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ABSTRACT
A central advantage of deploying cryptosystems is that the security

of large high-sensitive data sets can be reduced to the security of a

very small key, i.e., a master key. The most popular way to manage

the master key is to use a (𝑡, 𝑛)−threshold secret sharing scheme:

a user splits her/his key into 𝑛 shares, distributes them among 𝑛

key servers, and can recover the key with the aid of any 𝑡 of them.

However, it is vulnerable to device destruction: if all key servers

and user’s devices break down, the key will be permanently lost. We

propose a Destruction-Resistant Key Management scheme, dubbed

DRKM,which ensures the key availability even if destruction occurs.

In DRKM, a user utilizes her/his 𝑛∗ personal identification factors

(PIFs) to derive a cryptographic key but can retrieve the key using

any 𝑡∗ of the 𝑛∗ PIFs. As most PIFs can be retrieved by the user

per se without requiring stateful devices, destruction resistance is

achieved. With the integration of a (𝑡, 𝑛)−threshold secret sharing

scheme, DRKM also provides portable key access for the user (with

the aid of any 𝑡 of 𝑛 key servers) before destruction occurs. DRKM

can be utilized to construct a destruction-resistant cryptosystem

(DRC) in tandem with any backup system. We formally prove the

security of DRKM, implement a DRKM prototype, and conduct a

comprehensive performance evaluation to demonstrate its high

efficiency. We further utilize Cramer’s Rule to reduce the required

buffer to retrieve a key from 25 MB to 40 KB (for 256-bit security).

KEYWORDS
Destruction resistance, key management

1 INTRODUCTION
Secure and efficient key management schemes are cornerstones of

any cryptosystem, which should satisfy the desired requirements

of availability (users can always correctly recover their keys) and

portability (users can access their keys from multiple devices). To
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this end, a user always stores her/his cryptographic keys in a repos-

itory [1–5]. Generally, the repository can be either instantiated by

deploying a local device [3, 4] or subscribing to key access services

from a dedicated service provider [5]. Such a repository always

refers to a key server in literature [6, 7]. This paradigm has been

widely utilized in commercial systems, e.g., Microsoft Azure [1]

and Google Cloud Platform [2].

Despite the advantage of deploying a key server, a critical issue—

vulnerability of the system against device destruction—arises nat-

urally: as uncontrollable and unpredictable threats towards the

key server always exist in reality, the user has to bear the risk

that her/his keys would be permanently lost if the key server is

destroyed. We stress that device destruction is not just a theoretical

concern, and recent incidents have shown that it would happen

with various manifestations which typically consist of hardware

destruction and software unavailability [8–10]. Notably, a private

key stored in a hard drive was permanently unavailable to its owner

due to a hard drive breakdown, which directly caused that 7500

bitcoins (which are worth more than $280 million today) could

never be used by the owner [8]. In addition, after the key server

storing users’ cryptographic keys is hacked by ransomware attacks,

all cryptographic services have been paralysed [9, 10]. As such,

remaining availability in case of device destruction has become a

primary requirement for key management schemes.

The most popular method to manage cryptographic keys is the

threshold secret sharing scheme [11] (as well as its variants [12]),

where 𝑛 key servers are deployed, and each of them maintains a

share of the key such that the key can be recoveredwith any 𝑡 shares.

Such a key management scheme provides a strong guarantee in

terms of security and reliability: even if an adversary compromises

𝑡 − 1 key servers, he cannot get any information about the key; the

destruction of any 𝑛−𝑡 key servers cannot hamper the key recovery.

Due to the theoretically desirable properties and practical natures,

threshold secret sharing schemes still serve as a key component

for lots of high-sensitive systems (e.g., vault systems [13]) in the

current age, even though the pioneering work was proposed by

Shamir [11] more than 40 years ago. However, the fundamental

issue of remaining at least 𝑡 key servers available under any cir-

cumstance still exists. In reality, misfortunes causing simultaneous

destruction of all key servers could still happen in any system, no

1
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matter what high degree of reliable measures would be taken. For

instance, Amazon Web Services (AWS) suffered a major outage

[14] due to misoperations, where all servers in the Amazon Simple

Storage Service (S3) subsystems broke down, and many popular

websites, e.g., Netflix and Slack, were affected [15]. Severe natural

disasters also would directly destroy local servers and make them

permanently unavailable to their users. A notable example is that

the eruption of the Tonga volcano [16] in 2022 destroyed critical

information infrastructure almost all over the country.

A natural way to mitigate this problem is to employ additional

servers providing backup services: if some key servers break down,

backup servers can continue to handle users’ requests
1
. Neverthe-

less, this remedy cannot be applied for key management, since

multiple backups of keys increase the danger of security breaches.

This motivates us to consider the following question:

Motivation question 1

Can we have a key management scheme that ensures key avail-
ability even if all repositories (including users’ devices and key
servers) are destroyed?

The key observation behind ourwork is that destruction-resistant

key availability can only be achieved by a key generation mecha-

nism that enables the user to recover the key as needed without

requiring any stateful2 device. With the observation, we introduce

two new concepts: reconstructable secret and un-reconstructable

secret, depending on whether a stateful device is necessary for re-

covering the secret. We then propose a practical key derivation

mechanism to generate reconstructable secrets, where the key

idea is to generate the reconstructable secret using users’ personal

identification factors (PIFs)
3
. Specifically, we categorize PIFs into

three types: device-dependent ones, device-independent ones, and

storage-independent ones, where processing device-dependent/device-

independent PIFs (for cryptography purposes), such as biometric

characteristics [19–22], requires a stateful/stateless device, and pro-

cessing storage-independent PIFs, e.g., passwords, does not even

require some additional storage. A systematic analysis is provided

in Section 2. We also notice that reconstructable secrets can be

directly derived from device/storage-independent PIFs. With recon-

structable secrets, it seems that a destruction-resistant key manage-

ment scheme can be trivially constructed: a user constructs a master

key from multiple reconstructable secrets and further utilizes it to

derive other cryptographic keys. However, the above scheme is also

confronted with the following issues.

Regarding functionality, the key recovery depends on a strong

assumption that the user needs to keep all device-independent PIFs

available under any circumstance. As a counterexample, if the user

utilized a fingerprint to generate the master key, when large-scale

disasters occur, the user’s finger may be injured, and consequently

the user cannot recover the master key until the finger heals.

1
To resist the destruction caused by natural disasters, the backup servers can be

deployed around the world. However, this approach may violate data protection

regulations in several countries [17, 18] and would be expensive to deploy in practice.

2Stateful means that the device stores some secret information related to the user.

3
We utilize the terminology of “PIFs” here to distinguish from authentication factors

(AFs). In digital systems, a PIF is the factor that uniquely identifies a user while an

AF is considered as a special PIF that can be utilized to construct secure and usable

authentication schemes. In other words, some PIFs cannot serve as AFs, e.g., DNA

is a PIF but cannot be used to construct usable authentication schemes (due to its

inconvenience and high costs).

Regarding convenience, the portability is also lost, since “device-

independent” is not equivalent to “portable” (even if a PIF is device-

independent, the user may not retrieve it anytime and anywhere).

For instance, if a user has a camera capable of collecting irises,

she/he can derive a secret from the iris. Subsequently, the user

can only recover the secret when she/he equips such a specific-

purpose device (that may not be the same as the previous one

but has the same functionalities). Such a secret fails to achieve

portability, and migrating it may cause new issues in terms of

security and efficiency.

The above limitations further motivate us to consider the follow-

ing question:

Motivation question 2

Can we have a destruction-resistant key management scheme that
enables key recovery from a subset of original PIFs while achieving
portability before destruction occurs?

We stress that the conventional threshold secret sharing [11] and

its distributed variants [12] fail to achieve the key recovery from a

subset of original PIFs, since they essentially share the same para-

digm: first determine the secret and then split it into multiple shares;

any threshold number of shares can reconstruct the secret. How-

ever, in destruction-resistant key management introduced before,

the “shares” (i.e., the reconstructable secrets) are pre-determined

by PIFs, and the master key is derived from them. To achieve the

key recovery from a subset of original PIFs, a threshold key deriva-

tion mechanism should be designed, such that the master key can

be “derived” from all pre-determined “shares” but can be recov-

ered with only the threshold number of them. (By comparison, the

“shares” are determined by PIFs rather than the master key as in

conventional threshold secret sharing. The detailed comparison is

provided in Appendix B.)

To achieve portability, the user can derive 𝑛 different recon-

structable secrets from different PIFs, employ 𝑛 key servers, and

let each key server maintain one secret. By doing so, the user can

access the master key with the aid of key servers in a portable

way
4
before the destruction occurs. Whereas, such an approach is

vulnerable to trawling attacks [23]. Specifically, a PIF is not only

used for generating the master key in one system but also used in

other systems for other cryptographic purposes, e.g., secure authen-

tication. In the above approach, the key servers can compromise

enough information about the user’s PIFs from the reconstructable

secrets, which enables adversarial key servers to impersonate the

user to access other services where the same PIFs are used for

authentication.

To the best of our knowledge, we still lack a destruction-resistant
key management scheme that enables key recovery from a subset
of original PIFs after destruction occurs while achieving portability
before destruction occurs.

1.1 Our contributions
In this paper, we propose a Destruction-Resistant Key Management

scheme, dubbedDRKM,which goes one step beyond existing schemes

[11, 12]. Specifically, our contributions are summarized as follows.

4
The user can authenticate herself/himself with portable PIFs.

2
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Concepts of storage/device-independent PIFs. We first propose

three new concepts about personal identification factors (PIFs)—

storage-independent PIFs, device-independent PIFs, and device-

dependent PIFs—based on whether a PIF can be retrieved by the

user per se without requiring any storage or a stateful device.
Concepts of (un-)reconstructable secrets.We introduce two con-

cepts about secrets—reconstructable secrets and un-reconstructable

secrets. We point out that reconstructable secrets can be directly

derived from storage/device-independent PIFs. We also present

a series ofmethods to derive reconstructable secrets from device-

dependent PIFs in tandemwith storage/device-independent PIFs

under certain conditions.

Construction for destruction-resistant key management. We

propose DRKM, a destruction-resistant and portable key man-

agement scheme. To achieve destruction resistance, DRKM uti-

lizes a threshold key derivation mechanism to enable a user to

derive a master key from 𝑛∗ PIFs (which include storage/device-

independent ones and might include device-dependent ones)

during the setup phase and to recover the master key using any

𝑡∗ of the 𝑛∗ PIFs after destruction occurs. To achieve portability,

DRKM adopts a multi-server-aided paradigm and utilizes a con-

ventional (𝑡, 𝑛)-threshold secret sharing scheme (𝑡 and 𝑛 are

independent of 𝑡∗ and 𝑛∗) to distribute the master key among 𝑛

key servers. As long as any 𝑡 of 𝑛 key servers are available, the

user can access the master key in a portable way (i.e., she/he

does not maintain any secret in local devices.). DRKM is compat-

ible with existing backup systems and can be directly extended

to a destruction-resistant cryptosystem (DRC) in tandem with

any commercial cloud storage service, such as Google Drive

[24], Dropbox [25].

