PRIVATON
Privacy Preserving Automaton for Proof of Computations

Bala Subramanyan
Research, Credora Inc
San Rafael, California, USA
Email: bala@credora.io

Abstract

Amid the landscape of confidential computing, where security and privacy reign supreme, PRIVATON emerges
as a pioneering and practical solution to safeguard sensitive data and computations. A verifiable proof of
computation model, with one of its variant built upon the dual sandbox strategy, PRIVATON combines
Trusted Execution Environment (TEE) technologies with WebAssembly (WASM) runtime environments to
establish an ecosystem for privacy-preserving computations. This approach involves fine grained modeling of
computations as finite state automatons, guided by verifiable proofs that attest to their unerring execution.

PRIVATON is guided by the profound principles of "least privilege” and "intentional use.” Through
the former, each computation module's privileges are meticulously constrained, reducing vulnerability vectors.
The latter ensures that privileges are allocated explicitly, fostering comprehension and security. This rigorous
adherence minimizes privilege misuse and information leakage, bolstering the overall security posture.

At its core, PRIVATON's innovation lies in its comprehensive assurance of data privacy and security.
State machine proofs not only attest to the absence of data leakage but also prevent unauthorized data
transmission. By providing unassailable proof of computation integrity, PRIVATON shields against code
misuse within the system. This proactive stance fortifies its mission to safeguard the sanctity of data,
computations, and the privacy of all stakeholders.

Evidenced by its real-world application, PRIVATON has been validated within the cryptocurrency
trading ecosystem, where it acts as a distributed and privacy-preserving credit oracle. Its implementation within
Credora’s landscape underlines its potential to transform data-centric paradigms, empowering stakeholders with
an unshakeable confidence in data security. In a world where data privacy is paramount, PRIVATON stands as a

guardian, epitomizing the convergence of technology, security, and trust.

Keywords: Confidential Computing, Trusted Execution Environment (TEE), WebAssembly (Wasm), Finite
State Automata, Privacy-Preserving Computation, Verifiable Proofs, Dual Sandbox Strategy, Proof of

Computations, Trusted Third Parties, Data Privacy.



Introduction

In the modern landscape of data-centric computing, ensuring the privacy and security of sensitive information
has become a paramount concern. Among the three states of data security, data-in-use poses a unique challenge,
as it necessitates decryption for processing, exposing it to potential breaches. In response to this critical issue, the
concept of confidential computing has emerged, aiming to safeguard data while it is being utilized. Confidential
Computing Consortium has united hardware vendors, cloud providers, and software developers to advance
privacy-preserving computing, with hardware-assisted Trusted Execution Environment (TEE) as a prominent

approach.

TEE offers the promise of secure execution environments where users can deploy their sensitive code
and data, ensuring their protection even against malicious platform providers. However, real-world scenarios
often involve third-party TEE providers, introducing additional layers of trust. This scenario raises concerns
about whether sensitive data might be accessed illicitly, even by TEE service providers. Although existing efforts
have explored the idea of securing applications against malicious TEE service providers, they fall short in

providing formal verification and guarantees of data security.

In this backdrop, PRIVATON (PRIVacy-preserving automATON) emerges as a novel solution that
tackles these challenges head-on. At Credora Inc., PRIVATON has been harnessed to deliver a provably private
and neutral credit risk oracle for cryptocurrency trading firms. This endeavor involves a network of TEE nodes,
establishing a decentralized system capable of performing computations on sensitive information in a completely
private and predefined manner. The objective is to create a secure and private environment where data owners

need not solely rely on trust.

In this paper, we present PRIVATON as a groundbreaking approach to verifiable privacy-preserving
computations, underpinned by the concept of finite state automatons. By seamlessly integrating Trusted
Execution Environment (TEE) technologies and WebAssembly (WASM) runtime environments, PRIVATON
introduces a dual sandbox strategy. This innovative architecture has a profound impact on data privacy and
computation integrity. PRIVATON empowers developers and users to define a controlled set of privileges via

verifiable policies, facilitating explicit control over computation capabilities.

Throughout this paper, we delve into the inner workings of PRIVATON, highlighting its capability to
provide a verifiable proof of computation model. By embracing dual sandbox environments and cryptographic
techniques, PRIVATON ensures that computations are executed exactly as intended, with the added assurance
of data confidentiality. We explore the model's versatility in accommodating diverse computational paradigms,
including TEE-WASM integration. Additionally, we present a comprehensive evaluation of PRIVATON's
security and performance aspects, demonstrating its efficacy in preserving data confidentiality and

computational accuracy.



The subsequent sections delve into related research, enabling technologies, the proposed PRIVATON
solution, real-world use cases, experimental evaluations, and concluding remarks, showcasing PRIVATON's

transformative potential in securing sensitive data and computation.

Related Work

In the pursuit of preserving data privacy and ensuring computation integrity, various research and practical
endeavors have paved the way for solutions that resonate with the goals of PRIVATON. This section explores

notable related work in the realm of confidential computing and verifiable computation.

3.1 Trusted Execution Environments (TEE): TEEs have garnered substantial attention as a hardware-based
approach to ensuring secure execution environments. Intel Software Guard Extensions (SGX) [5] and ARM
TrustZone [6] are prominent TEE technologies that facilitate the creation of isolated enclaves for computations,
shielding them from potential adversaries. However, the reliance on TEE service providers introduces challenges

concerning trust and data security.

3.2 Zero-Knowledge Proofs (ZKPs): Zero-knowledge proofs have emerged as a powerful cryptographic
technique for verifying computations without revealing sensitive input data. zk-SNARKSs and zk-STARKSs [8]
stand out as examples of ZKPs. While these methods ensure privacy, they often come with substantial overhead

and complexities related to setup and verification.

3.3 Finite State Automatons and State Machines: Finite state automatons have been employed in various
domains to model processes and systems with distinct states and transitions. These models provide a structured
approach to computation and facilitate formal analysis. State machines and automata-based frameworks have
been used to reason about system behavior and correctness, providing a strong foundation for PRIVATON's

state-based approach.

