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Abstract. This article aims to speed up (the precomputation stage
of) multi-scalar multiplication (MSM) on ordinary elliptic curves of j-
invariant 0 with respect to specific “independent” (a.k.a. “basis”) points.
For this purpose, so-called Mordell–Weil lattices (up to rank 8) with
large kissing numbers (up to 240) are employed. In a nutshell, the new
approach consists in obtaining more efficiently a considerable number
(up to 240) of certain elementary linear combinations of the “indepen-
dent” points. By scaling the point (re)generation process, it is thus pos-
sible to get a significant performance gain. As usual, the resulting curve
points can be then regularly used in the main stage of an MSM algo-
rithm to avoid repeating computations. Seemingly, this is the first usage
of lattices with large kissing numbers in cryptography, while such lat-
tices have already found numerous applications in other mathematical
domains. Without exaggeration, MSM is a widespread primitive (often
the unique bottleneck) in modern protocols of real-world elliptic curve
cryptography. Moreover, the new (re)generation technique is prone to
further improvements by considering Mordell–Weil lattices with even
greater kissing numbers.

Keywords: elliptic curves of j-invariant 0 · kissing number · minimal
points · Mordell–Weil lattices · multi-scalar multiplication.

1 Introduction

It is not a secret that elliptic curves E over finite fields Fq of huge characteristics p
are actively used in discrete logarithm cryptography. Multi-scalar multiplication
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(MSM) in the Fq-point group E(Fq) is widely recognized as a very slow oper-

ation. To be more precise, it is about computing the sum
∑N

i=1 niPi for given
“basis” points Pi ∈ E(Fq) and integers ni ∈ Z. At the same time, MSM is actu-
ally a ubiquitous primitive in advanced protocols of elliptic curve cryptography.
Therefore, there is a vital need among implementers to speed it up.

As a confirmation of these words, one can mention the relatively recent
ZPRIZE 2022 competition [1] (see also ZPRIZE 2023 [2]). Among its objec-
tives was accelerating MSM on certain elliptic Fq-curves Eb : y

2 = x3 + b (of
j-invariant 0). The money rewards of this competition were quite tempting (the
total prize was $4,415,000), which indicates the importance of the topic. As is
well known, j = 0 curves are the most attractive in pairing-based cryptogra-
phy. Furthermore, they enjoy the most efficient group operation (at least among
prime-order curves). That is why curves Eb are a popular choice for implementa-
tion of discrete logarithm-based protocols, even if they do not deal with pairings.

There are numerous algorithms of MSM (see, e.g., [3,4,6] and references
therein). All of them in one way or another are reduced to precomputing auxil-

iary points of the form Pv :=
∑N

i=1 viPi with various integer vectors v = (vi)
N
i=1.

The points Pv are then utilised (depending on the concrete ni) in the main part
of an MSM algorithm, allowing to avoid a lot of repeating elliptic curve addi-
tions. By the way, Pi = Pei , where ei = (0, · · ·, 0, 1, 0, · · ·, 0) are the standard
basis vectors of the lattice ZN .

In fact, the points Pv become less useful whenever the vectors v are long with
respect to a certain norm on ZN . In this situation, Pv seem to be too redundant
points in the sense that we cannot often apply them during multi-scalar multi-
plication. The author decided to work with the 1-norm |v|1 =

∑N
i=1 |vi| to stay

with small naturals. Besides, it is the most suitable to reflect the “complexity”
of the points Pv. Indeed, if |vi| ⩽ 2 and more frequently |vi| ⩽ 1 (as it turns out
in this paper), then the 1-norm almost coincides with the minimal number of
additions on E necessary for computing Pv given vi and Pi. Thus, it is sufficient
to focus on vectors v ∈ ZN that lie in the ball of some small radius R ∈ N, i.e.,
|v|1 ⩽ R. In particular, they have to possess maximum R non-zero coordinates.

For elliptic curves having an Fq-endomorphism τ of degree close to 1, the
famous GLV (Gallant–Lambert–Vanstone) decomposition can be applied in ad-
dition to accelerate MSM even more. As a consequence, MSM algorithms ex-
ploiting GLV are based rather on the auxiliary points

P(v,u) := Pv + τ(Pu) =

N∑
i=1

viPi + uiτ(Pi)

with coefficients ui ∈ Z that equally constitute the short vector u := (ui)
N
i=1. By

abuse of notation, instead of P(v,u) let’s write just Pv with v ∈ Z2N such that
vN+i = ui.

Of course, having a huge amount of available memory or a wide communi-
cation channel, the desired points Pv can be found once and for all to regularly
restore them from the given memory or channel. However, this solution is vulner-
able to the constant danger that a malicious entity will perform a fault attack,
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somehow replacing one or several points in such a way that this breaks a cryp-
tosystem. On the other hand, it is much easier to protect only basic information
storing in a small piece of memory (or establish it over a reliable, but slow chan-
nel) from which every point Pv can be safely (re)generated. It is clear that the
described strategy, applied directly to the points, is too expensive in any sense
of the word.

The recent works [14,16] are devoted to the problem of generating effi-
ciently the “basis” points Pi. In these works it is suggested to express N =
(N div n)n + (N mod n) for a little n ∈ N. Besides, we are given n linearly
independent points Pi(t) from the Mordell–Weil (MW) group E(F ) of a certain
non-trivial twist E of E over the function field F := Fq(t). In the literature E is
often called isotrivial elliptic surface. Then, n “basis” points can be obtained at
once as the specialization of Pi(t) at an element t ∈ Fq. Transparently changing
t ∈ Fq, nothing prevents us from applying the same procedure N div n (plus one
if n ∤ N) times to obtain N points. In fact, E(F ) has the structure of a Euclidean
lattice modulo the torsion subgroup E(F )tor. The corresponding (positive def-

inite) quadratic form ĥ : E(F ) → Q⩾0 is said to be canonical height. However,
this lattice structure previously played only a minor role in the cryptographic
context under consideration.

