
Sometimes You Can’t Distribute
Random-Oracle-Based Proofs

Jack Doerner
j@ckdoerner.net

Brown University, Technion, Reichman University

Yashvanth Kondi
yash@ykondi.net
Silence Labs (Deel)

Leah Namisa Rosenbloom
leah_rosenbloom@brown.edu

Brown University

May 21, 2024

Abstract

We investigate the conditions under which straight-line extractable
NIZKs in the random oracle model (i.e. without a CRS) permit multiparty
realizations that are black-box in the same random oracle. We show that
even in the semi-honest setting, any MPC protocol to compute such a
NIZK cannot make black-box use of the random oracle or a hash function
instantiating it if security against all-but-one corruptions is desired, unless
the number of queries made by the verifier to the oracle grows linearly with
the number of parties. This presents a fundamental barrier to constructing
efficient protocols to securely distribute the computation of NIZKs (and
signatures) based on MPC-in-the-head, PCPs/IOPs, and sigma protocols
compiled with transformations due to Fischlin, Pass, or Unruh.

When the adversary is restricted to corrupt only a constant fraction of
parties, we give a positive result by means of a tailored construction, which
demonstrates that our impossibility does not extend to weaker corruption
models in general.

Contents
1 Introduction 1

1.1 Our Results . 4
1.2 Implications of Our Results . 6
1.3 Actually, It’s Much Worse than That 7
1.4 Organization . 8

2 Definitions 8

3 All-but-One Security is Impossible 12
3.1 The Prover’s Haircut . 12
3.2 Distributed P in-the-Head . 16
3.3 Distributed NIZKs are Sometimes Witness-Revealing 22
3.4 The Constant Corruptions Setting. 24

4 A Constant-Fraction Construction 25
4.1 Additional Definitions . 26
4.2 Proof by Committee . 28

5 Related Work 32

1 Introduction
Zero-knowledge proofs of knowledge (ZKPoKs) are widely used in cryptographic
protocols as a mechanism to enforce honest behavior. Non-interactive proofs
of knowledge (NIZKPoKs, or simply NIZKs) in particular enable a multi-
tude of interesting applications, and underlie the design of several signature
schemes [BG90]. The proof of knowledge property informally guarantees that a
prover P must actually know a witness to the statement if it succeeds in gen-
erating an accepting proof. This is a far more powerful notion than soundness,
which only guarantees that a witness exists. Formally, proof of knowledge is
captured by the existence of an extractor algorithm E, which is able to produce
a witness to the statement when given access to P. This access cannot always
be unrestricted. For example, in order to achieve provably secure composition
in a larger protocol context, it vastly simplifies matters if E makes black box use
of P in a straight-line fashion, i.e. without rewinding it [Can01]. This example
is critical, since NIZKs are common building blocks for other protocols.

One common method by which such black-box straight-line extraction can
be achieved is to allow the extractor to sample the trapdoor for some trusted
setup that is used by the protocol. This is known as the Common/Structured
Reference String (CRS/SRS) model. Apart from the immediate disadvantage
of requiring a source for trusted reference strings in practice, NIZK techniques
in the SRS model typically make use of expensive structured public-key cryp-
tography. While such constructions may be competitive for proving complex
circuits, they are not known to permit efficient proofs for simple statements,
such as proof of knowledge of discrete logarithm.

The alternative is to leverage an ideal object. Typically the ideal object
is a random oracle. Roughly, a straight-line extractor in the random ora-
cle model (ROM) reads the random oracle queries made by a prover during
the production of a proof and deduces a witness for the statement. This no-
tion of straight-line extraction in the ROM was formalized by Pass [Pas03],
and has proven to be a popular method to construct efficient NIZKs that re-
main secure under concurrent composition. The security of NIZKs for general
statements based on PCPs/IOPs [BCS16, BCR+19, BFH+20] and MPC-in-
the-head [IKOS07, GMO16, AHIV17, KKW18] is also proven via straight-line
extraction in the ROM, and ROM-based NIZKs of simple algebraic statements
are efficient enough to use in practice [HMPs14, LN18, Lin22].

Why the Random Oracle Model? The random oracle model has been in
use for three decades as an analytical tool [BR93] and, though idealized, it is
arguably a relatively conservative methodology. The instantiation of random
oracles in practice has been the subject of much scrutiny, and modern imple-
mentations typically employ complex and carefully salted hash functions such
as the SHA family. Such hash functions already offer a lower Boolean cir-
cuit complexity than structured public key cryptography, and they are often
further optimized through hardware implementations. Evaluating SHA-2 on
commodity hardware today costs less than one microsecond. More recently, the

1

plausible post-quantum resilience of hash functions has translated to plausible
post-quantum security of NIZKs in the (quantum) ROM (and signatures built
upon them [CDG+17]), with straight-line extraction forming the basis for such
analyses [Unr15]. In a nutshell, the random oracle serves as a versatile analytical
tool, and is quite cheap to invoke in practice.

While the construction of efficient NIZKs in the ROM and their use in dis-
tributed protocols is well studied, the design protocols to distribute the compu-
tation of such NIZKs is not. There is extensive literature on the related notion
of distributed signatures however, and we will use this to develop some intuition.

Threshold Cryptographic Proofs. Many modern cryptographic applica-
tions employ decentralization as a design principle, so that the security of sen-
sitive data is not vulnerable to single points of failure. One example of this
methodology is the increasing adoption of threshold signatures to decentralize
the management of cryptographic keys (see, for example, [MPs19, DOK+20]).
Given that signature schemes are commonly derived from NIZKs, realizing
threshold signing in many cases reduces to the task of designing Multiparty
Computation (MPC) protocols to securely compute a NIZK where the parties
hold secret shares of a witness. Distributed Schnorr signing [Lin22] is a clas-
sic example of this principle—Schnorr signatures are essentially NIZKs in the
ROM that prove knowledge of the discrete logarithm of the public key, and so
distributed signing for Schnorr corresponds to an MPC to compute Schnorr’s
NIZK (i.e. the Fiat-Shamir transform applied to the identification protocol).

Distributing Schnorr—Why is it efficient? It is widely regarded that
Schnorr’s NIZK is “MPC-friendly”, as it permits an elegant MPC protocol to
distribute its computation. Roughly, a Schnorr signature is an affine function
of the secret key x and a random nonce r, i.e. Sign(x, r) 7→ x · H(r ·G) + r.
The equation Sign is regarded as easy to compute with an MPC as most secret
sharing schemes permit linear operations for free, meaning that if secret shares
of x and r are available and r · G is public, Sign itself can be computed for
free. Notice that because r · G is public, H(r ·G) can be evaluated locally by
the parties, i.e. the MPC protocol makes only oracle use of H. Other practical
threshold signing schemes, such as those for ECDSA [DKLs24, CGG+20, LN18]
and BLS [BLS01] also have this property—that the signature algorithm makes
use of a hash function H, and the MPC protocol also only makes oracle use
of H. We formalize this notion as as that of an oracle-respecting distributed
protocol.

Oracle-Respecting Protocols. Informally, an oracle-respecting distributed
protocol for a NIZK in the ROM is an MPC protocol that distributes the com-
putation of the NIZK without replacing the oracle with a concrete function, by
allowing the protocol’s participants ideal access to the same oracle.

MPC protocols that are not oracle-respecting are unsatisfying theoretically.
In most cases, the security proof of the NIZK is invalidated when the H is

2

relaced by any concrete function; we prefer to do such a replacement as a final
step before deployment, in order to ensure that the security of the protocol
is entirely coherent. They are also unsatisfying in practice, because the only
general technique for using the code of a hash function (like SHA, for example)
is to evaluate it using an MPC protocol. This is expensive, complicated, and
several orders of magnitude slower than a local evaluation of H. Consequently,
threshold signature schemes that employ MPC protocols that are not oracle-
respecting are bound to be prohibitively expensive for many common use cases.

Straight-line extraction and oracle-respecting distribution. Interest-
ingly, no existing straight-line extractable NIZK in the ROM is known to permit
an oracle-respecting distributed protocol. The only practical technique to dis-
tribute the computation of NIZKs for algebraic languages is to simply concate-
nate proofs produced by each prover (see Cohen et al. [CDKs22] for instance),
the only IOP that supports distributed provers incurs an overhead proportion-
ate to the number of provers [OB22], and ironically there is no oracle-respecting
MPC to securely compute MPC-in-the-head proofs.

Of course it is possible to design a simple such NIZK from scratch, for e.g.
a proof of the format ρ = {ρ1, ρ2} where ρi is generated with witness share wi

such that w0 + w1 = w forms the original witness. This way, parties P1 and
P2 may be given w1 and w2 respectively, and jointly compute ρ with a simple
oracle-respecting distributed protocol.

Besides appearing artificial, the above scheme embodies an interesting prin-
ciple: the NIZK itself is designed with the distributed protocol in mind. The
focus of this paper is to ask whether this is inherent, informally:

Under what conditions do oracle-respecting distributed protocols ex-
ist for computing straight-line extractable NIZKs in the ROM?

In particular, we wish to know whether there exist straight-line extractable
NIZKs in the ROM that can be computed in an oracle-respecting distributed
fashion without anything in the resulting object depending upon the number
of participants or the fact that the computation was disributed. In order to
capture this intuition formally, we require the output of an oracle-respecting
distributed protocol to be verifiable by the same verifier as the original sin-
gle party NIZK. This requirement is already implicit in standard definitions of
threshold signatures, and captures a number of useful properties:

• The output of the distributed protocol serves as a drop-in replacement for any
usage of the original NIZK. In other words, the original verifier is convinced.

• The size and verification complexity of the NIZK do not grow with the num-
ber of parties involved in its distributed computation.

• Access structures and the identities of parties involved in the protocol are
concealed from entities external to the system.

3

In this work, we restrict ourselves to semi-honest MPC, and consider two cor-
ruption models: all-but-one corruption, and constant-fraction corruption. In
the all-but-one case we uncover an inherent barrier that explains the lack of
constructions, and precludes oracle-based distributed protocols for a large class
of NIZKs outright. Our barrier has the following intuitive form: for any NIZK
that meets certain common criteria, there exists some number n such that if the
computation of the NIZK is distributed among n or more parties in an oracle-
respecting way, then security against n−1 corruptions cannot be achieved. The
number n is determined by the number of queries that the NIZK verifier must
make. Since this barrier exists even when the corruptions are semi-honest, it also
holds for any stronger adversary. However, this barrier appears to be limited to
the all-but-one corruption setting: in the constant-fraction case, we construct
a NIZKPoK for the discrete logarithm relation that can be distributed in an
oracle-respecting fashion amongst arbitrarily many parties, without increasing
the proof size. This construction requires artificially inflating the size of the sin-
gle party NIZK and is therefore unlikely to be useful in practice; it only serves
to demonstrate that the previous barrier can be circumvented in the constant-
fraction setting by keeping the NIZK size agnostic to the number of distributed
provers.

1.1 Our Results
We formalize the notion of an oracle-respecting distributed (ORD) protocol in
Definition 2.4. Intuitively, a protocol πH ORD-computes a prover PH if it con-
vinces the same verifier as PH . This is a much weaker notion than, for example,
producing indistinguishable output.