Formal security proofs and prototype implementation. We

provide formal security definitions of DRKM and prove its secu-

rity. Particularly, we prove that an adversary, who compromises

𝑡 − 1 key servers and 𝑡∗ − 1 reconstructable secrets, cannot get
any information about the master key. We implement a DRKM

prototype and conduct a comprehensive performance evalua-

tion which shows that it would take about 120 ms to derive

a master key from 10 popular PIFs and take less than 5 ms to

recover the master key from any 𝑡∗ secrets with 𝑡∗ = 12 and

𝑛∗ = 20. In addition, we utilize Cramer’s Rule [26] to signifi-

cantly reduce the required buffer to retrieve a key from 25 MB

to 40 KB (for 256-bit security).

We demonstrate the viability of DRKM for two existing appli-

cations that can benefit from the desirable property of destruction

resistance in Section 5.6. One of two applications extends to DRCs.

We show how DRKM supports these applications without chang-

ing the current system architecture. Since destruction resistance is

a fundamental requirement of any cryptosystem, we believe that

DRKM has further useful applications.

1.2 Technical overview
The core of achieving destruction resistance is to be free from the

reliance on stateful devices. In Section 2, we divide PIFs into three

categories: storage-independent PIFs, device-independent PIFs, and

device-dependent PIFs. A user can directly derive reconstructable

secrets from storage/device-independent PIFs, and these secrets

are independent of any stateful devices. We also present a series of

methods to derive reconstructable secrets from device-dependent

PIFs in conjunction with storage/device-independent PIFs.

With the above methods, a user first derives 𝑛∗ reconstructable
secrets from PIFs and then aggregates these secrets to obtain a mas-

ter key. The challenge in designing DRKM is to achieve threshold

retrieval for the aggregated master key, i.e., a master key is aggre-

gated from 𝑛∗ pre-determined secrets and can be retrieved from

any 𝑡∗ of them. To address the challenge, we utilize a threshold

key derivation mechanism. Specifically, the user first constructs a

𝑛∗-degree polynomial 𝑝 (𝑥) using the 𝑛∗ secrets as its roots. In this

polynomial, the constant term serves as the master secret, and the

coefficients of 𝑝 (𝑥) of degree 𝑛∗ − 1 down to 𝑡∗ are published as

the auxiliary information 𝑎𝑢𝑥 . With 𝑡∗ secrets and 𝑎𝑢𝑥 , the degree
of the polynomial 𝑝 (𝑥) can be reduced from 𝑛∗ to 𝑡∗ − 1. The user
can compute the coefficients of 𝑝 (𝑥) from degree 𝑡∗ − 1 down to 0

so as to obtain the master key.

We also integrate an aggregation-then-split mechanism into

DRKM to achieve portable key access in normal times against trawl-

ing attacks. The master key derived from the 𝑛∗ reconstructable
secrets is further split into 𝑛 shares using a conventional (𝑡, 𝑛)-
threshold secret sharing scheme, and each key server maintains a

share. Adversarial key servers cannot compromise any information

about the reconstructable secrets from the secret shares. This yields

the final DRKM: before the destruction occurs, the user can recover

the master key with the aid of key servers in a portable way; once

the destruction occurs (i.e., the key servers and the user’s devices

are destroyed), the user can retrieve any 𝑡∗ reconstructable secrets
using all available PIFs at that time and recover the master key

from them. In the extreme case where all devices, key servers, and

even 𝑎𝑢𝑥 is unavailable, the user can also recover the master key

from 𝑛∗ original PIFs. A destruction-resistant cryptosystem (DRC)

can be developed by directly integrating DRKM and a full-fledged

backup system.

1.3 Comparison with concurrent work
A very recent work concurrent to DRKM (i.e., threshold multi-factor

key derivation function, short for TMFKDF) proposed by Nair et al.

[27] could be a partial solution to construct a destruction-resistant

key management scheme: a user first randomly chooses a master

key, splits it into multiple shares using a conventional threshold

secret sharing scheme and encrypts each share under a PIF (using

some key derivation functions).

Essentially, TMFKDF inherits the threshold property of the con-

ventional threshold secret sharing scheme, where the master key

is randomly chosen by the user rather than determined by PIFs.

Therefore, some metadata, e.g., the encrypted shares, is inherently

needed for key recovery, and dedicated storage for metadata is

always required. By comparison, DRKM is completely orthogonal

to the conventional sample-share-and-reconstruct idea as in TM-

FKDF. With DRKM, the user can also recover the master key from

𝑛∗ reconstructable secrets even if any storage is unavailable.

In DRKM, it seems that some metadata is also required in some

cases. For instance, if the user derives reconstructable secrets from

biometric characteristics [19–22], some metadata, e.g., error correct-

ing code [28, 29], is required to ensure the consistency of secrets

in different derivations. However, we stress that such metadata in

3
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DRKM is totally different from ciphertext in TMFKDF due to the

following reasons.

The metadata in DRKM can be shared among different systems

in which PIFs are utilized for other purposes, e.g., user authentica-

tion. As such, dedicated storage is not required, and the user can

retrieve the metadata from other systems on demand. However, for

TMFKDF, dedicated storage for ciphertext cannot be shared among

other systems. Furthermore, it is promising to free from metadata

in DRKM by utilzing new PIFs where deriving secrets from them

does not require any storage. A detailed comparison is provided in

Section 5.4.

Roadmap. The remainder of this paper is organized as follows.

We introduce the concepts of storage/device independent PIFs in

Section 2. We propose DRKM in Section 3 and give the formal

security proof in Section 4. In Section 5, we detail the implementa-

tion and evaluate the performance of DRKM. Finally, we draw the

conclusion and outlook for future research directions in Section 6.

2 PIFS AND RECONSTRUCTABLE SECRETS
2.1 Definitions of PIFs
We analyze popular PIFs and give a brief introduction to them in

Appendix C, referring to “something the user knows”, “someone

the user is”, and “something the user has” [30]. Intuitively, a PIF

can uniquely identify a user, and thereby each PIF indicates a sole

secret utilized to distinguish different PIFs. We observe that the

utilization of some PIFs has to depend on stateful hardware devices

that maintain the necessary state information, e.g., hardware to-

kens. Additionally, a succinct description of PIF is required, which

includes the directions for use and necessary auxiliary information.

The secret is private, and the description is public. We formally

define a general PIF as follows.

Definition 1. A PIF is a triple of arguments (sta, 𝜇, 𝑑𝑒𝑠𝑝), where
sta is state information, 𝜇 is a unique secret, and 𝑑𝑒𝑠𝑝 is a description
of the PIF, including the directions for use and necessary auxiliary
information.

We take a SIM card [31] as an example: sta represents the SIM
card itself, 𝜇 is the secret key fused in it, and𝑑𝑒𝑠𝑝 includes necessary

auxiliary information (e.g., public parameters and authentication

protocols used in the SIM card).

With the previous analyses, we can heuristically divide the

above PIFs into three categories—storage-independent ones, device-

independent ones, and device-dependent ones. In reality, passwords

and PIN codes can be reconstructed from users’ memory and are

inherently independent of any personal or public storage. Biometric

characteristics can be reconstructed by specific-purpose devices

(e.g., cameras used to collect irises) instead of stateful devices. For
device-dependent PIFs (e.g., SIM cards, hardware tokens, and Intel

SGX), once a stateful device is destroyed, the corresponding PIF

cannot be recovered by the user per se.

Obliviously, storage-independent PIFs are also device-independent

but device-independent ones need public information for recon-

struction and are dependent on public storage. We capture the stor-

age independence, device independence, and device dependence of

PIFs by the following definitions, respectively.

Definition 2. (Storage-independent PIF). A storage-independent
PIF is stateless and can be represented by a triple of arguments (⊥
, 𝜇, 𝑑𝑒𝑠𝑝), where ⊥ represents that the generation and maintenance
of 𝜇 do not rely on any public or personal storage.

Definition 3. (Device-independent PIF). A device-independent PIF
is stateless and can be represented by a triple of arguments (info, 𝜇, 𝑑𝑒𝑠𝑝),
where the generation and maintenance of 𝜇 is independent of devices
and only rely on some public storage info.

Definition 4. (Device-dependent PIF). A device-dependent PIF is
stateful and can be represented by a triple of arguments (sta, 𝜇, 𝑑𝑒𝑠𝑝),
where the generation and maintenance of 𝜇 depend on a hardware
device specified by sta.

Weobserve that all biometric characteristics are device-independent,

as they are determined by a user per se. However, they may not

totally independent of storage, since some public information, e.g.,

error correcting code [28, 29], is needed when utilizing them. In

cryptographic applications, how to make biometric characteristics

free from dedicated storage is a fascinating open problem.

2.2 Reconstructable secrets
We first consider what it means to be “reconstructable”. Informally,

a value is reconstructable if it is available without a specific stateful

device and can be accessed anytime and anywhere. Reconstructable

values generalize the notion of storage/device-independent PIFs,

which is captured by Definition 5. For completeness, we also define

un-reconstructable values in Definition 5.

Definition 5. A two-valued probability distribution (𝜎, 𝛼) gen-
erated by an efficient probabilistic algorithm is reconstructable if
it does not take state information sta as inputs, where 𝛼 represents
some (public) auxiliary knowledge about 𝜎 or its distribution. (𝜎, 𝛼)
is un-reconstructable if the efficient probabilistic algorithm takes state
information sta as inputs.

We can trivially extend reconstructable values (𝜎, 𝛼) to recon-

structable secrets by further requiring 𝜎 to be kept secretly. Sim-

ilarly, a secret derived from an un-reconstructable value is un-

reconstructable. In reality, we can utilize storage/device-independent

PIFs to serve as reconstructable values to derive reconstructable

secrets. For instance, fuzzy extractor algorithms [28, 29] can be

utilized to extract a secret from a feature template of biometric

characteristics. The secret is reconstructable, since fuzzy extrac-

tion algorithms ensure that the same secret can be extracted from

similar but not identical feature templates. Directly (only) using

passwords and PINs as reconstructable secrets cannot achieve a

reasonable security guarantee due to their inherent limitations. To

mitigate this problem, we can integrate multiple PIFs to derive a

high min-entropy reconstructable secret. With the above analysis,

we draw Theorem 1.

Theorem 1. A value 𝑠 = F({𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚}) is recon-
structable if 𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚 are storage/device-independent, and
F is some function.

