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Abstract

Suppose a prover, in possession of a large body of valuable evidence, wants
to quickly convince a verifier by presenting only a small portion of the evi-
dence.

We define an Approximate Lower Bound Argument, or ALBA, which al-
lows the prover to do just that: to succinctly prove knowledge of a large
number of elements satisfying a predicate (or, more generally, elements of a
sufficient total weight when a predicate is generalized to a weight function).
The argument is approximate because there is a small gap between what the
prover actually knows and what the verifier is convinced the prover knows.
This gap enables very efficient schemes.

We present noninteractive constructions of ALBA in the random ora-
cle and Uniform Random String models and show that our proof sizes are
nearly optimal. We also show how our constructions can be made particu-
larly communication-efficient when the evidence is distributed among multiple
provers working together, which is of practical importance when ALBA is ap-
plied to a decentralized setting.

We demonstrate two very different applications of ALBAs: for large-scale
decentralized signatures and for achieving universal composability in general-
purpose succinct proof systems (SNARKs).

1 Introduction

Suppose a prover is in possession of a large body of valuable evidence that is indi-
vidually verifiable. The evidence is so voluminous that presenting and verifying all
of it is very expensive. Instead, the prover wants to convince a verifier by presenting
only a small portion of the evidence.

∗Work done while visiting the Blockchain Technology Lab at the University of Edinburgh.
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More formally, let R be a predicate. We explore succinct arguments of knowledge
for a prover who knows a set Sp of values that satisfy R such that |Sp| ≥ np and
wants to convince a verifier that |Sp| > nf, where nf is somewhat smaller than
np. Because nf < np, the verifier obtains a lower bound approximation to the
actual cardinality of Sp; hence we call this primitive an Approximate Lower Bound
Argument or ALBA.

This problem has a long history. In 1983, in order to prove that BPP ⊆ RPNP,
Sipser and Gács [Sip83, Section V, Corollary to Theorem 6] showed a simple two-
round interactive protocol for proving a lower bound on the size of the set S of
accepting random strings. Their construction is based on hash collisions: the verifier
chooses some number of universal hash functions h1, . . . , hm [CW79] and the prover
shows s, s′ such that s ̸= s′ and hi(s) = hi(s

′) for some i ∈ {1, . . . ,m}. If S is
small (of size at most nf), then such hash collisions are very unlikely to exist, and
if S is big (of size at least np), then they must exist by the pigeonhole principle. In
1986, Goldwasser and Sipser [GS86, Section 4.1] used a slightly different approach,
based on the existence of inverses rather than collisions, for proving that public coins
suffice for interactive proofs (see Appendix A). To the best of our knowledge, the
term “approximate lower bound” in the context of proof systems appears first in
Babai’s work [Bab85, Section 5.2].

In designing ALBAs, we will aim to minimize communication and computational
complexity; these metrics improve as the “gap” np/nf increases. The proof size and
verifier time in classical techniques above are far from optimal. While this does not
affect the classical applications of ALBAs, which were theoretical (for example, the
proof that any IP language can be decided by an Arthur-Merlin protocol, where the
gap can be a large constant and the prover has exponential time), it is an important
concern for using ALBAs in practice.

1.1 Our Setting

The prover and verifier have access to a predicate R; the prover possesses a set
Sp whose elements satisfy R. The prover will show just a few elements of Sp to
the verifier, which will convince the verifier that the prover possesses more than nf

elements that satisfy R. The goal is to find some property that is unlikely to hold
for small sets Sf of size nf, likely to hold for large sets Sp of size np, and can be
shown with just a few elements.

Generalization to Weighted Sets. We generalize a predicate R that determines va-
lidity of set elements, and consider instead a weight function W that takes a set
element and outputs its nonnegative integer weight. In that context we wish to ex-
plore succinct arguments of knowledge that convince a verifier that the prover knows
a set S that satisfies a lower bound

∑
s∈S W (s) > nf. When W is {0, 1}-valued, we

are in the setting of a predicate, and we call this case “unweighted.”
We emphasize that R or W are used in a black-box way in our protocols. Thus,

our protocols can be used in settings when these functions do not have a known
specification — for example, they may be evaluated by human judges who weigh
evidence or via some complex MPC protocol that uses secret inputs.

Setup and Interaction Models. Our main focus is on building ALBA protocols that
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are succinct Non-Interactive Random Oracle Proofs of Knowledge or NIROPK (see
Section 2 for the definition). If the prover is successful in convincing the veri-
fier, then the knowledge extractor can obtain a set of total weight exceeding nf by
simply observing the random oracle queries; in other words, the protocol is straight-
line extractable in the nonprogrammable random oracle model. Our security is
information-theoretic as long as the predicate R (or the weight function W ) is inde-
pendent of the random oracle; by the standard technique of adding a commitment
to R (or W ) to every random oracle query, we obtain computational security even
if this function is adaptively chosen to depend on the oracle.

We also show simple modifications of our protocols that replace random oracles
with pseudorandom functions (PRFs). By simply publishing the PRF seed as a
shared random string, we obtain a non-interactive proof of knowledge in the Uni-
form Random String (URS) model, in which extractor works by reprogramming the
URS. Alternatively, we can obtain a two-round public coin proof of knowledge by
having the verifier send the PRF seed (we would then use rewinding for extraction).
Protocols in these two models are non-adaptively secure — i.e., they require that
the predicate R is independent of the URS or the verifier’s first message.

Decentralized Setting. The set Sp may be distributed among many parties. For in-
stance, in a blockchain setting it could be the case that multiple contributing peers
hold signatures on a block of transactions and they wish to collectively advance a
protocol which approves that block. To capture such settings, we introduce decen-
tralized ALBAs: in such a scheme, the provers diffuse messages via a peer to peer
network, and an aggregator (who may be one of the provers themselves) collects the
messages and produces the proof. Note that not all provers may decide to transmit
a message. In addition to the complexity considerations of regular ALBAs, in the
decentralized setting we also wish to minimize the total communication complex-
ity in the prover interaction phase as well as the computational complexity of the
aggregator.

1.2 Our Results

Our goal is to design protocols that give the prover a short, carefully chosen, sequence
of elements from Sp. We show how to do this with near optimal efficiency.

Let λ be the parameter that controls soundness and completeness: the honest
prover (who possesses a set of weight np) will fail with probability 2−λ and the
dishonest prover (who possesses a set of weight at most nf) will succeed with, say,
also probability 2−λ. Let u be the length of the sequence the prover sends.

The unweighted case. We first show an unweighted ALBA in which the prover sends
only

u =
λ+ log λ

log np

nf

(1)

elements of Sp. Moreover, we show that this number is essentially tight, by proving
that at least

u =
λ

log np

nf
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elements of Sp are necessary. (Note that all formulas in this section omit small ad-
ditive constants for simplicity; the exact formulas are given in subsequent sections.)

Such a protocol is relatively easy to build in the random oracle model if one
disregards the running time of the prover: just ask the prover to brute force a
sequence of u elements of Sp on which the random oracle gives a sufficiently rare
output. Calibrate the probability ε of this output so that ε ·nu

f ≤ 2−λ for soundness,
but (1 − ε)n

u
p ≤ 2−λ for completeness. A bit of algebra shows that u = λ+log λ

log(np/nf)

suffices to satisfy both soundness and completeness constraints, so the proof is short.1

However, in this scheme, the prover has to do an exhaustive search of 1/ε sequences
of length u, and thus the running time is exponential.

It follows that the main technical challenge is in finding a scheme that maintains
the short proof while allowing the prover to find one quickly. In other words, the
prover needs to be able to find a sequence of u elements with some special rare
property (that is likely to occur among np elements but not among nf elements),
without looking through all sequences. We do so in Section 3 by demonstrating the
Telescope construction.

Its core idea is to find a sequence of values that itself and also all its prefixes
satisfy a suitable condition determined by a hash function (and modeled as a ran-
dom oracle). This prefix invariant property enables the prover to sieve through the
possible sequences efficiently expanding gradually the candidate sequence as in an
unfolding telescope. We augment this basic technique further via parallel self com-
position to match the proof length of the exhaustive search scheme. The resulting
prover time (as measured in the number of random oracle queries) is dropped from
exponential to O(np · λ2). We then show how to drop further the prover complex-
ity to O(np + λ2) by prehashing all elements and expressing the prefix invariant
property as a hash collision. We also establish that our constructions are essentially
optimal in terms of proof size by proving a lower bound in the number of elements
than must be communicated by any ALBA scheme that satisfies the extractability
requirements of Definition 4.

Weights and Decentralized Provers. In the case where all elements have an integer
weight, the straightforward way to design a weighted scheme is to give each set ele-
ment a multiplicity equal to its weight and apply the algorithms we described above.
However, the prover’s running time becomes linear in the input’s total weight np

which could be in the order of 264 (number of coins in popular cryptocurrencies).
A way to solve this problem is to select (with the help of the random oracle) a
reasonably-sized subset of the resulting multiset by sampling, for each weighted
element, a binomial distribution in accordance with its weight. Given this precom-
putation, we can then proceed with the Telescope construction as above and with
only a (poly)logarithmic penalty due to the weights. We detail this technique in
Section 5.

Turning our attention to the decentralized setting we present two constructions.
In the first one, each party performs a private random-oracle-based coin flip to de-
cide whether to share her value. The aggregator produces a proof by concatenating

1Let ε = 2−λn−u
f to satisfy soundness. Then (1 − ε)n

u
p < exp(−2−λn−u

f )n
u
p =

exp(−2−λ(np/nf)
u) is needed for completeness, so it suffices to have exp(−2−λ(np/nf)

u) ≤ 2−λ,
i.e., 2−λ(np/nf)

u · log e ≥ λ, i.e. (np/nf)
u ≥ 2λ ·λ/ log e. Taking logarithm gives the desired result.

4



a number of the resulting values equal to a set threshold. In the second construction,
we combine the above idea with the Telescope construction letting the aggregator
do a bit more work; this results in essentially optimal proof size with total commu-
nication complexity O(λ3), or proof size an additive term

√
λ larger than optimal

and total communication complexity O(λ2).

1.3 Applications

Beyond the classical applications of ALBAs in complexity theory described ear-
lier [CW79, Sip83, Bab85, GS86], there are further applications of the primitive in
cryptography.

Weighted Multisignatures and Compact Certificates. In a multisignature scheme, a
signature is accepted if sufficiently many parties have signed the message (depending
on the flavor, the signature may reveal with certainty, fully hide, or reveal partially
who the signers are). In consensus protocols and blockchain applications, schemes
that accommodate large numbers of parties have been put to use in the context
of certifying the state of the ledger. In a “proof-of-stake” setting, each party is
assigned a weight (corresponding to its stake), and the verifier needs to be assured
that parties with sufficient stake have signed a message.

Most existing approaches to building large-scale multisignatures exploit proper-
ties of particular signatures or algebraic structures. For example, the recent results
of Das et al. and Garg et al. [GJM+23, DCX+23] are based on bilinear pairings and
require a structured setup.

In contrast, our work relies only on random oracles, making it compatible with
any complexity assumption used for the underlying signature scheme, including ones
that are post-quantum secure. Expectedly, the black box nature of our construc-
tion with respect to the underlying signature results in longer proofs (they can be
shortened using succinct proof systems, as we discuss in Section 1.4).

In more detail, in order to apply an ALBA scheme to the problem of multisig-
natures, we treat individual signatures as set elements. The underlying signature
scheme needs to be unique: it should be impossible (or computationally infeasi-
ble) to come up with two different signatures for the same message and public key.
Otherwise, it is easy to come up with a set of sufficient total weight by producing
multiple signatures for just a few keys2. Alternatively, if the knowledge extractor
is allowed to rewind (need not be straight-line), one can use an arbitrary (not nec-
essarily unique) signature scheme as follows: treat the public keys as set elements
and for every selected public key in the ALBA proof, add its signature. Using an
ALBA with decentralized provers is particularly suited to the blockchain setting as
signatures will be collected from all participants.

A closely related approach is compact certificates by Micali et al. [MRV+21] who
also treat the underlying signature scheme as a black box. In more detail, their
construction collects all individual signatures in a Merkle tree, and selects a sub-
set of signatures to reveal via lottery (that can be instantiated via the Fiat-Shamir

2The verifier could check that all public keys are distinct, but since the proof contains just a
small subset of the signatures, a malicious prover could try many signatures, or “grind,” until it
finds a proof that satisfies this check.
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transform [BR93]). Compared to compact certificates, our Telescope scheme obvi-
ates the need for the Merkle tree and hence shaves off a multiplicative logarithmic
factor in the certificate length. It is also not susceptible to grinding while in com-
pact certificates the adversary can try different signatures to include in the Merkle
tree, and unlike compact certificates that rely inherently on the random oracle,
our scheme can be instantiated in the CRS/URS model. Finally, our decentralized
prover constructions drastically reduce communication. On the other hand, com-
pact certificates cleverly tie the lottery to public keys rather than signatures and
support an arbitrary signature scheme (not necessarily unique) while still providing
straight-line knowledge extraction.

Reducing communication complexity was also the focus of Chaidos and Kiayias
in Mithril, a weighted threshold multisignature, [CK21], that also uses unique sig-
natures and random-oracle-based selection. In our terminology, Mithril applies a
decentralized ALBA scheme to unique signatures (possibly followed by compactifi-
cation via succinct proof systems, as discussed in Section 1.4). In comparison to
Mithril, our decentralized prover construction achieves significantly smaller proof
sizes (when comparing with the simple concatenation version of [CK21]) at the cost
of higher communication. In Section 4.1 we present a simple lottery that is asymp-
totically similar to Mithril with concatenation proofs, and offer a comparison in
Section 8.
Straight-Line Witness Extraction for SNARKs. Ganesh et al. [GKO+23] addressed
the problem of universal composability [Can00] for witness-succinct non-interactive
arguments of knowledge. Universal composability requires the ability to extract the
witness without rewinding the prover. However, since the proof is witness-succinct
(i.e., shorter than the witness), the extractor must look elsewhere to obtain the
witness. Building on the ideas of Pass [Pas03] and Fischlin [Fis05], Ganesh et al.
proposed the following approach: the prover represents the witness as a polynomial
of some degree d, uses a polynomial commitment scheme to commit to it, and then
makes multiple random oracle queries on evaluations of this polynomial (together
with proofs that the evaluations are correct with respect to the commitment) until
it obtains some rare output of the random oracle (much like the Bitcoin proof of
work). The prover repeats this process many times, and includes in the proof only
the queries that result in the rare outputs. The verifier can be assured that the
prover made more than d queries with high probability, because otherwise it would
not be able to obtain sufficiently many rare outputs. Thus, the knowledge extractor
can reconstruct the witness via polynomial interpolation by simply observing the
prover’s random oracle queries.

We observe that this approach really involves the prover trying to convince the
verifier that the size of the set of random oracle queries is greater than d. This
approach is just an ALBA protocol, but not a particularly efficient one. Applying our
scheme instead of the one custom-built by Ganesh et al. results in less work for the
prover. To get a proof of size u ≤ λ, the protocol of Ganesh et al. requires the prover
to compute d · u · 2λ/u polynomial evaluations and decommitment proofs,3whereas

3This value follows from the formula λ = r(b − log d) in the “Succinctness” paragraph of
[GKO+23, Section 3.1]. Note that r is u in our notation, and the expected number of random
oracle queries by the prover is r · 2b. Solving the formula for b, we get 2b = d2λ/r.
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our Telescope construction from Section 3 requires only d ·λ1/u ·2λ/u of those.4 Thus,
our approach speeds up this part of prover’s work by a factor of about u (which is
close to the security parameter λ).

1.4 Relation to General-Purpose Witness-Succinct Proofs

In cases where the weight function can be realized by a program, one can use general-
purpose witness-succinct proofs to tackle the construction of ALBA schemes via
utilizing SNARKs [Gro16, GWC19].

These general purpose tools, however, are quite expensive, especially for the
prover. First, the proving time can become impractical when the number of set
elements in the witness is large. Second, given that the weight function W must
be encoded as a circuit, the proving cost also depends heavily on the complexity of
W . Moreover, W cannot always be specified as a circuit, but is evaluated by a more
complex process — via a secure multi-party computation protocol or a human judge
weighing the strength of the evidence.

On the other hand, these tools can give very short, even constant-size, proofs. To
get the best of both worlds — prover efficiency and constant-size proofs — one can
combine an ALBA proof with a witness-succinct proof of knowledge of the ALBA
proof. This is indeed the approach proposed by Chaidos and Kiayias [CK21]: it
first reduces witness size nf to u by using very fast random-oracle-based techniques,
and then has the prover prove u (instead of nf) weight computations. We can also
apply this technique to our constructions, something that can result in a constant
size proof with a computationally efficient prover. And given that our constructions
can work in the CRS model, one can avoid heuristically instantiating the random
oracle inside a circuit.

2 Definitions

Below we present a definition of ALBA inspired by the non-interactive random oracle
proof of knowledge (NIROPK) [BCS16] with straight-line extraction. To introduce
arbitrary weights, we use a weight oracle W : {0, 1}∗ → N ∪ {0} and denote for a
set S, W (S) =

∑
s∈S W (s).

Definition 1. The triple (Prove,Verify,Extract) is a (λsec, λrel, np, nf)-NIROPK ALBA
scheme if and only if

• ProveH,W is a probabilistic program that has access to the random oracle H
and a weight oracle W ;

• VerifyH,W is a program that has access to the random oracle H and a weight
oracle W ;

• ExtractH,W,A is a probabilistic program that has access to the random oracle H,
a weight oracle W and an adversary program A;

4This value is obtained by setting nf = d and solving (1) for np.
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• completeness: for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[VerifyH,W (ProveH,W (Sp)) = 1] ≥ 1− 2−λrel;

• proof of knowledge: consider the following experiment ExtractExp(AH,W ,W ):

Sf ← ExtractH,W,A();
output 1 iff W (Sf) > nf;

we require that for all weight oracles W and all probabilistic oracle access
programs AH,W ,

Pr[ExtractExp(A,W ) = 1] ≥ Pr
[
VerifyH,W

(
AH,W ()

)
= 1
]
− 2−λsec ;

moreover, ExtractH,W,A() is only allowed to run AH,W once with the real H and
W and only observes the transcript with its oracles (straight-line extraction
property), Extract runs in time polynomial in the size of this transcript.

As presented, this definition is non-adaptive; i.e., it does not allow W to depend
on H; adaptivity can be added if it is possible to commit to W ; see Section 6 for
further discussion.

The above formulation of ALBAs captures the setting where a prover has the
entire set Sp in its possession. We will also be interested in ALBAs where the
prover is decentralized — by this we refer to a setting where a number of prover
entities, each one possessing an element s ∈ Sp wish to act in coordination towards
convincing the verifier. We now define a decentralized ALBA.

Definition 2. The quadruple (Prove,Aggregate,Verify,Extract) is a (λsec, λrel, np, nf)-
decentralized NIROPK ALBA scheme if and only if

• ProveH,W is a probabilistic program that has access to the random oracle H
and a weight oracle W ;

• AggregateH,W is a probabilistic program that has access to the random oracle
H and a weight oracle W ;

• VerifyH,W is a program that has access to the random oracle H and a weight
oracle W ;

• ExtractH,W,A is a probabilistic program that has access to the random oracle H,
a weight oracle W and an adversary program A;

• completeness: consider the following experiment CompExp(Sp,W ):

S := ∅;
for s ∈ Sp do

m← ProveH,W (s);
if m ̸= ε then ▷ if m is not empty string

S := S ∪ {m};
π ← AggregateH,W (S);
r ← VerifyH,W (π);
return r;
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we require that for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[CompExp(Sp,W ) = 1] ≥ 1− 2−λrel;

• proof of knowledge: consider the following experiment ExtractExp(AH,W ,W ):

Sf ← ExtractH,W,A();
output 1 iff W (Sf) > nf;

we require that for all weight oracles W and all probabilistic oracle access
programs AH,W ,

Pr[ExtractExp(A,W ) = 1] ≥ Pr
[
VerifyH,W

(
AH,W ()

)
= 1
]
− 2−λsec ;

moreover, ExtractH,W,A() is only allowed to run AH,W once with the real H and
W and only observes the transcript with its oracles (straight-line extraction
property), Extract runs in time polynomial in the size of this transcript.

In this model, we would like to minimize not only the proof size, but also the
amount of communication characterized by the size of S in CompExp. Note that
the above definition can be extended to multiple rounds of communication, but this
is not something we explore in this work — all our decentralized constructions are
“1-round.”

Finally, we present a proof of knowledge ALBA definition in the CRS model.
Unlike for NIROPK, the knowledge extractor here is allowed to rewind the adversary
A and is given it as regular input. Note that the definition crucially requires the
CRS to be independent of W ; see Section 7 for further discussion.

Definition 3. (Prove,Verify,Extract,GenCRS) is a (λsec, λrel, np, nf)-CRS proof of
knowledge ALBA scheme if and only if

• ProveW is a probabilistic program;

• VerifyW is a program having access to a weight oracle W ;

• ExtractW is a probabilistic program having access to a weight oracle W ;

• GenCRS is a probabilistic program;

• completeness: consider the following experiment CompExp(W,Sp):

crs← GenCRS();
π ← Prove(crs, Sp);
r ← VerifyW (crs, π);
return r;

we require that for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[CompExp(W,Sp) = 1] ≥ 1− 2−λrel;

• proof of knowledge: consider the following experiment SoundExp(AW ,W ):

crs← GenCRS();
π ← AW (crs);
r ← VerifyW (crs, π);
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return r;

we require that for all weight oracles W and all probabilistic oracle access
programs AW , if A runs in time T and ε = Pr[SoundExp(AW ,W ) = 1] −
2−λsec > 0, then Sf ← ExtractW (A) runs in expected time poly(T, 1/ε) and
Pr
[
W (Sf) > nf

]
= 1.

3 Telescope ALBA

In this section we present two ALBA schemes in sequence. We start with a less
efficient but simpler construction to illustrate the main idea. We then proceed to
optimize the scheme’s efficiency.

For both constructions, we will assume we have three random oracles H0, H1,
and H2 having particular output distributions. We explain how to implement these
using a single random oracle which outputs binary strings in Appendix B. Further,
we initially restrict weights to be either 0 or 1, and generalize to integers in Section 5.
Finally, we postpone showing the proof of knowledge property and instead consider
a simpler notion of soundness: given nf elements fixed in advance, what is the
probability that a valid proof exists containing only those elements? Sections 6 and
7 will then show how a knowledge extractor can be constructed.

3.1 Basic Construction

The main idea is as follows. Let d, u and q be parameters. The prover first considers
all pairs consisting of an integer in [d] and one of the elements of Sp and selects each
of the npd pairs with probability 1/np. In expectation he will have d pairs selected.
Now these pairs are treated as single units and they are paired with each element of
Sp, resulting in triples that are selected again with probability 1/np. This process
is repeated u times ending with, in expectation, d tuples consisting of one integer
in [d] and u set elements. Now, each of the tuples is selected with probability q and
any selected tuple will be a valid proof.

More formally, let H1 ∼ Bernoulli(1/np), H2 ∼ Bernoulli(q) be random functions
returning 1 with probability 1/np and q respectively, and returning 0 otherwise. Any
tuple (t, s1, ..., su) such that

• 1 ≤ t ≤ d;

• for all 1 ≤ i ≤ u, H1(t, s1, ..., si) = 1;

• H2(t, s1, ..., su) = 1;

is a valid proof (see Section 3.3 how to implement H1 efficiently).
Intuitively, this works because the honest prover maintains d tuples in expec-

tation at each stage, while the malicious prover’s tuples decrease np/nf times with
each stage. However, to implement and analyze the prover algorithm, it will be
convenient to represent all tuples (t, s1, ..., si), where 1 ≤ t ≤ d, 0 ≤ i ≤ u and
s1, ..., si ∈ Sp, as d trees of height u with {(1), ..., (d)} being the roots of the trees
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and {(t, s1, ..., su)}1≤t≤d,s1,...,su∈Sp being the leaves. To implement Prove, simply run
depth first search (DFS) to find a “valid” path from a root to a leaf.

procedure DFSH1,H2(Sp, t, s1, ..., sk)
if k = u then

if H2(t, s1, ..., su) = 1 then
return (t, s1, ..., su)

return ⊥
for sk+1 ∈ Sp do

if H1(t, s1, ..., sk+1) = 1 then
π ← DFSH1,H2(Sp, t, s1, ..., sk+1);
if π ̸= ⊥ then

return π;
return ⊥;

procedure ProveH1,H2(Sp)
for t ∈ [d] do

π ← DFSH1,H2(Sp, t);
if π ̸= ⊥ then

return π;
return ⊥;

procedure VerifyH1,H2(t, s1, ..., su)
if t ̸∈ [d] then

return 0;
for i ∈ [u] do

if H1(t, s1, ..., si) ̸= 1 then
return 0;

return H2(t, s1, ..., su);

We will now analyze soundness of this construction. As mentioned above, the
soundness error is defined to be the probability that a valid proof exists containing
only elements from a fixed set Sf of size nf.

Lemma 1. The soundness error is at most
(

nf

np

)u
· qd.

Proof. By union bound, the probability that a valid proof can be constructed using
nf elements is at most (

1

np

)u

· q · d · nu
f =

(
nf

np

)u

· qd.

Theorem 1. Let

u ≥ λsec + log(qd)

log np

nf

.

Then soundness error is ≤ 2−λsec.

Proof. Follows from Lemma 1.
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We now analyze completeness.

Lemma 2. The probability that there does not exist a valid proof starting with a

particular integer t is at most exp
(
−
(
q − u · q2

2

))
.

