
A Practical Compiler for Attribute-Based
Encryption: New Decentralized Constructions

and More

Marloes Venema1,2

1 University of Wuppertal, Wuppertal, Germany
2 Radboud University, Nijmegen, the Netherlands

mvenemacrypto@gmail.com

Abstract. The pair encodings framework is an important result in the
simplified design of complex attribute-based encryption schemes. In par-
ticular, it reduces the effort of proving security of a scheme to proving
security of the associated pair encoding, which can then be transformed
into a provably secure pairing-based encryption scheme with a compiler.
Especially the symbolic property, as introduced by Agrawal and Chase
(EUROCRYPT ’17), has proven to be a valuable security notion that is
both simple to verify and applies to many schemes. Nevertheless, sev-
eral practical extensions using full-domain hashes or employing multiple
authorities cannot be instantiated with this compiler, and therefore still
require complicated proof techniques.
In this work, we present the first compiler for attribute-based encryption
schemes that supports such extensions. To this end, we generalize the def-
initions of pair encodings and the symbolic property. With our compiler,
we flexibly instantiate any pair encodings that satisfy this new notion
of the symbolic property in any pairing-friendly groups, and generically
prove the resulting scheme to be selectively secure. To illustrate the ef-
fectiveness of our new compiler, we give several new multi-authority and
hash-based constructions.

Keywords: attribute-based encryption · multi-authority attribute-based
encryption

1 Introduction

Attribute-based encryption (ABE) [50] is a powerful cryptographic primitive
that associates the keys and ciphertexts with attributes. ABE is attractive for
practice, as it allows for the fine-grained access control on data on a crypto-
graphic level [37,33,55,40]. In 2014, Attrapadung [11] and Wee [58] introduced
frameworks for pair and predicate encodings, respectively, to simplify the de-
sign and analysis of complex ABE schemes. Informally speaking, pair encoding
schemes abstract a pairing-based ABE scheme to “what happens in the exponent
of the keys and ciphertexts”. The idea behind these frameworks is that the de-
signer only needs to prove information-theoretic or algebraic notions of security

2 M. Venema

for these encodings. Then, via a generic compiler, Attrapadung and Wee con-
struct ABE schemes by instantiating the encodings in some carefully-constructed
pairing-friendly groups. Subsequently, they generically prove full security, using
dual system encryption techniques [56], of the resulting ABE from the security
of the encoding and the security of the groups.

Since its invention, many works have contributed to the pair encodings frame-
work [16,27,12,2,4,9,13,7]. Nowadays, many pairing-based schemes can be cap-
tured in this framework, ensuring that these efficiently satisfy a strong notion
of security. Not only has the pair encodings framework become a powerful tool
in the design of new schemes, it is also possible to generically transform or com-
pose existing schemes [16,4,9,13,7]. As a result, increasingly complex schemes
can be constructed without further complicating the security proofs. For exam-
ple, revocation mechanisms [9,59] and range attributes [14] can be generically
and efficiently supported [13].

Arguably the most powerful security notion for pair encodings is the sym-
bolic property, which was first introduced as such by Agrawal and Chase [4],
but builds on several prior works, e.g., [42,11,12]. In part, this security notion
is more powerful, because more schemes can be captured with it [4]. Moreover,
interestingly, the symbolic property is meant to make security proofs easy to
verify. In particular, this effort boils down to performing simple linear algebra.
This is a much simpler task than verifying complex security reductions that re-
quire a significant expertise. From a historical perspective, the symbolic property
builds on the ideas behind the more classical proofs, called “program-and-cancel”
proofs, which were used to prove selective security in the early days [20,50]. In
the selective-security model, the attacker commits to the predicate that they are
going to attack before seeing the public keys, which is unreasonable to assume
in practice [26].

Nevertheless, even though the symbolic property is strongly linked [42,11,4]
to these classical proofs, it is not clear if the symbolic property can be used to
prove selective security generically. Of course, this also raises the question of
whether we should care about this particularly low-hanging fruit at all. If we
can use the symbolic property to build fully secure schemes, then why would we
want to use it to build weaker schemes? Our answer to this question is multifold:
because the resulting schemes are simpler, more efficient, and we may be able to
generically build practical schemes that we cannot build with the current full-
security compilers yet [11,12,4]. Notably, those compilers do not readily support
various practical properties, e.g.,

– the employment of multiple authorities [24,41,49];
– full-domain hashes, e.g., to achieve large-universeness3 efficiently [57];
– or flexible instantiations in the pairing-friendly groups [6,1] (which heavily

influences the scheme’s efficiency [47]).

Fully secure schemes that do satisfy such properties [41,3,52] need to resort
to more complicated proof techniques (and on a case-by-case basis), and move

3 Large-universe ABE can support any string as attribute.

A Practical Compiler for ABE 3

us further away from the simplicity of the symbolic property again. Moreover,
because of this complexity, many schemes that do have such desirable properties
have turned out to be broken [53]. This is, by any means, much worse than using
a scheme that is “only” selectively secure.

In addition, the broader audience seems to have confidence in selectively
secure schemes, and considers these to be practical. In particular, selectively se-
cure schemes are typically at least a factor 2 more efficient than similar schemes
in the full-security setting [4,55] (assuming they are instantiated in the same
pairing-friendly groups). Because their descriptions do not require the use of
complex structures such as dual system groups [28,29], they are also simpler
and more intuitive. By extension, they are easier to prototype and analyze for
any given practical setting [47]. Presumably, these are reasons why many pub-
lic cryptographic libraries contain many implementations of selectively secure
schemes [5,60,46,35], or why half of the schemes considered by the European
Telecommunications Standards Institute [34] are selectively secure. All in all,
even if the eventual goal is to implement a fully secure scheme, simplifying the
design of selectively secure schemes is valuable.

1.1 Our contribution

We propose a new generic compiler. This compiler uses the symbolic property to
generically prove selective security of the resulting ABE scheme. With this new
compiler, we are able to achieve properties that cannot be generically supported
with existing full-security compilers (yet), i.e.,

– multi-authority extensions;

– full-domain hashes;

– flexible instantiations in the pairing-friendly groups.

To achieve these properties, we generalize the definitions of pair encodings and
the symbolic property, and introduce mappings that explicitly address the use
of hashes and the instantiations of the encodings in the pairing-friendly groups.

New schemes. As a result of our compiler, we also obtain new schemes. In
particular, we give new constructions for

– decentralized large-universe multi-authority ciphertext-policy ABE (CP-ABE)
for monotone span programs [41,49];

– decentralized non-monotone large-universe multi-authority CP-ABE;

– single-authority CP-ABE and KP-ABE with attribute-wise key generation—
i.e., one single user can request keys for different attributes at different points
in time [55]—which is the first single-authority scheme that explicitly enjoys
this property;

– decentralized identity-based broadcast encryption [13].

4 M. Venema

Relation to fully secure schemes in the generic group model. Our
compiler also strenghtens the connection between selectively and fully secure
schemes. Previously, Ambrona et al. [8] showed that any scheme that is not
trivially broken is provably fully secure in the generic group model (GGM)
[51,21,23]. The class of encoding schemes that they consider overlaps with that of
the Agrawal-Chase compiler [4], which is also covered by our compiler. For this
class of schemes, we obtain the following result: the compiled scheme is provably
fully secure in the GGM (with some non-trivial security loss), and it is provably
selectively secure in the standard model under a q-type assumption (which is a
type of assumption that becomes stronger as q grows). Possibly, this insight can
help the design of fully secure multi-authority schemes in future work.

Supporting practical extensions with full-security compilers. We briefly
discuss the difficulty of supporting the aforementioned practical extensions in ex-
isting full-security compilers. In principle, it seems that most full-security compil-
ers can readily support any instantiation in the pairing-friendly groups, see e.g.,
the discussion in [3, §1.1]. This incurs a significant performance penalty: com-
pared to selectively secure schemes, the resulting fully secure schemes are a factor
3 less efficient. However, for full-domain hashes and multi-authority extensions,
multiple difficulties need to be overcome. For a discussion on supporting full-
domain hashes, we also refer to the discussion in [3, §1.1]. Roughly, the problem
is that the structure of the underlying groups of the compiler is considerably
more complex than in the selective-security setting. Public-key variables can
therefore not simply be instantiated with a full-domain hash like in selectively
secure schemes (see e.g., [37]). Lastly, we argue that, with the current tools, we
cannot effectively support multi-authority extensions in the full-security setting.
First, the structure of most existing multi-authority schemes [41,49,30] is not
captured by the pair encodings framework. Second, the proof techniques used
for such schemes [41] are more advanced, because the attacker has more power.
Hence, the pair encodings framework needs to be extended with respect to these
two aspects, which both may require a significantly more intricate approach. In
this work, we address the first aspect.

Full security through complexity leveraging or random oracles. Once
we have a selectively secure scheme, we can use complexity leveraging [20,26] or
random oracles [18,22] to achieve full security. This may yield a more efficient
instantiation of the scheme than a scheme built using dual system encryption
techniques. For example, the identity-based encryption scheme by Boneh and
Boyen [20] is a factor 2-3 more efficient in the random oracle model than its
most efficient fully secure counterpart using dual system encryption techniques
[27]. Alternatively, if we use complexity leveraging [26], we need to implement
the scheme with pairing-friendly groups that provide a higher level of security.
Although this also influences the efficiency, it may be more efficient than using
dual system encryption techniques.

A Practical Compiler for ABE 5

1.2 Background

Ciphertext-policy ABE. Although our generic compiler is general in the
sense that it applies to any ABE, our new constructions are ciphertext-policy
ABE schemes [19]. In CP-ABE, the messages are encrypted under access policies
(often represented as Boolean formulas over attributes). Subsequently, any user
with an authorized secret key can decrypt the message. A key is authorized, if the
associated set of attributes satisfies the policy. Owing to this functionality, CP-
ABE has proven to be an attractive primitive for practice [19,33,39,55]. However,
CP-ABE often employs a single trusted third party called “the key generation
authority” that issues the secret keys, which needs to be fully trusted.

Multi-authority ABE. Multi-authority ABE, as first proposed by Chase [24],
employs various authorities to mitigate the trust issues in regular ABE. An
especially interesting subtype of multi-authority ABE is called “decentralized”
ABE [41]. In decentralized ABE4, the authorities can act fully autonomously,
without requiring interaction between one another to act securely or correctly.
Although this is a very desirable feature, the number of existing schemes that
securely provide this property is limited [41,44,49,30,10]. Of these schemes, few
satisfy practical properties such as large-universeness and unboundedness5. In
fact, only the scheme by Rouselakis and Waters (RW15) [49] satisfies both.

Non-monotone ABE. Another desirable feature in ABE is non-monotonicity,
i.e., the support for negations in the policies. Although this property was quite
difficult to achieve efficiently, the pair encodings framework can support these
generically by applying various transformations [13,15,7]. In this work, we pro-
vide both single-authority and decentralized schemes that support the type of
negations as first introduced by Okamoto and Takashima (OT) [43], which we
call “OT-type negations”. In such negations, the label of the attribute also plays
a role. In particular, an attribute set satisfies a negation, e.g., “name: NOT Al-
ice”, only if it has an attribute with the same label, and the attribute value is
not equal to the value of the negated attribute, e.g., “name: Bob”. Currently, the
only decentralized scheme that is also non-monotone is the scheme by Okamoto
and Takashima [44,45].

Generalizing pair encoding schemes. We generalize the definitions of pair
encoding schemes and the symbolic property. One of the reasons why multi-
authority ABE cannot be captured in the pair encodings framework is that
existing multi-authority schemes do not (fully) match the structure of pair en-
codings. Roughly, pair encoding schemes consider schemes of the form:

SK = hk(α,r,b), CT = (M · e(g, h)αs, gc(s,b)),
4 This subtype only exists for CP-ABE, and not for key-policy ABE (Appendix A.2).
5 Unbounded ABE places no bounds on the attribute sets associated with the keys,
or on the policies associated with the ciphertexts. This includes the number of times
that one attribute occurs.

6 M. Venema

where g ∈ G, h ∈ H are two generators, e is a pairing e : G × H → GT and
k and c denote vectors over the variables α, r,b and s,b, such that each key
component is of the form hki and each ciphertext component is of the form gci .
In contrast, most multi-authority schemes include multiple elements in GT in
the ciphertexts, and mask the message M with e.g., e(g, h)s̃. To capture such
schemes, we generalize the definition of pair encodings.

Generalizing the symbolic property. The symbolic property considers the
existence of some vectors and matrices such that, if all variables α, r, s and b in
the polynomials of k and c are substituted by these vectors and matrices, the
polynomials evaluate to 0. The symbolic property also needs to be generalized
to match our generalized definition of pair encodings, which is complicated for
two reasons. First, because the masking value may be different, we need to
be able to find a more general way to simulate it in the security proofs than
existing compilers currently do. Second, multi-authority ABE security models
allow the corruption of authorities, which requires the challenger to share e.g.,
the master key α, with the attacker. In proofs based on the symbolic property, the
master key cannot be simulated explicitly, and is canceled by other values instead
to simulate the secret keys. To overcome these difficulties, we use program-
and-cancel strategies for decentralized ABE [49,30] as inspiration. However, like
[49,30], we prove decentralized schemes secure in the static-security model. This
model does not only require the attacker to commit to the challenge policy, but
also to the attribute sets that they are going to query.

2 Preliminaries

2.1 Notation

We use λ to denote the security parameter. A negligible function parametrized
by λ is denoted as negl(λ). If an element x is chosen uniformly at random from
a finite set S, then we denote this as x ∈R S. If an element x is produced by
running algorithm Alg, then we denote this as x ← Alg. We use Zp = {x ∈
Z | 0 ≤ x < p} for the set of integers modulo p. For integers a < b, we denote
[a, b] = {a, a+1, ..., b−1, b}, [b] = [1, b] and [b] = [0, b]. We use boldfaced variables
A and v for matrices and vectors, respectively, where (A)i,j denotes the entry
of A in the i-th row and j-th column, and (v)i denotes the i-th entry of v.
We denote a : A to substitute variable a by a matrix or vector A. We define
1d1×d2
i,j ∈ Zd1×d2

p as the matrix with 1 in the i-th row and j-th column, and 0

everywhere else, and similarly 1d1
i and 1

d2

i as the row and column vectors with
1 in the i-th entry and 0 everywhere else. If some algorithm yields no output or
outputs an error message, then we use ⊥ to indicate this.

2.2 Access structures

We represent access policies A by linear secret sharing scheme (LSSS) matrices,
which support monotone span programs [17,38].

A Practical Compiler for ABE 7

Definition 1 (Access structures represented by LSSS [38]). An access
structure can be represented as a pair A = (A, ρ) such that A ∈ Zn1×n2

p is
an LSSS matrix, where n1, n2 ∈ N, and ρ is a function that maps its rows to
attributes in the universe. Then, for some vector with randomly generated entries
v = (s, v2, ..., vn2

) ∈ Zn2
p , the i-th share of secret s generated by this matrix is

λi = Aiv
⊺, where Ai denotes the i-th row of A. In particular, if S satisfies A,

then there exist a set of rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp

for all i ∈ Υ such that
∑

i∈Υ εiAi = (1, 0, ..., 0), and by extension
∑

i∈Υ εiλi = s,
holds. If S does not satisfy A, there exists w = (1, w2, ..., wn2) ∈ Zn2

p such that
Aiw

⊺ = 0 for all i ∈ Υ [17].

2.3 Pairings (or bilinear maps)

We define a pairing to be an efficiently computable map e on three groups G,H
and GT of prime order p, so that e : G×H→ GT , with generators g ∈ G, h ∈ H is
such that (i) for all a, b ∈ Zp, it holds that e(g

a, hb) = e(g, h)ab (bilinearity), and
(ii) for ga ̸= 1G, h

b ̸= 1H, it holds that e(ga, hb) ̸= 1GT
, where 1G′ denotes the

unique identity element of the associated group G′ (non-degeneracy). We refer
to G and H as the two source groups, and GT as the target group. In practical
instantiations, type-III pairings are used, meaning that no efficiently computable
isomorphism exists between G and H [36]. For such pairings, the efficiency of G
and H often differs by several factors [36,47]. Furthermore, we use the implicit
representation used for group elements in [32]. Suppose g′ ∈ G′ is the generator
of some group G′ ∈ {G,H,GT }, then we use [x]G′ to denote the element (g′)x.