Proof. For 𝑖 = 1, . . . ,𝑚, 𝑃𝐼𝐹𝑖 = (⊥ /info𝑖 , 𝜇𝑖 , 𝑑𝑒𝑠𝑝𝑖 ), 𝑠 = F({𝑃𝐼𝐹1,
𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚}) = F({𝜇𝑖 }1≤𝑖≤𝑚, {info𝑖 }1≤𝑖≤𝑚), where ({𝜇𝑖 }1≤𝑖≤𝑚,
{info𝑖 }1≤𝑖≤𝑚) satisfies Definition 5, and {𝜇𝑖 }1≤𝑖≤𝑚 are secret in-

formation. Hence, 𝑠 is a reconstructable secret. □

4
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ID,	RAND,	AUTH

Server

SIM card
𝐾

𝐼𝐷 𝑀𝐴𝐶 = 𝑓1	(𝐾, 𝑆𝑄𝑁||𝑅𝐴𝑁𝐷)
𝐴𝐾 = 𝑓5(𝐾, 𝑅𝐴𝑁𝐷)
𝐴𝑈𝑇𝐻 = 𝑆𝑄𝑁 ⊕𝐴𝐾	||	𝑀𝐴𝐶

𝐴𝐾 = 𝑓5(𝐾, 𝑅𝐴𝑁𝐷)
𝑋𝑀𝐴𝐶 = 𝑓1	(𝐾, 𝑆𝑄𝑁||𝑅𝐴𝑁𝐷)

𝑋𝐴𝑈𝑇𝐻 = 𝑆𝑄𝑁⊕ 𝐴𝐾	||	𝑀𝐴𝐶
𝑋𝑀𝐴𝐶	?= 𝑀𝐴𝐶

𝑋𝑅𝐸𝑆 = 𝑓2(𝐾, 𝑅𝐴𝑁𝐷)

𝑅𝐸𝑆 = 𝑓2(𝐾, 𝑅𝐴𝑁𝐷)

𝑋𝑅𝐸𝑆
𝑋𝑅𝐸𝑆	?= 𝑅𝐸𝑆

Success/Fail

𝐾

Figure 1: User authentication based on
SIM cards.

Hardware token

User Server

𝑆𝑒𝑒𝑑 𝑆𝑒𝑒𝑑

𝑇𝑖𝑚𝑒 𝑇𝑖𝑚𝑒

Request

𝑂𝑇𝑃 = 𝐻𝑀𝐴𝐶(𝑠𝑒𝑒𝑑, 𝑇𝑖𝑚𝑒)𝑂𝑇𝑃′ = 𝐻𝑀𝐴𝐶(𝑠𝑒𝑒𝑑, 𝑇𝑖𝑚𝑒)
𝑂𝑇𝑃′

𝑂𝑇𝑃3?= 𝑂𝑇𝑃Success/Fail

c

Figure 2: User authentication based on
RSA SecurIDs.

U2F token

User Server

𝑠𝑘 𝑝𝑘

Request

Generate 𝑁𝑜𝑛𝑐𝑒

𝜎 = 𝑆𝑖𝑔𝑛./(𝑁𝑜𝑛𝑐𝑒)
𝑁𝑜𝑛𝑐𝑒

Success/Fail
0/1 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘, 𝜎)

𝜎

Figure 3: User authentication based on
U2F tokens.

If all 𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚 are storage-independent, the secret 𝑠 =

F({𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚}) does not rely on any public or personal

storage, since 𝑠 can be represented as 𝑠 = F({𝜇𝑖 }1≤𝑖≤𝑚,⊥).

2.3 Conditionally reconstructable secrets
It seems impractical to derive a reconstructable secret from a device-

dependent PIF, since a secret derived from a device-dependent PIF

cannot be recovered by the user if the device is destroyed. However,

we observe that a conditional reconstructable secret can be gener-

ated by a “hybrid model”, i.e., we can derive a reconstructable secret

from a special class of device-dependent PIFs in tandem with some

storage/device-independent PIF(s) under a specific assumption.

For the device-dependent PIFs introduced in Appendix C, i.e.,

SIM cards, hardware tokens, and SGX, they essentially share the

same paradigm, where a secret generated by the manufacturer is

fused in the device. The user can only utilize the secret to compute

authentication credentials but cannot extract it. We observe that if

the underlying authentication scheme is based on the symmetric-

key cryptographic primitives (e.g., MAC), the server will store the

same secret that is fused in the device after registration. In this case,

once the device is destroyed, the server (or the device’s manufac-

turer) still stores the secret. As such, the secret can be recovered

with the aid of the server or the manufacturer even if device de-

struction occurs.

In the following, we discuss how to derive a conditionally recon-

structable secret from each of the device-dependent PIFs introduced

in Appendix C.

SIM card. As shown in Figure 1, a user can utilize a SIM card

to compute a MAC on a storage/device-independent PIF and set

the MAC as the conditionally reconstructable secret derived from

the SIM card. Since MAC is existentially unforgeable, and the PIF

is secretly maintained by the user, the MAC-based secret is only

known to the user. In addition, as the secret fused in the SIM card is

also maintained by the cellular communication service provider, the

user can recover the MAC-based secret with the aid of the provider.

Hardware token. For HMAC-based hardware tokens (as shown in

Figure 2), the user can derive a conditionally reconstructable secret

in the same way as that from the SIM card. However, ECDSA-based

hardware tokens (as shown in Figure 3) cannot be utilized to derive

a reconstructable secret, since the manufacturer does not maintain

the secret stored in the user’s hardware token. However, we notice

that for some existing hardware tokens, this can be achieved by

utilizing a well-known attack, i.e., the backdoor attack released

by Snowden [32], where this approach actually does not need the

assistance from the manufacturer [33].

Intel SGX. The Root Provisioning Key (PRK) fused in Intel SGX

is shared by a user and Intel. Intel SGX architecture provides the

EGETKEY instruction to derive a key from the RPK [34–36]. The

user initializes an enclave for a storage/device-independent PIF and

invokes EGETKEY for the enclave. The key output by the EGETKEY
is the reconstructable secret derived from the Intel SGX. When

reconstructing the secret, the user only needs to establish an enclave

for the previous storage/device-independent PIF and gets the secret

by calling the EGETKEY instruction.

Limitations of hybrid model. Regarding security, the user has

to fully trust the servers or the manufacturers. Malicious servers

and manufacturers may abuse the user’s secret. Regarding relia-

bility, the reconstructable secrets derived by the hybrid method

are conditionally reconstructable. The servers or manufacturers

have another mechanism to authenticate the user when the user’s

devices are destroyed, e.g., real-name systems. The reconstructabil-

ity depends on the reliability of the servers or the manufacturers.

Once the servers and manufacturers are destroyed, the user cannot

recover the reconstructable secrets.

It is worth stressing that the above limitations are not contradictory
to our primary motivation of resistance against device destruction
due to the following reasons. First, the manufacturers and cellular

communication service providers play an important role in con-

structing critical infrastructures, and thereby they would take lots

of measures to ensure the reliability and security of their devices.

Second, if the manufacturers and cellular communication service

providers misbehave, it would cause a huge loss. As such, both the

manufacturers and cellular communication service providers bear

rigorous accountability from governments in reality. By compari-

son, the measures taken by application service providers and users

to improve the reliability and security of key servers and devices

are always weak, and the accountability is somewhat trivial.

3 THE PROPOSED DRKM
3.1 Notation
We utilize ℓ to denote the security parameter, and |𝑎 | denotes the
absolute value of 𝑎. ®𝐴 denotes a set {𝐴1, . . . , 𝐴𝑛}. [1, 𝑛] denotes the
set {1, 2, . . . , 𝑛}. 𝑎 $← 𝐴 denotes that 𝑎 is uniformly chosen from 𝐴.

3.2 Definition of DRKM
DRKM consists of three entities: a user U, a set of key servers

®KS = {KS1,KS2, . . . ,KS𝑛}, and a backup system. There are four

algorithms in DRKM, Setup,Managing, Access, and Recovery.
• 𝑃𝑃 ← Setup(ℓ).
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Indistinguishability: IND-KeyA1

(ℓ)

1: {𝑆, 𝑠1, . . . , 𝑠𝑛, 𝑎𝑢𝑥} ← Managing(𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ )

2: 𝑆★
$← {0, 1} |𝑆 |

3: 𝑏
$← {0, 1}

4: If 𝑏 = 1, 𝐾𝑒𝑦 = 𝑆 ; else, 𝐾𝑒𝑦 = 𝑆★

5: 𝑏′ ← A1 (𝐾𝑒𝑦, 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑃𝐼𝐹𝑖1 , . . . , 𝑃𝐼𝐹𝑖𝑡∗−1 , 𝑎𝑢𝑥)
6: If 𝑏′ = 𝑏, return 1

7: Else, return 0.

PIF privacy: PIF-PrivacyA2

(ℓ)

1: {𝑆, 𝑠1, . . . , 𝑠𝑛, 𝑎𝑢𝑥} ← Managing(𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ )

2: Select a subset

−−→
𝑃𝐼𝐹 1 of {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ }, where |

−−−→
𝑃𝐼𝐹1 | = 𝑡∗−1

3: Generate a PIF set

−−−→
𝑃𝐼𝐹0, where

−−−→
𝑃𝐼𝐹0 ∩ {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } = ∅

and |−−−→𝑃𝐼𝐹0 | = 𝑡∗ − 1

4: 𝑏
$← {0, 1}

4:

−−→
𝑃𝐼𝐹 =

−−−→
𝑃𝐼𝐹𝑏

5: 𝑏′ ← A2 (
−−→
𝑃𝐼𝐹, 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑎𝑢𝑥)

6: If 𝑏′ = 𝑏, return 1; else, return 0.

Figure 4: The security experiments of DRKM.

On input the security parameter ℓ , this algorithm returns public

parameters 𝑃𝑃 , where two thresholds, i.e., (𝑡, 𝑛) and (𝑡∗, 𝑛∗), are
included. (𝑡, 𝑛) is independent of (𝑡∗, 𝑛∗). The larger 𝑡 and 𝑡∗ are,
the stronger the security guarantee is but the higherU’s costs to

access and recover the keys are.

• {𝑆, 𝑠1, . . . , 𝑠𝑛, 𝑎𝑢𝑥} ←Managing(𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ , sta).
On input 𝑛∗ PIFs {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } and (optional) public state

information sta, this algorithm returns a master key 𝑆 , 𝑛 shares

{𝑠1, . . . , 𝑠𝑛} of 𝑆 , and auxiliary information 𝑎𝑢𝑥 . U generates a

master key 𝑆 using {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ }, sends the secret share 𝑠𝑖 to
KS𝑖 .U stores 𝑎𝑢𝑥 with a backup system.

• 𝑆 ← Access(𝑠𝑖1 , . . . , 𝑠𝑖𝑡 , 𝑎𝑢𝑥).
On input any 𝑡 of 𝑛 shares {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 }, this algorithm returns 𝑆 .

U gets {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 } from 𝑡 key servers and 𝑎𝑢𝑥 from the backup

system and can access 𝑆 .

