
Leaky McEliece: Secret Key Recovery From
Highly Erroneous Side-Channel Information

Marcus Brinkmann1 , Chitchanok Chuengsatiansup2 ,
Alexander May1 , Julian Nowakowski1 and Yuval Yarom1

1Ruhr University Bochum, Germany
2The University of Klagenfurt, Austria

Abstract. The McEliece cryptosystem is a strong contender for post-quantum schemes,
including key encapsulation for confidentiality of key exchanges in network protocols.
A McEliece secret key is a structured parity check matrix that is transformed via
Gaussian elimination into an unstructured public key. We show that this transfor-
mation is highly critical with respect to side-channel leakage. We assume leakage of
the elementary row operations during Gaussian elimination, motivated by McEliece
implementations in the cryptographic libraries Classic McEliece and Botan.
We propose a novel decoding algorithm to reconstruct a secret key from its public
key with information from a Gaussian transformation leak. Even if the obtained
side-channel leakage is extremely noisy, i.e., each bit is flipped with probability as
high as τ ≈ 0.4, we succeed to recover the secret key in a matter of minutes for all
proposed (Classic) McEliece instantiations. Remarkably, for high-security McEliece
parameters, our attack is more powerful in the sense that it can tolerate even larger τ .
We demonstrate our attack on the constant-time reference implementation of Classic
McEliece in a single-trace setting, using an STM32L592 ARM processor.
Our result stresses the necessity of properly protecting highly structured code-based
schemes such as McEliece against side-channel leakage.
Keywords: McEliece · Gaussian elimination · Side-channel leakage · Key recovery
with hints

1 Introduction
In 2024, NIST released the first post-quantum cryptography standard for key encapsulation
methods, ML-KEM [Nat24]. As the accepted algorithm is lattice-based, NIST continued the
competition in a fourth round and encouraged researchers to contribute KEM schemes that
are based on other security guarantees. One such contender is Classic McEliece [BCC+22a],
which relies on assumptions in code-based cryptography. In this work we analyze how
robust McEliece is against certain side-channel attacks during public key generation.

Related work. The seminal paper of Kocher [Koc96] demonstrated that implementations
of cryptographic schemes may leak intermediate states of the algorithm, compromising
the security of the schemes. Since then, many so called side-channel attacks have been
demonstrated, exploiting various side channels [Koc96, OST06, NCOS16, GST14] and
breaking a large number of implementations [OST06, Wal01, BT11, GBHLY16, KPP20,
PSKH18].

Since side channels are unintended byproducts of physical phenomena, the information
obtained through them is often noisy and incomplete. Over the years several methods
have been devised to recover the full secret, exploiting the inherent redundancy in some

https://orcid.org/0000-0001-5649-6357
https://orcid.org/0000-0002-0329-2681
https://orcid.org/0000-0001-5965-5675
https://orcid.org/0000-0003-3066-0133
https://orcid.org/0000-0003-0401-4197

2 Leaky McEliece

cryptographic schemes [DMH20]. Most of the research in this area focuses on traditional
schemes, such as AES [RKPS14], RSA [HS09,Cop96,How97,HMM10,PPS12,ZTO+23,
CFSY22], and variations of DSA [HS01,NS02,NS03].

Within the context of post-quantum schemes, secret recovery from noisy or partial infor-
mation has also seen significant interest, e.g., with regard to side channels in HQC [SHR+22,
HSC+23], Kyber and New Hope [ADP18], BIKE, Rainbow and NTRU [EMVW22], and
the Fujisaki-Okamoto transform [UXT+22,GNNJ23].

Specifically for McEliece, Strenzke et al. [STM+08] propose exploiting potential power
side channels in the polynomial multiplication and polynomial evaluation during key
generation, particularly during the generation of the parity check matrix. Strenzke [Str10]
presents an attack on the McEliece secret key, which uses a timing side channel in the
decryption routine. A recent attack on Classic McEliece reveals the secret key using a
power side channel in a decryption oracle [GJJ22]. Yet another attack shows the use of an
electromagnetic side channel for revealing the plaintext of a message [LNPS20].

Attacker Model: Erasures and Error Rate. Our attacker model originates from so-called
cold boot attacks [HSH+08]. In a cold boot attack, one uses the physical effect that volatile
memory for a short period of time still retains its content. This effect is sufficient in
practice to read out an erroneous version of a secret key, even after switching off power
supply. The task is now to recover the key from its erroneous version. In this sense, a
cold boot attack is just a special case of a more general side-channel secret key leakage
measurement. Depending on the quality of a side-channel/cold boot measurement, one
classifies the leaked erroneous secret key bits.

In the simplest erasure setting, one keeps only those bits that are correct with (almost)
certainty, all other bits are modeled as erasures and have to be reconstructed. The ratio
σ < 1 of erased bits to all bits is called the erasure rate. Notice that for σ = 1 we erase all
bits. Thus, achieving an error rate close to 1 indicates a powerful secret key reconstruction
algorithm in the erasure setting.

In the more realistic error setting, one keeps all erroneous bits of a measured secret
key, but assumes that each bit has independently been flipped from its correct to a faulty
value with error rate τ < 1

2 . The goal is to correct all bit-flip errors in the measured secret
key for an error rate τ as large as possible. Notice that an erroneous key with error rate
τ = 1

2 does not provide any information on the underlying key. Thus, achieving an error
rate close to 1

2 indicates a powerful key reconstruction algorithm in the error setting.
For our McEliece results, we consider only the more realistic error setting.

Related Classical Results within our Attacker Model. In the erasure setting, Heninger
and Shacham [HS09] showed how to recover RSA secret keys with an erasure rate of
σ = 0.73, as long as the remaining known bits are evenly distributed at known positions.
In the more challenging error setting, the recovery algorithm of Henecka et al. [HMM10]
allows for error rates from τ ≈ 0.08 for factorization recovery, up to τ ≈ 0.24 for recovery
of RSA CRT keys. These error rates were further improved by Paterson et al. [PPS12].

While RSA was known to be vulnerable to partial information leakage, post-quantum
schemes were believed to be more leakage-resistant. This view was challenged by Esser et
al. [EMVW22], who found recovery attacks on BIKE, Rainbow and NTRU in the erasure
as well as in the error setting. Allowing for an attack complexity of 80 bits, they achieved
secret key recovery with erasure rates σ up to 0.730 for BIKE, 0.890 for Rainbow, and
0.422 for NTRU, as well as with error rates τ up to 0.200 for BIKE, 0.270 for Rainbow,
and 0.019 for NTRU. Earlier, Albrecht et al. [ADP18] reported secret key recovery under
a cold-boot attack with error rate 0.017 for Kyber and 0.032 for New Hope.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 3

McEliece Secret Key Recovery From Public Key Generation. We turn our attention to
partial key recovery in code-based cryptography. We investigate the McEliece cryptosystem,
focusing on the key generation step, and in particular on the creation of the public key from
the private key. In this work, we investigate key recovery from a single-trace side-channel
observation of the public key generation of McEliece, which runs Gaussian elimination on
a binary matrix, i.e., over F2. Gaussian elimination performs addition of rows in a pattern
that depends on the value of the bits in the matrix. We show that an attacker with (noisy)
oracle access to row additions of Gaussian elimination is able to recover the bits of the
secret key matrix.

Attacks on key generation with a noisy measurement present a significant challenge.
Unlike attacks on e.g. decryption, that can be repeated multiple times to average out the
noise, key generation is usually executed only once. Thus, an attacker needs to be able to
handle noisy data with a single trace only.

We would like to stress that we attack the generation of the public key, not the
generation of the secret key. In April 2024, Schmieg, Connolly and Westerbaan [SCW24]
proposed in an official comment on the NIST PQC Forum that when a (ML-KEM) secret
key is transferred from one system to another, only a seed of the key should be transferred,
and the key should be re-generated at the receiver’s side following a deterministic key
generation algorithm. This proposal does not affect our work either way, as we are
concerned with public (not secret) key generation, and Classic McEliece does not require
the public key for decapsulation. However, if a similar approach was to be used for public
key re-generation, then this would provide more trace opportunities for our attack, and
thus allow for an improved error correction. In this work we do not assume such an
approach, and instead focus on single-trace attacks.

1.1 Our Contributions
Secret Key Recovery From Noisy Gauss Elimination Leak. We present an attacker
model for McEliece public key generation, where an attacker observes the internal state
of Gaussian elimination with an error rate τ < 1

2 . For this attacker model, we propose
a novel algorithm that can correct bit-flip errors as high as τ ≈ 0.4. This demonstrates
that McEliece key generation is highly sensitive to leakage in the Gaussian elimination
step. We also show that the achievable error correction increases with higher security
parameters for McEliece. Intuitively, this is caused by the fact that the redundancy of
McEliece keys grows with the security level.

Practical Evaluation of Leakage Potential. We investigate two real-world implemen-
tations of McEliece, the one in the Botan cryptographic library [cod], which has been
recognized by the German Federal Institute for Information Security [bot], and the ref-
erence implementation of the Classic McEliece submission to the NIST Post-Quantum
Cryptography Standardization Project [BCC+22a].

The Botan implementation does not use constant-time coding practices and is therefore
vulnerable to side-channel attacks that leak control flow [YF14,ZTO+23,ABG10,AGS07]
and memory access patterns [LYG+15, OST06]. These may leak the location of row
additions. In our experiments, we therefore focus on the more challenging constant-time
Classic McEliece implementation, which however is not hardened against differential power
analysis attacks. We experimentally verify that the Gaussian elimination code in this
implementation leaks the locations of row additions. Specifically, we show that by observing
the power consumption of the CPU during a single Gaussian elimination, an attacker can
recover the locations of row addition operations with an error rate of τ ≈ 0.11, which
is well within the bounds of our recovery algorithm. We demonstrate a full end-to-end
attack on the Gaussian eliminiation in mceliece8192128, running on an STM32L592
ARM processor.

4 Leaky McEliece

Using Codes to Break Codes. In our attack, we introduce a novel cryptanalytic decoding
technique, where we construct a code that contains all possible candidate columns of the
McEliece secret key, and use this code to correct errors in the leaked execution matrix of
Gaussian elimination successively column by column. Because of the high redundancy
in the parity check matrix of a Goppa code, the candidate code is extremely sparse.
This results in a very large decoding radius, and thus a large theoretical upper bound
of correctable errors (τ ≈ 0.427 for high-security McEliece parameters). We analyse the
success probability of our algorithm with only few heuristic assumptions, and show that
based on our leakage model, the correctable error is quite close to the theoretical upper
bound of our approach (0.398 vs. 0.427 for high-security McEliece parameters).

Experimental Verification. In a large-scale experiment, we measure the success probability
and runtime of our attack on a variety of proposed security parameters against both libraries,
Botan and Classic McEliece. We find that the success probabilities are in agreement with
our analysis, thus verifying our heuristic assumptions. Our algorithm is highly practical, full
secret key recovery for the largest security McEliece parameter set takes only 131 seconds.