Proof. We can make the following recursive formula. For 0 ≤ k ≤ u, let f(k)
be the probability that when fixing a prefix of an integer in [d] and u− k elements
t, s1, ..., su−k, there is no suffix of honest player’s elements that works, meaning there
is no su−k+1, ..., su ∈ Sp such that for all u− k + 1 ≤ i ≤ u, H1(t, s1, ..., si) = 1, and
H2(t, s1, ..., su) = 1. Then one can see that

• f(0) = 1− q;

• for 0 ≤ k < u, f(k + 1) =
(
(1− 1

np
) + 1

np
· f(k)

)np
;

• the probability that there does not exist a valid proof with a particular integer
t is f(u);

This recursive formula can be approximated:

f(k + 1) =

(
1 +

1

np

(
f(k)− 1

))np

≤
(
e

1
np

(f(k)−1)
)np

= ef(k)−1. (2)

It is convenient to look at the negative logarithm of this expression; we will prove
by induction that − ln f(k) ≥ q − k · q2

2
.

Basic case: − ln f(0) = − ln(1− q) ≥ − ln(e−q) = q.
Inductive step: by equation 2,

− ln f(k + 1) ≥ 1− f(k) ≥ 1− e−
(
q−k· q

2

2

)
[≥]

Using the values for d and q, one can see that k · q2
2
≤ u · q2

2
≤ q, then

[≥]1−

(
1−

(
q − k · q

2

2

)
+

(
q − k · q2

2

)2
2

)
≥

(
q − k · q

2

2

)
− q2

2
= q − (k + 1) · q

2

2
.

Hence, − ln f(u) ≥ q − u · q2
2
which proves the lemma.

Theorem 2. Let

d ≥ 2uλrel

log e
; q =

2λrel

d log e
.

Then completeness error is ≤ 2−λrel.

Proof. From Lemma 2, the probability that the honest prover fails is at most

exp

(
−
(
q − u · q

2

2

)
d

)
.

Using the values for d and q, one can see that this is at most 2−λrel .
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Corollary 1. Let

u ≥ λsec + log λrel + 1− log log e

log np

nf

; d ≥ 2uλrel

log e
; q =

2λrel

d log e
.

Then soundness error is ≤ 2−λsec and completeness error is ≤ 2−λrel.

It is worth noting that the constant in d, and thus algorithm’s running time, can
be reduced. We show how to do this in Section C.1. Although the scheme still re-
mains less efficient than the improved construction in Section 3.2, the optimizations
can potentially be transferred over; we leave that for future work.

3.1.1 Running time

In this section we analyze the prover’s running time, measured in terms of the
number of invocations of the random (hash) functions.

Assume Sp is a set with cardinality np. As mentioned above, all tuples (j, s1, ..., si)
can be represented as d trees. We would like to analyze the number of “accessible”
vertices in these trees. Let the indicator random variable

Aj,s1,...,si =

{
1 if for all 1 ≤ r ≤ i, H1(j, s1, ..., sr) = 1

0 otherwise.

If Aj,s1,...,si = 1 we say the vertex (j, s1, ..., si) is accessible.
Let us first prove that the expected number of accessible vertices in a single tree

at a particular height is 1.

Theorem 3. For any j and 0 ≤ i ≤ u,

E

[ ∑
s1,...,si∈Sp

Aj,s1,...,si

]
= 1.

We present the proof on page 57 of the Appendix.
Assuming the prover runs DFS, Theorem 2 gives a bound on the expected number

of evaluated trees. And by the above theorem, the algorithm invokes H1 npu times
and H2 once in expectation per tree. Thus, the expected total number of hash
evaluations shall be the product of the expected number of evaluated trees and
(npu+ 1). This, however, needs a more careful proof.

Theorem 4. Assume uq < 2. The expected number of hash evaluations is at most

2(npu+ 1)

q − u · q2
2

.

We present the proof on page 57 of the Appendix.
Taking parameter values from Corollary 1 and letting λ = λsec = λrel and np/nf =

const, we thus obtain an expected number of hash evaluations of O(np · λ2).
We might also wish to have a tighter bound on the running time or on the number

of accessible vertices to argue that an adversary cannot exploit an imperfect hash

13



function or a PRF by making too many queries. Below we present a Chernoff style
bound on the number of accessible non-root vertices in all d trees

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Aj,s1,...,si .

Note that E[Z] = du.

Theorem 5. For any δ ≥ 0,

Pr[Z ≥ (1 + δ)du] ≤ exp

(
− δ2

4(1 + δ)
· d
u

)
.

We present the proof on page 58 of the Appendix.
Taking parameter values from Corollary 1 and letting λ = λsec = λrel and np/nf =

const, we thus conclude that the algorithm does O(np · λ3) hash evaluations with
overwhelming probability.

3.2 Construction with Prehashing

The basic scheme described above has prover expected running time O(np ·λ2), worst
case running time O(np · λ3) and verification time O(λ) if we let λ = λsec = λrel

and np/nf = const. The modification described in this section has prover expected
running time np +O(λ2), worst case running time np +O(λ3) and verification time
is unchanged.

The improvement is inspired by balls-and-bins collisions. Whereas in the pre-
vious scheme for every tuple we tried each of np possible extensions, here we hash
tuples to a uniform value in [np] and hash individual set elements to a uniform value
in [np], and consider a valid extension to be such that the tuple and the extension
both hash to the same value. In the terminology of balls and bins, we treat the np

individual elements as balls and put each of them randomly into one of the np bins
as determined by the random function. Then, when trying to extend a partial tuple,
we hash it to obtain the bin number and the permitted extensions will be exactly
those in that bin.

More formally, we have random functions H0, H1 ∼ Unif([np]) producing a uni-
formly random value in [np] and hash function H2 ∼ Bernoulli(q) returning 1 with
probability q and 0 otherwise, and consider a tuple (t, s1, ..., su) a valid proof if and
only if

• 1 ≤ t ≤ d;

• for all 1 ≤ i ≤ u, H1(t, s1, ..., si−1) = H0(si);

• H2(t, s1, ..., su) = 1;

(see Section 3.3 how to implement H1 efficiently).
As before, we have d valid tuples in expectation at each stage but by precom-

puting H0(·) (balls to bins) we avoid trying all np extensions for a tuple. Below is
the pseudocode implementation of the prover and verifier algorithms.

14



procedure DFSH0,H1,H2(bins, t, s1, ..., sk)
if k = u then

if H2(t, s1, ..., su) = 1 then
return (t, s1, ..., su)

return ⊥
for sk+1 ∈ bins[H1(t, s1, ..., sk)] do

π ← DFSH0,H1,H2(bins, t, s1, ..., sk+1);
if π ̸= ⊥ then

return π;
return ⊥

procedure ProveH0,H1,H2(Sp)
for i ∈ [np] do

bins[i]← ∅;
for s ∈ Sp do

bins[H0(s)]← bins[H0(s)] ∪ {s};
for t ∈ [d] do

π ← DFSH0,H1,H2(bins, t);
if π ̸= ⊥ then

return π;
return ⊥

procedure VerifyH0,H1,H2(t, s1, ..., su)
if t ̸∈ [d] then

return 0;
for i ∈ [u] do

if H1(t, s1, ..., si−1) ̸= H0(si) then
return 0;

return H2(t, s1, ..., su);

The analysis of completeness, however, is more complicated. Before, we assumed
in the recursive formula that failure events for each element extension are all inde-
pendent. Here, it is not true: the fact that one extension eventually succeeds can tell
that the arrangement of balls to bins is well distributed, and thus another extension
is likely to succeed. Indeed, if each bin gets exactly one ball, then there will always
be a tuple that succeeds except maybe for the requirement that H2(·) = 1. However,
if all balls land in one bin, then the success probability is smaller. To get rid of this
dependency, we can however fix the balls-to-bins arrangement. Then such events
become independent again.

The proof has two parts: the first one says that if the arrangement of the balls
is “good”, then with high probability the honest player succeeds. The second part
proves that we get a “good” distribution of balls with high probability. The “good”
property itself is artificial, but one can notice that if the number of bins of size s
is exactly the expected number of bins of size s if the size of each bin is a Poisson
random variable with mean 1, then the analysis of completeness becomes very similar
to that of the previous scheme.

Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, and let c > 0 be

15



some constant. The property we care about is the following:

1

np

np∑
i=1

e−qXi ≤ 1− q + cq2.

To show that it holds with good probability, we use Poisson approximation which
lets us get rid of dependencies between different Xi and treat them as independent
Poisson random variables with mean 1, which significantly simplifies the proof. Af-
ter applying Poisson approximation, we use either Markov’s inequality or custom
tailored Chernoff analysis to bound the random sum. The Chernoff analysis lets
us prove that the property holds with overwhelming probability but requires np,
the number of balls, to be large enough (on the order of λ3). If np is very small
(smaller than λ2), then we use the Markov approach to get completeness 1/2. If np

is somewhere in between, we still use the Chernoff approach, but get completeness
error that is only moderately small. In either of the two cases, completeness must
be amplified as we explain later in Section 3.2.2. Looking ahead, we get average
case running time np +O(λ2) and worst case running time np +O(λ3) regardless of
np.

We first formally analyze soundness. As mentioned previosly, we define sound-
ness error to be the probability that a valid proof can be constructed using elements
Sf with |Sf| = nf (simple soundness).

Lemma 3. The soundness error is at most
(

nf

np

)u
· qd.

Proof. By union bound, the probability that a valid proof can be constructed using
nf elements is at most (

1

np

)u

· q · d · nu
f =

(
nf

np

)u

· qd.

Theorem 6. Let

u ≥ λsec + log(qd)

log np

nf

.

Then soundness error is ≤ 2−λsec.

Proof. Follows from Lemma 3.

We now analyze completeness. The following lemma uses Markov’s inequality
to establish that the “good” arrangement of balls into bins holds with moderate
probability. It will be useful later.

Lemma 4. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, and let
c > 0. Then

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + cq2

]
≤ 2

c
.
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We present the proof on page 59 of the Appendix.
The next lemma uses the Chernoff approach to analyze the same event. As one

can notice, np needs to be large for it to be meaningful.

Lemma 5. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i. Then

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤ 2e−

9
4
npq2 .

We present the proof on page 60 of the Appendix.
Finally, the following lemma establishes that as long as the “good” arrangement

of balls holds, the honest prover succeeds with good probability.

Lemma 6. Let c > 0, let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin
i, let E be the event that 1

np

∑np

i=1 e
−qXi ≤ e−q+cq2 and let F be the event that the

honest prover fails. Then Pr[F |E] ≤ e−(q−cuq2)d.

We present the proof on page 62 of the Appendix.
By combining the above two lemmas, we get sufficient Telescope parameter values

to guarantee good completeness.

Theorem 7. Assume

d ≥ 16u(λrel + log 3)

log e
; q =

2(λrel + log 3)

d log e
;np ≥

d2 log e

9(λrel + log 3)
.

Then completeness error is ≤ 2−λrel.

We present the proof on page 63 of the Appendix.

Corollary 2. Assume

u ≥ λsec + log(λrel + log 3) + 1− log log e

log np

nf

; d ≥ 16u(λrel + log 3)

log e
;

q =
2(λrel + log 3)

d log e
;np ≥

d2 log e

9(λrel + log 3)
.

Then soundness error is ≤ 2−λsec and completeness error is ≤ 2−λrel.

Proof. Combine Theorems 6 and 7.

The above corollary is ready to be used as is, provided that np is large. As we
will see in Section 3.2.1, the average case running time of the prover in this scheme
is np +O(λ2) and worst case running time is np +O(λ3). We explain how to handle
the case when np is small in Section 3.2.2.

17



3.2.1 Running time

In this section we analyze the prover’s running time. The results here will establish a
bound on the average prover running time and a tight bound on the prover running
time of the scheme with parameters in Corollary 2, as well as, serve as basis for more
general running time analysis in Section 3.2.2. We measure the prover running time
in terms of the number of invocations of the random (hash) functions.

Assume Sp is a set with cardinality np. As described in Section 3.1, all tuples
(j, s1, ..., si) can be represented as d trees of height u. We would like to analyze the
number of “accessible” vertices in these trees. Let the indicator random variable

Aj,s1,...,si =

{
1 if for all 1 ≤ r ≤ i, H1(j, s1, ..., sr−1) = H0(sr)

0 otherwise.

If Aj,s1,...,si = 1 we say the vertex (j, s1, ..., si) is accessible.
Similarly to Section 3.1.1, one can prove that the expected number of accessible

vertices in a single tree at a particular height is 1. This holds independently of the
value of H0!

Theorem 8. For any j and 0 ≤ i ≤ u,

E

[ ∑
s1,...,si∈Sp

Aj,s1,...,si

∣∣∣∣∣H0

]
= 1.

Combining the expected number of accessible vertices in a single tree and a lower
bound on the probability that a tree contains a valid proof, we can establish the
following.

Lemma 7. Let c > 0, assume cuq < 1, let Xi = |{s ∈ Sp : H0(s) = i}| be the
number of balls in bin i, let E be the event that 1

np

∑np

i=1 e
−qXi ≤ e−q+cq2 and let V

be the number of visited vertices by the (DFS) algorithm. Then

E
[
V
∣∣E] ≤ 2(u+ 1)

q − cuq2
.

We present the proof on page 63 of the Appendix.

Theorem 9. Suppose 8uq ≤ 1. The expected number of visited vertices by the (DFS)
algorithm is at most

4(u+ 1)

q
+ 2e−

9
4
npq2 · d(u+ 1).

We present the proof on page 63 of the Appendix.
The above theorem lets us see that when taking parameters from Corollary 2 and

letting λ = λsec = λrel and np/nf = const, the scheme has average prover running
time np +O(λ2). Note that np is outside of the big O since we prehash each of the
np elements using H0 exactly once.
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Below we also present a tight bound on the number of accessible non-root vertices
in all d trees

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Aj,s1,...,si

which serves as an upper bound on the DFS running time. A tight bound is useful
for proving worst case running time, but it also lets us argue that an adversary
cannot exploit an imperfect hash function or a PRF by making too many queries.

Below is a Chernoff style theorem in its general form. It features a variable w
that needs to be large enough and that affects the final bound, but no requirement
on u is imposed. It is useful for formally proving average and worst case prover
running time in Section 3.2.2, but a more practical and better bound is given in
Theorem 11.

For technical reasons, Theorem 10 works better with and Theorem 11 works only
with large u. When u is small, an alternative way to prove a tight bound on the
running time exists and is given in Lemma 8. It uses a very different approach and
works well when u is not large. Another limitation that all Theorem 10, Theorem 11
and Lemma 8 have is that they only work well when np is large. When np is small,
we simply use the expected running time analysis in Lemma 7 and apply Markov’s
inequality to get a bound on the running time. Section 3.2.2 demonstrates how to
combine all these approaches.

Note that E[Z] = du.

Theorem 10. Let u,w, np ∈ N, λ > 0, λ′ = λ+2
log e

and assume

8 · w2 · (w + 2) · ew+1
w

e · (w + 2− e1/w) · (w + 1)!
≤ 2−λ.

Also define

δ =

(
wλ′

d
+ 1

)
· exp

(
2uwλ′

np

+
7u

w

)
.

Then

Pr[Z ≥ δdu] ≤ 2−λ.

We present the proof on page 64 of the Appendix.
In the above theorem, δ is a, perhaps large, constant when letting λ = λrel and

using parameters from Corollary 2. When letting λ = λsec = λrel and np/nf = const,
one can see that the scheme with parameters in Corollary 2 does np+O(λ3) hashings
with overwhelming probability. The following, however, is an optimized bound that
should be used in practice.

Theorem 11. Let u, np ∈ N, λ > 0, λ′ = λ+2
log e

and assume

24ud(u+ 2) · eu+1
u

e · λ′ · (u+ 2− e1/u) · (u+ 1)!
≤ 2−λ; d ≥ uλ′

3
; np ≥

u2λ′

2
.
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Also define

δ =

(√
3uλ′

d
+ 1

)
· exp

(
2

(
1 +

√
uλ′

3d

)
u

√
2λ′

np

+

√
3uλ′

d

)
.

Then

Pr[Z ≥ δdu] ≤ 2−λ.

We present the proof on page 65 of the Appendix.
As mentioned before, the tight bounds above are not suitable when u is small.

To overcome this issue, the following bound is introduced that works well when u is
not large. By combining the two, we get a bound that works well for any u.

Lemma 8. Let λ, c > 0, u ∈ N, let Xi = |{s ∈ Sp : H0(s) = i}| be the number of
balls in bin i, let E be the event that 1

np

∑np

i=1 e
−qXi ≤ e−q+cq2, let V be the number

of non-root vertices that the (DFS) algorithm visits, assume cuq < 1, and define

B =
u(λ+ log u)

2 log e

(
1

q
+

1

q − cuq2

)
+ u.

Then Pr[V > B|E] ≤ 2−λ.

We present the proof on page 66 of the Appendix.

3.2.2 Generalization to small np

In this section, we show our most advanced Telescope scheme, supporting both large
and small values of np, and analyze its expected and worst case running times. The
following useful theorems combine the running time analysis with the analysis of
completeness from previous subsections to argue that the DFS search will succeed
within a bounded number of steps. Looking ahead, our scheme will possess a de-
terministic worst case running time.

Theorem 12. Assume

d ≥ (32 ln 12)u; q =
2 ln 12

d
.

Then the (DFS) algorithm visits less than

8(u+ 1)d

ln 12

vertices and finds a valid proof with probability at least 1/2.

Proof. Apply Lemma 52 with c0 := 8, c1 := 4 and λ := ln 12.
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Theorem 13. Let u,w, np ∈ N and assume

λ′
rel =

λrel + 7

log e
; d ≥ 16uλ′

rel; q =
2λ′

rel

d
; np ≥

d2

9λ′
rel

;

14 · w2 · (w + 2) · ew+1
w

e · (w + 2− e1/w) · (w + 1)!
≤ 2−λrel .

Then the (DFS) algorithm visits less than(
wλ′

rel

d
+ 1

)
· exp

(
2uwλ′

rel

np

+
7u

w

)
· du+ d

vertices and finds a valid proof with probability ≥ 1− 2−λrel.

Proof. Apply Theorem 7 with λrel := λrel + log 7
3
and Theorem 10 with λ := λrel +

log 7
4
.

Theorem 14. Assume

d ≥ 16u(λrel + 2)

log e
; q =

2(λrel + 2)

d log e
;np ≥

d2 log e

9(λrel + 2)
.

Then the (DFS) algorithm visits at most

λrel + 2 + log u

λrel + 2
· 3ud

4
+ d+ u

vertices and finds a valid proof with probability ≥ 1− 2−λrel.

We present the proof on page 67 of the Appendix.
We will now give an intuitive description of the new scheme and ideas behind

it. For simplicity, assume λ = λsec = λrel and np/nf = const. The Telescope with
Prehashing scheme with parameters in Corollary 2 have completeness and soundness
2−λ. Moreover, as shown in Section 3.2.1, the prover has expected running time
np+O(λ2) and worst case running time np+O(λ3). The limitation, however, is that
np needs to be large — at least λ3. One way to overcome it is to use Markov analysis
of the “good” arrangement of balls into bins (Lemma 4) to achieve completeness 1/2,
which works for any np. We must then amplify completeness. We basically allow the
prover to make multiple attempts, at the expense of worsened soundness. Therefore,
we add another integer index v to the proof and restrict it to be between 1 and r. In
general terms, in order to reduce completeness error 1/2 to 2−λrel , we set r := λrel,
and to compensate for the loss in soundness, we set λsec := λsec + log λrel. Overall,
the proof size u is not changed, except for an additive small constant.

Formally, the new proof object looks as follows. We have random functions
H0, H1 ∼ Unif([np]) producing a uniformly random value in [np] and hash func-
tion H2 ∼ Bernoulli(q) returning 1 with probability q and 0 otherwise. A tuple
(v, t, s1, ..., su) is a valid proof if and only if

• 1 ≤ v ≤ r;
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np ≤ λ2 λ2+ε, 0 < ε < 1 ≥ λ3

DFS completeness error 1/2

Theorem 12

2−λε

Theorem 13, 14,
or 7 with 11

2−λ

Theorem 14
DFS tight running time bound B = O(λ2) B = O(λ2+ε) B = O(λ3)

DFS expected running time O(λ2) O(λ2) Theorem 9 O(λ2) Theorem 9

DFS bound B = O(λ2) B = O(λ2+ε) B = O(λ3)

Max. # of prove repetitions r λ λ1−ε 1

Expected # of prove repetitions 2 1/(1− 2−λε

) 1

Total expected running time np +O(λ2)

Total worst case running time np +O(λ3)

Figure 1: Optimal parameters for different np

• 1 ≤ t ≤ d;

• for all 1 ≤ i ≤ u, H1(v, t, s1, ..., si−1) = H0(v, si);

• H2(v, t, s1, ..., su) = 1;

(see Section 3.3 how to implement H1 efficiently).
Theorem 12 combined with Theorem 6 shows that an attempt to find a proof

under a single index v succeeds with probability 1/2 within O(λ2) DFS steps. We
restrict the DFS from running longer than that (parameter B in the pseudocode
below) because if the arrangement of balls into bins happens to be bad, DFS might
run for a long time ruining the worst case running time of the prover; we must stop
it from doing so. As a consequence, we also get deterministic worst case running
time. Since in expectation only two indices are checked before a valid proof is found,
we get average prover running time of the resulting scheme 2np + O(λ2) and worst
case prover running time O

(
(np + λ2) · r) = O

(
(np + λ2) · λ) = O

(
npλ+ λ3). While

this might already suffice for many applications, for best efficiency we set our goal
to get average prover running time np + O(λ2) and worst case prover running time
np + O(λ3). For large np, the the expected time is improved by a factor of 2 and
the worst case time is improved by a factor of λ!

Since we have already accomplished this when np ≥ λ3, we only need to consider
the case where λ2 < np < λ3 (ignoring the constants). Consider, for example,
np = λ2+1/3. The Chernoff analysis (Corollary 2) cannot give us completeness

error 2−λ, but setting λrel := λ1/3, it can establish completeness error of 2−λ1/3

when setting d := λ1+1/3. Similarly, Theorem 10 shows that the DFS runs longer
than O(λ2+1/3) steps with probability at most 2−λ1/3

. Combining the two facts,
conveniently formalized in Theorem 13, we know that the DFS fails to find a valid
proof within O(λ2+1/3) steps with probability at most 2−λ1/3

. We restrict the DFS
to run for at most that number of steps (parameter B in the pseudocode below) and
allow the prover to make λ2/3 attempts to get average prover running time O(np+λ2)
and worst case prover running time O

(
(np + λ2+1/3) · λ2/3

)
= O(λ2+1/3 · λ2/3) =

O(λ3) = np +O(λ3). With more careful calculation, one can also prove the average
prover running time of np + O(λ2). We include optimal parameters and properties
of the scheme for all values of np in Figure 1.
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Below we present the full pseudocode implementation of the prover and verifier.

procedure BoundedDFSH0,H1,H2(bins, v, t, s1, ..., sk, limit)
if k = u then

if H2(v, t, s1, ..., su) = 1 then
return (v, t, s1, ..., su);

return ⊥
for sk+1 ∈ bins[H1(v, t, s1, ..., sk)] do

if ∗limit = 0 then
return ⊥;

∗limit← ∗limit− 1;
π ← BoundedDFSH0,H1,H2(bins, v, t, s1, ..., sk+1);
if π ̸= ⊥ then

return π;
return ⊥

procedure ProveIndexH0,H1,H2(Sp, v)
for i ∈ [np] do

bins[i]← ∅;
for s ∈ Sp do

bins[H0(v, s)]← bins[H0(v, s)] ∪ {s};
limit← B;
for t ∈ [d] do

if limit = 0 then
return ⊥;

limit← limit− 1;
π ← BoundedDFSH0,H1,H2(bins, v, t,&limit);
if π ̸= ⊥ then

return π;
return ⊥;

procedure ProveH0,H1,H2(Sp)
for v ∈ [r] do

π ← ProveIndexH0,H1,H2(Sp, v);
if π ̸= ⊥ then

return π;
return ⊥;

procedure VerifyH0,H1,H2(v, t, s1, ..., su)
if v ̸∈ [r] then

return 0;
if t ̸∈ [d] then

return 0;
for i ∈ [u] do

if H1(v, t, s1, ..., si−1) ̸= H0(v, si) then
return 0;

return H2(v, t, s1, ..., su);

We finally present the main result of this section. The formal proof is quite
cumbersome but we hope that the informal discussion above explains well how pa-
rameters are chosen to support all values of np while minimizing the average and
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worst case prover running time.

Corollary 3. For all λsec ≥ 0, λrel ≥ 1 and np > nf ≥ 1, there is an ALBA scheme
with soundness error ≤ 2−λsec, completeness error ≤ 2−λrel, proof size

u =

⌈
λsec + log λrel + 5− log log e

log np

nf

⌉
,

expected prover running time

np +O
(
u2
)

and worst case prover running time

np +O
(
u2 · λrel

)
.

We present the proof on page 69 of the Appendix.

3.3 Implementing Random Oracles with Long Inputs

We describe our protocols assuming a random oracle H1 that can accommodate
inputs of any length, which, in particular, implies independence of outputs for in-
puts of different lengths. However, to have an accurate accounting for running
times, one has to charge for the cost of running a random oracle in proportion
to the input length. Because the Telescope construction runs H1(j), H1(j, s1),
H1(j, s1, s2), H1(j, s1, s2 . . . , su), the cost of just one u-tuple is quadratic in u. To
reduce this cost to linear (thus saving a factor of u in running time), we will im-
plement H1(j, s1, . . . , si+1) to reuse most of the computation of H1(j, s1, . . . , si).
The most natural way to do so is to slightly modify the Merkle-Damg̊ard con-
struction: use a two-input random oracle f (“compression function”) with a suf-
ficiently long output and a function g that maps the range of f to the distribu-
tion needed by H1 (see Appendix B for how we implement g). Inductively define
H ′

1(j, s1, . . . , si+1) = f(H ′
1(j, s1, . . . , si), si+1) and let H1(x) = g(H ′

1(x)).
While not indifferentiable from a random oracle (see Coron et al. [CDMP05]

for similar constructions that are), this construction suffices for our soundness and
extractability arguments, because those arguments need independence only for a
single chain (they handle multiple different chains by the union bound). Neither
length extension attacks nor collisions are important. Completeness suffers very
slightly by the probability of f -collisions, which can be made negligible by making
the output of f large enough and using the bound on the number of queries made
by the honest prover (Theorems 5 and 11).