3.4 WebAssembly (WASM) Runtimes: WebAssembly has gained prominence as a versatile
platform-independent runtime environment. It allows for the execution of programs written in multiple
programming languages, enhancing portability and security. The integration of WASM runtimes within

PRIVATON highlights its adaptability to various computational paradigms.

3.5 Confidential Computing Consortium (CCC): The CCC has brought together industry leaders to
address challenges related to confidential computing. While the consortium focuses on TEE-based solutions,
PRIVATON extends the conversation by incorporating the dual sandbox strategy and finite state automatons

for verifiable computation.

3.6 Dual Sandbox Strategy and Verifiable Proofs: Prior research has explored the idea of securing
applications against malicious TEE service providers by employing a dual sandbox strategy. PRIVATON extends
this approach by introducing the concept of verifiable proofs of computation. These proofs guarantee the

accuracy and integrity of computations and eliminate the need for blind trust in TEE service providers.



3.7 Decentralized Computation and Privacy-Preserving Oracles: The blockchain domain has witnessed
the emergence of decentralized computation platforms and privacy-preserving oracles. These platforms aim to
enable secure and private execution of smart contracts and computations within a decentralized ecosystem.
PRIVATON aligns with these objectives by offering a similar vision of secure computation in a decentralized

setting.

In summary, the related work showcases a rich landscape of efforts dedicated to preserving data privacy,
enhancing computation integrity, and securing sensitive information. PRIVATON distinguishes itself by
introducing a novel approach that combines dual sandbox strategies, finite state automatons, verifiable proofs of
computation, and the flexibility of WebAssembly runtimes, offering a comprehensive solution for

privacy-preserving computations across diverse contexts.
Background

In the rapidly evolving landscape of modern computing, where the triumvirate of security, privacy, and data
integrity stands as the cornerstone, new paradigms have emerged to address the complex challenges posed by
remote processing and data utilization. This section delves into the multifaceted background that has
culminated in the conception of PRIVATON—an innovative solution aimed at ushering in a new era of

privacy-preserving computations.
4.1 Finite State Automata and State Machines: Establishing Computational Rigor

Finite State Automata (FSA) and state machines, foundational constructs within theoretical computer science,
provide a formal framework to model sequential processes and transitions. A finite state machine is defined as a
tuple (Q, %, 8, qo, F), where:

® Qrepresents a finite set of states.

e > denotes a finite input alphabet.

® Jsignifies the transition function, mapping (state, input) pairs to the next state: 6: Q x £ — Q.

® (,is the initial state.

e [ constitutes the set of accepting states.

Mathematically, a finite state machine is represented as:

Mz(szsa’qO’F )

The transition function & encapsulates the behavior of the state machine, dictating how it moves from one state
to another upon receiving specific inputs. The behavior of a state machine can be summarized through its state
transition diagram or a transition table.

In a state transition diagram, states are represented as nodes, while transitions are depicted as directed edges
labeled with corresponding input symbols. This graphical representation provides an intuitive visualization of

the state machine's behavior.



Theorem 1: Determinism of Finite State Machines
A finite state machine is deterministic if, for every state q and input symbol a, there exists exactly one transition

d(q, a) leading to another state. In other words:
[3(q,2)] =1 forallq=Q,aEX

Theorem 2: Equivalence of Finite State Machines
Two finite state machines M; = (Qy, Z, 8y, qos, Fi) and M, = (Q,, Z, 85, qos, F) are equivalent if their languages
L(M,) and I(M,) are the same, i.e.,

L(Ml) =L(M2)

Where the language of a finite state machine M, denoted as L(M), comprises all strings that lead M from the

initial state to an accepting state.

Theorem 3: Closure Properties of Finite State Machines
Finite state machines exhibit various closure properties, enabling operations like union, concatenation, and
Kleene closure. Given two finite state machines M, and M,;:
1. Union: The union of M, and M,, denoted as M; U M,, recognizes the language union of L(M,) and
L(M,).
2. Concatenation: The concatenation of M; and M,, denoted as M;M,, recognizes the language
concatenation of L(M,) and L(M,).
3. Kleene Closure: The Kleene closure of M;, denoted as M,*, recognizes the language containing all

possible concatenations of strings from L(M,).

These theorems underpin the rigorous mathematical foundation of finite state machines, enabling their formal
analysis, composition, and manipulation. By integrating these mathematical constructs and principles,
PRIVATON leverages the versatility of finite state automatons and state machine proofs to engender a robust

platform for privacy-preserving computations, ensuring the integrity and security of the executed processes.
4.2 Trusted Execution Environments (TEE): Fortifying Security

Within this backdrop, the concept of Trusted Execution Environments (TEE) has emerged as a pivotal solution
for enhancing computational security. TEEs offer isolated execution environments within a processor,
commonly isolated from the host operating system. This isolation assures that the execution remains
tamper-resistant and confidential, impervious even to privileged attackers. In essence, TEEs provide a bastion of

security for computations, insulating them from external threats and vulnerabilities.



4.3 WebAssembly (WASM): Bridging Computational Boundaries

In parallel, the rise of WebAssembly (WASM) has transformed the way software is executed across different
platforms. WASM is a binary instruction format that enables efficient and secure execution of code on various
environments, fostering compatibility across diverse systems. Its sandboxed execution model guarantees
isolation, preventing unauthorized access and enabling cross-platform deployment without compromising

security.
4.4 Remote Attestation (RA): Trust in Untrusted Environments

Nevertheless, the utilization of TEEs also brings forth challenges, particularly in the context of verifying the
integrity and authenticity of the executed code within these trusted enclaves. Remote Attestation (R A) emerged
as a solution to this predicament, enabling a remote party to verify the integrity of the TEE's state and code
execution. RA assures that the TEE operates within its expected parameters, safeguarding against potentially

malicious or compromised environments.
4.5 The Quest for Privacy-Preserving Computations

Within this intricate milieu of concepts and technologies, PRIVATON crystallized as a visionary solution to the
perennial dilemma of executing computations while ensuring utmost privacy and security. PRIVATON
leverages a dual sandbox strategy, seamlessly combining the power of TEE technologies with WebAssembly
(WASM) runtime environments. This strategic amalgamation establishes an unparalleled stronghold, where the
sanctity of computations is guaranteed through meticulous modeling, verifiable proofs, and controlled
execution.