Implementing and Evaluating Sendrier’s Support Splitting Algorithm. A McEliece key
is defined by a so-called Goppa polynomial and a list of Goppa points. It is well-known that
if the Goppa polynomial and the set of Goppa points, but not their order, is known to the
attacker, the Support Splitting Algorithm (SSA) [Sen00] can (heuristically) be used to find
the secret key. We can make good use of this in our attack for some parameter sets and
implementations. However, to our knowledge, there is no publicly available implementation
of SSA. We contribute a fully working implementation of SSA in SageMath, and verify
experimentally that it is efficient for the specific case of McEliece parameter sets.

Artifacts Availability. The source code for our attack, the implementation of the Support
Splitting Algorithm, and the artifacts for the evaluation, are available at:

https://github.com/lambdafu/Leaky-McEliece

1.2 Outline
In Section 2, we introduce notations for matrices, Hamming spaces and codes. We also
describe McEliece keys, how their generation uses Gaussian elimination, and briefly recall
how to attack McEliece via the Support Splitting Algorithm. In Section 3, we define our
leakage model. After that, we introduce our attack in Section 4, and analyze its success
probability in Section 5. In Section 6, we analyze two implementations, Botan and Classic
McEliece, identify their potential leakage, and verify the leakage of Classic McEliece on
real hardware. For the Classic McEliece parameter set with the highest security level, we
successfully run an end-to-end attack. In Section 7, we report on experiments for additional
parameter sets to measure the success rate and runtime of the attack. In contrast to
the end–to-end attack of Section 6, we use simulated leakage in Fig. 8, confirming the
correctness of our heuristic analysis. In Section 8, we discuss potential countermeasures.

2 Preliminaries
2.1 Notations
Matrices. Let A be a (k × n)-matrix. We write A[i, j] for the entry of A in row i and
column j. More generally, A[i1:i2, j1:j2] denotes the submatrix of A formed by the i1-th to
i2-th rows and j1-th to j2-th columns (inclusively). In particular, the i-th row is denoted

 https://github.com/lambdafu/Leaky-McEliece

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 5

by A[i, 1:n], and the j-th column by A[1:k, j]. If the dimensions are clear from the context,
we frequently use the short hand notations A[i, :] and A[:, j] for the i-th row and j-th
column, respectively. The j-th unit vector is denoted by ej .

Hamming Space. For x, y ∈ Fn
2 we denote their Hamming distance by ∆(x, y), i.e,

∆(x, y) counts the number of coordinates on which x and y differ. The Hamming weight
of x, denoted ω(x), is defined as the Hamming distance between x and the all-zero
word 0n. The n-dimensional Hamming ball around x ∈ Fn

2 with radius r ≥ 0 is defined as
B(x, r) := {y ∈ Fn

2 | ∆(x, y) ≤ r} . For the volume V n(r) of an n-dimensional Hamming
ball with radius r ∈ N and r ≤ n

2 , we have

V n(r) =
r∑

i=0

(
n

i

)
≈

(
n

r

)
≈ 2H(r/n)n, (1)

where H(·) denotes the binary entropy function. Recall that for 0 < x < 1 the binary
entropy is defined as H(x) := −x log(x) − (1 − x) log(1 − x), whereas for x ∈ {0, 1} it
is defined as H(x) := 0. (Here, and throughout the paper, log(·) denotes the base-2
logarithm.) The approximations in Eq. (1) suppress only small polynomial factors in n,
see, e.g., [Cov99, Lemma 17.5.1].

We define the inverse binary entropy function H−1 as the inverse of H restricted to
the interval [0, 1

2]. That is, for y ∈ [0, 1], we define x = H−1(y) as the unique real number
x ∈ [0, 1

2] satisfying H(x) = H(1 − x) = y.

Codes. A (binary) code C of length n is a subset of Fn
2 . The minimum distance d of a

code C is defined as
d := min

c,c′∈C,c̸=c′
∆(c, c′).

The decoding radius of a code C with minimum distance d is defined as ⌊ d−1
2 ⌋. Equivalently,

the decoding radius is defined as the largest radius r ∈ N, for which no Hamming
balls B(c, r) around codewords c ∈ C overlap. Let x = c + e ∈ Fn

2 be an erroneous
codeword, where c ∈ C. If ∆(x, c) ≤ ⌊ d−1

2 ⌋, then c is the unique codeword closest to x.
The Hamming bound states that for every code C with distance d it holds that

V n

(⌊
d − 1

2

⌋)
≤ 2n

|C|
.

For codes with ⌊ d−1
2 ⌋ < n

2 , this yields (together with the approximations from Eq. (1))
the asymptotic bound ⌊

d − 1
2

⌋
≤ H−1

(
1 − log |C|

n

)
· n. (2)

A code is called linear if it is a linear subspace of Fn
2 . Every linear code of dimension k

can be defined via a parity check matrix H ∈ F(n−k)×n
2 , satisfying

C =
{

c ∈ Fn
2 | H · cT = 0

}
.

2.2 McEliece Keys
McEliece Secret to Public Key Transformation. Let us fix a finite field F2m . A McEliece
secret key is defined via

(1) a list L of n ≤ 2m distinct Goppa points L = (α1, . . . , αn) ∈ Fn
2m , and

(2) an irreducible Goppa polynomial g ∈ F2m [x] of degree t.

6 Leaky McEliece

From L and g, we obtain the parity check matrix

H(L, g) :=

1
g(α1)

1
g(α2) . . .

1
g(αn)

α1

g(α1)
α2

g(α2) . . .
αn

g(αn)
...

...
. . .

...

αt−1
1

g(α1)
αt−1

2
g(α2) . . .

αt−1
n

g(αn)

∈ Ft×n

2m . (3)

Let us fix an F2-basis (1, γ, . . . , γm−1) for F2m , i.e., we write every F2m-element as a0 +
a1γ + . . . + am−1γm−1 with ai ∈ F2. Let

σ : F2m → Fm
2 , a0 + a1γ + . . . , am−1γm−1 7→ (a0, . . . , am−1)T (4)

denote the canonical vector space embedding into column vectors. We extend σ to vectors
and matrices over F2m by applying σ coordinate-wise. Applying σ on H yields a secret
binary parity check matrix

H ∈ Ft×n
2m

σ7−→ Hsk ∈ Ftm×n
2 ,

where Hsk defines our (n − tm)-dimensional linear code C ⊆ Fn
2 .

The secret parity check matrix Hsk is now turned into a public parity check matrix by
transforming the matrix to systematic form Hpk = (Itm|A) via Gaussian elimination. We
detail the Gaussian elimination in Section 3. The matrices Hsk and Hpk form the McEliece
secret and public keys, respectively.

Parameter Sets. The suggested Classic McEliece parameter sets from the NIST submis-
sion [BCC+22b] are displayed in Table 1. We also include two test parameter sets for
faster calculation in experiments. Botan supports any choice of parameters with m ≤ 15.

Table 1: Classic McEliece parameter sets and two test parameter sets.
Name (n, t, m) Name (n, t, m)
mceliece348864 (3488, 64, 12) toyeliece51220 (512, 20, 9)
mceliece460896 (4608, 96, 13) toyeliece102450 (1024, 50, 10)
mceliece6960119 (6960, 119, 13)
mceliece6688128 (6688, 128, 13)
mceliece8192128 (8192, 128, 13)

2.3 Support Splitting
Two codes C, C ′ ⊆ Fn

2 are called permutation equivalent if there exists a permutation matrix
P ∈ Fn×n

2 such that C ′ = {c · P | c ∈ C} . In other words, C and C ′ are permutation
equivalent if C ′ can be derived by permuting the coordinates of the codewords c ∈ C.
Two parity check matrices H, H′ define permutation equivalent codes if and only if there
exists an invertible matrix S ∈ Fn×n

2 and a permutation matrix P ∈ Fn×n
2 such that

H′ = S · H · P. Given two parity check matrices H, H′ of two permutation equivalent
linear codes C, C ′, Sendrier’s Support Splitting Algorithm (SSA) [Sen00] recovers the
corresponding permutation matrix P. While nothing is proven about the complexity of
SSA, it is conjectured that for random codes, the algorithm runs in time roughly O(n3),
i.e., for random codes, SSA appears to be highly efficient.1

1More precisely, it is conjectured that SSA has runtime O(n3 + 2hn2 log n), where h is the dimension
of the hull of C. For random codes, h is with high probability a small constant. Typically, h ∈ {0, 1, 2}.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 7

Support Splitting in McEliece. It is well-known that SSA can be used to attack the
McEliece cryptosystem, in a scenario where the attacker obtains the Goppa polynomial
g(x) along with the set of Goppa points {α1, . . . , αn} (but without their correct order
L = (α1, . . . , αn)). Given g(x) and the set of Goppa points, the attacker can construct
a parity check matrix H′ ∈ Ft×n

2m , which, up to the order of columns, is identical to the
matrix H(L, g) from Eq. (3). In particular,

H′ = H(L, g) · P,

for some (unknown) permutation matrix P ∈ Fn×n
2 .

Let S ∈ Ftm×tm
2 be the invertible matrix that corresponds to the Gaussian elimination,

which transforms Hsk = σ(H(L, g)) into Hpk, i.e.,

Hpk = S · Hsk = S · σ(H(L, g)).

Then it holds that
σ(H′) = σ(H(L, g)) · P = S−1 · Hpk · P.

Hence, the known matrices σ(H′) and Hpk generate permutation equivalent codes. Thus,
by running SSA on σ(H′) and Hpk, the attacker can efficiently recover P. Knowledge of P
then reveals the secret key via Hsk = σ(H′) · P−1.

3 Our Attack Model: Monitoring Gaussian Elimination
Gaussian Elimination. Let us look at a simplified high-level version of Gaussian elimina-
tion to illustrate our attack model. On input of a matrix

Hsk ∈ Ftm×n
2 , with rank(Hsk[1:tm, 1:tm]) = tm,

Gaussian elimination transforms Hsk via elementary row operations into a matrix in
systematic form, i.e., into a matrix

Hpk = (Itm|A) ∈ Ftm×n
2 .

The core component of Gaussian elimination is a subroutine Eliminate-Column that on
input of a matrix Hj ∈ Ftm×n

2 and an index j ∈ {1, . . . , tm}, transforms the j-th column of
Hj into the j-th unit vector eT

j . A straight-forward implementation of Eliminate-Column
is given in Algorithm 1.

To bring Hsk into systematic form Hpk, Gaussian elimination simply sets

H1 := Hsk, (5)
Hj+1 := Eliminate-Column(Hj , j) for j = 1, . . . , tm, (6)

Hpk := Htm+1,

as depicted in Algorithm 2.2

Our Attack Vector. Eliminate-Column’s row addition in Line 9 of Algorithm 1 is
triggered by the if-statement in Line 8. This if-statement is our attack vector.3 We assume
that we have access to a noisy side channel, which allows us to monitor whether Line 9 gets

2Notice that the call to Eliminate-Column in Line 3 of Gaussian-Elimination never returns Fail
since we require rank(Hsk[1 : tm, 1 : tm]) = tm. In the Classic McEliece implementation, this is ensured
by repeatedly sampling random Hsk’s, until one obtains Hsk with rank(Hsk[1 : tm, 1 : tm]) = tm.