The present work extends the above generation method to a considerable
proportion of the points Pv, not exclusively Pi. It is proposed to pick MW
lattices (of rank r) with large kissing (a.k.a. Newton) number k. By definition, it
is the number of the shortest (i.e., minimal) non-zero lattice points. The norm
of the F -point Pv(t) :=

∑r
i=1 viPi(t), where v = (vi)

r
i=1 ∈ Zr, is an indicator of

how quickly Pv(t) can be evaluated at elements of Fq. Indeed, the degrees of the
point coordinates are proportional to the norm. And the more minimal points
we have, the greater performance gain takes place. That is why we are interested
in large k with respect to r, that is, in maximizing the quantity δ := log2(k)/r.
It can be seen that the generation of Pi from [14,16] corresponds to the case
when E(F ) is realized as the trivial lattice Zr, because ei are its unique minimal
vectors up to sign.

The task of constructing arbitrary lattices having large kissing numbers is
one of the most classical tasks in mathematics. It has been carefully studied for
several centuries. Established lower and upper bounds on k in the first dimensions
can be found in any lattice database like [7,18]. In turn, asymptotic results as
r → ∞ are well surveyed, e.g., in [32,33]. In these articles Vlăduţ constructs
a k-asymptotically good family of lattices for which the kissing number grows
exponentially, that is, lim supr→∞ δ > 0. Unfortunately, this inequality probably
does not hold for families of MW lattices, making them always k-asymptotically
bad.

The last drawback is slightly mitigated for supersingular elliptic surfaces E ,
because for them, δ decreases more slowly. In a series of articles [10,11,12] Elkies
thoroughly studies MW lattices of such surfaces in characteristic 2. For moderate
ranks, he (re)discovers lattices with the greatest known kissing numbers. Among
the obtained lattices there is in particular the 24-dimensional Leech lattice Λ24
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whose k = 196560, the optimal kissing number for r = 24. Regarding an odd
characteristic p, it is worth mentioning Shioda’s remarkable article [20] about
certain supersingular surfaces Ep+1 of j-invariant 0. Their MW lattices have
the non-constant parameters r = Θ(p) and k = Ω(p2). Therefore, for p of a
cryptographic size, k is an order of magnitude greater than r. However, we
cannot employ the given results in discrete logarithm cryptography, because
supersingular elliptic curves E are known to be weaker than ordinary ones,
especially for little p.

Fortunately, at least for even ranks r ⩽ 8, it is still possible to achieve the
optimal kissing numbers through the MW lattices of ordinary elliptic surfaces,
although we are forced to restrict ourselves to j = 0. By the way, in the extreme
case r = 8, the largest k = 240. It is about the classical root lattice E8, which
is wonderful (in many senses) to the same extent as Λ24. For other constant
ordinary j-invariants, the author does not find in the literature examples of
elliptic surfaces whose MW lattices enjoy quite large kissing numbers, not to
mention the optimal ones. The situation when k is not substantially greater
than r does not merit separate attention. As a consequence, we do not lose
much, dealing hereafter only with curves Eb.

2 Preliminaries

We will freely use the basic notions and facts on Mordell–Weil lattices recalled
in [14,16], because it is assumed that the reader is aware of those articles, espe-
cially of the second. In turn, abstract lattices have already become paramount
objects of (post-quantum) cryptography, so they do not need any special intro-
duction. Nonetheless, there may be some aspects of lattice theory that are not in
widespread use by the cryptography society. If necessary, such knowledge gaps
can be filled with the help of the manual book [8].

The notation k(r) will stand for the maximal kissing number among all (not
necessarily MW) lattices of rank r. For convenience, Table 1 exhibits lower and
upper bounds on k(r) for the first four even values r. Odd ranks are out of our
interest, because MW ranks of isotrivial elliptic surfaces over finite fields are
always even.

r ⩽ k(r) k(r) ⩽

2 6

4 24

6 72 78

8 240

Table 1. Bounds on the optimal kissing numbers in small even dimensions
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For the sake of simplicity, elliptic Fq-curves y2 = x3+ b (of j-invariant 0) will
be referred to just as E, i.e., without the index b. For the role of τ in the GLV
decomposition on such curves, one usually chooses the order 3 automorphism
[ω](x, y) = (ωx, y), where ω2 + ω + 1 = 0. Recall that ω ∈ Fp whenever 0 is an
ordinary j-invariant as in the article context.

As well as in [16, Sections 4, 5], we will work exclusively with the (rational)
elliptic surfaces

Em : y2 = x3 + tm + c,

where 2 ⩽ m ⩽ 6 and c ∈ F∗
q is a certain constant depending on m. We will

suppose everywhere without reminders that m | q−1. This condition guarantees
that Fq is the splitting field of Em, i.e., Em(F ) = Em(Fq(t)), where Fq is the
algebraic closure of Fq. In principle, it is possible to consider alternative j = 0
elliptic surfaces. Attractive candidates are briefly discussed in Section 5.2. They
will be perhaps considered during further research, but the surfaces Em are quite
enough to demonstrate the article idea.