All-but-One (n−1 Corruptions) Setting. We first show that any n-party
protocol that ORD-computes a prover P from a certain (common) class of provers
can not hide the witness from an adversary that passively corrupt n−1 parties,
where n − 1 is an upper bound on the number of queries that the verifier V
makes in checking a proof.

Intuitively, since the verifier checks only n−1 queries and there are n parties,
there must be at least one party whose query “does not matter” for the proof.
In particular, there is a noticeable probability p that if one party’s queries to H
were simply omitted, the outcome would still be an accepting proof. By straight-
line extraction, this means that the queries made to H by the remaining n− 1
parties (i.e. the ones that were actually used in the production of the proof)
must yield a witness when given to the extractor E. This suggests a simple
attack on π: corrupt n − 1 parties at random, collect the queries to H that
those parties make, and feed the queries to E.

This is essentially the template followed by our proof, however we encoun-
tered a very subtle technical hurdle that necessitated prefacing our theorem
statement with a caveat, which we will discuss below.

Theorem 1.1. (Informal) If P is the prover of a NIZK in the ROM, and

4

there is a straight-line extractor E that observes P’s queries to H and outputs a
witness with almost the same probability that P outputs an accepting proof, and
the NIZK verifier V makes at most n−1 queries to H, then any n party protocol
π that ORD-computes P will leak the witness to an adversary who corrupts n−1
parties with noticeable probability.

The one caveat for the above theorem is that E must not depend on the
responses to P’s queries to H. This is not an issue for schemes where a con-
stant number of well-chosen queries made by P suffice for extraction—such
as NIZKs based on Sigma protocols, including MPC-in-the-head and algebraic
languages—as E can simply guess which queries to use without checking their
outputs. For succinct proof systems like IOPs where the extractor must neces-
sarily read a large number of queries, this caveat does make a difference in terms
of the applicability of our theorem (though whether our attack strategy also fails
is another question). Regardless, schemes excluded from our first theorem are
covered by an alternate theorem:

Theorem 1.2. (Informal) If P is the prover of a straight-line extractable NIZK
in the ROM, for which the NIZK verifier V makes at most n− 1 queries to H,
and π is an n-party protocol that ORD-computes P in which any given query to
H can be traced back to the first party that made it (see Definition 2.5), then
there is an adversary who corrupts n − 1 parties and learns the witness with
noticeable probability.

The above theorem essentially rules out any protocol strategy in which it
is possible for the adversary to determine whether a given query was made by
the one honest party before a corrupt party was able to make it. As we will
show, adversaries with this capability can run the extractor in their heads using
only the views of their own corrupt parties, in such a way that the extractor
will succeed independently of the honest parties’ queries. To our knowledge,
all extant MPC protocol strategies have this property, and therefore taking
advantage of this caveat (if it is possible) would require a fundamentally new
protocol design strategy.

In prior works, the distinction between using the list of queried values for
extraction and giving the extractor access to H has not been treated as a matter
of consequence. As we will show, several prior works give the extractor access
to H unnecessarily.

The formal versions of these theorems are given as theorems 3.16 and 3.20.

Constant Fraction (c ·n Corruptions) Setting. We show that the impos-
sibility from the n− 1 case cannot be extended in general to the next strongest
corruption setting, wherein a constant fraction c of parties are corrupted, for a
positive constant c < 1. We prove this by construction: first, we propose a NIZK
with proof strings of the form ρ = (ρ1, . . . , ρλ), where λ is the security parame-
ter, and then we introduce a committee-based protocol that ORD-computes our
NIZK. The protocol elects a random committee of size λ and provides each mem-
ber of the committee with an additive share of the witness. The jth committee

5

member computes and broadcasts a sub-proof ρj of knowledge of its share of the
witness, and the final proof string is simply a concatenation of the sub-proofs.
As the witness is additively shared amongst the committee and the sub-proofs
all have zero-knowledge individually, the adversary can only recover informa-
tion about the witness if the entire committee is corrupt, which happens with
probability 1/exp(λ). We formalize the security notion achieved by our protocol
as a multi-prover variant of zero-knowledge, and show that if the protocol is
also witness-revealing, then an adversary who learns the witness can be used in
a black-box fashion to break the discrete logarithm assumption. We stress that
the purpose of this construction is only to show that the barrier that we proved
in the all-but-one setting does not extend to the constant-fraction case; while
the NIZK in our construction is amenable to distributed computation, it is a
factor λ larger than the basic scheme.

Theorem 1.3. (Informal) If there exists a group G in which the discrete loga-
rithm assumption holds, then there exists a NIZKPoK of discrete logarithm in
G and an n-party protocol π that ORD-computes the NIZK prover P, such that
for any positive rational c < 1 and any n such that n > λ/(1 − c), the NIZK
verifier V makes at most n−1 queries to H, and the probability that π leaks the
witness in the presence of c · n corrupt parties is negligible in λ.

The formal version of this theorem is given as theorem 4.9.

1.2 Implications of Our Results
To our knowledge, no prior work gives a formal treatment of bounds and limita-
tions on the distribution of straight-line extractable proofs in the ROM. These
limitations have wide-ranging implications in practice as well as in theory. We
give a few examples below of tasks that must inherently pay the price of making
non-black-box use of hash functions, or else tolerate proof or signature sizes that
grow with the number of provers or signers:

• Threshold versions of MPC-in-the-head-based signature schemes and multi-
prover versions of MPC-in-the-head NIZKs, even if they use the Fiat-Shamir
transform, so long as random-oracle-based commitments are used. Such
schemes typically require the prover to commit to the views of many virtual
parties, then query the random oracle on the commitment strings (i.e. they
apply the Fiat-Shamir transform) to generate a challenge that determines
which commitments to open. The witness is extracted via the commitments,
not by rewinding and reprogramming the challenge, and because the com-
mitment strings are included in the proof, there usually exists an efficient
straight-line extractor requires only the query values (and not access to the
random oracle itself), which means that theorem 3.16 applies.
As an example, consider the Picnic signature scheme [CDG+17], which was
considered (but ultimately not chosen) for standardization by NIST. Picnic
makes extensive use of the SHA-3 hash function, which has a boolean circuit
complexity of several tens of thousands of gates, making it expensive to

6

evaluate in a non-black-box fashion within generic MPC. The same principle
extends to the more recent FAEST scheme [BBdSG+23], which is presently
under submission to NIST.

• Threshold versions of any post-quantum signature scheme based on Unruh’s
transformation [Unr15], to which theorem 3.16 applies. The post-quantum
variant of the Picnic scheme [CDG+17] is an example.

• Multi-prover versions of NIZKs that are based on compiling sigma proto-
cols for algebraic statements (such as the discrete logarithm relation) to
non-interactive proofs via the transformations due to Pass [Pas03], Fis-
chlin [Fis05], Unruh [Unr15], or Kondi and shelat [Ks22], to which theo-
rem 3.16 applies. These are common building blocks for larger MPC proto-
cols (particularly in the UC model [Can01]), and our work suggests that their
costs cannot be significantly reduced under current well-known techniques.

• Protocols that securely compute other random-oracle-based straight-line ex-
tractable NIZKs amongst groups parties that hold secret shares of the wit-
ness. This class notably includes many PCP/IOP based NIZKs [BCS16,
BCR+19, BFH+20]. In this case, theorem 3.16 may not apply, but theo-
rem 3.20 does, which implies that any MPC protocol that securely distributes
such NIZKs in the presence of n − 1 corruptions must have the property
that the adversary cannot guess with noticeable probability which of its own
queries were previously made by an honest party. This rather unnatural
property is not satisfied by any existing technique for secure computation, to
our knowledge.

We wish to draw attention to one hazard in particular: the standardization
of impacted signature schemes without accommodations for our result. During
standardization, it is likely that both the hash function used to realize a random
oracle and the parameterization of the scheme (in particular, the number of
verifier queries) would become fixed. This could effectively preclude efficient
threshold signing by forcing non-black-box use of a hash with a large circuit.

As our positive result indicates, it may be possible to design custom schemes
that support oracle respecting distributed computation for lower corruption
thresholds. At present, the authors do not know of any pre-existing NIZK that
supports oracle respecting distributed computation in such settings.

1.3 Actually, It’s Much Worse than That
The results presented in this work make minimal assumptions about the inter-
nal structure of the NIZK to be distributed, but we observe that many common
NIZKs have a structure that is pathological in the context of ORD-computation.
In particular, consider the case of a sigma protocol to which one of the common
straight-line extraction compilers [Pas03, Fis05, Unr15, Ks22] has been applied.
This yields a NIZK with the following structure: the prover makes oracle queries
on a set of sigma protocol transcripts that share a statement and first-round

7

message (i.e. “commitment”), but differ in their second and third-round mes-
sages (i.e. their “challenge” and “response”). Of the queries in this set, at most
one is randomly chosen to be included in the proof string and checked by the
verifier. If the sigma protocol is 2-special-sound (as many are), even one addi-
tional query from the set is enough to extract the witness. This is catastrophic
in the context of ORD-computation, because only real parties can query the
oracle, which means that the extra queries must be allocated among the parties
in some way. If even one of those parties is corrupt, then the witness must leak
with noticeable probability. Therefore, the only option to distribute the com-
putation of such a NIZK is to realize the oracle heuristically via some concrete
function and evaluate the oracle queries in a non-black-box fashion using MPC.
We suggest that a more viable approach is to revisit the design of straight-line
extraction compilers with these limitations in mind.

1.4 Organization
We begin by formally defining the notions relevant to the results in this work in
section 2, following which we give our main negative results for the all-but-one
setting in section 3, and our positive result for the constant-fraction setting in
section 4. Finally, we review related works and discuss their relevance to our
results in section 5.

2 Definitions
Notation. We adhere to standard notational conventions for proofs and mul-
tiparty computation. Throughout this paper, we use λ to denote the security
parameter, x to denote a statement from the domain X, and w to denote a
witness from the domain W. We say that w witnesses the fact that x is in the
NP-language L if RL(x, w) = 1, where RL is the polynomial-time relation that
defines L. A prover is denoted P, a verifier V, an extractor E, and a random
oracle H. Protocols are denoted π and the ith party who participates in a proto-
col is denoted Pi. Proof strings are denoted ρ and values on which the random
oracle is queried are denoted by Q, whereas (ordered) vectors of queries are
denoted by Q. When a query appears with a subscript, it does not indicate a
position in any particular vector, but instead the position in the original order in
which the queries were made by a prover. We use ← to indicate sampling from
a distribution, ..= to indicate assignment, and = to indicate equality testing.
We use poly and negl to denote polynomial and negligible functions, and their
uses are implicitly existential (i.e. when they appear, there exists a polynomial
or negligible function such that the statement holds).

Proofs and Extractability. We begin with a standard definition for non-
interactive proofs in the random-oracle model. Our definition allows the prover
and verifier access to a non-programmable random oracle, but syntactically for-
bids the use of a common reference string (CRS) or oracle programming.

8

Definition 2.1. Non-Interactive Proof in the ROM
Let L be a language in NP where membership of an instance x ∈ X can
be verified by a witness w ∈W. A pair of algorithms (PH , VH), both with
access to a random oracle H, constitute a non-interactive proof system for
L if they meet the following conditions:

1. Efficiency: P is an probabilistic expected-polynomial-time algorithm and
V is a deterministic polynomial time algorithm.

