatrix formed by the rows corresponding

to the indices in 𝐽 , so 𝑈 is an 𝑙 × 𝑙 random matrix over Z𝑝 . It is
invertible with high probability.

Now, B computes

𝑈 −1 ×
©­­­­«
𝑣1

𝑣2

.

.

.

𝑣𝑙

ª®®®®¬
=

©­­­­«
𝑤1

𝑤2

.

.

.

𝑤𝑙

ª®®®®¬
(2)

and outputs (𝑤1,𝑤2, · · · ,𝑤𝑙). Note𝑤𝑖 = 𝑔𝛼𝑖 with high probabil-

ity iffA wins, soB wins the T-BOMDHgamewith high proibability

iff A wins. □

Lemma 1. [35] Let 𝑡 be any positive integer. Then there doesn’t
exist q ∈ Z𝑛𝑝 s.t.
(1) | |q| |1 ⩾ 𝑄𝑡 , and
(2) | |q| |𝑠𝑢𝑝 ⩽ 𝑄 ,
where 𝑄 = Max𝑡,0 (q) + 1.

Proof. Proof by induction on 𝑄 . If 𝑄 = 1 then Max𝑡,𝑓 q) = 0,

which implies that there are at most 𝑡 − 1 non zero entries in q.
So if satisfies (2), then𝑤 is at most 𝑡 − 1, so (1) can’t be satisfied.
So there doesn’t exist q where both the inequalities are satisfied

simultaneously.

Now suppose that the lemma holds for 𝑄 − 1. Now let’s check

for 𝑄 . If the lemma doesn’t hold, then there exists q which satisfies

both (1) and (2). Such a q will have at most 𝑡 − 1 entries that

are greater than or equal to 𝑄 (otherwise those 𝑡 entries can be

decreased 𝑄 times, so Max𝑡,0 (q) ⩾ 𝑄). Let q′ be q with largest t

entries decreased. Then this q′ satisfies both (1) and (2) as | |q′ | |1 =

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

(| |q| |1 − 𝑡) ⩾ (𝑄 − 1)𝑡 and | |q′ | |𝑠𝑢𝑝 ⩽ (𝑄 − 1) and Max𝑡,0 (q′) =
𝑄 − 2. □

Lemma 2. [35] Let 𝑡 be any non negative integer, 𝑛 be any positive
integer, q be an𝑛−dimensional vector,𝑤 = | |q| |1,𝑄 = Max𝑡+1,0 (q)+1,
and k be a𝑤−dimensional vector where there are q𝑖 𝑖′𝑠 as its entries
(𝑖 = 1, 2, . . . , 𝑛). Then for any 𝑤− dimensional vectors b1, . . . , b𝑄 ,
the set 𝑉 = {k(𝑗) ⊙ b𝑖 } 𝑗∈{0,...,𝑡 },𝑖∈[𝑄] is linearly dependent, where

k = (𝑘1, · · · , 𝑘𝑤)𝑇 k(𝑗) = (𝑘 𝑗
1
, · · · , 𝑘 𝑗𝑤)𝑇 .

Proof. Let 𝑀 be the 𝑤 × 𝑄 (𝑡 + 1) dimensional matrix whose

columns are vectors in𝑉 . To prove the lemma, enough to show that

𝑟𝑎𝑛𝑘 (𝑀) < 𝑄 (𝑡 + 1).
Let k = (𝑘1 . . . 𝑘𝑤)𝑇

𝑀 =


𝑏11 𝑏12 · · ·𝑏1𝑄 · · ·𝑘𝑡

1
𝑏11 𝑘𝑡

1
𝑏12 · · ·𝑘𝑡

1
𝑏1𝑄

𝑏21 𝑏22 · · ·𝑏2𝑄 · · ·𝑘𝑡
2
𝑏21 𝑘𝑡

2
𝑏22 · · ·𝑘𝑡

2
𝑏2𝑄

.

.

.
.
.
.
. . .
.
.
.
. . .
.
.
.

.

.

.
. . .
.
.
.