3.4 Optimality of the certificate size

In this section, we show that the number of set elements u included in a proof
is essentially optimal for our constructions. Because our construction works for a
black-box weight function that formally is implemented via an oracle (and in reality
may be implemented by MPC, a human judge, etc.), the verifier must query the
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weight function on some values; else the verifier has no knowledge of whether any
values in the prover’s possession have any weight.

Thus, for the sake of proving optimality, we consider only protocols that make
this part of verification explicit. We define an algorithm Read (see the definition
below) that takes a proof and returns set elements; these set elements must have
been in the prover’s possession. We bound the proof size in terms of the number of
set elements returned by Read, showing that if it is too small, the protocol cannot
be secure. We also note that the following definition can be used for upper bound
results too, as demonstrated in Section 7 for the CRS model.

Definition 4. (Prove,Read,Verify) is a (λsec, λrel, np, nf)-ALBA scheme if and only
if

• ProveH is a probabilistic random oracle access program;

• VerifyH is a random oracle access program;

• Read is a program;

• completeness: consider the following experiment CompExp(Sp):

π ← ProveH(Sp);
output 1 iff Read(π) ⊆ Sp and VerifyH(π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥ 1−2−λrel.

• soundness: consider the following experiment SoundExp(Sf):

output 1 iff ∃π,Read(π) ⊆ Sf ∧ VerifyH(π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤ 2−λsec;

We now prove a lower bound for a scheme satisfying this definition.

Theorem 15. Assume λrel ≥ 1, define α = λsec−3
log(np/nf)

, assume nf ≥ 3α2, let Sp be

an arbitrary set of size np, and let (Prove,Read,Verify) be a (λsec, λrel, np, nf)-ALBA
scheme. Then

Pr
[∣∣Read(ProveH(Sp))

∣∣ > α
]
≥ 1

4
.

We present the proof on page 75 of the Appendix.

4 ALBAs with Decentralized Prover

In the previous section we assumed the ALBA prover has all the set elements at
hand. In many applications however, such as threshold signatures, this is not the
case. The set elements may be spread across numerous parties who will then jointly
compute a proof. A trivial solution is to use a centralized protocol, by designating
one of the parties as the lead prover and have all other parties communicate their
set elements to that party. However, this incurs a communication cost equal to the
size of the set, which we would rather avoid.
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In this section we present protocols where the various parties holding set elements
start out by performing computations locally and only conditionally communicate
their elements to a designated prover or aggregator. Whilst our constructions we
present in this section still use weights of 0 or 1, they can be generalized to integer
weights as explained in Section 5. Finally, as in Section 3, instead of proof of knowl-
edge we consider a simpler notion of soundness: the probability that a valid proof
exists containing only elements from set Sf of size nf. Sections 6 and 7 demonstrate
how to do knowledge extraction.

4.1 Simple Lottery Construction

The simple lottery scheme is parametrized by the expected number of network par-
ticipants µ. Let H be a random oracle that outputs 1 with probability p = µ

np

and 0 otherwise. Each set element s is sent to the aggregator over the network if
and only if H(s) = 1. Now let rs, rc > 1 such that rsrc = np

nf
and set u = rs · pnf

(or equivalently u = pnp

rc
). The aggregator needs to collect and concatenate u set

elements and the verifier accepts if it receives u values that each hash to 1.

Lemma 9. Assuming

u ≥ λsec · ln 2
ln rs − 1 + 1

rs

,

soundness error of the scheme is ≤ 2−λsec.

We present the proof on page 77 of the Appendix.

Lemma 10. Assuming

u ≥ λrel · ln 2
rc − 1− ln rc

,

completeness error of the scheme is ≤ 2−λrel.

We present the proof on page 77 of the Appendix.
Thus, to minimize u, we need to minimize

max

{
λsec · ln 2

ln rs − 1 + 1
rs

,
λrel · ln 2

rc − 1− ln rc

}
.

Noting that the first term is decreasing with respect to rs and the second term is
decreasing with respect to rc, the minimum is achieved when the two terms are
equal. If λsec = λrel = λ, then setting rc =

np

np−nf
· ln np

nf
and rs =

np−nf

nf
· 1
ln

np
nf

gives

the smallest u.
We note the interesting fact that choosing rs and rc that minimize u also mini-

mizes µ. Since µ = pnp = urc, we have

µ ≥ max

{
λsec · ln 2

ln rs − 1 + 1
rs

· rc,
λrel · ln 2

rc − 1− ln rc
· rc
}
.

The first term is decreasing with respect to rs since rc is, and it can be seen that
the second term is decreasing with respect to rc. Hence, µ is minimized when the
two terms are equal which is the same as the condition for minimizing u.
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4.2 Decentralized Telescope

The next logical step to minimize the size of the proof is to run a smarter aggrega-
tor, Telescope, and calculate an appropriate increase to the security and reliability
parameters. While combining a simple lottery with an ALBA aggregator is a generic
technique, but the generic analysis requires one to calculate two lottery tail bounds:
one for soundness and one for completeness. By using Telescope for the aggregator,
we benefit from omitting the soundness tail bounds from analysis; this section has
all details.

As previously, we have parameter µ and select each element to be transmitted
over the network with probability µ/np. After receiving enough elements selected
by the simple lottery, the aggregator runs the algorithm from Section 3.2.

We employ threshold analysis here: calculate the number of set elements se-
lected by the simple lottery such that 1) this number is achievable with probability
1 − 2−λrel−1 and 2) the Telescope aggregator will produce a valid certificate with
probability 1 − 2−λrel−1. For the aggregator, we use the Telescope scheme with pa-
rameters from Theorem 12 and λrel + 1 repetitions as described in Section 3.2.2,
yielding expected aggregator running time O(µ + u2) and worst case running time
O
(
(µ+u2)λrel

)
; the worst case running time can be improved following the approach

in Corollary 3.
For all 1 ≤ i ≤ np, let Xi be 1 if and only if element si is selected and 0 otherwise.

Let X =
∑np

i=1 Xi; then E[X] = µ. Assume ρ ∈ N satisfies Pr[X ≥ ρ] ≥ 1− 2−λrel−1.
Reducing the honest-malicious gap from np

nf
to ρ

µ
np

·nf
= np

nf
· ρ
µ
results in increasing

the certificate size to

λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

(we have λsec + log(λrel + 1) + 1 + log e + log ln 12 instead of λsec + log λrel + 1 +
log e+log ln 12 in Theorem 12 because we instantiate it with λsec := λsec+log e and
λrel := λrel + 1 for technical reasons).

One can think of the gap ρnp

µnf
as (1−δ)np

nf
if we set ρ = (1− δ)µ, and a formula for

δ can be derived using a Chernoff bound. Note that we only decrease np in the np

nf

gap. nf remains the same since the union bound argument for soundness still works,
but with some modifications. Particularly, it requires a somewhat large µ.

Let Lottery : {0, 1}∗ → {0, 1} be an oracle returning 1 with probability µ
np

and

assume H = (H0, H1, H2,Lottery) where H0, H1, H2 are as defined in Section 3.2.
Also let A.ProveH , A.VerifyH be as in Section 3.2.2 and define the following.

procedure B.ProveH(s)
if Lottery(s) = 1 then

return s;
else

return empty string;

procedure B.AggregateH(S)
return A.ProveH(S);

procedure B.VerifyH(π)
parse (t, s1, ..., su) = π;
return 1 iff A.VerifyH(π) = 1∧
∀1 ≤ i ≤ u, Lottery(si) = 1;
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Theorem 16. Assume

µ >
2(λrel + 1)

log e
; δ =

√
2(λrel + 1)

µ log e
; ρ =

⌈
(1− δ)µ

⌉
and instantiate the algorithm in Section 3.2.2 with r := λrel + 1, d ≥ (32 ln 12)u,
q := 2 ln 12

d
and np := ρ. Then completeness error is ≤ 2−λrel.

Proof. By Chernoff bound (Lemma 40), the simple lottery chooses at least ρ > 0 set
elements with probability at least 1−2−λrel−1. Given this event, by Theorem 12, the
algorithm outputs a valid certificate with probability at least 1−2−λrel−1. Therefore,
completeness error is ≤ 2−λrel .

We now calculate soundness error defined as the probability that a valid proof
can be constructed using elements Sf with |Sf| = nf.

Lemma 11. The soundness error is at most

qdr ·
(
µnf

ρnp

)u

· exp
(
u2np

µnf

)
.

We present the proof on page 78 of the Appendix.
We also include an additional improved soundness bound in Section C.2 that we

use to calculate actual numbers.

Theorem 17. Assume

µ ≥ npu
2

nf

;
ρnp

µnf

> 1;

u ≥ λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

.

and instantiate the algorithm in Section 3.2.2 with r := λrel + 1, d ≥ (32 ln 12)u,
q := 2 ln 12

d
and np := ρ. Then soundness error is ≤ 2−λsec.

We present the proof on page 78 of the Appendix.
Using Theorems 16 and 17, we can see how big µ needs to be if we increase

u log np

nf
only by some amount C.

Corollary 4. Assume

C > 0; u ≥ λsec + log(λrel + 1) + 1 + log e+ log ln 12 + C

log np

nf

;

µ ≥ max

{
8(λrel + 1)

log e
,
npu

2

nf

,
9u2(λrel + 1) log e

2C2

}
; µ >

9 log e

2
· λrel + 1

log2 np

nf

;

δ =

√
2(λrel + 1)

µ log e
; ρ =

⌈
(1− δ)µ

⌉
and instantiate the algorithm in Section 3.2.2 with r := λrel + 1, d ≥ (32 ln 12)u,
q := 2 ln 12

d
and np := ρ. Then soundness error is ≤ 2−λsec and completeness error is

≤ 2−λrel.
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We present the proof on page 79 of the Appendix.
Thus, if we let λ = λsec = λrel and let u only be a constant larger than optimal, we

have µ = O(λ3); moreover, µ is proportional to 1
C2 . Additionally, setting C :=

√
λ,

we get a slighly larger proof size u with communication complexity O(λ2). One
could also amplify the completeness via repetitions as described in Section 3.2.2,
not only on the aggregator side, but applied to the lottery as well. This can improve
the proof size - communication tradeoff, but it requires some network engineering to
avoid redundant communication. Specifically, one needs to delay lottery repetitions
until the previous ones have probably failed.

We also present a different corollary showing what u needs to be in terms of µ.

Corollary 5. Assume

C > 0;

u ≥

(
1 +

3
√
2 log e ·

√
λrel + 1

√
µ · log np

nf

)
· λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf

;

µ ≥ max

{
8(λrel + 1)

log e
,
npu

2

nf

,
18 log e · (λrel + 1)

log2 np

nf

}
;

δ =

√
2(λrel + 1)

µ log e
; ρ =

⌈
(1− δ)µ

⌉
and instantiate the algorithm in Section 3.2.2 with r := λrel + 1, d ≥ (32 ln 12)u,
q := 2 ln 12

d
and np := ρ. Then soundness error is ≤ 2−λsec and completeness error is

≤ 2−λrel.

We present the proof on page 80 of the Appendix.

4.3 Optimality of the certificate size - communication trade-
off

We can attempt to find a lower bound for the tradeoff between the certificate size
u and µ. For this purpose, we use the following definition.

Definition 5. (Prove,Read,Verify) is a (λsec, λrel, np, nf, µ)-lottery based ALBA scheme
if and only if

• ProveH is a probabilistic random oracle access program;

• VerifyH is a random oracle access program;

• Read is a program;

• if L is a random function such that for all x, Pr[L(x) = 1] = µ
np

and we define

Lottery(S) = {x ∈ S : L(x) = 1}, then

– completeness: consider the following experiment CompExp(Sp):
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π ← ProveH(Lottery(Sp));
output 1 iff Read(π) ⊆ Lottery(Sp) and VerifyH(π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥
1− 2−λrel.

– soundness: consider the following experiment SoundExp(Sf):

output 1 iff ∃π,Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤
2−λsec;

The following theorem presents our lower bound.

Theorem 18. Assume ρ satisfies Pr
[
B(np,

µ
np
) ≤ ρ

]
≥ 2−λrel+1 where B(n, p) is

a binomial random variable with n experiments each with probability of success p.
Also assume

ρnp

µnf

> 1; µ ≥ 3u2np log e

2nf

; nf ≥ ρ,

let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel, np,
nf, µ)-lottery based ALBA scheme such that

Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ ≤ u
]
= 1.

Then

u >
λsec − 4

log np

nf
+ log ρ

µ

.

We present the proof on page 81 of the Appendix.
Using this, we can establish a lower bound similar to the upper bound Corol-

lary 4.

Corollary 6. Let C > 0, define

α =
λsec − 4 + C

log np

nf

;u = ⌊α⌋

and assume

max

{
4

λrel

,
λrel

(1− nf

np
)2
,
3u2np log e

2nf

}
≤ µ ≤ min

{
α2λrel log

2 e

4C2
,
(4
e
)λrel

4e10

}
;

nf ≥ 2µ.

Let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel,
np, nf, µ)-lottery based ALBA scheme. Then

Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ > α
]
> 0.
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We present the proof on page 84 of the Appendix.
Alternatively, we also present a corollary showing a lower bound on the certificate

size as a function of µ. Compare it to Corollary 5.

Corollary 7. Define

α =

(
1 +

√
λrel · log e

2
√
µ log np

nf

)
· λsec − 4

log np

nf

;u = ⌊α⌋

and assume

max

{
4

λrel

,
λrel

(1− nf

np
)2
,
3u2np log e

2nf

}
≤ µ ≤

(4
e
)λrel

4e10
;

nf ≥ 2µ.

Let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel, np, nf, µ)-
lottery based ALBA scheme. Then

Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ > α
]
> 0.

We present the proof on page 86 of the Appendix.

5 Adding Weights

We will assume, without loss of generality, that the weight function W outputs
integers. A naive way to handle weights other than 0 and 1 is to interpret each
set element s as W (s) elements (s, 1), . . . , (s,W (s)) and apply schemes designed for
the unweighted case to (s, i) pairs. Unfortunately, this approach makes the prover
running time linear in the total weight which could be in the order of 264.

Fortunately, any lottery-based scheme in which the number of lottery winners is
independent of np (or at most polylogarithmic in np) is amenable to a more efficient
solution (and the Telescope scheme in Section 3 can be turned into a lottery-based
scheme first using Section 4.2). We simply view (s, 1), . . . , (s,W (s)) pairs as W (s)
different lottery participants. For efficiency, instead of having each of them play
the lottery individually with probability p, we sample the number of winners from
the binomial distribution Binom(W (s), p) (similar to the sortition algorithm used
in Algorand [GHM+17]). We do so because it does not matter which i values win
— what matters is only the number of winners. If the binomial sampling returns k,
then (s, 1), . . . , (s, k) are considered winners. This does not increase the complexity
compared to the unweighted-lottery-based scheme, except for binomial sampling
rather than lottery applied to each element.

Since the Decentralized Telescope scheme remains unchanged when weights are
introduced, we now focus on constructing a weighted Telescope scheme with a single
centralized prover as in Section 3.

Using Corollary 4 with λsec := λsec + log⌈λrel⌉, λrel := 1, C := 1 and allowing
the prover to make ⌈λrel⌉ attempts as described in Section 3.2.2, we get a weighted
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(λsec, λrel, np, nf)-ALBA scheme with proof size

λsec + log⌈λrel⌉+ 3 + log e+ log ln 12

log np

nf

(3)

and expected prover running time O(n + λ2
sec), where n is the number of weighted

elements in the input.
One can take the approach in Section 3.2.2 to also minimize the worst case

prover running time, but in addition to carefully choosing the parameters d, q, r
and the DFS bound B, one also needs to choose the optimal µ. The key difference,
though, is that while in the unweighted case the size of prover’s input np is fixed and
known in advance, in the weighted case the size of prover’s input n is only known
at runtime, since elements can have large or small weight. A solution is to let the
prover choose the appropriate d, q, r and B dynamically based on the size of its
input n. The number of sets of parameters (di, qi, ri, Bi) should not be large to not
affect soundness too much. We estimate that by making ≈ log λrel sets of parameters
where ri are powers of two between 1 and λrel, one can construct a scheme with proof
size

u =
λsec + log λrel + log log λrel + C

log np

nf

where C is a small constant, expected prover running time

n+O(u2)

and worst case prover running time

n+O(u2 · λrel).

The additional additive log log λrel factor in u comes from compensating the small
loss in soundness.

6 Knowledge Extraction for NIROPK

In this section we show how Definitions 1 and 2 can be realized. While Sections 3
and 4 provide intuitive constructions with clean combinatorial analysis, they have a
missing piece — a knowledge extractor. As we will see, the simple soundness proven
there does not immediately imply proof of knowledge, and more reasoning is needed.
We also remind that the knowledge extractor must be straight-line; i.e., rewinding of
the prover is not allowed but observing its queries to the oracles is. Here we describe
the full NIROPK scheme including its knowledge extactor for the case of the basic
Telescope construction from Section 3.1 while other Telescope constructions can be
made NIROPK in a similar fashion. For H = (H1, H2), define
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procedure ProveH,W (Sp)
run DFS as described in
Section 3.1

procedure VerifyH,W (π)
parse (t, s1, ..., su) = π
return 1 iff

• 1 ≤ t ≤ d;

• ∀1 ≤ i ≤ u,
H1(t, s1, ..., si) = 1;

• H2(t, s1, ..., su) = 1;

• ∀1 ≤ i ≤ u, W (si) =
1

procedure ExtractH,W,A

function AH,W
1

π ← AH,W ();
v ← VerifyH,W (π);
return π;

run AH,W
1 () and observe its oracles

transcript τ ;
Sf := ∅;
for x queried to H1 or H2 in τ do

if W (x) = 1 then
add x to Sf;

return Sf.

Theorem 19. Define parameters as in Theorem 1. Then algorithms VerifyH,W with
ExtractH,W,A satisfy the proof of knowledge property of Definition 1.

Proof. The extractor succeeds whenever A succeeds, unless A succeeds after query-
ing fewer than nf elements of S, which happens with probability at most 2−λsec by
the following lemma. Thus, the proof of knowledge property follows by the union
bound.

See full proof on page 87.
The following lemma resembles the simple soundness result in Theorem 1, but

unfortunately is harder to prove. Whereas the proof of Theorem 1 is a simple
application of union bound, the fact that the adversary can choose what weight-1
elements to query adaptively based on past RO responses makes the “vanilla” union
bound argument inapplicable. Fortunately, there exists a way around this problem.

Lemma 12. Define parameters as in Theorem 1 and let E be the event that a valid
proof can be made from the first nf (or less) weight-1 elements that AH,W

1 queries to
H. Then Pr[E] ≤ 2−λsec.

We present the proof on page 88 of the Appendix.
Combining the proof of knowledge property with completeness proven in Sec-

tion 3.1, we now state the main result of this section.

Corollary 8. Using parameters from Corollary 1, (Prove,Verify,Extract) is a (λsec, λrel, np, nf)-
NIROPK ALBA scheme.

In summary, we achieve information-theoretic but non-adaptive security; i.e.,
additional computational power does not help the adversary avoid knowledge ex-
traction but he is not allowed to choose the predicate / weight function based on the
random oracle. Adaptive security can be achieved the traditional way: rerandomize
the random oracle by including a commitment to the weight function as additional
input to the random oracle. However, the security downgrades to computational:
assuming that adversary makes at most 2q RO queries, we need to increase ALBA’s
λsec parameter by q.
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7 Replacing the Random Oracle with PRF

In this section we show how to remove the need for the random oracle and instantiate
our scheme in the Common Reference String model (or alternatively, the Uniform
Random String model). This is a novel feature of our scheme in comparison to com-
pact certificates which inherently rely on the random oracle because of Fiat-Shamir.
We utilize a PRF for the hash function H with the CRS being a random PRF key
(or alternatively, uniformly random bits sufficient to generate one). We note that
although the PRF is only secure against computationally bounded distinguishers,
our ALBA scheme retains information-theoretic security.

Assume (GenKey, F ) is a PRF such that for any oracle access program AO with
running time bounded by T ,∣∣∣∣Pr [AH() = 1

]
− Pr

[
AF (GenKey(),·)() = 1

]∣∣∣∣ ≤ εprf(T ). (4)

We will assume the unweighted case, but the following can be extended to support
weights as well. Combining the improved Telescope construction from Section 3.2
with the tight bound on the number of accessible vertices (Theorem 11) and instan-
tiating the scheme with the standard random oracle (Appendix B), one can build a
Telescope scheme such that for some B ∈ O(λ3),

• the honest prover’s DFS visits at most B vertices and outputs a valid proof
with probability ≥ 1− 2−λ;

• there exists a valid proof containing elements from Sf or the number of acces-
sible vertices exceeds B with probability ≤ 2−λ.

Implement ProveH(Sp) as the standard DFS that visits at most B vertices and
define VerifyH(π) in a natural way. We show an ALBA scheme under Definition 4
where the random oracle is replaced with CRS. Below is the new definition and a
Telescope construction for it.

Definition 6. (Prove,Read,Verify,GenCRS) is a (λsec, λrel, np, nf)-CRS ALBA scheme
if and only if

• Prove is a probabilistic program;

• Verify is a program;

• Read is a program;

• GenCRS is a probabilistic program;

• completeness: consider the following experiment CompExp(Sp):

crs← GenCRS();
π ← Prove(crs, Sp);
output 1 iff Read(π) ⊆ Sp and Verify(crs, π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥ 1−2−λrel.
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• soundness: consider the following experiment SoundExp(Sf):

crs← GenCRS();
output 1 iff ∃π,Read(π) ⊆ Sf ∧ Verify(crs, π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤ 2−λsec;

procedure R.Prove(crs, Sp)

π ← ProveF (crs,·)(Sp);
return π;

procedure R.Verify(crs, π)
r ← VerifyF (crs,·)(π);
return r;

procedure R.Read(π)
parse (t, s1, ..., su) = π;
return {s1, ..., su};

procedure R.GenCRS
k ← GenKey();
return k;

Theorem 20. R is a (λ′
sec, λ

′
rel, np, nf)-CRS ALBA scheme where λ′

sec = λ′
rel =

− log
(
2−λ + εprf(O(np + λ3))

)
.

Proof. Completeness follows from the fact that Prove’s running time is bounded
by O(np + B) = O(np + λ3) steps and that ProveH(Sp), when instantiated with
the random oracle H, finds a valid proof with probability ≥ 1 − 2−λ. Acting as
a PRF distinguisher, we conclude that ProveF (GenKey(),·) outputs a valid proof with
probability ≥ 1− 2−λ − εprf(O(np + λ3)).

To prove soundness, we can observe whether a DFS on set Sf finds a valid proof or
does not terminate after visiting B vertices. In the random oracle case, one or both
happen with probability ≤ 2−λ, so in the PRF case it is ≤ 2−λ+εprf(O(np+λ3)). But
the probability that there exists a valid proof in the PRF case cannot be larger.

We present the full version of the proof in Section C.3.

7.1 Knowledge Extraction for Definition 6 / Definition 4

In this section we show how to generically convert an ALBA scheme under Defi-
nition 6 to a proof of knowledge scheme under Definition 3. We still assume the
unweighted scenario (W : {0, 1}∗ → {0, 1}) but the following can be generalized to
add weights. Sometimes it will be convenient to treat W as a set: {s : W (s) = 1}.

LetX = (X.Prove, X.Read, X.Verify, X.GenCRS) be a (λsec, λrel, np, nf)-CRS ALBA
scheme (as in Definition 6) and define Y = (Y.Prove, Y.Verify, Y.Extract, Y.GenCRS)
as follows.

procedure Y.GenCRS
return X.GenCRS();

procedure Y.ProveW (crs, Sp)
return X.Prove(crs, Sp ∩W );

procedure Y.VerifyW (crs, π)
S := X.Read(π);
return 1 iff S ⊆ W ∧
X.Verify(crs, π) = 1;

procedure Y.ExtractW (A)
Sf := ∅;
while |Sf| ≤ nf do

crs← X.GenCRS();
π ← AW (crs);
S := X.Read(π);
Sf := Sf ∪ (S ∩W );

return Sf;

Theorem 21. Y is (λsec, λrel, np, nf)-CRS proof of knowledge ALBA scheme.
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Proof. It is easy to see that Y satisfies the completeness property. We are left to
prove the proof of knowledge property.

First, notice that Y.Extract can only output a set Sf such that Sf ⊆ W and
|Sf| > nf. Now examine a single loop iteration in Y.Extract. We know that ε =
Pr
[
Y.VerifyW (crs, π) = 1

]
−2−λsec > 0 and Y.VerifyW (crs, π) = 1 implies that S ⊆ W

and X.Verify(crs, π) = 1. So,

2−λsec + ε = Pr[Y.VerifyW (crs, π) = 1] ≤ Pr[S ⊆ W ∧X.Verify(crs, π) = 1].

At the same time, since |Sf| ≤ nf, by the soundness of X (considering the experi-
ment SoundExp(Sf) from Definition 6), Pr[S ⊆ Sf ∧ X.Verify(crs, π) = 1] ≤ 2−λsec .
Therefore,

ε = (2−λsec + ε)− 2−λsec ≤

Pr[S ⊆ W ∧X.Verify(crs, π) = 1]− Pr[S ⊆ Sf ∧X.Verify(crs, π) = 1] ≤

Pr[(S ⊆ W ∧X.Verify(crs, π) = 1) ∧ ¬(S ⊆ Sf ∧X.Verify(crs, π) = 1)] =

Pr[S ⊆ W ∧ S ̸⊆ Sf ∧X.Verify(crs, π) = 1] ≤

Pr[S ⊆ W ∧ S ̸⊆ Sf] ≤

Pr[∃x ∈ (S ∩W ) \ Sf].