The subsequent sections of this paper delve into the details of PRIVATON's architecture, its integration of
finite state automatons and state machine proofs, the dual sandbox approach, and the comprehensive evaluation
that underscores its efficacy. Through this exploration, PRIVATON emerges as a formidable contender in the
realm of confidential computing, bridging theoretical foundations with cutting-edge technologies to pave the

way for secure, private, and trustworthy computations in an ever-connected world.

Current Limitations

Within the landscape of confidential computing, the prevailing approaches, including those leveraging Intel
SGX and WebAssembly sandboxing techniques, exhibit a range of limitations that underscore the need for more
robust solutions. These limitations encompass various aspects of security, privacy, and operational integrity. In
this section, we shed light on the critical limitations inherent in the current models and elucidate the challenges
that the PRIVATON framework is designed to overcome.
e Enclave Malleability: Current confidential computing frameworks, such as those relying on Intel SGX,
suffer from enclave malleability. Enclaves can be exited through different paths, including ECALLs,
OCALLs, and AEX. This variability in exit paths can enable attackers to manipulate the internal state

of the enclave, compromising its integrity and raising concerns about the security guarantees offered.



Knowledge Extraction Vulnerability: Zero-Knowledge Proof-of-Knowledge (ZKPK) protocols, while
promising for ensuring data privacy, introduce a potential knowledge extraction vulnerability. Within
SGX enclaves, AEX can interrupt execution, potentially allowing adversaries to force enclave execution
paths that inadvertently reveal secret keys. This vulnerability poses a challenge to maintaining the
confidentiality of sensitive information.

Remote Attestation Security Vulnerabilities: The process of remote attestation, vital for verifying the
integrity of enclave execution, faces security vulnerabilities such as Man-In-The-Middle (MITM)
attacks. These attacks encompass replay attacks, where malicious entities replay old measurement values
and TPM Quotes to impersonate a valid platform, tampering with measurements and TPM Quotes,
and masquerading, where attackers present measurement and TPM Quote data from another
legitimate system.

Type Confusion and Module Integrity in WebAssembly: WebAssembly's utilization of
SharedArrayBuffer introduces vulnerabilities, including type confusion, in multi-threaded
environments. This can result in classic type-confusion exploit chains that potentially compromise
security. Additionally, WebAssembly implementations have faced issues related to module integrity,
including vulnerabilities like use-after-free, double-free, and buffer overflows, leading to data leakage
and potential exploitation.

Limitations of zkVM: Zero-knowledge virtual machines (zkVM) offer a paradigm shift in preserving
data privacy and integrity; however, they are not immune to certain limitations and challenges:

e Trusted Setup Complexity: zZkVM implementations often require a trusted setup phase, where
initial parameters are generated to ensure the system's security. This setup phase can be
complex and time-consuming, potentially raising concerns about the security of the initial
parameters and the overall reliability of the system.

® Performance Overhead: While zkVMs provide strong privacy guarantees, they can introduce
computational overhead due to the complex zero-knowledge proof generation and verification
processes. This overhead can impact the system's responsiveness and efficiency, especially in
real-time or high-throughput scenarios.

® Proof Size and Verification Complexity: Zero-knowledge proofs generated by zkVMs can be
substantial in size, leading to increased communication and storage requirements. The
verification of these proofs can also be computationally intensive, posing challenges in
scenarios where rapid verification is essential.

e Trade-off between Proof Efficiency and Verification Complexity: Striking a balance between
efficient proof generation and manageable verification complexity is a challenging endeavor.
While optimizing proof size and generation time can improve performance, it may also increase
the complexity of verifying these proofs, potentially hampering scalability.

e Application Integration Challenges: Integrating zkVMs into existing applications or systems
can be intricate. Developers need to adapt their code to work within the constraints and
requirements of zkVMs, potentially leading to code modifications and challenges in
maintaining compatibility.

e Dynamic State Changes: zkVMs may face challenges in handling dynamic state changes

efficiently. Ensuring that proofs remain valid and accurate when state transitions occur

7



dynamically within a computation can be complex, particularly in scenarios with frequent
updates or modifications.

® Trustin Setup Parameters: The initial trusted setup parameters used in zkVM implementations
are critical for the security of the entire system. Ensuring the trustworthiness of these
parameters is paramount, as any compromise or manipulation could compromise the privacy

guarantees of the zkVM.

The limitations highlighted above underscore the pressing need for an innovative solution that addresses the
gaps and vulnerabilities within the current models. PRIVATON, with its verifiable proof of computation
paradigm, stands as a promising approach to overcome these challenges. In the subsequent sections, we delve
into the construction, principles, and capabilities of PRIVATON, presenting a comprehensive solution that

aspires to redefine the landscape of confidential computing.

PRIVATON - The Proposed solution

In this section, we introduce PRIVATON, a cutting-edge solution designed to address the critical challenges of
privacy-preserving computations in the realm of confidential computing. PRIVATON is a verifiable proof of
computation model that leverages state-of-the-art technologies, including Trusted Execution Environments
(TEEs) and WebAssembly (WASM) runtime environments, to establish a secure and trustworthy platform for

executing computations while safeguarding sensitive data.
6.1 Finite State Automaton Modeling

PRIVATON introduces a novel approach to modeling computations using finite state automatons. Each
computation is broken down into a series of states, each with specific privileges, permissions, and capabilities.
This approach adheres to the "principle of least privilege" and the "principle of intentional use,” minimizing the
privileges accessible to each computation module and explicitly allocating privileges to prevent arbitrary

allocations.
6.2 Verifiable Proof of Computation

One of the most groundbreaking features of PRIVATON is its ability to generate verifiable proofs of
computation. Each computation's execution is accompanied by a verifiable proof that attests to the fact that it
was executed exactly as specified within the given execution runtime. This proof ensures that no unauthorized
data leakage or transmission occurs during the computation process, thus preserving the privacy and security of

sensitive information.