2. Completeness: For x ∈ L with witness w, the prover can convince the
verifier with overwhelming probability that x ∈ L by means of a single
string. Formally, for every x ∈ L with witness w,

Pr
[
VH(1λ, x, ρ) = 1 : ρ← PH(1λ, x, w)

]
≥ 1− negl(λ)

where the probability is over the coins of P and H.

3. Computational Soundness: For all invalid statements x ∈ X such that
x /∈ L, no PPT algorithm AH with access to the random oracle can
convince a verifier to accept x with better than negligible probability.
Formally, for all adversarial provers A, all invalid statements x ∈ X such
that x /∈ L, and all non-uniform advice strings z ∈ {0, 1}∗,

Pr
[
VH(1λ, x, ρ) = 1 : ρ← AH(1λ, x, z)

]
≤ negl(λ)

where the probability is taken over the coins of A and H.

The definition we have just given specifies deterministic verification, but we
note that in the random oracle model, any randomized verifier can easily be
transformed into a deterministic one simply by sampling the verifier’s random
coins as the output of the random oracle queried on the verifier’s inputs (x, ρ).
We do not explicitly define a zero-knowledge or witness-indistinguishability
property for non-interactive proofs until section 4, but we stress that this work
is mainly relevant to zero-knowledge proofs; any proof that does not hide the
witness in some sense is trivially witness-revealing per definition 2.6.

Next, we give two variations on a straight-line extractability property for
non-interactive proofs in the random oracle model. The first is the more general
notion, in which the extractor is given access to the random oracle. This is
the definition used by Pass [Pas03, Pas04] and Kondi and shelat [Ks22], who
proposed mechanisms to achieve the definition by transforming sigma protocols
(which ordinarily require rewinding for extraction).
Definition 2.2. Straight-Line Extractability in the ROM

Let L be a language in NP where membership of an instance x ∈ X can be
verified by a witness w ∈W, and let (PH , VH) be an efficient non-interactive
proof scheme where both P and V have access to the random oracle H. We

9

say that (PH , VH) is straight-line extractable in the random oracle model
if there exists a PPT extractor algorithm EH with oracle access to H such
that for any x ∈ L with witness w and any PPT algorithm AH with oracle
access to H,

Pr[VH(1λ, x, ρ) = 1 : ρ← AH(1λ, x, w)] ≥ 1/ poly(λ)

=⇒ Pr

[
w′ witnesses x ∈ L :

ρ← AH(1λ, x, w),
w′ ← EH(1λ, x, ρ, Q)

]
≥ 1− negl(λ)

over the random coins of A, E, and H, where Q is the ordered set of queries
made by A to H.

The second, more restricted definition of straight-line extractability is the
one used by Fischlin [Fis05], which allows the extractor access only to the values
queried by the prover, but not to the oracle’s responses. More precisely, the
extractor E is allowed oracle acces to H in definition 2.2, but in Fischlin’s
definition, it is denied access to H. In section 3.3 we argue that Pass’s and
Kondi and shelat’s transforms also satisfy this definition, and that any protocol
that distributes a proof scheme with this notion of extraction is witness-revealing
in the all-but-one security setting per definition 2.6.
Definition 2.3. Response-Independent SLE in the ROM

Let L be a language in NP where membership of an instance x ∈ X can
be verified by a witness w ∈ W, and let (PH , VH) be an efficient non-
interactive proof scheme where both P and V have oracle access to H. We
say that (PH , VH) is straight-line extractable in the random oracle model,
independently of the oracle’s responses if there exists a PPT extractor al-
gorithm E without access to H such that for any x ∈ L with witness w and
any PPT algorithm AH with oracle access to H,

Pr[VH(1λ, x, ρ) = 1 : ρ← AH(1λ, x, w)] ≥ 1/ poly(λ)

=⇒ Pr

[
w′ witnesses x ∈ L :

ρ← AH(1λ, x, w),
w′ ← E(1λ, x, ρ, Q)

]
≥ 1− negl(λ)

over the random coins of A, E, and H, where Q is the ordered set of queries
made by A to H.

Distributed Provers. Next we give a minimal notion for the multiparty
computation of a proof scheme. We specifically do not require that a protocol
distributing a prover P compute a distribution similar to P; we require only
that the protocol convince the same verifier that P does. This implies (for
example) that the protocol can include auxilliary protocol-specific information
in the proof or oracle queries, so long as the verifier tolerates it. Since the
original verifier verifies with respect to an ideal random oracle, this also implies

10

that the protocol must generate a proof with respect to the same ideal random
oracle and not a heuristic realization of that oracle: this makes the protocol
oracle-respecting.
Definition 2.4. Oracle-Respecting Distributed Computation

Let L be a language in NP where membership of an instance x ∈ X can
be verified by a witness w ∈ W, and let (PH , VH) by a non-interactive
proof scheme for L in the random oracle model, per definition 2.1. Let
πH

n-Dist(1λ, x, w) be an expected PPT interactive n-party protocol with com-
mon input x and private inputs w ∈ Sn in which all parties have oracle
access to H and output the same value upon termination.a We say that
πH

n-Dist ORD-computes PH among n parties if there exists a PPT secret-
sharing function Sharen : W → Sn such that for every x ∈ L with witness
w,

Pr
[
VH(1λ, x, ρ) = 1 : ρ← πH

n-Dist(1λ, x, Sharen(w))
]
≥ 1− negl(λ)

over the random coins of Share, πn-Dist, and H.
aFor convenience, we use this notation to refer to both the protocol itself, and to a

function that runs the protocol and returns its output value.

It is possible that a distributed proof scheme has a slightly stronger form
in which specific oracle queries are in some sense bound to particular parties.
We show in section 3.3 that protocols of this form are witness-revealing in the
all-but-one security setting per definition 2.6, even if the proof scheme they
distribute satisfies only the weaker notion of straight-line extraction given in
definition 2.2.
Definition 2.5. ORD with Traceable Query Allocation

Let πH
n-Dist(1λ, x, w) be a protocol that ORD-computes PH(1λ, x, w) per

definition 2.4. We say that πH
n-Dist(1λ, x, w) has traceable query allocation

if there exists an algorithm MH : N× X× {0, 1}∗ → [n] that outputs with
overwhelming probability the index of the party who made the first query
to H on a particular value Q, given only n, x, Q, and access to the random
oracle H.

The above definitions for multiparty computation of a non-interactive proof
do not specify any particular security property against an adversary that cor-
rupts some of the participants. Instead, we introduce the notion that a protocol
is witness-revealing, which implies that a protocol cannot achieve any security
property that implies hiding the witness, even if the adversary is semi-honest.
Witness-revealingness in the presence of t corruptions contradicts almost any
intuitive notion of privacy in the presence of t corruptions, whether game-based,
simulation-based, semi-honest, malicious, static, or adaptive.

11

Definition 2.6. Witness Revealingness with t-of-n Corruptions

Let πH
n-Dist(1λ, x, w) be a protocol that ORD-computes PH(1λ, x, w) per

definition 2.4, and let ViewsH
Dist(1λ, x, w) be an algorithm that runs

πH
n-Dist(1λ, x, w) and outputs v such that vi is the view of the ith party.

We say that πH
n-Dist is witness-revealing with t-of-n corruptions if there ex-

ists a PPT algorithm A such for every x ∈ L with witness w,

Pr

 w ← A(1λ, x, {vi}i∈C) :
C← 2[n] : |C| = t,

w← Sharen(w),
v← ViewsH

Dist(1λ, x, w)

 ≥ 1/ poly(λ)

over the random coins of Share, πn-Dist, A, and H.

3 All-but-One Security is Impossible
In this section we prove our main theorems. We will begin with an overview.
In section 3.1, we show that given any non-interactive proof, if the prover’s
queries are partitioned into more subsets than the number of queries made by
the verifier, and the queries in one partition omitted at random, then the prover
retains a noticeable probability of convincing the original verifier. We give
a transformation Trim for any prover that performs such a partitioning-and-
omission operation. In section 3.2, we give a mechanism (comprising Pn-Dist and
Shave) for applying our Trim transformation (which requires a single prover)
to a protocol that distributes a prover, in such a way that each subset in the
partitioning of Trim contains the queries of exactly one party in the protocol.
We prove that under the combination of this mechanism and Trim, straight-line
extraction is preserved with noticeable probability. Finally, in section 3.3, we
use our collection of lemmas to prove that any protocol that distributes well-
known straight-line extractable non-interactive proof schemes, such as those of
Pass [Pas03, Pas04], Fischlin [Fis05], or Kondi and shelat [Ks22] is witness-
revealing if the adversary corrupts as many parties as there are queries checked
by the verifier. This is our main result, and we illustrate it (with a specific
concrete parameterization) in figure 1. The implications of our main theorems
have already been explored in section 1.

3.1 The Prover’s Haircut
We begin with a lemma lower-bounding the probability that the verifier notices
that a subset of queries have been omitted, if the prover partitions its queries
into a sufficiently-large number of subsets, and then omits one.
Lemma 3.1. Let QP and QV be sets such that QV ⊂ QP. Then, for any
partitioning of QP into n > |QV| partitions QP1, QP2, · · · , QPn,

Pr[QPi ∩QV = ∅ : i← [n]] ≥ 1− |QV|/n

12

2 31 4 5 6H

31 4 6H

time moves inexorably rightward

π3-Dist

π3-Dist (2 Corruptions)

Legend

i
*ith Query of π3-Dist Oracle H as Viewed by the AdversaryH

Figure 1: Suppose that the three-party interactive protocol π3-Dist ORD-
computes some non-interactive straight-line-extractable proof that can be veri-
fied with two queries to H. We illustrate the sequence of queries made by the
parties in the protocol over time: P3 makes the first query, then P2 makes the
second, then P3 makes another query, and so on. We aim to prove that if the
adversary corrupts any two parties randomly, then it can extract a witness with
noticeable probability using only the output and the oracle queries of the cor-
rupt parties.

Proof. There are n partitions (of which one is chosen uniformly), and there
can be at most |QV| partitions that have a non-empty intersection with QV.
Therefore, the probability that a partition that has a non-empty intersection
with QV is chosen is at most |QV|/n. Taking the complement of this event
yields the lemma.

Now we give our partitioning-and-omission mechanism Trim, and prove that
the verifier still accepts with noticeable probability when Trim is applied to a
prover. We say that a verifier checks a query made by a prover if it queries the
random oracle on the same value.

13

Algorithm 3.2. TrimH
P,n(1λ, x, w): n-Trimming Algorithm

The algorithm P expects to access a random oracle H : {0, 1}∗ 7→ {0, 1}ℓ.
Its n-trimmed version TrimP,n “deletes” every nth query (starting from a
random index δ ∈ [n]), if it is fresh. To preserve the behaviour of P, the al-
gorithm TrimH

P,n answers “deleted” queries with random values. Effectively,
TrimH

P,n is simply PH∗ for a random oracle H∗ that agrees with H except
at every (fresh) nth query made by P.

1. Initialize i = 1 and H∗ = ∅, sample δ ← [n], and start running
P(1λ, x, w).

2. Upon receiving an oracle query on the value Qi from P,

• If Qi is fresh (i.e. if it has never before been queried) and i ≡ δ
(mod n), then program H∗(Qi) to be a uniformly-sampled random
value.