𝑏𝑤1 𝑏𝑤2 · · ·𝑏𝑤𝑄 · · ·𝑘𝑡𝑤𝑏𝑤1 𝑘𝑡𝑤𝑏𝑤2 · · ·𝑘𝑡𝑤𝑏𝑤𝑄


(3)

Let 𝑀𝑖 be the sub matrix formed by rows where 𝑘 𝑗 = 𝑖 , note

that 𝑟𝑎𝑛𝑘 (𝑀𝑖) ⩽ 𝑄 , as 𝑀𝑖 has 1st, 𝑄 + 1 . . . , (𝑡 − 1)𝑄 + 1 columns

are just multiples of the first column, and similarly for 2nd and

𝑄 + 2, . . . , (𝑡 − 1)𝑄 + 2 are multiples of 2nd column and so on. If

𝑞𝑖 > 𝑄 , then one can select𝑄 rows of𝑀𝑖 forming the matrix𝑀′
𝑖
s.t

𝑟𝑎𝑛𝑘 (𝑀′
𝑖
) = 𝑟𝑎𝑛𝑘 (𝑀𝑖). For all other 𝑞𝑖 ’s let𝑀′𝑖 = 𝑀𝑖 , let 𝑞

′
𝑖
be the

no of rows of the matrix𝑀′
𝑖
. Note that 𝑞′

𝑖
= 𝑄 if 𝑞𝑖 > 𝑄 , otherwise

𝑞′
𝑖
= 𝑞𝑖 . Let q′ = (𝑞′

1
. . . 𝑞′𝑤)𝑇 and let𝑤 ′ = | |q′ | |1.

Now let

𝑀′ =


𝑀′

1

𝑀′
2

.

.

.

𝑀′
𝑄


(4)

i.e𝑀′ is the concatenation of𝑀′
𝑖
’s.

And observe that 𝑟𝑎𝑛𝑘 (𝑀′) = 𝑟𝑎𝑛𝑘 (𝑀) as we removed some

rows from𝑀 which are linearly dependent on the rows of𝑀′. But
we have Max𝑡+1,0 (q′) = Max𝑡+1,0 (q) = 𝑄 − 1. (𝑞′

𝑖
⩽ 𝑞𝑖 for all 𝑖

impliesMax𝑡+1,0 (q′) ⩽ 𝑄 − 1. On the other hand let v1 + · · · +v𝑄−1

be the sum of binary vectors with hamming weight being 𝑡 +1, then

each co-ordinate of such a sum is at most𝑄−1, soMax𝑡+1,0 ⩾ 𝑄−1.)

Now by lemma 1, we have𝑤 ′ < 𝑄 (𝑡+1). So 𝑟𝑎𝑛𝑘 (𝑀′) = 𝑟𝑎𝑛𝑘 (𝑀) ⩽
𝑤 ′ < 𝑄 (𝑡 + 1). □

Lemma 3. [35] Let 𝑡, 𝑛, q,𝑤,𝑄 be same as in lemma 2. Then there
doesn’t exist a𝑄 ×𝑤 matrix 𝐴 and𝑤 ×𝑄 matrix 𝐵 and an invertible
𝑤 × 𝑤 diagonal matrix 𝐾 s.t 𝐴𝐵 = 𝐼 and 𝐴𝐾𝐵 = 𝐴𝐾2𝐵 = · · · =
𝐴𝐾𝑡𝐵 = 𝑂 , where 𝐾 is the matrix which has 𝑞𝑖 𝑖’s as diagonal entries
(for all 𝑖 = 1 to 𝑛), 𝐼 and 𝑂 are 𝑄 × 𝑄 identity and zero matrix
respectively.

Proof. Suppose such a 𝐾,𝐴 and 𝐵 exists

𝐾 =


𝑘1

. . .

𝑘𝑤

 (5)

and let a𝑇
1
, . . . , a𝑇

𝑄
be the rows of 𝐴, b1, . . . , b𝑄 be the columns

of 𝐵, and k = (𝑘1 . . . 𝑘𝑤)𝑇 . Then all these a𝑖 ’s , b𝑗 ’s and k are

𝑤-dimensional column vectors.