6.3 State Capability Model

PRIVATON implements a robust state capability model that defines the boundaries, permissions, and
capabilities associated with each computation state. This model is crucial for enforcing security constraints and
maintaining controlled access to computational resources. The state capability model encompasses attributes
such as module IPES hash, entry point signature, input providers, recipients, bounds, permissions, layers, sentry

values, and lock attributes.

6.4 Verifiable Policy

Verifiable Policies (VPs) are integral components of the PRIVATON solution, designed to ensure secure and
controlled execution of computations within the system. These capabilities, infused with the principles of

fine-grained control and explicit permissions, form a robust foundation for secure and verifiable computations.

A Verifiable Policy (VP) is a structured representation that outlines the permissible behaviors of a computation
module within a given computational environment. It defines the set of allowable actions and interactions that
the module can perform, along with the conditions under which these actions are permitted. The primary
purpose of a VP is to ensure that the execution of a computation adheres to a predefined set of rules, thereby
enabling verification that the computation has been carried out as intended. This section delves into each

capability, elucidating their significance and role within the VP state model.

Bounds

- Upper Limit
- Lower Limit

Reserved 1

Permissions

(Fine grained issi with
weights)

Metadata LOAD_IPFS (1)

STORE_IPFS (n)

STORE_SGX
- Module IPFS Hash (Parent) Beom ™ Reserved 2

- Entry Point Signature OTHER SYS_CALL
- Input Providers
- Recipients

Lock
time
Single
#(invocation) Parallel

Global / Local
Layer

ENTRY
EXIT sentry
SEALED_SINGLE o
SEALED_MULT #(prev_state_entry_point_sig)

State Capability Model

Capability Model Attributes
e Module IPFS Hash (Parent): A cryptographic hash of the parent module's IPFS (InterPlanetary File

System) address establishes a secure linkage between the module and its origin.



e Entry Point Signature: The unique cryptographic signature of the entry point function enhances
identification and access control.

e Input Providers: A comprehensive list of functions that serve as data input providers ensures that only
trusted sources feed information into computations.

e Recipients: Trusted recipients are explicitly defined to receive the output of computations, preventing
unintended data leakage.

e Bounds: Specify the maximum permissible size of the code and memory, preventing potential exploits
and resource abuse.

® Fine-Grained Permissions: Permissions are tailored to each function's state requirements, offering
distinct capabilities like loading data from IPFES, storing to IPFS, accessing SGX memory, executing, and
other system calls granularly for each state.

e Layer: The layer attribute encapsulates the specific execution phase, encompassing ENTRY, EXIT,
SEALED_SINGLE, and SEALED_MULT stages. This attribute governs the contextual access rights
for each function.

e Sentry: The sentry attribute ensures secure invocation by including the previous state's entry point
signature. This safeguard guarantees that only authorized invocations are accepted.

e Lock: Lock attributes categorize execution states as Single or Parallel, dictating whether the

computation is confined to a single-threaded or multithreaded execution environment.

These policies are constructed based on the information partially extracted from the WebAssembly (WASM)
debug dump using the Debugging with Attributed Record Formats (DWARF) conventions. These attributes

collectively represent the sequence of operations and steps that a computation module can perform.

The DWARF conventions serve as a standardized format for encoding debugging information, including the
structure of stack frames in the source code. When a computation module is compiled into WASM code, the
associated DWARF debug dump contains metadata that describes the composition of the module's stack

frames. The script provided utilizes DWARF conventions to accurately extract this stack frame information.
At a high level, the process of constructing VPs using DWARF conventions involves the following steps:

® Detection of Tagged Entities: The script scans through the debug dump to detect tagged entities that
signify the beginning of stack frame information.

e Attribute Extraction: Relevant attributes within the tagged entities are extracted. These attributes
include information about origin, linkage name, and program counter.

e Information Sequencing: Extracted attributes are processed in a sequence that adheres to DWARF

conventions. This sequence captures essential details about each stack frame.

These policies serve as blueprints for controlling the behavior of computations, ensuring security, privacy, and
compliance within the PRIVATON framework. The integration of these attributes within the VP state model
facilitates fine-tuned control, safeguarding against data leaks, unauthorized access, and resource exploitation.

The inclusion of cryptographic hashes, cryptographic signatures, and explicit recipient definitions bolsters data

10



integrity and privacy. The allocation of precise permissions and their associated weights ensures responsible
resource utilization. The layer, sentry, and lock attributes enhance contextual security and control, enabling

computations to be securely orchestrated.
6.5 Support for TEE-WASM Variants

PRIVATON's innovative approach leverages the power of Trusted Execution Environment (TEE) technologies
with the versatility of WebAssembly (WASM) runtime environments in a unified dual sandbox strategy. This
integration also caters to both TEE-backed and standalone WASM environments, ensuring robust

privacy-preserving computations in various execution scenarios.

|||||||

Sandboxd# [ WASMbinary | WASI

WASM Runtime

TEE

System Resources

6.5.1 TEE-WASM Synergy

In the TEE-WASM variant, PRIVATON capitalizes on the secure execution environment provided by TEEs,
such as Intel Software Guard Extensions (SGX). TEEs establish isolated enclaves where computations can be
executed with utmost confidentiality and integrity. Within this TEE-backed environment, PRIVATON enforces
its dual sandbox strategy, compartmentalizing computations and their associated resources to prevent

unauthorized access and data leakage.
6.5.2 WASM Sandbox Adaptation

In the standalone WASM variant, PRIVATON adapts its dual sandbox strategy to the native features of WASM
runtime environments. WASM sandboxes enable secure execution of code, but they lack the inherent isolation
of TEEs. PRIVATON's approach introduces additional layers of isolation by defining boundaries for
computations, managing permissions, and enforcing verifiable policy state capabilities within the WASM
context. This ensures that even in a non-TEE environment, computations are shielded against external threats

and unauthorized data exposure.