3In better protected real-world implementations, Line 8 is of course not a simple if-statement. However,
as we show in Section 6, our attack also applies to such implementations.

8 Leaky McEliece

Algorithm 1 Eliminate-column
Input: Hj ∈ Ftm×n

2 , j ∈ {1, . . . , tm}
Output: Hj+1 ∈ Ftm×n

2 with Hj+1[:, j] = eT
j , and

Hj+1 = Gj · Hj for some invertible Gj ∈ Ftm×tm
2 ,

or Fail.
1: Hj+1 := Hj

2: if Hj+1[j, j] ̸= 1 then ▷ ensure Hj+1[j, j] = 1
3: Find minimal k ∈ {j + 1, . . . , tm} with Hj+1[k, j] = 1.
4: if no such k exists then ▷ rank(Hj) < tm
5: return Fail
6: Hj+1[j, :] := Hj+1[j, :] + Hj+1[k, :] ▷ add k-th to j-th row
7: for i = 1, . . . , tm, j ̸= i do
8: if Hj+1[i, j] = 1 then ▷ ensure Hj+1[i, j] = 0 for i ̸= j
9: Hj+1[i, :] := Hj+1[i, :] + Hj+1[j, :] ▷ add j-th to i-th row

10: return Hj+1

Algorithm 2 Gaussian-Elimination
Input: Hsk ∈ Ftm×n

2 with rank(Hsk[1 : tm, 1 : tm]) = tm
Output: systematic form Hpk = (Itm|A) ∈ Ftm×n

2 of Hsk,
1: H1 := Hsk
2: for j = 1, . . . , tm do
3: Hj+1 := Eliminate-column(Hj , j)
4: return Hpk := Htm+1

executed. By that, the side channel reveals noisy variants of the matrix entries Hj [i, j]
where i ̸= j, i.e., the non-diagonal entries of the j-th column of each Hj .

The j-th columns of all Hj ’s form our so-called execution matrix. Since our side channel
is noisy, we define our leak matrix as an erroneous version of the execution matrix (see
Definition 1 below). Notice since our leak does not reveal the diagonal entries Hj [j, j], the
diagonal entries of our leak matrix L are drawn uniformly at random.

Definition 1 (Execution Matrix and Leak Matrix). We define the execution matrix as

E :=
(

H1[:, 1] | H2[:, 2] | . . . | Htm[:, tm]
)

∈ Ftm×tm
2 .

The leak matrix is an erroneous version of the execution matrix. More precisely, for all
1 ≤ i, j ≤ tm we have

L[i, j] := E[i, j] + e[i, j] = Hj [i, j] + e[i, j], (7)

where e[i, j] ∈ F2 and for some error probability τ ≤ 1
2 :

Pr[e[i, j] = 1] =
{

τ for i ̸= j
1
2 for i = j

.

In other words, we have a Bernoulli-distributed error e[i, j] ∼ B(τ) for all but the diagonal
entries. For simplicity of exposition, we call the leak matrix L a B(τ)-disturbed version of
the execution matrix E (thereby ignoring the diagonal issue).

Note that for τ = 1
2 , L is uniformly random and does not provide any information. Of

course, our simplified Gaussian-Elimination is not protected at all against leakage of

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 9

Eliminate-Column’s operation in Line 9. However, as we show in Section 6, state-of-the-
art implementations also do not provide sufficient leakage resistance. In particular, we
show that they also reveal a leak matrix L via side channels.

4 Our Attack: Decoding the Leak Matrix
For ease of notation, we first describe our new attack in terms of our simplified Gaussian
elimination algorithm (Algorithm 2). Importantly, as we show in Section 6, the attack,
also applies to real world implementations of Gaussian elimination, as in Classic McEliece
and in Botan.

High-level Idea. Let us first sketch the high-level idea behind our attack.
Suppose we obtain a leak matrix L, corresponding to Gaussian elimination on a

McEliece secret key Hsk. To recover the secret key Hsk, we start by successively recovering
all columns of the execution matrix E ∈ Ftm×tm

2 (Definition 1). Along the way, we also
recover the transformation matrices Sj , as defined below.

Definition 2 (Transformation Matrix). For all 1 ≤ j ≤ tm, we define the j-th transfor-
mation matrix Sj ∈ Ftm×tm

2 as the unique, invertible matrix, satisfying

Hj+1 = Sj · Hj ,

corresponding to the elementary row operations of Eliminate-column(Hj , j), where the
Hj ’s are the matrices produced by Gaussian-Elimination (Algorithm 2).

Given the j-th column E[:, j] = Hj [:, j] (see Definition 1) of the execution matrix E,
we efficiently obtain the j-th transformation matrix Sj as depicted in Algorithm 3.

Algorithm 3 Recover-Transformation-Matrix
Input: Hj ∈ Ftm×n

2
Output: Corresponding transformation matrix Sj ∈ Ftm×tm

2 ,
1: Pick an arbitrary matrix M ∈ Ftm×n

2 , whose j-th column is identical to Hj [:, j].
2: Run Eliminate-column(M, j), and monitor all its elementary row operations.
3: Apply the exact same row operations to Itm and output the resulting matrix.

Given all Sj ’s, we finally recover the secret key from the transformation matrices using
the following lemma.

Lemma 1. For all 1 ≤ j ≤ tm, the j-th column L[:, j] of the leak matrix contains a
B(τ)-disturbed version of

E[:, j] = Hj [:, j] = Sj−1 · . . . · S1 · Hsk[:, j].

Proof. The lemma follows immediately from Definitions 1 and 2.

Since Htm+1 = Hpk (see Algorithm 2), Lemma 1 shows that knowledge of the transfor-
mation matrices then allows us to easily recover the secret key via

Hsk = S−1
1 · S−1

2 · . . . · S−1
tm · Hpk.

10 Leaky McEliece

Recovery of E[:, 1]. Let us now detail how to recover the execution matrix columns
E[:, j] from the leak matrix L. We begin with recovery of the first column E[:, 1]. To this
end, we compute a code

C1 :=
{

σ

(
1
b

(1, a, a2, . . . , at−1)
)

| a, b ∈ F2m , b ̸= 0
}

⊆ Ftm
2 . (8)

Recall that σ : F2m → Fm
2 is the canonical vector space embedding from Eq. (4), which

we apply here coordinate-wise to the vector 1
b (1, a, a2, . . . , at−1). Furthermore, notice that

the code C1 is not linear, i.e., it is simply a subset of Ftm
2 .

By Eq. (3), our code C1 contains all potential candidates for the columns of the
secret key Hsk. In particular, C1 contains all candidates for the first column E[:, 1] of our
execution matrix E, since by definition E[:, 1] = Hsk[:, 1] (see also Lemma 1).

Interestingly, C1 is a very small subset of Ftm
2 : By Table 1, we obtain for all Classic

McEliece parameter sets

|C1| < 22m ≤ 226, but |Ftm
2 | = 2tm ≥ 2768.

Hence, we can easily construct and store C1 in practice. Moreover, when making the mild
assumption that the codewords c ∈ C1 are distributed somewhat uniformly in Ftm

2 , we can
expect C1 to have a rather large decoding radius.

By Lemma 1, the first leak matrix column L[:, 1] is a B(τ)-disturbed version of E[:, 1].
Therefore, as long as our error rate τ is not too large, E[:, 1] ∈ C1 is likely the codeword
closest to L[:, 1]. Thus, to recover E[:, 1] with high probability, we simply decode L[:, 1] to
the closest codeword c ∈ C1.

In Section 5, we thoroughly analyze the success probability of this approach. We
experimentally verify in Sections 6 and 7 that it performs well in practice.

Code Update and Recovery of E[:, 2]. After recovering E[:, 1], we obtain the second
execution matrix column E[:, 2] as follows:

By Lemma 1, the second leak matrix column L[:, 2] contains a B(τ)-disturbed version
of

E[:, 2] = S1 · Hsk[:, 2]. (9)

We recover S1 from E[:, 1] via Algorithm 3, and update our code C1 by multiplying it with
S1. That is, we construct the code

C2 := S1 · C1 = {S1 · c | c ∈ C1} . (10)

Since C1 contains all potential candidates for the columns of the secret key Hsk, the
updated code C2 then contains (by Eq. (9)) all candidates for E[:, 2]. Analogously to the
recovery of the first column E[:, 1], we recover the second column E[:, 2] ∈ C2 with high
probability by simply decoding L[:, 2] to the closest codeword c ∈ C2.

Inductively Recovering E[:, j] for j > 2. We proceed inductively with reconstruction of
the remaining E[:, j]’s:

Suppose we have already recovered E[:, 1], . . . E[:, j −1] and constructed the correspond-
ing transformation matrices S1, . . . , Sj−1 along with the codes C1, . . . , Cj−1, where

Ci := Si−1 · Ci−1 = {Si−1 · c | c ∈ Ci−1} , i ≥ 2.

Using Algorithm 3, we recover the transformation matrix Sj−1 from E[:, j −1]. We multiply
Cj−1 with Sj−1 to obtain the code

Cj = Sj−1 · Cj−1 = Sj−1 · . . . · S2 · S1 · C1.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 11

The resulting code Cj then contains all candidates for the j-th column

E[:, j] = Sj−1 · . . . · S2 · S1 · Hsk[:, j].

Since L[:, j] is a B(τ)-disturbed version of E[:, j], we then recover E[:, j] ∈ Cj with high
probability by decoding L[:, j] to the closest codeword c ∈ Cj .

Codebook Reduction. Recall that the first execution matrix column E[:, 1] is identical
to the first secret key column Hsk[:, 1]. Thus, after recovering E[:, 1] from our leak matrix
L, we can easily read off the first Goppa point α1 from E[:, 1] (see Eq. (3)).

Since the n Goppa points α1, . . . , αn are distinct, this allows us to slightly reduce the
size of the code C2, and thereby improve the runtime of our attack: Instead of using the
code C2 := G1 · C1 from Eq. (10), we first remove all 2m − 1 codewords

σ

(
1
b

(1, a, a2, . . . , at−1)
)

with a = α1

from C1, and then multiply the resulting code by S1. Clearly, our smaller code of size
|C1| − (2m − 1) still contains all candidates for the second column H[:, 2].

By doing some additional bookkeeping, we can also recover the Goppa points αi, for
i = 2, . . . , tm, and thereby further decrease the size of our codes per each recovered column.
To this end, we simply define a family of codebooks

CB1 :=
{(

σ

(
1
b

(1, a, a2, . . . , at−1)
)

, a, b

)
| a, b ∈ F2m , b ̸= 0

}
, (11)

CBj := {(Sj−1 · c, a, b) | (c, a, b) ∈ CBj−1, a ̸= αj−1} j > 1, (12)

in which we

1. keep track of the a’s and b’s that define our codewords c ∈ Cj , and

2. remove all codewords that are defined via already recovered Goppa points.

Notice that CBj ⊆ Cj ×F2m ×F2m , i.e., the first component of each codebook CBj forms a
subcode of Cj . Furthermore, the first component of each CBj still contains all candidates
for the column E[:, j].