Let k𝑗 = (𝑘 𝑗
1
. . . 𝑘

𝑗
𝑤)𝑇 , k𝑗⊙b𝑖 = 𝐾 𝑗b𝑖 and𝑉 = {k𝑗⊙b𝑖 } 𝑗=0...𝑡,𝑖=1...𝑄 .

Then the conditions 𝐴𝐵 = 𝐼 and 𝐴𝐾𝐵 = 𝐴𝐾2𝐵 = · · · = 𝐴𝐾𝑡𝐵 = 𝑂

can be rewritten as

a𝑇𝑖 b =

{
1 b = b𝑖
0 b ∈ 𝑉 \ {b𝑖 }

(6)

for all 1 ⩽ 𝑖 ⩽ 𝑄 . Therefore b𝑖 doesn’t belong to linear span of

𝑉 \ {b𝑖 }. Suppose that𝑊 = 𝑉 \ {b1, . . . , b𝑄 } is a linearly indepen-

dent set. Then𝑊 ∪ {b1} is also linearly independent set, similarly

𝑊 ∪ {b1, b2} is a linearly independent set as b2 is independent of

𝑊 ∪ {b1}. And finally 𝑉 is a linearly independent set. Contradicts

lemma 2. So𝑊 = {k𝑗 ⊙ b𝑖 }1⩽ 𝑗⩽𝑡,1⩽𝑖⩽𝑄 is a linearly dependent set.

Then there exists 𝑥𝑖 𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑡, 1 ⩽ 𝑖 ⩽ 𝑄 at least one of

them is non zero s.t

𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗k𝑗 ⊙ b𝑖 = 0. (7)

Since non of the k’s entries are zeroes,
𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗k𝑗 ⊙ b𝑖 =
𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑤∑︁
𝑙=1

𝑥𝑖 𝑗𝑘
𝑗

𝑙
𝑏𝑙𝑖

= 𝑘𝑙 (
𝑡∑︁
𝑗=1

𝑄∑︁
𝑖=1

𝑤∑︁
𝑙=1

𝑥𝑖 𝑗𝑘
𝑗−1

𝑙
𝑏𝑙𝑖) = 0 for all l.

(8)

.

So

𝑄∑︁
𝑖=1

𝑥𝑖1b𝑖 +
𝑡−1∑︁
𝑗=0

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗+1k𝑗 ⊙ b𝑖 = 0. (9)

Since b𝑖s are linearly independent of𝑊 , so 𝑥𝑖1 = 0 for all 1 ⩽ 𝑖 ⩽ 𝑄 .
So

𝑡−1∑︁
𝑗=0

𝑄∑︁
𝑖=1

𝑥𝑖 𝑗+1k𝑗 ⊙ b𝑖 = 0. (10)

Again repeating the same trick as above(i.e𝑘𝑖 ≠ 0), we get all 𝑥𝑖 𝑗 = 0

for all 0 ⩽ 𝑗 ⩽ 𝑡, 1 ⩽ 𝑖 ⩽ 𝑄 . So𝑉 can’t be linearly dependent either.

So such an 𝐴, 𝐵 and 𝐾 doesn’t exist. □

Theorem 6 (Generic group hardness of (0, t, n, l, l)T-BOMDH).

Let G1 × G2 → G𝑇 be generic bilinear pairing map, where each
group is of prime order 𝑝 . We use 𝜉 (1) (𝑎), 𝜉 (2) (𝑏) and 𝜉 (𝑇) (𝑐) for
𝑎, 𝑏, 𝑐 ∈ Z𝑝 to denote elements in G1,G2 and G𝑇 respectively, where
𝜉 (1) (.), 𝜉 (2) (.) and 𝜉 (𝑇) (.) are random injective mappings from Z𝑝
to bit strings of sufficient size(Note: for all the three mappings domain
and codomain are same).
- Group operation oracle, which on input (𝜉 (𝑖) (𝑎), 𝜉 (𝑖) (𝑏)), outputs
𝜉 (𝑖) (𝑎 + 𝑏) for all 𝑖 ∈ {1, 2,𝑇 }.