11



6.5.3 Unified Privacy-Preserving Execution

The integration of TEE and WASM technologies in PRIVATON's dual sandbox strategy offers a unified
platform for executing privacy-preserving computations. Regardless of the chosen variant, the underlying
principles remain consistent: computations are isolated, privacy is preserved, and verifiable proofs of
computation are generated. This adaptability empowers developers to choose the execution environment that

best aligns with their requirements, while maintaining the same high standards of security and privacy.
6.6 Enabling Decentralized Computational Platforms

PRIVATON revolutionizes decentralized computational platforms by providing an unprecedented level of
security and confidentiality. The integration of finite state automatons, verifiable proofs of computation, and
state capability models empowers PRIVATON to drive next-generation computing paradigms, safeguarding

sensitive data and enabling trustless and secure interactions.

Our Construction

PRIVATON's operational mechanisms intricately weave together its state model, verifiable policy state
capabilities, and the generation of verifiable proofs of computation. This section elucidates the core concepts
behind PRIVATON's operational mechanisms, providing an in-depth understanding of how it achieves secure

and privacy-preserving computations.

In this section, we present the PRIVATON model of computation. We models a computation X into a
deterministic finite state automaton (DFSA),
mathematically as a six-tuple (K,Z,0,5,A,0) where:

e Kisa finite set of computation states of the dual sandbox strategy

e X is the computation’s inputs provisioned by the participating principals defined in the associated

verifiable public policy.

e s C Kis the start state, in most cases representing the host with an uninitialised dual sandbox

e A C K, is the set of accepting states of the computation

® Jis the state transition function such the Kx < — K

® Ois the computational output

A batch (B) is a finite sequence, possibly empty, of principals X, part of X-Margin’s pool of providers for a given
computation. Given any pool, the smallest batch that can be formed from is an empty batch, which we will write
as e. A configuration of a computation X is an element of K x B, that essentially captures the current state and

the input that is left to be received.

Henceforth, we refer to this model of computation within the dual sandbox environment as the PRIVATON
(Xp)-

12



Definition 1: (The PRIVATON Computation)

As the transition function 9, defines the operations of PRIVATON (X;) one step at a time along with the
Verifiable public policy (Vy) to define the sequence of configurations that the given computation (X;) will enter.
We start by defining the relation “yields-in-one-step” ( |-x), wherein it relates configuration' to configuration®

when X}, can move from the former to the latter in a single step. Mathematically,

(ql, c) |’X (q2, 0) if((ql, <), qz) c9
where c is any element of X

So now the relation “yields” (|-x*) can be defined as reflexive, transitive closure of |-yi.e. a configuration C, yields

configuration C, if X}, can go from C, to C, in zero or more steps. This can be written as:
*
C Gy

The PRIVATON (X;) computation can now be defined as a finite sequence of configurations C,, C, ... C, forn
> 0 such that:

e C,is the initial configuration

e C, is of the form of (q,¢), for some state ¢ C K,

e Ci|«xC|xC, |-x-|xCy

Given f a batch of X for a given computation, we define the following:
e X, accepts Bif (s,B) |-x* (q,0) for some q © A. Any configuration (g, ©), for some q C A, is called an
accepting configuration of Xp.
e X, rejects B if (s, w) |-x* (q, ©), for some q ¢ A. Any configuration (g, ©), for some q ¢ A, is called an

rejecting configuration of Xp.

Definition 2: (PRIVATON Halt)
Every PRIVATON (X}) on input B, halts after ||+4 steps.
On input  PRIVATON (X;) executes computations C, |-x C; |-x C, |- ... |-x C, where C; is the initial
configuration, and C, is of the form (q,0) for some state ¢ © K. C, is either an accepting or a rejecting
configuration, so X, will halt when it reaches C,. Each step in the X}, computation comprises of
e A empty dual sandbox initialisation on the host as a fixed initial configuration C,
Co|x Cy
® A relevant verifiable public policy import into the freshly initialized sandbox configuration state
C <G,
e Next |B] steps in the computation that consumes one input from each of the principals
Co [xCs | [x Cipa
® A ready to execute (r) state after all the |B| inputs to the computations have been provisioned
Cpsz |-x C,wherer & A
e A final teardown state (C, & A) that clears the sandbox environment.

In most of the scenarios C, == C, i.e. will revert back to its original state prior to the computation

13



So n = |B|+4. Thus X, will halt after |B|+4 steps.

7.1.1 Verifiable Policy State Capabilities

PRIVATON's operational mechanisms are fortified by the Verifiable Policy State Capabilities. These capabilities
define the rules, permissions, and bounds within which computations operate. The verifiable public policy
associated with each computation encapsulates attributes such as metadata, permissions, and layers. It ensures

computations are confined to designated states, limiting access to specified operations and data.

The PRIVATON proof is composed of the following fields:

{
computation seed : bigint,
proof : HASH,
state proofs :
{
state commitments : HASH,
data commitments : HASH,
meta commitments : HASH
}
}

e computation seed: to introduce a randomness to the given proof computation

e proof: unique fingerprint of the given computation derived from the state proofs

e state proofs: granular proofs of the states transitioned for the given computation each comprising the
below commitments.

O state commitments: hash of the current state’s [function signatures, incoming state inputs,
(optional) auxiliary data structures referenced or computed within that are not part of state
outputs]

o data commitments: hash of current state’s output(s) which would serve as the input for the
next state or as the final computation output

O meta commitments: hash[state commitments (state(i)), meta commitments (state (i-1))] that

tracks the chained state transition sequence

7.1.2 Generation of Proofs of Computation

A cornerstone of PRIVATON's operational mechanisms is the generation of verifiable proofs of computation.
As a computation unfolds within the dual sandbox strategy, PRIVATON meticulously records each step. These
steps culminate in a cryptographic proof that validates the computation'’s precise execution as per the defined
state model and verifiable public policy. These verifiable proofs enhance trust and accountability in the

computation’s outcome.