• 𝑆 ← Recovery(𝑃𝐼𝐹𝑖1 , . . . , 𝑃𝐼𝐹𝑖𝑡∗ , 𝑎𝑢𝑥, sta).
On input 𝑡∗ PIFs {𝑃𝐼𝐹𝑖1 , . . . , 𝑃𝐼𝐹𝑖𝑡∗ }, 𝑎𝑢𝑥 , and (optional) sta, this

algorithm returns the master key 𝑆 . If the number of available key

servers is less than 𝑡 ,U utilizes available PIFs {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑡∗ } to
recover 𝑆 .

3.3 Functionality of DRKM
The primary functionality of DRKM is to ensure that users can re-

cover their keys when both key servers and devices are unavailable.

In the following, we refine three cases and discuss the functionality

that should be satisfied case by case.

• Normal times. In normal times, both dedicated storage for

sensitive information and general storage for non-sensitive

information are available to users, i.e., any 𝑡 key servers

and the backup system are available. DRKM should achieve

portability in normal times, i.e., enable users to access their

master keys without maintaining any secret locally.

• Partial destruction. Partial destruction means that dedicated

storage for sensitive information is destroyed but general

storage for non-sensitive information is available to users.

It indicates that all key servers and devices are destroyed

but the backup system and any 𝑡∗ of 𝑛∗ PIFs are available.
In this case, DRKM should enable users to recover their

master keys.

• Full destruction. In the full destruction case, neither dedi-

cated storage for sensitive information nor general storage

for non-sensitive information is available to users, i.e., all

key servers and devices are destroyed, and even the backup

system is unavailable to users. Under this circumstance,

DRKM should ensure the key recovery if all 𝑛∗ PIFs are
available.

3.4 Security of DRKM
The security goals of DRKM are as follows.

• Regardless of any information an adversary already has, he

cannot extract any information about a user’s master key

𝑆 used for key derivation from the interaction messages

between the user and other entities.

• An adversary who compromises key servers cannot obtain

any information about PIFs that are utilized to derive the

master key.

The security of DRKM is formally captured by Definition 6 and

Definition 7, where the security experiments are provided in Figure

4. In Definition 6, we consider the adversary who can (1) corrupt

𝑡∗ − 1 PIFs used to derive the master key; (2) compromise 𝑡 − 1 key
servers and the cloud server, but still cannot distinguish the master

key from a uniformly-chosen key
5
with probability better than 1/2.

In Definition 7, given 𝑡 − 1 shares, an adversary cannot determine

which PIFs are used to derive the master key corresponding to the

𝑡 − 1 shares.

Definition 6. (Indistinguishability). DRKM satisfies indistin-
guishability against any probabilistic polynomial-time (PPT) adver-
sary A1 who compromises 𝑡 − 1 key servers and 𝑡∗ − 1 PIFs iff there
is a negligible function 𝑛𝑒𝑔𝑙 such that

Pr[IND-KeyA1

(ℓ) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (ℓ).

Definition 7. (PIF privacy). DRKM protects the PIFs used to derive
the master key against any PPT adversary A2 who compromises 𝑡
shares if there exists a negligible function 𝑛𝑒𝑔𝑙 such that

Pr[PIF-PrivacyA2

(ℓ) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (ℓ).

3.5 Construction of DRKM
We instantiate the backup system using a cloud server CS. A user

U, a set of key servers
®KS = {KS1,KS2, . . . ,KS𝑛}, and a cloud

5
The uniformly-chosen key has the same length as the master key.
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server CS are involved in DRKM. We assume thatU has 𝑛∗ recon-
structable secrets which are derived from

−−→
𝑃𝐼𝐹 = {𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑛∗ }6.

Setup.With the security parameter ℓ , public parameters 𝑃𝑃 =

{𝑝, 𝑡∗, 𝑡, 𝑛∗, 𝑛, F} are determined, where 𝑝 is a prime, 𝑡∗ and 𝑡 are
two thresholds, 𝑛∗ is the number of PIFs ofU, 𝑛 is the number of

the key servers, and F is secure key derivation function.

Managing.U utilizes her/his PIFs to manage ®𝐾 as follows.

• For 𝑃𝐼𝐹𝑖 ∈
−−→
𝑃𝐼𝐹 and 𝑖 = 1, 2, . . . , 𝑛∗, U computes 𝑠∗

𝑖
as

follows.

- If 𝑃𝐼𝐹𝑖 is storage/device-independent, compute 𝑠∗
𝑖
= F(𝑃𝐼𝐹𝑖 )

by Theorem 1
7
.

- If 𝑃𝐼𝐹𝑖 is device-dependent,U can compute a conditionally

reconstructable secrets by utilizing the methods provided

in Section 2.3.

• U generates a polynomial

𝑝 (𝑥) =
𝑛∗∏
𝑖=1

(𝑥 − 𝑠∗𝑖 ),

such that 𝑝 (𝑠∗
𝑖
) = 0 for 𝑖 = 1, 2, . . . , 𝑛∗.

• U outputs the coefficients of 𝑝 (𝑥) of degree 𝑛∗ − 1 down
to 𝑡∗ as the auxiliary information 𝑎𝑢𝑥 , i.e.,

𝑎𝑢𝑥 = {−
𝑛∗∑︁
𝑖=1

𝑠∗𝑖 ,
∑︁

𝐴⊆[1,𝑛∗ ]
|𝐴 |=2

(
∏
𝑖∈𝐴

𝑠∗𝑖 ),−
∑︁

𝐴⊆[1,𝑛∗ ]
|𝐴 |=3

(
∏
𝑖∈𝐴

𝑠∗𝑖 ),

. . . , (−1)𝑛
∗−𝑡∗ ·

∑︁
𝐴⊆[1,𝑛∗ ]
|𝐴 |=𝑛∗−𝑡∗

(
∏
𝑖∈𝐴

𝑠∗𝑖 )}.

• U computes 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖
as the master key.

• U uniformly chooses 𝑎1, . . . , 𝑎𝑡−1
$← 𝑍𝑝 and generates a

polynomial 𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1 over 𝑍𝑝 with

degree at most 𝑡 − 1.
• U computes 𝑠𝑖 = 𝑓 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛.

• U establishes a secure channel with KS𝑖 and sends 𝑠𝑖 to

KS𝑖 .U outsources 𝑎𝑢𝑥 to CS.
• KS𝑖 securely stores 𝑠𝑖 .S

Access.U accesses 𝑆 with the aid of
®KS as follows.

• U establishes a secure channel with KS𝑖 , and KS𝑖 sends
𝑠𝑖 to U via the secure channel. This can be achieved by

utilizing an authentication scheme based on

−−→
𝑃𝐼𝐹 .

• Upon receiving 𝑡 secret shares (denoted by {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 } for
the sake of brevity), U computes 𝑤𝑖𝑙 =

∏
1≤ 𝑗≤𝑡
𝑗≠𝑙

𝑖 𝑗
𝑖 𝑗−𝑖𝑙 for

𝑙 = 1, . . . , 𝑡 and then computes 𝑆 =
∑𝑡
𝑙=1

𝑤𝑖𝑙 𝑠𝑖𝑙 .

Recovery. When the number of available key servers is less

than 𝑡 ,U recovers 𝑆 with available PIFs as follows.

• U derives 𝑡∗ secrets from available PIFs ⊆ −−→𝑃𝐼𝐹 . For the sake
of brevity, we denote the secrets by {𝑠∗

1
, . . . , 𝑠∗

𝑡∗ }.

6
In reality, the number of PIFs can be different from that of reconstructable secrets.

For the sake of simplicity, we assume that they are equal.

7
DRKM supports to derive a secret from multiple PIFs. In the construction, we only

describe how to derive a secret from a single storage/device-independent PIF for clarity.

• U generates a new polynomial

𝑝1 (𝑥) = 𝑥𝑛
∗
+
𝑛∗−𝑡∗∑︁
𝑖=1

𝑎𝑢𝑥𝑖 · 𝑥𝑛
∗−𝑖 ,

where 𝑎𝑢𝑥𝑖 denotes the 𝑖-th element in 𝑎𝑢𝑥 .

• U solves Equation (1) to obtain 𝑏𝑡∗−1, · · · , 𝑏0.
𝑝1 (𝑠∗1) = 𝑏0 + 𝑏1𝑠∗1 + · · · + 𝑏𝑡∗−1𝑠

∗
1

𝑡∗−1

· · ·

𝑝1 (𝑠∗𝑡∗ ) = 𝑏0 + 𝑏1𝑠∗𝑡∗ + · · · + 𝑏𝑡∗−1𝑠
∗
𝑡∗
𝑡∗−1

(1)

• U computes 𝑆 = |𝑏0 |.
Note that Equation (1) can be represented by

©­­«
1 𝑠∗

1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬ ·
©­«

𝑏0
· · ·
𝑏𝑡∗−1

ª®¬ = ©­«
𝑝1 (𝑠∗

1
)

· · ·
𝑝1 (𝑠∗𝑡∗ )

ª®¬ .
To get 𝑏0,U only needs to compute

©­«
𝑏0
· · ·
𝑏𝑡∗−1

ª®¬ =
©­­«

1 𝑠∗
1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬
−1

· ©­«
𝑝1 (𝑠∗

1
)

· · ·
𝑝1 (𝑠∗𝑡∗ )

ª®¬ .
3.6 Remark
In practice, directly solving Equation (1) may result in buffer over-

flows, which further causes key recovery failure, since 𝑠∗
𝑖
is too

long (at least 256 bits). Essentially, we need to solve the following

system of non-homogeneous linear equations:

©­­«
1 𝑠∗

1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬ ·
©­«

𝑏0
· · ·
𝑏𝑡∗−1

ª®¬ = ©­«
𝑝1 (𝑠∗

1
)

· · ·
𝑝1 (𝑠∗𝑡∗ )

ª®¬ ,
where 𝑏0, . . . , 𝑏𝑡∗−1 are unknown. We present an efficient algorithm

to solve the equation as follows.

We set

𝐴 =
©­­«

1 𝑠∗
1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬ ,
and notice that 𝐴 is a 𝑡∗ × 𝑡∗ Vandermonde matrix.

Consider the determinant of 𝐴 as

𝑑𝑒𝑡 (𝐴) =
∏

1≤ 𝑗≤𝑖≤𝑡∗
(𝑠∗𝑖 − 𝑠

∗
𝑗 ).