Algorithm 4 MaxLikelihood-Decode
Input: j-th column L[:, j] ∈ Ftm

2 of leak matrix,
codebook CB = {(ci, ai, bi)}i=1,...,|CB| ⊂ Ftm

2 × F2m × F2m

Output: (c, a, b) ∈ CB with codeword c closest to L[:, j]
1: cmin := (c1, a1, b1)
2: dmin := ∆(c1, L[:, j])
3: for i = 2, . . . , |CB| do
4: if (∆(ci, L[:, j]) < dmin) then
5: cmin := (ci, ai, bi)
6: dmin := ∆(ci, L[:, j])
7: return cmin

To efficiently decode the columns L[:, j] via our codebooks to E[:, j], we use our
algorithm MaxLikelihood-Decode as shown in Algorithm 4.

Our codebook-based approach slightly reduces the size of our codes by 2m −1 per recov-
ered column E[:, j]. A more significant size reduction, however, can be achieved after recover-
ing the first t+1 columns: When recovering a column E[:, j] via MaxLikelihood-Decode,

12 Leaky McEliece

the algorithm’s output (c, a, b) reveals not only the j-th Goppa point a = αj , but also
b = g(αj), i.e., the evaluation of the Goppa polynomial g(x) at αj . After recovering the first
t+1 columns E[:, 1], . . ., E[:, t+1], we thus obtain the pairs (α1, g(α1)), . . . , (αt+1, g(αt+1)).
These t + 1 pairs uniquely determine the degree-t Goppa polynomial g(x).

Given the tuples (αi, g(αi)), i = 1, . . . , t + 1, we efficiently compute g(x) via Lagrange
interpolation. Knowledge of g(x) then allows us to filter out all tuples (c, a, b) with b ̸=
g(a) from our codebooks. In other words, we define

CBj := {(Sj−1 · c, a, b) | (c, a, b) ∈ CBj−1, a ̸= αj−1, b = g(a)}, j ≥ t + 2. (13)

The resulting codebooks are of size |CBj | < 2m, i.e., less than the square root of our initial
codebook CB1 with |CB1| = 2m(2m − 1) ≈ 22m.

Special Case of Known Goppa Points. As shown in Table 1, the parameter set
mceliece8192128 has (n, m) = (8192, 13). Therefore 2m = n, which implies that
{α1, . . . , αn} = F2m , i.e., the set of Goppa points is the whole field. If we succeed
to compute g(x), we may apply the Support Splitting algorithm to efficiently recover the
secret key. This in turn implies that in the case of n = 2m, we only have to correctly
decode t+1 columns via MaxLikelihood-Decode before successfully recovering g(x) via
Lagrange interpolation and L via Support Splitting — and thus the whole secret key. In
particular, in the case of n = 2m, our side channel has to leak only the first t + 1 iterations
of Eliminate-Column’s for-loop.

More generally, we can always apply Support Splitting when we know the set of
Goppa points. This occurs, for instance, when a McEliece implementation generates the
Goppa points deterministically. We will show in Section 6.3 that this is the case for the
cryptographic library Botan.

Putting Everything Together. Our complete attack Secret-Key-Recovery that re-
covers the secret key Hsk from our leak matrix L is given in Algorithm 5.

Algorithm 5 Secret-Key-Recovery
Input: public key Hpk ∈ Ftm×n

2 ,
leak matrix L ∈ Ftm×tm

2 (see Definition 1)
Output: secret key Hsk ∈ Ftm×n

2

1: CB :=
{(

σ
(1

b (1, a, a2, . . . , at−1)
)

, a, b
)

| a, b ∈ F2m , b ̸= 0
}

⊆ Ftm
2 × F2m × F2m .

2: for j = 1, . . . , tm do
3: (Hj [:, j], αj , βj) := MaxLikelihood-Decode(L[:, j], CB)
4: Sj := Recover-Transformation-Matrix(Hj [:, j]).
5: CB := {(Sj · c, a, b) | (c, a, b) ∈ CB, a ̸= αj}
6: if j = t + 1 then
7: Interpolate g(x) ∈ F2m [x] from (α1, β1) . . . , (αt+1, βt+1), where βi = g(αi).
8: if set of Goppa points {α1, . . . , αn} known then
9: Recover Hsk via Support Splitting. ▷ See Section 2.3.

10: return Hsk.
11: else
12: CB := {(c, a, b) ∈ CB | b = g(a)}
13: return Hsk := S−1

1 · S−1
2 · . . . · S−1

tm · Hpk

List Decoding. Instead of using MaxLikelihood-Decode, one may also use list-
decoding in our attack, i.e., instead of computing only the closest codebook element

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 13

(Hj [:, j], αj , βj) in Line 3 of Algorithm 5, we may instead compute a list L of close
codebook elements, that are within in some well-chosen radius r from the leak matrix
column L[:, j].

Importantly, since each element in L gives rise to a different transformation matrix and
codebook in Lines 4 and 5, we then have to split the algorithm into |L| branches. While,
in the worst case, this may lead to exponentially many branches after tm iterations, in
the average case, list decoding would not increase the runtime much: If we decode to an
incorrect c ̸= (Hj [:, j], αj , βj) in the j-th iteration, then the resulting wrong codebook in
the (j+1)-th iteration will likely be considerably different from the correct codebook CBj+1.
In that case, we can expect the leak matrix column L[: j + 1] to be very far from all
elements in the wrong codebook. Hence, if we decode incorrectly in the j-th iteration,
then (list)-decoding in the (j + 1)-th iteration is expected to fail. In particular, out of |L|
branches, only the branch with the correctly decoded (Hj [:, j], αj , βj) survives.

However, since we already achieve high success probability for Algorithm 5 with the
simple MaxLikelihood-Decode, we chose to not unnecessarily complicate the algorithm
and its analysis.

5 Analysis of Success Probability
In this section, we analyze for which size of the error τ our algorithm Secret-Key-
Recovery succeeds to recover the secret key Hsk with good success probability. We
start by giving a simple asymptotic upper bound on the error rate τ that Secret-Key-
Recovery can tolerate at most. Interestingly, this bound depends only on the McEliece
parameter t, and, surprisingly, increases with t. In other words, the higher the McEliece
security level, the more errors we can allow in our leak matrix.

After explaining why that is the case, we proceed with a thorough analysis of the
success probability of Secret-Key-Recovery. We end this section by showing that our
simple asymptotic upper bound quite accurately matches the actual error rates that we
obtain from our more thorough probability analysis.

5.1 A Simple Asymptotic Upper Bound on τ

In a nutshell, our algorithm Secret-Key-Recovery successively recovers each column
E[:, j] of our execution matrix by decoding the corresponding leak matrix column L[:, j] to
the closest candidate in some codebook CBj .

Let dj := ∆(L[:, j], E[:, j]), and let rj be the decoding radius of the code defined by
codebook CBj . We decode correctly with probability 1 if and only if

dj ≤ rj , for every j = 1, . . . , tm.

Together with Eq. (2), this yields the following asymptotic necessary condition for the
correctness of Secret-Key-Recovery:

dj ≤ H−1
(

1 − log |CBj |
tm

)
· tm, for every j = 1, . . . , tm.

Using |CB1| ≈ 22m and |CB1| > |CBj | for j ̸= 1, we can also use the simpler necessary
condition

d1 ≤ H−1
(

1 − 2
t

)
· tm. (14)

By Lemma 1, L[:, 1] is a B(τ)-disturbed version of E[:, 1]. Therefore, d1 essentially follows
the Binomial distribution with parameters tm and τ , which has expected value τtm. For

14 Leaky McEliece

simplicity, let us assume that d1 achieves its expected value E[d1] = τtm.4 Then Eq. (14)
translates to

τ < H−1
(

1 − 2
t

)
. (15)

We visualize the upper bound from Eq. (15) in Fig. 1 as a function of t. Fig. 1 shows
that for typical McEliece with t ∈ [64, 128], as in Table 1, we obtain an upper bound for τ
between roughly 0.39 and 0.42.

70 80 90 100 110 120

0.4

0.41

0.42

t

H
−

1 (1
−

2 t
)

Figure 1: Upper bound from Equation (15) for 64 ≤ t ≤ 128.

Growth of τ . From Fig. 1, we see that, quite remarkably, our upper bound for the error
rate τ actually increases with t. Hence, the bound suggests that for larger security levels
of McEliece we can tolerate larger errors τ in our leak matrix. Let us briefly explain
this phenomenon. Each secret key column Hsk[:, j] is uniquely defined by some Goppa
point αj ∈ F2m and the corresponding Goppa polynomial evaluation g(αj) ∈ F2m (see
Eq. (3)). Since any field element from F2m can be represented by m bits, this shows that
each secret key column contains only 2m bits of information. In other words, we have
redundancy of

(t − 2)m
tm

= 1 − 2
t

per bit of Hsk[:, j] ∈ Ftm
2 .

Recall that the columns E[:, j] of our execution matrix are of the form

E[:, j] = Sj−1 · . . . · S2 · S1 · Hsk[:, j].

Since the transformation matrices Si are invertible, it follows that each E[:, j] contains
exactly as much information as the corresponding secret key column Hsk[:, j]. Hence,
also in every execution matrix column E[:, j], a (1 − 2

t)-fraction of the bits is redundant.
Therefore, the larger t gets, the more redundant gets our execution matrix — making it
easier to decode the leak matrix L.

5.2 Fine-Grained Analysis
What mainly prevents our attack from reaching the asymptotic upper bound from Eq. (15)
in practice is that the error does not always match its expected value. This variance has
to be taken into account. Let us now precisely determine the success probability of our
algorithm Secret-Key-Recovery.

4By the Chernoff bound, d1 is asymptotically very close to its expected value.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 15

Decoding a Single Column. We start by analyzing the success probability of correctly
decoding a single leak column L[:, j] to the corresponding execution matrix column E[:, j].

Let dj := ∆(L[:, j], E[:, j]). We decode correctly if L[:, j] has distance at least dj + 1
to any other codeword c ∈ CBj \ {E[:, j]}.5 Conversely, we decode incorrectly only if
any L[:, j] hits a point inside a Hamming ball B(c, dj). To analyze the probability of this
event, we have to study the distribution of the codebook elements.

While our first codebook CB1 is somewhat structured (see Eq. (11)), we expect the
remaining codebooks CBj with j > 1 to behave quite randomly due to the transformation
matrices Sj−1 (see Eq. (12)). In particular, as j grows, we expect the distribution of
codebook elements to converge to the uniform distribution over Ftm

2 .
While we cannot hope to formally verify this behavior of our codebooks,6 let us instead,

as a sanity check, show that the Hamming weight distribution of our codebook elements is
close to that of uniformly random vectors from Ftm

2 . Let w ∈ N with 0 ≤ w ≤ tm, and let
Xj,w denote the number of codebook elements c ∈ CBj of Hamming weight ω(c) = w. Since
a uniformly random vector v ∈ Ftm

2 has Hamming weight w with probability 2−tm
(

tm
w

)
,

we have to show that, for every w, it holds that Xj,w ≈ 2−tm
(

tm
w

)
|CBj |.

