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Abstract. The Snowden’s revelations kick-started a community-wide effort to develop cryptographic
tools against mass surveillance. In this work, we propose to add another primitive to that toolbox: Fail-
Stop Signatures (FSS) [EC’89]. FSS are digital signatures enhanced with a forgery-detection mechanism
that can protect a computationally bounded signer from more powerful attackers. Despite the fascinat-
ing concept, research in this area stalled after the ’90s. However, the ongoing transition to post-quantum
cryptography, with its hiccups due to the novelty of underlying assumptions, has become the perfect use
case for FSS. This paper aims to reboot research on FSS with practical use in mind: Our framework for
FSS includes “fine-grained” security definitions (that assume a powerful, but bounded adversary e.g:
can break 128-bit of security, but not 256-bit). As an application, we show new FSS constructions for
the post-quantum setting. We show that FSS are equivalent to standard, provably secure digital signa-
tures that do not require rewinding or programming random oracles, and that this implies lattice-based
FSS. Our main construction is an FSS version of SPHINCS+, which required building FSS versions
of all its building blocks: WOTS+, XMSS, and FORS. In the process, we identify and provide generic
solutions for two fundamental issues arising when deriving a large number of private keys from a single
seed, and when building FSS for Hash-and-Sign-based signatures.
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1 Introduction

At Asiacrypt 2015, Phillip Rogaway gave a thought-provoking IACR Distinguished Lecture titled “The
Moral Character of Cryptographic Work” [54]. In light of the Snowden revelations, Rogaway called for a
“community-wide effort to develop more effective means to resist mass surveillance”. Threat actors such as
nation-states have many possible approaches when trying to build such mass surveillance capabilities. Of
these possible approaches, the most sought-after is arguably discovering and using a secret cryptographic
attack that is not publicly known. More specifically, the ability to forge digital signatures and thus subvert
trust mechanisms such as Public Key Infrastructures (PKIs) can lead to devastating results. In this work,
we explore the use of Fail-Stop Signature (FSS) [66] to resist such a mass surveillance attempt. By using
FSSs, we can allow honest signers to prove that a powerful adversary has forged a signature. In fact, the
signer can prove to the world that a previously unknown cryptographic attack has indeed been exploited,
and provably pinpoint the security assumption that was broken. Thanks to this proof, schemes based on the
broken security assumption can be promptly deprecated and replaced with secure ones.

Digital Signatures. In recent years, digital signatures have received significant attention from the academic
community due to the possible threat of quantum computers. Today, all widely deployed digital signature
schemes are vulnerable to quantum attacks. This motivates research into new and post-quantum secure digital
schemes (e.g., the NIST post-quantum standardization efforts [3,49]). Researchers are trying to develop new
schemes and gain better understanding on both their classical and post-quantum security. This leads to
a fast paced research cycle of proposed schemes and attacks that either completely break the underlying
assumptions [11], or show that larger security parameters are needed [44]. Adding to the uncertainty is
the fact that the academic community might not be aware of advances in both quantum computers and
cryptanalysis achieved by nation-states and kept secret to be weaponized (e.g., the exploit of MD5 collisions
for Flame [68], on which we elaborate later in the section). This leads to the following natural question:

Can we build a mechanism to expose a previously unknown attack on a digital signature scheme that has
been exploited in practice?

Although such a mechanism should not replace ongoing research on the security of the different schemes,
it can serve as a “canary in the coal mine”, and alert us if a scheme is practically broken and should be
deprecated immediately. This can also act as a major deterrent against wide usage of exploits: such attacks
are usually very costly to both develop and implement, so it would be a major loss (for the attacker) if one
is detected and the affected scheme deprecated.

“Believably Hard” Cryptographic Assumptions. In cryptography, all practical (and most impractical)
schemes are built based on one or more security assumptions. The trust placed in security assumptions is
based on the fact that the cryptographic community has not yet been able to break them. However, there is
no guarantee that these assumptions will remain secure in the future, as numerous schemes have been broken
over time (e.g., the recent key-recovery attacks on the Rainbow signature scheme [11] and SIDH [20,42]).
The case of security assumptions is no different, as seen in the case of SHA-1, whose first theoretical attack
appeared in 2005 [67] and became practical in 2017 [58]. Additionally, the advent of quantum computing
presents a potential scenario in which many security assumptions (e.g., factoring [57]) will no longer hold.
Finally, expecting new attacks to be published is not a foolproof method, as there could be parties who
choose to keep their exploits private (e.g., nation-states).
Furthermore, in modern cryptography the security of a scheme is typically based on the assumption that a
chosen security parameter is strong enough. History shows that it is crucial to consider the possibility that
the security parameter may not be sufficient in practice: In 1986 Fiat and Shamir assumed that a 512-bit
length factoring challenge would be hard enough for virtually any application, while in 2020, a 829-bit length
factoring challenge was broken [25,14]. This raises the question of how to determine if the chosen security
parameter is adequate in the face of ever-evolving attack methods.
The implications of a broken assumption can be severe, as seen in the Logjam attack, where the parameters
previously deemed strong enough (512-bit) were found to be insecure due to advancements in computing
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power [1]. The attack broke a version of Diffie-Hellman that at the time was used by most instantiations
of the TLS protocol, thus requiring an immediate, extensive update of the protocol [1]. As we cannot get
rid of cryptographic assumptions, it is fair to wonder which mitigation measures can be put in place to
reduce the impact of a (possibly secret) exploit, and how much would they cost. The ideal solution would
be a “magic box” that could alert us when a security assumption has been broken. Such a mechanism
might require compromises, e.g., in term of signature length. Moreover, it might not be an one-size-fits-all
kind of countermeasure, but would require a clearly define adversarial scenario (e.g., assuming that some
assumptions would be harder to break than others). In the context of digital signatures, it would be enough
if one could detect forged signatures, and convince a verifier that a contested signature is in fact a forgery.
Thus, we ask:

Given a digital signature secure under some cryptographic assumption, is there a way to prove that a
(maliciously generated) signature could only have been generated by an entity that has broken the

assumption?

Fail Stop Signatures achieve exactly this.

Fail-Stop Signatures. A Fail-Stop Signature (FSS) is a signature scheme that incorporates this kind
of “canary in the coal mine” mechanism. It allows a computationally bounded signer to prove whether an
unbounded adversary managed to forge signatures [66]. Hence the origin of “Fail-Stop”: in case the signature
scheme fails (there exists an adversary who can break the scheme), the honest signer can produce a publicly
verifiable proof to the world to stop using the scheme, due to its state of insecurity. Surprisingly, only a handful
of works on the topic exist [64,65,23,8,55], which do not go much further than laying the foundations. The
original model [52,50] includes a (potentially malicious) authority that interacts with the signer during key
generation. The rest of the protocol is essentially a standard signature enhanced with a “forgery detection”
procedure. Security enhances standard unforgeability (even against a malicious authority) with two additional
properties: security for the signer and security for the recipient. Security for the signer guarantees that if
an unbounded attacker can generate a valid forgery, then a signer can generate a publicly verifiable “proof of
forgery” showing that the hardness assumption underlying the scheme’s security has been broken. Security
for the recipient prevents the possibility of a malicious signer being able to sign a message and subsequently
disown it by producing a proof of non-authorship. We note that if the adversary can break the scheme, but
does nothing actively, nothing can be proven (but nothing is gained by the adversary either). However,
one forgery is enough to prove to the world that the scheme is broken. Thus we believe that the “forgery
detection” procedure may deter wide exploits of unknown vulnerabilities.

Can We Trust the Authority? FSS for the Real World. Parameters of real-life implementations of
cryptographic protocols have to be set by an authority (e.g., NIST). This implies a certain level of trust: even
when choosing the hash function, there are cases (e.g., SNARKs) that require different hashes [9] than the
tried and tested SHA-256. The role of such a party is usually limited, and in many cases one assumes it exists
without even formally model it. As our work focuses on real world uses of FSS, we adapt the FSS framework
to explicitly include this and similar “common practices”. In particular we require the key generation to be
non-interactive, and we assume the authority that produces the common reference string for the proof of
forgeries to be trusted. One could argue that the latter is contradictory with the goal of protecting against
powerful adversaries: why would we trust e.g., a standardization body, if we do not trust nation-states? The
answer is that the contribution of the trusted authority is limited to the setup/key generation phase, and can
in fact be distributed, e.g., using MPC. Non-interactive key generation, when coupled with a trusted setup,
eliminates the need for real-time interaction. This allows to drop the requirement of real-time communication
between parties, thus eradicating the possibility of attackers exploiting the communication channel, e.g., with
network attacks, timing attacks, and other forms of interception. Finally, while in the original model the
adversary is computationally unbounded, we allow for fine-grained security definitions: we assume that the
adversary might be more powerful that the signer, but will still be computationally bounded. For example,
the adversary might be powerful enough to break 128-bit of security, but not 256-bit of security. All of these
framework changes allow us to construct practical post-quantum FSSs.
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Can Forgeries Be Caught by an Honest Signer in the Real World? Checking signature logs for
possible forgeries is already a common approach in cyberattack forensics. For example, in the notorious
Flame attack [68], signatures on Microsoft software were forged by exploiting collisions in MD5. The forged
signatures were recovered from an analysis of the malware and compared to the benign ones. As Microsoft
logs all such signatures (as is required for our log-based solution for FSS augmentation of Hash-and-Sign
schemes described in Section 7), it was possible to discover that the attacker did not compromise Microsoft,
but that an advanced cryptographic attack against MD5 was exploited in the wild. This is in contrast, for
example, to the Diginotar attack in 2011, where an attacker with internal access to the system generated
fraudulent certificates. The result of attributing the forged signatures to an advanced cryptographic attack
was an acceleration in the process of MD5 deprecation. FSS can allow similar future attribution in case
the signature scheme itself is broken. Our proposed application to the case of post-quantum schemes is
particularly timely [22]. We cannot be sure that the next breakthrough will be published and not kept secret
for exploitation by nation-state actors. Having a fail-stop mechanism allows us to detect if such an attack
has been exploited in the wild.

Related Works. The first attempt to deal with accountability in digital signatures schemes was in the
electronic cash protocol of Chaum, Fiat and Naor, that allowed the bank to prove double-spending of coins
[21]. Later, Pfitzmann and Waidner suggested the notion of fail-stop signatures [66,52,50]. Several construc-
tions of FSS exist in the literature, based on various assumptions such as the factoring assumption [61,43,69],
the RSA assumption [63,60] and a generic construction based on one-way functions [23]. A good overview
can be found in [50]. There are works on making the scheme more efficient in terms of length of one signa-
ture [59,62,56,65], and how to compress efficiently many FSS [8]. Lower bounds for the length of public key
and signatures appear in [64].

1.1 Our Results

The aim of this work is to lay the foundations for future research on practical FSS. Hence, our first con-
tribution is a restriction of the FSS framework [50] that will be conducive to practical schemes. The
key differences are a non-interactive key-generation protocol, fine-grained security definitions, and that the
authority is now trusted. All come from observing how these kind of protocols are implemented in prac-
tice. For completeness, we also recap and extend existing results on minimal assumptions to construct FSS,
and we prove the equivalence of FSS with (a subset of) digital signatures. The latter extends a result by
Pedersen and Pfitzman [50], that only proved that FSS imply signatures. Finally, we show two FSS instan-
tiations from post-quantum computational assumptions (from lattices and from hash functions). The first
is a theoretical Lattice-Based FSS construction that follows from our equivalence result. The second is a
practical FSS augmentation of SPHINCS+, a hash-based signature chosen for standardization by NIST.
As stepping stones towards the latter, we include three different independent FSS variants of tree other
signatures, WOTS+, FORS, and XMSS, which are the building blocks of SPHINCS+. In doing so we highlight
and overcome some difficulties inherent to adding a fail-stop mechanism to any Hash-and-Sign signature. We
expect our approach to be applicable to a wider range of signatures.

Solidifying the Foundations of FSS. The original FSS definition seems to imply a non-interactive key
generation. Accordingly, all known non-black-box constructions of FSS do not require interaction between
the signer and a trusted authority. However, the only known black-box construction of FSS from one-way
functions relies on statistically hiding commitments [23,29] (cf. Lemma 3), which inherently require multiple
rounds of interaction between the signer and the authority [28]. We propose a classification of FSS schemes
in three classes, depending on the level of participation of the authority in the key generation, and review the
minimal assumptions needed for each of the three types (see Table 2). Details are deferred to Section 4 due
to length constraints. While constructing FSS from OWF remains a non-trivial open problem, we make a
first step in that direction, by showing an equivalence result between FSS and digital signatures under some
constraints. When an FSS is constructed from a signature, the security reduction of the signature is turned
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Table 1. Size comparison between SPHINCS+ and FSS.SPHINCS implemented with either a message log, or with
parallel-signing. Parameters are given for a security level λr = 128, where the fine-grained fail-stop mechanism ensures
λs = 256 bits of security, reachable with expansion factor cs = 2 and compression factor c = 8 (cf. Section 9.1).

pk
(bytes)

sk
(bytes)

sig
(bytes)

Bit Sec
Recipient

Bit Sec
Signer

SPHINCS+-128s 32 64 7856 128 128
FSS.SPHINCS-128s,cs = 2 (log) 32 96 11,790 128 256
FSS.SPHINCS-128s,cs = 2 (cs sigs) 32 96 23,580 128 256
SPHINCS+-256s 64 128 29,792 256 256

into a proof-of-forgery algorithm, which can be done only with some restrictions on the security reduction.
For example the process of extracting a witness for the (computationally hard) language should not require
performing actions that are not possible in the real world, such as rewinding the adversary or programming
random oracles. Moreover, the secret key should have high entropy even when conditioned on the signature
(e.g., many private keys can generate the same signature). While the lattice-based signature satisfies these
requirements, SPHINCS+ does not (e.g., the hash is not compressing; thus, an unbounded adversary would
have been able to bruteforce its input and recover the secret key). Our new compiler from a signature to a
FSS allows to build two post-quantum FSS from lattices in the standard model. As these schemes are the
least practical, we defer them to Appendix C, and focus on our main result: FSS.SPHINCS.

Augmenting SPHINCS+ to an FSS. Our main contribution is augmenting SPHINCS+ to an FSS.
SPHINCS+ [10] is a stateless hash-based signature scheme, which is the only post-quantum signatures stan-
dardized by NIST [32] that is not based on lattices. Adding a fail-stop mechanism to SPHINCS+ [10] turned
out to be quite complicated, and yielded techniques that will have broader impact on future instatiations of
FSS. In fact, SPHINCS+ has three main components: WOTS+ (a one-time signature), XMSS (i.e., multiple
WOTS+ instances compressed with a Merkle tree), and FORS, which is a “few-time” signature scheme based
on binary trees similar to XMSS. As the details of the construction are quite intricate, we opt for building the
FSS-variants of all three of them, to then show how to combine them to obtain FSS.SPHINCS. In doing so,
we identify (and propose mitigation for) two interesting issues that arise when building FSS in presence of
pseudorandom functions (PRF) and of the Hash-and-Sign paradigm. The result is a very specific fine-grained
security model, where we increase the size of the security parameters only for specific primitives (such as
PRFs), while keeping the security parameters of other primitives (such as hash functions) the same as the
original scheme. The security proof relies on the reductions for SPHINCS+ included in the NIST specifica-
tion [6]. In terms of efficiency, the main impact of adding a fail-stop mechanism is on the signature size,
which increases additively by a factor linear in a constant c (as a direct result of the fail-stop mechanism).
However, Table 1 shows that augmenting to FSS.SPHINCS still results in a smaller signature compared to
simply using SPHINCS+ with a higher security level. Indeed, consider FSS.SPHINCS with λr = 128, that is,
that guarantees 128 bits of security for standard unforgeability (and security for the recipient), and λs = 256
(that is, it guarantees 256 bits of security for the signer). Table 1 shows the size comparison with SPHINCS+

for the two security levels 128 and 256. FSS.SPHINCS provides a significantly shorter signature, even in its
less efficient variant, while the signature size of SPHINCS+ increases by a factor 4 when going from 128-bit
security to 256-bit security. Further details on the computations can be found in Section 9.1.

Hash-and-Sign Paradigm. In most practical digital signatures, signing requires to first hash the message
to a fixed length, and then sign the hash value (e.g., RSA, DSA, ECDSA, and SPHINCS+). Unfortunately,
näıvely augmenting such signatures with a fail-stop mechanism yields a vulnerability: An unbounded ad-
versary can find a collision on the hash, that is, two messages m and m′ such that h(m) = h(m′). In this
case, the adversary can query a signature σ on m and use it to authenticate m′. The honest signer cannot
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generate a proof that (m′, σ) is a forgery, because the adversary did not break the scheme, but the hash
function. Section 7 illustrates two workarounds: keeping a log, or parallel-signing.

1.2 Open Problems and Conclusions

Our systematic study of the notions of FSS lays the foundations to re-open an exciting line of research.
In fact, several natural questions stem from our work. From a more theoretical point of view, an exciting
direction is to investigate whether OWF are enough to construct all types of FSS. Regarding applications, the
field is even more open. Can we generalize our construction to a generic compiler for hash-based signatures?
Can we augment Schnorr signature to a FSS? Can we extend more NIST-PQ signature candidates with a
fail-stop mechanism (e.g., extend our approach to lattice-based FSS to Falcon [53])? Can we better handle
the Hash-and-Sign issue? Finally, it is a natural question to ask whether FSS.SPHINCS can be proved secure
in a weaker fine-grained security model, and whether fine-grained assumptions are inherently necessary for
hash-based FSS.

2 Technical Overview

We start by explaining the definition of FSS through a toy example, and then move to FSS.WOTS, FSS.XMSS,
FSS.FORS, and FSS.SPHINCS.

2.1 Warm-up: a Toy Example

The intuition behind FSS is that any forgery generated without knowing the secret key sk contains infor-
mation that could not have been generated by a polynomial-time machine (i.e., the signer), but that can be
extracted using sk. This information constitutes the “proof of forgery”. Thus, as long as the public key pk
does not correspond to a single sk, but allows for multiple valid sk’s, even an unbounded adversary has to
generate forgeries containing such information. To give an intuition behind our choice for practical model,
we start from a toy example: augmenting Lamport signature [36] on 1-bit messages to a FSS. The secret key
is composed by two 128-random bits sk = (r0, r1), and the public key is their hashes pk = (h(r0), h(r1)). A
signature on b ∈ {0, 1} is simply the string rb. Security relies on the hardness of finding collisions for the un-
derlying hash function h : {0, 1}128 → {0, 1}128. Observe that if h(rb) has only one preimage, an unbounded
adversary can recover the private key rb and generate the same signature as the honest signer, thus no proof
of forgery can be generated. This leads us to a necessary condition for FSS : the secret key must have enough
entropy [64]. To augment Lamport signature to an FSS, one has to change the assumption on the hash func-
tion, which is now required to be a compressing collision resistance hash function h : {0, 1}128+c → {0, 1}128,
where c is such that Pr[|{h−1(h(r))}| > 1] is high [33]. In this case an unbounded adversary cannot verify
which of the possible preimages of the public keys (h(r0), h(r1)) is the secret key. Thus, it cannot do better
then guessing. In case of a forgery, the honest signer can present the two signatures, the real one rb and the
forgery r′ ∈ {h−1(h(rb))}, as a proof of forgery: a collision for h. Accordingly, security for signer follows
from compression: if there exist at least two preimages for h(rb), even an unbounded adversary cannot find
rb with probability greater than 1/2. Security for recipient follows from (computational) collision-resistance:
a probabilistic polynomial-time (PPT) malicious signer cannot find a collision for h with high probability.
In case of widespread attacks, constant probability is enough to catch w.h.p that the scheme is broken (and
attack has occurred).

Observe that every public key of a computationally secure digital signature reveals some information
about the secret key. This implies that an unbounded adversary can find the real secret key with some
probability ϵ. Hence we model the security for signer with respect to an “information theoretic” parameter
ϵ. Finally, the notion of FSS requires a trusted party in the setup phase. Intuitively, the reason is to prevent
the signer (or the adversary) from placing a trapdoor in the public parameters. For example, in the Lamport
signature, if the signer could choose the public CRH by itself, it can choose a function with a hard-coded
collision, and use such information to reject its own signature as forgery. Nevertheless, our model require

7



to put very little trust in the “trusted authority”, as its contribution is limited to the setup/key generation
phase. For example, in FSS.SPHINCS the authority only chooses the hash function (SHA-256). In real life,
this authority can be the NIST (or comparable standardization bodies).