So, a single iteration of the loop adds at least one new element of W to Sf with
probability at least ε. Therefore, in expectation, the loop runs for at most (nf+1) · 1

ε

iterations. Then it is easy to see that Y.Extract runs in expected time poly(T, 1/ε)
(treating nf as constant).

In summary, we achieve information-theoretic but non-adaptive security; i.e.,
additional computational power does not help the adversary avoid knowledge ex-
traction but he is not allowed to choose the predicate / weight function based on
the CRS. Even then, this can be useful; one example is applications where PRF
seed is chosen by a randomness beacon after the statement to be proven is already
decided. As a last resort, adaptive security can be achieved by rerandomizing the
PRF using the random oracle: let the CRS be the output of the random oracle
on the description of the weight function. This can be beneficial to instantiating
ALBA purely in the random oracle model, for example, when the knowledge of an
ALBA proof is proven by a SNARK. In that case, calculating the CRS outside of
the SNARK circuit and using PRF inside the circuit lets one avoid heuristically
instantiating RO in the circuit.

8 Performance Comparisons

In terms of prover computation, the Simple Lottery scheme requires negligible effort
from the aggregator (apart from verifying membership and eligibility of the received
set elements). Compact certificates require the prover to build a commitment to the
set of received set items in the form of a Merkle tree, requiring O(n) hash evaluations,
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np/nf 60/40 66/33 80/20
ALBA Protocol Size Comms Size Comms Size Comms

GS [GS86] 82944σ 16384σ 3237σ
C. Cert. [MRV+21] (280) 356σ + 356η 208σ + 208η 104σ + 104η
C. Cert. [MRV+21] (2128) 438σ + 438η 256σ + 256η 128σ + 128η
Telescope, no weights (Sect. 3) 232σ 136σ 68σ
Telescope, weights (Sect. 4.2,5) 241σ 141σ 71σ
Simple Lottery (Sect. 4.1) 4157σ 5058σ 1428σ 1981σ 364σ 675σ
Simple Lottery (λrel = 64) 3060σ 3591σ 1069σ 1395σ 283σ 466σ

Decentralized Telescope (Sect. 4.2)
273σ 74105σ 159σ 28443σ 79σ 9068σ
354σ 14919σ 205σ 5989σ 104σ 1987σ

Figure 2: Certificate sizes and expected communication cost, expressed in re-
vealed/sent set elements (σ) and, in the case of [MRV+21], secondary reveals of
the same elements in the form of Merkle Tree paths (η). The parameters λsec, λrel

are set to 128 unless otherwise indicated.

where n is the number of weighted elements in prover’s input. Telescope in turn
requires O(n + λ2) hashes in expectation and Goldwasser-Sipser requires O(np · λ)
hashes.

In terms of number of revealed elements, compact certificates need to reveal at
least λsec

log(np/nf)
set elements (denoted by σ) but they additionally need to reveal the

Merkle tree path of each element (denoted by η) with regards to the commitment
constructed by the prover. The Simple Lottery scheme only reveals set elements
and the number of reveals has the same, linear dependency on λsec, but has a more
complex (and more costly) dependency on (np/nf). Telescope combines the best of
both worlds, as it only needs to reveal close to λsec

log(np/nf)
set elements and integers

v, t with no need for secondary openings. Goldwasser-Sipser requires 8λ · (np/nf)
4 ·

(np/nf − 1)−4 reveals.
In Figure 2 we compare proof sizes and communication costs of our constructions

with those of existing protocols: compact certificates [MRV+21] and the Goldwasser-
Sipser [GS86] scheme. Our analysis of the simple lottery scheme of Section 4.1 is
also applicable to Mithril [CK21] as the combinatorics are very similar. Compact
certificates have computational security and we provide proof sizes secure against
adversaries making 280 and 2128 random oracle queries; Telescope, on the other
hand, has information-theoretic security and smaller number of revealed elements,
but becomes only computationally secure with number of revealed elements similar
to compact certificates when the adversary is allowed to choose the weight function.

We consider communication costs only where they are meaningful, i.e. in decen-
tralized schemes. We note that these costs may be significantly lower in the case of
weighted sets where the same element may appear multiple times with different in-
dices. For compact certificates, we derive values using the formula from [MRV+21].
For the simple lottery we use direct calculation, slightly improving on the bounds
of Section 4.1. For Goldwasser-Sipser we use the analysis of Theorem 23 in the
appendix. For Telescope we use the bounds from Corollary 2. For Decentralized
Telescope we use parameters from Theorem 16 along with a soundness bound from
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Theorem 25 and solving for u. There is a tradeoff between the proof size u and the
expected communication µ, and we include two data points in each table column.
For the weighted Telescope scheme we use the formula in Equation 3.
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A Goldwasser-Sipser Protocol

Consider H a family of pairwise independent hash functions over {0, 1}ℓ.
Let S be the subset of interest with |S| = N . Honest participants have at least

np values. Adversary has at most nf values.
The core step of the GS protocol works like that

• The verifier sends random h ∈ H, y ∈ {0, 1}ℓ to the prover.
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• The prover responds with x.

• The verifier accepts provided that x ∈ S and h(x) = y.

Theorem 22. Let γ ∈ (0, 1). For the honest participants, it holds that they can
convince the verifier with probability (1 − γ)np2

−ℓ, provided that ℓ ≥ log(np/2γ).
The adversary can convince the verifier with probability at most 2−ℓnf.

Proof. Consider the probability that the prover is capable of finding a suitable x
that convinces the verifier in the above interactive proof.

For an adversarial prover, we have that by the union bound the probability they
convince the verifier is at most nf2

−ℓ.
For the honest participants, the probability they convince the verifier is at least

np2
−ℓ −

∑
x,x′

Pr[h(x) = y ∧ h(x′) = y] =

np2
−ℓ −

(
np

2

)
2−2ℓ ≥

np2
−ℓ − (np2

−ℓ)2/2

where in the penultimate inequality we use pairwise independence. The latter in-
equality is at least np2

−ℓ(1− γ) due to np2
−ℓ ≤ 2γ.

The GS protocol repeats the core step u times. The verifier in the end accepts
provided that T core steps are valid.

Theorem 23. Suppose we want to achieve error λrel, λsec for completeness and
soundness respectively with the GS protocol. Then it is sufficient to choose u ≥
8max{λsec, λrel}x4(x− 1)−4 for x = np/nf.

Proof. Let γ ∈ (0, 1 − nf/np) and ℓ = log(np/2γ). The expected number of ad-
versarial successes is µf = 2−ℓnf = 2γ(nf/np)u. Similarly the expected number of
honest party successes is µp = 2−ℓ(1 − γ)np = 2γ(1 − γ)u. We set a threshold
T = γu(1−γ−nf/np). Let t = γ(1−γ−nf/np)u. Observe that µf + t = T = µp− t.
It follows by the Hoeffding bound that: (1) the probability that the adversarial
parties reach T = µf + t successes is at most exp(−2t2/u), (2) the probability that
the honest parties have T successes or less is exp(−2t2/u).

We require that exp(−2t2/u) ≤ 2−λsec and exp(−2t2/u) ≤ 2−λrel . Given that
2t2/u = γ2(1− γ − nf/np)

2u we obtain that it should hold

u ≥ γ−2(1− γ − nf/np)
−2max{λsec, λrel}/2.

We can set now γ = δ(1 − nf/np) for some δ ∈ (0, 1) and we obtain that u ≥
δ−2(1− δ)−2x4/(x− 1)4min{λsec, λrel}/2. The statement of the theorem follows for
δ = 1/2.
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B Implementing H0, H1, and H2 with a Binary

Random Oracle

In this section we address how H0, H1, and H2 used in the Telescope construction
(Section 3) are implemented from a single random oracle H that outputs binary
strings. We know how collect enough bits from H, using the standard techniques
for domain separation of inputs to ensure that domains of H corresponding to inputs
of H0, H1, and H2 don’t overlap, and using counters as necessary to collect more
bits if the output of H is short.

H0 and H1 need to output a uniformly distributed integer in [np] (or 1 with prob-
ability 1/[np], which can be handled by outputting a random integer and checking
if it is 0). If np is a power of 2, we are done. Else, set a failure bound εfail, set
k = ⌈log2(np/εfail)⌉, and set d = ⌊2k/np⌋. Use H to produce a k-bit string, inter-
pret it as an integer i ∈ [0, 2k − 1], fail if i ≥ dnp, and output i mod np otherwise.
(Naturally, only the honest prover and verifier will actually fail; dishonest parties
can do whatever they want.)

H2 needs to output 1 with probability q. We will implement H2 by finding a
rational approximation x/y to q where y is a power of 2 and 0 ≤ q − (x/y) < εfail;
we will get i ∈ [0, y − 1] out of H and output 1 if i < x. This will increase the
probability of output 0 by at most εfail.

The probability of failure for a single oracle query to H0 or H1 is less than
np/2

k ≤ εfail. Conditioned on not failing, the distributions ofH0 andH1 are perfectly
accurate, which is important for our soundness / extractability arguments, as we
have no bound on the number of adversarial queries to its oracles. (An approximate
distribution would not work here.) The value of q simply becomes slightly lower, by
at most εfail. Extractability works the same way as before, because queries toH0, H1,
or H2 are now replaced with queries to H, but the extractor can read those equally
well. The facts that queries can fail and that q is slightly lower reduce the probability
of adversarial success, which marginally improves the bounds in Theorems 1, 6, and
17 without changing anything else in the extractability proof.

The only effect is on reliability, which gets reduced by εfail · qro, where qro is the
number of random oracles queries made by the honest prover. Given tight bounds
on the prover running time in Section 3, which are guaranteed with overwhelming
probability, we can bound this loss by setting εfail high enough.

C Additional Material

C.1 Improved completeness for Section 3.1

Theorem 24. Assume 0 ≤ q ≤ 1 and

d ≥ λrel

log e

(
1

q
+

u+ lnu

2

)
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Then completeness error is ≤ 2−λrel, and the probability that there exists a valid proof
with a particular integer t is at least(

1

q
+

u+ 1 + lnu

2

)−1

.

Proof. Completeness can be described using the following recursive formula. For
0 ≤ k ≤ u, let f(k) be the probability that when fixing a prefix of an integer in
[d] and u − k elements t, s1, ..., su−k, there is no suffix of honest player’s elements
that works, meaning there is no su−k+1, ..., su such that for all u − k + 1 ≤ i ≤ u,
H1(t, s1, ..., si) = 1, and H2(t, s1, ..., su) = 1. Then

• f(0) = 1− q;

• for 0 ≤ k < u, f(k + 1) =
(
(1− 1

np
) + 1

np
· f(k)

)np
;

• the probability that the algorithm fails in the honest case is
(
f(u)

)d
.

This recursive formula can be approximated:

f(k + 1) =

(
1 +

1

np

(f(k)− 1)

)np

≤(
e

1
np

(f(k)−1)
)np

=

ef(k)−1.

We are thus interested in the sequence {xi}i≥0, where x0 = f(0) = 1 − q and
xk+1 = exk−1. By induction f(k) ≤ xk, because f(i+ 1) ≤ ef(i)−1 ≤ exi−1 = xi+1.

Claim 1. For k ≥ 1,

− lnxk = 1− xk−1 ≥
(
1

q
+

k + ln(k − 1)

2

)−1

.

Proof. Let zk = − lnxk = 1− xk−1 and note that z1 = q. Then

zk+1 = 1− xk = 1− e−zk ≥ 1−
(
1− zk +

z2k
2

)
= zk −

z2k
2
.

Let t1 = q and tk+1 = tk−t2k/2. By induction, zk ≥ tk, because zi+1 = zi−z2i /2 ≥
ti − t2i /2 = ti+1.

Let yk =
1
tk
. Then

yk+1 =

(
1

yk
− 1

2y2k

)−1

=
2y2k

2yk − 1
= yk +

1

2
+

1

4yk − 2
,

and, by induction,

yk+1 = y1 +
k

2
+

k∑
i=1

1

4yi − 2
.
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Since yi ≥ y1 + (i − 1)/2, we have 4yi − 2 ≥ 4y1 + 2(i − 1) − 2 ≥ 2i because
y1 = 1/q ≥ 1. We thus have

yk+1 ≤
1

q
+

k

2
+

k∑
i=1

1

2i
≤ 1

q
+

k

2
+

1

2

(
1

1
+

1

2
+ · · ·+ 1

k

)
≤ 1

q
+

k + 1 + ln k

2
.

Recalling that − lnxk = zk ≥ tk = (yk)
−1 concludes the proof of the claim.

Therefore, the probability that the honest prover succeeds for a single choice of
integer t is at least 1− xu, which by the above claim is at least(

1

q
+

u+ 1 + lnu

2

)−1

which means the expected number of attempts for different integers t is at most
1
q
+ u+1+lnu

2
.

The probability that the prover fails after d attempts is f(u)d ≤ xd
u = exp(d lnxu) ≤

exp(−λrel/ log e) = 2−λrel , by the above claim and the definition of d.

For the smallest running time, choose q = 1. Choosing a smaller q increases the
running time but slightly decreases u, because log(qd) shrinks. Using the above and
Theorem 1, we can make the following choice:

Corollary 9. Let

u ≥ λsec + log λrel + 1− log log e

log np

nf

; d ≥ (u+ lnu)λrel

log e
; q =

2λrel

d log e
.

Then soundness error is ≤ 2−λsec and completeness error is ≤ 2−λrel.

C.2 Improved soundness bound for Section 4.2

Theorem 25. Assume 0 < µ < np and c =
µnf

unp
≥ 1. The soundness error is at

most

qrd ·
(
µnf

ρnp

)u

· exp
(

u(c+ 2)

2(c+ 1)2
+ 1

)
< qrd ·

(
µnf

ρnp

)u

· exp
(
u2np

2µnf

+ 1

)
.

Proof. Let random variable N denote the number of adversarial elements chosen by
the lottery and E be the event that a valid certificate can be formed using those N
elements. Also define probability p = µ/np. The soundness error is thus

nf∑
i=0

Pr[N = i] · Pr[E|N = i] =

nf∑
i=0

C(nf, i) · pi · (1− p)nf−i ·
(
1

ρ

)u

· qrd · iu =

qrd ·
(
pnf

ρ

)u

·
nf∑
i=1

C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

[≤]
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by Lemma 13,

[≤] qrd ·
(
µnf

ρnp

)u

· exp
(

u(c+ 2)

2(c+ 1)2
+ 1

)
=

qrd ·
(
µnf

ρnp

)u

· exp
(

u(c+ 2)

2(c2 + 2c+ 1)
+ 1

)
<

qrd ·
(
µnf

ρnp

)u

· exp
(

u

2c
+ 1

)
=

qrd ·
(
µnf

ρnp

)u

· exp
(
u2np

2µnf

+ 1

)
.

Lemma 13. Let 0 < p < 1, assume c = pnf/u ≥ 1 and define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

.

Then
nf∑
i=1

f(i) ≤ exp

(
u(c+ 2)

2(c+ 1)2
+ 1

)
.

Proof. Let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗) and for all 1 ≤ i ≤ nf− 1
define

∆(i) =
f(i+ 1)

f(i)
.

Suppose i∗ = nf. Then

nf∑
i=1

f(i) = f(nf) +

nf−2∑
j=0

f(nf − j − 1) =

f(nf)

(
1 +

nf−2∑
j=0

j∏
k=0

∆−1(nf − k − 1)

)
[≤]

by Lemma 14,

[≤] f(nf)

(
1 +

nf−2∑
j=0

j∏
k=0

nf − k − 1

(nf − 1)(k + 1)

)
≤

f(nf)

(
1 +

nf−2∑
j=0

j∏
k=0

1

k + 1

)
=

f(nf)

(
1 +

nf−2∑
j=0

1

(j + 1)!

)
≤

f(nf)
∞∑
j=0

1

j!
[=]
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by Taylor series (Lemma 33),

[=] e · f(nf) [≤]

f(nf) = pnf−u; since pnf/u ≥ 1, nf ≥ u and f(nf) ≤ 1; then

[≤] e ≤ exp

(
u(c+ 2)

2(c+ 1)2
+ 1

)
.

Now suppose 1 ≤ i∗ < nf. Combining Lemma 15 and Lemma 20,

nf∑
i=1

f(i) ≤ e ·

√
2πi∗(nf − i∗)

nf

· f(i∗) ≤

e ·

√
2πi∗(nf − i∗)

nf

·
√

nf

2πi∗(nf − i∗)
· exp

(
u(c+ 2)

2(c+ 1)2

)
= exp

(
u(c+ 2)

2(c+ 1)2
+ 1

)
.

Lemma 14. Let 0 < p < 1, define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

; ∆(i) =
f(i+ 1)

f(i)
;

and let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗). Then for all 0 ≤ z < nf− i∗,

∆(i∗ + z) ≤ i∗(nf − i∗ − z)

(i∗ + z)(nf − i∗)

and for all 0 ≤ z < i∗ − 1,

∆−1(i∗ − z − 1) ≤ (i∗ − z − 1)(nf − i∗ + 1)

(i∗ − 1)(nf − i∗ + z + 1)
.

Proof.

∆(i) =
f(i+ 1)

f(i)
=(

nf! · pi+1−u · (1− p)nf−i−1 · (i+ 1)u

(i+ 1)! · (nf − i− 1)! · nu
f

)
/

(
nf! · pi−u · (1− p)nf−i · iu

i! · (nf − i)! · nu
f

)
=

p · (nf − i)

(1− p) · (i+ 1)
·
(
i+ 1

i

)u

=

p · (nf − i)

(1− p) · i
·
(
1 +

1

i

)u−1

.
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Then for 0 ≤ z < nf − i∗,

∆(i∗ + z) =

p · (nf − i∗ − z)

(1− p) · (i∗ + z)
·
(
1 +

1

i∗ + z

)u−1

≤

p · (nf − i∗ − z)

(1− p) · (i∗ + z)
·
(
1 +

1

i∗

)u−1

=

p · (nf − i∗)

(1− p) · i∗
·
(
1 +

1

i∗

)u−1

· i∗(nf − i∗ − z)

(i∗ + z)(nf − i∗)
=

∆(i∗) · i∗(nf − i∗ − z)

(i∗ + z)(nf − i∗)
≤

i∗(nf − i∗ − z)

(i∗ + z)(nf − i∗)

since ∆(i∗) ≤ 1.
For 2 ≤ i ≤ nf,

∆−1(i− 1) =(
p · (nf − i+ 1)

(1− p) · (i− 1)
·
(
1 +

1

i− 1

)u−1
)−1

=

(1− p) · (i− 1)

p · (nf − i+ 1)
·
(
1− 1

i

)u−1

and for 0 ≤ z < i∗ − 1,

∆−1(i∗ − z − 1) =

(1− p) · (i∗ − z − 1)

p · (nf − i∗ + z + 1)
·
(
1− 1

i∗ − z

)u−1

≤

(1− p) · (i∗ − z − 1)

p · (nf − i∗ + z + 1)
·
(
1− 1

i∗

)u−1

=

(1− p) · (i∗ − 1)

p · (nf − i∗ + 1)
·
(
1− 1

i∗

)u−1

· (i
∗ − z − 1)(nf − i∗ + 1)

(i∗ − 1)(nf − i∗ + z + 1)
=

∆−1(i∗ − 1) · (i
∗ − z − 1)(nf − i∗ + 1)

(i∗ − 1)(nf − i∗ + z + 1)
≤

(i∗ − z − 1)(nf − i∗ + 1)

(i∗ − 1)(nf − i∗ + z + 1)

since ∆−1(i∗ − 1) ≤ 1.
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Lemma 15. Let 0 < p < 1, define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

;

let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗), and assume i∗ ̸= nf. Then

nf∑
i=1

f(i) ≤ e ·

√
2πi∗(nf − i∗)

nf

· f(i∗).

Proof. Define

α =
i∗(nf − i∗)

nf

.

We need to prove that ∑nf

i=1 f(i)√
2πα · f(i∗)

≤ e.

We consider multiple cases covering all possibilities. Throughout, we will use
Lemmas 14, 16 and 18.

1. i∗ = 1: Then α = nf−1
nf

. Since nf > i∗, α ≥ 1/2.∑nf

i=1 f(i)√
2πα · f(i∗)

≤ 1√
2πα

(
1 + 2

√
α +

1√
α

)
=

2√
2π

+
1√
2πα

+
1√
2πα

< 2.2.

2. i∗ = 2: Then α = 2(nf−2)
nf

. Since nf > i∗, α ≥ 2/3.∑nf

i=1 f(i)√
2πα · f(i∗)

≤ 1√
2πα

(
1 + 1 + 2

√
α +

1√
α

)
=

2√
2π

+
2√
2πα

+
1√
2πα

< 2.4.

3. nf − i∗ = 1, i∗ = 3: Then α = 3/4.∑nf

i=1 f(i)√
2πα · f(i∗)

≤ 1√
2πα

(
1

2
+ 1 + 1 + 1

)
=

√
2

3π
· 3.5 < 1.7.

4. nf − i∗ = 1, i∗ ≥ 4: Then α = i∗

i∗+1
≥ 4/5.∑nf

i=1 f(i)√
2πα · f(i∗)

≤ 1√
2πα

(
2
√
α +

2√
α
+ 1 + 1

)
=

2√
2π

+
2√
2πα

+
2√
2πα

< 2.7.

5. nf − i∗ = 2, i∗ ≥ 3: Then α = 2i∗

i∗+2
≥ 6/5.∑nf

i=1 f(i)√
2πα · f(i∗)

≤ 1√
2πα

(
2
√
α +

2√
α
+ 1 + 1 +

1

2

)
=

2√
2π

+
2.5√
2πα

+
2√
2πα

< 2.4.
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6. i∗ ≥ 3, nf − i∗ ≥ 3: First notice that

α ≥ min{i∗, nf − i∗}
2

≥ 3

2
.

Then ∑nf

i=1 f(i)√
2πα · f(i∗)

≤

1√
2πα

(
2
√
α− 1 +

2√
α
+

i∗

nf

+ 1 + 2
√
α +

1√
α
− i∗

nf

)
=

1√
2πα

(
4
√
α +

3√
α

)
=

4√
2π

+
3√
2πα

< 2.4.

Lemma 16. Let 0 < p < 1, define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

; α =
i∗(nf − i∗)

nf

;

and let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗). Then

i∗−1∑
i=1

f(i) ≤ f(i∗)

(
2
√
α− 1 +

2√
α
+

i∗

nf

)
.

Proof. Let z = ⌊
√
α⌋. By Lemma 17,

i∗−1∑
i=1

f(i) ≤

f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+
i∗

nf

+
1

z + 1

)
=

f(i∗)

(
⌊
√
α⌋+ α

⌊
√
α⌋+ 1

+
i∗

nf

+
1

⌊
√
α⌋+ 1

)
[=]
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letting ⌊
√
α⌋ =

√
α− ε where 0 ≤ ε < 1,

[=] f(i∗)

(
√
α− ε+

α + 1√
α− ε+ 1

+
i∗

nf

)
=

f(i∗)

(
2
√
α− ε+

−
√
α + ε

√
α + 1√

α− ε+ 1
+

i∗

nf

)
=

f(i∗)

(
2
√
α +
−
√
α + 1 + ε2 − ε√
α− ε+ 1

+
i∗

nf

)
=

f(i∗)

(
2
√
α− 1 +

2 + ε2 − 2ε√
α− ε+ 1

+
i∗

nf

)
≤

f(i∗)

(
2
√
α− 1 +

2√
α
+

i∗

nf

)
.

Lemma 17. Let 0 < p < 1, define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

and let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗). Then for all integers z ≥ 0,

i∗−1∑
i=1

f(i) ≤ f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+
i∗

nf

+
1

z + 1

)
.

Proof. Define ∆(i) = f(i+1)
f(i)

. For all integers 0 ≤ z < i∗ − 2,

i∗−z−1∑
i=1

f(i) =

i∗−z−2∑
j=0

f(i∗ − z − 1− j) =

i∗−z−2∑
j=0

f(i∗ − z − 1)

j∏
k=1

∆−1(i∗ − z − 1− k) ≤

f(i∗)
i∗−z−2∑
j=0

j∏
k=1

∆−1(i∗ − z − 1− k) ≤

f(i∗)
i∗−z−2∑
j=0

∆−j(i∗ − z − 2) [≤]
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by Lemma 14,

[≤] f(i∗)
∞∑
j=0

(
(i∗ − z − 2)(nf − i∗ + 1)

(i∗ − 1)(nf − i∗ + z + 2)

)j

=

f(i∗) · 1

1− (i∗−z−2)(nf−i∗+1)
(i∗−1)(nf−i∗+z+2)

.

The restriction that z < i∗−2 can be replaced with z ≤ i∗−2 since when z = i∗−2,

i∗−z−1∑
i=1

f(i) = f(1) ≤ f(i∗) = f(i∗) · 1

1− (i∗−z−2)(nf−i∗+1)
(i∗−1)(nf−i∗+z+2)

.

Hence, for all 0 ≤ z ≤ i∗ − 2,

i∗−z−1∑
i=1

f(i) ≤ f(i∗) · 1

1− (i∗−z−2)(nf−i∗+1)
(i∗−1)(nf−i∗+z+2)

=

f(i∗)

(
i∗(nf − i∗)

(z + 1)nf

+
i∗

nf

+
2i∗

(z + 1)nf

− 1

z + 1
− 1

nf

− 1

(z + 1)nf

)
≤

f(i∗)

(
i∗(nf − i∗)

(z + 1)nf

+
i∗

nf

+
1

z + 1

)
.

If z ≤ i∗ − 2,

i∗−1∑
i=1

f(i) =
i∗−z−1∑
i=1

f(i) +
i∗−1∑

i=i∗−z

f(i) =

f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+
i∗

nf

+
1

z + 1

)
.