It is convenient that Em(F ) does not contain non-zero torsion points, that is,
Em(F ) ≃ Zr as a group. We will refer to Em(F ) by means of Lm if it is necessary
to stress the lattice structure. The fact is that Lm is never the trivial lattice
Zr. As is conventional in lattice theory, the minimal norm of Lm is denoted
by λ1 ∈ Q>0. As it turns out, each minimal point P ∈ Lm (i.e., such that

ĥ(P ) = λ1) is integral, i.e., P = (x(t), y(t)) is a pair of polynomial coordinates,
not just rational ones. Some useful information on the lattices Lm is collected
in Table 2 (cf. [16, Table 1]). Be careful, the symbol ≃ here stands for the
congruence (a.k.a. isometry) relation rather than the equivalence one as in [8].

m Lm k k/6 λ1 deg(x) deg(y)

2 A∗
2 ≃ 6 1 2/3 0

1
3 D∗

4 ≃ 24 4 1
1

4
E∗

6 ≃ 54 9 4/3 2

E6 ↪→ 72 12

2 2 35
E8 ≃ 240 40

6

Table 2. Some parameters of the Mordell–Weil lattices Lm = Em(F )

Note that A∗
2 ≃ L2 and D∗

4 ≃ L3 (along with their root sublattices A2,
D4) possess the maximal kissing numbers in their dimensions. The situation is
different for the case m = 4, because the value k of the lattice E∗

6 ≃ L4 (in
contrast to E6) is not maximal for r = 6. That is why the sublattice E6 is
represented in a separate row of the table. Of course, we can likewise realise
A2, D4 as sublattices of L2, L3, respectively. However, the minimal norm of
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the former is slightly greater (namely λ1 = 2), which negatively influences the
coordinate degrees of minimal points. Unlike E6, the lattices A2, D4 thus do
not provide any advantage in our context. Finally, E8 ≃ L5 ≃ L6 is simply a
self-dual (a.k.a. unimodular) lattice.

As is well known, the automorphism group of both E, Em is generated by the
order 6 automorphism [−ω] = −[ω] of the form [−ω](x, y) = (ωx,−y). Given

a point P on E or Em, we lack the notation P :=
{
[−ω]iP

}5

i=0
for the orbit

of P with respect to [−ω]. It is straightforward that the norm of P ∈ Em(F )
is invariant under [−ω]. Therefore, the automorphisms also act on the set of
minimal points. This action is free, since the non-zero fixed points of [−ω]i (for
which xy = 0) are obviously outside Em(F ) regardless of i ∈ Z/6 andm. Thereby,
#P = 6 unless P is the infinity point (0 : 1 : 0). In particular, always 6 | k.

Like in [16, Section 5], everywhere in this paper a basis of Em(F ) will be
taken in the form P1, · · ·, Pr/2, [ω]P1, · · ·, [ω]Pr/2 and, moreover, all its points
will be minimal. After identifying Em(F ) ≃ Zr with respect to such a basis, we
obtain the following action of [−ω] induced on Zr:

[−ω](v1, · · ·, vr) = (vr/2+1, · · ·, vr, vr/2+1 − v1, · · ·, vr − vr/2).

Here, the equality ω2 = −ω − 1 is utilised. Similarly, denote by v the orbit of
v ∈ Zr under the given action. Evidently, for the point

Pv :=

r/2∑
i=1

viPi + vr/2+i[ω]Pi,

its orbit Pv = {Pu}u∈v.
The coordinates x, y of the six orbit representatives Pu coincide up to mul-

tiplication by ω, −1, respectively. Consequently, for computing all the points
Pu ∈ Pv, it is essentially sufficient to determine only one of them. To simplify
this process as much as possible, it is necessary to define the “lightest” point Pu

in a sense. One of the reasonable ways (adopted in the next section) is to take a
vector u ∈ v with the smallest 1-norm |u|1 =

∑r
i=1 |ui|. We will equally call this

number the 1-norm of Pu, which has nothing to do with the other norm ĥ(Pu).
As an example, the basis points Pi, [ω]Pi are actually the “lightest”, because
they (along with their inverse ones) are of 1-norm 1.

3 Minimal points of the lattices Lm

This section is heavily based on [16, Section 5]. From there we will borrow the
concrete bases Pi, [ω]Pi depending on m. Be careful, the below points Pr/2+i

are different from [ω]Pi in contrast to that article. We will tacitly resort to the
computer algebra system Magma. The corresponding code is loaded on the web
page [15]. We will consider step by step the remaining minimal points Pi ∈ Lm,
where r/2 < i ⩽ k/6. For compactness, their explicit formulas are omitted in the
text (except for the degenerate case m = 2), but they are momentarily obtained
by launching the Magma code.
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3.1 The case m = 2

Without loss of generality, one can choose the coefficient c = 1. Then, the point
P1 := (−1, t) generates E2(F ) over the ring Z[ω]. Furthermore, the set of all
minimal points is nothing but the orbit of P1, since k = 6 for the lattice L2.

3.2 The case m = 3

In addition to the basis points P1, P2 from [16, Section 5.2], orbit representatives
among the remaining minimal points in the lattice L3 are the points

P3 := [ω]P2(ωt) = [ω]P1 + P2, P4 := P2(ω
2t) = [ω]P2 − P1

of the smallest 1-norm 2.

3.3 The case m = 4

The subcase E∗
6 ≃ L4. In addition to the basis points P1, P2, P3 from [16,

Section 5.3], orbit representatives (of the smallest 1-norm) among the remaining
minimal points in the lattice L4 are:

Points of 1-norm 2:

P4 := P1 + P2, P5 := P1 + P3, P6 := [ω]P2 + P3;

Points of 1-norm 3:

P7 := P1 + P2 − [ω]P3, P8 := [ω]P1 − P2 + [ω]P3;

Points of 1-norm 4:
P9 := [1 + ω]P1 + [ω]P2 + P3.