2.2 Augmenting SPHINCS+ to FSS.SPHINCS

In the following we give an informal description of SPHINCS+, and we show the main issues that we encoun-
tered when converting it (and its building blocks) to an FSS. Throughout this work, we assume the reader
to be familiar with SPHINCS+; for more information we refer to Appendix E and [10].

Overview of SPHINCS+. SPHINCS+ (cf. Fig. 3) is a hash-based signature obtained as an interesting
mixture of Goldreich’s binary authentication tree of one-time signatures and Merkle signatures [26,45]. Its
core structure is a hypertree, that is, a modified Merkle tree where every leaf can be extended into a tree
itself to allow to sign very long messages with short signing keys. The “glue” between the base tree and the
next tree layer is a signature: Each leaf of the base tree is in fact a public key of a one-time signature (OTS)
called WOTS+. To add another tree, one can generate fresh WOTS+ public keys, use them as the leaves
of the new tree, and sign its root with the WOTS+ public key contained in the leaf of the base tree. The
signature resulting from extending the one-time signature WOTS+ to a multiple-time signature through a
Merkle tree is called XMSS. However, SPHINCS+ is not just a hypertree of XMSS instances: for efficiency
reasons, the very last of the trees in the hypertree is connected to a similar tree-based few-times signature
called FORS, which is used to actually sign the message digest.

The signature protocol is of the Hash-and-Sign kind: A message msg is first hashed to obtain a leaf index
idx and a message digest MD. Then, the signer generates only the trees on the path from the root pk to the
leaf idx. The WOTS+ pk contained in the last leaf idx of the path is used to sign a FORS pk, which is in turn
used to sign the message digest MD. To recap, a signature on msg contains the authentication path from the
root pk to the leaf idx (including the WOTS+ signatures that connect the tree layers), the FORS signature
on MD, and the randomness used to generate the message digest.

It remains to explain how WOTS+ and FORS work. FORS utilizes k trees of depth d, where the leaves
in each tree are hashes of random strings (the sk’s). The roots of the k trees form the public key. To sign
a message msg∗, the message is split into k blocks, each signed individually. The i-th block is treated as an
integer idxi ∈ [1, d]. Signing the i-th block requires revealing the authentication path from the root of the
i-th tree to its idxi-th leaf, and a preimage of that leaf, that is, one of the secret keys. WOTS+ is a one-time
signature that relies on ℓ hash chains. The starting point of each chain is a block of the secret key (a random
bit string), and each subsequent chain element is obtained by hashing the previous one. The public keys are
the output of the last hash evaluation. Signing a message implies revealing an intermediate value in each
chain, where the level depends on the message. To avoid easy forgeries, a signature is generated on both the
message and its checksum. Verification requires to iterate the chaining function on the signature until one
obtains the public key. Observe that WOTS+ is deterministic: in SPHINCS+ this ensures the uniqueness of
the entire hypertree structure given the first level. This implies that the key generation is efficient, as the
signer only has to generate the first level of the hypertree.

Before we describe our challenges in the construction, we state our result.

Theorem 1 (Informal).

– Assuming SPHINCS+ is unforgeable under adaptive CMA, and PRF, PRFmsg are secure PRFs, then
FSS.SPHINCS is unforgeable under adaptive CMA.

– Assuming SPHINCS+ is unforgeable under adaptive CMA, and PRF, PRFmsg are secure PRFs, then
FSS.SPHINCS is secure for signer against an adversary A with running time at most 2csλs/2 (in the
QROM).

– Assuming SPHINCS+ is unforgeable under adaptive CMA, then FSS.SPHINCS is secure for the recipient.
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Hiding the sk: Compressing Hash Chains. Adding a fail-stop mechanism to WOTS+ can be done with
an approach similar to the one used by Kiktenko et al. [35]. In this work the authors identify the possibility
of producing a proof-of-forgery in some special cases, in particular, as long as the adversary could not guess
what is the correct preimage from the set of possible ones. Intuitively, WOTS+ is based on a chaining function
cj,k that applies a hash function i times on a (randomly chosen, secret) input x. If the adversary is not able
to correctly guess one of the hidden values in the chain, a forged signature implies that the adversary has
found a collision somewhere in the chain, which can be easily recovered by a honest signer and presented as
proof-of-forgery. For this to happen, the chaining function has to be compressing (so that points can have
multiple preimages), and behave like a random oracle (so that the probability that a random evaluation of
the function has many preimages is high). The latter assumption is not new, as the current instantiation of
SPHINCS+ implicitly relies on it too3. However, the security analysis in [35] is not complete: what is proved
is that w.h.p. the adversary cannot guess the preimage of one of the chains elements. This is not enough in
a scenario where the adversary is unbounded: as long as there is even one element in the chain with exactly
one preimage, the adversary can find it (through brute-force) and produce the exact same signature as the
signer would have. Moreover, [35] lacks the FSS framework, and as a result, does not introduce a trusted
authority, nor prove security for the recipient, meaning that their scheme does not include any guarantee in
case the signer is dishonest. Thus our analysis extends and improves [35].

Dealing with PRFs: Fine-Grained Assumption. When implementing a signature it is common to
generate the random strings that compose the secret key by evaluating a PRF over a counter. This way the
signer has to store only the seed of the PRF, which is much shorter than the collection of secret random
strings. This is done in XMSS and FORS too, as they require an exponential number of secret keys. Observe
that the hypertree is essentially public, as it is completely revealed after a number of signatures have been
generated. Thus, information-theoretically the tree leaks the secret Seed: an unbounded adversary could
recover it completely and break our FSS requirements. The trivial solution to this challenge is to increase
the security parameters. However, even this solution is not always “trivial”: increasing the security parameters
of a hash function requires years of cryptanalysis. In addition, this will significantly increase the length of
the signature, which is a heavy price to pay. Ideally, an elegant solution would achieve succinct secret key
and signatures. Unfortunately, succinct secret keys cannot yield secure FSS: van Heijst et al. [64] show that
the size of the secret key has to be at least linear in the number of messages to be signed. To work around
this lower bound and achieve succinctness for both the secret key and signatures, we extend the original
FSS framework to allow for a more “fine-grained” adversarial model. We assume that the adversary is much
more powerful than the signer, to the point that it can forge the signature, but it is still somewhat bounded:
despite its ability to forge, some computational tasks remain out of its reach. In particular, we assume that,
if we increase only the size of the seed Seed of the PRF, the adversary cannot break its security. In practice,
expanding the size of the seed Seed does not affect the length of the signature. To motivate our assumption,
observe that the size of the key to the PRF increases linearly, the run time of generic brute force attack
increases exponentially even when using quantum attacks such as the Grover algorithm [27]. Thus, in our
FSS.XMSS and FSS.FORS constructions, we expand the seed of the PRF by a factor cs, and we assume
that an adversary that successfully returns a forgery is still not able to break the pseudorandomness of the
PRF. There is still only one possible PRF’s seed Seed, but enumerating over all possible values of Seed is
much harder task to the powerful but bounded adversary. A more detailed explanation can be found in
Section 6.1. Observe that we do not need this trick to hide the preimages of the nodes of the Merkle trees.
By construction, SPHINCS+ does not hide the (hyper)tree nodes, as the only undetectable way to break the
scheme is to find all the correct preimages both for the tree and for the chains. Thus, hiding the preimages
of the first element of the chains (and of the leaves of FORS) is enough to prevent an undetectable forgery,
even if the adversary can reconstruct the whole tree.

3 The QROM assumption is necessary to construct practical, secure tweakable hash functions from known hash
functions, cf. [10, Section 6 and Appendix F]. Our FSS modification involves nontrivial changes to SPHINCS+

(e.g., by using compressing hash functions of varying size), hindering a more “black-box” reduction. We based our
proof on QROM as in [10], anticipating that if a QROM-free proof for SPHINCS+ emerges, a similar technique will
apply to FSS.SPHINCS.
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The Hash-And-Sign Workaround. The final step to construct FSS.SPHINCS (and FSS.FORS) requires
handling a generic forgery attack that applies to any digital signature based on the Hash-and-Sign paradigm.
Recall that in Hash-and-Sign signatures, the message msg can be of arbitrary length and is first hashed into
a fixed-length digest that is then signed. Therefore, instead of targeting the signature itself, an unbounded
adversary can find another message msg∗ such that HASH(msg∗) = HASH(msg), where msg is a previously
signed message: a honest signature for msg can then be re-used as a signature on msg∗, and no proof of forgery
can be generated. To the best of our knowledge, no previous FSS solution addressed this specific problem.
We propose two possible solutions. The first one is to rely on a log file storing all the signed messages, so
that the signer can produce the collision (msg,msg∗) for HASH as a proof of forgery in case such an attack
is performed. We remark that adding the log file does not make it a stateful signature, as the log does not
have to be secret, and it is only used when generating a proof of forgery. As such, the loss/publication of
the state does not impact the original security of the signature (the standard unforgeability) against PPT
adversaries. In addition, usually when several agents/server want to sign with the same secret key using
a stateful signature, they need to keep syncing their state for security to hold. This is not needed in our
case, where the signers have to just combine their logs when a proof of forgery has to be generated. The
second solution is based on a fine-grained assumption on the adversary, and uses multiple signatures on
multiple unique hashes of the message to prevent the possibility of generating a collision. More details on the
attack can be found in Section 7. Section 9 explains how to leverage our solutions to transform SPHINCS+

in FSS.SPHINCS.

3 Definition of FSS in the Non-Interactive Model

A Fail-Stop Signature (FSS) is essentially a standard signature enhanced with a “forgery detection” pro-
cedure: a trusted authority computes the public parameters so that, in case of a disputed signature, a
PPT signer can convince the authority that generating such a signature from the public parameters required
solving a task impossible for a bounded-time machine.

Definition 1. A Fail-Stop signature (FSS) in the non-interactive model consists of six PPT algorithms
(GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) such that:

ch← GenCh(1λr , 1ε): the challenge-generation algorithm takes as input the security parameters (1λr , 1ε), and
outputs a challenge ch.

(sk, pk)← GenKey(ch): the key-generation algorithm takes as input the challenge, and outputs a (secret) sign-
ing key sk and a (public) verification key pk.

σ ← Signsk(m): the signing algorithm takes as input a signing key sk and a message m from the message
spaceM, and returns a signature σ.

b← VrfySigpk(m,σ): the verification algorithm takes as input a public key pk, and a message-signature pair
(m,σ), and returns 1 if σ is valid, 0 otherwise.

π ← PoFsk((m,σ), ch): the proof of forgery algorithm takes as input the secret key sk, a message m, a signature
σ, and a challenge ch. If VrfySigpk(m,σm) = 0, it aborts (i.e., it returns ⊥). Otherwise, it returns a proof
π.

b← VrfyPoF(ch, π): the proof of forgery verification algorithm takes as input a challenge ch, and a proof π. It
outputs 1 if π is valid, and 0 otherwise.

We remark that a trusted party runs the GenCh algorithm, and the challenge ch (the output of GenCh
algorithm) is a public challenge (in many cases this challenge is the public parameters of the scheme).

Correctness is defined analogously as for digital signatures, so we omit it here.
At a high-level, an FSS is secure if it is secure for recipient, that is, if it guarantees to a verifier that a

signer cannot repudiate its own signature, and secure for the signer, i.e., it ensures that a signer can explain
forgeries, even if generated by unbounded adversaries. However, security for the signer is meaningful only if
unbounded adversaries are the only threat to the scheme [23]. This seems counter-intuitive, as the notion of
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Experiment 1: ExpssA,Σ(ε, λr)

1: ch← GenCh(1λr , 1ε)
2: (pk, sk)← GenKey(ch)
3: (m∗, σ∗)← AOsk(·)(ch, pk)
4: b1 ← VrfySigpk(m

∗, σ∗)
5: π ← PoFsk((m

∗, σ∗), ch)
6: b2 ← VrfyPoF(ch, π)
7: if m∗ /∈ Q then
8: return b1 ∧ ¬b2
9: else return 0

Experiment 2: ExpunfA,Σ(ε, λr)

1: ch← GenCh(1λr , 1ε)
2: (pk, sk)← GenKey(ch)
3: (m∗, σ∗)← AOsk(·)(ch, pk)
4: b← VrfySigpk(m

∗, σ∗)
5: if (m∗ /∈ Q) then
6: return b
7: else return 0

Fig. 1. Security experiments for security for the signer and unforgeability. Osk is the signing oracle (which aborts if
the maximum number of signatures that the scheme allows is reached), and Q is the list of the queries it receives.

unforgeability by a PPT adversary is weaker than security for the signer: if a signature can be successfully
forged by a PPT adversary, then it can also be forged by an unbounded one. At the same time, security for
the signer only guarantees that forgeries can be disputed: without unforgeability it could still happen that
every PPT adversary could generate a forgery, thus exposing the signer to the risk of having to constantly
generate proof of forgeries. Essentially, unforgeability gives the additional guarantee that the need for a proof
of forgery only arises in exceptional cases, i.e., when the corrupted recipient is not a PPT machine, but an
unbounded one.

In light of these observations, the security of an FSS has two security parameters: a “computational” one,
λr, that bounds the probability that a PPT adversary breaks security (be it a signer trying to disavow its own
signature, or a PPT malicious verifier attempting an impersonation attack), and a “information-theoretical”
one, ε, that bounds the probability that an unbounded adversary can produce a forgery for which no proof
of forgery can be generated. To be able to easily integrate our fine-grained assumption on the adversary in
the FSS framework, we define security for the signer a bit differently than in the literature: we only require
that the success probability of A is bounded by some ε, without requiring it to be negligible.

Definition 2 (Security for the Signer). An FSS Σ is ε-secure for the signer for 0 < ε ≤ 1 if, fixed
λr > 0, and for all unbounded adversary A it holds:

Pr[ExpssA,Σ(ε, λr) = 1] ≤ ε

where the security experiment is Experiment 1 that returns 1 if the signer fails to provide a valid proof of
forgery. This probability is over the random coins of GenKey, A and PoF.

Remark 1. Definition 2 only allows a signer to prove that a forgery has occurred. However, in practice one
might want to be able to prove that a specific signature was forged, e.g., to avoid liabilities due to a forged
signature on a contract. One way to do it is for the signer to reveal the secret key alongside the disputed
signature, to show that by using this specific signature one can generate a proof of forgery from the secret
key. As a valid proof of forgery implies there is a successful attack against the signature, publishing the secret
key, for the honest signer, is not an issue since in any case we must stop using the scheme. Every secure
FSS allows for this: in the rest of the paper we focus on the more basic task of proving that a forgery has
occurred.

Definition 3 (Security for the Recipient). An FSS scheme is secure for the recipient iff for all λr > 0
and PPT adversary A there exists a negligible function negl such that:

Pr

[
VrfyPoF(ch, π∗) = 1 | ch← GenCh(1λr , 1ε),

π∗ ← A(ch)

]
< negl(λr) .

The probability is computed on the random coins of GenCh, and A.
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Definition 4 (Unforgeability). An FSS signature scheme Σ is existentially unforgeable under adaptive
chosen-message attack, if for all λr > 0, for all 0 < ε ≤ 1 and PPT adversaries A there is a negligible
function negl such that:

Pr[ExpunfA,Σ(ε, λr) = 1] ≤ negl(λr)

where the security experiment is Experiment 2.

Van Hejist et al. [64] identified the following necessary condition for a secure FSS, which we decide to
include as it constitutes an easy “rule of thumb” to check whether a candidate FSS is trivially broken. Let
H be the Shannon entropy.

Lemma 1 (Necessary Condition for security of FSS). Every FSS that satisfies Definition 3 and
Definition 2 for ε = negl(λ), also satisfies the following property :

H(sk | pk, Hist) ≥ (N + 1)(min{λr, λ} − 1) (1)

where Hist is the list of the first N signatures generated by the honest signer (cf. [64, Lemma 1]). If signing
is deterministic, the requirement reduces to H(sk | pk) ≥ (N + 1)(min{λr, λ} − 1) (cf. [64, Theorem 5]).

Lemma 1 is information-theoretical, in the sense that it is a necessary condition for security against an
unbounded A. However, in practice it is not always possible to guarantee such a high level of security while
maintaining the usability of a primitive. This can be seen for theoretical results too: we can show that FSSs
are equivalent to signatures (cf. Appendix B), but only assuming that Eq. (1) holds for the signature too.
Thus, we introduce a relaxation of Lemma 1, to allow for a more fine-grained security model. Instead of
assuming that A is unbounded, we fix a third parameter λs, and assume that A is more powerful than PPT,
but still somewhat bounded in λs: it can break unforgeability for security parameter λr, but it cannot extract
information about the secret key from the public key and signatures for a large enough secret key. This implies
that when dealing with fine-grained assumptions on the adversary, we need to substitute Lemma 1 with the
following assumption.

Definition 5 (Fine-Grained Necessary Condition for security of FSS). Let λr, λs, cs ∈ N, 0 < ε ≤
1. Let A be an adversary that breaks unforgeability of the FSS with security parameter λr, and consider an
FSS that is secure for the recipient and (ε+negl(λs))-secure for the signer against A. For such an FSS there
exists a function f : {0, 1}cs·λr × {0, 1}λr → {0, 1}λr such that for ∀x:

|Pr[1← AOsk(pk, f(sk, x)) : sk $←−{0, 1}cs·λr ]+

− Pr[1← AOsk(pk, r) : r $←−{0, 1}λr ]| ≤ negl(λs)

where Osk is the signing oracle.

The requirement on the security for the signer changes as well as the adversary now has a probability
≤ negl(λs) of recovering the secret key. In Section 6.1 we show how to use this threat model in the case of
XMSS, FORS, and SPHINCS+.

4 Minimal Assumptions for FSS

4.1 Background: Communication Channel Assumptions for GenKey

As already mentioned in Section 2, understanding which are the minimal assumptions for FSS requires us to
first clarify the communication requirements. To this end, we classify FSS schemes in three classes, depending
on the level of participation of the authority in the key generation.

1. Interactive Key Generation: this assumes two-ways (possibly insecure) communication channel be-
tween the trusted authority and the signer, that jointly generate the signer’s keys. The original model
falls under this type, thus making it susceptible to man-in-the-middle attack.
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Minimal assumption References

Interactive key generation
(Type 1)

OWF [23]+[29]

One private message key generation
(Type 2)

OWF This work

Non-interactive key generation
(Type 3)

CRH This work (implicit in [30])
CIH [23]

Table 2. Summary of minimal assumptions for FSS (see definitions recap in Appendix A). CRH stands for collision-
resistant hash functions, and CIH for collision-intractable hash functions. Both are included as the relation between
them is still an open question.

2. One (private) Message Key Generation: these schemes require a secure one-time one-way channel
from the authority to the signer. This includes schemes where the trusted authority generates part of
the secret key, while the rest of the key is generated by the signer alone.

3. Non-Interactive Key Generation: These schemes only assume that the trusted authority has a
broadcast channel, i.e., it does not participate in the key generation. This is the model we focus in our
work. At the beginning, T broadcasts the challenge. Upon receiving it, the signer generates its keys and
broadcasts the verification key as well. For example, the Authority can choose a hash function, and then
the signer can use the hash in the key generation.

Lemma 2. Type 3 FSS ⇒ Type 2 FSS ⇒ Type 1 FSS (with a secure channel, or with an insecure channel
assuming KEM+SKE).

Proof. The first implication is trivial. The second follows considering that a secure channel can be imple-
mented on an insecure one through key-exchange combined with symmetric key encryption. ⊓⊔

4.2 Minimal Assumptions for FSS

Given this classification, it is natural to ask whether different communication requirements in the key genera-
tion require different minimal assumptions to build FSS. Table 2 summarizes the state of the art. Throughout
this section we assume ε = negl(λ) for some λ ∈ N, as all the constructions assume an unbounded adversary
against security for the signer.

Lemma 3 (OWF ⇒ Type 1 FSS, Informal). Assuming the existence of OWFs, then there exists a
secure FSS with interactive key generation.

Proof (sketch). This fact follows combining two results: a black-box construction of FSS from statistically
hiding commitments by Damg̊ard et al. [23], and the black-box construction of statistically hiding commit-
ments from OWFs by Haitner and Reingold [29]. The idea behind the commitment-based FSS is that the
signer has two one-time keys, C0 and C1. Each key contains 2λ bit-commitments Cb = {Comb(r

b
i )}i=1,...,2λ

with distinct opening random strings ri, generated by interacting with the authority (which does not know
the openings). To sign a bit b, the signer reveals {rbi}i=1,...,2λ (i.e., opens the corresponding commitments).