2.4 Attribute-based encryption

Predicate family. A predicate family [11] is a set P = {Pκ}κ∈Nc for some
constant c, where Pκ : Xκ×Yκ → {0, 1}. For κ, it holds that κ = (p,par), where
p is a natural number and par denote the rest of the entries.

Definition 2 (Attribute-based encryption (ABE) [4]). An attribute-based
encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four algorithms:

– Setup(λ, par) → (MPK,MSK): On input the security parameter λ and pa-
rameters par, this probabilistic algorithm generates the domain parameters,
the master public key MPK and the master secret key MSK. In addition, κ
is set to κ = (p,par), where p denotes a natural number.

– KeyGen(MSK, y) → SKy: On input the master secret key MSK and some
y ∈ Yκ, this probabilistic algorithm generates a secret key SKy.

– Encrypt(MPK, x,M) → CTx: On input the master public key MPK, some
x ∈ Xκ and message M , this probabilistic algorithm generates a ciphertext
CTx.

– Decrypt(MPK,SKy,CTx)→ M : On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns M .
Otherwise, it returns an error message ⊥.

8 M. Venema

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK,MSK)← Setup(1λ);

Decrypt(MPK,KeyGen(MSK, y)),Encrypt(MPK, x,M)) ̸= M] ≤ negl(λ).

Ciphertext-policy ABE. A specific instance of ABE is ciphertext-policy ABE.
In this type of ABE, the key predicate y is a set of attributes S over some universe
of attributes U , and the ciphertext predicate x is an access policy A = (A, ρ),
in this work represented as LSSS matrices (Definition 1).

Multi-authority ABE. In the multi-authority setting, the Setup is split in two
algorithms: the GlobalSetup and the AuthoritySetup. The latter is run by each
authority in the system. Furthermore, the security model allows the attacker to
corrupt authorities. In Appendix A.1, the full definitions can be found.

2.5 Full security against chosen-plaintext attacks

Definition 3 (Full security against chosen-plaintext attacks (CPA) [4]).
We define the security game IND-CPA(λ,par) between challenger and attacker
as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y
in the first key query phase, we have Pκ(x

∗, y) = 0, and generates two mes-
sages M0 and M1 of equal length inMλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CTx∗ to
the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
Pκ(x

∗, y) = 0.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ

before the Setup phase. In the co-selective security model, the attacker commits
to all y ∈ Yκ before the Setup phase. In the static security model, the attacker
commits to x∗ ∈ Xκ and all y ∈ Yκ before the Setup phase.

A Practical Compiler for ABE 9

2.6 The uber-assumption family

The security of many schemes, including those instantiated in the Agrawal-Chase
framework [4], rely on q-type assumptions, which are complexity assumptions
parametrized in one or more parameter. Many q-type assumptions can be cap-
tured in the uber-assumption framework by Boneh, Boyen and Goh [21,23]. In
particular, they prove generic lower bounds on the complexity of any such q-type
assumptions in the generic group model [51].

Definition 4 (The uber-assumption family [21,23]). Let e : G×H → GT

be a pairing over three groups G,H,GT of prime order p, and let g ∈ G, h ∈ H
be two generators. Let nG, nH, nGT

, nc ∈ N be four positive integers. Suppose
that, for all G′ ∈ {G,H,GT }, we have polynomials PG′ ∈ Zp[X1, ..., Xnc

]nG′ . Let
PT ∈ Zp[X1, ..., Xnc

] another polynomial. The challenger generates x1, ..., xnc ∈R
Zp, and outputs

gPG(x1,...,xnc), hPH(x1,...,xnc), e(g, h)PGT
(x1,...,xnc).

The challenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0 and T =
e(g, h)PT(x1,...,xnc) if β = 1. The attacker outputs a guess β′ for β. The advantage
of the attacker is defined as Adv(nG,nH,nGT

,nc)-DDH = |Pr[β′ = β] − 1
2 |. The

decisional (nG, nH, nGT
, nc)-Diffie-Hellman ((nG, nH, nGT

, nc)-DDH) assumption
holds if all polynomial-time attackers have at most a negligible advantage, i.e.,

Adv(nG,nH,nGT
,nc)-DDH ≤ negl(λ).

Remark 1. We formulate the definition of the uber-assumption family in the
type-III setting, i.e., in which the pairing is asymmetric. One can easily adapt
the definition to cover symmetric pairings (where G = H) by setting PG = PH.

Boneh, Boyen and Goh show that, if PT is independent of PGT
and all

products of the polynomials in PG with the polynomials in PH, the decisional
(nG, nH, nGT

, nc)-Diffie-Hellman ((nG, nH, nGT
, nc)-DDH) assumption holds in

the generic group model. We state Corollary 1 [23, §5.2] below.

Corollary 1 (Asymptotic lower bound for uber assumptions [23]). Let
p, PG′ and PT be as in Definition 4. Suppose PT is independent of PGT

and
all products of the polynomials in PG with the polynomials in PH. Let degG′ be
the maximum degree of the polynomials in PG′ , let degT be the degree of PT ,
and set deg = max({degGT

,degT ,degG +degH}). Then, any attacker A that
can solve the decisional (nG, nH, nGT

, nc)-Diffie-Hellman problem in the generic
group model must take time at least O(

√
p/deg − nc).

3 Pair encoding schemes

To support the aforementioned practical extensions, we extend the definitions
of pair encoding schemes and their associated security definition: the symbolic

10 M. Venema

property. Intuitively, the most fine-grained definition [4] of pair encoding schemes
(see Definition 5) considers schemes of the form

SK = (hr, hk(α,r,̂r,b,y)), CT = (M · e(g, h)αs, gs = g(s,s1,...,), gc(s,̂s,b,x)),

where r, s, r̂, ŝ,k, c are vectors. Specifically, α is called the master-key variable,
r and s are called the non-lone key and ciphertext variables, respectively, r̂ and
ŝ are called the lone key and ciphertext variables, respectively, and k and c are
the key and ciphertext polynomials, respectively. In particular, we distinguish
between lone and non-lone variables to separate variables that occur in combi-
nation with a common variable (i.e., which are “non-lone”) and those do not
(i.e., which are “lone”). Roughly, the symbolic property considers the existence
of matrices (for variables b) and vectors (for the other variables) such that sub-
stituting the variables in the key and ciphertext polynomials with these matrices
and vectors yields all-zero vectors upon evaluation (see Definition 6).

In this section, we first give the prior formulation of pair encoding schemes
and the symbolic property, and then show how they can be generalized.

3.1 Prior formulation of pair encoding schemes

Pair encoding schemes. Throughout the years, the notion of pair encoding
schemes has been defined and refined [11,12,2,4]. We provide the most refined
definition below.

Definition 5 (Pair encoding schemes (PES) [4]). A pair encoding scheme
for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p,par), where
par specifies some parameters, is given by four deterministic polynomial-time
algorithms as described below.

– Param(par)→ (n,b): On input par, the algorithm outputs n ∈ N that spec-
ifies the number of common variables, which are denoted as b = (b1, ..., bn).

– EncKey(y, p)→ (m1,m2,k(r, r̂,b, y)): On input p ∈ N and y ∈ Yκ, this algo-
rithm outputs a vector of polynomials k = (k1, ..., km3

), with m3 ∈ N, defined
over non-lone variables r = (r1, ..., rm1

) and lone variables r̂ = (r̂1, ..., r̂m2
).

Specifically, the polynomial ki is expressed as

ki = δiα+
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncCt(x, p) → (w1, w2, c(s, ŝ,b, x)): On input p ∈ N and x ∈ Xκ, this

algorithm outputs a vector of polynomials c = (c1, ..., cw3
), with w3 ∈ N,

defined over non-lone variables s = (s, s1, s2, ..., sw1
) and lone variables

ŝ = (ŝ1, ..., ŝw2
). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.

A Practical Compiler for ABE 11

– Pair(x, y, p) → (E,E): On input p, x, and y, this algorithm outputs two
matrices E and E of sizes (w1 + 1)×m3 and w3 ×m1, respectively.

A PES is correct, if for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that sEk⊺ + cEr⊺ = αs.

Symbolic security property. The symbolic security property is a powerful
security notion for pair encoding schemes that is purely algebraic. Roughly, the
notions of selective and co-selective symbolic security are based on the classical
security notions of selective and co-selective security for ABE (Definition 3).
Recall that, in these models, the attacker commits to the challenge access policy
(resp. set of attributes). This is used in “program-and-cancel” proofs [57,48],
in which the challenger embeds the policy (resp. set) in the public keys. In
the simulation of the secret keys and challenge ciphertext, the components are
programmed in a specific way, using that the set does not satisfy the policy
(resp. policy is not satisfied by the set). Typically, the components that cannot
be programmed are canceled by other non-programmable components. In the
AC17 framework, this “programming” is replaced by “substitution”, and the
“canceling” is replaced by “evaluating to 0”.

Definition 6 (Symbolic security property (Sym-Prop) [4]). A pair en-
coding scheme Γ = (Param, EncKey, EncCt, Pair) for a predicate family
Pκ : Xκ × Yκ → {0, 1} satisfies the (d1, d2)-selective symbolic property for pos-
itive integers d1 and d2 if there exist deterministic polynomial-time algorithms
EncB, EncS, and EncR such that for all κ = (p,par), x ∈ Xκ and y ∈ Yκ with
Pκ(x, y) = 0, we have that

– EncB(x)→ B1, ...,Bn ∈ Zd1×d2
p ;

– EncR(x, y)→ r1, ..., rm1
∈ Zd2

p ,a, r̂1, ..., r̂m2
∈ Zd1

p ;

– EncS(x)→ s0, ..., sw1
∈ Zd1

p , ŝ1, ..., ŝw2
∈ Zd2

p ;

such that ⟨s0,a⟩ ≠ 0, and if we substitute

ŝi′ : ŝi′ sibj : siBj α : a⊺ r̂k′ : r̂⊺k′ rkbj : Bjr
⊺
k,

for i ∈ [w1], i
′ ∈ [w2], j ∈ [n], k ∈ [m1], k

′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic
security property if there exist EncB,EncR,EncS that satisfy the above properties
but where EncB and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for d′1, d

′′
1 ≤ d1 and d′2, d

′′
2 ≤ d2.

3.2 How the symbolic property and selective security are related

As mentioned, the selective symbolic property and selective security are strongly
related in their approaches. More specifically, the evaluation of the polynomials

12 M. Venema

ki and ci to 0 after substituting the variables by the vectors and matrices is
closely related to the “canceling” part of the “program-and-cancel” strategy
used in selective-security proofs. The “programming” part of this proof strategy
is related to the complexity assumption that is used in the reduction. Concretely,
various input parameters to this complexity assumption are used to program
the key and ciphertext components associated with the common and non-lone
variables. They are programmed in such a way that the e(g, h)αs part of the
scheme can be programmed by the “testing value” of the complexity assumption.
For example, consider the keys and ciphertexts of the Boneh-Boyen [20] scheme:

SK = (hα+r(b0+yb1), hr), CT = (M · e(g, h)αs, gs(b0+xb1), gs),

where x and y are identities, for which the associated PES is

k(α, r, (b0, b1)) = α+ r(b0 + yb1), c(s, (b0, b1)) = s(b0 + xb1).

It satisfies the selective symbolic property, because for x ̸= y, we can set

a = 1, r =
1

x− y
, b0 = −x, b1 = 1, s = 1.

Analogously, in the selective security proof, we can make a reduction to the deci-
sional bilinear Diffie-Hellman (DBDH) assumption, i.e., given gx, hx, gy, hy, gz, hz,
determine whether some testing value T is equal to e(g, h)xyz or not. We can pro-
gram the master public key, and the secret key and ciphertext components asso-
ciated with the non-lone variables in a similar way as in the symbolic property
as follows:

e(g, h)α = e(g, h)ᾱ · e(g, h)axz, gb0 = gb̄0 · gb0z, gb1 = gb̄1 · gb1z,

hr = hr̄ · hrx, gs = gs̄ · gsy.

Then, the secret key and ciphertext components associated with the polynomials
can be programmed by using the inputs to the DBDH assumption and using
that the polynomials evaluate to 0 for those inputs that are not part of the
assumption. For example, the key component is simulated as follows:

hα+r(b0+yb1) = hᾱ+axz+(r̄+rx)(b̄0+b0z+y(b̄1+b1z))

= hᾱ+r̄(b̄0+b0z+y(b̄1+b1z))+rx(b̄0+yb̄1)︸ ︷︷ ︸
∆1

·haxz+rx(b0z+yb1z) = ∆1 · h(a+r(b0+yb1))xz︸ ︷︷ ︸
=1

,

such that ∆1 can be programmed from ᾱ, r̄, b̄0, b̄1 and the inputs to the DBDH
assumption, and the remainder associated with hxz (which cannot be part of
the assumption) cancels because the polynomial α + r(b0 + yb1) evaluates to 0
when α, r, b0, b1 are substituted by a, r,b0,b1. Lastly, the blinding value is set
to e(g, h)αs = T · e(g, h)ᾱs · e(g, h)αs̄ · e(g, h)ᾱs̄.

For our compiler, we generalize this approach. Roughly, we associate the
public key variables with (parallel instances of) z, all lone key variables with

A Practical Compiler for ABE 13

(parallel instances of) xz, and all non-lone key variables with (parallel instances
of) x, so that the key polynomials are associated with (parallel instances of) xz.
Similarly, we associate the lone ciphertext variables with (parallel instances of)
yz and the non-lone ciphertext variables with (parallel instances of) y, so that
the ciphertext polynomials are associated with (parallel instances of) yz. Finally,
the blinding value should be associated with xyz, so in the case that this is αs
(as in the definition of PES), we require that α and s only use xz and y (and
no parallel instances) of the inputs to the complexity assumption. Note that
these parallel instances are related to the choices of d1 and d2, e.g., we require
d1 parallel instances of y to embed each entry of the substitution vector for a
non-lone ciphertext variable. We show in Section 4 how to create such parallel
instances in such a way that the assumption holds generically, while the parts
of the keys and ciphertexts that do not cancel can be programmed as required.

3.3 Generalizing the definition of pair encoding schemes

In order to cover a larger class of schemes, we also give a more general definition
of pair encoding schemes. Notably, decentralized schemes such as [41,49] cannot
be covered by Definition 5. Consequently, we cannot benefit from the generic
security as well as the generic conversion techniques that the pair encodings
framework provides. Regardless, the proof techniques in [49] are strikingly similar
to the proof techniques in works in the single-authority setting [57,48]. We use
this observation to define our more general definitions of pair encoding schemes
and the symbolic property. Concretely, for the definition of pair encodings, we
extend the master key α and the associated encodings. We also explicitly include
ciphertext polynomials that will be instantiated in the target group, and write
the blinding value used to mask M in the scheme as a polynomial.

Definition 7 (Generalized pair encoding schemes (GPES)). A general-
ized pair encoding scheme for a predicate family Pκ : Xκ×Yκ → {0, 1}, indexed by
κ = (p,par), where par specifies some parameters, is given by four deterministic
polynomial-time algorithms as described below.

– Param(par) → (nα, nb,α,b): On input par, the algorithm outputs nα, nb ∈
N that specify the number of master key variables and common variables,
respectively, which are denoted as α = (α1, ..., αnα

) and b = (b1, ..., bnb
),

respectively.
– EncKey(y, p) → (m1,m2,k(r, r̂,α,b, y)): On input p ∈ N and y ∈ Yκ, this

algorithm outputs a vector of polynomials k = (k1, ..., km3) defined over non-
lone variables r = (r1, ..., rm1

) and lone variables r̂ = (r̂1, ..., r̂m2
). Specifi-

cally, the polynomial ki is expressed as

ki =
∑

j∈[nα]

δi,jαj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1],k∈[nb]

δi,j,krjbk,

for all i ∈ [m3], where δi,j , δ̂i,j , δi,j,k ∈ Zp.