- Bilinear pairing oracle, which on input (𝜉 (1) (𝑎), 𝜉 (2) (𝑏)), outputs
𝜉 (𝑇) (𝑎𝑏).

- T-BOMDH oracle, which on input (𝑖, 𝜉 (1) (𝑎)), outputs
O𝐷 (𝑖, 𝜉 (1) (𝑎)) = 𝜉 (1) (𝐷 (𝑖)𝑎)

.

Aniket Kate, Easwar Vivek Mangipudi, Siva Maradana, and Pratyay Mukherjee

If AdvOD (.,.)A (t, n, l, r, s, p) is the probability that

A(𝜉 (1) (1), 𝜉 (1) (𝐷 (0)), 𝜉 (2) (1), 𝜉 (2) (𝐷 (0)), 𝜉 (1) (𝑢1), · · · , 𝜉 (1) (𝑢𝑙))
outputs

(𝜉 (1) (𝐷 (0)𝑢1), · · · , 𝜉 (1) (𝐷 (0)𝑢𝑙))
after making 𝑟 group operation queries to all three groups combined,
𝑒 bilinear pairing queries and 𝑞𝑖 queries to O𝐷 (𝑖, .) (𝑤 =

∑𝑛
𝑖=1

𝑞𝑖) s.t
Max𝑡,0 (q) < 𝑙 , then

AdvOD (.,.)A (t, n, l, r, e, q, p) ⩽ (ewl) + 2
p

+ (l + e + r + w)
2ew

2p

Proof. Let’s construct B which simulates the real challenger

while interactingwithA. It maintains a listℒ := {(𝐹𝑠 , 𝜉 (𝑖)𝑠)}𝑠=1,...,𝜎 ,

where 𝐹𝑠 (𝑈1, . . . ,𝑈𝑙 , 𝐴0, 𝐴1, . . . , 𝐴𝑡) is a polynomial of degree at

most 𝑒𝑤 , and 𝜉
(𝑖)
𝑠 ’s are random elements in G𝑖 . Initially B sets

𝜎 = 𝑙 + 2 and initializes list ℒ by setting 𝐹1 = 1, 𝐹2 = 𝐷 (0) =
𝑎0, 𝐹3 = 𝑢1, · · · , 𝐹𝑙+2 = 𝑢𝑙 , and picks

𝜉
(1)
1
, 𝜉
(2)
1
, 𝜉
(1)
2
, 𝜉
(2)
2
, 𝜉
(1)
3
, · · · , 𝜉 (1)

𝑙+2
as random elements in respective groups corresponding to upper

indices and 𝑎0, · · · , 𝑎𝑡
$←− Z𝑝 . B sends

𝜉
(1)
1
, 𝜉
(2)
1
, 𝜉
(1)
2
, 𝜉
(2)
2
, 𝜉
(1)
3
, · · · , 𝜉 (1)

𝑙+2
to A as

𝜉 (1) (1), 𝜉 (2) (1), 𝜉 (1) (𝐷 (0)), 𝜉 (2) (𝐷 (0)), 𝜉 (1) (𝑢1), · · · , 𝜉 (1) (𝑢𝑙) .
Then A makes following three types of oracle queries to B on

values that are previously obtained from B:
- Group operation query: A inputs (𝑖, 𝑠1) and (𝑖, 𝑠2). Then B com-

putes 𝐹𝜎+1 = 𝐹𝑠1
+ 𝐹𝑠2

, if there exists 𝑡 ⩽ 𝜎 such that (𝐹𝑡 , 𝜉 (𝑖)𝑡) ∈
ℒ, thenB outputs 𝜉

(𝑖)
𝑡 toA. OtherwiseB picks random group el-

ement 𝜉
(𝑖)
𝜎+1fromG𝑖 which is different from the previously chosen

ones and sends it to A and sets 𝜎 + +, 𝑟 + +.
- Bilinear pairing operation query:A inputs (1, 𝑠1) and (2, 𝑠2). Then
B computes 𝐹𝜎+1 = 𝐹𝑠1