This construction is not enough to obtain a black-box construction of Type 2 FSS from OWF. Indeed,
statistically hiding commitments require at least Ω( λ

log λ ) rounds of interaction [28]. Thus the previous
construction requires multiple interaction with the trusted authority to generate the commitments in the
public key of the signer. In the following, we present our new proposal.

Lemma 4 (OWF ⇒ Type 2 FSS, Informal). Assuming the existence of OWFs, then there exists a
secure FSS with one message key generation.
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Protocol 1: Type 2 FSS from OWF

Let F = {f : {0, 1}λr → {0, 1}λr} be a family of OWF, andM = {0, 1} be the message space.

GenCh(1λr , 1ε) :

1: Choose n′, n ∈ N \ {0} such that n′/n ≤ ε
2: f $←−F
3: for b = 0, 1 do
4: for j = 1, . . . , n do
5: ub

j
$←−{0, 1}λr

6: vbj ← f(ub
j)

7: U b ← {ub
1, . . . , u

b
n}

8: V b ← {vb1, . . . , vbn}
9: Ib

$←− [n], |Ib| = n′ // Ib is a random subset of indexes

10: Sb ← {(i, ub
i ) | i ∈ Ib}

11: ch← (n, n′, λr, f, V
0, V 1)

12: return
Private channel: (S0, S1)
Public channel: ch

GenKey(ch, (S0, S1)) :

1: Parse ch = (n, n′, λr, f, V
0, V 1)

2: pk← (V 0, V 1)
3: sk← (S0, S1)
4: return (pk, sk).

Signsk(b) :

1: Parse sk = (S0, S1)
2: (j, x) $←−Sb

3: σ ← (j, x)
4: return σ.

VrfySigpk(b, σ) :

1: Parse pk = (pk0, pk1)
2: Parse σ = (j, x)
3: if pkbj = f(x) then return 1.
4: else return 0.

PoFsk((b, σ), ch) :

1: if VrfySigpk(b, σ) = 0 then return ⊥
2: Parse ch = (n, n′, λr, f, V

0, V 1)
3: Parse σ = (j, x)
4: if σ /∈ Sb then
5: Sb = Sb ∪ {σ}
6: return (b, Sb)
7: else return ⊥.

VrfyPoF(ch, π) :

1: Parse π = (b, Sb)
2: Parse ch = (n, n′, λr, f, V

0, V 1)
3: if [|Sb| = n′ + 1] ∧ [∀(j, x) ∈ Sb : pkbj = f(x)] then

return 1
4: else return 0

Proof. The FSS is constructed as follows: the authority chooses a random function, and two sets of n random
points each U0 and U1. It sets the public key to be the sets V 0, V 1 of evaluations of f on the elements of U0,
U1 respectively. Then it sends in the private channel two random subsets Sb ⊆ U b, |Sb| = n′ < n, b = 0, 1
to the signer, which constitute the secret key. Signing a bit b requires returning a random element in Sb,
that is, inverting a random element in V b. As an unbounded adversary cannot know which preimages of the
elements in V 0, V 1 the signer has, w.h.p. a forged signature on b∗ will contain a preimage outside of Sb∗ .
Such a preimage constitutes the proof of forgery, and security trivially follows from one-wayness. Security
for the signer requires that the probability that A guesses correctly is negligible, that is, that n′/n ≤ ε.

To prove security for recipient, assume there exists a PPT malicious signer A who breaks security for
recipient with probability εA. We construct a PPT adversary B that breaks the security of OWF with
probability εA

2(n−n′) exploiting A. Given a challenge z on which B needs to invert f , B simulates the authority

by randomly setting an element of V 0 ∪ V 1 as z and generating the rest of the elements as evaluations of
the OWF on random points. Then, it sends n′ preimages to A. A successful forgery requires A to invert
one more element in V 0 ∪ V 1, thus A returns a preimage of z with probability 1

2(n−n′) , and B wins with

probability εA
2(n−n′) . Finally, unforgeability trivially follows from one-wayness. ⊓⊔

This can be extended to multiple use with standard techniques, that is, compressing multiple instance of
the one-time signatures with a Merkle tree (cf. [23] or our FSS.XMSS construction in Section 6).

Finally, a construction of Type 3 FSS can be obtained from the statistically hiding commitment scheme
by Damg̊ard et al. [23] by instantiating the commitment scheme with the construction by Halevi and Micali
[30].
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Protocol 2: Type 3 FSS from CRH

Let H = {h : {0, 1}L → {0, 1}k} be a family of CRH.

Let U = {u : {0, 1}L → {0, 1}n} be a family of universal hash functions.

LetM = {0, 1} be the message space.

GenCh(1λr , 1ε) :

1: Let ε = 2−λ

2: Choose k ≥ max{λr, 2λ+ 4}
3: n← 2λ
4: L← 4k + 2n+ 4
5: for b = 0, 1 do
6: hb

$←−H
7: return ch← (n, k, L, h0, h1)

GenKey(ch) :

1: Parse ch = (n, k, L, h0, h1)
2: for b = 0, 1 do
3: xb

$←−{0, 1}n
4: rb

$←−{0, 1}L
5: yb ← hb(rb)
6: Choose ub ∈ U such that xb ← ub(rb)
7: pkb ← (yb, ub)
8: skb ← (xb, rb)

9: sk← (sk0, sk1)
10: pk← (pk0, pk1)
11: return (pk, sk).

Signsk(b) :

1: Parse sk = (sk0, sk1)
2: return σ = skb.

VrfySigpk(b, σ) :

1: Parse pkb = (yb, ub)
2: Parse σ = (x, r)
3: if (x = ub(r)) ∧ (yb = hb(r)) then return 1.
4: else return 0.

PoFsk((b, σ), ch) :

1: if 0← VrfySigpk(b, σ) then return ⊥
2: Parse σ = (x, r)
3: Parse ch = (n, k, L, h0, h1)
4: if (r ̸= rb) ∧ (hb(r) = hb(rb)) then
5: π ← (b, rb, r)
6: return π
7: else return ⊥.

VrfyPoF(ch, π) :

1: Parse π = (b, rb, r)
2: Parse ch = (n, k, L, h0, h1)
3: if (r ̸= xb) ∧ (hb(r) = hb(rb)) then return 1
4: else return 0

Lemma 5 (CRH ⇒ Type 3 FSS, Informal). Assuming the existence of CRHs, then there exists a
secure FSS with non-interactive key generation.

Proof. Protocol 2 is obtained taking the construction of FSS from a statistically hiding commitment scheme
by Damg̊ard et al. [23] and instantiating the commitment scheme with the construction by Halevi and Micali
[30]. The step in GenKey, Line 6 can be done efficiently as described in [30, Footnote 5].

Security follows combining [23, Theorem 3.1] with [30, Theorem 1]. The only difference is that Damg̊ard
et al. used a bit-commitment, while the construction by Halevi and Micali allows to commit to a λ-bits long
string. Thus the public key for the bit b can be a single commitment to a 2λ-bits long random string, instead
of 2λ commitments to distinct random strings in order to have ε = negl(λ). ⊓⊔

The question of whether one can build Type 3 FSS black-box from OWF remains, to the best of our
knowledge, open. Nevertheless, in Appendix B we shed more light in that direction, by showing an equivalence
result between FSS and standard digital signature. The intuition is quite easy: One can see the fail-stop
mechanism as a security reduction to a computationally hard problem. As long as Eq. (1) holds, a forgery
allows a PPT signer to generate a solution of the instance of the problem chosen by the trusted authority.
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5 One-Time FSS (or from WOTS+ to an FSS)

In this section, we show how to build a one-time hash-based FSS. We first present the high-level idea of
WOTS+, and then how to augment it to an FSS.

WOTS+ Structure. WOTS+ [31] is a hash-based one-time signature that is built on the Winternitz signature
[45]. The latter is preferable to Lamport signatures [36], as it reduces the length of signatures and keys by
signing the representation of a message m ∈ {0, 1}h in base w, for some w ∈ N (WOTS+ with w = 2 is
essentially Lamport signatures). The construction relies on a chaining function ck, that is, a function that
applies a second-preimage resistant, somewhat pseudorandom one-way function f for w − 1 times to each
secret key x:

ck(x) =

{
x if k = 0

f(ck−1(x)) otherwise

where f is a fixed public function chosen at random from a family Fn := {f : {0, 1}n → {0, 1}n}. The chaining
function c takes as input some randomness too, but we ignore it here for simplicity (cf. Appendix E.2 for
details). The construction yields ℓ1 chains, where ℓ1 = ⌈h/ logw⌉, i.e., one chain per component of the
representation of m in base w (denoted by [m]w from now on). Let mi be the ith component of [m]w: the ith

component of the signature would be cmi(ski).

𝑝𝑘1

𝑐2(𝑠𝑘1)

ℓ

………..

𝑐2(𝑠𝑘2)

𝑐1(𝑠𝑘ℓ)

𝑐2(𝑠𝑘ℓ)

𝑐1(𝑠𝑘1) 𝑐1(𝑠𝑘2)

𝑠𝑘ℓ𝑠𝑘1 𝑠𝑘2

𝑝𝑘2 𝑝𝑘ℓ

𝑐ℓ(𝑠𝑘1) 𝑐ℓ(𝑠𝑘2) 𝑐ℓ(𝑠𝑘ℓ)
Given a message 𝑚 = 𝑚1, 𝑚2, … ,𝑚ℓ

Public key: 𝑐ℓ 𝑠𝑘1 , 𝑐ℓ 𝑠𝑘2 , … , 𝑐ℓ 𝑠𝑘ℓ

The signature on 𝒎𝒊 ∈ [0, 𝑤 − 1] is: 𝜎𝒎𝒊
= 𝑐𝒎𝒊 𝑠𝑘𝒊

For example: ℓ = 3,𝑤 = 5,  𝑚𝟏 = 𝟐, 𝑚𝟐 = 𝟏, 𝑚𝟑 = 𝟎

The signature: 𝑐𝟐 𝑠𝑘𝟏 , 𝑐𝟏 𝑠𝑘𝟐 , 𝑐𝟎 𝑠𝑘𝟑

𝑐𝟐 𝑠𝑘𝟏 = 𝑓𝑘 𝑓𝑘 𝑠𝑘𝟏

𝑐𝟏 𝑠𝑘𝟐 = 𝑓𝑘 𝑠𝑘𝟐

𝑐𝟎 𝑠𝑘𝟑 = 𝑠𝑘𝟑

𝑤

Fig. 2. Key generation of WOTS+ using the chaining function ck(·), and a toy example of the singing algorithm
(where we leave out the checksum for the sake of simplicity). Recall that a message m is composed by ℓ elements
m1, . . . ,mℓ, where mi ∈ [0, w − 1].

This is not enough to guarantee unforgeability though. For example, by querying a signature on a message
m such that [m]w = (0, . . . , 0) the adversary gets all the secret keys (sk1, . . . , skℓ1), thus in this case an
adversary can perfectly impersonate the signer. To avoid this, the message digest that is signed includes
both the message m and a checksum C =

∑ℓ2
i=1(w− 1−mi). This increases the length of keys and signature

by ℓ2 = ⌊logw(ℓ1(w− 1))⌋+1, but now guarantees unforgeability under some special assumptions on f . The
algorithms of WOTS+ are formally described in Appendix E.2.

Augmenting WOTS+ to an FSS. Kiktenko et al. [35] observed that, if an adversary A is not able to
correctly guess one of the hidden values in the chain, a forged signature implies that A has found a collision
somewhere in the chain. An honest signer could easily recover the collision using its secret key, and use it
as a proof that a more powerful machine generated the disputed signature: the signer being a PPT machine
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Protocol 3: FSS.WOTS

Let [m]w denote the representation of m base w, andM = {0, 1}l be the message space.

Let Th = {Thi : P × T × {0, 1}n+c·(w−i) → {0, 1}n+c·(w−i−1) for i = 1, . . . , w − 1} be a family of THF.

The public parameters ch are implicitly given as input to all the algorithms (excluding GenCh).

GenCh(1λr , 1λs) :

1: n← max{λr, λs}
2: Choose w.
3: ℓ1 ← ⌈ l

logw ⌉
4: ℓ2 ← ⌊ log(ℓ1(w−1))

logw ⌋+ 1
5: ℓ← ℓ1 + ℓ2
6: Set c such that 2ℓ(w − 1) exp(−2c) ≤ 2−λs

7: Seed $←−{0, 1}n
8: return ch = (λr, λsw, ℓ1, ℓ2, c,Seed)

GenKey(ch) :

1: Parse ch = (λr, λsw, ℓ1, ℓ2, c,Seed)
2: ℓ← ℓ1 + ℓ2
3: for i = 1, . . . , ℓ do
4: ski

$←−{0, 1}n+c(w−1)

5: pki ← c0,w−1(ski, i,Seed)

6: sk← (sk1, . . . , skℓ)
7: pk← (Seed, pk1, . . . , pkℓ)
8: return (pk, sk).

Signsk(m) :

1: ℓ← ℓ1 + ℓ2
2: (m1, . . . ,mℓ1)← [m]w, mi ∈ [0, w − 1].

3: C ←
∑ℓ1

i=1(w − 1−mi) // checksum

4: (c1, . . . , cℓ2)← [C]w, ci′ ∈ [0, w − 1]
5: (b1, . . . , bℓ)← (m1, . . .mℓ1 , c1, . . . , cℓ2)
6: for i = 1, . . . , ℓ do
7: Compute σi = c0,bi(ski, i,Seed)

8: σ ← (σ1, . . . , σℓ)
9: return σ.

VrfySigpk(m,σ) :

1: (σ1, . . . , σℓ)← σ
2: (m1, . . . ,mℓ1)← [m]w, mi ∈ [0, w − 1].

3: C ←
∑ℓ1

i=1(w − 1−mi) // checksum

4: (c1, . . . , cℓ2)← [C]w, ci′ ∈ [0, w − 1]
5: (b1, . . . , bℓ)← (m1, . . .mℓ1 , c1, . . . , cℓ2)
6: for i = 1, . . . , ℓ do
7: σ′

i = cbi,w−1−bi(σi, i,Seed)

8: if pki = σ′
i, ∀ i ∈ [1, w − 1] then

9: return 1.
10: else return 0.

PoFsk((m,σ), ch) :

1: (σ1, . . . , σℓ)← σ
2: if 0← VrfySigpk(m,σ) then return ⊥
3: if ∃ i, j ∈ [0, w − 1] : c0,bi+j(ski, i,Seed) ̸= cbi,j(σi, i,Seed) then
4: π ← (bi, i, j, ski, σi)
5: return π
6: else return ⊥.

VrfyPoF(ch, π) :

1: if (c0,w−1(ski, i,Seed) = cbi,w−1−bi(σi, i,Seed)) ∧
(c0,bi+j(ski, i,Seed) ̸= cbi,j(σi, i,Seed)) then

2: return 1
3: else return 0

could not have broken collision-resistance. A necessary but not sufficient condition to prevent an unbounded
adversary from recovering a preimage in the chain is that an evaluation y = ck(ski) statistically hides ski
(cf. Lemma 1), and that multiple choices of ski can correspond to the same y. However, this is not true when
WOTS+ is instantiated with a standard hash function. In [35], the authors propose as workaround to change
the chaining function to a compressing one-way function, and assume it to be a random oracle4 (so that the
number of preimages is distributed in the same way as for random functions). Inspired by this approach, our
FSS.WOTS (formally described in Protocol 3) relies on compressing hash functions.

On the Use of Compressing, Tweakable Hash Functions (THF). In FSS.WOTS hash chains are
built using compressing hash functions, so that even if an adversary recovers a possible sk∗, there is still a
chance that it is not the preimage chosen by the honest signer. This technique increases the size of the sk by
a compression factor5 c, but the size is still linear in w. Modeling the security of this function requires some
care. Usually, in the security experiment the adversary has oracle access to the function, thus it can query
the evaluation of the function on any input x of its choice. This is not the case in the unforgeability game
of WOTS+ (and, analogously, of FSS.WOTS): here the adversary can only choose the position in the chain

4 This assumption is already present in SPHINCS+. Indeed, in [10] the authors propose three constructions of THF
from hash functions to instantiate SPHINCS+. Among these, the only one proved secure in the standard model
(i.e., [10, Construction 5]) is not used in practice, as it would imply exponentially-sized public parameters. The
other two rely on the QROM, thus SPHINCS+ implicitly assumes it too.

5 One can assume that the description of the function is public, and the signer only has to publish the parameters
of the function it has selected.
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that will be opened, not its input (which is given by the iterative application of the function on the secret
key). In [10], they model the index of the chain as a tweak of the function: in the security game the input of
the function is uniformly chosen (and different for every chain), while the adversary can query the oracle on
tweaks of its choice. To make sure that the public key hides the secret key one has to assume undetectability
of the THF (SM-UD security): informally it means that Th(p, t, x) is computationally indistinguishable from
x, where x is uniformly sampled. Due to this “pseudorandomness”, a successful forgery σ′ must contain at
least one intermediate value x of a chain whose preimage is not the one computed during key generation.
Security requires second-preimage resistance of the THF (SM-PRE security), that is, the adversary not be
able to find a second preimage for a target from the set of its queries Q given an oracle access to Th(p, ·, x)
for random x, and collision resistance (SM-TCR security), i.e., that the adversary cannot find a collision for
a target from the set of its queries Q given oracle access to Th(p, ·, ·). Definitions of THF and their security
are in Appendix D.1.

Chaining Function. Let w ∈ N a base, ℓ the total number of chains, and n the security parameter (for
the FSS constructions, n = λr). Let

Th = {Thi : P × T × {0, 1}n+c·(w−i) → {0, 1}n+c·(w−i−1) for i = 1, . . . , w − 1}

be a family of tweakable hash functions with parameter set P := {0, 1}n and tweaks6 T = {0, 1}256. The
chaining function of FSS.WOTS takes as inputs an iteration counter k ∈ {0, . . . , w − 1}, a start index
j ∈ {0, . . . , w − 1}, a chain index i ∈ {1, . . . , w − 1}, a message x ∈ {0, 1}n+c·(w−j−1) (which length varies
due to the ongoing compression in the chain), and a public parameter Seed and behaves as follows:

cj,k(x, i,Seed) =

{
x if k = 0

Thj+k(Seed, Ti,j+k−1, c
j,k−1(x, i,Seed)) if k > 0

Observe that j and k mean that the chaining function assumes that the input x is the value of the chain
after j iterations, and starts from computing Thj+1 on the input x, iterating for k times (until Thj+k).
Tweaks are defined as the output of a (deterministic) encoding function T (typ, adrs) = Ta,b that associates
a distinct tweak Ta,b with the bth function call in the ath chain generated with the THF Thb(Seed, ·, ·). The
value of typ and adrs are deterministically generated to uniquely identify the position of the call to Th in
the SPHINCS+ structure: typ has different values depending on what the THF is used for, and adrs is the
“address” of the point where Th is called. For the purpose of the proofs, we just need to know that the
encoding function T is injective. We refer the reader to [6, Section 2.7.3] for a formal definition.

Due to its use in SPHINCS+, it is enough to prove non-adaptive security of FSS.WOTS, both for unforge-
ability and for security for the signer.

Lemma 6 (Non-Adaptive Unforgeability). If Th is a family of THF that is SM-UD secure, non-
adaptive SM-TCR secure, and SM-PRE secure, then FSS.WOTS is unforgeable under non-adaptive CMA.

The proof is similar to [33, Theorem 1], thus we defer it to Appendix F.

On the Adversarial Model. Relying on the FSS framework allows our model of the adversary (and our
security analysis) to be more precise than the analysis by Kiktenko et al. [35]. In the FSS framework only
extremely powerful adversaries can forge, as the unforgeability property stops the attempt of PPT ones.
Kiktenko et al. [35] implicitly assumed that the adversary cannot on average find the right preimage of a
point in the chain. However, we assume that having an unbounded adversary means that A can enumerate
all preimages of a given point: assuming that finding a preimage is a probabilistic algorithm, the adversary
can simply repeat it a logarithmic number of times to find all of the preimages. This can be done for all
the points in all of the chains. So, if there is even a single point in one chain with only one preimage, the
adversary can find it and break the FSS. Thus, we need to make sure that the probability that every point

6 This is the specific choice for SPHINCS+. In general, we need |T | ≥ wℓ.
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in every chain has only a single preimage is negligible, not just the expected probability of choosing the
correct preimage over all of the points. Lemma 7 shows our analysis. Observe that even though the adversary
can enumerate all the preimages in the chains, it cannot win with overwhelming probability as long as the
output of Th does not leak information about the preimage used by the signer.