14 M. Venema

– EncCt(x, p) → (w1, w2, w
′
2, cM , c(s, ŝ,b, x), c′(s, s̃,α, x)): On input p ∈ N

and x ∈ Xκ, this algorithm outputs a blinding variable cM and two vectors
of polynomials c = (c1, ..., cw3) and c′ = (c′1, ..., c

′
w4

) defined over non-lone
variables s = (s, s1, s2, ..., sw1), lone variables ŝ = (ŝ1, ..., ŝw2) and special
lone variables s̃ = (s̃1, ..., s̃w′

2
). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[nb]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp, the polynomial c′i is expressed as

c′i =
∑

j∈[nα],j′∈[w1]

η′i,j,j′αjsj′ +
∑

j∈[w′
2]

η̂′i,j s̃j ,

for all i ∈ [w4], where η′i,j,j′ , η̂
′
i,j ∈ Zp, and the variable cM is expressed as

cM =
∑

j∈[w′
2]

ζj s̃j +
∑

j∈[nα],j′∈[w1]

ζj,j′αjsj′ ,

where ζj , ζj,j′ ∈ Zp.
– Pair(x, y, p) → (e,E,E): On input p, x, and y, this algorithm outputs a

vector e ∈ Zw4
p and two matrices E and E of sizes (w1 + 1) × m3 and

w3 ×m1, respectively.

A PES is correct for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that ec′⊺ + sEk⊺ + cEr⊺ = cM .

3.4 Special symbolic property for GPES

To generalize the symbolic property, we also need to find proper substitutions
for the new master-key variables and the ciphertext encodings c′. In addition,
we need to be able to account for static corruption of certain variables.

For the master-key variables, we first observe that these occur as lone vari-
ables in the key encodings and as common variables in the ciphertext encodings
c′, meaning that we only have to be able to multiply them with non-lone cipher-
text variables, and it is thus sufficient to substitute with vectors (rather than
matrices, like the common variables). Because the non-lone ciphertext variables
are substituted by vectors of length d1, we therefore also substitute the master-
key variables by vectors of length d1, so that their inner product yields an integer.
In addition to products of master-key variables and non-lone variables, the ci-
phertext encodings consist of special lone variables, which therefore also need to
be substituted by integers.

To ensure that we can replace e(g, h)cM with the testing value T , we addi-
tionally require that all master-key variables and non-lone ciphertext variables
that occur in cM are equal to 1d1

1 . In this way, the products of the simulated
components do not yield any parallel instances of xyz.

A Practical Compiler for ABE 15

Finally, to support corruption, we need to ensure that none of the corrupted
secret values (such as those related to the lone key variables) contains any input
parameters to the complexity assumption. We ensure this by setting their cor-
responding substitution vectors/matrices to all-zero. Putting this together, this
yields the following definition.

Definition 8 (Special symbolic property for GPES (Spec-Sym-Prop-G)).
A GPES Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×
Yκ → {0, 1} satisfies the (d1, d2)-selective symbolic property for positive integers
d1 and d2 if there exist deterministic polynomial-time algorithms EncB, EncS,
and EncR such that for all κ = (p, par), and x ∈ Xκ and y ∈ Yκ with Pκ(x, y) =
0, and optionally, there exist a ⊊ [nα], b ⊊ [nb] (which we call corruptable
variables), such that we have that

– EncB(x, a, b)→ a1, ...,anα ∈ Zd1
p ,B1, ...,Bnb

∈ Zd1×d2
p ;

– EncR(x, y)→ r1, ..., rm1 ∈ Zd2
p , r̂1, ..., r̂m2 ∈ Zd1

p ;

– EncS(x)→ s0, ..., sw1 ∈ Zd1
p , ŝ1, ..., ŝw2 ∈ Zd2

p , s̃1, ..., s̃w′
2
∈ Zp;

such that, if we substitute

ŝi′ : ŝi′ s̃i′′ : s̃i′′ sibj : siBj αl : a
⊺
l r̂k′ : r̂⊺k′ rkbj : Bjr

⊺
k,

for i ∈ [w1], i
′ ∈ [w2], i

′′ ∈ [w′
2], j ∈ [nb], k ∈ [m1], k

′ ∈ [m2], l ∈ [nα] in all the
polynomials of k, c and c′ (output by EncKey and EncCt, respectively), they
evaluate to 0. Furthermore,

– for all j ∈ [nα] \ a, j′ ∈ [w1] with ζj,j′ ̸= 0, we have that aj = sj′ = 1d1
1 ;

– for j ∈ [w′
2] with ζj ̸= 0, we have that s̃j = 1;

– for j ∈ a, we have aj = 0d1 ;
– and for j ∈ b, we have that Bj = 0d1×d2 .

Similarly, a GPES satisfies the special (d1, d2)-co-selective symbolic security
property if there exist EncB,EncR,EncS that satisfy the above properties but
where EncB and EncR only take y as input, and EncS takes x and y as input.

A GPES satisfies the special (d1, d2)-symbolic property if it satisfies the (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for d′1, d

′′
1 ≤ d1 and d′2, d

′′
2 ≤ d2.

Remark 2. PESs can be captured under our definition of generalized PES. That
is, we can simply set nα = 1, w2, w4 = 0 and CM = αs. Furthermore, most
existing PESs (e.g., [4,13]) satisfy the special (d1, d2)-selective symbolic property,
because they satisfy the symbolic property, and a = s = 1d1

1 . Therefore, these
can be securely instantiated in the selective-security setting with our compiler.

3.5 Distribution of the encodings

We also give an explicit definition for the distribution of the encodings over the
two source groups G and H, and the target group GT when they are instantiated
in our new compiler. Such a distribution should ensure that the correctness of

16 M. Venema

the GPES is preserved, such that the correctness of the ABE scheme is also
guaranteed. In particular, for the correctness of the decryption algorithm, we
require that each pair of key and ciphertext encodings that needs to be paired
has one encoding in G and one in H. Furthermore, to ensure that encryption
can be performed correctly, the master public keys required in computing a
ciphertext encoding element need to be in the same group.

Definition 9 (Distribution of the encodings over G, H and GT). Let
Γ = (Param, EncKey, EncCt, Pair) be a GPES for a predicate family Pκ : Xκ×
Yκ → {0, 1} and let G, H and GT be three groups. Let E denote the set of possible
encodings and non-lone variables that can be sampled with Param, EncKey and
EncCt, and let E ′ ⊆ E denote its subset containing the master key variables
α and ciphertext encodings c′. Then, we define D : E → {G,H,GT } to be the
distribution of Γ over G, H and GT such that the correctness of the encoding is
preserved. This is the case, if for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such
that Pκ(x, y) = 1, it holds that

– D(E ′) = {GT }, and D(E \ E ′) = {G,H};
– for all i ∈ [m3], j ∈ [w1], if D(ki) = D(sj), then Ej,i = 0;

– for all i ∈ [w3], j ∈ [m1], if D(ci) = D(rj), then Ei,j = 0;

– for all k ∈ [nb] for which there exist some i ∈ [w3], j ∈ [w1] with ηi,j,k ̸= 0,
we have D(bk) = D(ci).

3.6 Full-domain hashes and random oracles

Sometimes, some of the variables are generated implicitly by a full-domain hash
(FDH). For example, this is done to support large universes (see e.g., [57,3]) or
to link the keys together in decentralized schemes (see e.g., [41,49]). Instead of
generating e.g., gb in the Setup and including it in the master public key, it is
generated by the hash. In this way, the master public key only needs to contain
a description of the hash, and then, any parameter generated by the hash can be
generated once it is needed. Our compiler and proof can be easily support the use
of full-domain hashes. In that case, the security proof requires the hashes to be
modeled as random oracles. In particular, the random oracles answer the queries
exactly in the way that it does in a proof where the variable is not generated by
an FDH. To capture such random oracle queries in the security proof, we also
define a function F that maps each encoding variable to a natural number.

Definition 10 (FDH-generated encoding variables). Let Γ = (Param,
EncKey, EncCt, Pair) be a GPES for a predicate family Pκ : Xκ ×Yκ → {0, 1}.
Let E denote the set of possible encodings and non-lone variables that can be
sampled with Param, EncKey and EncCt. Then, we define F : E → N to be the
mapping that assigns whether the encoding variables are generated by an FDH
or not. If not, then the encoding variable is mapped to 0. Otherwise, it is mapped
to any integer larger than 0. When the FDH is instantiated, it expects the index
of the encoding variable as input, e.g., if F(batt) = 1, then H1 expects att as
input in the scheme, and outputs [batt]D(batt).

A Practical Compiler for ABE 17

Furthermore, to ensure correctness of the scheme, we require the distribution
over the two source groups to be such that, for any common variable bk that
is provided implicitly by a hash, and each associated encoding ki and ci, it
holds that they are placed in the same group. Similarly, we can define such
a restriction for the other variables. Furthermore, if a non-lone variable and a
common variable occur together in a product in one of the polynomials, then it
cannot be the case that both are generated by an FDH. (It is possible to generate
at most one with an FDH, by computing, e.g., H(att)r or H(GID)batt , but not
both.) We formalize these restrictions as follows.

Definition 11 (Correctness of variables generated by an FDH). Let D
be as in Definition 9. Then, for any common variable bk with F > 0 (i.e.,
generated implicitly by the full-domain hash), it holds that:

– For all i ∈ [m3], if D(ki) ̸= D(bk), then δi,j,k = 0 for all j ∈ [m1];

– For all i ∈ [w3], if D(ci) ̸= D(bk), then ηi,j,k = 0 for all j ∈ [w1].

For any non-lone variable rj or sj with F(rj),F(sj) > 0, it holds that:

– For all i ∈ [m3], if D(ki) ̸= D(rj), then δi,j,k = 0 for all k ∈ [n];
– For all i ∈ [w3], if D(ci) ̸= D(sj), then ηi,j,k = 0 for all k ∈ [n];
– For all i ∈ [m3], k ∈ [n], if δi,j,k ̸= 0, then F(bk) = 0;
– For all i ∈ [w3], k ∈ [n], if ηi,j,k ̸= 0, then F(bk) = 0.

Furthermore, for each i ∈ N with i > 0, we require that all the encodings that
are mapped to it, i.e., F−1(i), are either all common variables, or all non-lone
key variables, or all non-lone ciphertext variables.

3.7 Our complexity assumption

The last ingredient to our compiler is the complexity assumption. The assump-
tion that we use to prove security generically is loosely based on the q-type
assumptions used in works that prove selective security, e.g., [48, §A]. Roughly,
this assumption creates several parallel instances of an assumption similar to the
DBDH assumption, augmented with some additional inputs.

Definition 12 (The (d1, d2)-parallel DBDH assumption). Let λ be the se-
curity parameter. Let e : G×H→ GT be a pairing over three groups G,H,GT of
prime order p, and let g ∈ G, h ∈ H be two generators. The challenger generates
x, y, z, ci, c

′
j ∈R Zp for all i ∈ [2, d1], j ∈ [2, d2], sets c1 = c′1 = 1 and outputs for

all G′ ∈ {G,H}:

[xci]G′ , for all i ∈ [d1]
[
xzci
ci′ c

′
j

]
G′

, for all i, i′ ∈ [d1], i ̸= i′, j ∈ [d2][
yc′j

]
G′ , for all j ∈ [d2]

[
yzc′j
cic′j′

]
G′

, for all i ∈ [d1], j, j
′ ∈ [d2], j ̸= j′[

z
cic′j

]
G′

, for all i ∈ [d1], j ∈ [d2].

18 M. Venema

By setting c1 = c′1 = 1, we also have that [x]G′ , [y]G′ , [z]G′ are included in these
terms. The challenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0
and T = e(g, h)xyz if β = 1. The attacker outputs a guess β′ for β. The advantage
of the attacker is defined as Adv(d1,d2)-pDBDH = |Pr[β′ = β] − 1

2 |. The (d1, d2)-
parallel DBDH assumption ((d1, d2)-pDBDH) holds if all polynomial-time at-
tackers have at most a negligible advantage, i.e., Adv(d1,d2)-pDBDH ≤ negl(λ).

We prove the following lemma in Appendix B.

Lemma 1. The (d1, d2)-parallel DBDH assumption holds in the GGM.

Remark 3. Interestingly, for d1 = d2 = 1, the (d1, d2)-parallel DBDH assumption
is equivalent to the DBDH assumption. An advantage of this is that, if the GPES
is such that the special selective symbolic property holds for d1 = d2 = 1, we
automatically obtain an instantiation whose security relies on DBDH (see, e.g.,
the scheme in Appendix E.2). In contrast, the q-type assumption on which the
Agrawal-Chase compiler relies does not satisfy this property.

4 Our generic compiler

Our new generic compiler instantiates the GPES into the pairing-friendly groups
G,H and GT in the most obvious way. Roughly, the master public key, the secret
keys and the ciphertexts have the following form:

MPK = (e(g, h)α, (g′)b), SK = (hr, hk(r,̂r,α,b,y)),

CT = (M · e(g, h)cM , (g′)c(s,̂s,b,x), e(g, h)c
′(s,̃s,α,x)),

(where g′ indicates that either g′ = g or g′ = h for each entry of the vector in
the exponent). More concretely, we define our generic compiler as follows.

Definition 13 (Our generic compiler). Let Γ = (Param, EncKey, EncCt,
Pair) be a GPES for a predicate family Pκ : Xκ×Yκ → {0, 1}, let e : G×H→ GT

be a pairing over three groups G,H,GT of prime order p, let g ∈ G, h ∈ H be two
generators and let D : E → {G,H} be a distribution of the encodings F the two
source groups G and H, and let F : E → N be the mapping that maps the encoding
variables to natural numbers. For each i ∈ F(E) \ {0}, let Hi : {0, 1}∗ → G′

denote a full-domain hash modeled as a random oracle, where G′ = D(F−1(i))
is the group to which the associated encoding variables are mapped. Then, we
define the ABE scheme for predicate family Pκ as follows:

– Setup(λ, par) → (MPK,MSK): On input the security parameter λ and pa-
rameters par, this algorithm generates (nα, nb,α,b) ← Param(par), sets
MSK = (α, {bi | i ∈ [nb]∧F(bi) = 0}) as the master secret key, and outputs

MPK = (A = {[αi]GT
}i∈[nα], {[bi]D(bi) | i ∈ [nb] ∧ F(bi) = 0})

as the master public key. The global parameters are p, e,G,H,GT , g, h.

A Practical Compiler for ABE 19

– KeyGen(MSK, y) → SKy: On input the master secret key MSK and some
y ∈ Yκ, this algorithm generates (m1,m2,k(r, r̂,α,b, y)) ← EncKey(y, p),
and outputs the secret key SKy as

SKy = (y, {[rj]D(rj) | j ∈ [m1] ∧ F(rj) = 0}, {[ki]D(ki)}i∈[m3])

– Encrypt(MPK, x,M) → CTx: On input the master public key MPK, some
x ∈ Xκ and message M ∈ GT , this algorithm generates (w1, w2, w

′
2, cM ,

c(s, ŝ,b, x), c′(s, s̃,α, x))← EncCt(x, p), and outputs the ciphertext CTx as

CTx = (x,M · e(g, h)cM ,

[s]D(s), {[sj]D(sj) | j ∈ [w1] ∧ F(sj) = 0}, {[ci]D(ci)}i∈[w3], {[c
′
i]GT
}i∈[w4]).

– Decrypt(MPK,SKy,CTx)→ M : On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it first obtains
(E,E)← Pair(x, y, p), sets

P = {(sj , ki,Ej,i) | i ∈ [m3], j ∈ [w1],Ej,i ̸= 0 ∧D(sj) = G}

∪ {(ki, sj ,Ej,i) | i ∈ [m3], j ∈ [w1],Ej,i ̸= 0 ∧D(sj) = H}

∪ {(rj , ci,Ei,j) | i ∈ [w3], j ∈ [m1],Ei,j ̸= 0 ∧D(rj) = G}

∪ {(ci, rj ,Ei,j) | i ∈ [w3], j ∈ [m1],Ei,j ̸= 0 ∧D(rj) = H},

and then retrieves∏
i∈[nα]

[c′i]
ei

GT

∏
(l,r,e)∈P

e([l]G, [r]H)
e = e(g, h)ec

′⊺+sEk⊺+cEr⊺ = e(g, h)cM .

The correctness of the scheme is preserved under the correctness of the GPES
and the preservation-of-correctness property of the distribution (Definition 9).

Theorem 1. If Γ satisfies the special symbolic property (Definition 8), and the
(d1, d2)-parallel DBDH assumption holds in the groups G, H, and GT , then the
ABE scheme in Definition 13 is selectively secure. (If we allow corruption of
variables, the scheme is also secure under static corruption of variables.)