Otherwise if z > i∗ − 2,

i∗−1∑
i=1

f(i) ≤ (i∗ − 1)f(i∗) ≤ zf(i∗) ≤ f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+
i∗

nf

+
1

z + 1

)
.

Lemma 18. Let 0 < p < 1, define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

; α =
i∗(nf − i∗)

nf

;

and let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗). Then

nf∑
i=i∗+1

f(i) ≤ f(i∗) ·

(
2
√
α +

1√
α
− i∗

nf

)
.
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Proof. Let z = ⌊
√
α⌋. By Lemma 19,

nf∑
i=i∗+1

f(i) ≤

f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+ 1− i∗

nf

)
=

f(i∗)

(
⌊
√
α⌋+ α

⌊
√
α⌋+ 1

+ 1− i∗

nf

)
[=]

letting ⌊
√
α⌋ =

√
α− ε where 0 ≤ ε < 1,

[=] f(i∗)

(
√
α− ε+

α√
α− ε+ 1

+ 1− i∗

nf

)
=

f(i∗)

(
2
√
α− ε+

ε
√
α−
√
α√

α− ε+ 1
+ 1− i∗

nf

)
=

f(i∗)

(
2
√
α +
−
√
α + ε2 − ε√
α− ε+ 1

+ 1− i∗

nf

)
=

f(i∗)

(
2
√
α +

ε2 − 2ε+ 1√
α− ε+ 1

− i∗

nf

)
≤

f(i∗)

(
2
√
α +

1√
α
− i∗

nf

)
.

Lemma 19. Let 0 < p < 1, define

f(i) =
C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

and let 1 ≤ i∗ ≤ nf be an integer that maximizes f(i∗). Then for all integers z ≥ 0,

nf∑
i=i∗+1

f(i) ≤ f(i∗) ·

(
z +

i∗(nf − i∗)

(z + 1)nf

+ 1− i∗

nf

)
.
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Proof. Define ∆(i) = f(i+1)
f(i)

. For all integers 0 ≤ z < nf − i∗ − 1,

nf∑
i=i∗+z+1

f(i) =

nf−i∗−z−1∑
j=0

f(i∗ + z + 1 + j) =

nf−i∗−z−1∑
j=0

f(i∗ + z + 1)

j∏
k=1

∆(i∗ + z + k) ≤

f(i∗)

nf−i∗−z−1∑
j=0

j∏
k=1

∆(i∗ + z + k) ≤

f(i∗)

nf−i∗−z−1∑
j=0

∆j(i∗ + z + 1) [≤]

by Lemma 14,

[≤] f(i∗)
∞∑
j=0

(
i∗(nf − i∗ − z − 1)

(i∗ + z + 1)(nf − i∗)

)j

=

f(i∗) · 1

1− i∗(nf−i∗−z−1)
(i∗+z+1)(nf−i∗)

.

The restriction that z < nf− i∗− 1 can be replaced with z ≤ nf− i∗− 1 since when
z = nf − i∗ − 1,

nf∑
i=i∗+z+1

f(i) = f(nf) ≤ f(i∗) = f(i∗) · 1

1− i∗(nf−i∗−z−1)
(i∗+z+1)(nf−i∗)

.

Hence, for all 0 ≤ z ≤ nf − i∗ − 1,

nf∑
i=i∗+z+1

f(i) ≤

f(i∗) · 1

1− i∗(nf−i∗−z−1)
(i∗+z+1)(nf−i∗)

=

f(i∗) ·
(
i∗(nf − i∗)

(z + 1)nf

+ 1− i∗

nf

)
.

If z ≤ nf − i∗ − 1, then

nf∑
i=i∗+1

f(i) =
i∗+z∑

i=i∗+1

f(i) +

nf∑
i∗+z+1

f(i) ≤ f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+ 1− i∗

nf

)
.
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Otherwise if z > nf − i∗ − 1, also

nf∑
i=i∗+1

f(i) ≤ (nf − i∗)f(i∗) ≤ zf(i∗) ≤ f(i∗)

(
z +

i∗(nf − i∗)

(z + 1)nf

+ 1− i∗

nf

)
.

Lemma 20. Assume 0 < p < 1, 1 ≤ i ≤ nf − 1 and c = pnf/u ≥ 1. Then

C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

≤
√

nf

2πi(nf − i)
· exp

(
u(c+ 2)

2(c+ 1)2

)
.

Proof. By Stirling’s approximation (Lemma 36),

C(nf, i) · pi−u · (1− p)nf−i · iu

nu
f

=

nf! · pi−u · (1− p)nf−i · iu

i! · (nf − i)! · nu
f

≤

√
2πnf ·

(
nf

e

)nf · exp
(

1
12nf

)
· pi−u · (1− p)nf−i · iu

√
2πi ·

(
i
e

)i · exp ( 1
12i+1

)
·
√
2π(nf − i) ·

(
nf−i
e

)nf−i · exp
(

1
12(nf−i)+1

)
· nu

f

[≤]

since 1 ≤ i ≤ nf − 1, exp
(

1
12nf

)
≤ exp

(
1

12i+1

)
; thus,

[≤]
√
2πnf ·

(
nf

e

)nf · pi−u · (1− p)nf−i · iu
√
2πi ·

(
i
e

)i ·√2π(nf − i) ·
(
nf−i
e

)nf−i · nu
f

=

√
nf

2πi(nf − i)
· n

nf
f · pi−u · (1− p)nf−i · iu

ii · (nf − i)nf−i · nu
f

=

√
nf

2πi(nf − i)
·
(
pnf

i

)i−u

·
(
(1− p)nf

nf − i

)nf−i

=

√
nf

2πi(nf − i)
·
(
pnf

i

)i−u

·
(
1 +

i− pnf

nf − i

)nf−i

≤

√
nf

2πi(nf − i)
·
(
pnf

i

)i−u

· ei−pnf [≤]

by Lemma 21,

[≤]
√

nf

2πi(nf − i)
· exp

(
u(c+ 2)

2(c+ 1)2

)
.

Lemma 21. Assume i ≥ 1, 0 < p ≤ 1 and c = pnf/u ≥ 1. Then(
pnf

i

)i−u

· ei−pnf ≤ exp

(
u(c+ 2)

2(c+ 1)2

)
.
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Proof.

ln

((
pnf

i

)i−u

· ei−pnf

)
= (i− u) ln

pnf

i
+ i− pnf [=]

Letting x = i/u and c = pnf/u,

[=] u

(
(x− 1) ln

pnf

xu
+ x− pnf

u

)
=

u

(
(x− 1) ln

c

x
+ x− c

)
[≤]

By Lemma 22,

[≤] u · c+ 2

2(c+ 1)2
.

Lemma 22. Let x > 0 and c ≥ 1. Then

(1− x) ln
x

c
+ x− c ≤ c+ 2

2(c+ 1)2
.

Proof. Define function

f(x) = (1− x) ln
x

c
+ x− c,

then

f ′(x) = − ln
x

c
+ (1− x) · c

x
· 1
c
+ 1 =

1

x
− ln

x

c
.

Thus, f(x) is increasing on the interval (0, c] and for any x in this interval, f(x) ≤
f(c) = 0 and we only need to prove the bound for x > c.

Assume z > c, then

f(z) = (1− z) ln
z

c
+ z − c =

(z − 1) ln
c

z
+ z − c =

(z − 1) ln

(
1− z − c

z

)
+ z − c [≤]

By Lemma 30,

[≤] (z − 1) ·
(
− z − c

z
− (z − c)2

2z2

)
+ z − c =

(z − c)

(
1− z − 1

z
− (z − 1)(z − c)

2z2

)
=

(z − c)

(
1

z
− (z − 1)(z − c)

2z2

)
.
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Define function

g(x) = (x− c)

(
1

x
− (x− 1)(x− c)

2x2

)
.

By Lemma 23, g(x) is non-decreasing for x ∈ [c, c + 1]. Hence, f(z) ≤ g(z) ≤
g(c+ 1) = c+2

2(c+1)2
.

Lemma 23. Let c ≥ 1 and define function

g(x) = (x− c)

(
1

x
− (x− 1)(x− c)

2x2

)
.

g(x) is non-decreasing for x ∈ [c, c+ 1].

Proof. It can be checked that the derivative

g′(x) = − 1

2x3

(
x3 − c(c+ 4)x+ 2c2

)
which is non-negative for x ∈ [c, c+ 1] by Lemma 24.

Lemma 24. Let c ≥ 1 and define function h(x) = x3 − c(c + 4)x + 2c2. Then
h(x) ≤ 0 for x ∈ [c, c+ 1].

Proof. First notice that h(c) = −2c2 ≤ 0 and h(c + 1) = 1 − c ≤ 0. Also the
derivative h′(x) = 3x2 − c(c + 4). Then h(x) is decreasing at x = 0 and changes
direction only at one coordinate x > 0. Hence, h(x) ≤ 0 for x ∈ [c, c+ 1].

C.3 Replacing the Random Oracle with PRF

Theorem 26. Take any set Sp with |Sp| ≥ np. Then the construction R satisfies
Pr[CompExp(Sp) = 1] ≥ 1− 2−λ − εprf(O(np + λ3)).

Proof. Define

procedure AO

π ← ProveO(Sp);
return 1 iff π ̸= ⊥.

By the assumption about our Telescope construction, Pr[AH() = 1] ≥ 1 − 2−λ.
Since the running time of AO is bounded by O(np + B) = O(np + λ3), equation 4
gives

Pr
[
AF (GenKey(),·)() = 1

]
≥ 1− 2−λ − εprf(O(np + λ3)).

But

Pr
[
AF (GenKey(),·)() = 1

]
= Pr[CompExp(Sp) = 1].

Theorem 27. Let Sf be any set with |Sf| ≤ nf. Then the construction R satisfies
Pr[SoundExp(Sf) = 1] ≤ 2−λ + εprf(O(np + λ3)).
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Proof. Define AO as follows: after prehashing elements of Sf, run the standard
Telescope DFS; if we find a proof π that passes VerifyO(π) or the DFS does not
terminate after visiting B vertices, then output 1; otherwise output 0.

By the assumption about our Telescope construction, Pr[AH() = 1] ≤ 2−λ. Since
the running time of AO is bounded by O(nf +B) = O(np + λ3), equation 4 gives

Pr
[
AF (GenKey(),·)() = 1

]
≤ 2−λ + εprf(O(np + λ3)).

But since SoundExp(Sf) = 1 implies AF (GenKey(),·)() = 1,

Pr[SoundExp(Sf) = 1] ≤ Pr
[
AF (GenKey(),·)() = 1

]
.

D Proofs

Proof of Theorem 3.

E

[ ∑
s1,...,si∈Sp

Aj,s1,...,si

]
=

∑
s1,...,si∈Sp

E[Aj,s1,...,si ] =

∑
s1,...,si∈Sp

E

[
i∏

j=1

H1(j, s1, ..., sj)

]
=

∑
s1,...,si∈Sp

i∏
j=1

E
[
H1(j, s1, ..., sj)

]
=

∑
s1,...,si∈Sp

i∏
j=1

1

np

=

∑
s1,...,si∈Sp

(
1

np

)i

=

ni
p ·
(

1

np

)i

=

1.

Proof of Theorem 4. Let Xi be the number of hash invocations in tree i and let Yi

be 1 if a valid proof starting with integer i exists and 0 otherwise. As described
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earlier, E[Xi] ≤ npu+ 1. Also by Lemma 2,

Pr[Yi] ≥ 1− exp

(
− q + u · q

2

2

)
.

Therefore by Lemma 35, the expected total number of hash invocations is at most

npu+ 1

1− exp
(
− q + u · q2

2

) .
The statement of the theorem then follows from Lemma 31.

Proof of Theorem 5. Let t > 0 and define the sequence {xk} as follows: let x0 = 1
and for k ≥ 0, let

xk+1 =

(
1

n
xke

t + 1− 1

n

)np

.

By Lemma 41, E[etZ ] = xd
u.

Define the following sequence {yk}: let y0 = 0 and yk+1 = yk + t+ (yk + t)2. We
will prove by induction that if yu ≤ 1 then for all 0 ≤ k ≤ u, xk ≤ eyk .

Basis case: x0 = 1 ≤ 1 = ey0 . Inductive step: xk+1 =
(
1
n
xke

t + 1 − 1
n

)
=
(
1 +

1
n

(
xke

t − 1
))
≤
(
e

1
n
(xke

t−1)
)n

= exp
(
xke

t − 1
)
≤ exp

(
eyk+t − 1

)
. Since yk + t ≤

yk+ t+(yk+ t)2 = yk+1 ≤ yu ≤ 1, xk+1 ≤ exp
(
1+yk+ t+(yk+ t)2−1

)
= exp(yk+1).

Hence, E[etZ ] ≤ eyud.
By Markov’s inequality,

Pr
[
Z ≥ (1 + δ)du

]
= Pr

[
etZ ≥ e(1+δ)tdu

]
≤

eyud

e(1+δ)tdu
= exp

(
− d
(
(1 + δ)tu− yu

))
.

(5)

We now need to find some t and yu that maximize (1 + δ)tu− yu. However, instead
of picking a suitable t and finding a bound for yu in terms of it, we do the opposite.
We first choose an upper bound α for yu and then calculate a suitable t. We use the
observation that yk ≥ yk+1 − y2k+1 − t ≥ yk+1 − y2u − t. Details follow.

Let α < 1
u
and t be such that α− uα2 − ut = 0 (i.e., t = α

u
− α2); it can be seen

that t > 0. We will prove by induction that yk ≤ αk
u
.

Basis step: y0 = 0 ≤ 0 = α·0
u
.

Inductive step: yk+1 = yk + t + (yk + t)2 ≤ αk
u

+ α
u
− α2 +

(
αk
u

+ α
u
− α2

)2
=

α(k+1)
u
−α2 +

(
α(k+1)

u
−α2

)2
≤ α(k+1)

u
−α2 +

(
α−α2

)2 ≤ α(k+1)
u
−α2 +α2 = α(k+1)

u
.

Hence, yu ≤ α.

Then (1 + δ)tu − yu ≥ (1 + δ)tu − α = (1 + δ)
(

α
u
− α2

)
u − α. Differentiating

with respect to α, we find that this expression is maximized when

α =
δ

2(1 + δ)u
.
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It is easily verified that α < 1
u
.

Therefore,

(1 + δ)tu− yu ≥

(1 + δ)

(
δ

2(1 + δ)u2
− δ2

4(1 + δ)2u2

)
u− δ

2(1 + δ)u
=

δ

2u
− δ2

4(1 + δ)u
− δ

2(1 + δ)u
=

2δ(1 + δ)− δ2 − 2δ

4(1 + δ)u
=

δ2

4(1 + δ)u
.

Hence by equation 5,

Pr
[
Z ≥ (1 + δ)du

]
≤ exp

(
− δ2

4(1 + δ)
· d
u

)
.

Proof of Lemma 4. We will use Markov’s inequality with Poisson approximation.
Define Z = 1

np

∑np

i=1 e
−qXi − (1− q). Then

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + cq2

]
= Pr

[
Z ≥ cq2

]
[≤]

Since 1
np

∑np

i=1 e
−qXi ≥ 1

np

∑np

i=1(1−qXi) = 1− q
np

∑np

i=1Xi = 1−q, Z is a non-negative

random variable; by Markov’s inequality,

[≤]E[Z]
cq2

=
E
[

1
np

∑np

i=1 e
−qXi − (1− q)

]
cq2

=

E
[

1
np

∑np

i=1 e
−qXi − 1

np

∑np

i=1(1− qXi)
]

cq2
=

E
[

1
np

∑np

i=1

(
e−qXi − (1− qXi)

)]
cq2

[≤]

Since 1
np

∑np

i=1

(
e−qxi − (1 − qxi)

)
≥ 0 for any x1, ..., xnp and since the derivative(

e−qx− (1−qx)
)′
= −qe−qx+q = q

(
1−e−qx

)
≥ 0 for any x ≥ 0, one can see that all

conditions for Poisson approximation in [MU05, Theorem 5.10] are satisfied. Then,
letting Yi be independent Poisson random variables with mean 1 (i.e., for all integers
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j ≥ 0, Pr[Yi = j] = 1
ej!
),

[≤]
2 · E

[
1
np

∑np

i=1

(
e−qYi − (1− qYi)

)]
cq2

=

2
np

∑np

i=1

(
E
[
e−qYi

]
− (1− q)

)
cq2

.

Now,

E
[
e−qYi

]
=

∞∑
j=0

e−qj · 1

e · j!
≤

1

e
·

∞∑
j=0

(
1− qj +

(qj)2

2

)
· 1
j!

=

1

e
·

(
∞∑
j=0

1

j!
− q

∞∑
j=0

j

j!
+

q2

2

∞∑
j=0

j2

j!

)
[=]

By Lemma 33,

[=]
1

e
·

(
e− q · e+ q2

2
· 2e

)
=

1− q + q2.

Combining this with the previous inequality, we get

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + cq2

]
≤

2
np

∑np

i=1

(
(1− q + q2)− (1− q)

)
cq2

=
2

c
.

Proof of Lemma 5. We use Poisson approximation: for 1 ≤ i ≤ np, let Yi be in-
dependent Poisson random variables with mean 1; i.e., for all integers j ≥ 0,
Pr[Yi = j] = 1

ej!
. Then by [MU05, Theorem 5.10],

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤ 2 · Pr

[
1

np

np∑
i=1

e−qYi ≥ 1− q + 4q2

]
. (6)

This arithmetic average can be analyzed using Hoeffding bound, but it doesn’t give
the best result. Instead, we derive a custom moment generating function for the
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summand. For any t > 0,

E
[
ete

−qYi
]
=

∞∑
i=0

ete
−qi

ei!
=

et−1

∞∑
i=0

et(e
−qi−1)

i!
≤

et−1

∞∑
i=0

1 + t(e−qi − 1) + t2(1−e−qi)2

2

i!
≤

et−1

∞∑
i=0

1 + t(1− qi+ (qi)2

2
− 1) + t2(1−e−qi)2

2

i!
=

et−1

∞∑
i=0

1− tqi+ t (qi)
2

2
+ t2(1−e−qi)2

2

i!
[≤]

Since 0 < 1− e−qi ≤ 1− (1− qi) = qi,

[≤]et−1

∞∑
i=0

1− tqi+ t (qi)
2

2
+ t2 (qi)

2

2

i!
=

et−1

(
∞∑
i=0

1

i!
− tq

∞∑
i=0

i

i!
+ (t+ t2)

q2

2

∞∑
i=0

i2

i!

)
[=]

By Lemma 33,

[=]et−1

(
e− tqe+ (t+ t2)

q2

2
· 2e
)

=

et
(
1− tq + (t+ t2)q2

)
≤

et · e−tq+(t+t2)q2 =

et(1−q+(1+t)q2).
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Combining this bound, equation 6 and Markov’s inequality, for any s > 0 we get

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤

2 · Pr
[
e

s
np

∑np
i=1 e

−qYi ≥ es(1−q+4q2)
]
≤

2 ·
E
[
e

s
np

∑np
i=1 e

−qYi
]

es(1−q+4q2)
=

2 ·
E
[∏np

i=1 e
s
np

e−qYi
]

es(1−q+4q2)
=

2 ·

∏np

i=1 E
[
e

s
np

e−qYi
]

es(1−q+4q2)
≤

2 ·
∏np

i=1 e
s
np

(
1−q+(1+ s

np
)q2
)

es(1−q+4q2)
=

2 · e
s
(
1−q+(1+ s

np
)q2
)

es(1−q+4q2)
=

2e
−
(
4−1− s

np

)
sq2

.

Setting s = 3
2
np, we get

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤ 2e−

9
4
npq2 .

Proof of Lemma 6. Define random function f(x) = 1
np

∑np

i=1 x
Xi . By Lemma 45,

Pr[F |H0] ≤

(
e−q ·

(
f(e−q)

e−q

)u
)d

.

Therefore,

Pr[F |E] = E
[
Pr[F |H0, E]

∣∣∣E] = E
[
Pr[F |H0]

∣∣∣E] =
E

[(
e−q ·

(
f(e−q)

e−q

)u
)d∣∣∣∣∣f(e−q) ≤ e−q+cq2

]
≤

e−(q−cuq2)d.
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Proof of Theorem 7. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin
i, let E be the event that 1

np

∑np

i=1 e
−qXi ≤ e−q+4q2 and let F be the event that the

honest prover fails. By Lemma 43 with λ := λrel+log 3
log e

and c := 4, Pr[F |E] ≤ 1
3
·2−λrel .

Also by Lemma 5,

Pr
[
Ē
]
=

Pr

[
1

np

np∑
i=1

e−qXi > e−q+4q2

]
≤

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤

2e−
9
4
npq2 .

This is at most 2
3
· 2−λrel if and only if

3 · 2λrel ≤ e
9
4
npq2 ⇐⇒

9

4
log e · npq

2 ≥ λrel + log 3⇐⇒

np ≥
4(λrel + log 3)

9 log e · q2
⇐⇒

np ≥
4(λrel + log 3)

9 log e ·
(

2(λrel+log 3)
d log e

)2 ⇐⇒
np ≥

4(λrel + log 3)

9 log e · 4(λrel+log 3)2

d2 log2 e

⇐⇒

np ≥
d2 log e

9(λrel + log 3)

which is true by our assumption about np.
Hence, Pr[F ] ≤ 2−λrel .

Proof of Lemma 7. By Lemma 44, a single tree does not contain a valid proof with
probability at most exp(−q+cuq2) given event E. Also by Theorem 8, the expected
number of vertices that the algorithm visits in a single tree is ≤ u + 1, given any
arrangement of balls into bins. Thus, using Lemma 35 and Lemma 31,

E
[
V
∣∣E] ≤ u+ 1

1− e−q+cuq2
≤ 2(u+ 1)

q − cuq2
.

Proof of Theorem 9. Let V be the number of visited vertices, let Xi = |{s ∈
Sp : H0(s) = i}| be the number of balls in bin i and let E be the event that
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1
np

∑np

i=1 e
−qXi ≤ e−q+4q2 . Then

E
[
V
]
= E

[
V |E

]
· Pr

[
E
]
+ E

[
V |Ē

]
· Pr

[
Ē
]
.

Clearly, Pr
[
E
]
≤ 1. By Theorem 8, there are d(u + 1) accessible vertices in ex-

pectation; thus, E
[
V |Ē

]
≤ d(u + 1). By Lemma 5, Pr

[
Ē
]
≤ 2e−

9
4
npq2 . Finally, by

Lemma 7 with c := 4,

E
[
V |E

]
≤ 2(u+ 1)

q − 4uq2
≤ 4(u+ 1)

q
.

Proof of Theorem 10. Let

α =
1

w
,

c =

(
1

α
+ w

)
· wλ

′

np

+ 2

(
1 +

1

αw

)
+ 3 =

2w2λ

np

+ 7,

let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, and let E be the
event that 1

np

∑np

i=1 e
α·Xi ≤ eα+cα2

with Pr[E] > 0. By Lemma 48 with λ := λ′,

Pr[Z ≥ δdu|E] ≤ e−λ′
=

2−λ

4
. (7)

Define Yi to be Poisson random variables with expectation 1, define

Ai =

{
eαYi if Yi ≤ w

0 otherwise

and

Bi =

{
0 if Yi ≤ w

eαYi otherwise.

Since 1 + α + cα2 ≤ eα+cα2
,

Pr
[
Ē
]
≤ Pr

[
1

np

np∑
i=1

eα·Xi ≥ 1 + α + cα2

]
[≤]
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By Poisson approximation [MU05, Theorem 5.10],

[≤]2 · Pr

[
1

np

np∑
i=1

eα·Yi ≥ 1 + α + cα2

]
=

2 · Pr

[
1

np

np∑
i=1

(Ai +Bi) ≥ 1 + α + cα2

]
=

2 · Pr

[
1

np

np∑
i=1

Ai +
1

np

np∑
i=1

Bi ≥ 1 + α + cα2

]
≤

2 ·

(
Pr

[
1

np

np∑
i=1

Ai ≥ 1 + α + (c− 1)α2

]
+ Pr

[
1

np

np∑
i=1

Bi ≥ α2

])
By Lemma 50 with λ := λ′ and n := np,

Pr

[
1

np

np∑
i=1

Ai ≥ 1 + α + (c− 1)α2

]
≤ e−λ′

=
2−λ

4
.

Finally, by Lemma 51 with n := np, x := α2 and by our assumption about w,

Pr

[
1

np

np∑
i=1

Bi ≥ α2

]
≤ (w + 2) · eα(w+1)

e · (w + 2− eα) · (w + 1)! · α2
=

w2 · (w + 2) · ew+1
w

e · (w + 2− e1/w) · (w + 1)!
≤ 2−λ

8
.

Hence Pr[Ē] ≤ 2
(

2−λ

4
+ 2−λ

8

)
= 3

4
· 2−λ. Combined with equation 7, we conclude

that Pr[Z ≥ δdu] ≤ 2−λ.

Proof of Theorem 11. Let

α =

√
λ′

3ud
,

c = 2

(
1

α
+ u

)√
2λ′

np

+ 3,

let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, and let E be the
event that 1

np

∑np

i=1 e
α·Xi ≤ eα+cα2

with Pr[E] > 0. By Lemma 48 with λ := λ′,

Pr[Z ≥ δdu|E] ≤ e−λ′
=

2−λ

4
. (8)

Define Yi to be Poisson random variables with expectation 1, define

Ai =

{
eαYi if Yi ≤ u

0 otherwise
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and

Bi =

{
0 if Yi ≤ u

eαYi otherwise.