When 𝑠∗
1
, . . . , 𝑠∗

𝑡∗ are different, 𝑑𝑒𝑡 (𝐴) ≠ 0. According to Cramer’s

Rule [26], iff 𝑑𝑒𝑡 (𝐴) ≠ 0, the above system of non-homogeneous

linear equations has a unique solution:(
𝑑𝑒𝑡 (𝐴1)
𝑑𝑒𝑡 (𝐴) , · · · ,

𝑑𝑒𝑡 (𝐴𝑡∗ )
𝑑𝑒𝑡 (𝐴)

)𝑇
, (2)

where

𝐴 𝑗 =
©­­«

1 𝑠∗
1
· · · 𝑠∗

1

𝑗−1 𝑝1 (𝑠∗
1
) 𝑠∗

1

𝑗+1 · · · 𝑠∗
1

𝑡∗−1

· · · · · · · · · · · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗𝑡
𝑗−1 𝑝1 (𝑠∗𝑡 ) 𝑠∗

1

𝑗+1 · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬
for 𝑗 = 1, . . . , 𝑡∗.
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Assume the algebraic complements of 𝐴 are {𝐴𝑖 𝑗 }, where 1 ≤
𝑖, 𝑗 ≤ 𝑡∗. Then we have

𝑑𝑒𝑡 (𝐴 𝑗 ) =
𝑡∗∑︁
𝑖=1

𝑝1 (𝑠∗𝑖 )𝑑𝑒𝑡 (𝐴𝑖 𝑗 ).

In the implementation, directly computing 𝐴−1 would take ≈ 25

MB buffer when we set ℓ = 256 bits and 𝑡∗ = 5, which always

causes buffer overflow. By using Equation (2), we can efficiently

solve Equation (1) without errors, where the required buffer is

reduced to ≈ 40 KB.

3.7 Deploying DRKM
DRKM is compatible with existing cryptosystems. In reality,U has

two methods to deploy DRKM as follows.

Integrating with encryption. For registered cryptosystems,

U can utilize 𝑆 to encrypt a set existing cryptographic keys ®𝐾 and

outsource the ciphertexts to CS. Subsequently,U can access 𝑆 with

the aid of key servers or with 𝑡∗ PIFs and decrypt the ciphertexts

to obtain ®𝐾 . U can utilize private-key encryption or public-key

encryption, and we discuss their pros and cons.

Private-key encryption. The computation costs of private-key

encryption are much less than that of public-key one. In addition,U
can decrypt ®𝐾 on demand when utilizing the CTR mode. However,

when a user generates a new key,U has to recover the master key

𝑆 and then encrypt the new key, which introduces extra costs.

Public-key encryption. Some public-key encryption algorithms,

e.g., ElGamal encryption, support updating the ciphertexts without

decryption when the public/private keys are updated (i.e., support

for proxy re-encryption). Specifically, whenU updates 𝑆 ,U does

not need to first decrypt ®𝐶 with the previous private key and then

encrypt ®𝐾 with the newly-generated public key. U can directly

utilize the proxy re-encryption to update the ciphertexts of ®𝐾 . What

is more, WhenU has a newly-generated key,U can directly utilize

the public key to encrypt the key without recovering 𝑆 .

Integrating with KDFs. For a new cryptosystem, a more effi-

cient method is to directly derive various new keys from 𝑆 with

mature KDFs [37, 38]. In this case, the user does not need to perform

encryption or decryption operations.

Key rotation. Although an adversary who compromises less than

𝑡∗ PIFs cannot get any information about the master key, the PIF

leakage would reduce the security level of DRKM. Therefore, the

master key should be updated after some PIFs are leaked.U can

re-execute the algorithms in DRKM to rotate the master key using

undisclosed PIFs. In this way, an adversary who compromises some

previously used PIFs cannot get any information about the updated

master key.

4 SECURITY ANALYSIS
4.1 Indistinguishability
The security of DRKM relies on the entropy of the master key

derived from the PIFs. Assume that {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } are utilized
to compute the master key, where the min-entropy of 𝑠∗

𝑖
derived

from 𝑃𝐼𝐹𝑖 is 𝑥𝑖 and 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛∗ . We assume that an

adversary A1 has corrupted 𝑡 − 1 key servers and obtained 𝑡∗ − 1

Indistinguishability: eIND-KeyA1

(ℓ)

1: {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ } are derived from {𝑃𝐼𝐹1, · · · , 𝑃𝐼𝐹𝑛∗ } with F

2: Compute 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖

3: Compute 𝑎𝑢𝑥 (shown in theManaging algorithm)

4: 𝑎1, . . . , 𝑎𝑡−1 ← 𝑍𝑝

5: Generate 𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1

6: Compute 𝑠𝑖 = 𝑓 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛

7: 𝑆★
$← {0, 1} |𝑆 |

8: 𝑏
$← {0, 1}

9: If 𝑏 = 1, 𝐾𝑒𝑦 = 𝑆 ; else, 𝐾𝑒𝑦 = 𝑆★

10: 𝑏′ ← A1 (𝐾𝑒𝑦, 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑠∗1, . . . , 𝑠
∗
𝑡∗−1, 𝑎𝑢𝑥)

11: If 𝑏′ = 𝑏, return 1; else, return 0

Figure 5: The eIND-KeyA1

(ℓ) game.

secrets {𝑠∗
1
, . . . , 𝑠∗

𝑡∗−1}. A1 cannot break the security of DRKM, i.e.,

DRKM satisfies Definition 6, which is captured by Theorem 2.

Theorem 2. Assuming F is a secure KDF, DRKM is secure against
any PPT adversary A1 who compromises up to 𝑡 − 1 key servers and
𝑡∗ − 1 secrets {𝑠∗

1
, . . . , 𝑠∗

𝑡∗−1}, i.e., A1 cannot get any information
about 𝑆 from 𝑡 − 1 shares and 𝑡∗ − 1 secrets.

Proof. To prove Theorem 2, we define the eIND-KeyA1

(ℓ)
game as shown in Figure 5. eIND-KeyA1

(ℓ) outputs 1 iff 𝑏 = 𝑏′, i.e.,
A1 can distinguish 𝑆 from a random string. We prove the theorem

as a series of games.

Game 1: this game is the same as the eIND-KeyA1

(ℓ) game with

the exception of one difference: A1 is given 𝑡 − 1 random numbers

chosen from 𝑍𝑝 rather than 𝑡 − 1 shares. If there is a difference

in A1 success probability between Game 1 and eIND-KeyA1

(ℓ), it
indicates that A1 can get extra information about the 𝑆 from 𝑡 − 1
shares.

In DRKM, we utilize Shamir’s threshold secret sharing scheme

to share the master key 𝑆 among the key servers. If the min-entropy

of 𝑆 is 𝑙-bit, the probability of A1 successfully guessing 𝑆 is also

2
−𝑙

without any auxiliary information.

In DRKM, we have 𝑆 = 𝑓 (0) = ∑𝑡
𝑖=1𝑤𝑖𝑠𝑖 . Furthermore, we have

𝑤𝑖𝑠𝑡 = 𝑆 −∑𝑡−1
𝑖=1 𝑤𝑖𝑠𝑖 . We notice that any value of 𝑆 corresponds

to a unique value of 𝑠𝑡 . If A1 correctly guesses 𝑠𝑡 , he can get the

correct 𝑆 . Next, we prove that {𝑠1, . . . , 𝑠𝑡−1} does not imply any

information about 𝑠𝑡 . These points (1, 𝑠1), . . . , (𝑡, 𝑠𝑡 ) correspond to

a unique function 𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1. For the fixed
points (1, 𝑠1), . . . , (𝑡 − 1, 𝑠𝑡−1), any value of 𝑠𝑡 may correspond to

a unique function with degree 𝑡 − 1. Hence, A1 cannot get any

information about 𝑠𝑡 from {𝑠1, . . . , 𝑠𝑡−1}.
Without {𝑠1, . . . , 𝑠𝑡−1}, the probability of A1 successfully guess-

ing 𝑠𝑡 is 2
−𝑙
. Hence, we have

| Pr[eIND-KeyA1

(ℓ) = 1] − Pr[Game 1A1
(ℓ) = 1] | ≤ 2

−𝑙 .

Game 2: Game 2 is the same with Game 1, with one difference.

A1 in Game 2 is given 𝑡∗ − 1 random secrets which have the same

distribution with 𝑠𝑖1 , . . . , 𝑠
∗
𝑖𝑡−1

, 𝑠∗
1
.
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We suppose that the lower entropy of a PIF, the higher the risk of

leakage. In Game 1, A1 has obtained 𝑡
∗ − 1 secrets {𝑠∗

1
, . . . , 𝑠∗

𝑡∗−1}.
With the auxiliary information 𝑎𝑢𝑥 ,A1 can construct a polynomial

𝑝1 (𝑥) = 𝑥𝑛
∗
+
𝑛∗−𝑡∗∑︁
𝑖=1

𝑎𝑢𝑥𝑖 · 𝑥𝑛
∗−𝑖 ,

where 𝑎𝑢𝑥𝑖 denotes the 𝑖-th element in 𝑎𝑢𝑥 .

With 𝑡∗ − 1 sub-secrets {𝑠∗
1
, . . . , 𝑠∗

𝑡∗−1}, A1 can construct the

following equation system
𝑝1 (𝑠∗1) = 𝑏𝑡∗−1𝑠∗1

𝑡∗−1 + · · · + 𝑏1𝑠∗1 + 𝑏0
· · ·

𝑝1 (𝑠∗𝑡∗−1) = 𝑏𝑡∗−1𝑠∗𝑡∗−1
𝑡∗−1 + · · · + 𝑏1𝑠∗𝑡∗−1 + 𝑏0

,

where 𝑏𝑡∗−1, · · · , 𝑏0 are the unknown to be solved. There exists

countless valid {𝑏𝑡∗−1, · · · , 𝑏0}, andA1 cannot determine which is

the correct 𝑏0. The straightforward way for A1 to determine 𝑏0 is

to construct another equation with 𝑠∗
𝑡∗ as

𝑝1 (𝑠∗𝑡∗ ) = 𝑏𝑡∗−1𝑠
∗
𝑡∗
𝑡∗−1 + · · · + 𝑏1𝑠∗𝑡∗ + 𝑏0 .

The maximum probability that the adversary can obtain a new

secret is 2
−𝑥𝑡∗ (where A1 directly guesses 𝑠∗

𝑡∗ ). Therefore, given

𝑡∗ − 1 secrets {𝑠∗
1
, . . . , 𝑠∗

𝑡∗−1} and the auxiliary information 𝑎𝑢𝑥 , the

probability of A1 getting the master key 𝑆 is no more than 2
−𝑥𝑡∗ .

Hence, we have

| Pr[Game 1A1
(ℓ) = 1 − Pr[Game 2A1

(ℓ) = 1] | ≤ 2
−𝑥𝑡∗ .

Next, we analyze the probability of A1 winning Game 2. In our

proof, we follow the security definition of KDF proposed in [39], as

shown in Definition 8.

Definition 8. A key derivation function (KDF) is secure with
respect to an𝑚-min-entropy source of key material Σ if no adversary
A can distinguish the key generated from Σ and a random string of
the same length with probability better 1/2 + 2−𝑚 .

If F is a secure KDF, the min-entropy of 𝑆 is
∑𝑡∗
𝑖=1 𝑥𝑖 -bit. Hence,

we have

Pr[Game 2A1
(ℓ) = 1] ≤ 1

2

+ 2−
∑𝑡∗

𝑖=1 𝑥𝑖 .