Proof (sketch). The full formal proof can be found in Appendix C. Intuitively,
the security proof generalizes the strategy explained informally in Section 3.2.
Specifically, each part of the key and ciphertext components that cannot be
programmed with the inputs to the (d1, d2)-parallel DBDH are canceled by using
the special symbolic property. The rest can be programmed by using similar—
but possibly parallel instances of—inputs as in the example. Note that the target
T is embedded in the ciphertext in the same way as in Section 3.2.

4.1 The new generic compiler in the multi-authority setting

Although our regular compiler can also prove security of multi-authority schemes,
it does not explicitly consider multiple authorities. To convert the compiler to

20 M. Venema

the multi-authority setting, we need to split the setup in the global setup and
the authority setup, in which a subset of the parameters, associated with some
authority, is generated. Furthermore, the key generation should be fragmented
across authorities, meaning that it should be possible to split the key genera-
tion in independent parts. For this to work properly in practice, any non-lone
key variable that occurs across multiple authorities needs to be generated by an
FDH. By extension, for any such non-lone variables, the substituted vector as
in the (special) symbolic property often depends on the entire y ∈ Yκ, rather
than only the subset yA ⊆ y that is relevant for one authority with identifier
A. In this case, we require the static security model. For the compiler in the
multi-authority setting, we define the following two properties.

Definition 14 (Independent encodings). Let Γ = (Param, EncKey, EncCt,
Pair) be a GPES for a predicate family Pκ : Xκ × Yκ → {0, 1}, and let F be the
FDH-generated encoding assignment mapping (Definition 10). Let A1, ...,Anaut

be naut ∈ N authorities, such that Yκ,Ai ⊆ Yκ denotes the set of predicates
managed by Ai, which are disjoint, i.e., Yκ,Ai ∩ Yκ,Aj = ∅ for all i ̸= j. The
GPES has independent encodings, if the following holds:

– we can find mappings Aα : [nα] → [naut] and Ab : [nb] → [naut], where
(nα, nb,α,b)← Param(par). Let α|l = {αi | i ∈ A−1

α (l)} and b|l = {bi | i ∈
A−1

b (l)} for all authorities Al;
– for all yGID = {yGID,Al

}l∈[naut], if we obtain (m1,l,m2,l,kl(r, r̂,α|l,b|l, yGID,Al
))

← EncKey(yGID,Al
, p) for all yGID,Al

, then it should hold that running (m1,
m2,k(r, r̂,α,b, yGID)) ← EncKey(yGID, p) yields k(r, r̂,α,b, yGID)) that is
equivalent to {kl(r, r̂,αl,bl, yGID,Al)}l∈[naut];

– for all l ∈ [naut], let r|l ⊆ r and r̂|l ⊆ r̂ be the subsets of non-lone and lone
key variables for which kl has a non-zero coefficient. Then, for all rj ∈ r for
which l ̸= l′ exist such that rj ∈ r|l ∩ r|l′ , it should hold that F(rj) > 0, and
similarly, for r̂j ∈ r̂ with l ̸= l′ such that r̂j ∈ r|l ∩ r|l′ , we have F(r̂j) > 0.

Then, we convert the generic compiler in Definition 13 to the multi-authority
setting as follows.

Definition 15 (Our multi-authority compiler). Let Γ = (Param, EncKey,
EncCt, Pair) be a GPES for a predicate family Pκ : Xκ × Yκ → {0, 1} as in
Definition 13, with the additional property that its encodings are independent
(Definition 14). Then, in the multi-authority setting, almost all algorithms are
the same as in Definition 13, except that we replace the Setup and KeyGen by:

– GlobalSetup(λ,par)→ GP: On input the security parameter λ and parame-
ters par, this algorithm outputs global parameters GP = (p, e,G,H,GT , g, h).

– AuthoritySetup(GP) → (Al,MPKAl
,MSKAl

): On input the global domain
parameters, this probabilistic algorithm outputs the authority identifier Al,
sets MSKAl

← (α|l, {bi | bi ∈ b|l ∧ F(bi) = 0}), and outputs

MPK = (A = {[αi]GT
| αi ∈ α|l}, {[bi]D(bi) | bi ∈ b|l ∧ F(bi) = 0})

as the master public key. Note that α|l and b|l are as in Definition 14.

A Practical Compiler for ABE 21

– KeyGen(Al,MSKAl
,GID, yGID,Al

) → SKGID,Al,yGID,Al
: On input the mas-

ter secret key MSKA of authority Al and some yGID,Al
∈ Yκ,Al

for identi-
fier GID, this algorithm generates (m1,l,m2,l,kl(r|l, r̂|l,α|l,b|l, yGID,Al

))←
EncKey(yGID,Al

, p), and outputs the secret key as

SKGID,Al,yGID,Al
= (yGID,Al

, {[rj]D(rj) | rj ∈ r|l ∧ F(rj) = 0},
{[ki,l]D(ki,l)}i∈[m3,i]).

The security proof for the multi-authority compiler relies heavily on the proof
for Theorem 1. This proof can be found in Appendix D.

Theorem 2. If Γ has independent encodings and satisfies the special symbolic
property (Definition 8), and the (d1, d2)-parallel DBDH assumption holds in G,
H, and GT , then the scheme in Definition 13 is statically secure. The scheme
is also secure under static corruption, if the special symbolic property holds for
a =

⋃
l∈C α|l and b =

⋃
l∈C b|l, where C denotes the set of corrupted authorities.

5 New schemes

To illustrate the effectiveness of our new compiler, we give several new construc-
tions (in this section and Appendix E). In particular, these constructions can be
instantiated with our new compiler, while existing full-security compilers can-
not instantiate them. In this section, we give a new decentralized large-universe
CP-ABE scheme. In the proof, we use a different technique than the “zero-out
lemma” as used in statically-secure decentralized ABE [49,30].

For all schemes, we assume that F maps the variables to 0 unless otherwise
specified. We do not define mappings for D, as the proofs generalize to any such
mapping that is correct. We also let w (with w1 = 1) be the vector orthogonal
to all Aj with j ∈ Υ (Definition 1). The access policy of each decentralized
scheme is extended with another mapping ρ̃ : [n1] → [naut], which maps each
row to an authority, and similarly, we extend the attribute set with a mapping
ρ̃S : S → [naut], which maps each attribute in the set to an authority. In the
proofs for decentralized ABE, we require the entire key set S for the substitution
vector of one or more key variables. Therefore, when instantiating it with the
multi-authority compiler, these schemes are statically secure.

5.1 Decentralized CP-ABE supporting OT-type negations

We give a decentralized large-universe CP-ABE scheme that supports OT-type
negations. Roughly, it is a decentralized variant of the TKN20 [52] scheme, for
which a simpler variant can be found in Appendix E.4. In the proofs, we use a
different technique than the “zero-out lemma” as used in statically-secure decen-
tralized ABE [49,30]. Furthermore, we extend the definition of access structures
(Definition 1) to include three additional mappings. In particular, we introduce
another mapping τ : [n1] → [m] that maps the rows associated with the same

22 M. Venema

attributes to different integers, i.e., m = maxj∈[n1] |ρ−1(ρ(j))|, and τ is injective
on the sub-domain ρ−1(ρ(j)) ⊆ [n1]. We also introduce the mapping ρ′ that
maps the rows of the policy matrix to 1 if the attribute in the policy is not
negated and to 2 if it is negated, and a function ρlab that maps the rows of the
policy matrix to the label universe.

Definition 16 (Decentralized large-universe CP-ABE with OT-type
negations). We define the GPES as follows.

– Param(L): Let {Al}[naut] be the authorities. On input the label universe L,
we set nα = naut and nb = (1 + 2|L|)naut, where α = {αl}l∈[naut], and
b = ({b, {bl,lab,0, bl,lab,1}lab∈L}l∈[naut]). We also set F(bl,lab,i) = 2l+ i for all
l ∈ [naut], i ∈ {0, 1}, lab ∈ L. (The FDH expects Al and lab as input.)

– EncKey((S, ρ̃S), p): Assume that, for each lab ∈ L, there is at most one
att ∈ U such that (lab, att) ∈ S. We set m1 = |ρ̃S(S)| + 1, m2 = 0, and
k = ({k1,l = αl + rGIDbl + rlb

′
l}l∈ρ̃S(S), {k2,(lab,att) = rρ̃S(att)(bρ̃S(att),lab,0 +

xattbρ̃S(att),lab,1)}(lab,att)∈S), where xatt is the representation of att in Zp.

– EncCt((A, ρ, ρ̃, ρ′, ρlab, τ), p): We set w1 = m+n1, w2 = n2−1, w′
2 = n2−1,

CM = s̃,

c = ({c1,j = µj + sjbρ̃(j)}j∈[n1],
{c2,j = sjb

′
ρ̃(j) + s′τ(j)(bρ̃(j),ρlab(j),0 + xρ(j)bρ̃(j),ρlab(j),1)}j∈Ψ ,

{c2,j = sjb
′
ρ̃(j) + s′τ(j)bρ̃(j),ρlab(j),1, c3,j = sτ(j)(bρ̃(j),lab,0 + xρ(j)bρ̃(j),ρlab(j),1)}j∈Ψ)

and c′ = ({c′j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃ +
∑

k∈[2,n2]
Aj,kv̂k,

and Ψ = {j ∈ [n1] | ρ′(j) = 1} and Ψ = [n1] \ Ψ (i.e., the set of rows
associated with the non-negated and negated attributes, respectively), and
s = ({sj}[n1], {s′l}l∈[m]).

– Pair((A, ρ, ρ̃, ρ′, ρlab, τ), (S, ρ̃S), p): If (A, ρ, ρ̃, ρ′, ρlab, τ) |= S, then this al-
gorithm determines Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ∈ S}, Υ = {j ∈ Ψ |
(ρlab(j), ρ(j)) ̸∈ S∧∃(ρlab(j), att) ∈ S} and {εj ∈ Zp}j∈Υ∪Υ so that

∑
j∈Υ∪Υ εjλj =

s̃ (Definition 1), and outputs the vector e =
∑

j∈Υ∪Υ εj1
w4
j and matrices

E = −
∑

j∈Υ∪Υ

εj1
w1×m3

(1,j),(1,ρ̃(j)) −
∑
j∈Υ

εj1
w1×m3

(2,τ(j)),(2,ρ(j))

−
∑
j∈Υ

εj
xattj − ρ(j)

1w1×m3

(2,τ(j)),(2,ρ(j)) and

E =
∑

j∈Υ∪Υ

εj

(
1w3×m1

(1,j),GID + 1w3×m1

(2,j),ρ̃(j)

)
+

∑
j∈Υ

εj
xattj − ρ(j)

1w3×m1

(3,j),ρ̃(j),

where attj is such that (ρlab(j), attj) ∈ S.

Lemma 2. The GPES in Definition 16 satisfies the special selective symbolic
property.

A Practical Compiler for ABE 23

Proof. Let C ⊆ [naut] be a set of corrupted authorities, and d1 = n1 and d2 =
n2 + n1n2|ρlab(n1)|. For simple notation of the column indices, we use (1, k)
and (2, j, k, lab) (for all j ∈ [n1], k ∈ [n2], lab ∈ ρlab(n1)), which are mapped
injectively in the interval [d2]. We define EncB,EncR,EncS as follows:

– EncB((A, ρ, ρ′, τ), a, b)→ ({al,Bl,Bl,lab,0,Bl,lab,1}l∈[naut],lab∈L), where where

al = 0d1 and Bl,B
′
l = 0d1×d2 for all l ∈ C, and let v ∈ Zn2

p (with v1 = 1) be
the vector orthogonal to each row j ∈ ρ̃−1(C) associated with a corrupted
authority. For all l ∈ [naut] \ C, we set:

al =
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1
j , Bl =

∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,k(1
d1×d2

j,(1,k) + vk1
d1×d2

j,(1,1)),

B′
l =

∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,(1,k),

Bl,lab,0 =
∑

j∈Ψl,lab,k∈[n2]

Aj,k

(
1d1×d2

τ(j),(1,k) − xρ(j)1
d1×d2

τ(j),(2,j,k,lab)

)
−

∑
j∈Ψ l,lab,k∈[n2]

xρ(j)Aj,k1
d1×d2

τ(j),(1,k),

Bl,lab,1 =
∑

j∈Ψl,lab,k∈[n2]

Aj,k1
d1×d2

τ(j),(2,j,k,lab) +
∑

j∈Ψ l,lab,k∈[n2]

Aj,k1
d1×d2

τ(j),(1,k)

where Ψl,lab = {j ∈ [n1] | ρ̃(j) = l ∧ ρlab(j) = lab ∧ ρ′(j) = 1} and Ψ l,lab =
{j ∈ [n1] | ρ̃(j) = l ∧ ρlab(j) = lab ∧ ρ′(j) = 0}.

– EncR((A, ρ, ρ′, τ),S, a, b) → (rGID, {rl}l∈ρ̃S(S)): Let w ∈ (1, w2, ..., wn2
) ∈

Zn2
p be such that Ajw

⊺ = 0 for all j ∈ [n1] with either (ρlab(j), ρ(j)) ∈ S
if ρ′(j) = 1 or (ρlab(j), att) ∈ S with att ̸= ρ(j) if ρ′(j) = 0 (Definition 1).

Then, set rGID = −1d2

1 +
∑

k∈[2,n2]
wk1

d2

k and

rl =
∑

k∈[n2]

wk1
d2

(1,k) +
∑

j∈Ψl∩Υ ,k∈[n2],(ρlab(j),att)∈S

wk

xρ(j) − xatt
1
d2

(2,j,k,lab),

where Ψl = {j ∈ ρ̃−1(l) | ρ′(j) = 1} and Υ = {j ∈ [n1] | (ρlab(j), ρ(j)) /∈ S}.
– EncS((A, ρ, ρ′, τ), a, b)→ ({sj}j∈[n1], {s′l}l∈[m], {v̂k, v̂

′
k}k∈[2,n2], s̃), where

s̃ = 1, s′l = −1
d1

l , sj = 1d1
j , v̂k = vk, v̂′

k = 1
d2

(1,k) + vk1
d2

(1,1).

For these substitutions, the polynomials evaluate to 0 (see Appendix F). ⊓⊔

Remark 4. This is the first decentralized large-universe CP-ABE scheme that
supports negations and that is almost completely unbounded (see Appendix H).
(The only aspect in which it is bounded is the number of re-uses of a single label
in the keys.) In contrast, the only other decentralized scheme that supports
negations is the scheme by Okamoto and Takashima [44], which also supports
OT-type negations and is fully secure, but is bounded in the label universe and
the number of label re-uses in both the keys and ciphertexts.

24 M. Venema

6 Future work

This work gives room for further improvements in the simplified design of prac-
tical ABE schemes. Most obviously, it could be investigated whether the ap-
proaches used for our compiler also carry over to full-security compilers. Further-
more, since our new complexity assumption is structurally closer to the DBDH
assumption, it would be valuable to investigate whether it can be reduced to
DBDH and other well-studied non-parametrized assumptions such as the sym-
metric external Diffie-Hellman assumption. Lastly, our decentralized schemes
could be used as inspiration for generic constructions of decentralized schemes,
similarly as in the single-authority setting [13]. In this way, we can efficiently
achieve properties such as non-monotonicity [7] in decentralized ABE.

7 Conclusion

We have introduced a new practical compiler for ABE, which uses the sym-
bolic property to simplify the security proofs. Although in contrast to existing
full-security compilers [11,12,2,4], ours proves selective security generically, it
supports full-domain hashes, flexible instantiations in the pairing-friendly groups
and multi-authority extensions. These properties are widely considered attractive
for practice. Furthermore, the schemes produced by our compiler are a factor 2-3
more efficient than the schemes produced by full-security compilers. To illustrate
the effectiveness of our compiler, we have given several new schemes—including
the first decentralized large-universe CP-ABE scheme that supports negations
and is almost completely unbounded—whose proofs are much less sizable and
arguably simpler to verify than the security proofs of similar schemes [49,52].

Acknowledgments. The author would like to thank Greg Alpár for proofread-
ing the paper.