• If Qi is fresh and i 6≡ δ (mod n), then query H on the value Qi and
program H∗(Qi) 7→ H(Qi).

• If Qi is not fresh, and i 6≡ δ (mod n), then query H on the value Qi,
but do not change the programming of H∗.a

• If Qi is not fresh, and i ≡ δ (mod n), then neither query H nor
change the programming of H∗.

Regardless of the above conditions, respond to the query with H∗(Qi),
and increment i.

3. Collect ρ as the output of P.

4. Output (ρ, H∗)
aThe result of this query is not actually used by Trim. The purpose of this step is

to maintain the distribution of queries made to H, in order to preserve the behaviour
of an extractor that takes such queries as input. Notice that if the smallest j such that
Qj = Qi satisfies j ≡ δ (mod n), then the (unused) value H(Qi) will differ from the
programmed value H∗(Qi) actually returned to P in this step. The set of such “unused”
queries to H that is induced by Trim is later denoted Q∆∩¬δ in section 3.3.

Lemma 3.3. If (PH , VH) is a non-interactive proof scheme for a language L
in the random oracle model, per definition 2.1, such that P makes at least n
queries to H and V checks at most n− 1, then ρ obtained by running (ρ, H∗)←
TrimP,n(1λ, x, w) is an accepting proof with noticeable probability when w is a
witness that x ∈ L. That is, for every x ∈ L with witness w,

Pr
[
VH(1λ, x, ρ) = 1 : (ρ, H∗)← TrimH

P,n(1λ, x, w)
]
≥ 1/ poly(λ)

Proof. Our proof will begin with the observation that the ρ almost always veri-
fies when checked using the oracle H∗ that is programmed by Trim, and then we

14

will bound from below the probability that ρ still verifies when H∗ is replaced
by H. We structure the proof as a series of claims that provide the components
required to analyze the probability that VH(1λ, x, ρ) = 1.

Claim 3.4. There is a negligible function ϵ such that for any x ∈ L with witness
w, and any n ∈ N+,

Pr[VH∗
(1λ, x, ρ) = 1 : (ρ, H∗)← TrimH

P,n(1λ, x, w)] ≥ 1− ϵ(λ)

This follows directly from the completeness property of (PH , VH), as given
in definition 2.1.

Without loss of generality, we assume that V’s queries are a strict subset of
P’s and can therefore be answered by H∗.1 Denote by QP the vector of random
oracle queries made by P to H∗ within Trim. Throughout this proof, when we
reference a query Qi, the integer i will denote the original position of the query
Qi in QP.2 Let Qf

P be the result of removing redundant queries from QP by
retaining only the lowest-indexed occurrence of any queried value, i.e.

Qf
P = {Qi : Qi ∈ QP ∧ ∄Qj ∈ QP s.t. (Qj = Qi ∧ j < i)}

Let QT be the list of queries made by TrimP,n(1λ, x, w) to H, and let Q¬δ
T be

the list of queries in QT that remain after the ones that also appear in Qf
P and

have indices with residue δ (mod n) are removed, i.e.

Q¬δ
T = {Qi : Qi ∈ QT ∧ ∄Qj ∈ Qf

P s.t. (Qi = Qj ∧ j ≡ δ (mod n))} (1)

Claim 3.5. For any x ∈ L with witness w, given (ρ, H∗) ← TrimH
P,n(1λ, x, w)

and Q¬δ
T as defined in equation 1, H and H∗ agree on the responses to all

queries in Q¬δ
T .

The above claim follows from the fact that Trim only programs H∗ to disagree
with H at queries Qi where i indexes the first time such a query is made, and
i ≡ δ (mod n). The set Qf

P retains only queries that are indexed by their
first occurrence in QP, and Q¬δ

T filters out those whose indices have residue δ.
Therefore, Q¬δ

T only contains queries at which Trim programs H∗ to match H.

Claim 3.6. VH(1λ, x, ρ) = VH∗(1λ, x, ρ) when QV ⊆ Q¬δ
T , where QV is the list

of queries made by V to either H or H∗.

Because we have assumed V to be deterministic, VH and VH∗ can only
diverge when V queries a point at which H and H∗ disagree, and it follows from
claim 3.5 that they are always in agreement on queries in Q¬δ

T .

Claim 3.7. Pr[QV ⊆ Q¬δ
T] ≥ 1/n

1Since V is a public algorithm, it can always be run by P to ensure this, if it is deterministic.
2That is, indices are preserved by any filtering operations that occur.

15

Observe that Q¬δ
T has been formed by partitioning QP into n sets of queries,

and deleting one set at random. The partition to which a query Qi ∈ QP belongs
is the one indexed by j mod n such that Qj ∈ Qf

P and Qi = Qj . If we use Q∆
to denote the deleted partition, then Q∆ = QP \Q¬δ

T . Applying lemma 3.1 we
have

Pr[Q∆ ∩QV = ∅] ≥ 1− |QV|/n ≥ 1− (n− 1)/n = 1/n

and since Q∆ ∩QV = ∅ =⇒ QV ⊆ Q¬δ
T , the above claim follows.

Finally, to derive the statement of the lemma, we observe that if
VH∗(1λ, x, ρ) = 1 and QV ⊂ Q¬δ

T , then via claim 3.6 we have VH(1λ, x, ρ) = 1.
To determine the probability that VH∗(1λ, x, ρ) = 1 and QV ⊂ Q¬δ

T hold simul-
taneously, consider the complement of the case that neither event occurs:

Pr
[
VH(1λ, x, ρ) = 1

]
≥ Pr

[
VH∗

(1λ, x, ρ) = 1 ∧ QV ⊂ Q¬δ
T

]
= Pr

[
¬

(
VH∗

(1λ, x, ρ) 6= 1 ∨ QV 6⊂ Q¬δ
T

)]
= 1− Pr

[
VH∗

(1λ, x, ρ) 6= 1 ∨ QV 6⊂ Q¬δ
T

]
≥ 1−

(
Pr

[
VH∗

(1λ, x, ρ) 6= 1
]

+ Pr
[
QV 6⊂ Q¬δ

T

])
≥ 1− (ϵ(λ) + (1− 1/n))
≥ 1/n− ϵ(λ)

Because V is polynomial-time, it must hold that n ≤ poly(λ), and ϵ(λ) is a
negligible function per claim 3.4. We can conclude that 1/n− ϵ(λ) ≥ 1/ poly(λ)
which proves the lemma.

3.2 Distributed P in-the-Head
Suppose that there exists some straight-line extractable non-interactive proof
scheme (P, V, E), and there exists a protocol πn-Dist that ORD-computes P among
n parties. We define an alternative prover algorithm Pn-Dist that runs the pro-
tocol πn-Dist “in the head” (i.e. it emulates all parties in the protocol) while
forwarding any random oracle queries that the parties make to H. We wish
for queries to H by Pn-Dist to adhere to the following format: the ith query
must come from party Pj such that j ≡ i (mod n) in the emulated instance of
πn-Dist running inside of Pn-Dist. This is straightforward to enforce by inserting
redundant queries as padding, and it allows us to use the Trim algorithm from
the previous section to delete the queries from a single consistent party, without
any out-of-band information. We also define a companion algorithm Shave to
remove these redundant queries (if they have not otherwise been filtered). In
figure 2 we illustrate the algorithm Pn-Dist, along with the sequences of oracle
queries that it emits. In figure 3 we illustrate the effect that applying Trim and
then Shave has upon the sequence of emitted queries.

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

H{

P3-Dist

Legend

1

2

4

5

i
*

Signal Query for Null Payload

Signal Query for Real Payload

Null Payload Query

Real Payload Query

ith Query of

P3-Dist

Figure 2: As in figure 1, we illustrate the three-party case. P3-Dist runs π3-Dist
“in the head,” and embeds the original sequence of queries into a larger, padded
sequence. Each query made by a party in π3-Dist becomes a set of six queries
emitted by P3-Dist: three signal queries followed by three payload queries. If
the original query is made by Pi, then it appears as the ith payload query, and
the other two payload queries in the set are null. The signal queries serve to
indicate which of the payloads are null, and which are real.

Algorithm 3.8. PH
n-Dist(1λ, x, w): Distributed P in-the-Head

1. Sample {wi}i∈[n]
..= w ← Sharen(w), and begin executing

πn-Dist(1λ, x, w) among virtual parties {Pi(1λ, x, wi)}i∈[n]

2. Upon receiving a query Q from Pi on behalf of H, make a sequence of
2n queries to H, where the ith queried value amongst them is 1, the
(n + i)th queried value is Q, and the rest of the queried values are 0.
The first n queries in this sequence are the signaling queries, and the
last n queries are the payload queries.

3. Output whatever πn-Dist outputs.

17

Algorithm 3.9. ShaveH
P,n(1λ, x, w): Redundant Query Remover

1. Initialize i = 1 and begin executing P(1λ, x, w).

2. Upon receiving an oracle query from P,

• Let Qi be the value that was queried. If di/ne is odd, return 0 to P
on behalf of the random oracle.

• If di/ne is even and Qi−n = 0, then return 0 to P on behalf of the
random oracle.

• If di/ne is even and Qi−n = 1, then return H(Qi) to P on behalf
of the random oracle. In other words, query H on behalf of P and
forward its response.

After responding, increment i.

3. Output whatever P outputs.

We observe about Pn-Dist, Trim, and Shave that they pass the output of πn-Dist
through unaltered by, construction. We prove two lemmas about them: the first
lower-bounds the probability that extraction is still successful if a straight-line
extractable prover is distributed in-the-head, trimmed, and then the redundant
queries are shaved. The second lemma relates the distribution of queries emitted
by the trimmed distributed-in-the-head prover to the distribution of queries
emitted by the underlying protocol.

Lemma 3.10. If

• (PH , VH , EH) is a straight-line extractable non-interactive proof scheme for
a language L in the random oracle model, per definitions 2.1 and 2.2

• P makes at least n queries to H and V checks at most n− 1

• πn-Dist is a protocol that ORD-computes P among n parties per definition 2.4

• Pn-Dist is a prover algorithm that runs πn-Dist in-the-head

• PH
n-Trim is a prover that runs (ρ, H∗)← TrimH

Pn-Dist,n
and then outputs ρ

then for any x ∈ L with witness w,

Pr

[
w′ witnesses x ∈ L :

ρ← ShaveH
Pn-Trim,n−1(1λ, x, w),

w′ ← EH(1λ, x, ρ, QS)

]
≥ 1/ poly(λ)

where QS denotes the ordered list of queries made by Shave to H and the prob-
ability is taken over the coins of Shave, Trim, Pn-Dist, E, and H.

Proof. As above, we structure our proof as a series of claims.

Claim 3.11. (PH
n-Dist, VH) is a non-interactive proof scheme for language L in

the random oracle model per definition 2.1.