Moreover, the points of 1-norm n ⩾ 3 are expressed via the points of 1-norm
< n as follows:

P7 = P4 − [ω]P3, P8 = [ω]P5 − P2, P9 = [ω]P4 + P5.

The subcase E6 ↪→ L4. The lattice L4 contains the sublattice L′
4 generated

over Z[ω] by the points

P ′
1 := P1 − [ω]P2, P ′

2 := P1 − [ω]P3, P ′
3 := P2 − [ω]P3.

The Gram matrix of ĥ with respect to the order P ′
1, P

′
2, P

′
3, [ω]P

′
1, [ω]P

′
2, [ω]P

′
3

has the form 

2 1 0 −1 0 −1

1 2 0 −1 −1 −1

0 0 2 1 1 −1

−1 −1 1 2 1 0

0 −1 1 1 2 0

−1 −1 −1 0 0 2


.
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Its determinant and minimal norm are equal to ∆ = 3 and λ1 = 2, respec-

tively. Recall that δ = λ
r/2
1 /(2r

√
∆) is the center density (see, e.g., [8, Section

1.1]) of an arbitrary r-dimensional lattice. Therefore, the center density of our
lattice L′

4 is equal to δ = 1/(8
√
3) as well as for E6. At the same time, as stated

in [8, Section 4.8.3], there is the unique (up to an isometry) lattice of rank 6
with the given value δ. Consequently, L′

4 ≃ E6 as we wanted.

In addition to the basis points P ′
1, P

′
2, P

′
3, orbit representatives (of the small-

est 1-norm) among the remaining minimal points in the lattice L′
4 are:

Points of 1-norm 2:

P ′
4 := P ′

1 − P ′
2, P ′

5 := [ω]P ′
1 − P ′

3, P ′
6 := [ω]P ′

2 − P ′
3,

P ′
7 := [ω]P ′

1 + P ′
2, P ′

8 := P ′
1 + [ω]P ′

3, P ′
9 := P ′

2 + [ω]P ′
3;

Points of 1-norm 3:

P ′
10 := [ω]P ′

1 + P ′
2 − P ′

3, P ′
11 := [ω]P ′

1 + P ′
2 + [ω]P ′

3;

Points of 1-norm 4:

P ′
12 := [1 + ω]P ′

1 + P ′
2 + [ω]P ′

3.

Moreover, the points of 1-norm n ⩾ 3 are expressed via the points of 1-norm
< n as follows:

P ′
10 = P ′

7 − P ′
3, P ′

11 = [ω]P ′
3 + P ′

7, P ′
12 = P ′

1 + P ′
11.

3.4 The case m = 5

In addition to the basis points P1, P2, P3, P4 from [16, Section 5.4], orbit repre-
sentatives (of the smallest 1-norm) among the remaining minimal points in the
lattice L5 are:

Points of 1-norm 2:

P5 := P1 + P2, P6 := P2 + P3, P7 := P3 + P4,

P8 := P1 − [ω]P2, P9 := P2 − [ω]P3, P10 := P3 − [ω]P4;

Points of 1-norm 3:

P11 := P1 + P2 + P3, P12 := P2 + P3 + P4, P13 := P1 + P2 − [ω]P3,

P14 := P2 + P3 − [ω]P4, P15 := P1 − [ω]P2 − [ω]P3, P16 := P2 − [ω]P3 − [ω]P4;
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Points of 1-norm 4:

P17 := P1 + P2 + P3 + P4, P18 := P1 + P2 + P3 − [ω]P4,

P19 := P1 + P2 − [ω]P3 − [ω]P4, P20 := P1 − [ω]P2 − [ω]P3 − [ω]P4,

P21 := P1 + [1− ω]P2 − [ω]P3, P22 := [ω]P1 + [1 + ω]P2 + P3,

P23 := P2 + [1− ω]P3 − [ω]P4, P24 := [ω]P2 + [1 + ω]P3 + P4;

Points of 1-norm 5:

P25 := P1 + P2 + [1− ω]P3 − [ω]P4, P26 := P1 − [ω]P2 − [1 + ω]P3 − P4,

P27 := P1 + [1− ω]P2 − [ω]P3 − [ω]P4, P28 := [1 + ω]P1 + P2 + P3 − [ω]P4,

P29 := [ω]P1 + [1 + ω]P2 + P3 + P4, P30 := [ω]P1 + [ω]P2 + [1 + ω]P3 + P4;

Points of 1-norm 6:

P31 := P1 + [2]P2 + [1− ω]P3 − [ω]P4,

P32 := P1 + [1− ω]P2 − [2ω]P3 − [ω]P4,

P33 := P1 + [1− ω]P2 + [1− ω]P3 − [ω]P4,

P34 := P1 + [1− ω]P2 − [ω]P3 − [1 + ω]P4,

P35 := [1 + ω]P1 + P2 + [1− ω]P3 − [ω]P4;

Points of 1-norm 7:

P36 := P1 + [1− ω]P2 − [2ω]P3 − [1 + ω]P4,

P37 := [1 + ω]P1 + [2]P2 + [1− ω]P3 − [ω]P4;

Points of 1-norm 8:

P38 := P1 + [1− ω]P2 − [2ω]P3 − [1 + 2ω]P4,

P39 := [ω]P1 + [1 + 2ω]P2 + [2 + ω]P3 + P4,

P40 := [2 + ω]P1 + [2]P2 + [1− ω]P3 − [ω]P4.