Therefore, the probability of A1 winning eIND-KeyA1

(ℓ) is no
more than

1

2
+ 2−

∑𝑡∗
𝑖=1 𝑥𝑖−1 + 2−𝑥𝑡∗ . □

Remark. Theorem 2 implies that the master key 𝑆 is a uni-

form 𝑙-bit cryptographic key, where 𝑙 ≥ ∑𝑡∗
𝑖=1 𝑥𝑖 . Theoretically, the

min-entropy of the secrets derived from the biometric character-

istic is determined by the user per se. However, in practice, the

biometrics extraction algorithms would influence the entropy of

the extracted secrets. The entropy of the secrets derived from the

device-dependent PIFs is determined by the security parameter of

the corresponding authentication schemes.

4.2 PIF privacy
We prove that DRKM satisfies Definition 7, i.e., an adversary A2

who compromises 𝑡 − 1 secret shares cannot get any information

about the secrets {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ }, where the min-entropy of 𝑠∗
𝑖
derived

from 𝑃𝐼𝐹𝑖 is 𝑥𝑖 and 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛∗ . This security notion is

captured by Theorem 3.

PIF privacy: ePIF-PrivacyA2

(ℓ)

1: {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ } are derived from {𝑃𝐼𝐹1, · · · , 𝑃𝐼𝐹𝑛∗ } with F

2: Compute 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖

3: Compute 𝑎𝑢𝑥 (shown in theManaging algorithm)

4: Generates a polynomial 𝑝 (𝑥) = ∏𝑛∗
𝑖=1 (𝑥 − 𝑠∗𝑖 )

5: Select a set {𝑠∗
𝑖1
, . . . , 𝑠∗

𝑖𝑡−1
}

6: Generate a PIF set

−−−→
𝑃𝐼𝐹0, where

−−−→
𝑃𝐼𝐹0 ∩ {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } = ∅

and |−−−→𝑃𝐼𝐹0 | = 𝑡∗ − 1
7: Derive {𝑠∗

1

′
, . . . , 𝑠∗

𝑡∗−1
′
} from −−−→𝑃𝐼𝐹0

8: Set 𝑠𝑢𝑏𝑆0 = {𝑠∗
1

′
, . . . , 𝑠∗

𝑡∗−1
′
}, 𝑠𝑢𝑏𝑆1 = {𝑠∗𝑖1 , . . . , 𝑠

∗
𝑖𝑡−1
}

9: 𝑏
$← {0, 1}

10: 𝑏′ ← A1 (𝑠𝑢𝑏𝑆𝑏 , 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑎𝑢𝑥)
11: If 𝑏′ = 𝑏, return 1; else, return 0.

Figure 6: The ePIF-PrivacyA2

(ℓ) game.

Theorem 3. DRKM protectsU’s PIFs used to derive 𝑆 againstA2

who compromises 𝑡 − 1 key servers.

Proof. To prove Theorem 3, we define aPIF-PrivacyA2

(ℓ) game,

as shown in Figure 6.

Given points {(1, 𝑠1), (2, 𝑠1), . . . , (𝑡 − 1, 𝑠𝑡−1)} on the function

𝑓 (𝑥), A2 aims to determine whether some function 𝑝′ (𝑥) (with
degree 𝑡∗) generate by 𝑠𝑢𝑏𝑆0 as zero points satisfies 𝑓 (0) = |𝑝 (0) |.
For the PIF-PrivacyA2

(ℓ) game, we have

Pr[PIF-PrivacyA2

(ℓ) = 1] = Pr[𝑏
′
= 𝑏]

= Pr[𝑏
′
= 0|𝑏 = 0] + Pr[𝑏

′
= 1|𝑏 = 1] .

When 𝑏 = 0, A2 can win if it guesses out some zero point of

𝑝 (𝑥) and guesses out the master key 𝑆 . Therefore, we have

Pr[𝑏
′
= 0|𝑏 = 0] = 1

2

( 1
2

+ 2−𝑥𝑖 ∗ 2−𝑙 ),

where 𝑙 is the min-entropy of 𝑆 , and 𝑥𝑖 is the min-entropy of the

zero point (i.e., the PIF).

When 𝑏 = 1, A2 can win if (1) it guesses out some zero point

of 𝑝 (𝑥) which is included in 𝑠𝑢𝑏𝑆0 or (2) it guesses out some zero

point of 𝑝 (𝑥) which is not included in 𝑠𝑢𝑏𝑆0 but guesses out the

master key 𝑆 . Hence, we have

Pr[𝑏
′
= 1|𝑏 = 1]

=
1

2

( 1
2

+
𝐶𝑡
∗−2

𝑛∗−1
𝐶𝑡
∗−1

𝑛∗
∗ 2−𝑥𝑖 + (1 −

𝐶𝑡
∗−2

𝑛∗−1
𝐶𝑡
∗−1

𝑛∗
) ∗ 2−𝑙 )

=
1

2

( 1
2

+ 𝑡 − 1
𝑛
∗ 2−𝑥𝑖 + (1 − 𝑡 − 1

𝑛
) ∗ 2−𝑙 )

≤ 1

2

( 1
2

+ 2−𝑙 + 2−𝑥𝑖 ).

Therefore, we have

Pr[PIF-PrivacyA2

(ℓ) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (ℓ).

This concludes the proof. □
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PIF Computation delay (ms)

Fingerprint [40] ≈1.60
Face [41] ≈1.50
Iris [42] ≈3.00
Hand geometry [43] ≈7.6
Palmprint [44] ≈6
ECG [46] ≈0.32
Hand gesture [45] ≈90 − 110

SIM card ≈0.003
Hardware token ≈1.36
Intel SGX ≈0.56

Table 1: Computation delay of deriving secrets from PIFs.

5 IMPLEMENTATION AND EVALUATION
We implement a DRKM prototype and conduct a comprehensive

performance evaluation. All experiments are conducted on a lap-

top with an Intel Core i5 processor running at 2 GHz using four

cores and 16 GB DDR3 of RAM. Our source code is available on

https://github.com/DRKM-code/DRKM.git.
We evaluate the performance from the following aspects.

5.1 Deriving secrets from PIFs
We present the computation delay to derive reconstructable secrets

from different PIFs, as shown in Table 1.

Someone the user is.We investigate existing biometric feature

recognition and extraction methods. A minutiae-based fingerprint

individuality model [40] is utilized to extract features from users’

fingerprints. We leverage the scheme [41] for face recognition to

extract the face features. We utilize the algorithm in [42] for iris

recognition to extract the features of irises. The extracted iris fea-

tures can be formatted with the biometric standards. We utilize the

hand geometry recognition scheme [43], the palmprint recognition

scheme [44], and the hand gesture recognition scheme [45] to ex-

tract the hand characteristics, respectively. We utilize Deep-ECG

[46], a CNN-based biometric approach for ECG signals, to extract

the features of ECG.

Something the user has. We simulate the authentication algo-

rithms of a SIM card, hardware token, and Intel SGX on a laptop,

and evaluate the performance. The hardware PIFs are dependent on

stateful devices. Recalling Section 2, we can derive a reconstructable

secret from a device-dependent PIF with the aid of another recon-

structable secret.

5.2 Key derivation and management
We investigate existing authentication schemes and choose the

applicable methods to derive secrets from PIFs. The computation

delay for deriving reconstructable secrets from different PIFs is

shown in Section 5.1. If 𝑛 is larger than 10,U can derive multiple

instances from a type of PIF. For example, ifU needs to derive 20

reconstructable secrets, she/he can choose 2 irises, 2 hand geome-

tries, 2 Palmprints, 1 ECG, 2 SIM cards, 1 hardware token, and 10

fingerprints. In the following, we assume thatU has obtained 𝑛∗

secrets.

U computes the master key as 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖
. Figure 7(a) shows

the computation delay onU of deriving 𝑆 from 𝑛∗ secrets, where
we set different 𝑛∗. The computation delay is an average of deriving

10 master keys.

U computes the auxiliary information 𝑎𝑢𝑥 which assistsU in

recovering the master key from the PIFs. Figure 7(b) shows the

computation delay onU of 𝑎𝑢𝑥 with different 𝑛∗ and 𝑡∗. The delay
of computing 𝑎𝑢𝑥 decreases with 𝑡∗. U shares 𝑆 among the key

servers in a threshold way. Specifically,U first computes 𝑛 secret

shares {𝑠1, · · · , 𝑠𝑛}. Figure 7(c) shows the delay in computing the

secret shares.

U can use private-key encryption or public-key encryption to

encrypt ®𝐾 . Figure 7(d) and 7(e) show the computational delay for

encrypting different size 𝐾 with different encryption algorithms

including RSA-OAEP [47], ElGamal [48], and [CTR]AES. The com-

putation delay for private-key encryption is much less than that

for public-key encryption.

In DRKM,U needs to send the secret shares to the key servers

and outsource the auxiliary information and the ciphertexts to

CS. In Figure 8(a), we show the communication costs on U and

KS𝑖 . As shown in Figure 8(b), the communication costs on CS are

approximate to the size of 𝐾 when using private-key encryption.

For the same size 𝐾 , the communication costs on CS increase with

𝑛∗ − 𝑡∗, because the larger 𝑛∗ − 𝑡∗ is, the larger size of 𝑎𝑢𝑥 is when

recovering 𝑆 . Figure 8(c) shows the communication costs of CS.
The communication costs when using public-key encryption are

significantly larger than those when using [CTR]AES.

5.3 Key access and recovery
When U needs to access the master key, U interacts with the

key server via the secure channels to get 𝑡 secret shares. In Figure

8(d), we show the communication costs onU and each key server

with different 𝑛 and 𝑡 .U also needs to download the ciphertexts

from CS.U can download the ciphertexts on demand when using

private-key encryption. Figure 8(e) shows the communication costs

of CS andU, whereU only accesses one key. Figure 9(a) shows

the delay onU to compute 𝑆 from 𝑡 secret shares.

If the number of available key servers is less than 𝑡 , U has to

recover the master by utilizing available PIFs. U needs to get at

least 𝑡∗ secrets from available PIFs. We assume thatU has derived

𝑡∗ secrets. Figure 9(b) shows the delay onU to recover 𝑆 from 𝑡∗

secrets and 𝑎𝑢𝑥 . The results show that the delay of recovering 𝑆

from secrets is less than 5 ms.

5.4 Comparison with KDF
The core of DRKM is to convert a user’s PIFs to a reconstructable

master key which is utilized to encrypt the user’s keys used in

various cryptosystems. A natural method to transform a PIF into

a key is key derivation functions (KDF). In this subsection, we

compare DRKM with different KDFs and further elaborate on the

desirable advantages of DRKM.