18

2 5 8 11 14 17 20 23 26 29 32
* * * * * * * * * * *

1

2

2

3

5

4

5

8

6

7

11

8

9

14

10

11

17

12

13

20

14

15

23

16

17

26

18

19

29

20

21

32

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

6 18

22

2 5 8 11 14 17 20 23 26 29 32
* * * * * * * * * * *

H

H

{

{

TrimP3-Dist,3
 = 3-Trim

Shave3-Trim,2

Legend

i

1

2

4

5

i
*

Signal Query for Null Payload

Signal Query for Real Payload

Null Payload Query

Real Payload Query

ith Query of

P3-Dist

Query Diverted to H* by Trim

Figure 3: As in figures 1 and 2, we illustrate the three-party case. Trim wraps
P3-Dist and diverts query 3i+j to the internal random oracle H∗, for every i ∈ N
and some random j ∈ [3]. Shave wraps both P3-Dist and Trim and removes the
padding queries that P3-Dist added to the set of queries produced by the instance
of π3-Dist in its head. The distribution of queries emitted by Shave is identical
to the distribution observed by an adversary randomly corrupting two parties
in π3-Dist, as illustrated in figure 1. The output distributions are also identical.

19

Because VH belongs to a non-interactive proof scheme as specified in defini-
tion 2.1 and because

Pr
[
VH(1λ, x, ρ) = 1 : ρ← πH

n-Dist(1λ, x, Sharen(w))
]
≥ 1− negl(λ)

for any x ∈ L with witness w as specified by definition 2.4, and because
PH

n-Dist simply runs πH
n-Dist(1λ, x, Sharen(w)) internally, we can conclude that

(PH
n-Dist, VH) is a non-interactive proof scheme for language L per definition 2.1.

Claim 3.12. For any x ∈ L with witness w,

Pr
[
VH(1λ, x, ρ) = 1 : ρ← TrimH

Pn-Dist,n
(1λ, x, w)

]
≥ 1/ poly(λ)

The above claim follows from the conjunction of claim 3.11, which establishes
that (PH

n-Dist, VH) is a non-interactive proof scheme, and lemma 3.3, which es-
tablishes that when Trim is applied to a non-interactive proof scheme with at
most n − 1 verifier-checked queries, the resulting algorithm has a noticeable
chance of producing proofs that are accepted by an unaltered verifier.

Claim 3.13. Let PH
n-Trim be a prover that runs (ρ, H∗)← TrimH

Pn-Dist,n
and then

outputs ρ. For any x ∈ L with witness w, the outputs of ShaveH
Pn-Trim,n−1(1λ, x, w)

and PH
n-Trim(1λ, x, w) are identically distributed.

We make three observations about the structure of oracle queries through
the various algorithms:

1. The queries emitted by Pn-Dist can be partitioned into alternating signaling
and payload subsets of length n, and the response to a query in a payload
subset will only be forwarded to a virtual party in Pn-Dist’s emulated instance
of πn-Dist if the corresponding query value in the proceeding signaling subset
is 1. This implies that the value of ρ produced by Pn-Dist is completely inde-
pendent of the responses to any signaling query or any payload query that
has a corresponding signaling query with value 0.

2. Trim preserves the signal/payload relationship. Since TrimPn-Dist,n omits every
nth query produced by Pn-Dist (starting with some random index δ), and the
signal query corresponding to payload query Qi always has index i−n, Trim
omits a payload query if and only if it also omits the corresponding signal
query. The query set emitted by Trim can be partitioned into alternating
signaling and payload subsets of length n − 1, matching the parameter of
Shave.

3. Shave forwards all payload queries with a signal value of 1 to H, and does
not query H when it receives a signal query or a payload query that has an
associated signal of 0. Since we have established that ρ produced by Pn-Dist or
Pn-Trim depends only on payload queries that have an associated signal query
of 1, this implies that the output of PH

n-Trim(1λ, x, w) is distributed identically
to the output of ShaveH

Pn-Trim,n−1(1λ, x, w).

20

The conjunction of claims 3.12 and 3.13 yields

Pr
[
VH(1λ, x, ρ) = 1 : ρ← ShaveH

Pn-Trim,n−1(1λ, x, w)
]
≥ 1/ poly(λ)

for any x ∈ L with witness w. Since VH belongs to a straight-line extractable
non-interactive proof scheme with an extractor EH per definition 2.2 and no-
ticeable probabilities are closed under multiplication, definition 2.2 implies that
lemma 3.10 must hold.

Lemma 3.14. Let

• (PH , VH) be a non-interactive proof scheme for a language L in the random
oracle model, per definition 2.1

• πn-Dist be a protocol that ORD-computes P among n parties per definition 2.4

• Pn-Dist be a prover algorithm that runs πn-Dist in-the-head

• PH
n-Trim be a prover that runs (ρ, H∗)← TrimH

Pn-Dist,n
and then outputs ρ

and for any x ∈ L with witness w, let

• QS be the list of queries made by ShaveH
Pn-Trim,n−1(1λ, x, w) to H

• Qπ be the list of queries made to H by all parties in an execution of
πH

n-Dist(1λ, n, x, Sharen(w)),

• QPi
be the list of queries that are made exclusively by party Pi in the afore-

mentioned execution of πH
n-Dist

and finally let δ ← [n] be uniformly sampled and let Q¬δ = Qπ \QPδ
. It follows

that Q¬δ is distributed identically to QS.

Proof. We begin with an intermediate claim about the set of queries observed
by the internally emulated random oracle of Trim.

Claim 3.15. Let Qπ be the list of queries made to H by all parties in an
execution of πH

n-Dist(1λ, x, Sharen(w)), and let Q∗
P be the list of queries made by

PH∗

n-Dist to the emulated oracle H∗ in an execution of TrimPn-Dist,n(1λ, x, w). Qπ

is distributed identically to Q∗
P, up to redundant padding queries.

The above claim follows from the fact the oracle H∗ emulated to Pn-Dist by
Trim has a distribution identical to H, which implies that the views of all parties
in πH

n-Dist are distributed identically to the views of the corresponding parties in
the instance of πH∗

n-Dist that is emulated internally by Pn-Dist.

Now we derive the statement of the lemma. Recall that the jth random oracle
query made by PH∗

n-Dist corresponds to either a query by party Pi such that i ≡ j
(mod n) in the emulated instance of πH∗

n-Dist internal to PH∗

n-Dist, or to a redundant
padding query. The jth query Qj made by PH∗

n-Dist in TrimH
Pn-Dist,n

(1λ, x, w) is
forwarded to H if and only if j 6≡ δ (mod n), which implies that the list of

21

queries made by Trim to H is exactly the set of queries made by all emulated
parties except party Pδ for some randomly sampled δ ← [n], interleaved with
redundant padding queries. As we previously argued in the context of claim 3.13,
Shave perfectly omits redundant padding queries, even when intermediated by
Trim, which implies that only queries originating from emulated parties other
than Pδ are emitted by ShaveH

Pn-Trim,n−1(1λ, x, w). Claim 3.15 establishes that the
distribution of queries produced by the complete set of parties that is emulated
by Trim is equivalent to the distribution of queries in a standalone instance of the
protocol, which yields lemma 3.14 when combined with the foregoing facts.

3.3 Distributed NIZKs are Sometimes Witness-Revealing
Finally, we apply the above lemmas to well known straight-line extractable
NIZK schemes. Notice that in lemma 3.10, ρ is effectively produced with one
oracle H∗ and extracted with another oracle H. The oracles H and H∗ diverge
at the queries

Q∆ = {Q : Q ∈ Qπ ∧ Pδ is the first party to query Q in πH∗

n-Dist}

since the responses to these queries are programmed in H∗ by Trim, indepen-
dently of H. The intersection Q∆∩¬δ = Q∆ ∩Q¬δ is non-empty if some query
Q initially made by Pδ is later repeated by another party. We wish to show
that there exists an extractor that is successful given the queryset Q¬δ and
the proof produced by πH∗

n-Dist and access to H∗ (whereas we are currently only
guaranteed an extractor that is successful with access to H). We make two dif-
ferent restrictions upon the original straight-line-extractable proof that resolve
this discrepancy, yielding two theorems.

Theorem 3.16. If (PH , VH , E) is a non-interactive proof scheme for a language
L with response-independent straight-line extractability in the random oracle
model, per definitions 2.1 and 2.3, such that P makes at least n queries to H and
V checks at most n − 1, then any protocol πH

n-Dist(1λ, x, w) that ORD-computes
P among n parties per definition 2.4 is witness-revealing per definition 2.6 in
the presence of an adversary that corrupts n− 1 parties.

Proof. Because lemma 3.10 preserves the original extractor, applying it to
(PH , VH , E) yields

Pr

[
w′ witnesses x ∈ L :

ρ← ShaveH
Pn-Trim,n−1(1λ, x, w),

w′ ← E(1λ, x, ρ, QS)

]
≥ 1/ poly(λ) (2)

for any x ∈ L with witness w, where QS denotes the ordered list of queries made
by Shave to H. Notice that in equation 2 the extractor does not have access to
H, which implies that it cannot observe the divergence between H and oracle
H∗ emulated by Trim toward Pn-Dist.

We can construct an adversary for πH
n-Dist as follows: the adversary corrupts

n − 1 parties at random and instructs them to behave as though they were

22

honest, but records the queries that they make to H as Q¬δ. When the protocol
is complete with the output ρ, the adversary runs w′ ← E(1λ, x, ρ, Q¬δ) and
outputs w′. By lemma 3.14, Q¬δ and QS are identically distributed, and by
construction we know that ShaveH

Pn-Trim,n−1(1λ, x, w) and πH
n-Dist(1λ, x, Sharen(w))

have identical output distributions. Thus equation 2 implies that the extractor
produces (and the adversary outputs) a valid witness with probability at least
1/ poly(λ); this satisfies definition 2.6.

Corollary 3.17. When the Pass [Pas03] transform is applied to any sigma
protocol, and the ideal commitments are realized via the folkloric random-oracle
based commitment protocol wherein a commitment is simply the oracle’s output
on the committed value concatenated with a salt,3 then any protocol that ORD-
computes the resulting non-interactive proof scheme among n parties is witness
revealing in the presence of an adversary that corrupts n−1 parties, where n−1
is the number of random oracle queries made by the verifier.

Proof. The explicit extractor given by Pass in the extended version of his
work [Pas04] is specified to receive a list of the responses to the oracle queries
made by the prover, in addition to the values queried, but we observe that when
his scheme is constructed using the random-oracle-based straight-line commit-
ment scheme that he suggests, a response-independent straight-line extractor is
also implicitly possible, with some computational overhead. In Pass’s scheme,
the inputs to the oracle are the transcripts of a sigma protocol of the form
(a, b, c), which has 2-special soundness. If the verifier accepts the proof, then
with overwhelming probability the prover has made made queries on two tran-
scripts (a, b, c) and (a, b′, c′) with the same statement x and first message, but
different challenges and responses. Thus our response-independent extractor
EPass for the non-interactive proof can simply feed all pairs of query values into
the sigma protocol’s extractor, and each time check whether the output of the
sigma protocol’s extractor is a valid witness for the statement. When a valid
witness is found (which it must be, with overwhelming probability), EPass out-
puts it and halts. The total running time of EPass is quadratic in the number of
random oracle queries made by the prover, and thus it is PPT if the prover is.
In order for theorem 3.16 to apply, it is sufficient for any response-independent
extraction algorithm to exist; thus corollary 3.17 holds.

Corollary 3.18. When the Fischlin [Fis05], or Kondi-shelat [Ks22] transform
is applied to any sigma protocol, then any protocol that ORD-computes the re-
sulting non-interactive proof scheme among n parties is witness revealing in the
presence of an adversary that corrupts n− 1 parties, where n− 1 is the number
of random oracle queries made by the verifier.