Lemma 7 (implicit in [35, Lemma 1]). Let f : {0, 1}n+δ → {0, 1}n, n≫ 1, δ > 0 be chosen uniformly
at random from the set of all functions from {0, 1}n+δ to {0, 1}n. Then, the probability that a point y in the
image has strictly more than one preimage can be bounded as

Pr[∃ S ⊆ {0, 1}n+δ, |S| > 1 : f(x) = y ∀ x ∈ S] ≥ 1− 2 exp(−2δ) .

The proof is similar to [35], and can be found in Appendix E.3.
To use Lemma 7 in our analysis we still need the QROM assumption to ensure that the output of a

tweakable hash function on a randomly sampled input is indistinguishable from random, even by a powerful
adversary.

Theorem 2 (Security for the Signer). If Th is a family of compressing THF then there exist a constant
value for the compression factor c such that FSS.WOTS is ε-secure for the signer in the QROM for ε = 1/2.

Proof. Let A be an adversary in Experiment 1. Then its success probability is

Pr[ExpssA,Σ(λs, λr) = 1] = Pr[σ∗ = σ′ | σ′ ← Signsk(m
∗)] (2)

i.e., the adversary wins if it has guessed correctly all the ℓ preimages in σ∗. As we assume the adversary to
be unbounded, if there is any unopened point in any chain that has exactly one preimage, then A is always
successful (as inverting the hash on one chain is enough to generate a forgery). Lemma 7 combined with
the observation that the outputs of c0,j(ski, i,Seed) are uniformly random and independent (by the QROM
assumption on the construction of the THF from hash functions) yields that this happens with probability

Pr[∃ i ∈ {1, . . . , ℓ}, j ∈ {1, . . . , w − 1} | c0,j(ski, i,Seed) has only one preimage]

≤ ℓ(w − 1)2 exp(−2c) (3)

which for n = l = 128 and w = 16 (the usual choice for SPHINCS+) is already less than 2−81 for c = 6.
Combining (2) and (3) yields that A looses with probability

Pr[ExpssA,Σ(λs, λr) = 0] =

≥
(
1− ℓ(w − 1)

2n

2n − 1
exp(−2c)

)
· Pr[A wrongly guesses at least once]

≥ (1− ℓ(w − 1)2 exp(−2c)) · 1
2
≈ 1

2
− negl(λs)

that is, the signer can generate a proof of forgery essentially 50% of the times. The probability of a correct
guess by A follows observing that the THF behaves as a QROM, thus it does not leak any information
about the input. Given that each evaluation A sees has multiple preimages with overwhelming probability,
the adversary cannot win with probability much larger than 1/2. Analogously, if c is chosen so that the
probability of strictly more than 2 preimages is overwhelming, then the adversary’s winning probability
becomes 1/3 + negl(λs). ⊓⊔

Second Preimage vs. Collisions. Observe that unforgeability requires SM-PRE security, that is, something
analogous to second preimage resistance, but proving a forgery just requires breaking SM-TCR security, that
is, a property similar to collision-resistance. This is because the latter is a weaker property implied by the
former: a forgery breaking SM-PRE security implies that SM-TCR security is broken too, but the vice versa
does not hold.
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Theorem 3 (Security for the Recipient). If Th is a family of adaptively SM-TCR secure THF, then
FSS.WOTS is secure for the recipient.

Proof (sketch). We sketch the proof in the following. A formal reduction can be obtained through a series
of hybrid games analogously to the proof of Lemma 6.

Assume that there exists a malicious PPT signer A that break the security for the recipient of FSS.WOTS
with probability ε. We show that one can construct a PPT algorithm B that breaks the adaptive SM-TCR
security of an element of the family Th. At the beginning of the adaptive SM-TCR experiment, B receives
the public parameter Seed from the challenger. From these, it computes the rest of ch , and runs A on ch.
Upon receiving π∗ = (b,i, j, ski, σi) from A, B finds k ∈ [j +1, w− 1] for which it holds c0,bi+k(ski, i,Seed) ̸=
cbi,k(σi, i,Seed) and c0,bi+k+1(ski, i,Seed) = cbi,k+1(σi, i,Seed)). Then it computes M1 = c0,bi+k(ski, i,Seed)
and M2 = cbi,k(σi, i,Seed)), the index ī = bi + k + 1, and the tweak T = Ti,̄i, and returns (M1,M2, ī, T ) to
the game. As B perfectly simulates the authority, its success probability is equal to the success probability
of A in breaking security for the recipient. ⊓⊔

6 Augmenting XMSS to an FSS

Informally, XMSS is a set of N WOTS+ instances whose public keys are compressed using a Merkle tree.
Each signature includes a WOTS+ signature and an authentication path that allows the verifier to recompute
the root. As each WOTS+ key pair can only be used once, the state of the XMSS scheme needs keep track
of the used pair, thus it is stateful 7. To reduce the total size of the private key (we need for every WOTS+

signature ℓ independent secret keys), all unique private keys used in the WOTS+ signatures are generated
from a single private Seedsk using a PRF, so the ith secret key of the jth leaf (a WOTS+ signature) is
skji = PRF (Seedsk, i, j). We augment XMSS to an FSS scheme we call FSS.XMSS, which is essentially XMSS
where we replace WOTS+ with our new FSS.WOTS and a slightly larger private Seedsk is used.

6.1 Fine-grained Assumption on Adversary Capabilities

Our FSS.WOTS variant of the WOTS+ signature assumes an unbounded adversary that is able to break
the one-wayness property of the hash function and find all possible preimages for some target value y. We
show that as long as w.h.p. all hash values in all the chains in the WOTS+ signature have more than one
preimage, the honest signer can prove with some constant (non-zero) probability that the forged signature
is indeed a forgery even assuming that the adversary is unbounded. Our proof relies on the fact that due to
the compression parameter, there are many different private keys that will result in the same signature and
public key. This means that even if an adversary can recover all possible private keys that are consistent with
the signature, it will not be able to know which is the correct one. However, this is not the case for signature
schemes such as XMSS. Each XMSS signature includes an exponential number of WOTS+ signatures. Each
WOTS+ signature requires its own unique set of private keys. Not to store an exponential size secret, the
private keys used as the start of each chain are computed using a PRF and a small private key. This means
that unless we allow an exponentially large private key (which is not practical), even a small fraction of the
total supported number of signatures of the XMSS scheme will result in just a single possible private key that
is consistent with the observed signatures. Thus an unbounded adversary can recover the correct private key
and use it to forge signatures. In such a scenario the honest signer will not be able to prove a signature was
forged.

Fortunately, all is not lost! Instead of assuming a completely unbounded adversary, we can use the
more fine-grained but natural assumption of Definition 5. We assume a very powerful (exponential-time)
adversary able to break the security assumptions of the XMSS scheme with security parameter λr. Under
this assumption, if XMSS uses a PRF with a key of size λr to generate the private keys, we assume that
the attacker can recover the single possible Seedsk after seeing enough outputs and perfectly impersonate a

7 SPHINCS+ only uses XMSS to sign predetermined roots, while the actual message is signed with FORS. Hence,
neither SPHINCS+ nor FSS.SPHINCS are stateful.
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honest signer. However, we assume that if we increase the size of the PRF’s key even by a small constant
factor cs > 1, we make such a key recovery attack exponentially harder. Following Definition 5 with our
PRF as the function f , we assume that with a when using a secret key of size cs ·λr our adversary is unable
to distinguish between the output of the PRF and random samples.

To motivate our assumption, consider the generic classical brute force attack, with an attacker that runs
in time O(2λr ) and can enumerate all possible keys and find the correct one. However, when we increase the
key size to cs ·λr, the attacker is required to run in time O(2cs·λr ). Even for a quantum adversary, the runtime

of the generic attack using Grover algorithm [27] will increase exponentially from O(2
λr
2 ) to O(2

cs·λr
2 ).8 To

conclude, we assume a powerful adversary, able to break at least one of the security assumptions of the XMSS
scheme with non-negligible property for security parameter λr but that has only a negligible probability of
breaking the security of our PRF when using a larger security parameter cs ·λr; cs is treated as third security
parameter, alongside λr and λs.

6.2 Binary Trees in FSS

Both XMSS and FORS and their FSS counterparts rely on binary trees [45], thus we include in this section
summarizes an informal description of the standard tree-related algorithms. No algorithm to compute leaves
is included, as XMSS and FORS compute leaves differently. Let H : P × T × {0, 1}2λ → {0, 1}λ be a
(compressing) THF.

TreeH: on input the leaves and the seeds, it returns the root (using H).
TreeGenAuthH: on input the leaves, the address of a leaf, and the seed, it generates the authentication path

of the leaf.
VrfyAuthH: on input an authentication path, the root, and the seed, it verifies the correctness of the path

w.r.t. the root.
CTreeH: on input a root, two authentication paths and the position of the starting leaf, and the seed, it

checks if there are collisions in the paths. It returns the two pairs of nodes and tweaks T 0, (n0
0, n

0
1) and

T 1, (n1
0, n

1
1) that yield the collision, or ⊥ if no collision is found.

Remark that the THF used to build the tree can just be compressing with a (standard) factor c = 2.
This is because the constructions of the signatures do not hide the inputs of the hash from the adversary,
thus there is no need for the hash to hide preimages.

6.3 Construction of FSS.XMSS

Let H = {Hi}i be a family of (compressing) THF, where Hi : P × T × {0, 1}λr·i → {0, 1}λr .
Analogously to XMSS (cf. Appendix E.4), FSS.XMSS (see formal description in Protocol 4) allows to sign

N = 2h messages of l bits by combining N parallel instantiations of FSS.WOTS in a binary tree. Such tree
is constructed using the THF H := H2. An internal state allows the signer to keep track of which keys have
been already used.

FSS.WOTS with Public Key Compression. As the public key pk of FSS.WOTS has a size linear in
the length of the messages, in XMSS and FSS.XMSS it is compressed using a THF F := Hℓ into a n-bits
long string lf. The {lfi}i constitutes the leaves of the binary tree. The secret keys of the various FSS.WOTS
instances are generated using the PRF PRF1 : {0, 1}csλr × T → {0, 1}λr+c(w−1) from a secret seed Seedsk
and from the address adrs, and the chains are generated from the same seed Seedpk. We abuse the notation
and give (Seedsk,Seed,pk , adrs) as input to the key generation of FSS.WOTS. Analogously, the FSS.WOTS
verification now also checks that the tops of the chains obtained from the signature hash to the correct
value lfi. Different public keys hashing to the same leaf constitute a valid proof of forgery for this modified
FSS.WOTS.

8 Note that in a real-world instantiation of the PRF the function’s state size must be large enough to accommodate
the entire Seedsk to avoid analogous exploits to [51].
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Protocol 4: FSS.XMSS

Let H : P × T × {0, 1}2λr → {0, 1}λr and F : P × T × {0, 1}ℓλr → {0, 1}λr be THFs.

Let PRF1 : {0, 1}csλr × T → {0, 1}λr+c(w−1) be a PRF andM = {0, 1}l the message space.

Let FSS.WOTS = (GenCh′,GenKey′,Sign′,VrfySig′.PoF′,VrfyPoF′) and N = 2h.

GenCh(1λr , 1λs , 1cs) :

1: ch′ ← GenCh′(1λr , 1λs)
2: ℓ← ℓ1 + ℓ2
3: Parse ch′ = (λr, λs, w, ℓ1, ℓ2, c,Seedpk)
4: Set h s.t. 2h+1ℓ(w − 1) exp(−2c) ≤ 2−λs

5: ch← (ch′, cs, h)
6: return ch

GenKey(ch) :

1: Parse ch = (λr, λs, w, ℓ1, ℓ2, c,Seedpk, cs, h)
2: N ← 2h

3: Seedsk
$←−{0, 1}csλr

4: for i = 1, . . . , N do
5: Set adrsi according to specs.
6: (pki, ski)← GenKey′(ch′,Seedsk,Seedpk, adrsi)
7: lfi ← F (Seedpk, adrsi, pki)

8: root← TreeH(lf1, . . . , lfN,Seedpk)
9: sk← Seedsk

10: pk← (root,Seedpk)
11: st← 0
12: return (pk, sk, st).

Signsk(m; st) :

1: Parse sk = Seedsk
2: N ← 2h

3: if st ≥ N then return ⊥
4: else
5: for i = 1, . . . , N do
6: Set adrsi according to specs.
7: (pki, ski)← GenKeyH(ch′,Seedsk,Seedpk, adrsi)
8: lfi ← F (Seedpk, adrsi, pki)

9: σ′ ← Sign′skst(m)
10: auth← TreeGenAuthH(lf1, . . . , lfN, adrsst,Seedpk)
11: σ ← (σ′, auth)
12: st← st+ 1
13: return (σ; st).

VrfySigpk(m,σ) :

1: Parse σ = (σ′, auth)
2: b← VrfyAuthH(pk, auth)
3: Extract pki from auth
4: b′ ← VrfySig′pki(m,σ′)
5: return b ∧ b′

PoFsk((m,σ), ch) :

1: Parse σ = (σ′, auth)
2: Parse ch = (ch′, cs, h)
3: if 0← VrfySigpk(m,σ) then
4: return ⊥
5: Extract i from σ.
6: (σ̄′, ¯auth)← Signsk(m; i)
7: P ← CTreeH(root,Seedpk, auth, ¯auth)
8: if P ̸= ⊥ then π ← (0, P )
9: else

10: (pki, ski)← GenKey′(ch′,Seedsk,Seedpk, adrsi)
11: Parse auth = (lf, auth′)
12: π′ ← PoF′

ski((m,σ′), ch′)
13: π ← (1, π′)

14: return π

VrfyPoF(ch, π) :

1: Parse π = (b, π′)
2: if b = 0 then
3: Parse P = (T 0, n0

0, n
0
1, T

1, n1
0, n

1
1)

4: x0 ← H(Seedpk, T
0, n0

0, n
0
1)

5: x1 ← H(Seedpk, T
1, n1

0, n
1
1)

6: b′ ← (x0 = x1)
7: else
8: Parse ch = (ch′, cs, h)
9: b′ ← VrfyPoF(ch′, π′)

10: return b′

As XMSS is a stateful signature, the syntax of the FSS is adapted accordingly. The proof of forgery can
be derived either from a collision on the tree, or as in FSS.WOTS, thus π contains a bit b that specifies which
case it is.

Lemma 8 (Non-adaptive Unforgeability). If FSS.WOTS is an unforgeable FSS, PRF1 is a PRF, and
H and F are SM-TCR secure THFs, then FSS.XMSS is unforgeable under non-adaptive CMA.

Proof (sketch). Consider the following sequence of hybrid games:

– H1 : this is Experiment 4for FSS.XMSS.
– H2 : Same as H1, but the sk’s are random strings instead of output by PRF1.
– H3 : Same as H2, but the winning condition now excludes cases when the forgery contains a collision on

the tree.
– H4 : Same as H3, but the winning condition now excludes cases when the forgery contains a collision on

a leaf.

Clearly, distinguishing H1 from H2 requires distinguishing outputs of the PRF from random. To distinguish
H2 from H3 (resp., H3 from H4), the adversary has to return a collision on the tree (resp., on a leaf). This
happens only if A returns a forgery σ∗ where the tree path is computed from a different leaf than what
was used to generate the root (resp., where the leaf is obtained hashing different values than the FSS.WOTS
key pki). This means that the FSS.WOTS signature in σ∗ has to verify w.r.t. a key pk that was not among
the ones generated by the challenger. Hence a successful distinguisher can be used to break the SM-TCR
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security of H (resp., of F ). Finally, to win H4 Adv has only one option: forging a signature using one of
the FSS.WOTS keys generated by the challenger. Thus winning H4 is essentially equivalent to breaking the
unforgeability of FSS.WOTS. A tighter proof can be obtained not relying on the unforgeability of FSS.WOTS
as a black-box, but by reducing to the security of Th following the same steps as in the proof of Lemma 6.
The only difference is that now the security of Th has to hold for a larger number of queries (polynomial in
λs).

Lemma 9 (Security for the Signer). If FSS.WOTS is secure for the signer, then FSS.XMSS is 1/2-secure
for the signer against an adversary A that satisfies Definition 5.

Proof. Consider the following hybrid games sequence:

– H1 : this is Experiment 1 for FSS.XMSS.
– H2 : Same as H1, but the sk’s are random strings instead of output by PRF1.
– H3 : Same as H2, but the winning condition now excludes cases when the forgery contains a collision on

the tree.
– H4 : Same as H3, but the winning condition now excludes cases when the forgery contains a collision on

a leaf.

Distinguishing H1 from H2 requires to distinguish the output of the PRF from uniformly sampled strings,
which is not possible in polynomial-time under our fine-grained assumption. Now, observe that the Merkle
tree is generated with a public seed and a THF that does not guarantee the existence of more than one
preimage per point. Thus, as the adversary runs in exponential time, A is able to reconstruct the whole
tree. Hence, A has the same success probability in both H2 and H3. An analogous reasoning holds for F ,
thus A has the same success probability also in H4. Finally, the proof in case of H4 is the same as for
FSS.WOTS, but the probability decreases by a factor N as the more instances of FSS.WOTS, the higher the
probability of one of them having only one preimage. In details, given N · ℓ(w− 1) points chosen at random,
the probability of all having more than one preimage is greater than 1− 2N · ℓ(w − 1) exp(−2c). Thus, the
probability that a honest signer can generate a proof of forgery is greater than (1− 2Nℓ(w − 1) exp(−2c)) · 12
that is approximately 1

2 − negl(λs) analogously to the FSS.WOTS case, as in practice h is set to be smaller
than 9, in which case the probability is greater than 1/2− 2−73 for c = 6.

Lemma 10 (Security for the Recipient). If FSS.WOTS is secure for the recipient, and H and F are
SM-TCR secure THFs, then FSS.XMSS is secure for the recipient.

Proof (sketch). The proof follows the same intuition of the proof of Lemma 8, in that a successful adversary
A has to return either a collision for H or F , or a valid proof of forgery for FSS.WOTS for a honestly
generated signature. As such, as long as both the building blocks are secure, FSS.XMSS is secure for the
recipient.

6.4 Multiple Instances of FSS.XMSS: the Hypertree

As we have seen, FSS.XMSS can be used to sign a limited amount of messages. The technique used in
SPHINCS+ to extend it to larger message spaces is hypertrees: small-depth FSS.XMSS trees connected
to one another by FSS.WOTS signatures. In details, during key generation the signer has to generate a
single FSS.XMSS tree. To expand its signing capabilities, whenever signing a message it can generate a
new FSS.XMSS tree, and connect it to the previous one by signing the new root with one of the pk’s of
FSS.WOTS contained in the leaves of the original tree. This can be iterated for many layers, depending on
the length of the message; the tree in the last layer is used to sign the message as in standard FSS.XMSS.
Analogously to what happens in SPHINCS+, security follows from the security of the building blocks: a
forgery on the hypertree yields a forgery on one of the FSS.WOTS signatures. Observe that this is still a
stateful signature! To get rid of the state SPHINCS+ relies on the Hash-and-Sign paradigm, which turns out
to be quite problematic in the FSS framework (cf. Section 7).
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7 Augmenting Hash-and-Sign Schemes to an FSS

To support arbitrary size messages, practical digital signature schemes usually follow the Hash-and-Sign
paradigm. In Hash-and-Sign, the message m ∈ {0, 1}∗ is first hashed into a fixed size digest d = HASH(m),
which is signed as σ = SIGNsk(d) = SIGNsk(HASH(m)). It is advisable for the signer to add a random
prefix to the message before computing HASH(R||m), limiting even an adversary that can choose signed
messages to finding a second preimage to break the scheme instead of a collision.

When trying to augment any Hash-and-Sign based signature to an FSS, we need to address the following
generic forgery attack on the initial HASH phase. Our adversary can try to find a new message m∗ and
randomness R∗ such that HASH(R∗||m∗) = HASH(R||m), where m is any of the messages previously
signed by the honest signer, and R is the randomness used. As the digest of both R||m and R∗||m∗ is the
same, σ will also be a valid signature for m∗. Assuming that the size of the digest is approximately the
security parameter λ used by the digital signature, we can assume that an adversary that is able to forge the
digital signature can also find such values R∗ and m∗. We note that in some signature schemes such as FORS
and SPHINCS+, the adversary can also target some “interleaved” combination of the previously signed hash
values. The problem is called Interleaved Target Subset Resilience (ITSR) (cf. Appendix D.2).