We start with password-based key derivation functions (PBKDFs)

[49–53] that derive keys from users’ passwords. The proliferation

of PBKDFs provides protection for users without introducing key

management problems. Typically, PBKDF1 and PBKDF2 [49] are

widely used in network applications, e.g., WPA [54] and WPA2
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(d) Private-key encryption.
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(e) Public-key encryption.
Figure 7: The computation delay ofU in the Managing phase.
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(b) [CTR]AES-128/256.
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(c) RSA-OAEP/ElGamal.
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(d) Getting 𝑠𝑖 from KS𝑖 .
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Figure 8: The communication costs ofU, KS𝑖 , and CS.
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(b) Recovering 𝑆 .
Figure 9: The computation delay ofU.

[55] protocols in wireless communication systems. However, the

schemes based on PBKDFs are generally confronted with dictio-

nary guessing attacks, since passwords are inherently low-entropy.

Many recent security incidents [56, 57] have shown that utilizing

passwords as the sole defense line is indeed insufficient.

Recently, Nair et al. [27] proposed a threshold multi-factor key

derivation function (TMFKDF), which allows a user to derive a key

from 𝑛∗ PIFs, and recover the key from any 𝑡∗ of them. We compare

DRKM with the TMFKDF in the following aspects.

Regarding costs, Table 2 shows the comparison between DRKM

and TMFKDF in terms of computation delay of accessing the master

key with 𝑡 = 𝑡∗ = 8 and 𝑛 = 𝑛∗ = 10. The results show that in

normal times, the delay using DRKM is 5∼6 orders of magnitude

less than that of using TMFKDF.

Regarding functionality, the key recovery provided by TMFKDF

depends on the availability of metadata, i.e., encrypted shares. Users

cannot recover their keys without metadata even if they utilize 𝑛∗

storage-independent PIFs. In DRKM, users can directly retrieve their

keys from𝑛∗ PIFs without any storage, if all𝑛∗ PIFs are independent
of storage.

Regarding security, DRKM provides stronger protection than

𝑡∗-of-𝑛∗ TMFKDF. In DRKM, a master key is derived from 𝑛∗ PIFs
and then split into 𝑛 shares, where the shares are independent of

the secrets derived from PIFs. However, in [27], once an adversary

compromises a PIF, then he can get the corresponding share. Fur-

thermore, in reality, an adversary who compromises 𝑡∗ PIFs may

Method Computation delay (ms)

DRKM (Before destruction) 0.012

DRKM (After destruction) 90.72

Threshold MFKDF 89.82

Table 2: Comparison with the threshold MFKDF [27]. We set
𝑡 = 𝑡∗ = 8 and 𝑛 = 𝑛∗ = 10.

not recover the master key. Specifically, we assume that a user has

𝑛∗ PIFs, where 𝑛∗
1
PIF are storage/device-independent, 𝑛∗

2
PIFs are

device-dependent, and 𝑛∗ = 𝑛∗
1
+ 𝑛∗

2
. Then the user can derive at

least 𝑛∗
1
+ 𝑛∗

1
· 𝑛∗

2
(conditional) reconstructable secrets. Hence, the

user can generate 𝐶𝑛
∗

𝑛∗
1
+𝑛∗

1
∗𝑛∗

2

different master keys. By introducing

device-dependent PIFs, recovering some of these master keys needs

more than 𝑡∗ PIFs, since deriving a reconstructable secret from a

device-dependent PIF requires another new reconstructable secret.

Regarding practicability, DRKM enables users to balance secu-

rity and efficiency but the TMFKDF fails to achieve it. Specifically,

there are two independent thresholds (𝑡, 𝑛), (𝑡∗, 𝑛∗) in DRKM. The

threshold in TMFKDF is corresponding to (𝑡∗, 𝑛∗) in DRKM. Once

an adversary compromises 𝑡∗ shares (i.e., PIFs) of TMFKDF, he can

recover the key. In DRKM, such an adversary cannot get any infor-

mation about the master key, since the user can set 𝑡 ≥ 𝑡∗ without
changing (𝑡∗, 𝑛∗) to enhance the security guarantee. However, the

larger 𝑡 is, the more costs the user bears to access the master key

in normal times. The user can achieve a trade-off between security

and efficiency by adjusting (𝑡, 𝑛) while remaining (𝑡∗, 𝑛∗).

5.5 Comparison with alternative schemes
Currently, some products and solutions for secure and reliable key

management have been proposed, and they might be trivially ex-

tended to achieve destruction resistance. We will discuss them in de-

tail, analyze their inherent problems, and compare themwithDRKM

11
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in the following. Our aim in presenting this section is twofold. The

first one is to show the advantages of DRKM in terms of security,

functionality, and efficiency. The second one is to demonstrate

that designing usable and destruction-resistant key management

schemes is very challenging. Generally, existing key management

schemes can be categorized into two types: fully local management

ones and fully outsourcing management ones.

Fully local management schemes. A user keeps her/his keys

in well-guarded devices and keeps them in safe places. Notable ex-

amples include YubiKey [3] and Ledger [4]. To achieve destruction

resistance, the user can simultaneously utilize YubiKey and Ledger

to store the same key (one for general use and the other one for

backup) and keep them in different secure locations.

However, the disadvantage of the above scheme is oblivious. The

user needs to ensure the security and reliability of the backup key,

which requires the user to continuously monitor its condition to

minimize the possibility of undetected leakage. Actually, this would

cause prohibitive costs for the user. As an empirical observation,

individuals do not always have a secure secondary location to store

the backup key.

Fully outsourcing management scheme. A user requests key

management services from service providers. Typical examples

include Keywhiz [58], where the user’s key is split into 𝑛 shares

in a threshold way and let each key server store one of them. The

user can recover her/his key by interacting with any 𝑡 of 𝑛 key

servers. Compared with a fully local management scheme, this

scheme achieves portability: it enables the user to recover the key as

needed without maintaining any secret on local devices. It achieves

destruction resistance to some extent: as long as 𝑡 key servers are

available, the key can be recovered.

Obliviously, the destruction resistance provided by this scheme

relies on a strong assumption that at least 𝑡 key servers would

not be destroyed. This problem cannot be trivially addressed by

requiring the key server to back up the share, as it increases the

danger of security breaches significantly [11].

DRKM: a hybrid “local + outsourcing” key management
scheme. In DRKM, a user derives a master key from her/his PIFs

and shares it among the key servers in a threshold way. DRKM

inherits the advantages of the above schemes: in normal times, the

user can access the master key by interacting with the key servers;

and once all key servers and the user’s devices are destroyed, the

master key can be recovered from a part of PIFs used for key deriva-

tion. DRKM also overcomes their drawbacks: compared with the

fully local management scheme, DRKM only requires a stateless
device and a small number of PIFs to recover the master key after

the destruction occurs; compared with the fully outsourcing man-

agement one, users in DRKM can retrieve their keys per se, even if

all key servers are unavailable.

5.6 Applications and compatibility
With storage/device-independent PIFs, we can easily construct

a destruction-resistant threshold multiple-factor authentication

scheme, where a user only needs to register with a service provider

by more than a threshold number of storage/device-independent

PIFs. After the destruction occurs, the user can still log in to the

service provider via available PIFs. We further emphasize the prac-

tical nature of DRKM as well as DRKM-based DRC (i.e., DRKM +

commercial backup system) in the following.

One potential application is to manage a secret—say, a key to a

bank’s vault—that is shared among a board of directors, where the

vault is protected by cryptosystems. Anytime when the vault needs

to be opened, it should be confirmed and agreed by a majority of

members. With DRKM, each member can contribute the secret us-

ing her/his PIFs with the (𝑡∗, 𝑛∗)-secret aggregation with threshold

retrieval mechanism, and then the secret is shared among multiple

key servers with the (𝑡∗, 𝑛∗)-secret sharing scheme. Each key server

is available for a specific member. Before device destruction occurs,

the members can recover the secret by interacting with their key

servers in a portable way. Once the number of the available key

servers is less than 𝑡∗, they can cooperatively recover the secret

using their PIFs. We stress that regarding device destruction and

security, neither Shamir’s secret sharing scheme nor the threshold

password-hardening protocols [11, 59–66] can achieve it.

Another promising application of DRKM and DRKM-based DRC

is to resist ransomware attacks. We notice that the success of ran-

somware attacks is to make devices unavailable to their users. As

such, if the maintenance of the most sensitive information (e.g.,

the master key) does not rely on any device, a ransomware attack

will be doomed to failure (we impliedly require a backup system

to store the non-sensitive information, such as ciphertexts, signa-

tures). With DRKM, a user can derive a master key from her/his PIFs

and maintain the master key locally or using a set of key servers.

Once the master key is hacked by ransomware attacks, the user

can recover the master key from the PIFs that are used to derive it.

Therefore, DRKM-based DRC can be directly deployed to thwart

ransomware attacks.

Recently, many novel PIFs have been proposed, e.g., PCR-Auth

[67] and Capacitive Plethysmogram [68]. We stress that DRKM has

forward-compatibility with future PIFs. As long as a PIF satisfies

Definition 2 and can be represented by a unique binary string,

it then can be utilized in DRKM to derive a master key, which

potentially applies to newly-discovered PIFs in the future.

6 CONCLUSION
In this paper, we have investigated popular personal identification

factors (PIFs) and proposed three concepts (i.e., storage-independent

PIFs, device-independent PIFs, and device-dependent PIFs), and

given the categorization criteria. We have proposed a series of

methods to derive reconstructable secrets from a special class of

device-dependent PIFs in tandem with storage/device-independent

ones. We have constructed DRKM, a destruction-resistant key man-

agement scheme with portability. We have formally proven the

security of DRKM. We have implemented a DRKM prototype and

conducted a comprehensive performance evaluation to demonstrate

its high efficiency.

For the future work, we will explore new storage-independent

PIFs with high min-entropy. Furthermore, with such PIFs, it may

be possible to construct a key management scheme that simulta-

neously achieves destruction resistance and portability after the

destruction occurs.
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Appendix A PRELIMINARIES
Min-entropy [69]. For adversaries, an attack strategy is guessing

random values used in cryptosystems (e.g., the secret keys). The

probability of an adversary guessing out the key is determined

by the entropy of the key. In information theory, the entropy of a

random variable is the level of uncertainty inherent in the random

variable’s possible outcomes.

Shannon [70] first introduces the concept of information entropy.

𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} is a discrete and finite set. Assume that 𝑋 is a

random variable where the value domain is 𝐴 and the probability

of choosing 𝑎𝑖 from 𝐴 is 𝑝𝑖 , i.e., Pr[𝑋 = 𝑎𝑖 ] = 𝑝𝑖 . The information

entropy of 𝑋 is

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑝𝑖 log𝑝𝑖 .

The predictability of the random variable 𝑋 is max{𝑝𝑖 }𝑖∈[1,𝑛] ,
which corresponds to the min-entropy of 𝑋 is

𝐻∞ (𝑋 ) = −log(max{𝑝𝑖 }𝑖∈[1,𝑛] ) .

Shamir’s secret sharing [11]. In Shamir’s secret sharing scheme,

a dealer shares a secret among 𝑛 parties, and each party has a share.