0 50 100 150
0

2

4

·10−3

0 50 100 150
0

2

4

·10−3

0 50 100 150
0

2

4

·10−3

Figure 2: Distribution of 1
|CBj |

∣∣Xj,w − 2−tm
(

tm
w

)
|CBj |

∣∣ as a function in w, for j = 1, 2, 3
(from left to right) for one run of the attack.

In Fig. 3, we plot the normalized distances 1
|CBj |

∣∣Xj,w − 2−tm
(

tm
w

)
|CBj |

∣∣ for j = 1, 2, 3
and 0 ≤ w ≤ tm = 180 in the toyeliece51220 parameter set (n = 512, t = 20, m = 9).
As Fig. 2 shows, the distances quickly converge to zero, showing that the Hamming weight
distribution of our codebook elements quickly converges to that of uniformly random
vectors from Ftm

2 . Thus, we may safely model the distribution of our codebook elements
using the following assumption.

Assumption 1. We assume that the points c ∈ Ftm
2 in our codebook CBj ⊆ Ftm

2 ×F2m ×F2m

are independent and distributed uniformly at random in Ftm
2 .

Using Assumption 1, we now prove the following lemma.

Lemma 2. Let p(dj) denote the probability

p(dj):= Pr[L[:, j] decodes correctly to E[:, j]|L[:, 1], . . .L[:, j−1] decoded correctly],

where dj := ∆(L[:, j], E[:, j]). Under Assumption 1 we obtain

p(dj) =
(

1 − V tm(dj)
2tm

)|CBj\{E[:,j]}|

. (16)
5For simplicity, we take some notational liberty throughout this section by identifying codebook elements

(c, α, β) ∈ CBj with their first component c.
6If we wanted to show that empirical distribution of codebook elements is close to the uniform

distribution over Ftm
2 , we would have to sample significantly more than 2tm codebook elements. By

Table 1, all parameter sets have 2tm ≥ 2180.

16 Leaky McEliece

Proof. Let c ∈ CBj \ {E[:, j]} be arbitrary. Let Ec denote the event that L[:, j] decodes
(incorrectly) to c. Event Ec implies that L[:, j] hits one of the V tm(dj) points inside the
Hamming ball of radius dj around c.

By Assumption 1, E[:, j] ∈ CBj is uniformly distributed and therefore L[:, j] as well
(since, by Lemma 1, L[:, j] is a B(τ)-disturbed version of E[:, j]). Thus, Ec happens with
probability V tm(dj) · 2−tm. Conversely, L[:, j] does not decode to c with probability

1 − V tm(dj)
2tm

.

The column L[:, j] decodes correctly if and only if it does not decode to any incorrect
c ∈ CBj \ {H[:, j]}. By Assumption 1, the events Ec are independent for all c. Thus,

p(dj) =
∏

c∈CBj\E[:,j]

1 − V tm(dj)
2tm

=
(

1 − V tm(dj)
2tm

)|CBj\{E[:,j]}|

.

We further verify the validity of Assumption 1 experimentally in Section 7 by showing
that the actual success probability closely matches Lemma 2.

Decoding All Columns. Secret-Key-Recovery succeeds to output the secret key
Hsk if it correctly decodes L[:, 1], . . . , L[:, tm]. For the j-th column, this happens with
probability p(dj). Hence, Secret-Key-Recovery’s success probability is given by

Pr[Success] :=
tm∏
j=1

tm∑
dj=0

p(dj) · Pr[∆(L[:, j], E[:, j]) = dj]. (17)

It remains to determine the distribution of the random variable ∆(L[:, j], E[:, j]).
Since, L[:, j] is a B(τ)-disturbed version of E[:, j], dj is B(τ)-distributed. As a conse-

quence, we have

Pr[∆(L[:, j], E[:, j]) = d] =
(

tm

d

)
· τd · (1 − τ)tm−d (18)

for all 1 ≤ j ≤ tm.
Using Lemma 2 together with Eqs. (17) and (18), we obtain Secret-Key-Recovery’s

success probability as

Pr[Success] =
tm∏
j=1

tm∑
dj=0

(
1 − V tm(dj)

2tm

)|CBj\{E[:,j]}|

·
(

tm

dj

)
· τdj · (1 − τ)tm−dj .

Recall that for each codebook CBj we have |CBj | < 22m. Furthermore, for j ≥ t + 2, we
have |CBj | < 2m, since after t + 1 recovered columns we interpolate the Goppa polynomial
and then reduce the codebook size (see Eq. (13)). Therefore, we obtain

Pr[Success] >

 tm∑
dj=0

(
1 − V tm(dj)

2tm

)22m

·
(

tm

dj

)
· τdj · (1 − τ)tm−dj

t+1

·

 tm∑
dj=0

(
1 − V tm(dj)

2tm

)2m

·
(

tm

dj

)
· τdj · (1 − τ)tm−dj

tm−(t+1)

. (19)

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 17

For the special case of known Goppa points, we stop decoding after t + 1 iterations in
Secret-Key-Recovery. Therefore, we only need the first factor from Eq. (19), i.e.,

Pr[Success] ≥

 tm∑
dj=0

(
1 − V tm(dj)

2tm

)22m

·
(

tm

dj

)
· τdj · (1 − τ)tm−dj

t+1

.

Fig. 3 shows Pr[Success] as a function of τ for concrete parameters. As the figure
shows, if τ is sufficiently small, the success probability is very close to 1. Conversely, if τ is
too large, the success probability is very close to 0. Notably, the transition between these
two regimes is rather abrupt. This phenomenon can be explained as follows: Let τ∗ be the
error rate τ for which Pr[Success] equals 1

2 . Then τ∗ can be seen as the crossover point
between our two regimes. As Table 2 shows, this crossover point matches the asymptotic
upper bound τ < H−1(1 − 2

t) from Eq. (15) quite accurately. If τ exceeds this upper
bound, then decoding becomes information-theoretically impossible. However, as soon as
τ is slightly below the bound, then the high redundancy of 1 − 2

t per bit makes decoding
easy, and we quickly achieve success probability 1.

0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.25

0.5

0.75

1

Classic toyeliece51220
Classic toyeliece102450
Classic mceliece348864
Classic mceliece460896
Classic mceliece6960119
Classic mceliece6688128
Classic mceliece8192128

Figure 3: Success probability predicted by Eq. (19) for various parameter sets. The
horizontal axis shows the error probability τ of the leak. The vertical axis shows the
success probability of our attack.

Table 2: Largest error rate τ for which Eq. (19) gives success probability at least 1
2

compared to the upper bound from Eq. (15).
Name Eq. (19) Eq. (15) Difference

toyeliece51220 0.261 0.316 0.055
toyeliece102450 0.340 0.383 0.043
mceliece348864 0.360 0.396 0.036
mceliece460896 0.384 0.415 0.031
mceliece6960119 0.395 0.424 0.029
mceliece6688128 0.398 0.427 0.029
mceliece8192128 0.398 0.427 0.029

6 Attacking Real World Implementations
We investigate two concrete implementations of McEliece:

1. The reference implementation of Classic McEliece [BCC+22a], a 4th-round submission
to the NIST’s Post-Quantum Cryptography Standardization Project [nis].

18 Leaky McEliece

2. The cryptographic library Botan [cod], which has been recognized by the German
Federal Institute for Information Security as a secure implementation [bot].

Since the exact operations of Gaussian elimination during public-key generation in both
implementations slightly differ from our high-level description in Algorithm 2, we describe
both of them in the following in detail. We discuss the potential for leakages in our
attacker model. As a proof of concept, we use differential power analysis on the Gaussian
Elimination of Classic McEliece running on an STM32L592 ARM processor implementation,
recovering the secret key in an end-to-end attack.

6.1 Classic McEliece
Algorithm 6 outlines the operation of Gaussian elimination in the reference implementation
of Classic McEliece [BCC+22a].

Algorithm 6 Gaussian Elimination from Classic McEliece Key Generation
Input: Hp ∈ F⌈tm/8⌉×n

28

Output: (Itm|A) or Fail
1: for p = 1, . . . , ⌈tm/8⌉ do
2: for b = 0, . . . , 7 do
3: j := 8(p − 1) + b + 1
4: for i = j + 1, . . . , tm do ▷ diagonal stage
5: mask := (Hp[i, p] + Hp[j, p]) ≫ b
6: mask := mask & 1
7: mask := −mask
8: for c = 1, . . . , n/8 do
9: Hp[j, c] := Hp[j, c] + mask & Hp[i, c]

10: if H[j, j] ̸= 1 then
11: return Fail ▷ cannot bring H into systematic form
12: for i = 1, . . . , tm do ▷ zero stage
13: if i = j then
14: continue
15: mask := H[i, j] ≫ b
16: mask := mask & 1
17: mask = −mask ▷ potential leak: mask is 0x00 or 0xff
18: for c = 1, . . . , n/8 do
19: Hp[i, c] := Hp[i, c] + mask & Hp[j, c]

Like the naive Gaussian elimination in Algorithm 2, Classic McEliece iterates over
the first tm columns to bring the matrix into a systematic form. For each column, the
algorithm ensures two conditions. The first one, the diagonal stage (Lines 4–9), is to ensure
H[j, j] = 1. The second zero stage (Lines 12–19), ensures that H[i, j] = 0 for i ̸= j.

To minimize timing side-channel leaks in the first stage (the diagonal stage), the
implementation adds in the j-th iteration a fixed number of tm − j rows to the j-th row,
i.e., the number of row additions only depends on the index j, but not on secret data.
Similarly, the second stage of column elimination (the zero stage) also performs a constant
number of row additions in each iteration to minimize timing side-channel leaks. Thus,
Classic McEliece does more row additions than our naive Algorithm 2.

Potential Leak Analysis. The Classic McEliece implementation uses programming tech-
niques to defend against side-channel leakage based on observing execution times or
memory cache access patterns. In particular, it contains no secret-dependent branches

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 19

and no secret-dependent memory access patterns. This is achieved by always executing
the exact same sequence of row additions, irrespective of the values of H. To correctly
implement the Gaussian elimination algorithm, these row additions involve a mask value
that effectively neutralizes some of the row additions, turning them into no-operations
(no-op). For the diagonal stage, there are two modes: If there is a zero on the diagonal of
the current column, row additions are a no-op until the row contains a one in the current
column. After that, there definitely is a one in the diagonal entry, and the mask is inverted,
so row addition becomes a no-op for all subsequent rows that contain a one in the current
column. For the zero stage, there is only one mode. Here, the row addition is a no-op if
the target row already contains a zero, otherwise the current row (which definitely has a
one in the current column due to the diagonal stage) is added to ensure a zero value in
the current column.

Although important side-channel leakages are mitigated by this approach, some leakage
through side channels not based on timing or cache access measurements remains possible.
The Classic McEliece implementation speeds up the row operations by applying them at a
byte resolution. To this end, it extends the single-bit mask to eight bits by computing
its inverse modulo 28 (Line 17). Consequently, the resulting values of the mask have very
different Hamming weights. The power consumption and the electromagnetic emanations
observed during program execution correlate with the Hamming weight of the data that
the program processes. Thus, computing the mask and using it has observable impact on
the circuit’s power consumption. In the zero stage, the algorithm calculates a mask value
based on H[i, j]. Hence, (erroneous) leaks of mask directly correspond to our simplified
leak matrix L from Section 3.