Moreover, the points of 1-norm n ⩾ 3 are expressed via the points of 1-norm
< n as follows:

Points of 1-norm 3:

P11 = P3 + P5, P12 = P4 + P6, P13 = P1 + P9,

P14 = P2 + P10, P15 = P8 − [ω]P3, P16 = P9 − [ω]P4;
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Points of 1-norm 4:

P17 = P5 + P7, P18 = P5 + P10, P19 = P1 + P16,

P20 = P15 − [ω]P4, P21 = P2 + P15, P22 = [ω]P5 + P6,

P23 = P3 + P16, P24 = [ω]P6 + P7;

Points of 1-norm 5:

P25 = P3 + P19, P26 = P15 − P7, P27 = P2 + P20,

P28 = [ω]P1 + P18, P29 = P4 + P22, P30 = P7 + [ω]P11;

Points of 1-norm 6:

P31 = P11 + P16, P32 = P15 + P16, P33 = P11 − [ω]P12,

P34 = P27 − P4, P35 = P28 − [ω]P3;

Points of 1-norm 7:

P36 = P34 − [ω]P3, P37 = P2 + P35;

Points of 1-norm 8:

P38 = P36 − [ω]P4, P39 = [ω]P9 + P29, P40 = P1 + P37.

3.5 The case m = 6

This case is similar to the previous one because of the isometry L5 ≃ L6. Indeed,
the above linear relations remain the same if a basis Pi, [ω]Pi of L6, where i ⩽ 4,
has the Gram matrix exactly as in [16, Section 5.4]. Clearly, this can be ensured
with the help of an appropriate coordinate change. The main difference consists
in other formulas of the minimal points Pi, where i ⩽ 40. In [16] formulas of
the basis points Pi are not derived when m = 6, because in the context of that
article (unlike the current one) the L6-based generation method is not faster
than the L3-based one.

By our assumption, m | q − 1. The condition 5 | q − 1 sometimes may
not hold. In turn, 6 | q − 1 or, equivalently, 3 | q − 1 holds automatically for
all ordinary curves of j-invariant 0. Therefore, it is actually useful to possess
formulas for the points Pi ∈ L6. Nevertheless, deriving such formulas is a much
less ambitious task than the research project from Section 5.2 whose outcomes
promise to substantially outperform the case under consideration. That is why
the author decided not to dwell on it (at least now). Besides, as explained in the
next section, the L5-based generation method (when applicable) is still a little
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bit more efficient on average than the L6-based one. Thus, the case m = 5 does
not completely lose relevance at the moment.

Perhaps, explicit formulas of Pi ∈ L6 are not represented anywhere in the
literature for the abstract coefficient c from the equation of E6. The author suc-
ceeded to find only [22] handling the special case c = −1, although its reasoning
is in parallel with [21] dealing with the general c whenm ∈ {4, 5}. Recall that the
latter paper underlies [16, Sections 5.3, 5.4]. Therefore, the former paper appears
to be generalized to the other values c ∈ F∗

q . In particular, for an appropriately

chosen c, the splitting field of E6 probably can be reduced from Fq(12
√
1, 3

√
2) (when

c = −1) to the expected field Fq( 6
√
1), that is, to Fq in our setting.

4 Generating the minimal points

Assume that t ∈ Fq is a known element such that the reduction (a.k.a. special-
ization) Em,t of the surface Em at t is Fq-isomorphic to the original curve E.
As explained in [16, Section 3], we are able to obtain such an element as some
m-th root t = m

√
· when it is extracted over Fq, that is, approximately with the

probability 1/m. The associated isomorphism has the form

φt : Em,t → E (x, y) 7→ (cxx, cyy),

where the coefficients cx, cy ∈ Fq depend on t.
To this moment, we are given (formulas of) the minimal points Pi ∈ Lm

from Section 3. All of the following is equally true in the case of the points
P ′
i ∈ L′

4. Therefore, this case will not be mentioned further to avoid repetitions.
Throughout the section, we will assume that the “basis” points φt(Pi(t)) ∈
E(Fq), where i ⩽ r/2, have already been generated by [16, Algorithm 1] with
respect to t ∈ Fq. Our purpose is to generate as fast as possible the remaining
“minimal” points φt(Pi(t)), where i ⩽ k/6. By abuse of notation, we will refer
to these points simply by Pi as well as for the initial lattice points. Let’s suppose
for simplicity that multiplications by ω, −1 (apart from additions in Fq) are not
taken into account in the below estimations of running time. Thereby, once a
“minimal” point Pi is determined, so is its full orbit Pi of 6 conjugates.

A naive method of finding Pi ∈ E(Fq) consists in performing successive curve
additions of the form Pi = Pi1 + Pi2 (up to the automorphisms of E) such
that i1, i2, r/2 < i. As shown in Section 3, such a minimal addition chain
takes place regardless of m. Thus, the total number of additions on E is equal
to A := k/6 − r/2. According to [5] and [9, Section 6.4.1], the general addition
operation on an arbitrary curve E : y2 = x3+bz6 (in Jacobian coordinates) costs
no less than 16 multiplications in Fq. Sometimes, E can be transformed into other
forms enjoying faster addition formulas. The most efficient among them is widely
recognized to be the twisted Edwards form (in extended coordinates) on which
+ requires 10 multiplications. To sum up, the overall running time of the naive
generation method lies between 10A and 16A field multiplications.