References

1. Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes
from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO. LNCS, vol. 8616, pp. 241–260. Springer (2014)

2. Agrawal, S., Chase, M.: A study of pair encodings: Predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC. LNCS, vol. 9563, pp.
259–288. Springer (2016)

3. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) CCS. pp. 665–682. ACM
(2017)

4. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate en-
cryption schemes. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT. LNCS, vol.
10210, pp. 627–656. Springer (2017)

A Practical Compiler for ABE 25

5. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryp-
togr. Eng. 3(2), 111–128 (2013)

6. Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design
tasks for encryption and signature schemes. In: Sadeghi, A., Gligor, V.D., Yung,
M. (eds.) CCS. pp. 399–410. ACM (2013)

7. Ambrona, M.: Generic negation of pair encodings. In: Garay, J.A. (ed.) PKC.
LNCS, vol. 12711, pp. 120–146. Springer (2021)

8. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the
generic group model: Automated proofs and new constructions. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) CCS. pp. 647–664. ACM (2017)

9. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate encod-
ings: Constructions and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO.
LNCS, vol. 10401, pp. 36–66. Springer (2017)

10. Ambrona, M., Gay, R.: Multi-authority abe, revisited. Cryptology ePrint Archive,
Report 2021/1381 (2021)

11. Attrapadung, N.: Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT. LNCS, vol. 8441, pp. 557–577. Springer
(2014)

12. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT.
LNCS, vol. 10032, pp. 591–623. Springer (2016)

13. Attrapadung, N.: Unbounded dynamic predicate compositions in attribute-based
encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT. LNCS, vol. 11476, pp.
34–67. Springer (2019)

14. Attrapadung, N., Hanaoka, G., Ogawa, K., Ohtake, G., Watanabe, H., Yamada, S.:
Attribute-based encryption for range attributes. In: Zikas, V., Prisco, R.D. (eds.)
SCN. LNCS, vol. 9841, pp. 42–61. Springer (2016)

15. Attrapadung, N., Tomida, J.: Unbounded dynamic predicate compositions in ABE
from standard assumptions. In: ASIACRYPT. pp. 405–436. Springer (2020)

16. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA. LNCS, vol. 9048, pp. 87–105. Springer (2015)

17. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Phd thesis,
Ben Gurion University (1996)

18. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS. pp. 62–73. ACM (1993)

19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: S&P. pp. 321–334. IEEE (2007)

20. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT. LNCS,
vol. 3027, pp. 223–238. Springer (2004)

21. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT. LNCS, vol. 3494, pp.
440–456. Springer (2005)

22. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO. LNCS, vol. 2139, pp. 213–229. Springer (2001)

26 M. Venema

23. Boyen, X.: The uber-assumption family – a unified complexity framework for bi-
linear groups. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing. LNCS, vol. 5209,
pp. 39–56. Springer (2008)

24. Chase, M.: Multi-authority attribute-based encryption. In: Vadhan, S.P. (ed.)
TCC. LNCS, vol. 4392, pp. 515–534. Springer (2007)

25. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) CCS.
pp. 121–130. ACM (2009)

26. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II:
practical issues in cryptography. In: Phan, R.C., Yung, M. (eds.) Mycrypt. LNCS,
vol. 10311, pp. 21–55. Springer (2016)

27. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT. LNCS,
vol. 9057, pp. 595–624. Springer (2015)

28. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO. LNCS, vol. 8043, pp. 435–460. Springer
(2013)

29. Chen, J., Wee, H.: Dual system groups and its applications — compact hibe and
more. Cryptology ePrint Archive, Report 2014/265 (2014)

30. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority abe for nc1

from computational-bdh. Cryptology ePrint Archive, Report 2021/1325 (2021)

31. Datta, P., Komargodski, I., Waters, B.: Fully adaptive decentralized multi-
authority abe. Cryptology ePrint Archive, Paper 2022/1311 (2022)

32. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for
diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO. LNCS,
vol. 8043, pp. 129–147. Springer (2013)

33. ETSI: ETSI TS 103 458 (V1.1.1). Technical specification, European Telecommu-
nications Standards Institute (ETSI) (2018)

34. ETSI: ETSI TS 103 532 (V1.1.1). Technical specification, European Telecommu-
nications Standards Institute (ETSI) (2018)

35. The FENTEC project. https://github.com/fentec-project

36. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

37. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS. ACM (2006)

38. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for
fine-grained access control of encrypted data. Cryptology ePrint Archive, Report
2006/309 (2006)

39. Kamara, S., Lauter, K.E.: Cryptographic cloud storage. In: Sion, R., Curtmola,
R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS. LNCS,
vol. 6054, pp. 136–149. Springer (2010)

40. Ladd, W., Venema, M., Verma, T.: Portunus: Re-imagining access control in dis-
tributed systems. Cryptology ePrint Archive, Paper 2023/094 (2023)

41. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: EURO-
CRYPT. pp. 568–588. Springer (2011)

42. Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In: CRYPTO. pp. 180–198.
Springer (2012)

https://github.com/fentec-project

A Practical Compiler for ABE 27

43. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO. LNCS,
vol. 6223, pp. 191–208. Springer (2010)

44. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC. LNCS, vol. 7778, pp. 125–142. Springer (2013)

45. Okamoto, T., Takashima, K.: Decentralized attribute-based encryption and signa-
tures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 103-A(1), 41–73
(2020)

46. de la Piedra, A., Venema, M., Alpár, G.: ABE squared. https://github.com/
abecryptools/abe squared

47. de la Piedra, A., Venema, M., Alpár, G.: ABE squared: Accurately benchmarking
efficiency of attribute-based encryption. TCHES 2022(2), 192—-239 (2022)

48. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) CCS. pp. 463–474. ACM (2013)

49. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority
attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC. LNCS,
vol. 8975, pp. 315–332. Springer (2015)

50. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT. LNCS, vol. 3494, pp. 457–473. Springer (2005)

51. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT. LNCS, vol. 1233, pp. 256–266. Springer (1997)

52. Tomida, J., Kawahara, Y., Nishimaki, R.: Fast, compact, and expressive attribute-
based encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC.
LNCS, vol. 12110, pp. 3–33. Springer (2020)

53. Venema, M., Alpár, G.: A bunch of broken schemes: A simple yet powerful linear
approach to analyzing security of attribute-based encryption. In: Paterson, K.G.
(ed.) CT-RSA. LNCS, vol. 12704, pp. 100–125. Springer (2021)

54. Venema, M., Alpár, G.: TinyABE: Unrestricted ciphertext-policy attribute-based
encryption for embedded devices and low-quality networks. In: Batina, L., Daemen,
J. (eds.) AFRICACRYPT. LNCS, vol. 13503, pp. 103–129. Springer (2022)

55. Venema, M., Alpár, G., Hoepman, J.: Systematizing core properties of pairing-
based attribute-based encryption to uncover remaining challenges in enforcing ac-
cess control in practice. Cryptology ePrint Archive, Report 2021/1172 (2021)

56. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO. LNCS, vol. 5677, pp. 619–636.
Springer (2009)

57. Waters, B.: Ciphertext-policy attribute-based encryption - an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC. LNCS, vol. 6571, pp. 53–70. Springer (2011)

58. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC. LNCS, vol. 8349, pp. 616–637. Springer (2014)

59. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic con-
structions for fully secure revocable attribute-based encryption. In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS. LNCS, vol. 10493, pp. 532–551.
Springer (2017)

60. Zeutro: The OpenABE library - open source cryptographic library with
attribute-based encryption implementations in C/C++. https://github.com/
zeutro/openabe (2020)

https://github.com/abecryptools/abe_squared
https://github.com/abecryptools/abe_squared
https://github.com/zeutro/openabe
https://github.com/zeutro/openabe

28 M. Venema

A Other types of encryption and predicates

A.1 Multi-authority ABE

Definition 17 (Multi-authority ABE (MA-ABE)). A multi-authority ABE
scheme for a predicate family P = {Pκ}κ∈Nc over a message spaceM = {Mλ}λ∈N,
for authorities A1, ...,Anaut

with Yκ,Ai
⊆ Yκ and for all i ̸= j, Yκ,Ai

∩Yκ,Aj
= ∅,

consists of five algorithms:

– GlobalSetup(λ, par) → GP: On input the security parameter λ and param-
eters par, this algorithm generates the global domain parameters GP. In
addition, κ is set to κ = (p,par), where p denotes a natural number.

– AuthoritySetup(GP)→ (A,MPKA,MSKA): On input the global domain pa-
rameters, this probabilistic algorithm outputs the authority identifier A, the
master public key MPKA and the master secret key MSKA.

– KeyGen(A,MSKA,GID, yGID,A) → SKGID,A,yGID,A : On input the authority
identifier A, the corresponding master secret key MSKA and some yGID,A ∈
Yκ,A, for the user with global identifier GID, this probabilistic algorithm
generates a secret key SKGID,A,yGID,A .

– Encrypt({Ai,MPKAi
}i, x,M) → CTx: On input a set of authority identi-

fiers, the associated master public keys MPKAi
, some x ∈ Xκ and message

M , this probabilistic algorithm generates a ciphertext CT{Ai}i,x.
– Decrypt({A,MPKA,SKGID,A,yGID,A},CT{Ai}i,x) → M : On input a set of

authority identifiers, the associated master public keys MPKA and secret keys
{SKGID,A,yGID,A} (where y =

⋃
A yGID,A), and the ciphertext CT{Ai}i,x, if

Pκ(x, y) = 1, then it returns M . Otherwise, it returns an error message ⊥.

Security. The security model is similar to that of regular ABE (Definition 3).
In the Setup phase, both the GlobalSetup and AuthoritySetup are run. Fur-
thermore, a set of authorities C ⊆ [naut] is corrupted before the Setup phase is
run (which we call static corruption). In the Setup, the master secret keys cor-
responding to the corrupt authorities are also shared with the attacker. Then,
we define Yκ,C ⊆ Yκ to be the collective set of key predicates that the attacker
controls, by corrupting the authorities and querying secret keys. In the chal-
lenge phase and second query phase, we have the additional restriction that the
challenge x∗ is such that Pκ(x

∗, y) = 0 for all y ∈ Yκ,C.

Multi-authority ciphertext-policy ABE. A specific instance of multi-
authority ABE is multi-authority CP-ABE, which is the multi-authority variant
of CP-ABE. In this special subtype of CP-ABE, we add another function ρ̃
to the access policy A = (A, ρ, ρ̃), which maps the rows of the matrix to the
corresponding authority identifiers, i.e., ρ̃ : [n1]→ [naut].

A.2 Key-policy ABE

The dual version of CP-ABE is key-policy ABE (KP-ABE), in which the keys
are associated with policies and the ciphertexts with attribute sets [37].

A Practical Compiler for ABE 29

Multi-authority KP-ABE. Although multi-authority KP-ABE schemes ex-
ist [24,25], they are not decentralized in that the authorities do not require any
coordination. In general, the reason why such a scheme cannot be created is
because the policy is enforced on the keys. Therefore, the authorities need to co-
ordinate to establish the particular policy associated with the key. By restricting
the policies, this issue can be mitigated [24,25], but it cannot be resolved.

A.3 Identity-based broadcast encryption

A special case of CP-ABE is identity-based broadcast encryption (IBBE). In
this type of encryption, the predicates in Yκ are identities, i.e., y ∈ Yκ is some
identity, and Xκ are sets of identities, i.e., S ∈ Xκ is such that S contains strings
of identities.

Decentralized IBBE. In decentralized IBBE, we allow the identities to be
managed by different authorities. In particular, we attach some label l ∈ [n[aut]
to the identity y, denoted as (y, l), and we include a similar assignment function
ρ̃ : S → [naut] to the set S.

B Proof of Lemma 1

Proof. We show that the (d1, d2)-parallel DBDH assumption holds generically
by showing that the assumption is a member of the uber-assumption family
(Definition 4), and that Corollary 1 applies.

First, note that nc = d1 + d2 + 1, PG = xyz, PGT
= 1, and

PG = PH =

1, {xci}i∈[d1], {yc
′
j}j∈[d2],

{
z

cic′j

}
i∈[d1],j∈[d2]

,

{
z

cic′j

}
i∈[d1],j∈[d2]

,

{
xzci
ci′c′j

}
i,i′∈[d1],i ̸=i′,j∈[d2]

,

{
yzc′j
cic′j′

}
i∈[d1],j,j′∈[d2],j̸=j′

 ,

which are all monomials.
We now show that PGT

= xyz is independent of all products of the poly-
nomials in PG = PH and PGT

= 1. Because all polynomials are monomials, it
suffices to show that there is no product of polynomials in PG = PH that is
equal to xyz:

Term Range Required
xci i ∈ [d1]

yz
ci

yc′j j ∈ [d2]
xz
c′j

z
cic′j

i ∈ [d1], j ∈ [d2] xycic
′
j

xzci
ci′ c

′
j

i, i′ ∈ [d1], i ̸= i′, j ∈ [d2]
yci′ c

′
j

ci
yzc′j
cic′j′

i ∈ [d1], j, j
′ ∈ [d2], j ̸= j′

xcic
′
j′

c′j
.

30 M. Venema

Because none of the terms that are required to obtain xyz are provided by the
assumption, xyz is indeed independent of the products of the polynomials. Hence,
the assumption is secure in the generic group model. With Corollary 1, it follows
that any attacker that can solve the problem in the generic group model must
take time at least O(

√
p/ deg − nc), where deg = d1 + d2 + 1. ⊓⊔

C Proof of Theorem 1

Proof. Suppose some attacker APE,IND-CPA exists that can break the scheme in
Definition 13 with non-negligible advantage ε. We show that it can be used to
construct an attacker A(d1,d2)-pDBDH with non-negligible advantage in a security
game with challenger C(d1,d2)-pDBDH as well.

– Initialization phase: Attacker APE,IND-CPA commits to x∗ ∈ Xκ, and cor-
ruptable a ⊊ [nα] and b ⊊ [nb] as in the special symbolic property, and sends
those to challenger CPE,IND-CPA. (Note that a = b = ∅, if we do not allow
corruption.) Let C(d1,d2)-pDBDH be a challenger that sends the terms of the
assumption in Definition 12, where d1, d2 as in the special symbolic property
(Definition 8). Let EncB,EncR,EncS be the three algorithms that generate
the necessary substitutions for the variables in the encodings.

– Setup phase: Challenger CPE,IND-CPA runs (a1, ...,anα ,B1, ...,Bn)← EncB(x∗)
to obtain the necessary substitutions for the master public key MPK. It con-
structs the master public key as

MPK =

{Aj = e(g, h)ᾱj ·
∏
i∈[d1]

e([x]ciG, [z]H)
(aj)i}j∈[nα]\a,[bk]D(bk) = [b̄k]D(bk) ·

∏
i∈[d1],j∈[d2]

[
(Bk)i,j

z

cic′j

]
D(bk)


k∈[n]\b|F(bk)=0

,

{Aj = e(g, h)ᾱj}j∈a,
{
[bk]D(bk) = [b̄k]D(bk)

}
k∈b

)
,

where ᾱ, b̄k ∈R Zp for all k ∈ [n]. Note that
[
(Bk)i,j

z
cic′j

]
D(bk)

can be gener-

ated from the terms in the assumption by computing
[

z
cic′j

](Bk)i,j

D(bk)
.

– Random oracle query phase for Hi: If attacker APE,IND-CPA queries
the random oracle Hi the input corresponding to common variable bk (with
F(bk) = i), then it obtains (a1, ...,anα

,B1, ...,Bn)← EncB(x∗) and outputs

[bk]D(bk) =

[b̄k]D(bk) ·
∏

i∈[d1],j∈[d2]

[
(Bk)i,j

z
cic′j

]
D(bk)

if k ∈ [n] \ b

[b̄k]D(bk) if k ∈ b,

A Practical Compiler for ABE 31

where b̄k ∈R Zp. If the oracle is queried implicitly for non-lone variable rj ,
it runs (r1, ..., rm1

, r̂1, ..., r̂m2
)← EncR(x∗, y) and outputs

[rj]D(rj) = [r̄j]D(rj) ·
∏
i∈[d1]

[(rj)ixci]D(rj),

and if it is queried for non-lone variable sj , it runs (s0, ..., sw1
, ŝ1, ..., ŝw2

)←
EncS(x∗) and outputs

[sj]D(sj) = [s̄j]D(sj) ·
∏

j∈[d2]

[(sj)jyc
′
j]D(sj),

where r̄j , s̄j ∈R Zp.