Augmenting Hash-and-Sign signatures to FSS is a very challenging task. We now present two possible
solutions, and leave improving them as future work.

Saving a log file: One possible solution is for the honest signer to keep a log of all previously signed
messages. In this case, when a forged signature (R∗,m∗, σ) is presented to the signer, it can search the
corresponding honest signature (R,m, σ) in the log file and show that HASH(R∗||m∗) = HASH(R||m) as
a proof of forgery. However, the use of a log file raises the following question:

Doesn’t using a log file means that the FSS augmentation results in a state-full signature scheme?

For that, the answer is no. In state-full signature scheme such as XMSS, the state must be kept online,
and if is lost, it can lead to a complete compromise of the scheme. Moreover, if multiple servers share the
same secret key, they must also share exact up-to-date replicas of the state. However, in our case, the log
can be stored in an offline storage, and the multiple servers sharing the same secret key can store their logs
separately without online synchronization. Most importantly, if any part of the log is lost, the only result is
that the signer will not be able to prove forgeries targeting the lost messages. As the main goal of our FSS
augmentation is to stop mass exploitation of a forgery attack, as long as enough log files are stored, we will
still be able to detect some forgery attacks and show that the scheme is now insecure.

We note that already today, we have relevant use cases where a log of all signatures is kept. For example,
Certificate Authority (CA) servers are trusted parties that issue digital certificates to authenticate the
identities of individuals, organizations, or devices for secure communication over a network or the internet.
For audit purposes, such CAs usually log all of the certificates they sign. Widely supported standards such
as Certificate Transparency [37] already provide an open framework for publicly logging and monitoring
the issuance of digital certificates, offering a comprehensive log file of all signed certificates for improved
transparency and security. As mentioned above, for some signature schemes such as FORS and SPHINCS+,
the adversary can target some “interleaved” combination of the previously signed digest values. The log file
can also be used to prove forgery in this case, providing the set of honest messages that were “interleaved”
to match the target forged digest. In case we do not want to log the signed message (as it might contain
sensitive information or due to size constraints), we can slightly modify the hash phase of the signing process
such that we will only need to store an intermediate randomized digest value of the message. Based on our
fine-grained assumption, we will use an intermediate strong hash function HASH ′ : {0, 1}∗ → {0, 1}cs·λr ,
this hash function as a larger digest and we assume that even our strong adversary can’t break it. Our
modified signing process will be σ = SIGNsk(HASH(HASH ′(R||M))) . In our log file we will only need to
store d′ = HASH ′(R||M). Note that we assume that the adversary cannot find a collision on d′, but it can
find a collision on d = HASH(HASH ′(R||M)).
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cs Parallel Signatures: To avoid the log file requirement, we propose another solution that is based on
the fine-grained assumption of the adversary capabilities presented in Section 6.1. Recall that we assume
that our (exponential-time) adversary can break the security assumptions of our scheme (including ITSR) for
some security parameter λ. However, we assume this adversary is not powerful enough to break our security
assumption of a larger security parameter cs · λ. To use this assumption, our FSS version will now include
cs signatures (or ⌈cs⌉ if cs /∈ Z). We use a variant of the method used in [7] to calculate cs separate digests
and then sign them:

di = HASH(i||m) σi = SIGN(d1) σFSS = σ1||σ2|| . . . ||σcs

Similar to the analysis in Section 6.1, finding a message m∗ such that all its cs digests has been signed before
becomes exponentially harder as cs increases.

The proposed solution increases the running time and size of the signature by a factor of cs. This raises
the following question:

Why can’t we just use the original signatures scheme with larger parameters?

As we mentioned above, increasing the security parameter of original scheme by the same factor of cs can
lead to a much larger increase in size. Recall that increasing the security parameter for SPHINCS+ by a
factor of 2 from 128 to 256 bits results in a size increase by a factor of 3.8 for the small size variant. This
means that our solution can still result in a much smaller signature size.

8 Augmenting FORS to an FSS

FORS is the final building block needed for SPHINCS+. In itself, it is very simple: the public key is the hash
G := Hk (defined in Section 6.3) of the roots of k trees of depth d constructed usingH := H2, whose leaves are
obtained computing a THF T := Thw−1 (from the family Th of compressing THF described in Section 5) on
the secret keys. The secret keys are output by a PRF PRF2 evaluated on a secret seed and on its address in the
tree. Signing a message requires splitting it into k blocks of d bits, and to interpret the ith block as the address
of a leaf in the ith tree: a signature on the ith block is the preimage of such a leaf, and its authentication path.
The signature on the full message is the collection of all the signatures on the blocks. Finally, to avoid forgeries
through recombination one needs to bind all the paths together, hence the digest to be signed is obtained
as the hash of the messages (with the public key, the seed of T , and some message dependent randomness
computed with a PRF PRFmsg) through a function Hmsg : {0, 1}λr × {0, 1}λr × P ×M → {0, 1}dk. As the
structure of FORS is extremely similar to XMSS, the fail-stop mechanism is integrated analogously: leaves
are generated using a (strongly) compressing THF so that the adversary cannot recover the same preimages
used by the signer (with constant probability). Trees are generated like in FSS.XMSS, thus we assume that
a powerful adversary can reconstruct the leaves from the public information. The formal description of the
protocol can be found in Protocol 5.

On Hash-and-Sign, Fine-grained Assumptions, and Adaptivity. As FSS.FORS is a Hash-and-Sign
style signature, its security requires either assuming ITSR security of Hmsg, or using one of the workarounds
presented in Section 7. For the sake of clarity we assume here that the adversary is not powerful enough
to break ITSR, and deal with the other cases separately (cf. Section 7). Observe that assuming ITSR and
adaptive SM-TCR allows to prove adaptive unforgeability without complexity leveraging (analogously to
SPHINCS+).

Lemma 11 (Security of FSS.FORS).
– If T , G, and H are adaptive SM-TCR secure compressing THFs, PRF2 and PRFmsg are PRFs, and Hmsg

is a ITSR secure compressing THF, then FSS.FORS is unforgeable under adaptive CMA.
– Assume that A cannot break the ITSR security of Hmsg nor invert PRF2 and PRFmsg. If T is a compressing

THF, then FSS.FORS is secure for signer against an adversary A with running time at most 2csλs/2 (in
the QROM).
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– If T,G,H are SM-TCR secure THFs, FSS.FORS is secure for the recipient.

Proof (Sketch). The unforgeability proof follows closely the reduction in [33, Theorem 3]. Hence, we only
sketch the hybrid games:

H1: this is the adaptive uf − cma experiment.
H2: Same as H1, but the sk’s are random strings instead of output by PRF2.
H3: Same as H2, but the output of PRFmsg is replaced with random strings.
H4: Same as H3, but now the adversary looses if the signature is obtained combining k authentication paths

that were already output by the signer during the querying phase.
H5: Same as H4, but now A looses if a FORS leaf in the forgery is different from the leaf that the signer

would generate for that place.

Distinguishing H1 and H2 (resp., H2 and H3) requires breaking the pseudorandomness of PRF2 (resp.,
PRFmsg). Distinguishing H3 from H4 requires breaking the ITSR property of Hmsg, and the proof is analogous
to the proof of [10, Claim 21]). Distinguishing H4 from H5 requires breaking the SM-TCR security of H.
Finally, winning H5 requires breaking the SM-TCR security of either T or G.

Security for the signer and the receiver can be proved analogously to FSS.XMSS.

9 Augmenting SPHINCS+ to an FSS

Augmenting SPHINCS+ to an FSS just requires keeping its structure as is, and replacing XMSS by FSS.XMSS,
FORS by FSS.FORS. We include a high level description of signing for those who are not familiar with
SPHINCS+ (cf. Appendix E for details). Essentially, (the hash of) a message is interpreted as the address idx
of a leaf in the hypertree, and a message digest MD. The FSS.WOTS pk contained in such leaf is used to sign
an FSS.FORS public key, which in turn is used to sign MD. A signature on the message includes then the
randomness used in Hmsg, the authentication path and FSS.WOTS signatures needed to go from the public
root to the FSS.FORS key, and the FSS.FORS signature on MD. Differences arise if one does not want to
use the fine-grained assumption that an adversary cannot break ITSR security. In such a case one has to use
one of our generic augmentation of Hash-and-Sign to an FSS (cf. Section 7). Let PRF be the PRF used to
generate the secret keys of FSS.WOTS and FSS.FORS.

Lemma 12 (Security of FSS.SPHINCS).
– If Th = {Thi}i is a family of THFs that is SM-UD, SM-TCR, and SM-PRE secure, PRF, PRFmsg are

PRFs, H = {Hi}i is a family of SM-TCR secure THFs, and Hmsg is a ITSR secure compressing THF,
then FSS.SPHINCS is unforgeable under adaptive CMA.

– Assume that A cannot break the ITSR security of Hmsg nor invert PRF and PRFmsg. If Th and H
are families of compressing THF, then FSS.SPHINCS is secure for signer against an adversary A with
running time at most 2csλs/2 (in the QROM).

– If Th and H are families of SM-TCR secure THFs, then FSS.SPHINCS is secure for the recipient.

Proving unforgeability can be done with the same reduction as in the NIST specifications (see Appendix G).
Security for the signer and for the receiver can be proved analogously to what done for FSS.XMSS.

9.1 Parameters Choice for FSS.SPHINCS

We now discuss the cost of the fail-stop mechanism, taking the small 128-bits security variant of SPHINCS+

(SPHINCS+-128s) as our use case and computing the cost of augmenting it into an FSS.SPHINCS with 128-bit
security, and with 256-bit security for the signer. Table 1 summarizes the results. Our augmentation does not
affect the size of the public key, that remains 256 bits (128-bits seed and the 128-bits Merkle tree root). The
secret key size increases multiplicatively by the expansion factor cs. To get 256 bits of security for the PRF,
it is enough to set cs = 256/λr = 2. The size of the secret key is then |PK| + 2 · cs · λr = 768 bits instead
of the 512 bits of SPHINCS+-128s (but smaller than the secret key of SPHINCS+-256s). Hence we focus on
computing the expansion in the signature size, which depends on the value of the compression factor.
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Value of Compression Factor c. Recall that in SPHINCS+, the entire hypertree (including all WOTS+

and XMSS signatures, and also all of FORS signatures Merkle trees) is deterministically derived from the
private keys and seed, and can be considered as public information as it might be revealed as part of the
benign signing process. The messages (and optional randomness) determine which private leaves of the FORS
trees will be opened as part of the signatures. To simplify our calculation, we use the worst-case assumption
that the adversary learns the entire hypertree structure of the SPHINCS+ signature, and all FORS signatures’
Merkle trees. 9As another worst-case assumption, we assume that the adversary can forge a signature without
being detected, as long as there is at least a single published value in any chain in any WOTS+ signature,10

or a single leaf in any FORS Merkle tree, that has only one preimage. We will now calculate the probability
of such an event to occur in FSS.SPHINCS-128s (the augmentation of SPHINCS+-128s to an FSS) instance
as a function of the compression factor c. Overall, the number of values Nval we want to have more than
one preimage is the the sum of the number of leaves for FORS and the total number of chains in all of the
WOTS+ signatures,

NFORS = 2h;NWOTS+ = 2h · (1 + 2−h/d + 2−2h/d + 2−3h/d...) < 2 · 2h

Nval = NFORS · t · k +NWOTS+ · l ≈ 2h · t · k
Where h is the height of the hyper-tree, d is the height of the XMSS tree, t is the number of leaves in a
FORS tree, k is the number of trees in FORS, and l is the number of chains in a WOTS+ signatures. For
SPHINCS+-128s Nval ≈ 263 ·212 ·14 < 279. The probability that at least one of these points has one preimage
can be bounded using Lemma 7 as ε := Nval ·2 exp(−2c). Hence, c = 8 is enough to have ε ≈ 2−368 ≪ 2−128.
We can now bound the number of additional bytes for FSS.SPHINCS by c·(k+d·l ·w). For FSS.SPHINCS-128s
with c = 8 this results in 8 · (14+7 ·35 ·16)bits = 3934bytes. In the case of the variant that returns parallel
signatures, this number is doubled.

10 Discussion

In this work, we propose to use (the already existing) Fail-Stop Signatures as a tool to mitigate the security
risk posed by quantum computers. Indeed, their inherent fail-stop mechanism would allow to detect breaks
of post-quantum signatures and to deprecate them even without even knowing how an attack would work.
Our extension of the model to fine-grained security allows to design practical FSS of existing constructions,
in particular, FSS.SPHINCS, the fail-stop version of SPHINCS+. This new look at FSS opens up a lot of
interesting research directions, from how to design FSS versions of signatures relying on Σ-protocols (e.g.,
Dilithium[40]), to improve our solution to integrate the hash-and-sign mechanism in FSS.
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Protocol 5: FSS.FORS

Let k, d, cs be public parameters.

Let PRF2 : {0, 1}csλr × T → {0, 1}λr+c, PRFmsg : {0, 1}cs·λr × T → {0, 1}λr be two PRFs.

Let T : P × T × {0, 1}λr+c → {0, 1}λr , H : P × T × {0, 1}2λr → {0, 1}λr , G : P × T × {0, 1}kλr → {0, 1}λr be THFs.

Let Ti,j,k be the tweak of ith message in jth level in the kth tree. The height of the root is 1, and of the leaves is d.

LetM be the message space and Hmsg : {0, 1}λr × {0, 1}λr × P ×M→ {0, 1}dk be a hash.

GenCh(1λr , 1λs , 1cs , 1k, 1d) :

1: t← 2d

2: Set c so that (k · t) 2
(csλr−1)

2csλr−1
exp(−2c) ≤ 2−λs .

3: SeedH
$←−P

4: SeedT
$←−P

5: ch← (k, c, d,SeedT ,SeedH)
6: return ch

GenKey(ch) :

1: Parse ch = (k, c, d,SeedT ,SeedH)
2: t← 2d

3: Seedsk
$←−{0, 1}csλr // key to PRF2

4: Seedmsg
$←−{0, 1}csλr // key to PRFmsg

5: for i = 1, . . . , k do
6: for j = 1, . . . , t do
7: ski,j ← PRF2(Seedsk, adrsi,j)
8: pki,j ← T (SeedT , adrsi,j , ski,j)

9: rooti ← TreeH(pki,1, . . . , pki,t,SeedH)

10: sk← (Seedsk,Seedmsg)
11: Set T0,0,0 according to specs
12: pk← G(SeedH , T0,0,0, (root1, . . . , rootk))
13: return (pk, sk).

Signsk(m) :

1: Parse sk = (Seedsk,Seedmsg)
2: R← PRFmsg(Seedmsg,m)
3: (m1, . . . ,mk·d)← Hmsg(R, pk,SeedT ,m)
4: for i = 1, . . . , k do
5: idxi ← [m1+(i−1)·d, . . . ,mi·d]
6: for j = 1, . . . , t do
7: ski,j ← PRF2(Seedsk, adrsi,j)
8: pki,j ← T (SeedT , adrsi,j , ski,j)

9: authi ← TreeGenAuthH(pki,1, . . . , pki,t, idxi,SeedH)

10: auth← (auth1, sk1,idx1 , . . . , authk, skk,idxk)
11: return (R, auth).

VrfySigpk(m,σ) :

1: Parse σ = (R, auth1, sk1, . . . , authk, skk)
2: (m1, . . . ,mk·d)← Hmsg(R, pk,SeedT ,m)
3: for i = 1, . . . , k do
4: Parse authi = (pki,

¯authi, rooti)
5: idxi ← [m1+(i−1)·d, . . . ,mi·d]
6: Generate adrs from (i, idxi)
7: ai ← (pki = T (SeedT , adrs, ski))
8: bi ← VrfyAuthH(authi,SeedH)
9: ci ← ai ∧ bi

10: pk′ ← G(SeedH , T0,0,0, (root1, . . . , rootk))
11: if pk = pk′ then return c1 ∧ . . . ∧ ck
12: else return 0.

PoFsk((m,σ), ch) :

1: if 0← VrfySigpk(m,σ) then return ⊥
2: σ′ ← Signsk(m)
3: if σ′ = σ then return ⊥
4: Parse σ = (R, auth1, sk1, . . . , authk, skk)
5: Parse σ′ = (R′, auth′1, sk

′
1, . . . , auth

′
k, sk

′
k)

6: (m1, . . . ,mk·d)← Hmsg(R, pk,SeedT ,m)
7: for i = 1, . . . , k do
8: Parse authi = (pki,

¯authi, rooti)

9: Parse auth′i = (pk′i,
¯auth

′
i, root

′
i)

10: idxi ← [m1+(i−1)·d, . . . ,mi·d]
11: if (pki = pk′i) ∧ (ski ̸= sk′i) then
12: return (1, ski, sk

′
i, i, idxi)

13: if rooti ̸= root′i then
14: Set T0,0,0 according to specs.
15: return (2, T0,0,0, {rootj , root′j}j=1,...,k)

16: forgery← CTreeH(rooti, (pki, ¯authi), (pk
′
i , ¯auth

′
i), idxi,SeedH)

17: if forgery ̸= ⊥ then return (3, forgery)
return ⊥

VrfyPoF(ch, π) :

1: Parse ch = (k, c, d,SeedT ,SeedH)
2: if π = ⊥ then return 0
3: else
4: Parse π = (b, π′)
5: if b /∈ {1, 2, 3} then return 0

6: if b = 1 then
7: Parse π′ = (ski, sk

′
i, i, idxi)

8: Generate adrs from (i, idxi)
9: x0 ← T (SeedT , adrs, ski)

10: x1 ← T (SeedT , adrs, sk
′
i)

11: b′ ← (x0 = x1)

12: if b = 2 then
13: Parse π′ = (T, {rootj , root′j}j=1,...,k)
14: x0 ← G(SeedH , T, (root1, . . . , rootk))
15: x1 ← G(SeedH , T, (root′1, . . . , root

′
k))

16: b′ ← (x0 = x1)

17: if b = 3 then
18: Parse π′ = (T 0, (n0

0, n
0
1), T

1, (n1
0, n

1
1))

19: x0 ← T (SeedT , T
0, (n0

0, n
0
1))

20: x1 ← T (SeedT , T
1, (n1

0, n
1
1))

21: b′ ← (x0 = x1)
return b′
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[12] Böhl, F., Hofheinz, D., Jager, T., Koch, J., Striecks, C.: Confined guessing: New signatures from
standard assumptions. Journal of Cryptology 28(1), 176–208 (Jan 2015). https://doi.org/10.1007/
s00145-014-9183-z

[13] Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-quantum SNARKs for RSIS and
RLWE and their applications to privacy. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography
- 11th International Conference, PQCrypto 2020. pp. 247–267. Springer, Heidelberg (2020). https:
//doi.org/10.1007/978-3-030-44223-1_14

[14] Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann, P.: Factorization of
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Supplementary Material

A Preliminaries

A standard digital signature is a triplet of PPT algorithms Σ = (Sign.KeyGen,Sign.Sign,Sign.Ver). Its security
is usually defined through a security experiment for an adversary A and security parameter λ:

Experiment 3: Expeu−acma
A,Σ (λ)

1: (pk, sk)← Sign.KeyGen(1λ)
2: Q ← ∅
3: (m∗, σ∗)← AOsk(·)(pk)
4: if (Sign.Verpk(m

∗, σ∗) = 1) ∧ (m∗ /∈ Q) then
5: return 1
6: else return 0

Osk(m):

1: σ ← Sign.Signsk(m)
2: Q ← Q∪m
3: return σ

Experiment 4: Expeu−nacma
A,Σ,q (λ)

1: (pk, sk)← Sign.KeyGen(1λ)
2: (Q = {m1, ...,mq}, S)← A1(1

λ)
3: for i = 1, . . . , q do
4: σi ← Signsk(mi)

5: (m∗, σ∗)← A2(pk, S, {(mi, σi)}qi=1)
6: if (Sign.Verpk(m

∗, σ∗) = 1) ∧ (m∗ /∈ Q) then
7: return 1
8: else return 0

Definition 6. A signature scheme Π = (Sign.KeyGen,Sign.Sign,Sign.Ver) is existentially unforgeable under
an adaptive chosen-message attack, or just secure, if for all PPT adversaries A, there is a negligible function
negl such that

Pr[Expeu−acma
A,Π (λ) = 1] ≤ negl(λ)

where the security experiment is defined in Experiment 3. To model non-adaptive unforgeability, A has to
declare Q before seeing pk as in Experiment 4. For one-time signatures (OTS), it is enough to set |Q| = 1.