14



7.1.3 Integration of Dual Sandbox Strategy
PRIVATON's operational mechanisms are seamlessly integrated with the dual sandbox strategy. Whether within
a TEE-WASM enclave or a standalone WASM runtime, computations are executed within confined
environments. In TEE-backed enclaves, the TEE enforces isolation and attestation, while in standalone
runtimes, virtual sandboxes ensure strict access controls. This integration guarantees secure execution and
privacy preservation, regardless of the execution context.

By unifying the state model, verifiable policy capabilities, proof generation, and the dual sandbox
strategy, PRIVATON's operational mechanisms provide a comprehensive framework for secure and private
computations. This holistic approach confronts the challenges of confidential computing, safeguarding sensitive

data and computations against a backdrop of varying execution contexts.

WASM
Module

A

fine grained
capabalities

R CCN ——> Output ——>
(Credora/Client) Computation Node
Verifier Node
- PoC/
Verifiable PRIVATON fingerprint

Policy

Signers e '
; Confidential
Data

PRIVATON Computation Execution Framework (CEF)

The PRIVATON Computation Execution Framework (CEF) encapsulates the operational intricacies of the
PRIVATON model, orchestrating the execution of privacy-preserving computations through a systematic
approach. These compurtations, modeled as finite-state units, are subject to the verification and consensus

among multiple PRIVATONS, ensuring the correctness and agreement on their execution.

8.1 The Essence of PRIVATON Consensus
In the context of decentralized systems, consensus forms the cornerstone for fault-tolerant operations. For
PRIVATONS, consensus involves harmonizing the execution sequence, intermediate values, and final outputs
of a given computation. To illustrate this concept, consider the following notations:

- f{x): The unit of computation to be performed.

- P: APRIVATON capable of executing f(x).

- N: The number of PRIVATONS performing the same computation f(x), where N>1

- S0..K: Represents the states of a PRIVATON P.

15



- K: Denotes the number of states required for the successful execution of f(x) by a PRIVATON P.

The essence of PRIVATON consensus can be captured through the following mathematical formulation:

P(f(x))=3i=0 K (®(S,, Ai)+3(S,, S;+1))

Here:
e Ai: Signifies the input dependencies of state Si concerning computation f(x).
® J: Represents the state transition function from Si to Si+1
e  ®: Stands for the computational output of state Si

e SK+1 = S0, ensuring cyclic transition from the last state back to the initial state.
8.2 Verifiable Consensus

A core tenet of PRIVATON consensus is the verifiable nature of computations across PRIVATONS. To
ascertain the validity of computations and to achieve consensus, the following conditions must hold:
® Identical State Commitments: The cryptographic commitments Ci of states Si across PRIVATONS
should be identical for a given computation f(x). This ensures uniformity and prevents tampering.
® Threshold-Based Execution Time: The computation execution times ti for state Si across PRIVATONS
should not deviate significantly from the average threshold time across all PRIVATONS. This guards

against potential deviations and irregularities.
8.3 Defining Fault Tolerance

In the context of PRIMATON consensus, fault tolerance refers to the system's resilience in the face of colluding
or malfunctioning PRIMATONS. Specifically, we denote T as the maximum number of faulty PRIVATONS

that the system can withstand without compromising the consensus process.

Definition 3: Non-Faulty PRIVATON Computation

For a given computation f(x) and a PRIVATON Pn, the computation is deemed non-faulty if the following
criteria are met:
1. The cryptographic commitments Ck of each state Sk are identical across all PRIVATONS, n=1,...,N
and k=0,....K.
2. The execution time t; of state Si for PRIVATON Pn does not deviate unusually from the average
threshold time across all PRIVATONS, n=1,...,N and i=0,...,K.

8.4 Ensuring PRIMATON Halt and State Transitions

PRIVATON consensus encompasses the mechanism to ensure that non-faulty PRIVATONS halt in a

synchronized manner and that state transitions occur securely. In mathematical terms:

16



P, |S, (commitment)=C, V (k=0,...,K) and (n=L1,...,N)

For state transitions, the following condition is established:

5(S,, S+1), ifT<t

Halt, ifT>t

Where T represents the maximum permissible number of faulty PRIVATONS, n=1,...,N, and i=0,...,.K.

In summary, PRIVATON consensus ensures the verifiable agreement among PRIVATONS regarding

the execution sequence, intermediate outputs, and final results of a computation. Through the establishment of

fault tolerance, identical state commitments, and synchronized state transitions, the PRIVATON Computation

Execu{tion Framework guarantees the integrity and correctness of computations in a privacy-enhanced and

decentralized environment.

Implementation Details

9.1 Data Structures

json proof_document: This JSON object serves as the central repository for storing proof-related
information. This data structure enables the framework to maintain a record of executed computations
and their associated commitments.

policies_cache and stack_frames_cache: These maps are used to cache state capabilities. policies_cache
holds a map of computation modules to their respective state capabilities, while stack_frames_cache
stores state capabilities for individual stack frames. These caches provide efficient access to state

capabilities, aiding in validation and proof generation.

9.2 Core Functions

privaton_init: This function initializes the framework, generating a computation salt. The salt is used
to introduce randomness and security to commitment calculations. It generates a random seed and
computes a commitment of the seed. The commitment and seed are then stored in the
proof_document.

privaton_bounds_validate: This function validates execution bounds and permissions for a given
computation state. It checks if the current state's capabilities match the function's metadata and
execution bounds. If skip_bounds is enabled, only the checkpoint disabling is verified.
privaton_decode_verifiable_policy: This function decodes a verifiable policy JSON. It parses the
JSON and extracts state capabilities, committing the policy for verification purposes. It also populates

stack_frames_cache with state capabilities.