From the geometric point of view, the minimal points are no different from the
basis ones. As a result, we have Algorithm 1 that generates all the “minimal”
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Fq-points on E, supplementing [16, Algorithm 1] in a natural way. Formally
speaking, the corresponding vectors v ∈ Zr (i.e., such that Pi = Pv) have to be
returned in the new algorithm in parallel with the points. Otherwise, the latter
are useless for subsequent MSM algorithms. Note that reducing Pi(t) amounts
to two Horner’s schemes applied to the coordinate polynomials x = x(Pi) and
y = y(Pi). In turn, each application of φt costs 2 multiplications in Fq (by cx,
cy). As a consequence, to obtain one “minimal” point it is enough to perform
M := deg(x)+deg(y)+2 field multiplications. Therefore,MA is the total number
of multiplications in the new generation method.

Algorithm 1: New method of generating all the “minimal” points

Data: finite field Fq of characteristic 7 or greater,
ordinary elliptic Fq-curve E of j-invariant 0,
natural m such that 2 ⩽ m ⩽ 6 and m | q − 1,
element t ∈ Fq such that Em,t ≃Fq E and the Fq-isomorphism φt : Em,t → E,
coordinate formulas for representatives P1, · · ·, Pk/6 ∈ Em(F ) of the orbits of
minimal points;
Result: k “minimal” points in E(Fq);
begin

for i := 1 to k/6 do
Pi := φt(Pi(t));

end

return P1, · · ·, Pk/6.

end

We see that the new approach is faster than the naive one whenever the cost
of one addition on E is greater than M . Interestingly, this is always the case,
because M ⩽ 7, that is, 10 − M ⩾ 3 and 16 − M ⩾ 9. Table 3 demonstrates
the exact numbers of multiplications (checked in Magma [15]) for all the cases
2 ⩽ m ⩽ 6. As expected, the performance gain (namely, the last two columns)
increases when m does. In particular, we do not get any benefit for m = 2
and the best result occurs for m ∈ {5, 6}. Curiously, there is one exception: the
value (10 −M)A is equal to 30 for the lattice L4, but 27 for its sublattice L′

4.
Nevertheless, the situation is opposite (66 < 81) if the curve E is in the short
Weierstrass form.

It is impossible not to mention that the entries of Table 3 should be slightly
recalculated under a deeper complexity analysis. Indeed, there are several mi-
nor optimization possibilities not taken into account before, but explained in
the next paragraphs. For simplicity, such a detailed analysis is omitted in the
present paper, because it is more mathematical in nature than engineering. Un-
doubtedly, the table tendencies will remain after recalculation. In other words,
supremacy of the new generation method over the naive one is beyond question.
Ideally, the optimization tricks under consideration have to be used in the pro-
cess of programming Algorithm 1 (or some of its versions) in one of low-level
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Lattice A M 10−M 16−M 10A 16A MA (10−M)A (16−M)A

L2 0 3 7 13 0

L3 2 4 6 12 20 32 8 12 24

L4 6 5 5 11 60 96 30 30 66

L′
4 9

7 3 9

90 144 63 27 81

L5
36 360 576 252 108 324

L6

Table 3. Comparison (in terms of the numbers of multiplications in Fq) of the naive
and new methods of generating all the “minimal” Fq-points on E

languages. Nonetheless, in view of Section 5.2, it is more logical at the beginning
to conduct further research on the topic prior to proceeding with an optimized
implementation.

First, the constant ω ∈ Fp may be quite large (in absolute value) in contrast to
−1. Hence, multiplication by ω may not be completely free. Second, formulas of
the minimal points Pi ∈ Lm may sometimes have small or repeating coefficients,
at least for different indices i. As a result, with the same input argument t ∈
Fq, evaluating Pi(t) together (i.e., for all i ⩽ k/6) may cost considerably less
separately. On the contrary, repeating field multiplications are seemingly rare in
the addition chains Pi = Pi1 + Pi2 and the majority of these multiplications are
general (i.e., not by a constant). The fact is that addition chains are inherently
computed successively (not in parallel as Pi(t)), hence there is limited room for
their optimization.

The operation + on E does not keep affine coordinates unless the inverse
operation in F∗

q is used. Since the latter is recognized to be much more expen-
sive than multiplication, + must return (weighted) projective coordinates. In
particular, most instances of + in our addition chains are forced to receive such
burdensome input coordinates. As an exception, the points Pi of 1-norm 2 (un-
like those of larger 1-norms) are the sums of two basis points, which are usually
given on the affine plane. Therefore, the 1-norm 2 points require fewer multi-
plications than 10 and 16, respectively. However, the proportion of these points
decreases with growth of m. For the cases m ∈ {5, 6} the most interesting for
us, there are solely 6 such points among 36 non-basis minimal points. By the
way, all the minimal points Pi ∈ Lm are integral, hence reducing them always
avoids inverting in F∗

q . This circumstance no doubt leads to a slight acceleration
of MSM algorithms based on Pi.

It has not yet been clearly justified for which value m the Lm-based genera-
tion method (let’s denote it by Mm) is the best. So far, we have just made sure
that this method is better than the naive one with the same m. Evidently, the
smaller the given parameter, the more efficient Algorithm 1, but at the price of
fewer returned points. It is important to remember that this algorithm is always
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preceded by much slower [16, Algorithm 1]. Recall that its complexity on average
amounts to m

( ·
q

)
m
+ m

√
· (apart from several more multiplications), where

( ·
q

)
m

is the m-th power residue symbol and m
√
· is the m-th root in the field Fq.