Definition 7 (universal family of hash functions). Let S and T be two sets. A family of functions
H = {hi : S → T} is called a universal family of hash functions if for any two different elements s1 ̸= s2 in
S, and for any two elements t1, t2 ∈ T we have:

Pr[h(s1) = t1 ∧ h(s2) = t2] =
1

T 2

A function µ(·) is negligible in n, or just negligible, if for every positive polynomial p(·) and all sufficiently
large n’s it holds that µ(n) < 1/p(n). We use PPT as shorthand for probabilistic polynomial time.

Definition 8 (one-way functions). A function f : {0, 1}∗ → {0, 1}∗ is called one-way (OWF) if the
following two conditions hold:

– Easy to compute: There exists a polynomial-time algorithm A such that on input x, A outputs f(x).
– Hard to invert: For every PPT algorithm A, there is a negligible function µ(·) such that for all sufficiently

large n’s it holds:
Pr[A(f(Un), 1

n) ∈ f−1(f(Un))] < µ(n)

Definition 9 (collision-resistant hash functions). Let ℓ : N → N. A collection of functions H = {hr :
{0, 1}∗ → {0, 1}ℓ(|r|) is called a family of collision-resistant hash functions (CRH) if there exists a PPT sampling
algorithm I such that the following holds:

– There exists a polynomial-time algorithm that, given r and x, returns hr(x)
– For every PPT algorithm A, there is a negligible function µ(·) such that for all sufficiently large n’s it

holds:
Pr[A(I(1n), 1n) = (x, x′) ∧ x ̸= x′ ∧ hI(1n)(x) = hI(1n)(x

′)] < µ(n)

where the probability is taken over the coin tosses of I and A.

We recall the definitions of correlation intractability, initially proposed in [18].

33



Definition 10 (Sparse relations). A binary relation R is sparse with respect to length parameters ℓ(n),m(n),if
there is a negligible function µ(·) such that for every x ∈ {0, 1}ℓ(n) :

Pr
y∈{0,1}m(n)

[R(x, y) = 1] ≤ µ(n)

Definition 11. A family of functions H = {hk : {0, 1}ℓ(n) → {0, 1}m(n)}n∈N is correlation intractable (CI)
if for all PPT adversary A, for all sparse relations R, there is a negligible function µ(·) such that for all
sufficiently large n’s it holds:

Pr
k

$←−Hn

[x← A(k) : R(x, hk(x)) = 1] ≤ µ(n)

In the definition above, the sparse relations may not be efficiently recognizable.

Definition 12. Let λ be a security parameter. Let F : {0, 1}k(λ) × {0, 1}m → {0, 1}ℓ. We call a function to
be a λ-PRF secure if for every A with running time tA at most 2λ, the PRF is secure.

|Pr[AO(·)(1λ) = 1]− Pr[AFk(·)(1λ) = 1]| ≤ negl(λ)

where O : {0, 1}m → {0, 1}ℓ is a random function, and k is uniformly chosen.

B FSS are equivalent to Digital Signatures

In this section we prove that FSS are equivalent to (a subset of) digital signatures. The proof that FSS
implies a digital signature is quite intuitive, and not new (cf. [50, Thm 3.1]). As the original proof is quite
informal, we include a formal proof of the claim in Theorem 4 to be thorough.

The other side of the implication (cf. Theorem 5) is less intuitive, and is (to the best of our knowledge) a
new result. Our result only shows the equivalence of FSS and a specific subset of digital signatures, thus it
is not enough to conclude that FSS can be constructed from OWF. However, Theorem 5 is a powerful tool:
for example, it is enough to show the existence of lattice-based FSS (cf. Appendix C).

Definition 13. Let RL be a relation, and let L = {x | ∃w s.t (x,w) ∈ RL} be an NP language. We say that
L is a λ-hard language for λ ∈ N, λ > 0 if the following conditions hold:

– Easy to sample statements: There exists a probabilistic polynomial-time sampler SL that on input 1λ

outputs a statement x where x ∈ {0, 1}λ, and x ∈ L.
– Witness intractability: For every PPT algorithm A there exists a negligible function negl(·) such that:∣∣Pr[(SL(1

λ),A(SL(1
n), 1λ)) ∈ RL]

∣∣ ≤ negl(λ) .

The construction of a signature from a FSS is quite straightforward, and it was already shown by Pedersen
and Pfizmann [50]. We include the formal proof of this fact in the following as a warm-up.

Theorem 4 ([50, Thm 3.1]). Let L be a λr-hard language for λr ∈ N, λr > 0. Let FSS be a fail-stop
signature that is unforgeable assuming L, ε-secure for the signer for 0 < ε ≤ 1, and secure for the recipient
with parameters (λr, ε). Then, there exists a signature scheme Π = (Sign.KeyGen,Sign.Sign,Sign.Ver) and a
hard problem L as in Definition 13 such that Π is uf − acma secure under L, that is, there exists a strictly
polynomial-time security reduction from forging a signature to solving L in the standard model.

Proof. Let FSS = (GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) be a secure FSS signature (i.e., it satisfies
Definitions 4,3,2) for parameters (λr, λs), and let Π = (Sign.KeyGen,Sign.Sign,Sign.Ver) be the digital sig-
nature trivially defined by the FSS (cf. Protocol 6).

We first prove that Π is a uf − acma secure signature.
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Protocol 6: Signature from FSS

Sign.KeyGen(1λ)

1: Sets λr ← λ, ε← 2−λ

2: ch← GenCh(1λr , 1ε)
3: (pk, sk)← GenKey(ch)
4: return (pk, sk)

Sign.Signsk(m)

1: σ ← Signsk(m).
2: return σ.

Sign.Verpk(m,σ)

1: b← VrfySigpk(m,σ)
2: return b

Lemma 13. If (GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) is a secure FSS assuming L, then the scheme
Π = (Sign.KeyGen,Sign.Sign,Sign.Ver) is a uf − acma secure signature assuming L.

Proof. Assume by contradiction that there exists a PPT adversary A that breaks the unforgeability of Π
with probability εA. We construct an adversary B that breaks the unforgeability of the FSS with the same
probability. B simulates the unforgeability game for a standard signature, and plays the unforgeability game
for FSS. Thus, it is given pk, ch and oracle access to Signsk(·) and aims to output a valid forgery for FSS. B
runs A on pk, ch and simulates the signing oracle by forwarding A’s queries to the signing oracle for FSS.
At the end of the game, B returns the pair (m∗, σ∗) returned by A. Note that,

εA = Pr[Expeu−acma
A,Π (λ) = 1] = Pr[ExpunfB,FSS(λs, λr) = 1] ≤ negl(λr) .

⊓⊔

It remains to prove that Π has a strictly polynomial-time security reduction from a hard problem L as
defined in Definition 13 in the standard model.

Lemma 14. If FSS is ε-secure for the signer and secure for the recipient with parameters (λr, ε), then
forging a signature for Π can be reduced to solving some hard problem L as defined in Definition 13 with a
strictly polynomial-time reduction in the standard model.

Proof. Let L = {x | ∃τ such that VrfyPoF(x, τ) = 1)}, and let A be a (possibly unbounded) adversary that
breaks the unforgeability of Π in polynomial-time with probability εA. We construct the security reduction
R that solves L as follows:

Algorithm 1 [Security Reduction]

1. On input an instance x ∈ RL, R sets ch to be x and generates the key pair (pk, sk)← GenKey(1n, ch).
2. It gives pk to A, and simulates the signing oracle using sk. R stores the queries that A asked in Q.
3. When A returns (m∗, σ∗), R checks if m∗ ∈ Q. In that case it aborts. Otherwise, it runs τ ← PoFsk(m

∗, σ∗),
and it returns τ as a witness for x.

The reduction R runs in polynomial-time, as A runs in polynomial-time. As FSS is ε-secure for the signer,
R is successful with probability

Pr[(x, τ) ∈ RL] = 1− Pr[ExpssA,FSS(λs, λr) = 1] ≥ 1− ε = 1− negl(λ).

The witness indistinguishability property of L follows from Lemma 1. ⊓⊔

We now proceed to prove the other side of the implication. The intuition behind the construction of a FSS
from a digital signature is that the security reduction of the signature can be made into a proof-of-forgery
algorithm in some specific cases. In particular, extracting a witness for the (computationally hard) language
should not require to perform actions that are not possible in the real world, such as rewinding the adversary
or programming random oracles11.

11 This does not exclude signatures proved secure in the Random Oracle Model (ROM) entirely, but only the ones
whose security reduction requires to program the RO.
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Theorem 5. Let λ be the security parameter. Let Π = (Sign.KeyGen,Sign.Sign,Sign.Ver) be a signature such
that:

– there is a strictly polynomial-time, black-box security reduction R from forging a signature to a λ-hard
problem L as defined in Definition 13 with non-negligible success probability,

– such reduction does not rewind the adversary, nor does it program random oracles, and
– for any (sk, pk) generated by the simulator in the reduction R it holds that H(sk | pk,Hist) ≥ (N +

1)(λ− 1), where Hist is the list of the N signatures generated by the honest signer.

Then there exists a secure Fail-Stop signature scheme (FSS) for parameters (ε, λr) = (negl(λ), λ) where negl
is a negligible function.

Proof. Saying that Π has a strictly polynomial-time security reduction (that does not rewind the adversary
or programs random oracles) of forging a signature to a λ-hard problem L implies that there exists a reduction
R = (R1,R2,R3) that converts with probability 1 − εR a forgery generated by a PPT adversary A to a
witness of a given x ∈ L using a PPT simulator S = (S1,S2,S3) as follows:

– Upon receiving a statement x ← SL(1
λ), R1 gets (pk, sk) ← S1(x). It outputs pk and a private state

st = sk.
– R2 is given the state st, and interacts with the adversary A(pk) against unforgeability. R2 answers its

signing queries by running S2 on input sk, and stores the queries in Q. Upon receiving the pair (m∗, σ∗)
output as a potentially forgery by A, R2 runs b ← Sign.Verpk(m

∗, σ∗) and checks if m∗ ∈ Q. If both
checks pass, it returns (m∗, σ∗) and the private state st, otherwise it aborts, that is, it outputs (⊥, st).

– R3 is given the private state st, and a forgery (m∗, σ∗). It runs the simulator w ← S3(x, pk, (m∗, σ∗), sk)
outputs w.

The success probability of such reduction can be computed as (1−εR)εA, where εA is the success probability
of A in the unforgeability game.

Observe that from the simulator Sone can construct an FSS as in Protocol 7.

Protocol 7: FSS from Signature

GenCh(1λ)

1: Runs ch← SL(1λ)
2: return ch

GenKey(ch)

1: (pk, sk)← S1(ch).
2: return (pk, sk).

Signsk(m)

1: σ ← S2(sk, ch,m).
2: return σ.

VrfySigpk(m,σ)

1: b← Sign.Verpk(m)
2: return b

PoFsk(m
∗, σ∗, ch)

1: τ ← S3(ch, pk, (m∗, σ∗), sk)
2: return τ

VrfyPoF(ch, τ)

1: return 1 iff (ch, τ) ∈ RL

2: return 0

In the following we prove that (GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) satisfies ε-security for signer,
security for recipient, and unforgeability.

Lemma 15. If L is a λ-hard problem, the scheme (GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) is unforgeable
with security parameter λr = λ.

Proof. Trivially follows from the unforgeability of Π: A solver B that gets an instance x ∈ L can exploit a
successful adversary A against unforgeability to fine the witness by behaving exactly like a honest signer.
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At the end of the unforgeability experiment, A returns a forged signature σ∗ on a message msg∗, which B
can directly give as input to S3 to obtain a witness for x. The success probability of B is the same as the
original reduction R, i.e., (1 − εR)εA, where εA is the probability that A returns a valid forgery. As L is
a hard language it holds that (1 − εR)εA ≤ negl(λ), i.e., εA ≤ negl(λ). Hence the FSS is unforgeable for
security parameter λr = λ.

Lemma 16. If L is a λ-hard language, the scheme (GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) is secure for
the recipient with parameter λr = λ.

Proof. Let RL be the corresponding NP-relation to L. Assume by contradiction that the scheme is not secure
for the recipient, that is, there exists a probabilistic polynomial-time adversary A that breaks security for
the recipient with probability εA. Then it holds that

Pr[(ch, τ) ∈ RL] = Pr[VrfyPoF(ch, τ) = 1]

≥ Pr

[
VrfyPoF(ch, τ) = 1 | ch← SL(1

λ),
τ ← A(ch)

]
= εA .

L being a λ-hard language implies εA = negl(λ). ⊓⊔

Lemma 17. If L is a λ-hard language, the scheme (GenCh,GenKey,Sign,VrfySig,PoF,VrfyPoF) is ε-secure
for the signer, where ε = negl(λ) for a negligible function negl.

Proof. LetA be an unbounded adversary against security for the signer, with winning probability 0 < εA ≤ 1,
that is,

Pr[ExpssA,FSS(negl(λ), λ) = 1] = εA

This means that with probability εA A returns a forgery for which it is not possible to generate a proof of
forgery. Observe that the probability that A recovers the secret key from pk and some signatures is negligible
in λ even for an unbounded A by the third assumption on the signature scheme. Thus, the forgery produced
by the adversary has to be independent as a random variable from sk, and in particular, can be used by R
to recover the witness of the instance x ∈ L. As the success probability of R is (1− ε)εA it holds that

Pr[R succeeds] = (1− εR)εA = negl(λ)

which implies εA < negl(λ) (as ε = negl(λ)). Thus, ε = εA = negl(λ). ⊓⊔

C Lattice-Based FSS

The existence of lattice-based FSS follows naturally from Theorem 5, as lattice-based signatures satisfying
the hypotheses already exist. Appendix C.2 applies the result to a variant of the Lyubashevsky-Micciancio
one-time signature [41] as a warm-up example. We intend this to be a proof-of-concept, so we do not rely
on standard optimizations (such as relying on ideal/module lattices, or fancy Gaussian sampler) to distract
the reader from the mechanics of the construction itself. Once the mechanics are clear, in Appendix C.3
we present a lattice-based generic FSS that can be “trivially” obtained applying Theorem 5 to an existing
lattice-based signatures.

C.1 Preliminaries

Let m,n ∈ N∗, let q ∈ N be a prime. For a vector s ∈ Zn, let ∥s∥ be the Euclidean norm, and ∥s∥∞ the
largest module of the coefficients of s. A lattice Λ ⊂ Rn is a Z-module over Rn. A basis of a lattice is a
full-rank matrix B ∈ Zm×m such that Λ = Λ(B) = {e ∈ Zm : ∃c ∈ Zm : e = Bc}; we denote by B̃
the Gram-Schmidt orthogonalization of B. In particular, given A ∈ Zn×m

q we will be mainly interested in
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the lattices Λ⊥
q (A) := {e ∈ Zm : Ae ≡q 0} and Λu

q (A) := {e ∈ Zm : Ae ≡q u} for some u ∈ Zn
q . A

trapdoor matrix TA ∈ Zm×m for A is a full-rank matrix such that AT ≡q 0, that is, a basis of Λ⊥
q (A).

Let the Gaussian function be ρc,s(x) = exp(−π∥x− c∥2/s2) where c, xv ∈ Rn, and s ∈ R, s > 0. The
discrete Gaussian distribution over a lattice Λ with center c ∈ Rn and parameter s ∈ R, s > 0 is defined as
DΛ,c,s(y) = ρc,s(y)/ρc,s(Λ) for and y ∈ Λ, where ρs,c(Λ) =

∑
x∈Λ ρc,s(x). For convenience, ρ0,s and DΛ,0,s

are abbreviated as ρs and DΛ,s.

Lemma 18 ([48]). For any lattice Λ of integer dimension m with basis B, any c ∈ Rm and Gaussian

parameter s ≥
∥∥∥B̃∥∥∥ · ω(√logm), we have

Pr[∥x− c∥ > s
√
m : x $←−DΛ,c,s] ≤ negl(m) .

We now recall some preliminary algorithms regarding trapdoor sampling and preimage sampling over lattices.

Lemma 19 ([46, Thm 5.1]). There is a PPT algorithm TrapGen that takes as input integers n ≥ 1, q ≥ 2
and a sufficiently large m = O(n log q), outputs a matrix A ∈ Zn×m

q and a trapdoor matrix TA ∈ Zm×m,
such that ATA = 0 mod q, the distribution of A is statistically close to the uniform distribution over Zn×m

q

and
∥∥∥T̃A

∥∥∥ = O
(√

n log q
)
.

Lemma 20 ([2, Thm 3 and 4 + Lem 5]). Let q > 2, m > n. Then there exists:

– a PPT algorithm SampleLeft that on input a full-rank matrix A ∈ Zn×m
q , a short basis TA of Λ⊥

q (A),

a matrix B ∈ Zn×m1 , a vector u ∈ Zn
q , and s >

∥∥∥T̃A

∥∥∥ω(√log(m+m1)), outputs a vector d ∈ Zm+m1

distributed statistically close to DΛu
q ([A | B]),s.

– a PPT algorithm SampleRight that on input a matrix A ∈ Zn×m
q , a random matrix R $←−{−1, 1}m×m, a

full-rank matrix B ∈ Zn×m
q , a short basis TB of Λ⊥

q (B), a vector u ∈ Zn
q , and s > 12

√
2m

∥∥∥T̃B

∥∥∥ω(√log(m)),

outputs a vector d ∈ Z2m distributed statistically close to DΛu
q ([A | AR+B]),s.

Lemma 21 (Gadget Matrix [46]). Let q be a prime, and n, m be integers with m = n log q. There
exists a fixed full-rank matrix G ∈ Zn×m

q such that the lattice Λ⊥
q (G) has a publicly known trapdoor matrix

TG ∈ Zn×m with
∥∥∥T̃G

∥∥∥ ≤ √5.
Lemma 22 ([16, Lem. 2.11]). Let C : {0, 1}ℓ → {0, 1} be a NAND Boolean circuit of depth d. Let {Ai =
ARi + xiG ∈ Zn×m

q }i=1,...,ℓ be ℓ different matrices correspond to each input wire of C where A $←−Zn×m
q ,

Ri
$←−{1,−1}m×m, xi ∈ {0, 1}, and G ∈ Zn×m

q is the gadget matrix. There is an efficient deterministic
algorithm Eval that takes as input C and {Ai}i=1,...,ℓ and outputs a matrix AC = ARC +C(x1, . . . , xℓ)G =
Eval(C,A1, . . . ,Aℓ) where RC ∈ Zm×m and C(x1, . . . , xℓ) is the output of C on the arguments x1, . . . , xℓ.
Eval runs in time tE = poly(λ)(4d, ℓ, n, log q). The norm of RC in AC output by Eval can be bounded, with
overwhelming probability, by ∥R∥ ≤ O

(
4dm3/2

)
.

Unforgeability and security for the receiver will require a computational assumption: here we use the
Short Integer Solution (SIS) problem.

Definition 14 (SIS problem). Given A ∈ Zn×m
q and β > 0, solving the (homogeneous) SISn,m,q,β problem

requires to find s ∈ Zm s.t. As ≡q 0 and ∥s∥ < β.

C.2 Warm-up: One-time FSS from Lattices

Public Parameters. Let m > n log(q), q be a prime. Let Sη := {s ∈ Zm : ∥s∥∞ ≤ η}, the message space

beM = {0, 1}ℓ, and q > 2(ℓ+ 1)η
√
2m (to avoid wrap-around in the norm).

Given the public parameters defined before, the FSS works as follows.
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GenCh(1λr , 1ε): The authority generates the SIS instance, that is, the parameters (q, n,m, η) (satisfying the
previously listed bounds), a random matrix A $←−Zn×m

q , and β = β(λr) = (ℓ+ 1)η
√
2m > 0. Parameters

are chosen so that the probability that any PPT adversary breaks SISn,m,q,β is negl(λr). Set ch =
(n,m, q, β, η,A).