17



privaton_syscall_write_access and privaton_syscall_read_access: These functions check permissions
for syscall access, specifically write and read operations. They verify whether the current state has the
required permissions based on its capabilities.

privaton_syscall_access: This function checks general syscall access, combining the checks for read
and write access. It uses the aforementioned functions to verify the permissions for the current state.
privaton_fetch_address: This function fetches an address location based on permissions and a given
key. It verifies the permissions and uses the key to retrieve the address from the capability's file address
map.

privaton_digest: This function generates and records digests for verification purposes. It calculates
digests based on provided inputs, such as computation salt, function data, and other arguments. The

function computes hash digests and constructs proof entries in the proof_document.

PRIVATON_INIT

PRIVATON_DECODE
_STATE_
VERIFIABLE_POLICY

P
PRIVATON_BOUNDS_VALIDATE R
I
\'}
A
T
0
PRIVATON_DIGEST N
|
N Modules
T
E
PRIVATON_PRINT_PROOF R
F
A
Cc
E

PRIVATON_SYSCALL_ACCESS

I

PRIVATON_FETCH_ADDRESS

LTI

18



® privaton_get_next_state and privaton_get_nth_previous_state: These functions retrieve the
next or nth previous computation states based on the current state. They utilize the state capabilities
and sequencing information stored in policies_cache.

e proof builder: This function constructs and appends proof information to the proof_document. It
calculates hash digests for various parameters and commitments and updates the proof_document with
relevant information. It includes function commitments, data commitments, state commitments, and
more.

e privaton_print_proof: This function prints the proof information stored in the proof_document. It
displays the JSON structure containing computation proofs, including function commitments, data
commitments, and state commitments.

e privaton_proof matrix: This function generates a QR code containing the proof information. It
encodes the proof document using QR code generation libraries and displays a visual representation of

the proof.

The PRIVATON framework's implementation covers a range of functionalities, from commitment
calculations and state validation to access control and proof generation. The modular design and efficient data
structures enable the framework to facilitate privacy-preserving computations while maintaining a clear record

of executed computations for verification.

Transient Speculative Execution Attacks and PRIVATON

In the intricate landscape of modern computing, the emergence of transient speculative execution attacks poses
a significant threat. These attacks exploit the inherent optimizations in hardware or compiler/runtime systems,
executing predicted branches or states before they are conclusively resolved. Within the realm of PRIVATON,
such scenarios could lead to the execution of unintended states, creating vulnerabilities that malicious actors

could exploit.

Transient speculative execution attacks encompass two distinct categories: speculative execution attacks
and transient execution attacks. Speculative execution attacks involve injecting false predicted states to
manipulate module behavior. This could entail revealing sensitive information or altering execution timing.
Transient execution attacks, exemplified by the infamous Spectre vulnerabilities, enable attackers to manipulate

speculations to access cached data or affect execution timings, potentially undermining system security.

To counter these evolving threats, PRIVATON employs a multi-faceted defense strategy. First, at the
software level, PRIVATON enforces strict sequencing of state code execution. It ensures that a given state's
metadata validation must be completed before its execution, and subsequent states are executed only after the
current state’s execution and validation. This sequencing minimizes the window for transient code execution
exploits, reducing the chances of speculation-driven attacks. Furthermore, the deterministic execution flow,
guided by verifiable policy definitions, prevents out-of-order state executions and curtails speculation-driven

deviations.

19



However, it is important to note that PRIVATON's approach does not eliminate speculative execution
itself, as it's a hardware-level property. Instead, it focuses on controlling the timing and sequencing of states to
mitigate the risks. The predefined state execution sequence and mandatory metadata validations signal
speculative mispredictions and enforce policy adherence. While this strategy addresses transient execution attack

windows, it doesn't entirely handle speculative execution attacks at the hardware level.

Additionally, to enhance mitigation strategies, PRIVATON explores the concept of introducing noise
in the form of random and non-relevant states within its finite state execution. This concept, inspired by
Google's retpoline, disrupts hardware's ability to learn patterns and preemptively counters speculative attacks by

introducing randomness into the execution patterns.

In conclusion, PRIVATON's approach to tackling transient speculative execution attacks rests on
meticulously orchestrating state sequencing, deterministic execution flows, and the introduction of noise. By
synergizing these tactics, PRIVATON fortifies its defense against these intricate attacks, thereby reinforcing the

resilience, security, and integrity of its computational ecosystem.

Conclusion

In the rapidly evolving landscape of confidential computing, the PRIVATON Proof of Computation
framework emerges as a groundbreaking solution that addresses critical challenges surrounding security, privacy,
and integrity. With its verifiable proof generation, state capability model, and dual sandbox strategy,

PRIVATON sets a new standard for executing privacy-preserving computations.

PRIVATON's strength lies in its ability to construct a meticulous blueprint for computations through
finite state automatons, encapsulating privileges, permissions, and capabilities. This approach adheres to
principles of least privilege and intentional use, safeguarding against arbitrary allocations and unauthorized data
exposure. The state capability model enforces security constraints, granting controlled access to resources and

preventing data leaks.

At the heart of PRIVATON's innovation is its verifiable policy concept. By outlining permissible
behaviors and interactions, these policies ensure computations adhere to predefined rules, verified through
cryptographic commitments and validation mechanisms. The generation of verifiable proofs of computation

enhances accountability and trust, providing a transparent record of each step executed within the framework.

PRIVATON's dual sandbox strategy further fortifies its operational mechanisms. Whether leveraged
within a TEE-backed enclave or a standalone WASM runtime, PRIVATON maintains the same standards of
security, privacy, and correctness. This adaptability empowers developers to choose the execution environment

that aligns with their needs, without compromising on the core principles of the framework.