Specialists know (see, e.g., [13, Sections 1, 2] and references therein) that the
symbol

( ·
q

)
m

can be determined (at least for m ⩽ 6) by means of Euclidean-
type algorithms. With proper implementation, their execution times are close
to that of several dozen multiplications. Thus, extracting m

√
· is an order of

magnitude more laborious operation (even for m = 2) than the others in Fq that
we encountered. Concrete complexity estimates heavily depend on m and q. At
best, m

√
· is expressed via one exponentiation in Fq, which costs no less than

ℓ := ⌈log2(q)⌉ field multiplications. As an example, for the conventional 128-bit
security level, ℓ ≳ 256 and this lower bound on ℓ is known to be even higher for
pairing-friendly curves E.

Let’s compare, e.g., the methods M5, M6 with the degenerate one M2. The
following reasoning is mutatis mutandis transformed for the cases m ∈ {3, 4}.
The methods M5, M6 both give k/6 = 40 points in E(Fq) at the cost of one
radical, of ≈ 5, 6 residue symbols, respectively, and of ≈ 250 multiplications
according to Table 3. In turn, M2 generates only one “basis” point (apart from
its conjugates by [−ω]) after computing ≈ 2 Legendre symbols and one square
root (and a few auxiliary multiplications). Therefore, the latter needs to be
launched 40 times (with different elements t ∈ Fq) to obtain the identical number
of points. At least when

√
·, 5
√
·, 6
√
· are all represented by exponentiations in Fq,

the 40-time method M2 is without doubt substantially slower than the one-time
M5, M6.

Besides, M2 does not return “dependent” points unlike M5, M6. This means
that the total number of Fq-points on E generated by the multiple method M2

is still smaller. As in the introduction, let N stand for the number of all “basis”
points, which must be generated in any case. We see that M2 generates exactly
N (“basis”) points with the same number of launches against 40N/4 = 10N
points returned by M5, M6 after N/4 launches, where 4 | N for simplicity. Of
course, a concrete MSM algorithm may not need certain “dependent” points
(e.g., those of higher 1-norms), hence for it, the efficiency of M5, M6 may be too
exaggerated. Nevertheless, in general (i.e., abstracting from MSM algorithms),
the methods M5, M6 are justified to be the best among all the state-of-the-art
generation methods. This is also consistent with the conclusions of [16, Section
4], where “basis” points are the only resulting ones.

Finally, it remains to choose the winner between M5 and M6. As already said
in Section 3.5, the first method (unlike the second) suffers from an applicability
restriction (of the form 5 | q − 1). However, if both methods are available, then
M5 is a little more preferable than M6, because on average the first has one
residue symbol less than the second. Certainly, we are under the pretty natural
heuristic assumption that

( ·
q

)
5
(resp., 5

√
·) is implemented not slower than

( ·
q

)
6

(resp., 6
√
·).
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5 Final remarks

5.1 Hybrid point generation

Special attention should be paid to the generation technique combined from the
minimal points Pi ∈ L4 and P ′

i ∈ L′
4 simultaneously, that is, with one element

t ∈ Fq such that E4,t ≃Fq E. This technique allows to obtain at once more Fq-
points on E. A minor comment is that P ′

1, P
′
2, P

′
3 are no longer considered as

basis points, but as points of 1-norm 2 with respect to P1, P2, P3 and their
counterparts [ω]Pi. Therefore, none of the induced points P ′

i ∈ E(Fq) are given
in advance and hence they all need to be computed. It is also worth bearing in
mind that the 1-norm becomes greater for all the points P ′

i .
We lack the notion of so-called everywhere integral points (in the sense of

Shioda [23,26,27]) in the MW lattice of an elliptic Fq-surface E . By one definition,

these are integral points P = (x, y) ∈ E(F ) for which ĥ(P ) ⩽ 2χ or, equivalently,
deg(x) ⩽ 2χ and deg(y) ⩽ 3χ, where χ ∈ N is the arithmetic genus of E . No
worries, χ is nothing but 1 whenever E is a rational surface, which is the case
for Em with m ⩽ 6. Be careful, in some sources (but not here) such points are
called just integral, while arbitrary points with polynomial coordinates x, y are
called ∞-integral or Fq[t]-integral. For convenience, let e be the (finite) number
of all everywhere integral points in E(F ).

Note that L′
4 is an instance of what is known as the narrow Mordell–Weil

lattice L′
m := Em(F )◦ whose definition is given, e.g., in [20, Section 2]. By virtue

of [20, Remark 3.5], the lattices L′
m are root ones we have previously encountered

(not only for m = 4). It turns out (cf. [27, Section 3.1]) that the minimal points
of Lm and those of L′

m (a.k.a. roots) together constitute the set of all everywhere
integral points in Em(F ). Form ∈ {2, 3}, the number e = 2k ∈ {12, 48}, since the
kissing numbers of A2, A

∗
2 coincide and this is equally true for D4, D

∗
4. Finally,

E8 = E∗
8, which implies the equality e = k (= 240) in the last cases m ∈ {5, 6}.

For clarity, these facts are translated into Table 4 supplementing Table 2. Among
other things, the column “ind” contains the indices [Lm : L′

m].

m L′
m ind e e/6

2 A2 3 12 2

3 D4 4 48 8

4 E6 3 126 21

5
E8 1 240 40

6

Table 4. Some parameters of the narrow sublattices L′
m ⊂ Lm

The aforementioned hybrid generation is naturally generalized to the other
cases m ̸= 4 by exploiting likewise all everywhere integral points in Em(F ).
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However, the maximal number e = 240 occurs for m ∈ {5, 6}, hence the original
methods M5, M6 remain the best. Moreover, there is the fact [26, Theorem
2.1] that none of rational elliptic surfaces E enjoys e > 240. Certainly, nothing
prevents us from using other points from E(F ). Nevertheless, it is desirable to
keep the integrality property to be able to return affine points in E(Fq) without
inverting in F∗

q . Extra integral points in Em(F ) (of canonical height > 2) are
succinctly surveyed in [24, Section 8]. There are only an insignificant number
of such “sporadic” points, not to mention that deg(x) > 2 or deg(y) > 3 for
them. Therefore, it is not expected that the efficiency of the generation process
including these points is so impressive to dwell on it.