Since 1 + α + cα2 ≤ eα+cα2
,

Pr
[
Ē
]
≤ Pr

[
1

np

np∑
i=1

eα·Xi ≥ 1 + α + cα2

]
[≤]

By Poisson approximation [MU05, Theorem 5.10],

[≤]2 · Pr

[
1

np

np∑
i=1

eα·Yi ≥ 1 + α + cα2

]
=

2 · Pr

[
1

np

np∑
i=1

(Ai +Bi) ≥ 1 + α + cα2

]
=

2 · Pr

[
1

np

np∑
i=1

Ai +
1

np

np∑
i=1

Bi ≥ 1 + α + cα2

]
≤

2 ·

(
Pr

[
1

np

np∑
i=1

Ai ≥ 1 + α + (c− 1)α2

]
+ Pr

[
1

np

np∑
i=1

Bi ≥ α2

])

By Lemma 50 with λ := λ′, w := u and n := np,

Pr

[
1

np

np∑
i=1

Ai ≥ 1 + α + (c− 1)α2

]
≤ e−λ′

=
2−λ

4
.

Finally, by Lemma 51 with w := u, n := np, x := α2 and by our assumption
about u,

Pr

[
1

np

np∑
i=1

Bi ≥ α2

]
≤ (u+ 2) · eα(u+1)

e · (u+ 2− eα) · (u+ 1)! · α2
=

3ud(u+ 2) · eu+1
u

e · λ′ · (u+ 2− e1/u) · (u+ 1)!
≤ 2−λ

8
.

Hence Pr[Ē] ≤ 2
(

2−λ

4
+ 2−λ

8

)
= 3

4
· 2−λ. Combined with equation 8, we conclude

that Pr[Z ≥ δdu] ≤ 2−λ.

Proof of Lemma 8. For k ∈ Z with 0 ≤ k < u, define

mk =

⌈
λ+ log u

log e
· 1

q − ckq2

⌉
,
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let Gk be the event that the algorithm visits more than mk vertices at height u− k
(root vertices, consisting of a single integer, being at height 0), and let Fk be the
event that the algorithm entered at least mk vertices at height u − k and the first
mk of them were not prefixes of a valid certificate.

Since

u−1∑
k=0

mk ≤
λ+ log u

log e
·
u−1∑
k=0

1

q − ckq2
+ u ≤

λ+ log u

log e
·
u−1∑
k=0

(
1

q
· u− 1− k

u− 1
+

1

q − c(u− 1)q2
· k

u− 1

)
+ u =

λ+ log u

log e
· u
2
·
(
1

q
+

1

q − c(u− 1)q2

)
+ u ≤ B,

it follows that for all h0 satisfying event E,

Pr[V > B|H0 = h0] ≤ Pr

[
u−1∨
k=0

Gk

∣∣∣∣H0 = h0

]
≤ Pr

[
u−1∨
k=0

Fk

∣∣∣∣H0 = h0

]
≤

u−1∑
k=0

Pr[Fk|H0 = h0] [≤]

and by Lemma 45,

[≤]
u−1∑
k=0

(
e−q ·

(
f(e−q)

e−q

)k
)mk

.

Hence,

Pr[V > B|E] = E
[
Pr[V > B|H0, E]

∣∣∣E] = E
[
Pr[V > B|H0]

∣∣∣E] =
E

[
u−1∑
k=0

(
e−q ·

(
f(e−q)

e−q

)k
)mk

∣∣∣∣∣f(e−q) ≤ e−q+cq2

]
≤

u−1∑
k=0

(
e−q+ckq2

)mk

≤
u−1∑
k=0

exp

(
− λ+ log u

log e

)
=

u−1∑
k=0

2−λ/u = 2−λ.

Proof of Theorem 14. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin
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i and let E be the event that 1
np

∑np

i=1 e
−qXi ≤ e−q+4q2 . By Lemma 5,

Pr
[
Ē
]
=

Pr

[
1

np

np∑
i=1

e−qXi > e−q+4q2

]
≤

Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + 4q2

]
≤

2e−
9
4
npq2 .

This is at most 1
2
· 2−λrel if and only if

4 · 2λrel ≤ e
9
4
npq2 ⇐⇒

9

4
log e · npq

2 ≥ λrel + 2⇐⇒

np ≥
4(λrel + 2)

9 log e · q2
⇐⇒

np ≥
4(λrel + 2)

9 log e ·
(

2(λrel+2)
d log e

)2 ⇐⇒
np ≥

4(λrel + 2)

9 log e · 4(λrel+2)2

d2 log2 e

⇐⇒

np ≥
d2 log e

9(λrel + 2)

which is true by our assumption about np.
Let F be the event that the honest prover fails. By Lemma 43 with λ := λrel+2

log e

and c := 4, Pr[F |E] ≤ 1
4
· 2−λrel .

Finally, let V be the number of non-root vertices that the algorithm visits and
define

B =
u(λrel + 2 + log u)

2 log e

(
1

q
+

1

q − 4uq2

)
+ u;

B′ =
λrel + 2 + log u

λrel + 2
· 3ud

4
+ u.

By Lemma 8 with λ := λrel + 2 and c := 4, Pr[V > B|E] ≤ 1
4
· 2−λrel . Since
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q − 4uq2 = q(1− 4uq) = q
(
1− 8u(λrel+2)

d log e

)
≥ q

2
,

B ≤ u(λrel + 2 + log u)

2 log e

(
1

q
+

1
q
2

)
+ u =

3u(λrel + 2 + log u)

2 log e
· 1
q
+ u =

3u

4
· λrel + 2 + log u

λrel + 2
· 2(λrel + 2)

q log e
+ u = B′.

Therefore, Pr[V > B′|E] ≤ Pr[V > B|E] ≤ 1
4
· 2−λrel .

Combining the facts that Pr
[
Ē
]
≤ 1

2
·2−λrel , Pr[F |E] ≤ 1

4
·2−λrel , Pr[V > B′|E] ≤

1
4
· 2−λrel , and given that there are exactly d root vertices, the theorem follows.

Proof of Corollary 3. Following Theorem 12, define

d(0) =
⌈
(32 ln 12)u

⌉
; q(0) =

2 ln 12

d(0)
; B(0) =

⌊
8(u+ 1)d(0)

ln 12

⌋
.

Following Theorem 13, define functions

λ
(1)′

rel (λ) =
λ+ 7

log e
; d(1)(λ) =

⌈
16uλ

(1)′

rel (λ)
⌉
; q(1)(λ) =

2λ
(1)′

rel (λ)

d(1)(λ)
.

Also define

S(1) =

{
λ : 1 ≤ λ ≤ λrel ∧ np ≥

(
17uλ

(1)′

rel (λ)
)2

9λ
(1)′

rel (λ)

}
;

λ
(1)
rel =

{
maxS(1) if S(1) ̸= ∅
⊥ otherwise.

If λ
(1)
rel ̸= ⊥, also define

λ
(1)′

rel = λ
(1)′

rel

(
λ
(1)
rel

)
; d(1) = d(1)

(
λ
(1)
rel

)
; q(1) = q(1)

(
λ
(1)
rel

)
;

w = min

{
w : w ∈ N ∧ w ≥ u ∧ 14 · w2 · (w + 2) · ew+1

w

e · (w + 2− e1/w) · (w + 1)!
≤ 2−λ

(1)
rel

}
;

B(1) =

⌊(
wλ

(1)′

rel

d(1)
+ 1

)
· exp

(
2uwλ

(1)′

rel

np

+
7u

w

)
· d(1)u+ d(1)

⌋
.

Following Theorem 14, define functions

d(2)(λ) =

⌈
16u(λ+ 2)

log e

⌉
; q(2)(λ) =

2(λ+ 2)

d(2)(λ) log e
.
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Also define

S(2) =

{
λ : 1 ≤ λ ≤ λrel ∧ np ≥

(
17u(λ+ 2)

log e

)2

· log e

9(λ+ 2)

}
;

λ
(2)
rel =

{
maxS(2) if S(2) ̸= ∅
⊥ otherwise.

If λ
(2)
rel ̸= ⊥, also define

d(2) = d(2)
(
λ
(2)
rel

)
; q(2) = q(2)

(
λ
(2)
rel

)
;

B(2) =

⌊
λ
(2)
rel + 2 + log u

λ
(2)
rel + 2

· 3ud
(2)

4
+ d(2) + u

⌋
.

Claim 2. There exist constants C0 > 0, C1 > 0, C2 > 0 independent of λsec, λrel, np, nf

such that

• if λ
(1)
rel ̸= ⊥, then

– λ
(1)
rel = λrel or λ

(1)
rel ≥ C0np/u

2;

– λ
(1)
rel ≤ C1np/u

2;

• if λ
(1)
rel = ⊥, then np ≤ C2u

2.

Proof. Notice that

S(1) =
[
1;λrel

]
∩
(
−∞;

np

Cu2
− 7

]
where C = 172

9 log e
.

Suppose λ
(1)
rel ̸= ⊥. Then,

np

Cu2 − 7 ≥ λrel implies λ
(1)
rel = λrel. On the other hand,

np

Cu2 −7 < λrel implies λ
(1)
rel =

np

Cu2 −7; combined with the fact that λ
(1)
rel ≥ 1, it follows

that λ
(1)
rel ≥

np

8Cu2 . Additionally, λ
(1)
rel ≤

np

Cu2 − 7 ≤ np

Cu2 .

Now suppose λ
(1)
rel = ⊥. Then

np

Cu2 − 7 < 1 which implies np ≤ 8Cu2.

The following is proven in a similar way.

Claim 3. There exist constants C3 > 0, C4 > 0, C5 > 0 independent of λsec, λrel, np, nf

such that

• if λ
(2)
rel ̸= ⊥, then

– λ
(2)
rel = λrel or λ

(2)
rel ≥ C3np/u

2;

– λ
(2)
rel ≤ C4np/u

2;

• if λ
(2)
rel = ⊥, then np ≤ C5u

2.
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We now consider three cases.
Case 1. Suppose

(
λ
(1)
rel = ⊥

)
∨
(
λ
(2)
rel = ⊥

)
. We set

d = d(0); q = q(0); B = B(0); r = ⌈λrel⌉.

By Theorem 12, the DFS fails with probability ≤ 1
2
. Therefore, the scheme has

completeness error ≤
(
1
2

)r ≤ 2−λrel . By Lemma 3, the soundness error of the scheme

is at most
(

nf

np

)u
· qd =

(
nf

np

)u
· 2 ln 12 ≤ 2−λsec . We will now analyze the expected

prover running time.

B ≤ 8(u+ 1)d

ln 12
= O(ud) = O

(
u ·
⌈
(32 ln 12)u

⌉)
= O(u2).

Also by Claim 2 and Claim 3, np ≤ max{C2, C5}u2 = O
(
u2
)
. By Lemma 35, the

expected running time is at most 2(np+B) = O
(
u2
)
. Finally, the worst case running

time is bounded by

(np +B) · r = O
(
u2
)
· ⌈λrel⌉ = O

(
u2 · λrel

)
.

Case 2. Suppose
(
λ
(1)
rel ̸= ⊥

)
∧
(
λ
(2)
rel ̸= ⊥

)
∧
(
u ≥ λ

(2)
rel

)
. We set

d = d(1); q = q(1); B = B(1); r =
⌈
λrel/λ

(1)
rel

⌉
.

By Theorem 13, the DFS fails with probability≤ 2−λ
(1)
rel . Therefore, the completeness

error of the scheme is at most (
2−λ

(1)
rel

)r
≤ 2−λrel .

By Lemma 3, the soundness error of the scheme is at most

r ·
(
nf

np

)u

· qd =

⌈
λrel/λ

(1)
rel

⌉
·
(
nf

np

)u

· 2λ(1)′

rel =

⌈
λrel/λ

(1)
rel

⌉
·
(
nf

np

)u

· 2 · λ
(1)
rel + 7

log e
≤

2λrel

λ
(1)
rel

·
(
nf

np

)u

· 2 · 8λ
(1)
rel

log e
=

(
nf

np

)u

· λrel ·
32

log e
≤

2−λsec .

We will now analyze the expected prover running time. Notice that

d =
⌈
16uλ

(1)′

rel

⌉
= O

(
uλ

(1)′

rel

)
= O

(
u · λ

(1)
rel + 7

log e

)
= O

(
u · λ(1)

rel

)
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and

q =
2λ

(1)′

rel

d
=

2λ
(1)′

rel⌈
16uλ

(1)′

rel

⌉ =
2λ

(1)′

rel

O
(
uλ

(1)′

rel

) = Ω

(
1

u

)
.

By Theorem 9, the expected number of vertices each DFS visits is at most

4(u+ 1)

q
+ 2e−

9
4
npq2 · d(u+ 1) =

O
(
u2
)
+ e−

9
4
npq2 ·O

(
u2 · λ(1)

rel

)
[=]

By Claim 2, λ
(1)
rel ≤ C1np/u

2, and thus np = Ω(u2λ
(1)
rel ); therefore,

[=] O
(
u2
)
+ exp

(
− Ω

(
λ
(1)
rel

))
·O
(
u2 · λ(1)

rel

)
= O

(
u2
)
.

If λ
(1)
rel = λrel, then r = 1 and the expected running time is at most np + O

(
u2
)
.

Otherwise, by Lemma 35, the expected running time is at most

np +O
(
u2
)

1− 2−λ
(1)
rel

=
np

1− 2−λ
(1)
rel

+O
(
u2
)
[=]

By Lemma 32,

[=] np

(
1 + 2 · 2−λ

(1)
rel

)
+O

(
u2
)
=

np + 2 · np · 2−λ
(1)
rel +O

(
u2
)
[=]

By Claim 2, λ
(1)
rel ≥ C0np/u

2; thus,

[=] np +
2u2λ

(1)
rel

C0

· 2−λ
(1)
rel +O

(
u2
)
=

np +O
(
u2
)
.

Finally, we will analyze the worst case running time. By Claim 3, λ
(2)
rel = λrel or

λ
(2)
rel ≥ C3np/u

2. If λ
(2)
rel = λrel, then w ≥ u ≥ λ

(2)
rel = λrel ≥ λ

(1)
rel ; if λ

(2)
rel ≥ C3np/u

2,

then w ≥ u ≥ λ
(2)
rel ≥ C3np/u

2 = C3

C1
· C1np/u

2 ≥ C3

C1
· λ(1)

rel . In either case, it can be
seen by the definition of w that w ≤ u + C6 for some constant C6. Prover’s worst
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case running time is bounded by (np +B) · r.

B · r =⌊(
wλ

(1)′

rel

d
+ 1

)
· exp

(
2uwλ

(1)′

rel

np

+
7u

w

)
· du+ d

⌋
·
⌈
λrel/λ

(1)
rel

⌉
=

(
wλ

(1)′

rel

d
+ 1

)
· exp

(
2uwλ

(1)′

rel

np

+
7u

w

)
· du ·O

(
λrel

λ
(1)
rel

)
=

(
wλ

(1)′

rel⌈
16uλ

(1)′

rel

⌉ + 1

)
· exp

(
2uwλ

(1)′

rel

np

+
7u

w

)
·O
(
u2λ

(1)
rel

)
·O

(
λrel

λ
(1)
rel

)
=

(
wλ

(1)′

rel

16uλ
(1)′

rel

+ 1

)
· exp

(
2uwλ

(1)′

rel

np

+
7u

w

)
·O
(
u2 · λrel

)
=

(
u+ C6

16u
+ 1

)
· exp

(
2u(u+ C6)λ

(1)′

rel

np

+
7u

u

)
·O
(
u2 · λrel

)
=

exp

(
2u(u+ C6)λ

(1)′

rel

np

)
·O
(
u2 · λrel

)
.

Since 1 ≤ λ
(1)
rel ≤ C1np/u

2, λ
(1)′

rel =
(
λ
(1)
rel + 7

)
/ log e ≤ 8λ

(1)
rel / log e = O

(
np/u

2
)
, and

thus B · r = O
(
u2 · λrel

)
. Additionally, by Claim 2, λ

(1)
rel = λrel or λ

(1)
rel ≥ C0np/u

2. In
the first case, r = 1 and np · r = np. In the second case,

np · r = np ·
⌈
λrel/λ

(1)
rel

⌉
≤ 2 · np ·

λrel

λ
(1)
rel

≤ 2 · np ·
λrel

C0np/u2
=

2u2λrel

C0

.

In either case, np · r = np + O
(
u2 · λrel

)
. Hence, the worst case running time is

(np +B) · r = np +O
(
u2 · λrel

)
.

Case 3. Suppose (λ
(1)
rel ̸= ⊥) ∧ (λ

(2)
rel ̸= ⊥) ∧ (u < λ

(2)
rel ). We set

d = d(2); q = q(2); B = B(2); r =
⌈
λrel/λ

(2)
rel

⌉
.

By Theorem 14, the DFS fails with probability≤ 2−λ
(2)
rel . Therefore, the completeness

error of the scheme is at most (
2−λ

(2)
rel

)r
≤ 2−λrel .
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By Lemma 3, the soundness error of the scheme is at most

r ·
(
nf

np

)u

· qd =

⌈
λrel/λ

(2)
rel

⌉
·
(
nf

np

)u

·
2
(
λ
(2)
rel + 2

)
log e

≤

2λrel

λ
(2)
rel

·
(
nf

np

)u

· 6λ
(2)
rel

log e
=

(
nf

np

)u

· λrel ·
12

log e
≤

2−λsec .

We will now analyze the expected prover running time. Notice that

d =

⌈
16u
(
λ
(2)
rel + 2

)
log e

⌉
= O

(
u · λ(2)

rel

)
and

q =
2
(
λ
(2)
rel + 2

)
d log e

=
2
(
λ
(2)
rel + 2

)
⌈

16u
(
λ
(2)
rel+2

)
log e

⌉
· log e

=
2
(
λ
(2)
rel + 2

)
O

(
u
(
λ
(2)
rel+2

)
log e

)
· log e

= Ω

(
1

u

)
.

By Theorem 9, the expected number of vertices each DFS visits is at most

4(u+ 1)

q
+ 2e−

9
4
npq2 · d(u+ 1) =

O
(
u2
)
+ e−

9
4
npq2 ·O

(
u2 · λ(2)

rel

)
[=]

By Claim 3, λ
(2)
rel ≤ C4np/u

2 and thus np = Ω
(
u2 · λ(2)

rel

)
; therefore,

[=] O
(
u2
)
+ exp

(
− Ω

(
λ
(2)
rel

))
·O
(
u2 · λ(2)

rel

)
= O

(
u2
)
.

If λ
(2)
rel = λrel, then r = 1 and the expected running time is at most np + O

(
u2
)
.

Otherwise, by Lemma 35, the expected running time is at most

np +O
(
u2
)

1− 2−λ
(2)
rel

=
np

1− 2−λ
(2)
rel

+O
(
u2
)
[=]

By Lemma 32,

[=] np

(
1 + 2 · 2−λ

(2)
rel

)
+O

(
u2
)
=

np + 2 · np · 2−λ
(2)
rel +O

(
u2
)
[=]
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By Claim 2, λ
(2)
rel ≥ C3np/u

2; thus,

[=] np +
2u2λ

(2)
rel

C3

· 2−λ
(2)
rel +O

(
u2
)
=

np +O
(
u2
)
.

Prover’s worst case running time is bounded by (np +B) · r.

B · r =⌊
λ
(2)
rel + 2 + log u

λ
(2)
rel + 2

· 3ud
4

+ d+ u

⌋
·
⌈
λrel/λ

(2)
rel

⌉
=

(
λ
(2)
rel + 2 + log u

λ
(2)
rel + 2

· 3ud
4

+ d+ u

)
·O

(
λrel

λ
(2)
rel

)
=

(
λ
(2)
rel + 2 + log u

λ
(2)
rel + 2

·O
(
u2 · λ(2)

rel

))
·O

(
λrel

λ
(2)
rel

)
=

O

(
λ
(2)
rel + 2 + log u

λ
(2)
rel + 2

· u2 · λrel

)
=

O

(
λ
(2)
rel + 2 + log λ

(2)
rel

λ
(2)
rel + 2

· u2 · λrel

)
=

O
(
u2 · λrel

)
.

Additionally, by Claim 3, λ
(2)
rel = λrel or λ

(2)
rel ≥ C3np/u

2. In the first case, r = 1 and
np · r = np. In the second case,

np · r = np ·
⌈
λrel/λ

(2)
rel

⌉
≤ 2 · np ·

λrel

λ
(2)
rel

≤ 2 · np ·
λrel

C3np/u2
=

2u2λrel

C3

.

In either case, np · r = np + O
(
u2 · λrel

)
. Hence, the worst case running time is

(np +B) · r = np +O
(
u2 · λrel

)
.

Proof of Theorem 15. Suppose not and define u = ⌊α⌋. Then Pr
[∣∣Read(ProveH(Sp))

∣∣ ≤
u
]
≥ 3

4
.

Let π ← ProveH(Sp), Sf be a uniformly random subset of Sp of size nf, A be the
event that |Read(π)| ≤ u and B the event that Read(π) ⊆ Sp ∧ VerifyH(π) = 1. By
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the above, Pr[A] ≥ 3
4
, and by completeness, Pr[B] ≥ 1

2
. Then

Pr
[
Read(π) ⊆ Sf ∧ VerifyH(π) = 1

]
≥

Pr
[
Read(π) ⊆ Sf ∧ VerifyH(π) = 1

∣∣A ∧B
]
· Pr

[
A ∧B

]
=

Pr
[
Read(π) ⊆ Sf

∣∣A ∧B
]
· Pr[A ∧B] ≥

Pr
[
Read(π) ⊆ Sf

∣∣A ∧B
]
·
(
Pr[A] + Pr[B]− 1

)
≥

Pr
[
Read(π) ⊆ Sf

∣∣A ∧B
]
·
(
3

4
+

1

2
− 1

)
=

1

4
· Pr

[
Read(π) ⊆ Sf

∣∣A ∧B
]
≥

1

4
· nf

np

· nf − 1

np − 1
× ...× nf − (u− 1)

np − (u− 1)
≥

1

4
·
(
nf − u

np

)u

=

1

4
·
(
nf

np

)u

·
(
nf − u

nf

)u

=

1

4
·
(
nf

np

)u

·
(
1− u

nf

)u

[≥]

Since u
nf
≤ u

3α2 ≤ u
3u2 ≤ 1

2
and 1− x ≥ e−x−x2 ≥ e−

3
2
x for 0 ≤ x ≤ 1

2
,

[≥]1
4
·
(
nf

np

)u

·
(
e
− 3u

2nf

)u
≥

1

4
·
(
nf

np

)u

· e−
3u2

6u2 >

1

8
·
(
nf

np

)u

.

Therefore, by the averaging argument, there exists a subset S ′
f of Sp of size nf

such that

Pr[Read(π) ⊆ S ′
f ∧ VerifyH(π) = 1] >

1

8
·
(
nf

np

)u

.

On the other hand, by soundness from Definition 4)

Pr[Read(π) ⊆ S ′
f ∧ VerifyH(π) = 1] ≤ Pr[SoundExp(S ′

f) = 1] ≤ 2−λsec .
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Thus,

1

8
·
(
nf

np

)u

< 2−λsec ⇐⇒(
np

nf

)u

> 2λsec−3 ⇐⇒

u log
np

nf

> λsec − 3⇐⇒

u > α ,

which is a contradiction.

Proof of Lemma 9. Let Sf = {s1, ..., snf
} be malicious prover’s set and define Xi =

H(si). To violate soundness, the malicious prover needs
∑

Xi ≥ u = rs · pnf, while
the expectation E

∑
Xi = pnf. By Chernoff bound (Lemma 37) (with δ = rs − 1),

Pr
[∑

Xi ≥ u
]
≤
(

eδ

(1 + δ)1+δ

)pnf

=

(
ers−1

rrss

)
.

This is at most 2−λsec if and only if

pnf(rs − 1− rs ln rs) ≤ −λsec · ln 2⇐⇒

pnf(rs ln rs − rs + 1) ≥ λsec · ln 2⇐⇒

u

(
ln rs − 1 +

1

rs

)
≥ λsec · ln 2⇐⇒

u ≥ λsec · ln 2
ln rs − 1 + 1

rs

which is true by our assumption about u.

Proof of Lemma 10. Let Sp = {s1, ..., snp} be honest prover’s set and define Xi =
H(si). The honest prover fails whenever

∑
Xi < u = pnp

rc
, while the expectation

E
∑

Xi = pnp. By Chernoff bound (Lemma 39) (with δ = 1− 1
rc
),

Pr
[∑

Xi < u
]
≤ Pr

[∑
Xi ≤ u

]
≤
(

e−δ

(1− δ)1−δ

)pnp

=

(
e

1
rc

−1

( 1
rc
)

1
rc

)pnp

.

This is at most 2−λrel if and only if

pnp

(
1

rc
− 1− 1

rc
· ln 1

rc

)
≤ −λrel · ln 2⇐⇒

pnp

(
1− 1

rc
− 1

rc
· ln rc

)
≥ λrel · ln 2⇐⇒

u(rc − 1− ln rc) ≥ λrel · ln 2⇐⇒

u ≥ λrel · ln 2
rc − 1− ln rc

which is true by our assumption about u.

77



Proof of Lemma 11. First we upper bound the number of malicious certificate tuples
with exactly l distinct set elements, for all 1 ≤ l ≤ u. To do that, we first choose
l out of u positions for the distinct set elements, then choose l distinct elements
with permutation for the l positions; finally, there are l choices for the other (u− l)
positions, there are d choices for the tuple’s integer t and there are r choice’s for the
tuple’s integer v. Overall, the number of tuples with exactly l distinct elements is
at most

rd · C(u, l) · P (nf, l) · lu−l.

Then by union bound the probability that a valid proof can be constructed using nf

elements is at most
u∑

l=1

((
µ

np

)l

·
(
1

ρ

)u

· q · rd · C(u, l) · P (nf, l) · lu−l

)
=

(
1

ρ

)u

· qdr ·
u∑

l=1

((
µ

np

)l

· u!

l!(u− l)!
· nf!

(nf − l)!
· lu−l

)
≤

(
1

ρ

)u

· qdr ·
u∑

l=1

((
µ

np

)l

· uu−l

(u− l)!
· nl

f · uu−l

)
=

(
1

ρ

)u

· qdr ·
u∑

l=1

((
µnf

np

)l

· u
2(u−l)

(u− l)!