𝐹𝑠2
. If there exists 𝑡 ⩽ 𝜎 such that

(𝐹𝑡 , 𝜉 (𝑇)𝑡) ∈ ℒ, then B outputs 𝜉
(𝑇)
𝑡 to A. Otherwise B picks

random group element 𝜉
(𝑇)
𝜎+1from G𝑇 which is different from the

previously chosen ones and sends it to A and sets 𝜎 + +, 𝑒 + +.
- O𝐷 (., .) oracle query: A inputs 𝑘 ∈ [𝑛] and 𝑠 ∈ [𝜎]. Then
B computes 𝐹𝜎+1 = (L𝑇

𝑘
a)𝐹𝑠 . If there exists 𝑡 ⩽ 𝜎 such that

(𝐹𝑡 , 𝜉 (1)𝑡) ∈ ℒ, then B outputs 𝜉
(1)
𝑡 to A. Otherwise B picks

random group element 𝜉
(1)
𝜎+1from G𝑇 which is different from the

previously chosen ones and sends it to A and sets 𝜎 + +, 𝑞𝑘 + +.
Where L𝑇

𝑘
= [1 𝑘 · · · 𝑘𝑡]𝑇 and a = [𝑎0 · · · 𝑎𝑡]𝑇 .

A finally outputs (𝐹𝑠1
, · · · , 𝐹𝑠𝑙), and it wins if 𝐹𝑠𝑖 = 𝑢𝑖𝐷 (0) for

all 𝑖 ∈ [𝑙].
Now we analyze the probability that A succeeds for a random

assignment of (𝑢1, · · · , 𝑢𝑙 , 𝑎0, · · · , 𝑎𝑡).
Note that output of A comes from three types of oracle queries

mentioned above. Therefore 𝐹𝑠 is a linear combination of 𝑣1, · · · , 𝑣𝑤 ,
𝑢1, 𝑢𝑙 1 and 𝐷 (0). Where 𝑣𝑖 (𝑖 = 1, . . . ,𝑤) is the value obtained

from O𝐷 (., .) oracle queries and other 𝑢 𝑗 ’s are obtained from group

oerations and bilinear pairing operations. So

𝐹𝑠 =

𝑤∑︁
𝑖=1

𝛼
(𝑠)
𝑖
𝑣𝑖 +

𝑟+𝑒∑︁
𝑖=0

𝛾
(𝑠)
𝑖
𝑢𝑖 ,

where

𝑣𝑖 =
∑︁

𝑍⊆[𝑖] s.t 𝑖∈𝑍
[(
𝑟+𝑒∑︁
𝑗=0

𝛽
(𝑖)
𝑗𝑍
𝑢 𝑗)

∏
𝑙∈𝑍
(L𝑇
𝑘𝑙

a)]

where 𝛼𝑖 ’s,𝛾𝑖 ’s and 𝛽 𝑗𝑍 ’s are all field elements specified byA. (And

suppose that in the 𝑖𝑡ℎ O𝐷 (., .) oracle query,A’s second is 𝑘𝑖 ; then

L𝑇
𝑘𝑖

a must appear, so 𝑖 ∈ 𝑍 holds in the expression of 𝑣𝑖 .)

A wins iff 𝐹𝑠𝑖 = 𝐷 (0)𝑢𝑖 for all 𝑖 = 1, . . . , 𝑙 . Suppose that there

exists an 𝑖 ∈ [𝑙] s.t. 𝑑𝑒𝑔(𝐹𝑠𝑖) > 1, but A still wins, i.e. as the

𝑑𝑒𝑔(𝐷 (0)𝑢𝑖) = 1, then the above case happens only when the both

the polynomials evaluates to the same values on the randomness

over 𝑢𝑖 ’s and 𝑎 𝑗 ’s (abuse of notation , we are using same variables

for polynomial variables and field elements 𝑢𝑖 and 𝑎 𝑗). So 1 ⩽
𝑑𝑒𝑔(𝐹𝑠𝑖 − 𝐷 (0)𝑢𝑖) ⩽ 𝑒𝑤) for a fixed chosen random 𝑢𝑖 ’s random

𝐷 (0) will be solution with probability
𝑒𝑤
𝑝 . Since there are 𝑙 possible

values of 𝑖 , so the probability 𝑑𝑒𝑔(𝐹𝑠𝑖) > 1 but A still wins is
𝑒𝑤𝑙
𝑝 .