5.2 Mordell–Weil lattices of higher kissing numbers

This section briefly outlines a promising research direction on the topic. It is rea-
sonable to wonder about extending the article idea to MW lattices (of isotrivial
ordinary elliptic surfaces) with kissing numbers k > 240. Intuitively, they should
provide a more impressive performance gain during point generation than the
lattices previously considered. As before, there is hope to identify desired lattices
only for the j-invariant 0. Unfortunately, all rational elliptic surfaces necessarily
have the MW ranks r ⩽ 8 (see, e.g., [19]), which is somewhat demotivating in
view of Table 1. Therefore, we are forced to resort to elliptic surfaces of greater
arithmetic genus χ > 1. The next case χ = 2 corresponds to so-called K3 sur-
faces. Already in this case, the theory of MW lattices is significantly complicated.

In a series of works [28,29,30,31] Usui establishes the full classification (i.e.,
for all m ∈ N) of the lattices Lm over the algebraic closure Fq. As explained in
[16, Section 3], for each m ⩾ 6, the cost of finding a necessary element t ∈ Fq
is permanent and amounts just to 6

( ·
q

)
6
+ 6

√
·. Thereby, the kissing number or

rather δ := k/r is actually the main indicator for running time of the Lm-
based generation methods. The minimal norm λ1 (crucial for the speed of point
reduction) also plays a role, but appears to be secondary as we will see in the
next noteworthy examples (λ1 = 4 for all of them).

According to [31, Main Theorem], solely the lattice L12 merits attention,
because it is easily seen that L12 enjoys the largest value δ = 115.5 among all
the lattices Lm. More precisely, L12 possesses the parameters r = 16, λ1 = 4,
and k = 1848. Although the last value is pretty small compared to 4320 ⩽
k(16) ⩽ 7320, it is much greater than the kissing number 2 · 240 = 480 of the
16-dimensional direct squares L2

5, L
2
6. The latter essentially underlie the methods

M5, M6 applied twice, that is, with two different seeds t ∈ Fq.
Recall that at the moment the maximal (in characteristic 0) MW rank r = 68,

which is attained by the lattice L360. For it, λ1 = 120 ≫ 4 and k = 2472 and
hence δ ≈ 36.353 ≪ 115.5. The inequalities ≫, ≪ confirm that L360 (like the
other lattices Lm form ̸= 12) loses to L12 based on a combination of factors. This
opinion is opposite to [16, Section 3], because for generating only “independent”
points, the MW rank is the unique important indicator.
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In addition to the surfaces Em, the K3 ones

Fm : y2 = x3 + c1t
m +

c′1
tm

+ c0

deserve separate consideration, where similarly m ⩽ 6 and c1, c
′
1 ̸= 0. Over

arbitrary fields (including Fq) the MW lattices Λm of these surfaces are thor-
oughly studied in [17]. In particular, over Fq one can put c1 = c′1 = 1 without
loss of generality. The coefficient c0 conversely matters even over Fq (unlike c in
the equation of Em), hence it is more correct to indicate c0 as follows: Fm(c0),
Λm(c0).

Obviously, if c1 = 1, c′1 = c, then E12 ≃Fq F6(0) and hence L12 ≃ Λ6(0). In
turn, Λ5(0) has the even better parameters r = 16, λ1 = 4, and k = 2640 (i.e.,
δ = 165) by virtue of [31, Section 3]. The cases m ⩽ 4 are less remarkable, since
the value δ of the lattice Λm(0) diminishes by analogy with Lm. Thus, the family
Fm(0) remotely resembles Em. Finally, little is known about Λm(0) for m > 6.

It must be understood that, generally speaking, minimal and everywhere
integral points are not at all the same thing. In this connection, there is an inde-
pendent task of maximizing the number e instead of k. As stated in [27, Section
4], the record is e = 5820, at least in 2010 when that article was published. This
record is due to the MW lattice of the surface E : y2 = x3 + t5 − t−5 − 11 from
[25] isomorphic to F5(11

√
−1) as usual over Fq. For this lattice, λ1 = 4, r = 18,

and so e/r = 323.(3) ≫ 165. By the way, 18 is the maximal possible MW rank
for ordinary elliptic K3 surfaces (see, e.g., [17, Section 8]). In the literature such
surfaces are said to be singular.

It should be stressed that the splitting field of E is exactly Fq( 5
√
1, 3

√
10).

Probably, there is not yet an article dedicated to the twists of the surface E ,
in contrast to Em, Fm(0) with m ⩽ 6. This subject is important if we want to
try to ease the restrictions on Fq as much as possible. Currently, 5

√
1, 3

√
10 ⊂ Fq

seem quite severe conditions to be able to use E for generating Fq-points on j = 0
elliptic curves. In other words, we are interested in coefficients c0, c1, c

′
1 ∈ Fq such

that the surface F5 (with the given coefficients) is a twist of E whose MW lattice
is full already over Fq under more mild conditions (e.g., without 3

√
10 ⊂ Fq).
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