)
=

(
1

ρ

)u

· qdr ·
(
µnf

np

)u

·
u∑

l=1

((
µnf

np

)l−u

· u
2(u−l)

(u− l)!

)
=

qdr ·
(
µnf

ρnp

)u

·
u∑

l=1

((
u2np

µnf

)u−l

· 1

(u− l)!

)
≤

qdr ·
(
µnf

ρnp

)u

·
∞∑
i=0

((
u2np

µnf

)i

· 1
i!

)
=

qdr ·
(
µnf

ρnp

)u

· exp
(
u2np

µnf

)
.

Proof of Theorem 17. By Lemma 11 and our assumption about µ, the soundness
error is at most

qdr ·
(
µnf

ρnp

)u

· exp
(
u2np

µnf

)
≤

eqdr ·
(
µnf

ρnp

)u

=

2e ln 12 · (λrel + 1) ·
(
µnf

ρnp

)u

.
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This is at most 2−λsec if and only if

u ≥ λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

.

Proof of Corollary 4. Completeness follows from Theorem 16. We only need to show
that ρnp

µnf
> 1 and

u ≥ λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

to prove soundness using Theorem 17.
Since by our assumption µ ≥ 8(λrel+1)

log e
, δ ≤ 1

2
and 1 − δ ≥ e−

3
2
δ by Lemma 29.

Then
log

ρnp

µnf

= log
np

nf

+ log
ρ

µ
≥ log

np

nf

+ log(1− δ) ≥

log
np

nf

+ log e−
3
2
δ = log

np

nf

− 3

2
δ log e > 0

(9)

where the last inequality follows from

δ <
2

3 log e
log

np

nf

⇐⇒

δ2 <

(
2

3 log e
log

np

nf

)2

⇐⇒

2(λrel + 1)

µ log e
<

(
2

3 log e
log

np

nf

)2

⇐⇒

µ >
2(λrel + 1)(

2
3 log e

log np

nf

)2
log e

⇐⇒

µ >
9 log e

2
· λrel + 1

log2 np

nf

.

Hence, ρnp

µnf
> 1 and we are left to show that

u ≥ λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

.

Define λ′ = λsec + log(λrel + 1) + 1 + log e+ log ln 12. Then, also using Equation 9,
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this inequality is equivalent to

u ≥ λ′

log np

nf
+ log ρ

µ

⇐=

λ′

log np

nf
+ log ρ

µ

≤ λ′ + C

log np

nf

⇐=

λ′

log np

nf
− 3

2
δ log e

≤ λ′ + C

log np

nf

⇐⇒

λ′ log
np

nf

≤ (λ′ + C)

(
log

np

nf

− 3

2
δ log e

)
⇐⇒

3

2
δ log e(λ′ + C) ≤ C log

np

nf

⇐⇒

δ ≤
2C log np

nf

3(λ′ + C) log e
⇐⇒

δ2 ≤
(

2C log np

nf

3(λ′ + C) log e

)2

⇐⇒

2(λrel + 1)

µ log e
≤
(

2C log np

nf

3(λ′ + C) log e

)2

⇐⇒

µ ≥ 2(λrel + 1)

log e

(
3(λ′ + C) log e

2C log np

nf

)2

⇐⇒

µ ≥ 9(λrel + 1) log e

2C2

(
λ′ + C

log np

nf

)2

⇐=

µ ≥ 9u2(λrel + 1) log e

2C2

which is true by our assumption about µ.

Proof of Corollary 5. Completeness follows from Theorem 16. The proof of Corol-
lary 4 shows that the assumption

µ ≥ 18 log e · (λrel + 1)

log2 np

nf

>
9 log e

2
· λrel + 1

log2 np

nf

implies

log
np

nf

+ log
ρ

µ
≥ log

np

nf

− 3

2
δ log e > 0

and thus ρnp

µnf
> 1. Hence, we only need to show

u ≥ λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

(10)
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to prove soundness using Theorem 17.
Additionally, one can see that 3δ log e

2 log(np/nf)
≤ 1

2
is true since it is equivalent to

δ ≤
log np

nf

3 log e
⇐⇒

2(λrel + 1)

µ log e
≤

(
log np

nf

3 log e

)2

⇐⇒

µ ≥ 18 log e · (λrel + 1)

log np

nf

.

Define λ′ = λsec + log(λrel + 1) + 1 + log e+ log ln 12. Equation 10 follows from

λsec + log(λrel + 1) + 1 + log e+ log ln 12

log np

nf
+ log ρ

µ

=

λ′

log np

nf
+ log ρ

µ

≤

λ′

log np

nf
− 3

2
δ log e

=

λ′

log np

nf

(
1− 3δ log e

2 log(np/nf)

) [≤]

Lemma 32 implies

[≤]

(
1 +

3δ log e

log np

nf

)
· λ′

log np

nf

=

(
1 +

3 log e

log np

nf

·

√
2(λrel + 1)

µ log e

)
· λ′

log np

nf

=

(
1 +

3
√
2 log e ·

√
λrel + 1

√
µ · log np

nf

)
· λ′

log np

nf

≤

u.
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Proof of Theorem 18. By completeness, if π ← ProveH(Lottery(Sp)), then

2−λrel ≥

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)]
≥

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
×

Pr
[∣∣Lottery(Sp)

∣∣ ≤ ρ
]
≥

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
· 2−λrel+1.

Therefore,

Pr
[
¬
(
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

)∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
≤ 1

2

and

Pr
[
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

∣∣∣∣∣Lottery(Sp)
∣∣ ≤ ρ

]
≥ 1

2
.

By the averaging argument, there exists 0 ≤ m ≤ ρ such that

Pr
[
Read(π) ⊆ Lottery(Sp) ∧ VerifyH(π) = 1

∣∣∣∣∣Lottery(Sp)
∣∣ = m

]
≥ 1

2
. (11)

Now for all Sf ⊆ Sp of size nf, define

procedure AL,H
Sf

S ← Lottery(Sf);
if m < |S| then

remove (|S| −m) random elements from S;
else

add (m− |S|) random elements from Sf \ S to S;
π ← ProveH(S);
output π.

Let Sf be a uniformly random subset of Sp of size nf and let π ← AL,H
Sf

(). We
now lower bound the following:

Pr[Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1] ≥

Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
×

Pr

[∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
[>]
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It is proven in [GM14] that for all m ≥ 1 and p > 1
m
, Pr[B(m, p) ≥ mp] > 1

4
. Thus,

[>]
1

4
· Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
≥

1

4
· Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣
Read(π) ⊆ S ∧ VerifyH(π) = 1 ∧

∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
×

×Pr

[
Read(π) ⊆ S ∧ VerifyH(π) = 1

∣∣∣∣∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
[≥]

One can see that in ASf
, independent of

∣∣Lottery(Sf)
∣∣, S is a uniformly random

subset of Sp of size m, and using equation 11,

[≥]1
8
· Pr

[
Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1

∣∣∣∣
Read(π) ⊆ S ∧ VerifyH(π) = 1 ∧

∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
=

1

8
· Pr

[
Read(π) ⊆ Lottery(Sf)

∣∣∣∣
Read(π) ⊆ S ∧ VerifyH(π) = 1 ∧

∣∣Lottery(Sf)
∣∣ ≥ µnf

np

]
[≥]

One can also see that Lottery(Sf) is a uniformly random subset of S of size |Lottery(Sf)|.
Then,

[≥]1
8
·
u−1∏
i=0

⌈
µnf

np

⌉
− i

ρ− i
≥

1

8
·

(
µnf

np
− u

ρ

)u

=

1

8
·

(
µnf

np

ρ

)u

·

(
µnf

np
− u

µnf

np

)u

=

1

8
·

(
µnf

ρnp

)u

·
(
1− unp

µnf

)u

[≥]

Since unp

µnf
≤ unp

3u2np log e

2nf
·nf

= 2
3u log e

≤ 2
3 log e

≤ 1
2
and 1 − x ≥ e−x−x2 ≥ e−

3
2
x for
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0 ≤ x ≤ 1
2
,

[≥]1
8
·

(
µnf

ρnp

)u

·
(
e
− 3unp

2µnf

)u

≥

1

8
·

(
µnf

ρnp

)u

· exp

(
− 3u2np

2 · 3u2np log e

2nf
· nf

)
=

1

8
·

(
µnf

ρnp

)u

· exp
(
− 1

log e

)
=

1

16
·

(
µnf

ρnp

)u

.

Hence, by the averaging argument there exists a subset S ′
f of Sp of size nf such

that if π′ ← AL,H
S′
f
() then

Pr[Read(π′) ⊆ Lottery(S ′
f) ∧ VerifyH(π′) = 1] >

1

16
·

(
µnf

ρnp

)u

.

On the other hand, by soundness from Definition 5,

Pr[Read(π′) ⊆ Lottery(S ′
f) ∧ VerifyH(π′) = 1] ≤

Pr[SoundExp(S ′
f) = 1] ≤ 2−λsec .

Therefore,

1

16
·

(
µnf

ρnp

)u

< 2−λsec ⇐⇒

(
ρnp

µnf

)u

> 2λsec−4 ⇐⇒

u

(
log

np

nf

+ log
ρ

µ

)
> λsec − 4⇐⇒

u >
λsec − 4

log np

nf
+ log ρ

µ

.

Proof of Corollary 6. Suppose otherwise, then Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ ≤
u
]
= 1.

Let δ =
√

λrel

4µ
and ρ = ⌊(1− δ)µ⌋. By Lemma 53,

Pr

[
B

(
np,

µ

np

)
≤ ρ

]
= Pr

[
B

(
np,

µ

np

)
≤ (1− δ)µ

]
≥ 2−λrel+1.
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In order to use Theorem 18, we need to show that ρnp

µnf
> 1. First we show that

(1− δ)µ− 1 ≥ (1− 2δ)µ. This is equivalent to

δµ ≥ 1⇐⇒

√
λrel

4µ
· µ ≥ 1⇐⇒

√
λrel · µ

4
≥ 1⇐⇒ µ ≥ 4

λrel

which is true by our assumption. Then

ρnp

µnf

>

(
(1− δ)µ− 1

)
np

µnf

≥ (1− 2δ)µnp

µnf

=
(1− 2δ)np

nf

.

This is at least 1 if and only if

1− 2δ ≥ nf

np

⇐⇒

2δ ≤ 1− nf

np

⇐⇒

4δ2 ≤
(
1− nf

np

)2

⇐⇒

λrel

µ
≤
(
1− nf

np

)2

⇐⇒

µ ≥ λrel(
1− nf

np

)2
which is true by our assumption.

By Theorem 18, u > λsec−4
log

np
nf

+log ρ
µ

. We need to prove that λsec−4
log

np
nf

+log ρ
µ

≥ α. Define
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λ′ = λsec − 4. This is equivalent to

λ′

log np

nf
+ log ρ

µ

≥ λ′ + C

log np

nf

⇐=

λ′

log np

nf
+ log(1− δ)

≥ λ′ + C

log np

nf

⇐=

λ′

log np

nf
+ log e−δ

≥ λ′ + C

log np

nf

⇐⇒

λ′

log np

nf
− δ log e

≥ λ′ + C

log np

nf

⇐⇒

λ′ log
np

nf

≥ (λ′ + C)

(
log

np

nf

− δ log e

)
⇐⇒

(λ′ + C)δ log e ≥ C log
np

nf

⇐⇒

δ ≥
C log np

nf

(λ′ + C) log e
⇐⇒

λrel

4µ
≥

(
C log np

nf

(λ′ + C) log e

)2

⇐⇒

µ ≤ λrel

4
·

(
(λ′ + C) log e

C log np

nf

)2

⇐⇒

µ ≤ α2λrel log
2 e

4C2

which is true by our assumption.
Hence u > α and we reach a contradiction.

Proof of Corollary 7. Suppose otherwise, then Pr
[∣∣Read(ProveH(Lottery(Sp)))

∣∣ ≤
u
]
= 1.

Let δ =
√

λrel

4µ
and ρ = ⌊(1− δ)µ⌋. By Lemma 53,

Pr

[
B

(
np,

µ

np

)
≤ ρ

]
= Pr

[
B

(
np,

µ

np

)
≤ (1− δ)µ

]
≥ 2−λrel+1.

In order to use Theorem 18, we need to show that ρnp

µnf
> 1. The proof of

Corollary 6 shows how the assumption µ ≥ max
{

4
λrel

, λrel

(1− nf
np

)2

}
implies it.

86



By Theorem 18,

u >

λsec − 4

log np

nf
+ log ρ

µ

≥

λsec − 4

log np

nf
+ log(1− δ)

≥

λsec − 4

log np

nf
+ log e−δ

=

λsec − 4

log np

nf
− δ log e

=

λsec − 4

log np

nf

(
1− δ log e

log
np
nf

) ≥
(
1 +

δ log e

log np

nf

)
· λsec − 4

log np

nf

=

(
1 +

√
λrel log e

2
√
µ log np

nf

)
· λsec − 4

log np

nf

=

α

which is a contradiction.

Proof of Theorem 19. Referencing the internals of the extractor algorithm, let E1

be the event that a valid proof can be made from the first nf (or fewer) weight-1
elements that AH,W

1 queries to H and let E2 be the event that AH,W
1 queries strictly

more than nf weight-1 elements to H. Then

Pr
[
VerifyH,W

(
AH,W ()

)
= 1
]
= Pr

[
v = 1

]
[≤]

v = 1 implies that τ contains weight-1 elements that can create a valid proof; then

[≤] Pr
[
AH,W

1 terminates ∧
(
E1 ∨ E2

)]
=

Pr
[(
AH,W

1 terminates ∧ E1

)
∨
(
AH,W

1 terminates ∧ E2

)]
≤

Pr
[
E1 ∨

(
AH,W

1 terminates ∧ E2

)]
≤

Pr[E1] + Pr
[
AH,W

1 terminates ∧ E2

]
≤

Pr[E1] + Pr
[
ExtractExp(A,W ) = 1

]
≤

2−λsec + Pr
[
ExtractExp(A,W ) = 1

]
where the last step follows from Lemma 12.
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Proof of Lemma 12. Theorem 1 assumes a static set of random oracle queries, while
an adaptive adversary may change the queries in response to random oracle answers.
In order to be able to apply Theorem 1, we simply need to switch from thinking
about set elements as input to H to thinking about indices as inputs. We will define
a new function Q to do so.

Let X1, . . . , XN be the first nf distinct weight-1 elements that are present in
random oracle queries of A. If N < nf, pad the sequence X1, . . . , XN with dummy
elements that are distinct from all queries of A up to nf; the weights of those dummy
elements do not matter. Define Q(1, t, · · · ), and Q(2, t, · · · ) to be the same as H1

and H2, respectively, but operating on indices rather than values of the Xs; that
is, Q(i, t, v1, ..., vj) = Hi

(
t,Xv1 , ..., Xvj

)
. Note that Q depends on A, because the

mapping from i to Xi is determined by A. Partition the domain of Q into nf parts,
inductively, as follows: part k consists of all index sequences that contain the index
k at least once and do not contain indices above k.

Let Qk denote Q restricted to the kth part, and observe that Qk is independent of
Q1, . . . , Qk−1 and is distributed identically to Hi, because it contains a new random
oracle input Xk that is not contained in Q1, . . . , Qk−1.

Let cert be true if and only if there are indices that “form a valid proof”, i.e.,
and only if there exist 1 ≤ t ≤ d and v1, ..., vu ∈ [nf] such that for all 1 ≤ i ≤ u,
Q(1, t, v1, ..., vi) = 1, and Q(2, t, v1, ..., vu) = 1. Pr[E] ≤ Pr[cert], because cert
happens whenever E happens (and may also happen using some of the dummy
values XN+1 . . . , Xnf

). And Pr[cert] ≤ 2−λsec by the same exact argument as in
Theorem 1.

E Additional Lemmas

E.1 Useful facts

Lemma 25. ex ≥ 1 + x for all x.

Lemma 26. e−x ≤ 1− x+ x2

2
for all x ≥ 0.

Lemma 27. e−x ≤ 1− x
2
for all 0 ≤ x ≤ 1.

Proof. Follows from Lemma 26.

Lemma 28. ln(1− x) ≥ −x− x2 for all 0 ≤ x ≤ 1
2
.

Lemma 29. ln(1− x) ≥ −3
2
x for all 0 ≤ x ≤ 1

2
.

Proof. Follows from Lemma 28.

Lemma 30. ln(1− x) ≤ −x− x2

2
for all x ≥ 0.

Lemma 31. 1
1−e−x ≤ 2

x
for all 0 < x ≤ 1.

Proof. From Lemma 27, 1
1−e−x ≤ 1

1−(1−x
2
)
= 2

x
.

Lemma 32. Suppose 0 ≤ ϵ ≤ 1
2
. Then 1

1−ϵ
≤ 1 + 2ϵ.
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Lemma 33.

∞∑
i=0

1

i!
= e;

∞∑
i=0

i

i!
= e;

∞∑
i=0

i2

i!
= 2e

Proof. It is known that for any x ∈ R, ex =
∑∞

i=0
xi

i!
. From this, the first equality

follows.
We prove the second equality:

∞∑
i=0

i

i!
=

∞∑
i=1

i

i!
=

∞∑
i=1

1

(i− 1)!
=

∞∑
i=0

1

i!
= e.

We prove the third equality:

∞∑
i=0

i2

i!
=

∞∑
i=1

i2

i!
=

∞∑
i=1

i

(i− 1)!
=

∞∑
i=0

i+ 1

i!
=

∞∑
i=0

i

i!
+

∞∑
i=0

1

i!
= 2e.

Lemma 34. Let A,E be probabilistic events such that Pr
[
A
∣∣E] ≤ x and Pr

[
Ē
]
≤

y ≤ 1. Then Pr
[
A
]
≤ x+ y − xy.

Proof.

Pr
[
A
]
=

Pr
[
A
∣∣E] · Pr [E]+ Pr

[
A
∣∣Ē] · Pr [Ē] ≤

Pr
[
A
∣∣E] · (1− Pr

[
Ē
])

+ Pr
[
Ē
]
=

Pr
[
A
∣∣E]+ Pr

[
Ē
]
·
(
1− Pr

[
A
∣∣E]) ≤

Pr
[
A
∣∣E]+ y ·

(
1− Pr

[
A
∣∣E]) =

y + Pr
[
A
∣∣E] · (1− y) ≤

y + x · (1− y) =

x+ y − xy

Lemma 35. Let n ∈ N, let {Xi}i∈[n] be random variables with Xi ∈ R, E[Xi] = µ ≥
0 and let {Yi}i∈N be random variables with Yi ∈ {0, 1}, Pr[Yi = 1] = p such that all
(Xi, Yi) are independent and identically distributed. Also define

N =

{
min{i : Yi = 1} ∃i ∈ [n], Yi = 1

n otherwise.

Then E
[∑N

i=1 Xi

]
≤ µ/p.
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Proof. Let

t = E

[
N∑
j=1

Xj

]
=

E

[
N∑
j=1

Xj

∣∣∣∣∣N = 1

]
· Pr[N = 1] + E

[
N∑
j=1

Xj

∣∣∣∣∣N ̸= 1

]
· Pr[N ̸= 1] =

E[X1|N = 1] · Pr[N = 1] + E

[
X1 +

N∑
j=2

Xj

∣∣∣∣∣N ̸= 1

]
· Pr[N ̸= 1] =

E[X1|N = 1] · Pr[N = 1] + E[X1|N ̸= 1] · Pr[N ̸= 1]+

E

[
N∑
j=2

Xj

∣∣∣∣∣N ≥ 2

]
· Pr[N ̸= 1] =

µ+ E

[
N∑
j=2

Xj

∣∣∣∣∣N ≥ 2

]
· (1− p) ≤

µ+ t · (1− p).

Hence, t ≤ µ
p
.

Lemma 36 (Stirling’s approximation). For all n ∈ N,

√
2πn

(
n

e

)n

e
1

12n+1 < n! <
√
2πn

(
n

e

)n

e
1

12n .

E.2 Chernoff Bounds

Below let X1, ..., Xn be independent Bernoulli random variables, define X = X1 +
...+Xn and µ = E[X].

Lemma 37 (Upper tail). For any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

Lemma 38 (Upper tail, simpler). For any δ ∈ [0, 1],

Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3.

Lemma 39 (Lower tail). For any δ ∈ [0, 1),

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

.

Lemma 40 (Lower tail, simpler). For any δ ≥ 0,

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2.
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E.3 Lemmas for Section 3.1.1

Lemma 41. Let t > 0 and define the sequence {xk} as follows: let x0 = 1 and for
k ≥ 0, let

xk+1 =

(
1

n
xke

t + 1− 1

n

)np

.

Then E[etZ ] = xd
u.

Proof. For 1 ≤ j ≤ d, 1 ≤ i ≤ u, s1, ..., si ∈ Sp and 1 ≤ k ≤ i, let the indicator
random variable

Ij,s1,...,si,k =

{
1 if for all k ≤ r ≤ i, H1(j, s1, ..., sr) = 1

0 otherwise.

Then

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Ij,s1,...,si,1.

Also for 1 ≤ j ≤ d, 0 ≤ i ≤ u and s1, ..., si ∈ Sp, let

F (j, s1, ..., si) =
∑

i+1≤k≤u,
si+1,...,sk∈Sp

Ij,s1,...,sk,i+1.

Then Z =
∑d

j=1 F (j) and

E[etZ ] =

E

[
exp

(
t ·

d∑
j=1

F (j)

)]
=

E

[
d∏

j=1

etF (j)

]
=

d∏
j=1

E
[
etF (j)

]
.

(12)

We will prove by induction that for all 1 ≤ j ≤ d, 0 ≤ k ≤ u and s1, ..., su−k ∈ Sp,

E
[
exp

(
t · F (j, s1, ..., su−k)

)]
= xk.

Basis case (k = 0): E
[
exp

(
t · F (j, s1, ..., su)

)]
= E

[
exp

(
t · 0)

)]
= 1 = x0.
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Inductive step:

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)]
=

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp

Ij,s1,...,sr,u−k

)]
=

E

[
exp

(
t ·

∑
su−k∈Sp

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)]
=

E

[ ∏
su−k∈Sp

exp

(
t ·

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)]
.

Define the random variables

Xsu−k
=

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k.

Since Xsu−k
are all independent,

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)]
=

E

[ ∏
su−k∈Sp

exp
(
t ·Xsu−k

)]
=

∏
su−k∈Sp

E

[
exp

(
t ·Xsu−k

)]
.

(13)

Let Esu−k
be the event that H1(s1, ..., su−k) = 1. Then

E
[
exp

(
t ·Xsu−k

)]
=

E
[
exp

(
t ·Xsu−k

)∣∣∣Esu−k

]
· Pr

[
Esu−k

]
+

E
[
exp

(
t ·Xsu−k

)∣∣∣¬Esu−k

]
· Pr

[
¬Esu−k

]
=

E
[
exp

(
t ·Xsu−k

)∣∣∣Esu−k

]
· 1
np

+ E
[
exp

(
t · 0
)∣∣∣Esu−k

]
·
(
1− 1

np

)
=

1

np

· E
[
exp

(
t ·Xsu−k

)∣∣∣Esu−k

]
+ 1− 1

np

.

(14)
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Given Esu−k
,

Xsu−k
=∑

u−k≤r≤u,
su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k =

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k + Ij,s1,...,su−k,u−k =

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k+1 + 1 =

F (j, s1, ..., su−k) + 1

Using equation 14,

E
[
exp

(
t ·Xsu−k

)]
=

1

np

· E
[
exp

(
t ·
(
F (j, s1, ..., su−k) + 1

))∣∣∣∣Esu−k

]
+ 1− 1

np

=

1

np

· E
[
exp

(
t · F (j, s1, ..., su−k)

)∣∣∣Esu−k

]
· et + 1− 1

np

=

1

np

· E
[
exp

(
t · F (j, s1, ..., su−k)

)]
· et + 1− 1

np

=

1

np

xke
t + 1− 1

np

.

Combining this with equation 13 we get

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)]
=

∏
su−k∈Sp

E

[
exp

(
t ·Xsu−k

)]
=

∏
su−k∈Sp

(
1

np

xke
t + 1− 1

np

)
=

(
xke

t + 1− 1

np

)np

=

xk+1

which concludes the inductive step.

Therefore by equation 12, E[etZ ] =
∏d

j=1 E
[
etF (j)

]
=
∏d

j=1 xu = xd
u.
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E.4 Lemmas for Section 3.2

Lemma 42. Assume c ≥ 2, λ > 0, d ≥ 4cuλ and q = 2λ
d
. Then completeness error

is ≤ 2
c
+ e−λ − 2

c
· e−λ.

Proof. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, let E be the
event that 1

np

∑np

i=1 e
−qXi ≤ e−q+cq2 and let F be the event that the honest prover

fails. By Lemma 43, Pr[F |E] ≤ e−λ. Also by Lemma 4,

Pr
[
Ē
]
= Pr

[
1

np

np∑
i=1

e−qXi > e−q+cq2

]
≤ Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + cq2

]
≤ 2

c
.

Hence by Lemma 34, Pr[F ] ≤ 2
c
+ e−λ − 2

c
· e−λ.

Lemma 43. Let λ > 0, c > 0, d ≥ 4cuλ, q = 2λ
d
, let Xi = |{s ∈ Sp : H0(s) = i}| be

the number of balls in bin i, let E be the event that 1
np

∑np

i=1 e
−qXi ≤ e−q+cq2 and let

F be the event that the honest prover fails. Then Pr[F |E] ≤ e−λ.

Proof. By Lemma 6, Pr[F |E] ≤ e−(q−cuq2)d. This is at most e−λ if and only if

(q − cuq2)d ≥ λ⇐⇒(
2λ

d
− cu

(
2λ

d

)2
)
d ≥ λ⇐⇒

2− cu · 4λ
d
≥ 1⇐⇒

1 ≥ 4cuλ

d
⇐⇒

d ≥ 4cuλ

which is true by our assumption about d.