Now consider the case where 𝑑𝑒𝑔(𝐹𝑠𝑖) ⩽ 1 for all i. Let 𝑣 ′
𝑖
be 𝑣𝑖

with degree greater than 1 eliminated and similarly for 𝑢𝑖 ’s. But in

the case of 𝑣𝑖 ’s only single term is left, where 𝑍 = {1}, i.e.,

𝑣 ′𝑖 = (
𝑙∑︁
𝑗=0

𝛽
(𝑖)
𝑗 {𝑖 }𝑢 𝑗) (L𝑘𝑖 a) .

Then

𝐹𝑠 =

𝑤∑︁
𝑖=1

𝛼
(𝑠)
𝑖
𝑣 ′𝑖 +

𝑙∑︁
𝑖=0

𝛾
(𝑠)
𝑖
𝑢𝑖 .

We can rewrite the above expression 𝐹𝑠 in matrix form below. Note

that all the terms in the above expression are of degree ⩽ 1. And

denote 𝛽
(𝑖)
𝑗 {1} as 𝛽

(𝑖)
𝑗

.
𝐹𝑠1

.

.

.

𝐹𝑠𝑙

 = 𝐴

𝑣 ′

1

.

.

.

𝑣 ′𝑤

 +𝐶u +


𝛾
(𝑠1)
0

.

.

.

𝛾
(𝑠𝑙)
0

 , (11)


𝑣 ′

1

.

.

.

𝑣 ′𝑤

 = (𝐵u + b0) ⊙


L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

 , (12)

where

𝐴 =


𝛼
(𝑠1)
1
· · ·𝛼 (𝑠1)

𝑤

.

.

.
. . .
.
.
.

𝛼
(𝑠𝑙)
1
· · ·𝛼 (𝑠𝑙)𝑤

𝑙×𝑤
, 𝐵 =


𝛽
(1)
1
· · ·𝛼 (1)

𝑙
.
.
.
. . .
.
.
.

𝛼
(𝑤)
1
· · ·𝛼 (𝑤)

𝑙

𝑤×𝑙
𝐶 =


𝛾
(1)
1
· · ·𝛾 (1)

𝑙
.
.
.
. . .
.
.
.

𝛾
(𝑙)
1
· · ·𝛾 (𝑙)

𝑙

𝑙×𝑙
, u =


𝑢1

.

.

.

𝑢𝑙

 , b0 =


𝛽
(1)
0

.

.

.

𝛽
(𝑤)
0


Let b = 𝐵u+ b0. Now substitute eq. (12) into eq. (11), then we get

𝐹𝑠1

.

.

.

𝐹𝑠𝑙

 = 𝐴
©­­­«b ⊙


L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a


ª®®®¬ +𝐶u +


𝛾
(𝑠1)
0

.

.

.

𝛾
(𝑠𝑙)
0

 . (13)

FlexiRand: Output Private (Distributed) VRFs and Application to Blockchains

Note that
L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

 =

∑𝑡
𝑖=0

𝑎𝑖𝑘
𝑖
1

.

.

.∑𝑡
𝑖=0

𝑎𝑖𝑘
𝑖
𝑤

 = 𝑎0


1

.

.

.

1

 + 𝑎1


𝑘1

.

.

.

𝑘𝑤

 + · · · + 𝑎𝑡

𝑘𝑡

1

.

.

.

𝑘𝑡𝑤


So

b ⊙


L𝑇
𝑘1

a
.
.
.

L𝑇
𝑘𝑤

a

 = 𝑎0𝐾
0b + · · · + 𝑎𝑡𝐾𝑡b, (14)

where

𝐾 =


𝑘1

. . .

𝑘𝑤


so now substituting eq. (14) in eq. (13) we get

𝐹𝑠1

.

.

.

𝐹𝑠𝑙

 = 𝐴(𝑎0𝐾
0b + · · · + 𝑎𝑡𝐾𝑡b) +𝐶u +


𝛾
(𝑠1)
0

.