Leaking the Zero Stage is Sufficient. In this work, we only consider leaks from the
mask in the zero stage, i.e. Line 17, which corresponds to all bits of H except those on
the diagonal. An observation of a potential leak in the diagonal stage in Line 5 could
also leak information on the diagonal of H. However, as the mask value does not directly
correspond to a single bit of H, using this information in the attack introduces significant
complications. In any case, our definition of the leak matrix L (see Definition 1) does not
require knowledge of the diagonal entries.

6.2 Classic McEliece Leakage Verification and Attack
We verify that we can indeed detect power leakage during the Gaussian elimination of
Classic McEliece, and thereby obtain erroneous leaks of mask from Algorithm 6. In our
experiment, we use ChipWhisperer-Husky connecting to CW308 UFO with CW308T-
STM32L5HWC as a target board. We perform a full secret key recovery for the strongest
parameter set mceliece8192, so t = 128, m = 13, n = 8192. We only ran the Gaussian
Elimination on the first n′ := t + 1 = 129 columns, since this is sufficient for a full
key recovery using the Support Splitting algorithm in the case of mceliece8192, see
Section 2.3.7

As Classic McEliece is constant-time, all traces of power consumption during Gaussian
Elimination are of the same length and aligned automatically by the capturing device.
One execution takes 69 seconds and results in S = 287002932 12-bit samples per trace
(which is also the number of CPU clock cycles) resulting in 400 MB of raw data per trace.
We collected 3000 traces in 2.5 days, generating 1.2 TB of data.

Points of Interest. We assume that the attacker has access to a device identical to the
victim device to identify the points of interest (PoIs) using the Fixed-vs-Random Data

7To this end, we slightly altered the keygen code such that it halts after t + 1 columns, by changing a
single constant in the code. In practice, an attacker would simply stop measurements after t + 1 columns.

20 Leaky McEliece

test of a test vector leakage assessment (TVLA) procedure [SM15]. (Rather than using
Signal-to-Noise ratio analysis for PoI identification [MOP07], we use TVLA, because TVLA
corresponds to the difference of the means, which we later use for classifying the PoIs.)
We expect a set Pd of PoIs corresponding to the calculation of mask values in Line 5 and
a set Pz corresponding to Line 17 in Algorithm 6. We observe that the outer loop is over
the n′ columns, and that for column j we have two inner loops. The first calculates tm − j
masks for the diagonal stage, and the second calculates tm − 1 masks for the zero stage.
Furthermore, the zero stage loop has a single short iteration when i = j (cf. Line 14). Thus,
for each column j, we expect a sequence of tm − j of equally spaced PoIs with distance
Td, followed by a sequence of i − 1 equally spaced PoIs with distance Tz, followed by a
short gap of length Tskip, followed again by a sequence of tm − j equally spaced PoIs with
distance Tz. In total, we expect |Pd| =

∑tm−1
i=tm−n′ i = 206271 PoIs in the diagonal stages

and |Pz| = (tm − 1) · n′ = 214527 in the zero stages, resulting in P = |Pd| + |Pz| = 420798
mask-related PoIs. Of those, we are mainly interested in the PoIs Pz of the zero stages, as
these form the non-diagonal elements of the leak matrix L.

Candidates for Points of Interest. To identify the PoIs, we collect N = 1000 traces
R1, . . . , R1000 of power consumption during the Gaussian elimination of random matrices
and compute the per-point average R̄ and sample standard deviation σR. We then collect
N traces A1, . . . , A1000 while performing Gaussian elimination of a fixed matrix A and
compute the per-point average Ā and sample standard deviation σA of these. To compare
these values, we calculate (point-wise) the t-statistic trace t = (R̄ − Ā)/

√
(σ2

A + σ2
B)/N .

Points with high t-value indicate PoIs, where power consumption differs significantly
depending on the bits of the secret key. Due to our large sample size, we have to carefully
control false positives. We observe a maximal t-value of 29.24. To allow for up to 10%
false positives, we choose a threshold value of 13.34 that results in exactly 1.1 · P PoI
candidates, according to the empirical distribution. We take the strongest PoIs with a
clearance of 10 samples to either side, resulting in 457273 PoIs.

Cycle Count of Loop Iterations. To identify the cycle times Td and Tz of the diagonal
and zero stage loop bodies, we use Fast Fourier Transformation on the initial 1/16th
samples of t (roughly corresponding to processing of eight columns). Using a band-pass
filter around the expected period Tapprox = S/P ≈ 682, plus/minus 25%, we identify the
shorter loop with Td = 630 cycles and the longer loop with Tz = 732 cycles (see Fig. 4).

Alignment with Regression-Based Model of Pz. To find the PoIs of the zero stage,
we look for sequences of PoIs with distance Tz and minimum length l := 7, allowing for
single missing PoIs within the sequence (see Fig. 5). This identifies almost all iterations of
the zero stage, except for 13 missing points due to false negatives, and (l + 1) · l/2 = 21
missing points with j < l + 1 and i < j, which do not form sufficiently long sequences to
be identified by this method.

We can use two sequences of PoIs corresponding to the zero stage of a single column
operation to easily identify the gap Tskip for the loop iteration i = j in Line 14. To arrive
at Tskip, we take one sequence before the gap (i.e., for some i < j), another sequence after
the gap (i > j), calculate the differences of the means modulo Tz of these sequences, and
round the result to the nearest integer. We find that Tskip = 33 for our experiments.

Now we can fit a model for all PoIs of the zero stage, that describes the position Pz(i, j)
of a PoI in Pz corresponding to L[i, j], i ̸= j. This model allows us to fill in the PoIs that
are missing due to gaps or short sequences. Using a quadratic regression on the start of
each column (because in each column, the diagonal stage has one less iteration), corrected
by a linear regression on the start of each column within an eight-bit group packed in a

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 21

single byte, we get for i ̸= j

Pz(i, j) = Column(j) + Bitshift(j mod 8) + Row(i) + Skip(i, j)
= (−315j2 + 2264764.75j + 1047823) − 5.75 · (j mod 8) + Tz · i + Skip(i, j),

where Skip(i, j) is 0 if i < j and else it is −Tz + Tskip. We note that in our experiments,
all identified PoIs in Pz correspond perfectly with this model. From here on out, we always
consider the full set Pz, with gaps filled in as predicted by the model, discarding Pd and
any false positives.

Bit Classification. To identify if a PoI corresponds to a bit 0 or 1, we use a simple
difference-of-means classifier using the point-wise averages of the random matrices as a
threshold value. Using the random matrices as ground truth, we verify that for each
PoI the classes for bits 0 and 1 are well isolated. The results are shown in Fig. 6 For
each PoI, the class for bit 0 (resp. bit 1) is equally sized with 499.9555 ± 15.8433 (resp.
500.0445 ± 15.8433), with mean −0.0847 ± 0.0015 (resp. −0.1176 ± 0.0014) and standard
deviation 0.0133 ± 0.0007. The difference of means is 0.0329, which is smaller than the
sum of the standard deviations 0.0266, resulting in a z-value of 1.2342, which indicates
an estimated error rate of 0.1085. We can see that all PoIs are independent and uniform.
The signal-to-noise ratio for the measurement at our PoIs is 17.7394 ± 0.4332 dB.

Validation. We then repeat the complete analysis with N = 1, 000 measurements of a
different fixed matrix B, getting similar results. In this case, the maximum t-value is 30.47,
the threshold value is 13.71, identifying 452143 PoIs, and resulting in 16 gaps within the
sequences. The fitted model is identical, and all identified PoIs correspond perfectly with
that model. This validates our results.

550 600 650 700 750 800 85010−5

10−3

10−1

Td = 630 Tz = 732

Sample Period (1/f)

FF
T

A
m

pl
itu

de

Figure 4: FFT amplitude over 1/f for the Welsh t-statistic, showing long periods of PoIs
close to the approximate period S/(|Pd| + |Pz|). The two peaks are located at the cycle
counts Td and Tz for the loop iterations of the diagonal and zero stage.

Single Trace Attack and Experimental Error τ . To perform the attack, we capture
a single trace from a victim running Gaussian elimination on the first n′ columns. We
then compare the collected trace against the average value at each PoI, and guess the
mask based on whether the value is larger or smaller than the average. Fig. 7 shows two
examples of power traces around PoI Pz(1, 0), one for each value of mask. Comparing the
guesses to the ground truth, we find that we can correctly determine 89.35% of the 214527
mask values on average, corresponding to an error value τ ≈ 0.1065 – which is well within
our recovery bounds determined in the previous Section 5. (Using simulated leakage, we
show in the following Section 7 that our attack also works well with error rates close to
the theoretical maximum.) The signal-to-noise ratio for this victim trace across all PoIs is
17.8218 dB. Filling in the diagonal with random values, we get a leak matrix L as input

22 Leaky McEliece

-366 -305 -244 -183 -122 -61 0 61 122 183 244 305 366
-20

0
20
40
60
80

100

P_z(0,40)

P_z(39,40)
P_z(41,40)

P_z(1663,40), not shown

T_skip

Figure 5: The t-statistics around the PoI Pz(0, 40), given here at the origin. Values are
plotted in reading order (left-to-right, top-to-bottom). Darker colors correspond to higher
t-values, with Tz values in each row. Only the first 120 of all tm − 1 = 1663 PoIs of the
zero stage of column 40 are shown.

1050000 1055000 1060000 1065000 1070000 1075000 1080000 1085000
Sample

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015

Le
ak

ag
e

Figure 6: Difference between the point-wise averages of the fixed and random traces,
highlighting the first 50 PoIs of the zero stage of the first column.

exactly as in our simplified model. Applying our attack from Section 4, we subsequently
recover from L the complete secret key.

We repeated this attack ten times, with a success rate of 1. The mean error rate yields
an experimental error rate of

τ = 0.1080 ± 0.0011,

and a mean SNR 17.7684 ± 0.0323 dB.

1047848 1047852 1047856 1047860 1047864
Sample

0.30
0.25
0.20
0.15
0.10
0.05
0.00

Le
ak

ag
e

P_z(1,0)
Average
Mask=0
Mask=1
t-Statistics

0

5

10

15

20

t-s
ta

tis
tic

s

Figure 7: Close up around the PoI Pz(1, 0), showing that the average of random traces
separates two single traces, one with mask = 0 and one with mask = 1 at that PoI. The
t-values are also shown for comparison.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 23

Possible Leakage Vector. To investigate possible sources for the leak, we compiled the
Gaussian elimination from Classic McEliece on the evaluated target CPU8 with the GNU
C Compiler (GCC), version 10.3.1, and get the following assembler code (regardless of
McEliece parameter choices) corresponding to lines 15–17 of Algorithm 6:

ldrb r1, [r6, r3] ▷ Load H[i, j] into r1.
asrs r1, r0 ▷ r1 := r1 ≫ b
sbfx r1, r1, #0, #1 ▷ See main text.
uxtb r1, r1 ▷ r1 := r1 & 0xff

The critical instruction is sbfx, which stands for Signed Bitfield Extension. The way it is
used here has the effect that the least significant bit of r1 is copied into the remaining 31
bits of the register, i.e. if bit b of H[i, j] is 0, then r1 will be 0x00000000, else r1 will be
0xffffffff after executing the sbfx instruction. This leads to a big difference between the
Hamming weights of the two possible states of the register, and is known to be susceptible
to differential power analysis [EPMS23]. We verified that the sbfx instruction is emitted
regardless of the optimization level (s, fast, 0, 1, 2, 3). The sbfx instruction is specific
to the ARM A32 and T32 architectures.