Proof. Fischlin’s transform is formalized with response-independent straight-
line extractability; thus, this corollary is a direct consequence of theorem 3.16.
Likewise, Kondi and shelat specify an explicit extractor for their transform
which uses only the queried values, and not the oracle’s responses.

3This commitment scheme is specified by Pass himself.

23

Corollary 3.19. When the Unruh [Unr15] transform is applied to any sigma
protocol, then any protocol that ORD-computes the resulting non-interactive
proof scheme among n parties is witness revealing in the presence of a clas-
sical adversary that corrupts n−1 parties, where n−1 is the number of random
oracle queries made by the verifier.

Proof. Unruh’s transform is effectively the same as Pass’s transform, except that
it uses a different extraction technique and a different analysis in the presence of
a malicious prover with quantum access to the random oracle. Against a classical
adversarial prover, it is possible to use the same extractor as we described in
our proof of corollary 3.17, and so this corollary follows from that one.

Theorem 3.20. If (PH , VH , EH) is a straight-line extractable non-interactive
proof scheme for a language L in the random oracle model, per definitions 2.1
and 2.2 such that P makes at least n queries to H and V checks at most n− 1,
then any protocol πH

n-Dist(1λ, x, w) that ORD-computes P among n parties with
traceable query allocation under the mapping function M per definition 2.5 is
witness-revealing per definition 2.6 in the presence of an adversary that corrupts
n− 1 parties.

Proof. We can construct an adversary for πH
n-Dist as follows: the adversary cor-

rupts n−1 parties at random and instructs them to behave as though they were
honest, but records the queries that they make to H as Q¬δ. When the protocol
is complete with the output ρ, the adversary runs w′ ← EH†(1λ, x, ρ, Q¬δ) and
emulates for it an instance of the oracle H†. On receiving a query Q on behalf
of H†,

• If Q 6∈ Q¬δ and Q is fresh, the adversary programs H†(Q) to be a uniformly-
sampled value

• If Q ∈ Q¬δ and M(n, x, Q) = δ and Q is fresh, the adversary programs H†(Q)
to be a uniformly-sampled value

• If Q ∈ Q¬δ and M(n, x, Q) 6= δ and Q is fresh, the adversary forwards the
query to H and programs H†(Q) 7→ H(Q)

and when EH† halts, the adversary outputs w′. By lemma 3.14, Q¬δ

and QS are identically distributed, and by construction we know that
ShaveH

Pn-Trim,n−1(1λ, x, w) and πH
n-Dist(1λ, x, Sharen(w)) have identical output dis-

tributions. In lemma 3.10, ρ is generated under the oracle H∗ and extraction
occurs under H, whereas when our adversary interacts with πH

n-Dist, ρ is gen-
erated under H and extraction occurs under H†; thus we must show that the
distributions of (H∗, H) and (H, H†) are identical. This is easy to see: by
construction, both pairs of oracles diverge on the queries in

Q∆ = {Q : Q ∈ Qπ ∧ Pδ is the first party to query Q in πH
n-Dist or πH∗

n-Dist}

and in both cases, the two oracles return independently sampled uniform values.
On all other queries, both pairs of oracles agree. Thus lemma 3.10 implies

24

that the extractor produces (and the adversary outputs) a valid witness with
probability at least 1/ poly(λ); this satisfies definition 2.6.

3.4 The Constant Corruptions Setting.
It is easy to generalize theorems 3.16 and 3.20 and their corollaries to the setting
where V checks at most n− c queries and the adversary corrupts at most n− c
parties, for any constant c. Such a generalization begins by adapting lemma 3.1:

Lemma 3.21. Let QP and QV be sets such that QV ⊂ QP. Then, for any
partitioning of QP into n ≥ |QV|+ c partitions QP1, QP2, · · · , QPn,

Pr

QV ∩
∪

j∈[c]

QPij
= ∅ : ij ← [n]∀j ∈ [c]

 ≥ (1− (n− 1)/n)c

Next, we adjust algorithm 3.2 to choose c random (possibly duplicate) in-
dices, and for every chosen index, delete every nth query. We refer to our mod-
ified algorithm as TrimC. Claims 3.4, 3.5, and 3.6 apply to TrimC unchanged.
Using TrimC in claim 3.7 and replacing lemma 3.1 with lemma 3.21 yields:

Claim 3.22. Pr[QV ⊆ Q¬δ
T] ≥ 1/nc

where, in this case, Q¬δ
T is the set of queries from which TrimC has deleted

(up to) c queries out of every n. If use claim 3.22 in place of claim 3.7 in our
argument for lemma 3.3, we find that

Pr
[
VH(1λ, x, ρ) = 1

]
≥ 1/nc − ϵ(λ) ≥ 1/ poly(λ)

when c is a constant, and thus when c is a constant lemma 3.3 holds for TrimC.
We can then substitute TrimC and lemma 3.21 into the remainder of our

argument, adjust the parameterization of algorithm 3.9 from n − 1 to n − c,
and consider an adversary that chooses c random (possibly duplicate) indices
δ1, . . . , δc and corrupts all parties except the ones corresponding to these indices.
This combination implies the generalized version of theorem 3.16 and that we
desire. The proof of a generalized theorem 3.20 is slightly more involved: the
adversary programs H†(Q) to be a uniformly-sampled value whenever Q is fresh,
Q ∈ Q¬δ, and M(n, x, Q) = δj for any j ∈ [c]. Since c is constant, the probability
that these adversaries corrupt exactly n− c parties is a constant fraction.

4 A Constant-Fraction Construction
In section 3, we considered the case that an adversary is able to corrupt all but
one of the parties in protocol that ORD-computes some prover. Given the inher-
ent barriers that we demonstrated, it is natural to ask whether a more restricted
adversary retains the same power, and in what regime it is possible to construct
multi-prover non-interactive straight-line zero-knowledge schemes that are not

25

witness revealing. In this section, we consider the next-most-powerful natu-
ral corruption threshold, which is corruption of a constant fraction of parties.
Specifically, we consider the case that a semi-honest adversary corrupts c · n
of the provers, for some positive constant c < 1. To our knowledge, no prior
work has ever given an oracle-respecting distributed zero-knowledge prover in
this setting such that the verifier must perform fewer than n− 1 oracle queries
and a meaningful privacy notion is achieved. Working by example, we construct
precisely such a scheme.

We focus our attention on a specific language—discrete logarithm—and for
this language we construct a non-interactive zero-knowledge proof of knowledge
that requires a number of verification queries dependent only upon the security
parameter. We then give a protocol that ORD-computes our prover among any
number of parties, and prove that so long as a constant fraction of those parties
are honest, the honest parties’ messages can be simulated without knowledge
of their shares of the witness (see definition 4.3), which contradicts witness-
revealingness (definition 2.6) if the discrete logarithm assumption holds.

4.1 Additional Definitions
The discrete logarithm relation RDL is defined over a group G of order q gen-
erated by some element G. We write group operations additively and by con-
vention we use capitalized variables for group elements. Thus RDL(X, w) 7→
1 if w · G = X or 0 otherwise. Since we will be constructing a protocol in this
section, we must give a richer definition of secret sharing than we have hereto-
fore, which is satisfied by simple additive secret-sharing.
Definition 4.1. All-but-One Secret-Sharing

A pair of algorithms (Sharen, Reconn) is a secret sharing scheme for n par-
ties with security against n− 1 corruptions if they satisfy three properties:

1. Efficiency: Sharen is a probabilistic polynomial-time algorithm and
Reconn is a deterministic polynomial time algorithm.

2. Correctness and Completeness: For any x in the domain of Sharen

Pr [Reconn(Sharen(x)) = x] = 1

where the probability is over the coins of Sharen.

3. Perfect Secrecy: If the range of Sharen is Sn, then for any x in the
domain of Sharen and any C ⊂ [n] such that |C| = n− 1,

{{si}i∈C : Sharen(x)} = USn−1

where USn−1 is the uniform distribution over Sn−1.

In order to show that definition 2.6 is contradicted, we must give a formal

26

notion of security for our protocol. We begin with a standard definition of
zero-knowledge for single provers.
Definition 4.2. Zero-Knowledge [GMR85, GMW91]

Let L be a language in NP where membership of an instance x ∈ X can
be verified by a witness w ∈ W, and let (PH , VH) be an efficient proof
scheme where both P and V have access to the random oracle H. We say
that (PH , VH) is zero-knowledge in the random oracle model if for every
PPT adversary AH with oracle access to H there exists a PPT simulator
algorithm SA that may reactively program H such that for any x ∈ L with
witness w and any non-uniform advice z ∈ {0, 1}poly(λ),

ViewH,PH (1λ,x,w)
A (1λ, x, z) ≈c SA(1λ, x, z)

over the random coins of A, P, S, and H, where ViewH,PH (1λ,x,w)
A (1λ, x, z)

represents the view of AH(1λ, x, z) during its interaction with PH(1λ, x, w).
If the two distributions are ≈s rather than ≈c, then the protocol is said to
be statistically zero-knowledge. If the two distributions are identical, then
it is perfectly zero-knowledge.

We note that the above definition does not insist that the proof scheme
be non-interactive, and that it permits the simulator to program the oracle.
Pass [Pas03] proved that such programming is necessary. We extend the above
definition in a minimal way to accommodate protocols with multipler provers,
of which some threshold may be corrupt.
Definition 4.3. Multi-Prover ZK against t Corruptions

Let L be a language in NP where membership of an instance x ∈ X can be
verified by a witness w ∈W, and let (PH , VH) be an efficient proof scheme
where both P and V have access to the random oracle H, and let πH

n-Dist
be a protocol among n parties that ORD-computes PH per definition 2.4.
We say that πH

n-Dist has multi-prover zero-knowledge in the random oracle
model against t corruptions if for every C ⊂ [n] such that |C| = t and every
PPT adversary AH

C with oracle access to H that corrupts the protocol
parties indexed by C there exists a PPT simulator algorithm SAC that
may reactively program H such that for any x ∈ L with witness w and any
{wi}i∈[n] ← Sharen(w), and any non-uniform advice z ∈ {0, 1}poly(λ),

View
H,{PH

j (1λ,x,wj)}
j∈[n]\C

AC

(
1λ, x, {wi}i∈C , z

)
≈c SAC

(
1λ, x, {wi}i∈C , z

)
over the random coins of A, S, H, and Pj for j ∈ [n] \C, where

View
H,{PH

j (1λ,x,wj)}
j∈[n]\C

AC

(
1λ, x, {wi}i∈C , z

)

27

represents the view of AH
C

(
1λ, x, {wi}i∈C , z

)
during its interaction with

the honest parties PH
j (1λ, x, wj) for j ∈ [n] \C who participate in πH

n-Dist.
If the two distributions are ≈s rather than ≈c, then the protocol is said to
be statistically zero-knowledge. If the two distributions are identical, then
it is perfectly zero-knowledge.

Informally, if a protocol is both multi-prover zero-knowledge against t cor-
ruptions and witness-revealing in the presence of t corruptions, and Sharen

information-theoretically hides w when only t shares are known (as definition 4.1
insists that it must), then an extractor E can be used to recover a witness w
from the statement x, which may imply breaking a hardness assumption. In the
case of our example in the next section, it would imply breaking the discrete
logarithm assumption.