.

.

𝛾
(𝑠𝑙)
0


= 𝑎0𝐴𝐾

0b + · · · + 𝑎𝑡𝐴𝐾𝑡b +𝐶u +


𝛾
(𝑠1)
0

.

.

.

𝛾
(𝑠𝑙)
0

 .
(15)

substituting back b = 𝐵u + b0 in eq. (15) we get
𝐹𝑠1

.

.

.

𝐹𝑠𝑙

 = 𝑎0𝐴𝐾
0𝐵u + 𝑎0𝐴𝐾

0b0 + · · · + 𝑎0𝐴𝐾
𝑡𝐵u+

𝑎𝑡𝐴𝐾
𝑡b0 +𝐶u +


𝛾
(𝑠1)
0

.

.

.

𝛾
(𝑠𝑙)
0



For a fixed random u, the right side of the above equation is a linear

function of a. If A wins, then
𝐹𝑠1

.

.

.

𝐹𝑠𝑙

 = 𝑎0u,

then upon comparing the last two equations, we get

(𝐴𝐵− 𝐼)u+𝐴b0 = 𝐴𝐾𝐵u+𝐴𝐾b0 = · · · = 𝐴𝐾𝑡𝐵u+𝐴𝐾𝑡b0 = 0 (16)

For fixed random u the above equations evaluate to 0 with proba-

bility
1

𝑝 . The other case where the above equations become zero is

when 𝐴𝐵 − 𝐼 = 𝐴𝐾𝐵 = . . . 𝐴𝐾𝑡𝐵 = 0. But according to lemma 3, at

least one of 𝐴𝐵 − 𝐼 , 𝐴𝐾𝐵, . . . , 𝐴𝐾𝑡𝐵 isn’t zero. Then that particular

matrix equation evaluates to zero with probability for a fixed u is

again
1

𝑝 .

So in both the cases where 𝑑𝑒𝑔 ⩽ 1 and 𝑑𝑒𝑔 > 1 advantage of

the adversary interacting B is
(𝑒𝑤𝑙)+2

𝑝 .

So far the above computations are for a fixed random u, now
if we fix both u and a, then we have to account for two distinct

polynomials evaluating to the same value for random u and a. This
event happens with probability

(𝜎
2

)
𝑒𝑤
𝑝 , where 𝜎 ⩽ 𝑙 + 𝑒 + 𝑟 +𝑤 .

Thus

AdvOD (.,.)A (t, n, l, r, e, q, p) ⩽ (ewl) + 2
p

+ (l + e + r + w)
2ew

2p
□

Now the generic group hardness of (𝑓 , 𝑡, 𝑛, 𝑙, 𝑙)T-BOMDH fol-

lows from theorem 6 as (𝑓 , 𝑡, 𝑛, 𝑙, 𝑙)T-BOMDH is same as (0, 𝑡 −
𝑓 , 𝑛, 𝑙, 𝑙)T-BOMDH. And from theorem 6, theorem 5 generic group

hardness of (𝑓 , 𝑡, 𝑛, 𝑁 , 𝑙)T-BOMDH follows.

	Abstract
	1 Introduction
	2 Use case
	3 Technical Overview
	4 Related Work
	5 Preliminaries
	5.1 Universal Composability
	5.2 Shamir's Secret Sharing Shamir93:CommACM.
	5.3 NIZK proofs
	5.4 Our Model
	5.5 (Threshold) One-More Diffie-Hellman Assumptions

	6 Output Private VRF (Pri-VRF)
	6.1 Definition: Pri-VRF
	6.2 Our Pri-VRF Construction

	7 Distributed Pri-VRF (Pri-DVRF)
	7.1 Definition: Pri-DVRF
	7.2 Our Pri-DVRF construction

	8 Performance Analysis
	9 Conclusion
	References
	A Smart-contract based VRF Service Framework
	A.1 GLOW-DVRF Framework glowframework, GLOW21:EuroSnP

	B Missing proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 3
	B.3 (Threshold) One-More Diffie-Hellman Assumptions in Generic Group Model