GenKey(ch): The signer samples a matrix S1
$←−S1×ℓ

η , a vector s2
$←−Sη, and computes B = β/2, u1 = AS1

mod q, u2 = As2 mod q. The keys are sk = (S1, s2) and pk = (u1,u2, B).
Signsk(m): The signature on the binary vector m is σ = S1m+ s2 mod q.
VrfySigpk(m, σ): The verifier checks that ∥σ∥ ≤ B and Aσ = u1m+ u2 mod q.
PoFsk((m, σ∗), ch): On input a forged signature σ∗ on message m, the signer generates the honest signature

on m: σ = S1m+ s2 mod q, and returns s̄ = σ∗ − σ as the proof of forgery.
VrfyPoF(ch, s̄): The verifier checks that s̄ ̸= 0m, As̄ = u1m + u2 mod q, and ∥s̄∥ < β. Returns 1 if all the

checks pass, and 0 otherwise.

The following lemma yields that the public key perfectly hides the secret key.

Lemma 23 (Leftover Hash Lemma, see [5, Section 2.2.1]). Let A ∈ Zn×m
q for m > n log(q). Then,

for s← Sη and u← Zn
q it holds (A,As) ≈s (A,u).

Observe that applying the LHL requires high-density SIS instances [39, Section 3], which are secure for
some specific choices of parameters [47, Theorem 3.8] and make the signature rather long. One can improve
this using ideal lattices.

Security for the Recipient. Trivially follows from SISn,m,q,β : a signer that on input A returns a nonzero
vector s̄ such that As̄ ≡q 0 and ∥s̄∥ < β can be trivially converted into a solver for SIS.

Unforgeability. Analogously to security for the recipient, unforgeability follows from the hardness of
SISn,m,q,β . The only difference is that one has to make sure that the adversary cannot recover the secret keys
(e.g., if A can recover s2, it can sign the message m = 0ℓ). This trivially follows from the LHL.

Security for the Signer. We need to bound the probability that the signer cannot generate a valid
proof of forgery given a valid forgery. This happens in two cases: (1) A correctly guessed the signature
on m, i.e., σ∗ = S1m + s2, (2) s̄ does not satisfy verification (i.e., it has too large norm, or it does not
satisfy the linear relation). The first case can be excluded applying the LHL (extended to matrices): as

(A,A[S1 | s2]) ≈s (A,U), where U $←−Zn×(ℓ+1)
q , A cannot extract information about the secret keys from

the public keys, and it holds Pr[σ∗ = S1m + s2] = negl(λs). By correctness σ∗ − (S1m + s2) satisfies the
linear relation, and the condition on β, hence the second case can also be excluded.

Few-time FSS. One can build a reusable signing key by sampling many key pairs (ski, pki) of the one-time
FSS where i = 1, . . . , ctr, and ctr is the number of messages that one wants to sign. These can be compressed
using (lattice-based) accumulators (see [8,38]), which are based on Merkle trees combined with a collision-
resistant hash function from lattices f[A0 | A1](X0,X1) = u⇔ A0X0+A1X1 = Gu mod q, where G is the
gadget matrix [46]. This yields signatures that are log(ctr)(ℓ+ 1)m log(q) bits long.

C.3 Lattice-Based FSS

There is a number of lattice-based signatures in the standard model that satisfy the hypotheses of Theorem 5,
see for example [15,19,46,24,4,12,16]. In this section we focus on the construction of Boyen and Li [16], as it
has the tightest security reduction among the lattice-based signatures in the standard model, thus it yields
the most efficient FSS construction when applying Theorem 5. Moreover, this example is useful as a starting
point in case one would want to add a fail-stop mechanism to more advanced signature constructions, such
as group signatures, as many existing constructions rely on similar trapdoor techniques (e.g., [13]).
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Table 3. Parameters for FSS.BL based on the analysis in [16, Sec. 3.2]. Observe that parameters might depend on
λr or λs due to the fine-grained security model.

Parameter Description
λr Hardness of SIS
λs Security of PRF

ε = 1/2 Probability of failure of PoF
k = k(λs) Length of the secret key of the PRF
ℓ = ℓ(λr) Message length
d = d(λr) Circuit depth of the PRF
n = n(λr) Number of columns
m = n1+η for η > 0 such that nη > O(log q)
q = O

(
16dm4

)
(ω(
√
logm))2 Modulus

s = O
(
4dm3/2

)
ω(
√
logm) Gaussian parameter

β = O
(
16dm7/2

)
ω(
√
logm) Bound on the norm of the SIS solution

Intuition. We define the algorithms of the FSS according to the security reduction of the signature by
Boyen and Li. The unforgeability of this construction relies on the hardness of the SIS problem, and on
the security of a PRF. As such, we will have to use the fine-grained definitions of security (in particular,
Definition 5), where we set c2 = 2 analogously to what observed for FSS.XMSS (cf. Section 6.1). Analogously
to the one-time FSS, the authority plays the part of the SIS oracle in the reduction, that is, it creates an SIS
instance. A proof of forgery will be a valid solution for such instance. Hence, the security parameter λr is the
computational hardness of the SIS instance. The key generation and signing algorithms correspond to the
algorithms in the reduction that simulate the signer, and exploit the trapdoor duality result in Lemma 20.

Public Parameters. Parameters are described in Table 3, and are chosen according to [16, Sec. 3.2]. The
security of the FSS is defined by three parameters (ε, λr, λs), where the computational power of the signer
is bounded in λr, and a the computational power of the potential forgerer is bounded in λs > λr. Let the
message space beM = {0, 1}ℓ and PRF : {0, 1}k × {0, 1}ℓ → {0, 1} be a λs-secure PRF whose depth when
represented as a NAND circuit CPRF is d.

Given the public parameters defined before, we define the lattice-based FSS scheme FSS.BL as follows.

GenCh(1ε, 1λr , 1λs): The authority generates the SIS instance, that is, the parameters (q, n,m, β) (satisfying
the bounds in Table 3), and a random matrix A $←−Zn×m

q . Parameters are chosen so that the probability

that any PPT adversary breaks SISn,m,q,β is negl(λr). Then it chooses a λs-secure PRF PRF : {0, 1}k ×
{0, 1}ℓ → {0, 1} and expresses it as a NAND circuit CPRF with depth d. Set ch = (n,m, q, β,A, CPRF).

GenKey(ch): The signer does the following:

1. Select k + 4 matrices RA0 , RA1 , {RBi}i=1,...,k, RC0 , RC1 uniformly at random in {1,−1}m×m.
2. Select a PRF key K = (c1, . . . , ck)

$←−{0, 1}k
3. Set Ab := ARAb

+ bG and Cb := ARCb
+ bG for b = 0, 1, where G is the gadget matrix from

Lemma 21.
4. Set Bi := ARBi

+ ciG for i = 1, . . . , k.
5. Select a Gaussian parameter s > 0 satisfying the bounds in Table 3.

The keys are

sk = (RA0
,RA1

, {RBi
}i=1,...,k,RC0

,RC1
,K)

pk = (A, {A0,A1}, {Bi}i=1,...,k, {C0,C1})

Signsk(msg): Upon receiving a message msg = (m1, . . . ,mℓ) ∈ {0, 1}ℓ the signer does the following:

1. Run Eval(CPRF, {Bi}i=1,...,k,Cm1 , . . . ,Cmt) to compute ACPRF
:= ARCPRF,msg + PRF(K,msg)G ∈

Zn×m
q .
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2. Let b = PRF(K,msg), it sets Fmsg,1−b := [A|A1−b −ACPRF,msg] = [A|A(RA1−b −RCPRF,msg) + (1 −
2b)G].

3. Run SampleRight(A,RA1−b−RCPRF,msg, (1−2b)G,TG,0, s) to generate the signature s ≈ DΛ⊥
q (Fmsg,1−b),s.

Return σ = s.
VrfySigpk(msg, σ): To verify a signature requires to do the following:

1. It checks if s ∈ Z2m, s ̸= 0, and ∥s∥ ≤ s
√
2m.

2. Compute ACPRF,msg = Eval(C− PRF, {Bi}i=1,...,k,Cm1 , . . . ,Cmℓ
) ∈ Zn×m

q .
3. Check if Fmsg,bs = [A|Ab −ACPRF,msg]s = 0 mod q for b = 0 or 1.
If all the check pass, return 1; otherwise 0.

PoFsk((msg, σ∗), ch): On input a possible forgery σ∗ = s∗ on a message msg∗ the signer does the following:
1. Compute b = PRF(K,msg∗).
2. If ∥s∗∥ > s

√
2m or [A|A1−b −ACPRF,msg∗ ]s

∗ = 0 mod q, return ⊥.

Otherwise, let s∗ =

(
s∗1
s∗2

)
∈ Z2m.

3. Compute e = s∗1 + (RAb −RCPRF,msg∗)s
∗
2 as a solution for the SISn,q,β,m problem instance.

The proof of forgery is π = e.
VrfyPoF(ch, e): The authority checks that ∥e∥ ≤ β and that Ae = 0 mod q. Returns 1 if all the checks pass,

and 0 otherwise.

Lemma 24 (Correctness). The FSS scheme FSS.BL instantiated with the parameters in Table 3 is correct,
that is, for all positive (λr, λs) ∈ N, 0 < ε ≤ 1 there exists a negligible function negl such that:

Pr

1← VrfySigpk(msg, σ) :
ch← GenCh(1ε, 1λr , 1λs),
(sk, pk)← GenKey(ch),

σ ← Signsk(msg)

 > 1− negl(λr) .

Proof. The parameter analysis is the same as for the original signature scheme, so we refer the reader to [16,
Sec 3.2]. We just remark that by Lemma 18, a signature σ = s satisfies the norm bound with probability
p1 = 1− negl(n). The second check of the verification is always correct by definition of Eval. ⊓⊔

Runtime of Sign. Observe that the runtime of the signer depends on the runtime of the simulator in the
security reduction of the original signature scheme(cf. [16, Thm 3.1]). In particular, the runtime of the signing
algorithm is tS + tE = poly(λ)(4d, ℓ, n, log q), where tS is the runtime of SampleRight, tE is the runtime of
Eval, and the asymptotic estimate comes from Lemma 20 and Lemma 22.

Lemma 25 (Security for the Recipient). If SISn,q,β,m is λr-hard, then FSS.BL is secure for the recipient.

Proof. The security for the recipient follows from the hardness of SISn,q,β,m with an analogous reduction to
the security for the recipient of the one-time construction (cf. Appendix C.2).

Lemma 26 (Unforgeability). If PRF is a λs-secure PRF, and SISn,q,β,m is λr-hard, then FSS.BL is
unforgeable under adaptive CMA.

Proof. The reduction follows exactly the same steps as the unforgeability reduction of the original signature
scheme, thus we refer the reader to the proof of [16, Thm 3.1] for the details. We only compute the final
success probability of a cheating signer. Denote the probability of solving the SIS instance by εSIS and the
probability of breaking the PRF security by εPRF. From Boyen’s and Li’s reduction it follows that

Pr

[
VrfyPoF(ch, π∗) = 1 | ch← GenCh(1λr , 1ε),

π∗ ← A(ch)

]
< 2εSIS + εPRF + negl(λr)

= negl(λr)

where the latter equality follows from the λr-hardness of SIS, the λs-security of the PRF, and because
λr < λs by definition of the fine-grained security framework.

41



Lemma 27 (Security for the Signer). If PRF is a λs-secure PRF, and SISn,q,β,m is λr-hard, then FSS.BL
is ε-secure for the signer in the fine-grained framework for parameters (ε, λr, λs) = (1/2 + negl(λs), λr, λs).

Proof. Again, the reduction follows the same steps as the unforgeability proof of the original signature.
Observe that the factor 1/2 comes from the fact that the adversary could guess correctly the output bit b of
the PRF even without recovering the key K. This would mean that the forged signature would verify w.r.t.
the same public key that the signer would have used to sign msg∗, thus PoF would have to abort. Hence PoF
aborts with probability ε = 1/2 + negl(λs).

Failure Probability of PoF . One could argue that the fail-stop mechanism is not very useful if it only works
50% of the times. However, analogously to the case of soundness in zero-knowledge proofs, the probability
of failure can be increased by signing the same message multiple times, that is, by defining a valid signature
as the concatenation of N signatures. Indeed, for the signer to be able to prove that the scheme has been
compromise it is enough to prove that one of the N signatures is a forgery. Hence the probability of failure
for the concatenated scheme is now 1/2N .

D The Security Assumptions of SPHINCS+

SPHINCS+ relies on tweakable hash functions (THFs) [10]. A THF is a function Th : P × T × {0, 1}m →
{0, 1}n, where P is the public parameters of the digital signature, T is the tweak (different in every evaluation
of Th for security reasons), m is the message’s length, and n is the signature’s length. The security of
SPHINCS+ requires the underlying THF to have four security properties:

1. Single-function, Multi-target UnDetectability for distinct tweaks (SM-UD security): informally it means
that Th(p, t, x) is computationally indistinguishable from x, where x is uniformly sampled.

2. Single-function, Multi-target Collision Resistance for distinct tweaks (SM-TCR security): the adversary
cannot find a collision for a target from the set of its queries Q given an oracle access to Th(p, ·, ·).

3. Single-function, Multi-target (second) Preimage Resistance for distinct tweaks (SM-PRE security): the
adversary cannot find a second preimage for a target from the set of its queries Q given an oracle access
to Th(p, ·, x), where x is uniformly sampled in every call to the oracle.

4. Interleaved Target Subset Resilience (ITSR): the adversary cannot find a second preimage for a target
among the answers to its queries, when given an oracle access to a keyed hash function that samples a
fresh random key for each query.

Informally, our theorem is:

Theorem 6 (Informal).

– If Th = {Thi}i is a family of THFs that is SM-UD, SM-TCR, and SM-PRE secure, PRF, PRFmsg are
PRFs, H = {Hi}i is a family of SM-TCR secure THFs, and Hmsg is a ITSR secure compressing THF,
then FSS.SPHINCS is unforgeable under adaptive CMA.

– Assume that A cannot break the ITSR security of Hmsg nor invert PRF and PRFmsg. If Th and H
are families of compressing THF, then FSS.SPHINCS is secure for signer against an adversary A with
running time at most 2csλs/2 (in the QROM).

– If Th and H are families of SM-TCR secure THFs, then FSS.SPHINCS is secure for the recipient.

D.1 Tweakable Hash Functions

Definition 15 (Tweakable hash function - THF). Let n,m ∈ N, P the public parameters space and T
the tweak space. A tweakable hash function (THF) is an efficient function Th : P × T × {0, 1}m → {0, 1}n,
MD ← Th(P, T,M) mapping a m-bit message M to an n-bit hash value MD using a function key composed
by a public parameter P ∈ P and a tweak T ∈ T .
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Let us define the predicate DIST({Ti}pi=1) = (Ti ̸= Tk ∀i, k ∈ [1, p], i ̸= k), i.e., DIST({Ti}pi=1) outputs 1
iff all tweaks are distinct. Then, security for THF is defined by three properties (cf. [35]).

Definition 16 (Single-function, Multi-target UnDetectability for distinct tweaks - SM-UD). Let
Th be a THF. Consider an adversary A = (A1,A2) playing the security game in Experiment 5, where A1

is allowed to make p classical queries to an oracle OP (T, b), for p ≤ |T | and b ∈ {0, 1}.

Experiment 5: SM-UDb
A,Th,p(λ)

1: P ←R P // The public parameters of the function

2: Define OP (T, b):
– If b = 0, then OP (T, 0): return Th(P, T, x), where x is chosen uniformly at random for every

the query.
– If b = 1, then OP (T, 1): return x, where x is chosen uniformly at random for every the query.

3: (Q = {Ti}pi=1, S)← A
OP (·,b)
1 (P ) // S is the shared state between A1 and A2, and Q are the oracle queries

4: b′ ← A2(Q,S, P )
5: if DIST ({Ti}pi=1) then
6: return b′

7: else return 1− b // A wins only if all its queries are distinct.

The advantage of an adversary A in this experiment is:

AdvSM−UD
Th,p (A) = |Pr[1← SM-UD1

A,Th,p(λ)]− Pr[1← SM-UD0
A,Th,p(λ)]| .

The THF Th is SM-UD secure if the advantage is bounded by negl(λ).

Definition 17 (Single-function, Multi-Target Collision Resistance for distinct tweaks - SM-TCR).
Let Th be a THF. Consider an adversary A = (A1,A2) playing the non-adaptive security game in Experi-
ment 6, where A1 is allowed to make p classical queries to an oracle OP (·, ·), for p ≤ |T |.

Experiment 6: SM-TCRA,Th,p(λ)

1: P ←R P // The public parameters of the function

2: Define OP (·, ·): on input (T,M), it returns Th(P, T,M).

3: (Q = {(Ti,Mi)}pi=1, S)← A
OP (·,·)
1 ()

4: (j,M)← A2(Q, S, P )
5: if Th(P, Tj ,Mj) = Th(P, Tj ,M) ∧ M ̸= Mj ∧ DIST({Ti}pi=1) then
6: return 1
7: else return 0

We denote by SuccSM-TCR
Th,p (A) the probability that A wins the experiment. The THF Th is SM-TCR secure

if SuccSM-TCR
Th,p (A) ≤ negl(λ). Adaptive SM-TCR security requires the adversary to win with overwhelming

probability a variant of Experiment 6 in which A1 gets as input the parameter P instead of oracle access to
the THF.

Definition 18 (Single-function, Multi-target (second) Preimage REsistance for distinct tweaks
- SM-PRE). Let Th be a THF. Consider an adversary A = (A1,A2) playing the security game in Experi-
ment 7, where A1 is allowed to make p classical queries to an oracle OP (·, {xi}i), for p ≤ |T |.
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Experiment 7: SM-PREA,Th,p(λ)

1: P ←R P
2: for i=1,. . . ,p do
3: xi

$←−{0, 1}m

4: Define OP (·, {xi}i): on input the i-th query Ti, it returns Th(P, Ti, xi).

5: (Q = {(Ti)}pi=1, S)← A
OP (·,{xi}i)
1 ()

6: (j,M)← A2(Q, S, P )
7: if Th(P, Tj , xj) = Th(P, Tj ,M) ∧ M ̸= xj ∧ DIST({Ti}pi=1) then
8: return 1
9: else return 0

We denote by SuccSM-PRE
Th,p (A) the probability that A wins the experiment. The THF Th is SM-PRE secure

if SuccSM-PRE
Th,p (A) ≤ negl(λ).

Finally, to define Decisional Second Preimage Resistance (SM-DSPR) we need a second-preimage exists
predicate for THFs.

Definition 19 (SPP,T ). A second preimage exists predicate of a THF Th : P ×T ×{0, 1}m → {0, 1}n with
a fixed P ∈ P, T ∈ T is the function SPP,T : {0, 1}m → {0, 1} defined as follows:

SPP,T (x) :=

{
1 if |Th−1

P,T (Th(P, T, x))| ≥ 2

0 otherwise

where Th−1
P,T refers to the inverse of the tweakable hash function with fixed public parameter and tweak.

Definition 20 (Decisional Second-Preimage Resistance - SM-DSPR). Let Th be a THF. Consider
an adversary A = (A1,A2) playing the security game in Experiment 8, where A1 is allowed to make p
classical queries to an oracle OP (·, ·), for p ≤ |T |.

Experiment 8: SM-DSPRA,Th,p(λ)

1: P ←R P
2: Define OP (·, ·): on input (T,M), it returns Th(P, T,M).

3: (Q = {(Ti,Mi)}pi=1, S)← A
OP (·,·)
1 ()

4: (j, b)← A2(Q, S, P )
5: if SPP,Tj

(xj) = b ∧ DIST({Ti}pi=1) then
6: return 1
7: else return 0

We denote by SuccSM-DSPR
Th,p (A) the probability that A wins the experiment. Let

abort := Pr

SPP,Tj
(xj) = b
∧

DIST({Ti}pi=1)
|

P ←R P,
(Q = {(Ti,Mi)}pi=1, S)← A

OP (·,·)
1 (),

(j, b)← A2(Q, S, P )

 .

The THF Th is SM-DSPR secure if max
{
0,SuccSM-DSPR

Th,p (A)−
}
≤ negl(λ).
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D.2 Interleaved Target Subset Resilience

Unforgeability for Hash-and-Sign signatures requires that A cannot find a message which is mapped to a key
set (and a set of indexes in case of SPHINCS+ and FSS.SPHINCS) such that the adversary has already seen
all secret values indicated by the indexes for that key set. This property is called Interleaved Target Subset
Resilience (ITSR), and is defined as follows.