4.2 Proof by Committee
We begin by assuming the existence of a non-interactive response-independent
straight-line extractable zero-knowledge proof of knowledge for the discrete log-
arithm relation. That is, let (PH

DL, VH
DL, EDL, SDL) satisfy definitions 2.1, 2.3,

and 4.2 for the language L defined by RDL. Such a scheme is straightforward to
instantiate with Schnorr’s protocol compiled with any straight-line extractable
NIZK transform [Pas03, Fis05, Ks22]. We also assume the existence of an ad-
ditive secret sharing scheme (Share, Recon) that satisfies definition 4.1, and we
assume it can be applied over Zq and G in a homomorphic fashion, always
producing shares in the same domain as the input.4 From any such basis we
construct the following willfully-inefficient NIZK, which creates λ secret shares
of the original witness and statement and proves knowledge of them individually:
Algorithm 4.4. Secret-Shared NIZKPoK of Discrete Logarithm

These algorithms are implicitly parameterized by the NIZK
(PH

DL, VH
DL, EDL, SDL) and the additive secret-sharing scheme

(Shareλ, Reconλ), and they have access to the random oracle H.

PH
DLλ(1λ, X, w) :

1. Sample {wi}i∈[λ] ← Shareλ(w) and compute Xi
..= wi · G for every

i ∈ [λ].

2. For every i ∈ [λ], compute ρi ← PHi

DL(1λ, Xi, wi), where Hi is simply H
with i prefixed to all queries.

3. Output {Xi, ρi}i∈[λ].

4i.e. for any w ∈ Zq and any n ∈ N+,

w ·G = Reconn

(
{wi ·G}i∈[n]

)
: {wi}i∈[n] ← Sharen(w)

28

VH
DLλ(1λ, X, {Xi, ρi}i∈[λ]) :

1. Output 1 if
∑

i∈[λ] Xi = X and VHi

DL(1λ, Xi, ρi) = 1 for every i ∈ [λ].
Otherwise, output 0.

EDLλ(1λ, {Xi, ρi}i∈[λ], Q) :

1. For every i ∈ [λ], let Qi be the subset of queries in Q prefixed by i.

2. For every i ∈ [λ], compute w′
i ← EDL(1λ, Xi, ρi, Qi).

3. Output w′ ..= Reconλ

(
{w′

i}i∈[λ]
)
.

SDLλ(1λ, X) :

1. Initialize H as a uniformly random oracle.

2. Compute {Xi}i∈[λ] ← Shareλ(X).

3. For every i ∈ [λ], compute ρi ← SDL(1λ, Xi), programming Hi as re-
quired.

4. Output {Xi, ρi}i∈[λ].

Lemma 4.5. If (PH
DL, VH

DL, EDL, SDL) is a response-independent straight-line ex-
tractable NIZK in the random oracle model for the discrete logarithm relation in
G, per definitions 2.1, 2.3, and 4.2, and (Shareλ, Reconλ) is an additive all-but-
one secret sharing scheme per definition 4.1, then (PH

DLλ, VH
DLλ, EDLλ, SDLλ) is

also a response-independent straight-line extractable NIZK in the random oracle
model for the discrete logarithm relation in G.

Proof Sketch. Completeness follows directly from the completeness of (PH
DL, VH

DL)
and (Shareλ, Reconλ). Soundness follows directly from the correctness of
(Shareλ, Reconλ) over both Zq and G and the soundness of (PH

DL, VH
DL).

Response-independent straight-line extraction follows from a straightfor-
ward reduction to the matching property of (PH

DL, VH
DL, EDL). An adversary for

(PH
DLλ, VH

DLλ, EDLλ) who produces a proof with at least one trio (Xi, ρi, Qi) such
that EDL(1λ, Xi, ρi, Qi) fails to produce a valid witness for Xi can trivially be
transformed into an adversary for (PH

DL, VH
DL, EDL).

Zero-knowedge follows from the fact that the outputs of SDLλ and PH
DLλ differ

only in that the former computes ρi for every i ∈ [λ] using SDL, whereas the
latter uses PH

DL. The zero-knowledge property of (PH
DL, VH

DL, SDL) implies that
these distributions are indistinguishable.

Next, we introduce an ideal functionality FShareλ,Reconn

RandReshare that will be used as
a building block for the protocol that ORD-computes PH

DL. The functionality
takes n secret shares of a value from n parties, reconstructs the shared value,
and then distributes new shares of the value to a randomly chosen size-λ subset
of the parties.

29

Functionality 4.6. FShareλ,Reconn

RandReshare (n, λ, q)
This functionality interacts with n > λ parties, and is also parameterized
by a prime q. It has oracle access to the reconstruction algorithm Reconn

and the sharing algorithm Shareλ, both over Zq.

Upon receiving (reshare, sid, wi) from party Pi for all i ∈ [n]:

1. Compute w ..= Recon({wi}i∈[n]).

2. Sample {w′
j}j∈[λ] ← Shareλ(w).

3. Sample {Cj}j∈[λ] ⊂ {Pi}i∈[n] uniformly.

4. For each j ∈ [λ] send (share, sid, w′
j) to party Cj as adversarially-delayed

private output.

5. Send (reshared, sid) to all parties as adversarially-delayed output, and
ignore any future messages with the same sid.

There may be efficient custom protocols to realize FShareλ,Reconn

RandReshare , but for our
purposes it suffices that it can be realized generically with resilience to n − 1
corruptions [GMW87]. We are now ready to construct a protocol that ORD-
computes PH

DLλ with multi-prover zero-knowledge. To simplify our protocol
description and analysis, we make the assumption that n > λ/(1 − c). This
assumption is easy to remove: in case n ≤ λ/(1 − c) parties wish to run the
protocol, they can instead run a version of the protocol where each real party
controls m virtual parties (so that m · n > λ/(1 − c))—such a virtualization
preserves the same fraction of corruptions, and therefore retains the security
guarantees of the original protocol.
Protocol 4.7. πH

DLλ(1λ, X, w, n, sid): ORD-PH
DLλ

This protocol distributes the computation of PH
DLλ (while making oracle

use of H) amongst n parties such that n > λ/(1 − c). Each party Pi

begins with the common input X ∈ G and private input wi ∈ Zq such that
w = {wi}i∈[n] is in the image of Share(w).

1. Every party Pi for i ∈ [n] sends (reshare, sid, wi) to
FShareλ,Reconn

RandReshare (n, λ, q), and waits for a response.

2. If Pi receives (share, sid, w′
j) from FShareλ,Reconn

RandReshare (n, λ, q), it computes
Xj

..= w′
j · G and ρj ← PH

DL(1λ, Xj , wj) and then broadcasts
(proof-shard, sid, Xj , ρj) to the other parties.

3. The parties collect and output {Xj , ρj}j∈[λ]

Lemma 4.8. For any positive rational c < 1 and any n such that n > λ/(1−c),
protocol πH

DLλ ORD-computes PH
DLλ per definition 2.4 and achieves multi-prover

30

zero-knowledge in the presence of c · n corrupt parties per definition 4.3.

Proof. It is easy to verify by inspection that πH
DLλ ORD-computes PH

DLλ: the
algorithms are exactly the same, except that in πH

DLλ the various sub-proofs are
computed by separate parties instead of by a single, unified prover.

To satisfy definition 4.3, we define a simulator SAC
DLλ(1λ, X, {wi}i∈C, n, sid),

which works in the following way:

1. Initialize H as a uniformly random oracle.

2. On receiving (reshare, sid, wi) from all corrupt parties on behalf of
FShareλ,Reconn

RandReshare , sample {Cj}j∈[λ] ⊂ {Pi}i∈[n] uniformly subject to Ch being
an honest party, for at least one h ∈ [λ].

3. For every i ∈ [λ] such that Ci is corrupt, sample w′
i ← Zq uniformly, compute

Xi
..= w′

i ·G, and send (share, sid, w′
i) to Ci on behalf of FShareλ,Reconn

RandReshare .

4. For every j ∈ [λ] such that Cj is honest, sample Xj ← G uniformly subject
to Reconλ({Xk}k∈[λ]) = X and compute ρj ← SDL(1λ, Xj), programming Hj

as required.

5. For every j ∈ [λ] such that Cj is honest, broadcast (proof-shard, sid, Xj , ρj)
to the corrupt parties.

As in our proof of lemma 4.5, the zero-knowledge property of (PH
DL, VH

DL, SDL)
implies that these distributions of ρj for j ∈ [λ] such that Cj is honest are indis-
tinguishable in the adversary’s view of the protocol (where they are generated
by PH

DL) and the adversary’s view of the simulation (where they are generated
by SDL). The only remaining case in which the adversary can distinguish SDLλ

from πH
DLλ is the event in which FShareλ,Reconn

RandReshare chooses an entirely corrupt com-
mittee. By construction, this never happens when the adversary is interacting
with SDLλ, and it also cannot happen when the adversary interacts with πH

DLλ

and c · n < λ. When the adversary interacts with πH
DLλ and c · n ≥ λ, the

probability that a fully-corrupt committee will be sampled is upper-bounded by(
c·n
λ

)(
n
λ

) ≤ (
c · n

n− λ

)λ

=
(

c · d · λ
d · λ− λ

)λ

=
(

c

1− 1/d

)λ

∈ 1
exp(λ)

where d ·λ = n and we know by construction that d > 1/(1−c). Since this event
fully characterizes the separation between the real protocol from the simulation,
and it occurs with negligible probability, the theorem is proven.

Theorem 4.9. If the discrete logarithm assumption holds in G, then for any
positive rational c < 1 and any n such that n > λ/(1 − c), πH

DLλ is not witness
revealing per definition 2.6 in the presence of c · n corrupt parties.

Proof. Our proof is by contradiction. Suppose that πH
DLλ were witness-revealing

in the presence of c · n corrupt parties; this implies that with noticeable prob-
ability a valid witness could be extracted from the corrupt parties’ views in

31

any execution that yields an accepting proof. Since πH
DLλ ORD-computes PH

DLλ

with respect to the verifier VH
DLλ, and it has multi-prover zero-knowledge in the

presence of c · n corrupt parties as shown in lemma 4.8, there exists a simula-
tor (SDLλ) that can generate accepting proofs on any statement X ∈ G along
with the views of c · n corrupt parties without access to a witness for X. Since
the proofs and views generated by the simulator are indistinguishable from the
ones produced by a protocol, applying the witness-revealing extractor must still
yield a valid witness w such that w · G = X with noticeable probability. This
contradicts the discrete logarithm assumption in G; thus our theorem holds.

Since we know that πH
DLλ ORD-computes PH

DLλ with respect to the verifier
VH

DLλ, and VH
DLλ makes a number of oracle queries that is independent of n, we

can conclude that no theorem equivalent to theorems 3.16 or 3.20 can hold in
general for adversaries that only corrupt a constant fraction of provers.

5 Related Work
In this section, we discuss work related to our bounds. Our overview begins with
results that are loosely related to our problem setting, but that address different
adversarial models and security goals. We then review the few constructions in
the literature that match our setting, and show that our bounds on proof size
and query complexity are respected. We conclude with a brief discussion of
recent related work on straight-line extraction, emphasizing the impact of our
bounds on various settings, results, and directions for future work.