– First query phase: Attacker APE,IND-CPA queries secret keys for y ∈
Yκ. Challenger CPE,IND-CPA generates (r1, ..., rm1

, r̂1, ..., r̂m2
)← EncR(x∗, y)

and r̄j ∈R Zp for all j ∈ [m1] and programs the secret key as

SKy = (y, {[rj]D(rj) = [r̄j]D(rj) ·
∏
i∈[d1]

[(rj)ixci]D(rj)}j∈[m1], {[ki]D(ki)}i∈[m3]),

such that [ki]D(ki) = [
∑

j∈[nα] δi,jαj+
∑

j∈[m2]
δi,j r̂j+

∑
j∈[m1],k∈[n] δi,j,krjbk]D(ki)

is programmed by implicitly setting

[αj]D(αj) = [ᾱj]D(αj) ·
∏

j∈[d2]

[
(aj)j

xz

c′j

]
D(αj)

for all j ∈ [nα],

[r̂j]D(r̂j) =
∏

j∈[d2]

[
(r̂j)j

xz

c′j

]
D(r̂j)

for all j ∈ [d1],

[rjbk]D(bk) = [r̄jbk]D(bk) · [rj b̄k]D(bk) ·
∏

i,i′∈[d1],j∈[d2]

[
(rj)i′(Bk)i,j

zxci′

cic′j

]
D(bk)

for all j ∈ [d2], such that the only terms we cannot program with the terms
of the (d1, d2)-pDBDH assumption are those with xz

c′j
for all j ∈ [d2], which

includes the rightmost terms of [rjbk]D(bk) for i = i′, i.e.,

∏
i∈[d1],j∈[d2]

[
(Bk)i,j(rj)i

zxci
cic′j

]
D(bk)

=
∏

i∈[d1],j∈[d2]

[
(Bkr

⊺
j)j

xz

c′j

]
D(bk)

.

For these terms, it follows from the selective property that these are canceled
in the simulation of ki, because

ki =
∑

j∈[nα]

δi,jaj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,kBkr
⊺
j = 0d2 ,

32 M. Venema

from which it follows that for all j ∈ [d2]: ∑
j∈[nα]

δi,j(aj)j +
∑

j∈[m2]

δ̂i,j(r̂j)j +
∑

j∈[m1],k∈[n]

δi,j,k(Bkr
⊺
j)j

 xz

c′j

=
∑

j∈[nα]

δi,j(aj)j
xz

c′j
+

∑
j∈[m2]

δ̂i,j(r̂j)j
xz

c′j
+

∑
j∈[m1],k∈[n]

δi,j,k(Bkr
⊺
j)j

xz

c′j
= 0.

Note that the rest of the terms can be programmed as follows:

[r̄jbk]D(bk) = [bk]
r̄j
D(bk)

, [rj b̄k]D(bk) = [rj]
b̄k
D(bk)

,

∏
i,i′∈[d1],i ̸=i′,j∈[d2]

[
(rj)i′(Bk)i,j

zxci′

cic′j

]
D(bk)

=
∏

i,i′∈[d1],i ̸=i′,j∈[d2]

[
xzci′

cic′j

](rj)i′ (Bk)i,j

D(bk)

.

– Challenge phase: Attacker APE,IND-CPA sends two messages M0 and M1

of equal length in Mλ to challenger CPE,IND-CPA. The challenger flips a
coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗ and sends the resulting cipher-
text CTx∗ to the attacker as follows. First, it runs (s0, ..., sw1

, ŝ1, ..., ŝw2
)←

EncS(x∗), and it sets

{[sj]D(sj) = [s̄j]D(sj) ·
∏

j∈[d2]

[(sj)jyc
′
j]D(sj)}j∈[w1]

,

such that [ci]D(ci) = [
∑

j∈[w2]
ηi,j ŝj +

∑
j∈[w1],k∈[n]

ηi,j,ksjbk]D(ci) can be

programmed by implicitly setting

{[ŝj]D(sj) =
∏
i∈[d1]

[
(̂sj)i

yz

ci

]
D(sj)

}j∈[w2],

[sjbk]D(ci) = [s̄jbk]D(ci) · [sj b̄k]D(ci) ·
∏

i∈[d1],j,j′∈[d2]

[
(sj)j′(Bk)i,j

yzc′j′

cic′j

]
D(bk)

.

Only the terms with yz
ci
(i.e., for j = j′) cannot be programmed from the terms

in the assumption, but are canceled in the simulation of [ci]D(ci), because

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjBk = 0d1 ,

from which it follows that, for all i ∈ [d1], we have ∑
j∈[w2]

ηi,j (̂sj)i +
∑

j∈[w1],k∈[n]

ηi,j,k(sjBk)i

 yz

ci

=
∑

j∈[w2]

ηi,j (̂sj)i
yz

ci
+

∑
j∈[w1],k∈[n]

ηi,j,k(sjBk)i
yz

ci
= 0.

A Practical Compiler for ABE 33

The other terms can be programmed by computing

[s̄jbk]D(ci) = [bk]
s̄j
D(ci)

, [sj b̄k]D(ci) = [sj]
b̄k
D(ci)

,

∏
i∈[d1],j,j′∈[d2],j̸=j′

[
(sj)j′(Bk)i,j

yzc′j′

cic′j

]
D(bk)

=
∏

i∈[d1],j,j′∈[d2],j ̸=j′

[
yzc′j′

cic′j

](sj)j′ (Bk)i,j

D(bk)

.

Then, [c′i]GT
can be programmed by implicitly setting s̃j = xyz, by using

that we can compute
[
xyz

c′
j′

c′j

]
GT

= e([xci]G ,

[
yzc′j
cic′j′

]
H
) for all j ̸= j′ ∈ [d2], and

c′i =
∑

j∈[nα],j′∈[w1]

η′i,j,j′αjs
⊺
j′ +

∑
j∈[w′

2]

η̂′i,j s̃j = 0.

Hence,

[c′i]GT
=

∏
j∈[nα],j′∈[w1]

[sj′]
η′
i,j,j′ ᾱj

GT
·

∏
j∈[nα],j′∈[w1]

[αj]
η′
i,j,j′ s̄j′

GT

·
∏

j∈[nα],j′∈[w1],j,j′∈[d2]

[
(aj)j(sj′)j′yc

′
j′
xz

c′j

]η′
i,j,j′

GT

·
∏

j∈[w′
2]

[̃sxyz]
η̂′
i,j

GT

=
∏

j∈[nα],j′∈[w1]

[sj′]
η′
i,j,j′ ᾱj

GT
·A

η′
i,j,j′ s̄j′

j ·
∏

j,j′∈[d2],j̸=j′

[
xyz

c′j′

c′j

]η′
i,j,j′ (aj)j(sj′)j′

GT


· [xyz]

∑
j∈[nα],j′∈[w1]

η′
i,j,j′ (aj)(sj′)

⊺+
∑

j∈[w′
2] η̂

′
i,j s̃

GT

where [sj′]GT
can be computed from [sj′]D(sj′)

. Furthermore, let J1 = {(j, j′) ∈
[nα]× [w1] | ζj,j′ ̸= 0} and J2 = {j ∈ [w2] | ζj ̸= 0}. Then, we let

C = Mβ ·
∏

(j,j′)∈J1

A
ζj,j′sj′
j

∏
j∈J2

e(g, h)ζj ŝj

= Mβ ·
∏

(j,j′)∈J1

[sj′]
ᾱjζj,j′

GT
·

∏
(j,j′)∈J1

[xyz]
ζj,j′

GT

∏
j∈J2

[xyz]
ζj
GT

= Mβ ·
∏

(j,j′)∈J1

[sj′]
ᾱjζj,j′

GT
· T

∑
(j,j′)∈J1

ζj,j′+
∑

j∈J2
ζj ,

which is well-formed if T = e(g, h)xyz. It outputs the ciphertext as

CT∗
x∗ = (x∗, C, [s]D(s), {[sj]D(sj)}j∈[w1]

, {[ci]D(ci)}i∈[w3], {[c
′
i]GT
}i∈[w4])

– Second query phase: This phase is identical to the first query phase.
– Decision phase: Attacker APE,IND-CPA outputs a guess β′ for β. If β′ = β,

then attacker A(d1,d2)-pDBDH concludes that the ciphertext was well-formed.
Thus, it outputs that T = e(g, h)xyz, and otherwise, it outputs that T ∈R GT .

34 M. Venema

The probability that attackerA(d1,d2)-pDBDH guesses correctly when T = e(g, h)xyz

holds corresponds to the success probability of attacker APE,IND-CPA, i.e., ε+
1
2 .

If T ∈R GT holds, then attacker APE,IND-CPA guesses at random, and thus,
attacker A(d1,d2)-pDBDH also guesses at random. Hence, the advantage

AdvA(d1,d2)-pDBDH
= ε+

1

2
− 1

2
= ε

is non-negligible.

D Proof of Theorem 2

We prove a slightly more extended version of Theorem 2:

Theorem 3. If Γ has independent encodings and satisfies the special symbolic
property (Definition 8), and the (d1, d2)-parallel DBDH assumption holds in the
groups G, H, and GT , then the ABE scheme in Construction 13 is statically
secure. If the key-variable substitutions are independent, then the scheme is even
selectively secure. The scheme is also secure under static corruption, if the special
symbolic property holds for a =

⋃
l∈C α|l and b =

⋃
l∈C b|l, where C denotes the

set of corrupted authorities.

In particular, we define the key-variable substitutions to be independent as
follows.

Definition 18 (Independent key-variable substitutions). Let Γ = (Param,
EncKey, EncCt, Pair) be a GPES for a predicate family Pκ : Xκ × Yκ → {0, 1}
with independent encodings (Definition 14) for authorities A1, ...,Anaut

, for which
the special symbolic property holds (Definition 8). Let r|l, r̂|l be as in Definition
14. The GPES has independent key-variable substitutions, if for all x ∈ Xκ

and yGID ∈ Yκ with yGID = {yGID,Al
}l, running (r1, ..., rm1

, r̂1, ..., r̂m2
) ←

EncR(x, yGID) yields the same substitutions as running EncR on x and yGID,Al

for each Al and considering the outputs for r|l and r̂|l.

We now prove Theorem 3.

Proof. For a big part of this proof, we rely on the security proof for Theorem 1.
In particular, we use that, for Γ , the scheme produced by the multi-authority
compiler is indistinguishable from the scheme produced with the regular compiler
in Definition 13, i.e., all key and ciphertext components are simulated in the same
way as in the proof of the regular compiler.

Second, we need to assume that a =
⋃

l∈C α|l and b =
⋃

l∈C b|l, where C
denotes the set of corrupted authorities. Then, the challenger can share the
master secret keys of the corrupted authorities, i.e., MSKAl

= (α|l, {bi | bi ∈
b|l ∧F(bi) = 0}), for which each αi ∈ α|l is such that αi = ᾱi and each bi = b̄i,
which are known to the challenger.

Furthermore, we distinguish between the cases that the key-variable substi-
tutions are independent or not. If they are not independent, then we use the

A Practical Compiler for ABE 35

static-security model to reduce the multi-authority scheme produced by Defi-
nition 15 to the instantiation of Γ in the regular compiler in Definition 13. In
the static-security model, the attacker APE,IND-CPA commits to x∗ ∈ Xκ and
all yGID ∈ Yκ that they are going to query in the query phases. In this case,
we can simply run EncR on the whole yGID, and substitute the various key en-
coding variables for the resulting vectors. If the key-variable substitutions are
independent, then we can run EncR for each yGID,Al

and thus simulate each
SKGID,Al,yGID,Al

independently from the other secret keys for GID. In this case,
we do not require the static-security model. ⊓⊔

E More schemes

In addition to the scheme in Section 5, we provide some more new schemes in
this appendix.

E.1 More efficient decentralized large-universe CP-ABE from FDH

We first give a scheme that is similar to the Rouselakis-Waters decentralized
scheme (RW15) [49], but has a more efficient decryption algorithm. In part, to
achieve this, we use the multi-use techniques by Agrawal and Chase [4]. In partic-
ular, we introduce another mapping τ : [n1]→ [m] that maps the rows associated
with the same attributes to different integers, i.e.,m = maxj∈[n1] |ρ−1(ρ(j))|, and
τ is injective on the sub-domain ρ−1(ρ(j)) ⊆ [n1].

Definition 19 (Decentralized large-universe CP-ABE from FDH). We
define the GPES as follows.

– Param(par)→ (nα, nb,α,b): Let {Al}[naut] be the authorities, and nα = naut

and nb = 2naut+|U|, α = ({αl}l∈[naut], and b = ({bl, b′l}l∈[naut], {batt}att∈U),
where U denotes the universe. We set F(batt) = 1 for all att ∈ U .

– EncKey((S, ρ̃S), p)→ (m1,m2,k(r, r̂,α,b, (S, ρ̃S))): We set m1 = |ρ̃S(S)|+
1, m2 = 0, and k = ({{k1,l = αl + rGIDbl + rlb

′
l}l∈ρ̃S(S), {k2,att =

rρ̃S(att)batt}att∈S), and F(rGID) = 2.
– EncCt((A, ρ, ρ̃, τ), p) → (w1, w2, w

′
2, cM , c(s, ŝ,b, (A, ρ, ρ̃, τ)), c′(s, s̃,α,

(A, ρ, ρ̃, τ))): We set w1 = m + n1, w2 = n2 − 1, w′
2 = n2 − 1,

CM = s̃, c = ({c1,j = µj + sjbρ̃(j), c2,j = sjb
′
ρ̃(j) + s′τ(j)bρ(j)}j∈[n1]) and

c′ = ({c′j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃ +
∑

k∈[2,n2]
Aj,kv̂k and

µj =
∑

k∈[2,n2]
Aj,kv̂

′
k.

Remark 5. The decryption of this scheme is more efficient than RW15 [49], be-
cause it reduces the number of required pairing operations from |ρ̃([n1])| + |Υ |
to |ρ̃([n1])|+m, where m = 1 if ρ is injective.

Lemma 3. The GPES in Definition 19 satisfies the special selective symbolic
property.

Proof. Let C ⊆ [naut] be a set of corrupted authorities, and d1 = n1 and d2 = n2.

36 M. Venema

– EncB((A, ρ, ρ̃, τ)) → ({al,Bl,B
′
l}l∈[naut], {Batt}att∈U), where al = 0d1 and

Bl,B
′
l,Batt = 0d1×d2 for all l ∈ C and att /∈ ρ([n1]), and let v ∈ Zn2

p (with
v1 = 1) be the vector orthogonal to each row j ∈ ρ̃−1(C) associated with a
corrupted authority. For all l ∈ [naut] \ C, we set:

al =
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1
j , Bl =

∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,k(1
d1×d2

j,k + vk1
d1×d2
j,1),

B′
l =

∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,k , {Batt =
∑

j∈ρ−1(att),k∈[n2]

Aj,k1
d1×d2

τ(j),k }att∈ρ([n1]).

– EncR((A, ρ, ρ̃, τ), (S, ρ̃S))→ (rGID, {rl}l∈ρ̃S(S)), where

rGID = −1d2

1 +
∑

k∈[2,n2]

wk1
d2

k , rl = −
∑

k∈[n2]

wk1
d2

k .

– EncS((A, ρ, ρ̃, τ))→ ({sj}j∈[n1], {s′l}l∈[m], {v̂k, v̂
′
k}k∈[2,n2], s̃), where

s̃ = 1, sj = −1d1
j , s′l = 1d1

l , v̂k = vk, v̂′
k = 1

d2

k + vk1
d2

1 .

For these substitutions, the polynomials evaluate to 0 (see Appendix G). Note

that, instead of applying the zero-out lemma to simulate e(g, h)c
′
j for all j ∈ [n1],

we introduce another vector v that is orthogonal to all rows associated with
corrupted authorities, which we embed in v̂. ⊓⊔

Remark 6. By slightly adapting the scheme and setting the number of author-
ities to 1, we can obtain a single-authority scheme with an attribute-wise key
generation [55]. With such a key generation, a single user can request secret keys
for different attributes at different points in time, rather than all at once. We
give a more concrete version of such a scheme in Appendix E.3.

E.2 Large-universe ABE scheme from DBDH

We use the ideas behind the CP-ABE schemes from DBDH in [57] and [30]
to obtain a large-universe CP-ABE scheme from DBDH. This follows from any
instantiation with our generic compiler, because d1 = d2 = 1. Recall that, for
this case, the (d1, d2)-parallel DBDH assumption is equivalent to DBDH.