Definition 21 (Interleaved Target Subset Resilience - ITSR). Let H : K × {0, 1}ℓ → {0, 1}m be a
keyed hash function. Consider a mapping function MAPh,k,t : {0, 1}m → {0, 1}h × [0, t− 1]k which maps an
m-bit string to a set of k indexes. We denote those indexes as ((I, 1, J1), . . . , (I, k, Jk)), where I is chosen
from [0, 2h−1] and each Ji is chosen from [0, t−1]. The success probability of an adversary A against ITSR of
H is defined as follows. Let G = MAPh,k,t ◦H. Let O(·) be an oracle which on input of an ℓ-bit message mi

samples a key ki
$←−K and returns G(ki,mi). The adversary A is allowed to query the oracle with messages

of its choice. Denote the number of queries with q. Then,

SuccITSRH,q = Pr

[
G(k,m) ⊆

⋃q
j=1 G(kj ,mj)

∧(k,m) /∈ {(kj ,mj)}qj=1

| (k,m)← AO(·)(1λ)

]
,

where {(kj ,mj)}qj=1 represent the responses of the oracle O(·). The hash H is ITSR if SuccITSRH,q = negl(λ).

E Introducing SPHINCS+

SPHINCS+ is composed of various building blocks: a one-time signature called WOTS+ [31], which is trans-
formed in a multiple-use signature called XMSS using Merkle trees [17], hypertrees, and the few-times
signature scheme FORS [10].

E.1 Tweakable Hash Function in SPHINCS+

To achieve security, tweakable hash function requires that a unique tweak is used in every call to the function.
To ensure that each tweak is indeed unique SPHINCS+ it includes a “context information” called ADRS that
encodes the specific usage of the hash function and its location in the tree. In our paper, we denote this
tweak as either Tlocation or Tmsg for the hash of the message. For uniqueness between multiple instances of
SPHINCS+, the tweak also includes a unique public seed that is sampled during key generation that we
denote by PubSeed.

E.2 WOTS+

WOTS+ [31] is hash-based one-time signature based on the Winternitz signature (first mentioned in [45]).
The latter is preferable to Lamport signature [36], as it reduces the length of signature and keys by signing
the representation of a message m ∈ {0, 1}h base w, for some w ∈ N (WOTS+ with w = 2 is essentially
Lamport signature). The construction relies on a chaining function cik, that is, a function that applies a
somewhat collision-resistant, hard to invert function fk w − 1 times to each secret key:

cik(x, r) =

{
x if i = 0

fk(c
i−1
k (x, r)⊕ ri) otherwise

where r = (r1, . . . , rw−1) is a public random vector used in all the chains to increase entropy, and fk is chosen
at random from a family Fn : {fk : {0, 1}n → {0, 1}n | k ∈ Kn} with key space Kn. This yields ℓ1 chains,
where ℓ1 = ⌈h/ logw⌉, i.e., one chain per component of the representation of m in base w (denoted by [m]w
from now on). Let mi be the i-th component of [m]w: the i-th component of the signature would be cmi

k (sk).
This is not enough to guarantee unforgeability though. For example, by querying a signature on a message

m such that [m]w = (0, . . . , 0) the adversary gets all the secret keys (sk1, . . . , skℓ1), thus in this case A
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can perfectly impersonate the signer. To avoid this, the message digest that is signed includes both the
message m and a checksum C =

∑ℓ2
i=1(w − 1 − mi). This increases the length of keys and signature by

ℓ2 = ⌊logw(ℓ1(w − 1))⌋+ 1, but now guarantees unforgeability under some special assumptions on fk.

Definition 22. Let n ∈ N, Fn : {fk : {0, 1}n → {0, 1}n | k ∈ Kn} is a family of functions with a key space
Kn. We say that Fn is t-undetectable, if for every distinguisher D that runs in time less or equal to t, there
is a negligible function negl such that:

|Pr
[
D(k, r) = 1 | k ←R Kn, r ←R {0, 1}n

]
−

− Pr
[
D(k, fk(r)) = 1 | k ←R Kn, r ←R {0, 1}n

]
| ≤ negl(n) .

The algorithms are formally described in Protocol 8.

Protocol 8: WOTS+

Let Fn : {f i
k : {0, 1}n → {0, 1}n | k ∈ Kn}, and fix w ∈ N \ {0, 1}.

Let [m]w be the representation of m base w, andM = {0, 1}h be the message space.

Sign.KeyGen(1λ, w, h) :

1: n← λ
2: ℓ1 ← ⌈h/ logw⌉
3: ℓ2 ← ⌊logw(ℓ1(w − 1))⌋+ 1
4: ℓ← ℓ1 + ℓ2
5: p← (w, h, ℓ, ℓ1, n)
6: for i = 1, . . . , w − 1 do
7: ri

$←−{0, 1}n

8: r ← (r1, . . . , rw−1)
9: for i = 1, . . . , ℓ do

10: ski
$←−{0, 1}n

11: pki ← cw−1
k (ski, r)

12: sk← (p, sk1, . . . , skℓ)
13: pk← (p, (r, k), pk1, . . . , pkℓ)
14: return (pk, sk).

Sign.Signsk(m) :

1: (m1, . . . ,mℓ1)← [m]w, mi ∈ [0, w − 1].

2: C ←
∑ℓ1

i=1(w − 1−mi) // Checksum

3: (c1, . . . , cℓ2)← [C]w, ci′ ∈ [0, w − 1]
4: (b1, . . . , bℓ)← (m1, . . .mℓ1 , c1, . . . , cℓ2)
5: for i = 1, . . . , ℓ do
6: Compute σi = cbik (ski, r)

7: σ ← (σ1, . . . , σℓ)
8: return σ.

Sign.Verpk(m,σ) :

1: (σ1, . . . , σℓ)← σ
2: (m1, . . . ,mℓ1)← [m]w, mi ∈ [0, w − 1].

3: C ←
∑ℓ1

i=1(w − 1−mi) // Checksum

4: (c1, . . . , cℓ2)← [C]w, ci′ ∈ [0, w − 1]
5: (b1, . . . , bℓ)← (m1, . . .mℓ1 , c1, . . . , cℓ2)
6: for i = 1, . . . , ℓ do
7: σ′

i = cw−bi
k (σi, r⃗)

8: if pki = σ′
i, ∀ i ∈ [1, w − 1] then

9: return 1.
10: else return 0.

Theorem 7 ([31]). Informal. If the chaining function is a second-preimage resistant family of undetectable
one-way functions, then WOTS+ is unforgeable under chosen message attacks.

E.3 Proof of Lemma 7

Proof. Let Ny := |{x ∈ {0, 1}n+δ : f(x) = y}|, i.e., the number of preimages of a point y ∈ {0, 1}n under f .
For any y in the image of f , trivially there exists at least one preimage x. Counting the rest of the preimages
is equivalent to evaluating f on the whole {0, 1}n+δ \ {x}, and counting how many times one gets y. As f is
chosen at random, the probability that f(x′) = y is 2−n. Thus, for y in the domain, y = f(x), the number
of preimages can be written as Ny = 1 +N , where N is a random variable (independent of y) that follows
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a Bernoulli distribution with success probability 2−n over 2n+δ − 1 attempts. Therefore, for a fixed y in the
domain,

Pr (∃!x : f(x) = y) = Pr(Ny = 1) = Pr(N = 0) =

(
1− 1

2n

)2n+δ−1

≤ 2e−2δ .

The second to last inequality follows observing that g(n) := (1− 2−n)2
n

is a strictly increasing sequence of
positive numbers such that lim

n→+∞
g(n) = 1/e. ⊓⊔

E.4 XMSS

XMSS [17] essentially combines Merkle trees with WOTS+ to obtain a (stateful) multiple-use signature. To
sign N messages, the signer generates in advanced N pairs of WOTS+ keys (ski, pki), hashes the pki to a
n-bit string lfi, and then constructs a Merkle tree using lf1, . . . , lfN as leaves. The root is the published pk.
Signing the i-th message m requires revealing the authentication path to the i-th leaf, its preimage, and
signing m with the WOTS+ key ski.

This yields a multiple-use scheme with a short pk. However, XMSS has two problems: it is stateful, and
the value of N cannot be too large (otherwise generating the full tree, and its reconstruction to verify a
signature, would require too much time).

Practical Stateful XMSS: Hypertrees. In SPHINCS+, XMSS is used to build hypertrees, that is, a bunch
of Merkle trees nested into each other as follows. The signer starts by generating a standard XMSS tree of
depth d with root pk. Then, this tree can be connected to another XMSS tree of depth d by simply using
the WOTS+ secret key corresponding to one of the leaves of the first tree to sign the root of the second tree.
This way one can start by generating just the first XMSS tree, and add the following layers of trees only
when necessary. Remark that this still requires to keep track of which WOTS+ key has been used to sign.

Making XMSS Stateless. To avoid having to keep track of which key has been used, the idea is applying a
public hash function to the message to randomly path, and the index of the WOTS+ key to be used. Security
is up to collisions: as long as the number of possible keys is large enough, the probability of using twice the
same WOTS+ key pair is negligible.

E.5 FORS

FORS (Forest of Random Subset) [10] is a few time signature, that is, it can sign messages inM = {0, 1}a·k.
The high-level idea of the signature is using k Merkle trees of height a, every tree having t = 2a leaves. The
public key is an output of a tweakable hash function on the k roots of the trees. The secret key is a seed
Seedsk of a PRF. Every leaf is an output of a tweakable hash of a secret value that was generated from the
PRF (with respect to the location of the leaf). A message is hashed to a string of length a · k, then split into
k a-bits strings. The i-th string is interpreted as an index j, which represents the j-th leaf in the i-th tree.
The signature is the authentication path from the leaf to the root. The authentication path includes all the
siblings of the nodes on the path from the leaf to the root. Unforgeability follows in a standard way from
the properties of Merkle trees.

E.6 Putting everything together: SPHINCS+

SPHINCS+ is obtained combining all the previous building blocks in a hypertree through the hash-and-sign
paradigm. The hypertree is build using XMSS in all layer but the last one, where FORS is used. The hash
of the message determines both the index of the FORS instance to be used to sign, and the message digest
that gets signed using the FORS trees. Fig. 3 contains an overview of the structure of SPHINCS+.
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F Proof of Lemma 6 (unforgeability of FSS.WOTS)

Proof. Recall that in the non-adaptive game, the adversary chooses the oracle queries before getting pk. To
prove unforgeability, define the following hybrid games (see Algorithm 1 for the formal definition):

– Hj
1 for j = 0, . . . , w − 1: Each of these hybrids is equal to Experiment 4, except for the signing oracle

and the generation of the pk. To answer the message signing query, the oracle computes the signature
applying the THF Th at most bi − j times (if bi > 0):
• It computes

aji =


j if bi > j

bi − 1 if 0 < bi ≤ j

0 if bi = 0

(4)

• It samples a secret key of appropriate length: ski
$←−{0, 1}n+c(w−aj

i−1).

• It computes the signature as σi ← ca
j
i ,bia

j
i (ski, i,Seed).

Observe that if bi = 0, the oracle returns just a random string that is n+ c(w − 1) bits long. The public
key pk is generated from that signature by finishing each chain, that is: pki ← cbi,w−1−bi(σi, i,Seed).
Observe that H0

1 is exactly Experiment 4, and in Hw−1
1 the signature is computed applying the THF at

most once.
– H2: The experiment is the same as in Hw−1

1 but now A looses also if it outputs a valid forgery (m∗, σ∗)
where there exists an i such that b∗i < bi and cb

∗
i ,bi−b∗i (σ∗, i,Seed) ̸= σi. Observe that now by the

properties of the checksum a valid forgery contains at least one i such that b∗i < bi, and in such a case
it also holds that

c0,1(ski, i,Seed) = σi = cb
∗
i ,bi−b∗i (σ∗, i,Seed) .

For any such i the values that get computed from the forgery during verification fully agree with those
values that are computed during the verification of the signature by the last game hop. This means that
we can use an A that wins in H2 to break the SM-PRE security of the THF.

Algorithm 1: Hybrids for FSS.WOTS unforgeability

Differences are highlighted in red.

Hybrid Hj
1 for j = 0, . . . , w − 1

1: (λr, λsw, ℓ1, ℓ2, c,Seed)← GenCh(1λr , 1λs)
2: (Q = {m}, S)← A1(1

λ)
3: (m1, . . . ,mℓ1)← [m]w
4: C ←

∑ℓ1
i=1(w − 1−mi) // checksum

5: (c1, . . . , cℓ2)← [C]w, ci′ ∈ [0, w − 1]
6: (b1, . . . , bℓ)← (m1, . . .mℓ1 , c1, . . . , cℓ2)
7: for i = 1, . . . , ℓ do
8: if bi > j then aji ← j

9: else if 0 < bi ≤ j then aji ← bi − 1

10: else aji ← 0

11: ski
$←−{0, 1}n+c(w−aj

i−1)

12: σi ← ca
j
i ,bi−aj

i (ski, i,Seed)
13: pki ← cbi,w−1−bi(σi, i,Seed)

14: sk← (sk1, . . . , skℓ)
15: σ ← (σ1, . . . , σℓ)
16: pk← (Seed, pk1, . . . , pkℓ)
17: (m∗, σ∗)← A2(pk, S, (m,σ))
18: if (Sign.Verpk(m

∗, σ∗) = 1) ∧ (m∗ ̸= m) then
19: return 1
20: else return 0

Hybrid H2

1: (λr, λsw, ℓ1, ℓ2, c,Seed)← GenCh(1λr , 1λs)
2: (Q = {m}, S)← A1(1

λ)
3: (m1, . . . ,mℓ1)← [m]w
4: C ←

∑ℓ1
i=1(w − 1−mi) // checksum

5: (c1, . . . , cℓ2)← [C]w, ci′ ∈ [0, w − 1]
6: (b1, . . . , bℓ)← (m1, . . .mℓ1 , c1, . . . , cℓ2)
7: for i = 1, . . . , ℓ do
8: if bi > 0 then ai ← bi − 1
9: else ai ← 0

10: ski
$←−{0, 1}n+c(w−ai−1)

11: σi ← cai,bi−ai(ski, i,Seed)
12: pki ← cbi,w−1−bi(σi, i,Seed)

13: sk← (sk1, . . . , skℓ)
14: σ ← (σ1, . . . , σℓ)
15: pk← (Seed, pk1, . . . , pkℓ)
16: (m∗, σ∗)← A2(pk, S, (m,σ))
17: if (Sign.Verpk(m

∗, σ∗) = 1) ∧ (m∗ ̸= m) ∧
∀ i : b∗i < bi, c

b∗i ,bi−b∗i (σ∗, i,Seed) = σi then
18: return 1
19: else return 0
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Let SuccH(A) be the probability that A wins the hybrid H, that is, that H returns b = 1. We split the
proof in the following three lemmas.

Lemma 28. If Thj is SM-UD secure (cf. Definition 16), then Hj
1 and Hj−1

1 are computationally indistin-
guishable for every j ∈ [1, w − 1].

Proof. The proof is essentially equal to the proof of [33, Claim 2]. We include it to show the changes that
having a compressing THF yields.

First, observe that Hj−1
1 and Hj

1 behave exactly the same if A queries a message m such that aj−1
i = aji ,

that is, if m is such that bi ≤ j− 1 for all i = 1, . . . , ℓ. Thus, to have non-negligible distinguishing advantage
A has to query a message m such that ∃ i ∈ {1, . . . , ℓ} such that bi ≥ j. Assume now that there exists a
PPT adversary A such that

|SuccH
j
1(A)− SuccH

j−1
1 (A)| = ε .

We show a PPT algorithm B that wins the SM-UD experiment of Thj (cf. Experiment 5) exploiting A.
Upon receiving Seed from the experiment and (m,S) from A, B computes (b1, . . . , bℓ), computes the tweaks
(T1,j , . . . , Tℓ,j), and simulates the secret key as follows:

ϕi such that


ϕi

$←−{0, 1}n+c(w−1) if bi = 0

ϕi
$←−{0, 1}n+c(w−bi) if 0 < bi ≤ j − 1

OSeed(Ti,j , b) if bi ≥ j

where OSeed(·, b) is the oracle in the SM-UD experiment. Then it generates σ and pk as in Hj
1. Observe that

if b = 0, that is, if OSeed(·, b) returns random strings, B is perfectly simulating Hj
1. In the other case, B is

perfectly simulating Hj−1
1 . At the end of the game, B returns 1 if A returns a valid forgery, and 0 otherwise.

Therefore, the advantage of B is

AdvSM-UD
Thj ,ℓ (B

A) = |Pr[1← SM-UD1
B,Thj ,ℓ(λs)]− Pr[1← SM-UD0

B,Thj ,ℓ(λs)]|

= |SuccH
j
1(A)− SuccH

j−1
1 (A)| = ε .

⊓⊔

Lemma 29. If the THF family is SM-TCR secure, Hw−1
1 and H2 are indistinguishable.

Proof. The proof of this claim is essentially equal to the proof of [33, Claim 3]. The only difference is that
here we require a series of hybrid games to deal with the compression along the chain (as in the proof of
Lemma 28).

Lemma 30. Pr[1← H2] ≤ AdvSM-PRE
Th,ℓ ,

Proof. The proof is essentially the same as the proof of [33, Claim 3]. The only difference is that here we
require a series of hybrid games to deal with the compression along the chain (as in the proof of Lemma 28).

G Proof of Lemma 12 (Unforgeability of FSS.SPHINCS)

Lemma 31 (Security of FSS.SPHINCS).

– If Th = {Thi}i is a family of THFs that is SM-UD, SM-TCR, and SM-PRE secure, PRF, PRFmsg are
PRFs, H = {Hi}i is a family of SM-TCR secure THFs, and Hmsg is a ITSR secure compressing THF,
then FSS.SPHINCS is unforgeable under adaptive CMA.

– Assume that A cannot break the ITSR security of Hmsg nor invert PRF and PRFmsg. If Th and H
are families of compressing THF, then FSS.SPHINCS is secure for signer against an adversary A with
running time at most 2csλs/2 (in the QROM).
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– If Th and H are families of SM-TCR secure THFs, then FSS.SPHINCS is secure for the recipient.

Proof (Sketch.). The proof combines all the techniques presented in the proofs of FSS.WOTS, FSS.XMSS,
and FSS.FORS. In this sketch we only address the question of how to prove adaptive unforgeability. The
proof follows the reduction SPHINCS+ from NIST’s specification:

– H0: this is the adaptive uf − cma experiment.
– H1: same as H0, except that the outputs of PRF are replaced with random strings.
– H2: same as H1, except that the outputs of PRFmsg are replaced with random strings.
– H3: differs from H3 in that the game is lost if the FSS.FORS part of the signature (the authentication

path and/or the preimage) is different than what the signer would generate.
– H4: differs from H2 in that A looses if it outputs a valid forgery (msg, σ) where the FSS.FORS signature

part of σ contains a secret value which is the same as that of a honestly generated signature on msg, but
was not contained in any of the signatures obtained by A querying the signing oracle.

We want to bound the success probability of an adversary A against the uf − cma security of FSS.SPHINCS.
Clearly the difference in success probability of A in H0 and H1 is bounded by the security of PRF, and the
difference in success probability of A to wins in H1 and H2 is bounded by the security of PRFmsg.

The difference in success probability of A in H3 and H2 is bounded by the SM-UD, SM-TCR, and SM-PRE
security ofTh,H orHmsg. Indeed, to distinguish the gamesA should return a forgery such that the FSS.FORS
section is not the same as the signer would generate. Doing that requires breaking the SM-PRE, SM-UD, and
SM-TCR security of Th, H or Hmsg as it would imply either finding a collision in one of the trees, or forging
a FSS.WOTS signature. More details on the reduction can be found in [34, Appendix B, Proof of theorem
2].

The difference in success probability of A in H3 and H4 is bounded by 1/2 times the success probability
of A in H3. The reason is that the secret values which were not disclosed to A before still contain 1 bit of
entropy, even for an unbounded A.

Finally, we need to bound the success probability of A in H4. This experiment is exactly ITSR’s exper-
iment, since if A wins in H4, the FSS.FORS signature must be valid and consist only of values that have
been observed by A in previous signatures. Hence, the success probability of A in H4 is bounded by ITSR’s
security. This concludes the proof.
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Fig. 3. SPHINCS+ structure: all the leaves in the internal trees are the one-time signature WOTS+, the trees are
Merkle trees. The top tree is a Merkle tree of all the potential pks, the root of the top tree is the pk of the scheme.
The leaves of the lowest level of SPHINCS+ are the few-time FORS signatures.
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