Several recent works [CB17, BBC+19, AGJ+21] have constructed efficient
non-interactive zero-knowledge proofs in settings where the statement is dis-
tributed among many verifiers, and not known in its entirety to any of them,
but few works have addressed the setting where the witness is distributed among
mutually-distrustful provers, as ours does. All existing works in the multi-prover
setting fall into two categories: either they make additional trusted setup as-
sumptions, such as the existance of a CRS for which the extractor knows a
trapdoor, or they permit the size of their proofs (and thus their verification
time) to grow linearly with the number of provers n, as our bound says they
must.

Ozdemir and Boneh [OB22] adapt various zk-SNARK constructions based
on polynomial interactive oracle proofs [BFS20, CHM+20] to the multi-prover
setting. Of the four schemes they consider, only “Fractal” [COS20] avoids the
use of a CRS, using hash-based vector commitments instead. Ozdemir and
Boneh explicitly note that if the protocol is constructed in an oracle-respecting
way, then its proof size and verifier computation cost grow linearly with n,
and suggest that if it is not constructed in an oracle-respecting way, then the
provers’ computation costs are unacceptable. Cui et a. [CZC+21] also present
an oracle-respecting multi-prover scheme; their proof size grows with n, as our
bound predicts.

Wu et al. [WZC+18] describe a protocol that distributes Groth’s CRS-based

32

zk-SNARK [Gro16] and observe that the cost of the trusted setup procedure
required for such schemes is substantial and grows with the circuit complex-
ity of the statement to be proven, making their scheme and others with sim-
ilar CRSes prohibitively expensive in many practical settings. Several works
have introduced protocols for securely sampling such CRSes in a distributed
fashion [BGM17, KMSV21, CDKs22], but the practicality of such techniques
remains to be established when the number of participants or the size of the
circuit to be proven is large.

Dziembowski, Faust, and Lizurej [DFL23] introduce the notion of individual
cryptography, or proofs that cannot be efficiently distributed. We stress that
their goal is much different than ours: we show that any protocol that distributes
a certain kind of proof must leak the witness in certain parameter regimes,
and our notions of efficiency are purely asymptotic. They construct a specific
hashing-based proof which they claim cannot be securely distributed among
multiple honest (but mutually untrusting) parties at all, within some concrete
time-bound.

Finally, several recent works have highlighted the importance of straight-
line extraction, for instance in achieving universally composable NIZKs secure
against static [LR22b] or adaptive [CSW22, LR22a] corruptions and construct-
ing zk-SNARKs [GKO+22] in the global random-oracle model, as well as NIZKs
from lattices in the quantum random-oracle model [Kat21]. Straight-line extrac-
tion is also relevant in the context of non-linear proof systems, such as recursive
arguments [KST21], where the rewind-and-fork proof technique of Pointcheval
and Stern [PS96] causes a prohibitive blow-up in the complexity of the security
reduction.

Acknowledgements
The authors of this work were supported by the ERC under projects NTSC
(742754), SPEC (803096), and HSS (852952), by ISF grant 2774/2, by AFOSR
award FA9550-21-1-0046, by the Carlsberg Foundation under the Semper Ar-
dens Research Project CF18-112 (BCM), by the Azrieli Foundation, and by the
Brown University Data Science Institute. They wish to thank Eysa Lee for her
participation in the early stages of this project.

References
[AGJ+21] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and

Antigoni Polychroniadou. Prio+: Privacy preserving aggregate
statistics via boolean shares. Cryptology ePrint Archive, Report
2021/576, 2021. https://eprint.iacr.org/2021/576.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David

33

https://eprint.iacr.org/2021/576

Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67–97. Springer, Heidelberg, August 2019.

[BBdSG+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guil-
hem, Michael Klooß, Emmanuela Orsini, Lawrence Roy, and Peter
Scholl. Publicly verifiable zero-knowledge and post-quantum sig-
natures from vole-in-the-head. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part V, Lecture Notes in
Computer Science, 2023.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Trans-
parent succinct arguments for R1CS. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Inter-
active oracle proofs. In Martin Hirt and Adam D. Smith, edi-
tors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60.
Springer, Heidelberg, October / November 2016.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakr-
ishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang.
Ligero++: A new optimized sublinear IOP. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 2025–2038. ACM Press, November 2020.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent
SNARKs from DARK compilers. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 677–706. Springer, Heidelberg, May 2020.

[BG90] Mihir Bellare and Shafi Goldwasser. New paradigms for digital
signatures and message authentication based on non-interactive
zero knowledge proofs. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 194–211. Springer, Heidelberg, August
1990.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party
computation for zk-SNARK parameters in the random beacon
model. Cryptology ePrint Archive, Report 2017/1050, 2017.
https://eprint.iacr.org/2017/1050.

34

https://eprint.iacr.org/2017/1050

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures
from the Weil pairing. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, De-
cember 2001.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Dorothy E. Den-
ning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria
Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, Novem-
ber 1993.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, October 2001.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In Aditya Akella
and Jon Howell, editors, USENIX Security 2017, pages 259–282.
USENIX Association, 2017.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[CDKs22] Ran Cohen, Jack Doerner, Yashvanth Kondi, and abhi shelat.
Guaranteed output in O(

√
n) rounds for round-robin sampling

protocols. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 241–
271. Springer, Heidelberg, May / June 2022.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos
Makriyannis, and Udi Peled. UC non-interactive, proactive,
threshold ECDSA with identifiable aborts. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 1769–1787. ACM Press, November 2020.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra,
Noah Vesely, and Nicholas P. Ward. Marlin: Preprocessing zk-
SNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal:
Post-quantum and transparent recursive proofs from holography.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,

35

Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidel-
berg, May 2020.

[CSW22] Ran Canetti, Pratik Sarkar, and Xiao Wang. Triply adaptive
UC NIZK. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part II, volume 13792 of LNCS, pages 466–495.
Springer, Heidelberg, December 2022.

[CZC+21] Hongrui Cui, Kaiyi Zhang, Yu Chen, Zhen Liu, and Yu Yu. MPC-
in-multi-heads: A multi-prover zero-knowledge proof system - (or:
How to jointly prove any NP statements in ZK). In Elisa Bertino,
Haya Shulman, and Michael Waidner, editors, ESORICS 2021,
Part II, volume 12973 of LNCS, pages 332–351. Springer, Heidel-
berg, October 2021.

[DFL23] Stefan Dziembowski, Sebastian Faust, and Tomasz Lizurej. In-
dividual cryptography. Cryptology ePrint Archive, Report
2023/088, 2023. https://eprint.iacr.org/2023/088.

[DKLs24] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat.
Threshold ECDSA in three rounds. In 2024 IEEE Symposium
on Security and Privacy, 2024.

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris
Shrishak, and Haya Shulman. Securing DNSSEC keys via thresh-
old ECDSA from generic MPC. In Liqun Chen, Ninghui Li,
Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020,
Part II, volume 12309 of LNCS, pages 654–673. Springer, Heidel-
berg, September 2020.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs
of knowledge with online extractors. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer,
Heidelberg, August 2005.

[GKO+22] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pan-
choli, Akira Takahashi, and Daniel Tschudi. Witness-succinct
universally-composable SNARKs. Cryptology ePrint Archive, Re-
port 2022/1618, 2022. https://eprint.iacr.org/2022/1618.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

36

https://eprint.iacr.org/2023/088
https://eprint.iacr.org/2022/1618

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In Alfred Aho, editor, 19th ACM STOC, pages
218–229. ACM Press, May 1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM, 38(3):691–729,
1991.

[Gro16] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[HMPs14] Susan Hohenberger, Steven Myers, Rafael Pass, and abhi she-
lat. ANONIZE: A large-scale anonymous survey system. In 2014
IEEE Symposium on Security and Privacy, pages 375–389. IEEE
Computer Society Press, May 2014.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[Kat21] Shuichi Katsumata. A new simple technique to bootstrap various
lattice zero-knowledge proofs to QROM secure NIZKs. Cryptology
ePrint Archive, Report 2021/927, 2021. https://eprint.iacr.
org/2021/927.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KMSV21] Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail
Volkhov. Snarky ceremonies. In Mehdi Tibouchi and Huax-
iong Wang, editors, ASIACRYPT 2021, Part III, volume 13092
of LNCS, pages 98–127. Springer, Heidelberg, December 2021.

[Ks22] Yashvanth Kondi and abhi shelat. Improved straight-line extrac-
tion in the random oracle model with applications to signature
aggregation. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part II, volume 13792 of LNCS, pages 279–309.
Springer, Heidelberg, December 2022.

37

https://eprint.iacr.org/2021/927
https://eprint.iacr.org/2021/927

[KST21] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova:
Recursive zero-knowledge arguments from folding schemes. Cryp-
tology ePrint Archive, Report 2021/370, 2021. https://eprint.
iacr.org/2021/370.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr sign-
ing with full simulatability. Cryptology ePrint Archive, Report
2022/374, 2022. https://eprint.iacr.org/2022/374.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA
with practical distributed key generation and applications to cryp-
tocurrency custody. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
1837–1854. ACM Press, October 2018.

[LR22a] Anna Lysyanskaya and Leah Namisa Rosenbloom. Efficient and
universally composable non-interactive zero-knowledge proofs of
knowledge with security against adaptive corruptions. Cryptology
ePrint Archive, Report 2022/1484, 2022. https://eprint.iacr.
org/2022/1484.

[LR22b] Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally
composable Σ-protocols in the global random-oracle model. In
Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I,
volume 13747 of LNCS, pages 203–233. Springer, Heidelberg,
November 2022.

[MPs19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing
trust in hardware wallets with two factor signatures. In Ian Gold-
berg and Tyler Moore, editors, FC 2019, volume 11598 of LNCS,
pages 407–425. Springer, Heidelberg, February 2019.

[OB22] Alex Ozdemir and Dan Boneh. Experimenting with collaborative
zk-SNARKs: Zero-knowledge proofs for distributed secrets. In
Kevin R. B. Butler and Kurt Thomas, editors, USENIX Security
2022, pages 4291–4308. USENIX Association, August 2022.

[Pas03] Rafael Pass. On deniability in the common reference string and
random oracle model. In Dan Boneh, editor, CRYPTO 2003, vol-
ume 2729 of LNCS, pages 316–337. Springer, Heidelberg, August
2003.

[Pas04] Rafael Pass. Alternative variants of zero-knowledge proofs.
https://www.cs.cornell.edu/~rafael/papers/raf-lic.pdf,
2004.

[PS96] David Pointcheval and Jacques Stern. Security proofs for sig-
nature schemes. In Ueli M. Maurer, editor, EUROCRYPT’96,
volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May
1996.

38

https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/1484
https://www.cs.cornell.edu/~rafael/papers/raf-lic.pdf

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the
quantum random oracle model. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 755–784. Springer, Heidelberg, April 2015.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada
Popa, and Ion Stoica. DIZK: A distributed zero knowledge proof
system. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 675–692. USENIX Association, Au-
gust 2018.

39

	Introduction
	Our Results
	Implications of Our Results
	Actually, It's Much Worse than That
	Organization

	Definitions
	All-but-One Security is Impossible
	The Prover's Haircut
	Distributed P in-the-Head
	Distributed NIZKs are Sometimes Witness-Revealing
	The Constant Corruptions Setting.

	A Constant-Fraction Construction
	Additional Definitions
	Proof by Committee

	Related Work