Definition 20 (Large-universe CP-ABE from DBDH). We define the
GPES as follows.

– Param(par) → (nα, nb,α,b): Let N2 ∈ N be the maximum on the number
of columns of LSSS matrix A. We set nα = 1 and nb = 1 +N2 · |U|, where
α = α, and b = (b, {batt,k}att∈U,k∈[N2]), where U denotes the universe of
attributes. We also set F(b) = 0, and F(batt,k) = 1 for all att ∈ U , k ∈ [N2].

– EncKey(S, p) → (m1,m2,k(r, r̂,α,b,S)): We set m1 = N2, m2 = 0, and
k = (k1 = α+ rb, {k2,att = rbatt,1 +

∑
k∈[2,N2]

rkbatt,k}att∈S).

A Practical Compiler for ABE 37

– EncCt((A, ρ), p) → (w1, w2, w
′
2, cM , c(s, ŝ,b, (A, ρ)), c′(s, s̃,α, (A, ρ))): As-

sume that n2 < N2 and ρ is injective. We set w1 = 1, w2 = n2 − 1,
w′

2 = 0, CM = αs, c = ({c1,j,1 = Aj,1sb + sbρ(j),1}j∈[n1], {c1,j,k = Aj,kv̂j +
sbρ(j),k}j∈[n1],k∈[2,n2]) and c′ = ∅.

Lemma 4. The GPES in Definition 20 satisfies the special selective symbolic
property.

Proof. Let d1 = d2 = 1. We define EncB,EncR,EncS as follows:

– EncB(A, ρ) → (a,B, {Batt,k}att∈U,k∈[N2]), where a = 1, B = −1, and
Batt,k = 0 for all att /∈ ρ(n1), and Batt,k = Aρ−1(att),k.

– EncR((A, ρ),S) → (r1, ..., rn2
): Let w ∈ (1, w2, ..., wn2

) ∈ Zn2
p be such that

Ajw
⊺ = 0 for all j ∈ [n1] with ρ(j) ∈ S (Definition 1). Then, set r1 = 1,

and rk = wk for all k ∈ [2, n2];.
– EncS((A, ρ))→ (s0, v̂1, ..., v̂w2

), where s0 = 1, and v̂j = −1. ⊓⊔

E.3 CP-ABE with attribute-wise key generation

We give an example of a CP-ABE scheme with an attribute-wise key generation
(as first introduced by Venema et al. [55]). In such schemes, the secret keys can
be generated for different attributes at different points in time, for the same user.
We use the compiler for the multi-authority setting for this functionality, which
uses the static-security model to prove security, while keys may be requested
for different attributes at different stages in time. To the best of our knowledge,
this is the first (single-authority) CP-ABE scheme that explicitly enjoys this
property, although we use the techniques of [49] to formalize it. Note, however,
that the scheme is structurally closer to the unbounded CP-ABE scheme without
random oracles [48].

Definition 21 (CP-ABE scheme with attribute-wise key generation).
We define the GPES as follows.

– Param(par)→ (nα, nb,α,b): We set nα = 1 and nb = 4, where α = α, and
b = (b, b′, b0, b1), and F(b) = F(b′) = F(b0) = F(b1) = 0.

– EncKey(S, p)→ (m1,m2,k(r, r̂,α,b,S)): We set m1 = |S|+1 and m2 = 0,
where k = ({k1 = α + rGIDb, katt = rGIDb

′ + ratt(b0 + xattb1)}att∈S) such
that xatt is the integer representation of att in Zp, and F(rGID) = 1.

– EncCt((A, ρ), p) → (w1, w2, w
′
2, cM , c(s, ŝ,b, (A, ρ)), c′(s, s̃,α, (A, ρ))): We

set w1 = n1, w2 = n2 − 1, w′
2 = 0, CM = αs,

c = ({c1,j = λj + sjb
′, c2,j = sj(b0 + ρ(j)b1)}j∈[n1],

and c′ = ∅, where λj = Aj,1sb+
∑

k∈[2,n2]
Aj,kv̂k.

Lemma 5. The GPES in Definition 21 satisfies the special selective symbolic
property.

38 M. Venema

Proof. Let d1 = n1 + 1 and d2 = (n1 + 1)n2. For the simple representation of
column indices, we use (1, k) for all k ∈ [n2] and (2, j, k) for all j ∈ [n1] and
k ∈ [n2]. These are mapped injectively in the interval [d2]. For the row indices,
we start counting at 0.

– EncB((A, ρ))→ (a,B,B′,B0,B1), where a = 1d1
0 , and

B = 1d1×d2

0,(1,1), B′ =
∑

j∈[n1],k∈[n2]

Aj,k1
d1×d2

j,(1,k),

B1 =
∑

j∈[n1],k∈[n2]

Aj,k1
d1×d2

j,(2,j,k), B0 = −
∑

j∈[n1],k∈[n2]

Aj,kρ(j)1
d1×d2

j,(2,j,k).

– EncR((A, ρ),S)→ (rGID, {ratt}att∈S), where

rGID =
∑

k∈[n2]

wk1
d2

(1,k), ratt =
∑

j∈Υ ,k∈[n2]

wk1
d2

(2,j,k)

xatt − ρ(j)
,

such that w (with w1 = 1) is the vector orthogonal to all Aj with j ∈ Υ
(Definition 1), and Υ = [n1] \ Υ .

– EncS((A, ρ))→ (s0, {sj}j∈[n1], {v̂k}k∈[2,n2]), where

s = 1d1
0 ,

{
sj = 1d1

j

}
j∈[n1]

, v̂k = 1
d2

(1,k).

Note that, in this proof, we require the knowledge of the entire key set S for
the substitution vector of rGID. Therefore, when instantiating it with the multi-
authority compiler (where we set the number of authorities to 1), the scheme is
statically secure. ⊓⊔

E.4 CP-ABE with OT-type negations

We use the ideas behind the CP-ABE schemes supporting OT-type negations
in [13] and [52] to obtain a GPES for large-universe CP-ABE scheme with
OT-type negations. In this scheme, we represent each attribute as a label-
value pair, e.g., “name” and “Alice”, where the labels come from the label
universe L and the values from the attribute universe U . Furthermore, the pol-
icy (A, ρ, ρlab, ρ

′, τ) consists of three additional mappings ρlab, ρ
′ and τ . Here,

ρlab : [n1]→ Lmaps the rows to the corresponding labels. Then, ρ′ : [n1]→ {0, 1}
is such that ρ′(j) = 0 indicates that the attribute corresponding with the j-
th row is negated, and ρ′(j) = 1 indicates that it is not negated. The map-
ping τ : [n1] → [m] maps the rows corresponding to the same labels to differ-
ent integers, i.e., m = maxj∈[n1] |ρ

−1
lab((ρlab(j)))| is the maximum number of

occurrences of one specific attribute, and τ is injective on each sub-domain
ρ−1
lab(ρlab(j)) ⊆ [n1].

Definition 22 (Large-universe CP-ABE with OT-type negations). We
define the GPES as follows.

A Practical Compiler for ABE 39

– Param(par)→ (nα, nb,α,b): We set nα = 1 and nb = 1+2|L|, where α = α,
and b = (b, {blab,0, blab,1}lab∈L). We also set F(b) = 0, and F(blab,0) = 1
and F(blab,1) = 2 for all lab ∈ L.

– EncKey(S, p) → (m1,m2,k(r, r̂,α,b,S)): Assume that, for each lab ∈ L,
there is at most one att ∈ U such that (lab, att) ∈ S. We set m1 = 1,
m2 = 0, and k = (k1 = α+ rb, {k2,(lab,att) = r(blab,0+xattblab,1)}(lab,att)∈S),
where xatt is the representation of att in Zp.

– EncCt((A, ρ, ρ′, τ), p) → (w1, w2, w
′
2, cM , c(s, ŝ,b, (A, ρ, ρ′, τ)), c′(s, s̃,α,

(A, ρ, ρ′, τ))): We set w1 = m, w2 = n2 − 1, w′
2 = 0, CM = αs,

c = ({c1,j = λj + sτ(j)(blab,0 + xρ(j)bρlab(j),1)}j∈Ψ ,

{c1,j = λj + sτ(j)bρlab(j),1, c2,j = sτ(j)(blab,0 + ρ(j)bρlab(j),1)}j∈Ψ)

and c′ = ∅, where λj = Aj,1sb+
∑

k∈[2,n2]
Aj,kv̂k, and Ψ = {j ∈ [n1] | ρ′(j) =

1} and Ψ = [n1] \ Ψ (i.e., the set of rows associated with the positive and
negative attributes, respectively).

Lemma 6. The GPES in Definition 22 satisfies the special selective symbolic
property.

Proof. Let d1 = m and d2 = n2 + n1n2|ρlab(n1)|. For simple notation of the
column indices, we use (1, k) (for all k ∈ [n2]) and (2, j, k, lab) (for all j ∈
[n1], k ∈ [n2], lab ∈ ρlab(n1)), which are mapped injectively in the interval [d2].
We define EncB,EncR,EncS as follows:

– EncB((A, ρ, ρ′, τ)) → (a,B, {Blab,0,Blab,1}lab∈L), where a = 1d1
1 , B =

1d1×d2

1,(1,1), and

Blab,0 =
∑

j∈Ψlab,k∈[n2]

Aj,kvk

(
1d1×d2

τ(j),(1,k) − ρ(j)1d1×d2

τ(j),(2,j,k,lab)

)
−

∑
j∈Ψ lab,k∈[n2]

ρ(j)Aj,kvk1
d1×d2

τ(j),(1,k),

Blab,1 =
∑

j∈Ψlab,k∈[n2]

Aj,kvk1
d1×d2

τ(j),(2,j,k,lab) +
∑

j∈Ψ lab,k∈[n2]

Aj,kvk1
d1×d2

τ(j),(1,k),

where Ψlab = {j ∈ [n1] | ρlab(j) = lab ∧ ρ′(j) = 1} and Ψ lab = {j ∈ [n1] |
ρlab(j) = lab ∧ ρ′(j) = 0}.

– EncR((A, ρ, ρ′, τ),S) → (r): Let w ∈ (1, w2, ..., wn2
) ∈ Zn2

p be such that
Ajw

⊺ = 0 for all j ∈ [n1] with either (ρlab(j), ρ(j)) ∈ S if ρ′(j) = 1 or
(ρlab(j), att) ∈ S with att ̸= ρ(j) if ρ′(j) = 0 (Definition 1). Then, set

r =
∑

k∈[n2]

wk1
d2

(1,k) +
∑

j∈Ψ∩Υ ,k∈[n2],(lab,att)∈S|lab=ρlab(j)

wk

ρ(j)− xatt
1
d2

(2,j,k,lab),

where Ψ = {j ∈ [n1] | ρ′(j) = 1} and Υ = {j ∈ [n1] | (ρlab(j), ρ(j)) /∈ S}.
– EncS((A, ρ, ρ′, τ))→ (s0, s1, ..., sm, v̂1, ..., v̂w2

), where s0 = 1d1
1 , sl = 1d1

l for

all l ∈ [m] and v̂k = 1
d2

(1,k) for all k ∈ [n2]. ⊓⊔

40 M. Venema

KP-ABE variant. Because the structure of the PES fits in the AC17 class of
PESs, we can use the conversion techniques in [4] to obtain the KP-ABE variant
of this scheme.

E.5 Decentralized “unbounded” CP-ABE scheme

We also give a decentralized variant of the unbounded single-authority CP-ABE
scheme by Rouselakis and Waters [48].

Definition 23 (Decentralized “unbounded” CP-ABE). We define the GPES
as follows.

– Param(par)→ (nα, nb,α,b): Let {Al}[naut] be the authorities. We set nα =
naut and nb = 4naut, where α = {αl}l∈[naut], and b = ({bl, b′l, bl,0, bl,1}l∈[naut]).

– EncKey((S, ρ̃S), p) → (m1,m2,k(r, r̂,α,b, (S, ρ̃S))): We set m1 = |S| + 1
and m2 = 0, where k = ({k1,l = αl+rGIDbl}l∈ρ̃([n1]), {k2,att = rGIDb

′
ρ̃S(att)+

ratt(bρ̃S(att),0 + xattbρ̃S(att),1)}att∈S) such that xatt is the integer representa-
tion of att in Zp, and F(rGID) = 1.

– EncCt((A, ρ, ρ̃), p)→ (w1, w2, w
′
2, cM , c(s, ŝ,b, (A, ρ, ρ̃)), c′(s, s̃,α, (A, ρ, ρ̃))):

We set w1 = n1, w2 = n2 − 1, w′
2 = n2 − 1, CM = s̃,

c = ({c1,j = µj + sj(bρ̃(j) + b′ρ̃(j)), c2,j = sj(bρ̃(j),0 + ρ(j)bρ̃(j),1)}j∈[n1]),

and c′ = ({λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1ŝ +
∑

k∈[2,n2]
Aj,kv̂k and

µj =
∑

k∈[2,n2]
Aj,kv̂

′
k.

Lemma 7. The GPES in Definition 23 satisfies the special selective symbolic
property.

Proof. Let C ⊆ [naut] be a set of corrupted authorities, and set d1 = n1 and
d2 = (n1 + 1)n2. For the simple representation of column indices, we use (1, k)
for all k ∈ [n2] and (2, j, k) for all j ∈ [n1] and k ∈ [n2]. These are mapped
injectively in the interval [d2].

– EncB((A, ρ, ρ̃)) → ({al,Bl,B
′
l,Bl,0,Bl,1}l∈[naut]), al = 0d1 and Bl,B

′
l =

0d1×d2 for all l ∈ C, and let v ∈ Zn2
p (with v1 = 1) be the vector orthogonal

to each row j ∈ ρ̃−1(C) associated with a corrupted authority. For all l ∈
[naut] \ C, we set:

al =
∑

j∈ρ̃−1(l),k∈[n2]

1d1
j , Bl =

∑
j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1×d2

j,(1,1),

B′
l =

∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,(1,k), Bl,1 =
∑

j∈[n1],k∈[n2]

Aj,k1
d1×d2

j,(2,j,k),

Bl,0 = −
∑

j∈[n1],k∈[n2]

Aj,kρ(j)1
d1×d2

j,(2,j,k),

A Practical Compiler for ABE 41

– EncR((A, ρ, ρ̃), (S, ρ̃S))→ (rGID, {ratt}att∈S), where

rGID =
∑

k∈[n2]

wk1
d2

(1,k), ratt =
∑

j∈Υ ,k∈[n2]

wk1
d2

(2,j,k)

xatt − ρ(j)
,

such that w (with w1 = 1) is the vector orthogonal to all Aj with j ∈ Υ
(Definition 1), and Υ = [n1] \ Υ .

– EncS((A, ρ, ρ̃))→ ({sj}j∈[n1], {v̂k, v̂
′
k}k∈[2,n2], s̃), where

s̃ = 1, sj = 1d1
j , v̂k = vk, v̂′

k = 1
d2

(1,k) + vk1
d2

(1,1).

Note that, in this proof, we require the knowledge of the entire key set S for
the substitution vector of rGID. Therefore, when instantiating it with the multi-
authority compiler, the scheme is statically secure. ⊓⊔

E.6 Decentralized identity-based broadcast encryption scheme

We also give a decentralized identity-based broadcast encryption scheme with
short ciphertexts based on TinyABE [54].

Definition 24 (Decentralized IBBE). We define the GPES as follows.

– Param(par)→ (nα, nb,α,b): Let {Al}[naut] be the authorities. We set nα =
naut and nb = 2n, where n ∈ N, where α = {αl}l∈[naut], and b = ({bi,0, bi,1}i∈[n]).
We set F(bi,0) = 1 and F(bi,1) = 2, where the hash expects i ∈ [n] as input.

– EncKey((y, l), p) → (m1,m2,k(r, r̂,α,b, (y, l))): We set m1 = n and m2 =
0, where k = ({ki = αl + ri(bi,0 + ybi,1)}i∈[n]) such that y is the integer
representation of the identity of the user in Zp.