Lemma 44. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, let
c > 0, let E be the event that 1

np

∑np

i=1 e
−qXi ≤ e−q+cq2 and let F (t) be the event that

there does not exist a valid proof starting with integer t. Then Pr[F (t)|E] ≤ e−q+cuq2.

Proof. Define random function f(x) = 1
np

∑np

i=1 x
Xi . By Lemma 45,

Pr[F (t)|H0] ≤ e−q ·
(
f(e−q)

e−q

)u

.

Therefore,

Pr[F (t)|E] = E
[
Pr[F (t)|H0, E]

∣∣∣E] = E
[
Pr[F (t)|H0]

∣∣∣E] =
E

[
e−q ·

(
f(e−q)

e−q

)u
∣∣∣∣∣f(e−q) ≤ e−q+cq2

]
≤

e−q+cuq2 .
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Lemma 45. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, define
random function f(x) = 1

np

∑np

i=1 x
Xi, and let F (t, s1, ..., sk) be the event that there

is no suffix of honest player’s signatures that works, meaning there is no sk+1, ..., su
such that

• for all k + 1 ≤ i ≤ u, H1(t, s1, ..., si−1) = H0(si)

• H2(t, s1, ..., su) = 1.

Then for all t, 0 ≤ k ≤ u and s1, ..., sk,

Pr[F (t, s1, ..., sk)|H0] ≤ e−q ·
(
f(e−q)

e−q

)u−k

.

Proof. By Lemma 46, Pr[F (t, s1, ..., sk)|H0] = f (u−k)(1 − q). Since f(x) is an in-
creasing function, this is at most f (u−k)(e−q), and by Lemma 47, it is at most

e−q ·
(
f(e−q)

e−q

)u−k

.

Lemma 46. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, define
random function f(x) = 1

np

∑np

i=1 x
Xi, and let F (t, s1, ..., sk) be the event that there

is no suffix of honest player’s signatures that works, meaning there is no sk+1, ..., su
such that

• for all k + 1 ≤ i ≤ u, H1(t, s1, ..., si−1) = H0(si)

• H2(t, s1, ..., su) = 1.

Then for all t, 0 ≤ k ≤ u and s1, ..., sk, Pr[F (t, s1, ..., sk)|H0] = f (u−k)(1− q).

Proof. Notice the following:

• F (t, s1, ..., su) is true iff H2(t, s1, ..., su) = 0;

• for all 0 ≤ k < u: F (t, s1, ..., sk) =
∧

sk+1∈Sp

(
(H1(t, s1, ..., sk) ̸= H0(sk+1)) ∨

F (t, s1, ..., sk+1)
)
.

We will prove by induction that for all 0 ≤ i ≤ u, Pr[F (t, s1, ..., su−i)|H0] =
f (i)(1 − q). The basis case is trivial: Pr[F (t, s1, ..., su)|H0] = Pr[H2(t, s1, ..., su) =
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0|H0] = 1− q = f (0)(1− q). Inductive step:

Pr[F (t, s1, ..., su−i−1)|H0] =

np∑
j=1

Pr[F (t, s1, ..., su−i−1)|H0, H1(t, s1, ..., su−i−1) = j]×

Pr[H1(t, s1, ..., su−i−1) = j|H0] =

1

np

np∑
j=1

Pr[F (t, s1, ..., su−i−1)|H0, H1(t, s1, ..., su−i−1) = j] =

1

np

np∑
j=1

Pr[
∧

su−i∈Sp,H0(su−i)=j

F (t, s1, ..., su−i)|H0, H1(t, s1, ..., su−i−1) = j][=]

By the definition of F , F (t, s1, ..., su−i) is independent of H1(t, s1, ..., su−i−1) even
conditioned on H0. Thus,

[=]
1

np

np∑
j=1

Pr[
∧

su−i∈Sp,H0(su−i)=j

F (t, s1, ..., su−i)|H0][=]

When H0 is fixed, events {F (t, s1, ..., su−i) : su−i ∈ Sp, H0(su−i) = j} are indepen-
dent since they only depend on the values of H1 and H2 with su−i in their inputs’
(u− i)-th position. Therefore,

[=]
1

np

np∑
j=1

∏
su−i∈Sp,H0(su−i)=j

Pr[F (t, s1, ..., su−i)|H0] =

1

np

np∑
j=1

∏
su−i∈Sp,H0(su−i)=j

f (i)(1− q) =

1

np

np∑
j=1

(
f (i)(1− q)

)Xj =

f (i+1)(1− q).

Lemma 47. n ∈ N, k ∈ Z, k ≥ 0, and define function f(x) = 1
n

∑n
i=1 x

Xi for some

coefficients {Xi} with
∑n

i=1Xi = n. Then for 0 < z < 1, f (k)(z) ≤ z ·
(

f(z)
z

)k
.

Proof. Let 0 < z < 1. Since the function zx is convex, by Jensen’s inequality,
f(z) = 1

n

∑n
i=1 z

Xi ≥ z
1
n

∑n
i=1 Xi = z. So, the sequence z, f(z), f (2)(z), ... is non-
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decreasing and is < 1. Also, the function g(x) = f(x)
x

is non-increasing since(
f(x)

x

)′

=

(
1
n

∑n
i=1 x

Xi

x

)′

=

(
1

n

n∑
i=1

xXi−1

)′

=

1

n

n∑
i=1

(Xi − 1)xXi−2 =

x−2

n

n∑
i=1

(Xi − 1)xXi =

x−2

n

( ∑
i:Xi≥1

(Xi − 1)xXi −
∑

i:Xi=0

1

)
≤

x−2

n

( ∑
i:Xi≥1

(Xi − 1)−
∑

i:Xi=0

1

)
=

x−2

n

( ∑
i:Xi≥1

Xi −
∑

i:Xi≥1

1−
∑

i:Xi=0

1

)
=

x−2

n
(n− n) = 0.

Hence, for all i ≥ 0, f (i+1)(z)

f (i)(z)
= g
(
f (i)(z)

)
≤ g(z) = f(z)

z
, and thus,

f (k)(z) = z ·
k−1∏
i=0

f (i+1)(z)

f (i)(z)
≤ z ·

(
f(z)

z

)k

.

E.5 Lemmas for Section 3.2.1

Lemma 48. Let u, np ∈ N, λ, α, c > 0,

δ = ecuα
(

λ

dα
+ 1

)
,

Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i and let E be the event
that 1

np

∑np

i=1 e
α·Xi ≤ eα+cα2

with Pr[E] > 0. Then Pr[Z ≥ δdu|E] ≤ e−λ.

Proof. Set

t =
α

ecuα · u
(15)

and define the random sequence {Gk} as follows: let G0 = 1 and for k ≥ 0, let

Gk+1 =
1

np

np∑
i=1

(
Gk · et

)Xi .
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By Lemma 49, E
[
etZ |H0

]
= Gd

u.
For all 0 ≤ k ≤ u, define yk = kteckα. We will prove by induction that given

event E, for 0 ≤ k ≤ u, Gk ≤ eyk .
Basis case: G0 = 1 ≤ 1 = ey0 .
Inductive step:

Gk+1 =
1

np

np∑
i=1

(
Gk · et

)Xi ≤ 1

np

np∑
i=1

e(yk+t)Xi =

1

np

np∑
i=1

exp
(
(kteckα + t)Xi

)
≤

1

np

np∑
i=1

exp
(
(k + 1)teckαXi

)
[≤].

Since (k + 1)teckα ≤ utecuα ≤ α, the function f(x) = x
(k+1)teckα

α is concave and by
Jensen’s inequality,

[≤]

(
1

np

np∑
i=1

eαXi

) (k+1)teckα

α

≤

(
eα+cα2

) (k+1)teckα

α
=

exp

(
α(1 + cα)

(k + 1)teckα

α

)
=

exp

(
(k + 1)teckα(1 + cα)

)
≤

exp

(
(k + 1)teckαecα

)
=

exp

(
(k + 1)tec(k+1)α

)
=

eyk+1 .

Hence,

E
[
etZ
∣∣E] = E

[
E
[
etZ |H0, E

]∣∣∣E] = E
[
E
[
etZ |H0

]∣∣∣E] = E
[
Gd

u

∣∣∣E] ≤
E
[
(eyu)d

∣∣∣E] = edyu ≤ edα.

By Markov’s inequality,

Pr[Z ≥ δdu|E] = Pr
[
etZ ≥ eδtdu

∣∣E] ≤
E
[
etZ
∣∣E]

eδtdu
≤ edα

eδtdu
= exp

(
− d(δtu− α)

)
.

98



This is at most e−λ if and only if

d(δtu− α) ≥ λ⇐⇒

δtu− α ≥ λ

d
⇐⇒

δ ≥
λ
d
+ α

tu
[⇐⇒]

Substituting the value of t from equation 15,

[⇐⇒]δ ≥
(
λ

d
+ α

)
ecuα

α
⇐⇒

δ ≥ ecuα
(

λ

dα
+ 1

)
which is true by the statement of the lemma.

Lemma 49. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i, let
t > 0 and define the random sequence {Gk} as follows: let G0 = 1 and for k ≥ 0,
let

Gk+1 =
1

np

np∑
i=1

(
Gk · et

)Xi .

Then E
[
etZ |H0

]
= Gd

u.

Proof. For 1 ≤ j ≤ d, 1 ≤ i ≤ u, s1, ..., si ∈ Sp and 1 ≤ k ≤ i, let the indicator
random variable

Ij,s1,...,si,k =

{
1 if for all k ≤ r ≤ i, H1(j, s1, ..., sr−1) = H0(sr)

0 otherwise.

Then

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Ij,s1,...,si,1.

Also for 1 ≤ j ≤ d, 0 ≤ i ≤ u and s1, ..., si ∈ Sp, let

F (j, s1, ..., si) =
∑

i+1≤k≤u,
si+1,...,sk∈Sp

Ij,s1,...,sk,i+1.
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Then Z =
∑d

j=1 F (j) and

E[etZ |H0] =

E

[
exp

(
t ·

d∑
j=1

F (j)

)∣∣∣∣∣H0

]
=

E

[
d∏

j=1

etF (j)

∣∣∣∣∣H0

]
=

d∏
j=1

E
[
etF (j)

∣∣∣H0

]
.

(16)

Now we will prove by induction that for all 1 ≤ j ≤ d, 0 ≤ k ≤ u and
s1, ..., su−k ∈ Sp,

E
[
exp

(
t · F (j, s1, ..., su−k)

)∣∣∣H0

]
= Gk.

Basis case (k = 0): E
[
exp

(
t · F (j, s1, ..., su)

)∣∣∣H0

]
= E

[
exp

(
t · 0)

)∣∣∣H0

]
= 1 = G0.
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Inductive step:

E
[
exp

(
t · F (j, s1, ..., su−k−1)

)∣∣∣H0

]
=

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H0

]
=

np∑
b=1

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
×

Pr
[
H1(j, s1, ..., su−k−1) = b

∣∣H0

]
=

1

np

np∑
b=1

E

[
exp

(
t ·

∑
u−k≤r≤u,

su−k,...,sr∈Sp,
H0(su−k)=b

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[
exp

(
t ·

∑
su−k∈Sp,

H0(su−k)=b

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[ ∏
su−k∈Sp,

H0(su−k)=b

exp

(
t ·

∑
u−k≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

)∣∣∣∣∣H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[ ∏
su−k∈Sp,

H0(su−k)=b

exp

(
t ·

(
Ij,s1,...,su−k,u−k +

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k

))∣∣∣∣∣
H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[ ∏
su−k∈Sp,

H0(su−k)=b

exp

(
t ·

(
1 +

∑
u−k+1≤r≤u,

su−k+1,...,sr∈Sp

Ij,s1,...,sr,u−k+1

))∣∣∣∣∣
H1(j, s1, ..., su−k−1) = b,H0

]
=

1

np

np∑
b=1

E

[ ∏
su−k∈Sp,

H0(su−k)=b

exp
(
t ·
(
1 + F (j, s1, ..., su−k)

))∣∣∣∣∣H0

]
[=]
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Since with fixed H0, F (j, s1, ..., su−k) for su−k ∈ Sp are all independent,

[=]
1

np

np∑
b=1

∏
su−k∈Sp,

H0(su−k)=b

E

[
exp

(
t ·
(
1 + F (j, s1, ..., su−k)

))∣∣∣∣∣H0

]
=

1

np

np∑
b=1

∏
su−k∈Sp,

H0(su−k)=b

(
et · E

[
exp

(
t · F (j, s1, ..., su−k)

)∣∣∣H0

])
=

1

np

np∑
b=1

∏
su−k∈Sp,

H0(su−k)=b

(
et ·Gk

)
=

1

np

np∑
b=1

(
Gk · et

)Xb

=

Gk+1

which concludes the inductive step.

Therefore by equation 16, E[etZ |H0] =
∏d

j=1 E
[
etF (j)

∣∣∣H0

]
=
∏d

j=1Gu = Gd
u.

Lemma 50. Let λ > 0, w, n ∈ N, 0 < α ≤ 1
w
, and

c =

2
(

1
α
+ w

)√
2λ
n
+ 2 if n ≥ w2λ

2(
1
α
+ w

)
· wλ

n
+ 2
(
1 + 1

αw

)
+ 2 otherwise

(note that 2
(
1
α
+ w

)√
2λ
n
+ 2 ≤

(
1
α
+ w

)
· wλ

n
+ 2
(
1 + 1

αw

)
+ 2 for all n).

Also let Yi be Poisson random variables with expectation 1 and let

Ai =

{
eαYi if Yi ≤ w

0 otherwise.

Then

Pr

[
1

n

n∑
i=1

Ai ≥ 1 + α + cα2

]
≤ e−λ.
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Proof. Let 0 < r ≤ 1
αw·(1+αw)

. We calculate the following:

E
[
erAi

]
=

∞∑
j=0

E[erAi |Yi = j] · Pr[Yi = j] =

w∑
j=0

exp(reαj) · 1

ej!
+

∞∑
j=w+1

1

ej!
≤

er−1

w∑
j=0

exp
(
r
(
eαj − 1

))
j!

+
∞∑

j=w+1

1

ej!
[≤]

The next two steps use the fact that when x ≤ 1, ex ≤ 1 + x + x2. r
(
eαj − 1

)
≤

r
(
eαw−1

)
≤ r(1+αw+(αw)2−1) = r ·αw · (1+αw) ≤ 1 by the assumption about

r. Thus,

[≤]er−1

w∑
j=0

1 + r
(
eαj − 1

)
+ r2

(
eαj − 1

)2
j!

+
∞∑

j=w+1

1

ej!
≤

er−1

w∑
j=0

1 + r
(
αj + α2j2

)
+ r2

(
αj + α2j2

)2
j!

+
∞∑

j=w+1

1

ej!
≤

er−1

w∑
j=0

1 + r
(
αj + α2j2

)
+ r2

(
(1 + αw)αj

)2
j!

+
∞∑

j=w+1

1

ej!
=

er−1

w∑
j=0

1 + rαj +
(
r + (1 + αw)2r2

)
α2j2

j!
+

∞∑
j=w+1

1

ej!
≤

er−1

∞∑
j=0

1 + rαj +
(
r + (1 + αw)2r2

)
α2j2

j!
=

er−1

(
∞∑
j=0

1

j!
+ rα

∞∑
j=0

j

j!
+
(
r + (1 + αw)2r2

)
α2

∞∑
j=0

j2

j!

)
[=]
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By Lemma 33,

[=]er−1
(
e+ rα · e+

(
r + (1 + αw)2r2

)
α2 · 2e

)
=

er
(
1 + rα + 2

(
r + (1 + αw)2r2

)
α2
)
≤

exp(r) · exp
(
rα + 2

(
r + (1 + αw)2r2

)
α2
)
=

exp
(
r + rα + 2

(
r + (1 + αw)2r2

)
α2
)
=

exp

(
r
(
1 + α + 2

(
1 + (1 + αw)2r

)
α2
))

.

We are now ready to bound 1
n

∑n
i=1 Ai. Assume s > 0 and s

n
≤ 1

αw·(1+αw)
, and

define c1 = 2
(
1 + (1 + αw)2 · s

n

)
. By Markov’s inequality,

Pr

[
1

n

n∑
i=1

Ai ≥ 1 + α + cα2

]
=

Pr

[
exp

(
s

n

n∑
i=1

Ai

)
≥ exp

(
s(1 + α + cα2)

)]
≤

E
[
exp

(
s
n

∑n
i=1Ai

)]
exp

(
s(1 + α + cα2)

) =
E
[∏n

i=1 exp
(
s
n
Ai

)]
exp

(
s(1 + α + cα2)

) =

∏n
i=1 E

[
exp

(
s
n
Ai

)]
exp

(
s(1 + α + cα2)

) =

∏n
i=1 exp

(
s
n
· (1 + α + c1α

2)
)

exp
(
s(1 + α + cα2)

) =
exp

(
s(1 + α + c1α

2)
)

exp
(
s(1 + α + cα2)

) =

exp
(
− (c− c1)sα

2
)
.

This is at most e−λ if and only if

(c− c1)sα
2 ≥ λ⇐⇒ c ≥ λ

sα2
+ c1;⇐⇒ c ≥ λ

sα2
+ 2(1 + αw)2 · s

n
+ 2;

thus we set c = λ
sα2 + 2(1 + αw)2 · s

n
+ 2. Differentiating with respect to s we find

that the minimum is achieved when s = 1
(1+αw)α

·
√

λn
2
. Then the requirement that

s
n
≤ 1

αw·(1+αw)
is satisfied if and only if n ≥ w2λ

2
.

Therefore, if n ≥ w2λ
2
, we set

s =
1

(1 + αw)α
·
√

λn

2
; c = 2

(
1

α
+ w

)√
2λ

n
+ 2.

Else, we set

s =
n

αw · (1 + αw)
; c =

(
1

α
+ w

)
· wλ
n

+ 2

(
1 +

1

αw

)
+ 2.
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Lemma 51. Let 0 < α ≤ 1, w, n ∈ N, x > 0, Yi be Poisson random variables with
expectation 1, and define

Bi =

{
0 if Yi ≤ w

eαYi otherwise.

Then

Pr

[
1

n

n∑
i=1

Bi ≥ x

]
≤ (w + 2) · eα(w+1)

e · (w + 2− eα) · (w + 1)! · x
.

Proof. First we bound the following:

E[Bi] =

∞∑
j=0

E[Bi|Yi = j] · Pr[Yi = j] =

∞∑
j=w+1

eαj · Pr[Yi = j] =

∞∑
j=w+1

eαj

ej!
=

∞∑
j=0

eα(w+1+j)

e · (w + 1 + j)!
≤

eα(w+1)

e · (w + 1)!

∞∑
j=0

eαj

(w + 2)j
=

eα(w+1)

e · (w + 1)!

∞∑
j=0

(
eα

w + 2

)j

[=]

Since α ≤ 1 and w ≥ 1, eα ≤ w + 2; then

[=]
eα(w+1)

e · (w + 1)!
· 1

1− eα

w+2

=

(w + 2) · eα(w+1)

e · (w + 2− eα) · (w + 1)!
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Then by Markov’s inequality,

Pr

[
1

n

n∑
i=1

Bi ≥ x

]
≤

E
[
1
n

∑n
i=1Bi

]
x

=

(w + 2) · eα(w+1)

e · (w + 2− eα) · (w + 1)! · x
.

E.6 Lemmas for Section 3.2.2

Lemma 52. Assume

c0 ≥ 2; c1 ≥ 1; λ > 0; d ≥ 4c0uλ; q =
2λ

d
; B =

2c1(u+ 1)d

λ
.

Then the (DFS) algorithm visits less than B vertices and finds a valid proof with
probability at least

1− 2

c0
− 1

c1
− e−λ +

2

c0
·
(
1

c1
+ e−λ

)
.

Proof. Let Xi = |{s ∈ Sp : H0(s) = i}| be the number of balls in bin i and let E be
the event that 1

np

∑np

i=1 e
−qXi ≤ e−q+c0q2 . By Lemma 4,

Pr
[
Ē
]
= Pr

[
1

np

np∑
i=1

e−qXi > e−q+c0q2

]
≤ Pr

[
1

np

np∑
i=1

e−qXi ≥ 1− q + c0q
2

]
≤ 2

c0
.

Let F be the event that the honest prover fails. By Lemma 43, Pr[F |E] ≤ e−λ.
Finally, let V be the number of visited vertices. By Lemma 7 with c := c0,

E
[
V
∣∣E] ≤ 2(u+ 1)

q − c0uq2
≤ 2(u+ 1)

q
2

=
2(u+ 1)d

λ
,

and by Markov’s inequality, Pr
[
V ≥ B

∣∣E] ≤ 1
c1
.

Hence, Pr
[
F ∨ (V ≥ B)

∣∣E] ≤ e−λ + 1
c1
, and by Lemma 34,

Pr
[
F ∨ (V ≥ B)

]
≤

2

c0
+

1

c1
+ e−λ − 2

c0
·
(
1

c1
+ e−λ

)
.
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E.7 Lemmas for Section 4.2

Lemma 53. Assume

µ ≤
(4
e
)λrel

4e10
; δ =

√
λrel

4µ
;np ≥ 2µ

and Xi be Bernoulli random variables with probability µ
np

for 1 ≤ i ≤ np. Then

Pr

[
np∑
i=1

Xi ≤ (1− δ)µ

]
≥ 2−λrel+1.

Proof. Let n = np, k = (1− δ)µ, Yi = 1−Xi and p = µ
np
. Then

Pr

[
np∑
i=1

Xi ≤ (1− δ)µ

]
=

Pr

[
n∑

i=1

(1− Yi) ≤ k

]
=

Pr

[
n∑

i=1

Yi ≥ n− k

]
=

n∑
i=⌈n−k⌉

C(n, i) · (1− p)ipn−i[≥]
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Define KL divergence D(a ∥ p) = a ln a
p
+ (1− a) ln 1−a

1−p
. By [Ash90], page 115,

[≥] 1√
8n · ⌈n−k⌉

n

(
1− ⌈n−k⌉

n

) · exp
(
− nD

(
⌈n− k⌉

n
∥ 1− p

))
=

1√
8n · ⌈n−k⌉

n

(
1− ⌈n−k⌉

n

) · exp
(
− nD

(
1− ⌈n− k⌉

n
∥ p
))

=

1√
8n · n−⌊k⌋

n

(
1− n−⌊k⌋

n

) · exp
(
− nD

(
1− n− ⌊k⌋

n
∥ p
))

=

1√
8n · ⌊k⌋

n

(
1− ⌊k⌋

n

) · exp
(
− nD

(
⌊k⌋
n
∥ p
))
≥

1√
k
· exp

(
− nD

(
⌊k⌋
n
∥ p
))
≥

1√
k
· exp

(
− nD

(
k − 1

n
∥ p
))

.

This is at least 2−λrel+1 if and only if

1

2
ln k + nD

(
k − 1

n
∥ p
)
≤ (λrel − 1) ln 2.

108



1

2
ln k + nD

(
k − 1

n
∥ p
)

=

1

2
ln k + nD

(
(1− δ)p− 1

n
∥ p
)

=

1

2
ln k + n

((
(1− δ)p− 1

n

)
ln

(1− δ)p− 1
n

p
+

(
1− (1− δ)p+

1

n

)
ln

1− (1− δ)p+ 1
n

1− p

)
≤

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1− (1− δ)p+

1

n

)
ln

1− (1− δ)p+ 1
n

1− p

)
=

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1− p+ δp+

1

n

)
ln

(
1 +

δp+ 1
n

1− p

))
≤

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1− p+ δp+

1

n

)
·
δp+ 1

n

1− p

)
=

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1 +

δp+ 1
n

1− p

)
·
(
δp+

1

n

))
=

1

2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1 +

p

1− p
δ +

1

(1− p)n

)
·
(
δp+

1

n

))
[≤]
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Since p = µ
np
≤ 1

2
,

[≤]1
2
ln k + n

(
(1− δ)p · ln(1− δ) +

(
1 + δ +

2

n

)
·
(
δp+

1

n

))
=

1

2
ln k + pn

(
(1− δ) · ln(1− δ) +

(
1 + δ +

2

n

)
·
(
δ +

1

pn

))
≤

1

2
ln k + pn

(
(1− δ) · (−δ) +

(
1 + δ +

2

n

)
·
(
δ +

1

pn

))
=

1

2
ln k + µ

(
(1− δ) · (−δ) +

(
1 + δ +

2

n

)
·
(
δ +

1

µ

))
=

1

2
ln k + µ

(
− δ + δ2 + δ +

1

µ
+ δ2 +

δ

µ
+

2δ

n
+

2

µn

)
=

1

2
ln k + µ

(
− δ + δ2 + δ + δ2

)
+ 1 + δ +

2δµ

n
+

2

n
≤

1

2
ln k + 2δ2µ+ 1 + δ +

2δµ

n
+

2

n
≤

1

2
ln k + 2δ2µ+ 1 + 1 + 1 + 2 =

1

2
ln k + 2δ2µ+ 5.

This is at most (λrel − 1) ln 2 = λrel−1
log e

if and only if 2δ2µ ≤ λrel−1−5 log e
log e

− 1
2
lnµ.

We claim 2δ2µ ≤ λrel

2
≤ λrel−1−5 log e

log e
− 1

2
lnµ. The first inequality follows from the

definition of δ. The second follows from

1

2
lnµ ≤

(
ln 2− 1

2

)
λrel − ln 2− 5⇐⇒

lnµ ≤ (2 ln 2− 1)λrel − 2 ln 2− 10⇐⇒

µ ≤ e(2 ln 2−1)λrel

e2 ln 2+10
⇐⇒

µ ≤
(4
e
)λrel

4e10

which is true by the assumption about µ.
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