6.3 Botan
Algorithm 7 outlines the operation of Gaussian elimination for McEliece key generation in
the cryptographic library Botan version 3.1.1 [cod].

Algorithm 7 Gaussian Elimination from Botan Key Generation
Input: H ∈ Ftm×n

2
Output: ((A|Itm), π) or Fail
1: failcount := 0
2: c := n ▷ take columns one-by-one from right
3: π := [1, . . . , n] ▷ remember secret key adjustments, see text
4: for j = 1, . . . , tm do
5: for i = j, . . . , tm do ▷ diagonal stage
6: if H[i, c] = 1 then
7: if i ̸= j then
8: H[j, :] := H[j, :] + H[i, :]
9: break

10: if H[j, j] ̸= 1 then ▷ swap stage
11: failcount := failcount + 1
12: if failcount = n − tm then
13: return Fail ▷ can not bring H into systematic form
14: else
15: π[n − tm + 1 − failcount] := c ▷ c unsuitable, move to A part of H
16: c := c − 1
17: goto line 5
18: π[n − tm + j] := c ▷ c suitable, move to Itm part of H
19: for i = j + 1, j + 2, . . . , tm, j − 1, j − 2, . . . , 1 do ▷ zero stage
20: if H[i, c] = 1 then ▷ potential leak: H[i, c] = 1
21: H[i, :] := H[i, :] + H[j, :]
22: c := c − 1
23: return (H, π)

8Relevant compiler options: -mcpu=cortex-m33 -mthumb -Os -funsigned-char -funsigned←↩
-bitfields -fshort-enums

24 Leaky McEliece

Botan’s implementation of Gaussian elimination is also slightly different from the
high-level description in Algorithm 2. Although we can identify the two stages, diagonal
stage (Lines 5–9) and zero stage (Lines 19–21), there is also a swap stage (Lines 10–17).
The swap stage allows Botan to avoid failing key generation when the first tm columns of
H do not have full rank. It does so by considering all columns of H (as opposed to only
the first tm columns in our Algorithm 2). Suitable columns for the systematic form are
swapped to indices n− tm + 1, n− tm + 2, . . . , n, while columns that are linearly dependent
to already chosen columns are swapped to indices n− tm, n− tm−1, . . . , n− tm− failcount,
where failcount is the number of unsuitable columns. As a result, key generation can
succeed more often compared to the naive approach.

The final result is a slightly different systematic form Hpk = (A|Itm), and a permu-
tation π that is applied to the list of Goppa points L to adjust the secret key according
to the column swaps made by Botan’s Gaussian elimination. As our leakage model only
depends on the zero stage of Gaussian elimination, which is run after the final position of
a column has been decided, the order of the leaked data, however, perfectly matches the
order of the entries in the (adjusted) secret key. In other words, the column swaps do not
require any changes in our model.

As another difference, Botan’s zero-stage iterates over all rows i ̸= j in an unusual
order. This needs to be taken into account when constructing the leak matrix L from the
leak data, but otherwise has no effect on our attack.

Importantly, the most crucial step – the secret-dependent conditional branch, deciding
whether two rows get added – is identical to our simplified leak matrix model from Section 3.

Potential Leak Analysis. Our investigation of Gaussian elimination in Botan reveals that
the implementation contains conditional branches, depending on secret data. This shows
that the Botan implementation is vulnerable to side-chanel attacks that leak control flow
and memory access patterns.

Unlike the Classic McEliece implementation that ensures the same number of iterations
for different row additions, Botan simply uses branch statements to select specific rows
to perform addition. Furthermore, when the row addition is performed, there is also an
associated memory access pattern. Therefore, through side channels, it is possible to
determine whether the branch condition to perform row operation is met. To be more
precise, there is a leak whether H[i, c] = 1 in Line 20 of Algorithm 7 — completely
analogous to our simplified leak matrix L from Section 3.

Botan’s Choice of Goppa Points. We finish our description of Botan with an observation
about its choice of Goppa points. Instead of choosing these values at random, Botan
chooses the Goppa points from a predictable set depending on n. The procedure is as
follows. First, it chooses a random permutation of the numbers 0, 1, 2, . . . , n − 1. Then, it
maps each number to a corresponding entry in a Gray code using a deterministic function.
Finally, Botan interprets these numbers as elements in F2m to form the list of Goppa
points L. As a consequence, the set of Goppa points is known up to the order of its
elements. As we have shown in Section 4, this additional information can be used to
improve our attack via the Support Splitting Algorithm.

7 Performance for Other Parameter Sets with Simulated
Leakage

7.1 Key Recovery
In addition to the experimental validation in Section 6.2, we use simulated leakage
experiments to verify our analysis for a broader range of McEliece parameter sets.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 25

Implementation. To generate leak data, we patch the Botan and Classic McEliece
reference implementations to artificially leak the entries E[i, j], where i ̸= j, of the
execution matrix that are not on the diagonal, without error. Then, we simulate the error
by flipping the leaked bits with adjustable probability τ before running our attack.

Experiments. A single experiment is defined by a target implementation (Classic McEliece
or Botan), a McEliece parameter set (n, t, m), an error probability τ , a random seed s1
for the (leaky) key generation: s1 7→ (L, g) 7→ Hsk 7→ (Hpk, E), and a second random seed
s2 for the error perturbation: (s2, τ) 7→ e. An experiment targets recovering Hsk from
L := E + e (see Definition 1, in particular, Equation (7)).

We perform all computations on a Dual AMD Epyc 7763 with 2 TB memory and 128
cores. In our experiments, we set the error rate τ to be in the range of 0.00–0.50 with
an incremental step of 0.01. (For larger parameter sets, we only considered error rates
in the range 0.30–0.50.) For each error rate, we repeat the experiment 100 times with
independent random seeds. The success probability is plotted as a function of the error
rate τ in Fig. 8.

From these measurements, we used linear interpolation to determine the maximum
error probability for which the success probability of the attack is larger than 1

2 . These
threshold values are given in Table 3. The table also presents the average execution time.

Table 3: Experiment execution time and the threshold error rate τThreshold, where the
success probability crosses 1

2 , based on linear interpolation of neighbouring measurements.
Classic McEliece Botan

Name Elapsed Real Time τThreshold Elapsed Real Time τThreshold

toyeliece51220 4sec 0.260 3sec 0.261
toyeliece102450 5sec 0.340 5sec 0.340
mceliece348864 19sec 0.361 15sec 0.360
mceliece460896 1min 30sec 0.384 46sec 0.386
mceliece6960119 2min 1sec 0.395 1min 20sec 0.395
mceliece6688128 2min 10sec 0.397 1min 22sec 0.400
mceliece8192128 2min 11sec 0.398 1min 41sec 0.398

Results. Our experimental verification shows that the success probability of our attack
on Classic McEliece and Botan is very well aligned with our model, as shown in Fig. 8.

We note that the execution time of the attack on Classic McEliece is slightly slower
than attacking Botan (see Table 3). This can be easily explained by the extra row
additions performed by Classic McEliece, and the smaller codebook size in Botan (due to
the deterministic Goppa point generation). In practice, this makes our attack on Botan
25%–50% faster compared to that of Classic McEliece.

Effect of Codebook Reduction on Decoding Time. We observed that the decoding time
for each column decreases only marginally for the first t + 1 columns, and becomes much
quicker after that due to the big codebook reduction based on the Goppy polynomial.
Recovering the remaining columns is, in comparison, almost instantaneous. This shows
that the codebook reduction after t + 1 columns is a significant optimization, while the
other reductions provide only a marginal advantage.

26 Leaky McEliece

0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.25

0.5

0.75

1

Classic toyeliece51220
Classic toyeliece102450
Classic mceliece348864
Classic mceliece460896
Classic mceliece6960119
Classic mceliece6688128
Classic mceliece8192128

(a) Classic McEliece

0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.25

0.5

0.75

1

Botan toyeliece51220
Botan toyeliece102450
Botan mceliece348864
Botan mceliece460896
Botan mceliece6960119
Botan mceliece6688128
Botan mceliece8192128

(b) Botan

Figure 8: Comparison between experimental results (dots) and estimates from Eq. (19)
(curves) for our attack on Classic McEliece and Botan parameter sets. Horizontal axes
show the error probability τ of the leak. Vertical axes show the success probability.

7.2 Support Splitting
In a setting where the Goppa points are known (e.g., when n = 2m or when using an
implementation with deterministic Goppa point generation, such as Botan), our algorithm
Secret-Key-Recovery uses the Support Splitting algorithm (SSA) as a subroutine.

To the best of our knowledge, there is no open source implementation of SSA available.
In particular, there seems to be no publicly available data showing how SSA performs on
Classic McEliece parameter sets.

Since the runtime analysis in Sendrier’s original paper [Sen00] is only heuristic, it is
important to verify that SSA is indeed efficient for McEliece parameters. To this end,
we implement SSA in SageMath and run it on various parameter sets. Our experiments
show that the algorithm is highly efficient: Given all Goppa points, Support Splitting
recovers toyeliece51220 keys in less than a second, mceliece348864 keys in roughly half
a minute, and even high-security mceliece8192128 keys in less than 5 minutes.

8 Countermeasures
We now discuss potential countermeasures for our attack. Recall that the running time
of our attack is dominated by the size of the initial codebook, which is approximately
22m. Even though this is exponential in m, our attack is highly efficient for the suggested
McEliece parameter sets, since they use small m ≤ 13. To defend McEliece against our
attack, one might consider instantiating the crypto system with larger m. However, altering
the system parameters of McEliece requires great caution. Indeed, if one increases only m,
but keeps the parameters n and t constant, then the overall security of the cryptographic
system decreases significantly. Thus, if one wants to increase m, then n and t have to be
increased as well. This results, however, in significantly increased public keys. Since key
sizes are already a major concern for McEliece’s practicality, this means that increasing m
is not a viable option in practice.

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 27

As a more efficient counter measure, one may instead apply a random change of basis to
the secret key before computing the public key via Gaussian elimination.9 More concretely,
one may pick a random invertible matrix S and then compute the public key by applying
Gaussian elimination to S · Hsk. Since Gaussian elimination is invariant under invertible
transformations from the left, the public key remains the same. The benefit of incorporating
this change of basis is that S then masks the Goppa structure of Hsk. This prevents the
attacker from computing the codebooks CBj , thereby effectively protecting against our
attack. It is, however, crucial that neither the generation of S nor the multiplication S ·Hsk
leak, as otheriwse the attacker could mount a similar codebook-based attack.