– EncCt((S, ρ̃), p)→ (w1, w2, w
′
2, cM , c(s, ŝ,b, (S, ρ̃)), c′(s, s̃,α, (S, ρ̃))): Let n′ =⌈

|S|
n

⌉
, and let τ : S → [n′] be a function that maps the identities in S to n′

partitions such that |τ−1(j)| ≤ n for all j ∈ [n′]. Let τ̂ : S → [n] be a func-
tion that maps the identities in S that are assigned to the same partition
to unique integers in [n], i.e., τ̂ is injective on τ−1(l) for all l ∈ [n′]. Let
Sj = {x ∈ S | τ(x) = j}. We set w1 = n′, w2 = 0, w′

2 =
∑

j∈[n′] |Nj |,
CM = s̃,

c =

 ∑
j∈[n′]

sj
∑
x∈Sj

(bτ̂(x),0 + xbτ̂(x),1)

 ,

and c′ = ({s̃+ αlsj}j∈[n′],l∈Nj
), where Nj = {l ∈ [naut] | x ∈ Sj ∧ ρ̃(x) = l}.

Lemma 8. The GPES in Definition 24 satisfies the special selective symbolic
property.

Proof. Let C ⊆ [naut] be a set of corrupted authorities, and set d1 = n′ and
d2 = n′. For all i ∈ [n], let χi = {x ∈ S | τ̂(x) = i} be the set of identities in S
that are mapped to i ∈ [n] with τ̂ .

42 M. Venema

– EncB((S, ρ̃)) → ({al,Bi,0,Bi,1}l∈[naut],i∈[n]), al = 0d1 for all l ∈ C. For all

l ∈ [naut] \ C and i ∈ [n], we set N̂l = {j ∈ [n′] | l ∈ Nj} and:

al =
∑
j∈N̂l

1d1
j , Bi,1 =

∑
x∈χi

1d1×d2

τ(x),τ(x), Bi,0 = −
∑
x∈χi

x1d1×d2

τ(x),τ(x).

– EncR((S, ρ̃), (y, l))→ ({ri}i∈[n]), where

ri =
∑
x∈χi

1
d2

τ(x)

x− y
.

– EncS((S, ρ̃)→ ({sj}j∈[n′], s̃), where

s̃ = 1, sj = 1d1
j .

⊓⊔

Remark 7. The decryption costs are quadratic in the size of S. To lower the
decryption costs, we can also split the ciphertext in parts, i.e., set c = ({cj =∑

j∈[n′] sj
∑

x∈Sj
(bτ̂(x),0 + xbτ̂(x),1)}j∈[n′]). Then, the decryption costs are only

quadratic in n. However, this increases the encryption costs and the ciphertext
size.

F Verification of the proof of Lemma 2

We show that, indeed, the polynomials evaluate to 0. Note that the evaluations
for k1,l, c1,j and c′j are virtually the same as in Appendix G. For the other key
polynomials, we have the following evaluations. For k2,(lab,att), we first compute
Bρ̃S(att),lab,0 + xattBρ̃S(att),lab,1, which is∑

j∈Ψρ̃S (att),lab,k∈[n2]

Aj,k

(
1d1×d2

τ(j),(1,k) − ρ(j)1d1×d2

τ(j),(2,j,k,lab)

)
−

∑
j∈Ψ ρ̃S (att),lab,k∈[n2]

ρ(j)Aj,k1
d1×d2

τ(j),(1,k)

+xatt

 ∑
j∈Ψρ̃S (att),lab,k∈[n2]

Aj,k1
d1×d2

τ(j),(2,j,k,lab) +
∑

j∈Ψ ρ̃S (att),lab,k∈[n2]

Aj,k1
d1×d2

τ(j),(1,k)


=

∑
j∈Ψρ̃S (att),lab,k∈[n2]

Aj,k

(
1d1×d2

τ(j),(1,k) + (xatt − ρ(j))1d1×d2

τ(j),(2,j,k,lab)

)
+

∑
j∈Ψ ρ̃S (att),lab,k∈[n2]

(xatt − ρ(j))Aj,k1
d1×d2

τ(j),(1,k).

Then,

k2,(lab,att) = rρ̃S(att)(bρ̃S(att),lab,0 + xattbρ̃S(att),lab,1)

A Practical Compiler for ABE 43

=

 ∑
k∈[n2]

wk1
d2

(1,k) +
∑

j∈Ψρ̃S (att)∩Υ ,k∈[n2],(lab,att)∈S|lab=ρlab(j)

wk

ρ(j)− xatt
1
d2

(2,j,k,lab)


 ∑

j∈Ψρ̃S (att),lab,k∈[n2]

Aj,k

(
1d1×d2

τ(j),(1,k) + (xatt − ρ(j))1d1×d2

τ(j),(2,j,k,lab)

)

+
∑

j∈Ψ ρ̃S (att),lab,k∈[n2]

(xatt − ρ(j))Aj,k1
d1×d2

τ(j),(1,k)


=

∑
j∈Ψρ̃S (att),lab,k∈[n2]

Aj,kwk

(
1d1

τ(j) +
(xatt − ρ(j))

ρ(j)− xatt
1d1

τ(j)

)
+

∑
j∈Ψ ρ̃S (att),lab,k∈[n2]

(xatt − ρ(j))Aj,kwk1
d1

τ(j),

which is either 0d1 , becauseAjw
⊺ = 0 (which is the case if either (ρlab(j), ρ(j)) ∈

S if ρ′(j) = 1 or (ρlab(j), att) ∈ S with att ̸= ρ(j) if ρ′(j) = 0), or it holds for
j ∈ Ψρ̃S(att),lab that ρ(j) ̸= xatt, and for j ∈ Ψ ρ̃S(att),lab that xatt = ρ(j), meaning
that those j for which Ajw

⊺ ̸= 0, we have

∑
k∈[n2]

Aj,kwk

1d1

τ(j) +
(xatt − ρ(j))

ρ(j)− xatt︸ ︷︷ ︸
=−1

1d1

τ(j)

 = 0d1

∑
k∈[n2]

(xatt − ρ(j))︸ ︷︷ ︸
=0

Aj,kwk1
d1

τ(j) = 0d1 .

For the ciphertext polynomials, we have the following evaluations. We first note
that the combination s′τ(j) and bρ̃(j),ρlab(j),0 + ρ(j)bρ̃(j),ρlab(j),1 yields

−

 ∑
k∈[n2]

Aj,k

(
1
d2

(1,k) − ρ(j)1
d2

(2,j,k,ρlab(j))

)
+ ρ(j)

∑
k∈[n2]

Aj,k1
d2

(2,j,k,ρlab(j))


= −

∑
k∈[n2]

Aj,k1
d2

(1,k)

if ρ′(j) = 1, and otherwise

−
∑

k∈[n2]

ρ(j)Aj,k1
d2

(1,k) + ρ(j)
∑

k∈[n2]

Aj,k1
d2

(1,k) = 0d2 ,

from which it directly follows that for j ∈ Ψ , c3,j = 0d2 . For j ∈ Ψ , we have

c2,j = sjb
′
ρ̃(j) + s′τ(j)(blab,0 + xρ(j)bρlab(j),1)

44 M. Venema

= 1d1
j

 ∑
j∈ρ̃−1(ρ̃(j)),k∈[n2]

Aj,k1
d1×d2

j,(1,k)

− ∑
k∈[n2]

Aj,k1
d2

(1,k)

=
∑

k∈[n2]

Aj,k1
d2

(1,k) −
∑

k∈[n2]

Aj,k1
d2

(1,k) = 0d2 .

For j ∈ Ψ , we have

c2,j = sjb
′
ρ̃(j) + s′τ(j)bρ̃(j),ρlab(j),1

= 1d1
j

 ∑
j∈ρ̃−1(ρ̃(j)),k∈[n2]

Aj,k1
d1×d2

j,(1,k)

− ∑
k∈[n2]

Aj,k1
d2

(1,k)

=
∑

k∈[n2]

Aj,k1
d2

(1,k) −
∑

k∈[n2]

Aj,k1
d2

(1,k) = 0d2 .

G Verification of the proof of Lemma 3

We show that, indeed, the polynomials evaluate to 0. For the key polynomials,
we have the following evaluations.

k1,l = αl + rGIDbl + rlb
′
l

=
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1
j

+

−1d2

1 +
∑

k∈[2,n2]

wk1
d2

k

 ∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,k(1
d1×d2

j,k + vk1
d1×d2
j,1)


−

 ∑
k∈[n2]

wk1
d2

k

 ∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,k


=

∑
j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1
j −

∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,kvk1
d1
j +

∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,kwk1
d1
j

−
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kwk1
d1
j

=
∑

j∈ρ̃−1(l)

Aj,1v11
d1
j −

∑
j∈ρ̃−1(l)

Aj,1w11
d1
j = 0d1 ,

because v1 = w1 = 1. Then, for att /∈ ρ([n1]), we trivially have that k2,att
evaluates to 0d1 , and for att ∈ ρ([n1]), we have that Ajw

⊺ = 0, so

k2,att = rρ̃S(att)batt = −

 ∑
k∈[n2]

wk1
d2

k

 ∑
j∈ρ−1(att),k∈[n2]

Aj,k1
d1×d2

τ(j),k



A Practical Compiler for ABE 45

=
∑

j∈ρ−1(att),k∈[n2]

Aj,kwk1
d1

τ(j) =
∑

j∈ρ−1(att)

Ajw
⊺1d1

τ(j) = 0d1 .

For the ciphertext polynomials, we have the following evaluations.

c1,j = µj + sjbρ̃(j) =
∑

k∈[2,n2]

Aj,kv̂
′
k + sjbρ̃(j)

=
∑

k∈[2,n2]

Aj,k

(
1
d2

k + vk1
d2

1

)
− 1d1

j

∑
j∈ρ̃−1(ρ̃(j)),k∈[2,n2]

Aj,k(1
d1×d2

j,k + vk1
d1×d2
j,1)

=
∑

k∈[2,n2]

Aj,k

(
1
d2

k + vk1
d2

1

)
−

∑
k∈[2,n2]

Aj,k(1
d2

k + vk1
d2

1) = 0d2 .

c2,j = sjb
′
ρ̃(j) + s′τ(j)bρ(j)

= −1d1
j

 ∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,k

+ 1d1

τ(j)

 ∑
j∈ρ−1(att),k∈[n2]

Aj,k1
d1×d2

τ(j),k


= −

∑
k∈[n2]

Aj,k1
d2

k +
∑

k∈[n2]

Aj,k1
d2

k = 0d2 .

c′j = λj + αρ̃(j)sj = Aj,1s̃+
∑

k∈[2,n2]

Aj,kv̂k + αρ̃(j)sj

= Aj,1 +
∑

k∈[2,n2]

Aj,kvk − 1d1
j

 ∑
j∈ρ̃−1(ρ̃(j)),k∈[n2]

Aj,kvk1
d1
j


=

∑
k∈[n2]

Aj,kvk −
∑

k∈[n2]

Aj,kvk = 0.

H Comparison of decentralized schemes

We compare the qualitative features of our newly proposed decentralized schemes
with existing multi-authority schemes in Table 1. It shows that our scheme in
Definition 16 is the first non-monotone large-universe scheme of this kind that
supports unbounded policies.

46 M. Venema

Table 1: Comparison of the properties of all pairing-based decentralized CP-
ABE schemes supporting monotone span programs. For each scheme that is
decentralized (i.e., it requires no coordination among the authorities), we con-
sider whether the scheme supports negations in the policies, large universes (LU)
and unbounded policies (UP) (i.e., it supports unbounded re-use of attributes
in the policies and unbounded policy lengths). We also consider whether the
scheme is fully, selectively or statically secure and whether it is secure under a
non-parametrized assumption (NPA).

Scheme Negations LU UP Security NPA

LW11 [41] ✗ ✗ ✗ Full ✓
OT13,OT20 [44,45] ✓ ✓ ✗ Full ✓

RW15 [49] ✗ ✓ ✓ Static ✗

DKW21 [30] ✗ ✗ ✗ Static ✓
AG21 [10] ✗ ✓ ✗ Selective ✓

DKW22 [31] ✗ ✗ ✗ Full ✓
Definition 16 ✓ ✓ ✓ Static ✗

Definition 19 ✗ ✓ ✓ Static ✗

Definition 23 ✗ ✓ ✓ Static ✗

Table of Contents

1 Introduction . 1
1.1 Our contribution . 3

New schemes. 3
Relation to fully secure schemes in the generic group model. 4
Supporting practical extensions with full-security compilers. 4
Full security through complexity leveraging or random oracles. . . 4

1.2 Background . 5
Ciphertext-policy ABE. 5
Multi-authority ABE. 5
Non-monotone ABE. 5
Generalizing pair encoding schemes. 5
Generalizing the symbolic property. 6

2 Preliminaries . 6
2.1 Notation . 6
2.2 Access structures . 6
2.3 Pairings (or bilinear maps) . 7
2.4 Attribute-based encryption . 7

Predicate family. 7
Correctness. 8
Ciphertext-policy ABE. 8
Multi-authority ABE. 8

2.5 Full security against chosen-plaintext attacks 8
2.6 The uber-assumption family . 9

3 Pair encoding schemes . 9
3.1 Prior formulation of pair encoding schemes 10

Pair encoding schemes. 10
Symbolic security property. 11

3.2 How the symbolic property and selective security are related 11
3.3 Generalizing the definition of pair encoding schemes 13
3.4 Special symbolic property for GPES . 14
3.5 Distribution of the encodings . 15
3.6 Full-domain hashes and random oracles . 16
3.7 Our complexity assumption . 17

4 Our generic compiler . 18
4.1 The new generic compiler in the multi-authority setting 19

5 New schemes . 21
5.1 Decentralized CP-ABE supporting OT-type negations 21

6 Future work . 24
7 Conclusion . 24

Acknowledgments. 24
A Other types of encryption and predicates . 28

48 M. Venema

A.1 Multi-authority ABE . 28
Security. 28
Multi-authority ciphertext-policy ABE. 28

A.2 Key-policy ABE . 28
Multi-authority KP-ABE. 29

A.3 Identity-based broadcast encryption . 29
Decentralized IBBE. 29

B Proof of Lemma 1 . 29
C Proof of Theorem 1 . 30
D Proof of Theorem 2 . 34
E More schemes . 35

E.1 More efficient decentralized large-universe CP-ABE from FDH . . 35
E.2 Large-universe ABE scheme from DBDH . 36
E.3 CP-ABE with attribute-wise key generation 37
E.4 CP-ABE with OT-type negations . 38
E.5 Decentralized “unbounded” CP-ABE scheme 40
E.6 Decentralized identity-based broadcast encryption scheme 41

F Verification of the proof of Lemma 2 . 42
G Verification of the proof of Lemma 3 . 44
H Comparison of decentralized schemes . 45

	Introduction
	Our contribution
	New schemes.
	Relation to fully secure schemes in the generic group model.
	Supporting practical extensions with full-security compilers.
	Full security through complexity leveraging or random oracles.

	Background
	Ciphertext-policy ABE.
	Multi-authority ABE.
	Non-monotone ABE.
	Generalizing pair encoding schemes.
	Generalizing the symbolic property.

	Preliminaries
	Notation
	Access structures
	Pairings (or bilinear maps)
	Attribute-based encryption
	Predicate family.
	Correctness.
	Ciphertext-policy ABE.
	Multi-authority ABE.

	Full security against chosen-plaintext attacks
	The uber-assumption family

	Pair encoding schemes
	Prior formulation of pair encoding schemes
	Pair encoding schemes.
	Symbolic security property.

	How the symbolic property and selective security are related
	Generalizing the definition of pair encoding schemes
	Special symbolic property for GPES
	Distribution of the encodings
	Full-domain hashes and random oracles
	Our complexity assumption

	Our generic compiler
	The new generic compiler in the multi-authority setting

	New schemes
	Decentralized CP-ABE supporting OT-type negations

	Future work
	Conclusion
	Acknowledgments.

	Other types of encryption and predicates
	Multi-authority ABE
	Security.
	Multi-authority ciphertext-policy ABE.

	Key-policy ABE
	Multi-authority KP-ABE.

	Identity-based broadcast encryption
	Decentralized IBBE.

	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	More schemes
	More efficient decentralized large-universe CP-ABE from FDH
	Large-universe ABE scheme from DBDH
	CP-ABE with attribute-wise key generation
	CP-ABE with OT-type negations
	Decentralized ``unbounded'' CP-ABE scheme
	Decentralized identity-based broadcast encryption scheme

	Verification of the proof of Lemma 2
	Verification of the proof of Lemma 3
	Comparison of decentralized schemes