Incorporating fault tolerance, consensus mechanisms, and synchronization across PRIVATONS, the

PRIVATON Computation Execution Framework ensures the verifiable agreement on execution sequences,

20



intermediate values, and final outcomes. It establishes a foundation for trustless and secure interactions within
decentralized computational platforms. As with any advanced technology, PRIVATON is not without
limitations. Addressing challenges such as complex policy management, performance overhead, and trust in
setup parameters requires ongoing research and development. However, these limitations underscore the need

for continuous innovation and improvement in the field of confidential computing.

In conclusion, PRIVATON sets a new trajectory for confidential computing by introducing a verifiable
proof of computation paradigm. Its holistic approach, encompassing state modeling, policy enforcement, and
secure execution, reshapes the way we approach secure computations. PRIVATON's integration of advanced
cryptographic techniques, decentralized consensus, and efficient data structures opens doors to a future where

privacy and security are paramount in the digital realm.

PRIVATON 2.0 - Advancing PRIVATON

A central thrust of PRIVATON 2.0 is the introduction of Hierarchical Policy Management. The concept of a
Policy of Policies envisions a hierarchical structure where individual computations are governed by their own
specific policies, while higher-level policies define how these computations are orchestrated within a broader
execution pipeline. This allows for a modular and flexible approach to policy management, enabling developers

to define complex workflows while maintaining fine-grained control over each computation's behavior.

The architecture of a Merkle tree being leveraged to achieve this goal. Each leaf node of the tree
represents an individual computation, carrying its own policy attributes. These policies can include permissions,
access controls, bounds, and more. The internal nodes of the tree represent higher-level policies that define how

computations are combined and executed.

The root of the Merkle tree contains the hash of the entire execution pipeline's policy, ensuring that the
entire process remains secure and tamper-proof. By specifying a path through the tree, one can load and execute
a specific computation along with its associated policies, ensuring that the execution adheres to the predefined

rules and constraints.

This ongoing improvement not only enhances the PRIVATON framework's versatility but also
simplifies policy management for complex scenarios. This can compose computations into larger workflows
with ease, and the Merkle tree structure guarantees the integrity of policies and computations throughout the
execution process.This approach provides the groundwork for a more comprehensive, adaptable, and secure

framework that caters to the diverse needs of modern computational environments.

12.1 IPFS Integration: Transforming Computation Dynamics

In PRIVATON 2.0, dynamic computation takes center stage with the strategic integration of the InterPlanetary
File System (IPFS). This integration is a symphony of responsiveness and adaptability, where wasm modules are
referenced by Content Identifiers (CIDs) hosted on IPFS nodes. These CIDs become gateways to authorized
modules, allowing PRIVATON's runtime environment to seamlessly load modules in real-time during

21



execution. The efficacy of this dynamic loading is fortified by stringent hierarchical policies, acting as sentinels to
validate module authenticity. These policies prevent unauthorized loading of modules lacking permissions and
meticulously track changes in the path. The result is a computational landscape that is no longer static but

perpetually dynamic, adaptable, and efficient.

12.2 Hierarchical Policy Impacts and Workflow Adaptation

A profound enhancement in PRIVATON 2.0 is the ability to track the cascading effects of policy changes.
Imagine a scenario where altering a leaf node policy reverberates through the hierarchy, reshaping the entire
workflow. PRIVATON 2.0's hierarchical structure not only tracks these changes but also triggers a ripple

effect— modules to load, shifts in proof production, adjustments in backdated entries, and more.

This adaptive capability is a cornerstone of PRIVATON 2.0's evolution. As the policy tree adapts, the
framework not only ensures modules are dynamically loaded based on new policies but also recalibrates proofs,
traces historical changes, and navigates seamlessly between past and present states. The result is an ecosystem

that not only reacts to policy changes but orchestrates an entire symphony of computational adaptability.

12.3 Guardrails with eBPF-Based Explicit Syscall Permissions

The ongoing development of PRIVATON includes a significant enhancement: the integration of eBPF-filters &
explicit syscall permissions. Leveraging extended Berkeley Packet Filters (eBPF), PRIVATON's runtime gains the
capability to intercept and scrutinize system calls in real-time. This ensures that only authorized interactions
occur between computations and the underlying system, reinforcing PRIVATON's security framework. The
incorporation of eBPF-based explicit syscall permissions not only minimizes potential attack vectors but also
adds a resilient layer of protection against security vulnerabilities. Notably, the detailed traces of these system call
interactions are included in the generated proofs, enhancing transparency and accountability in the

computation process.

Furthermore, the comprehensive proof generation process of PRIVATON doesn't merely validate the execution
of computations but also meticulously reflects the eBPF traces of system call interactions. This level of
transparency not only enhances the system's accountability but also ensures that any suspicious or unauthorized

activities are promptly identified and addressed.

REFERENCES

1. C. C. Consortium, https://confidentialcomputing.io/ (2022).

2. D. Goltzsche, M. Nieke, T. Knauth, R. Kapitza, Acctee: A webassembly-based two-way sandbox for
trusted resource accounting, in: Proceedings of the 20th International Middleware Conference,
Middleware 19, Association for Computing Machinery, New York, NY, USA, 2019, p. 123-135.
doi:10.1145/3361525.3361541. URL https://doi.org/10.1145/3361525.3361541

22



3. J. Me'ne'trey, M. Pasin, P. Felber, V. Schiavoni, Twine: An embedded trusted runtime for webassembly,
in: 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021, pp. 205-216.
doi:10.1109/ICDES51399.2021.00025.

4. M. Nieke, L. Almstedt, R. Kapitza, Edgedancer: Secure mobile webassembly services on the edge, in:
Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking, EdgeSys
’21, Association for Computing Machinery, New York, NY, USA, 2021, p. 13-18.
doi:10.1145/3434770.3459731. URL https://doi.org/10.1145/3434770.3459731

5. Y. Ma, Q. Zhang, S. Zhao, G. Wang, X. Li, Z. Shi, Formal verification of memory isolation for the
trustzone-based tee, in: 2020 27th Asia-Pacific Software Engineering Conference (APSEC), 2020, pp.
149-158. doi:10.1109/APSEC51365.2020.00023.

23