A generic approach to protect against side-channel attacks is masking [CJRR99], which
combines secret values with random masks, such that secrets are never explicitly stored
or processed at any given time. Masking can be applied at the hardware implementa-
tions [NRR06,BGN+14] or to software [ISW03,RP10]. The added computation required for
ensuring secure masking incurs a significant overhead. For example, Chen et al. [CEvMS16]
present a threshold implementation [NRR06] of McEliece, which incurs an overhead of
almost an order of magnitude in the size of the circuit, and a decrease of a factor of four in
the maximum circuit speed. Similarly, reported slowdowns for software implementations
of cryptography are by almost an order of magnitude [Wea21]. Although we are not aware
of masked implementations of McEliece in software, we anticipate such implementations
will suffer similar performance hits. Another limitation of masking is that its effective-
ness is somewhat limited. In particular, first-order masking, where each secret value is
protected with a single random mask, offers only a limited protection. Recent works have
demonstrated effective attacks using machine learning [PPM+23]. The effectiveness of
the defense may also be limited due to unexpected interactions between values within the
processor’s microarchitecture [SSB+21,BGG+14].

Acknowledgements We would like to thank Colin O’Flynn and NewAE Technology Inc.
for help in sourcing the hardware for the experiments.

This work has been supported by an ARC Discovery Project number DP210102670.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972 and grant 465120249.

References
[ABG10] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results on

instruction cache attacks. In CHES, volume 6225 of Lecture Notes in Computer
Science, pages 110–124. Springer, 2010.

[ADP18] Martin R. Albrecht, Amit Deo, and Kenneth G. Paterson. Cold boot attacks
on ring and module LWE keys under the NTT. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):173–213, 2018.

[AGS07] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures. In
IMACC, volume 4887 of Lecture Notes in Computer Science, pages 185–203.
Springer, 2007.

[BCC+22a] Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun
Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Edoardo
Persichetti, Christiane Peters, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai,
Martin Tomlinson, and Wen Wang. Classic McEliece. https://classic.
mceliece.org/mceliece-sage-20221023.tar.gz, 2022.

9We thank the anonymous TCHES reviewers for this suggestion.

https://classic.mceliece.org/mceliece-sage-20221023.tar.gz
https://classic.mceliece.org/mceliece-sage-20221023.tar.gz

28 Leaky McEliece

[BCC+22b] Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun
Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Edoardo
Persichetti, Christiane Peters, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai,
Martin Tomlinson, and Wen Wang. Classic McEliece: conservative code-based
cryptography: design rationale, 2022.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In CARDIS, pages 64–81, 2014.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
326–343. Springer, Berlin, Heidelberg, December 2014.

[bot] BSI-Projekt: Entwicklung einer sicheren Kryptobibliothek. https://www.
bsi.bund.de/dok/9060550.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical.
In ESORICS, volume 6879 of Lecture Notes in Computer Science, pages 355–
371. Springer, 2011.

[CEvMS16] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Masking large keys in hardware: A masked implementation of McEliece. In
Orr Dunkelman and Liam Keliher, editors, SAC 2015, volume 9566 of LNCS,
pages 293–309. Springer, Cham, August 2016.

[CFSY22] Chitchanok Chuengsatiansup, Andrew Feutrill, Rui Qi Sim, and Yuval Yarom.
RSA key recovery from digit equivalence information. In ACNS, volume 13269
of Lecture Notes in Computer Science, pages 193–211. Springer, 2022.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Berlin, Heidelberg, August 1999.

[cod] Botan 3.1.1: code_based_key_gen.cpp. https://botan.randombit.net/
doxygen/code__based__key__gen_8cpp_source.html. Accessed: 5 Octo-
ber 2023.

[Cop96] Don Coppersmith. Finding a small root of a univariate modular equation. In
EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages
155–165. Springer, 1996.

[Cov99] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[DMH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys
from partial information, by example. IACR ePrint 2020/1506, 2020.

[EMVW22] Andre Esser, Alexander May, Javier A. Verbel, and Weiqiang Wen. Partial
key exposure attacks on BIKE, rainbow and NTRU. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of LNCS,
pages 346–375. Springer, Cham, August 2022.

[EPMS23] Ferhat Erata, Ruzica Piskac, Víctor Mateu, and Jakub Szefer. Towards
automated detection of single-trace side-channel vulnerabilities in constant-
time cryptographic code. In EuroS&P, pages 687–706, 2023.

https://www.bsi.bund.de/dok/9060550
https://www.bsi.bund.de/dok/9060550
https://botan.randombit.net/doxygen/code__based__key__gen_8cpp_source.html
https://botan.randombit.net/doxygen/code__based__key__gen_8cpp_source.html

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 29

[GBHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, Gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 323–345. Springer, Berlin, Heidelberg, August
2016.

[GJJ22] Qian Guo, Andreas Johansson, and Thomas Johansson. A key-recovery side-
channel attack on classic mceliece implementations. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(4):800–827, 2022.

[GNNJ23] Qian Guo, Denis Nabokov, Alexander Nilsson, and Thomas Johansson. SCA-
LDPC: A code-based framework for key-recovery side-channel attacks on post-
quantum encryption schemes. Cryptology ePrint Archive, Report 2023/294,
2023.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 444–461. Springer,
Berlin, Heidelberg, August 2014.

[HMM10] Wilko Henecka, Alexander May, and Alexander Meurer. Correcting errors
in RSA private keys. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 351–369. Springer, Berlin, Heidelberg, August 2010.

[How97] Nick Howgrave-Graham. Finding small roots of univariate modular equations
revisited. In IMACC, volume 1355 of Lecture Notes in Computer Science,
pages 131–142. Springer, 1997.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Des. Codes Cryptogr., 23(3):283–290, 2001.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from
random key bits. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 1–17. Springer, Berlin, Heidelberg, August 2009.

[HSC+23] Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, and
Thomas Johansson. Cache-timing attack against HQC. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2023(3):136–163, 2023.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In Paul C. van Oorschot, editor, USENIX Security 2008, pages 45–60.
USENIX Association, July / August 2008.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Berlin, Heidelberg, August
2003.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Berlin, Heidelberg, August 1996.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268,
2020.

30 Leaky McEliece

[LNPS20] Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska.
Side channel information set decoding using iterative chunking - plaintext
recovery from the “classic McEliece” hardware reference implementation. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume
12491 of LNCS, pages 881–910. Springer, Cham, December 2020.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Security
and Privacy, pages 605–622. IEEE Computer Society, 2015.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[Nat24] National Institute of Standards and Technology. Module-lattice-based key-
encapsulation mechanism standard, 2024.

[NCOS16] Erick Nascimento, Lukasz Chmielewski, David F. Oswald, and Peter Schwabe.
Attacking embedded ECC implementations through cmov side channels. In
SAC, volume 10532 of Lecture Notes in Computer Science, pages 99–119.
Springer, 2016.

[nis] NIST’s post-quantum cryptography standardization project. https://csrc.
nist.gov/projects/post-quantum-cryptography.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In ICICS, pages
529–545, 2006.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital
signature algorithm with partially known nonces. J. Cryptol., 15(3):151–176,
2002.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic
curve digital signature algorithm with partially known nonces. Des. Codes
Cryptogr., 30(2):201–217, 2003.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: The case of AES. In CT-RSA, volume 3860 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2006.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Comput. Surv.,
55(11):227:1–227:35, 2023.

[PPS12] Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn. A
coding-theoretic approach to recovering noisy RSA keys. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
386–403. Springer, Berlin, Heidelberg, December 2012.

[PSKH18] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. Side-channel
attacks on post-quantum signature schemes based on multivariate quadratic
equations - Rainbow and UOV -. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(3):500–523, 2018.

[RKPS14] Heinrich Riebler, Tobias Kenter, Christian Plessl, and Christoph Sorge. Recon-
structing AES key schedules from decayed memory with FPGAs. In FCCM,
pages 222–229. IEEE Computer Society, 2014.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

M. Brinkmann, C. Chuengsatiansup, A. May, J. Nowakowski, Y. Yarom 31

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-
ing of AES. In Stefan Mangard and François-Xavier Standaert, editors,
CHES 2010, volume 6225 of LNCS, pages 413–427. Springer, Berlin, Heidel-
berg, August 2010.

[SCW24] Sophie Schmieg, Deirdre Connolly, and Bas Westerbaan. Official comment
on FIPS 203 ipd: seed as decapsulation key, 2024. https://groups.google.
com/a/list.nist.gov/g/pqc-forum/c/5CT4NC_6zRI/m/lpifFrpWAwAJ.

[Sen00] Nicolas Sendrier. Finding the permutation between equivalent linear codes:
The support splitting algorithm. IEEE Trans. Inf. Theory, 46(4):1193–1203,
2000.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl. A Power Side-Channel Attack on the Reed-Muller Reed-
Solomon Version of the HQC Cryptosystem. In Post-Quantum Cryptography,
pages 327–352, 2022.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Güneysu and Helena Handschuh,
editors, CHES 2015, volume 9293 of LNCS, pages 495–513. Springer, Berlin,
Heidelberg, September 2015.

[SSB+21] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. In NDSS 2021. The Internet Society, February
2021.

[STM+08] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdul-
hadi Shoufan. Side channels in the McEliece PKC. In Johannes Buchmann
and Jintai Ding, editors, Post-quantum cryptography, second international
workshop, PQCRYPTO 2008, pages 216–229. Springer, Berlin, Heidelberg,
October 2008.

[Str10] Falko Strenzke. A timing attack against the secret permutation in the McEliece
PKC. In Nicolas Sendrier, editor, The Third International Workshop on Post-
Quantum Cryptography, PQCRYPTO 2010, pages 95–107. Springer, Berlin,
Heidelberg, May 2010.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR TCHES, 2022(1):296–322, 2022.

[Wal01] Colin D. Walter. Sliding windows succumbs to big mac attack. In Çetin
Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001, volume
2162 of LNCS, pages 286–299. Springer, Berlin, Heidelberg, May 2001.

[Wea21] Rhys Weatherley. Performance of masked algorithms. https://rweather.
github.io/lightweight-crypto/performance_masking.html, 2021.

[YF14] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution, low
noise, L3 cache side-channel attack. In USENIX Security Symposium, pages
719–732. USENIX Association, 2014.

[ZTO+23] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatiansup,
Daniel Genkin, and Yuval Yarom. BunnyHop: Exploiting the instruction
prefetcher. In USENIX Security Symposium. USENIX Association, 2023.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5CT4NC_6zRI/m/lpifFrpWAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5CT4NC_6zRI/m/lpifFrpWAwAJ
https://rweather.github.io/lightweight-crypto/performance_masking.html
https://rweather.github.io/lightweight-crypto/performance_masking.html

	Introduction
	Our Contributions
	Outline

	Preliminaries
	Notations
	McEliece Keys
	Support Splitting

	Our Attack Model: Monitoring Gaussian Elimination
	Our Attack: Decoding the Leak Matrix
	Analysis of Success Probability
	A Simple Asymptotic Upper Bound on τ
	Fine-Grained Analysis

	Attacking Real World Implementations
	Classic McEliece
	Classic McEliece Leakage Verification and Attack
	Botan

	Performance for Other Parameter Sets with Simulated Leakage
	Key Recovery
	Support Splitting

	Countermeasures