Any 𝑡 parties can pool their shares and reconstruct the secret. Any

𝑡 − 1 parties who collude cannot obtain any information about the

secret. Shamir’s secret sharing scheme consists of two algorithms,

Split and Reconstruction, which are provided in the following.

Split. A dealer chooses a secret 𝑎 ∈ 𝑍𝑝 and split it into 𝑛 shares.

• The dealer uniformly chooses 𝑎1, . . . , 𝑎𝑡−1
$← 𝑍𝑝 and gen-

erates a polynomial 𝑓 (𝑥) = 𝑎 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1 over
𝑍𝑝 with degree at most 𝑡 − 1.
• The dealer computes shares 𝑠𝑖 = 𝑓 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛 and

distributes them among 𝑛 parties, letting each party have a

share.

Reconstruction. The dealer recovers the secret 𝑎 with any 𝑡 of

𝑛 shares.

• Upon having 𝑡 secret shares (denoted by {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 } for the
sake of brevity), the dealer computes 𝑤𝑖𝑙 =

∏
1≤ 𝑗≤𝑡
𝑗≠𝑙

𝑖 𝑗
𝑖 𝑗−𝑖𝑙

for 𝑙 = 1, . . . , 𝑡 .

• The dealer reconstructs the secret by computing𝑎 =
∑𝑡
𝑙=1

𝑤𝑖𝑙 𝑠𝑖𝑙 .

Appendix B COMPARISONWITH SHAMIR’S
SECRET SHARING

In this subsection, we elaborate on the key difference between the

threshold key derivationmechanism utilized in DRKM and Shamir’s

secret sharing.

We first abstract the threshold key derivation mechanism from

the construction of DKRM (shown in Section 3.5), which consists

of Aggregation and Reconstruction.

Aggregation. Given 𝑛∗ shares {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ }, a dealer aggregates
them into one secret and computes necessary auxiliary information

used for reconstruction.

• The dealer computes 𝑎 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖
, where 𝑎 is the secret by

aggregating the shares.

• The dealer computes

𝑝 (𝑥) =
𝑛∗∏
𝑖=1

(𝑥 − 𝑠∗𝑖 ),

such that 𝑝 (𝑠∗
𝑖
) = 0 for 𝑖 = 1, 2, . . . , 𝑛∗.

• The dealer outputs the coefficients of 𝑝 (𝑥) of degree 𝑛∗ − 1
down to 𝑡∗ as the auxiliary information 𝑎𝑢𝑥 , i.e.,

𝑎𝑢𝑥 = {−
𝑛∗∑︁
𝑖=1

𝑠∗𝑖 ,
∑︁

𝐴⊆[1,𝑛∗ ]
|𝐴 |=2

(
∏
𝑖∈𝐴

𝑠∗𝑖 ),−
∑︁

𝐴⊆[1,𝑛∗ ]
|𝐴 |=3

(
∏
𝑖∈𝐴

𝑠∗𝑖 ),

. . . , (−1)𝑛
∗−𝑡∗ ·

∑︁
𝐴⊆[1,𝑛∗ ]
|𝐴 |=𝑛∗−𝑡∗

(
∏
𝑖∈𝐴

𝑠∗𝑖 )}.

Reconstruction. Given any 𝑡∗ of 𝑛∗ shares and auxiliary infor-

mation, the dealer can recover the secret.

• Upon having 𝑡∗ shares (denoted by {𝑠∗
1
, . . . , 𝑠∗

𝑡∗ } for the sake
of brevity), the dealer generates a new polynomial

𝑝1 (𝑥) = 𝑥𝑛
∗
+
𝑛∗−𝑡∗∑︁
𝑖=1

𝑎𝑢𝑥𝑖 · 𝑥𝑛
∗−𝑖 ,

where 𝑎𝑢𝑥𝑖 denotes the 𝑖-th element in 𝑎𝑢𝑥 .

• The dealer solves Equation (3) to obtain 𝑏𝑡∗−1, · · · , 𝑏0.
𝑝1 (𝑠∗1) = 𝑏0 + 𝑏1𝑠∗1 + · · · + 𝑏𝑡∗−1𝑠

∗
1

𝑡∗−1

· · ·

𝑝1 (𝑠∗𝑡∗ ) = 𝑏0 + 𝑏1𝑠∗𝑡∗ + · · · + 𝑏𝑡∗−1𝑠
∗
𝑡∗
𝑡∗−1

(3)

|𝑏0 | is the reconstructed secret.

From the perspective of construction, the threshold key deriva-

tion mechanism contains an Aggragation algorithm instead of a

Split one as in Shamir’s secret sharing (provided in Appendix A).

This is because the “shares” in the former are pre-determined and

aggregated into one secret, while in the latter, the secret is first

chosen, and the “shares” are determined by the secret.

Appendix C POPULAR PIF INTRODUCTION
Generally, users’ personal identification factors (PIFs) can be divided

into three categories: something the user knows, someone the user

is, and something the user has [30].

C.1 Something the user knows
This type of PIFs binds a user’s identity with a secret only known

to the user. As long as the user outputs the correct secrets, she/he

can identify herself/himself.

• Password.A password is a character string chosen by a user and

can be utilized to construct a portable authentication scheme, where

the user takes her/his password as the sole input for authentication

[62]. Password is memorable and thereby is destruction-resistant.

Generally, a cryptographic hash function is used to “obfuscate” the
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password, and the hashed password serves as the authentication

credential. However, the password is inherently low-entropy and

is vulnerable to dictionary guessing attacks (DGA) [23, 71, 72].

• PIN code.A personal identification number (PIN) code is a set of

numbers (which generally consists of four or six digits) generated

by the user. PIN codes’ entropy is much lower than passwords.

Therefore, PIN codes should not be utilized to serve as the sole PIF

in the system [73].

• Private key. In public-key cryptosystems, a private key is a

string uniformly chosen from some set (where the number of ele-

ments in the set should be large enough) and is used to generate a

corresponding public key. With the pair of keys, an identification

scheme can be constructed (e.g., the Schnorr identification scheme

[74]). In reality, a private key is always stored in a stateful device

or hardware security module (as it is high-entropy), and thereby

cannot be recovered if the device (or hardware module) is destroyed.

C.2 Someone the user is
This type of PIFs is essentially the characteristics that can uniquely

identify the user. The most widely used PIFs are users’ biometric

characteristics. Such a PIF is not necessarily maintained in some

device. As a consequence, most of these PIFs (discussed in this

paper) are destruction-resistant.

A general procedure of biometric characteristic recognition is

described as follows. A user collects biometric characteristics with

the aid of stateful devices (e.g., obtaining a face image by using a

camera), and then some features can be extracted from the charac-

teristics. With the features, some templates can be derived to serve

as authentication credentials. We investigate popular biometric PIFs

and feature extraction methods. Subsequently, a “fresh” template

can be extracted from the user’s biometric characteristics to be com-

pared with the pre-generated templates for user authentication. The

widely-used biometric characteristics, e.g., fingerprints and faces,

can be easily collected using smartphones. With the proliferation

of wearable devices, it is also convenient to collect other biometric

characteristics, e.g., ECGs [22]. Typical biometric characteristics

are introduced in the following.

• Fingerprint. Fingerprints are the most widely utilized biometric

characteristic for user authentication [75]. A fingerprint can be

transformed into a unique image with ridges and valleys, where

a ridge is a single curved segment, and a valley is a region be-

tween two adjacent ridges, and minutiae-based feature extraction

is the most commonly-used method in fingerprint recognition

[19, 20, 40, 76, 77]. For users, it is convenient to utilize fingerprints

to authenticate herself/himself, since most devices have fingerprint

recognition functions. Fingerprints serving as PIF achieve com-

promise resilience, since the user can use different fingerprints in

different systems. However, it is not so hard to collect targeted

users’ fingerprints for adversaries in the physical world [78].

• Face. Facial recognition is also widely used for user authenti-

cation. As facial recognition only requires a camera to collect the

face image, most smartphones utilize the face as the PIF. In prac-

tice, extraction methods based on either geometrical features or

statistical features [21, 79] can be utilized to extract features from

users’ faces. Compared with fingerprints, users’ faces fail to achieve

compromise resilience.

• Iris. An iris camera captures a user’s pupil and extracts the iris

image from the pupil by using Gabor filters [80]. Compared with

fingerprint-based and face-based authentication, iris-based authen-

tication is more accurate for identifying users [81, 82]. Although

irises also fail to achieve compromise resilience, collecting users’

irises is much harder than collecting fingerprints and faces for adver-

saries. However, iris recognition requires a specific-purpose device

to scan the iris, which causes high costs to deploy the iris-based

authentication.

•Hand. In reality, the physical characteristics of a hand (e.g., hand
geometry [83, 84], palmprints [85], and hand gestures [86]) can also

serve as PIFs for user authentication, where hand geometry and

hand gestures can be utilized to achieve non-contact recognition.

The accuracy rate is significantly affected by the environment, e.g.,

lighting, and the devices collecting palmprints are generally larger,

compared with those collecting fingerprints and faces.

• Electrocardiographic (ECG). An ECG records the electrical ac-

tivity of the heart and mainly consists of P wave, QRS complex, and

T wave. ECG is highly personalized and can serve as PIF [87, 88].

ECG-based authentication requires specific types of equipment, e.g.,

ECG monitors.

C.3 Something the user has
This type of PIFs binds a user’s identity with a stateful device or

hardware unit. Anyone who possesses the device (or the unit) can

pass authentication.

• Subscriber identity module (SIM) card. A SIM card is an in-

tegrated circuit card, that has been utilized in cellular networks,

e.g. 3G and 4G [31]. The authentication protocol is based on mes-

sage authentication code (MAC) [89, 90]. Specifically, a SIM card

stores a universal international mobile subscriber identity (IMSI)

number and a 128-bit key which is shared with a server (deployed

by the communication service provider). The user and the server

initialize the same sequence number 𝑆𝑄𝑁 . A typical SIM-based

authentication procedure is shown in Figure 1, which follows a

challenge-response paradigm. When subscribing to cellular net-

works, the user sends her/his IMSI number as 𝐼𝐷 to the server.

The server first generates a challenge message, including a random

number 𝑅𝐴𝑁𝐷 and a MAC for 𝑅𝐴𝑁𝐷 and 𝑆𝑄𝑁 , and sends it to

the user. The user then verifies the received MAC and generates

a response message by computing a MAC for 𝑅𝐴𝑁𝐷 . The server

finally verifies the MAC and allows the user to subscribe if it is

valid. In Figure 1, the MAC is based on pseudorandom functions

𝑓 1(·), 𝑓 2(·), and 𝑓 5(·), and are instantiated by AES in practice [91].

With the proliferation of mobile devices, e.g., smartphones, SIM

cards are widely used for authentication in daily life, which is con-

venient for users. This also implies that the utilization of SIM cards

has to rely on devices with the cellular communication module.

• Hardware token. Hardware tokens can be divided into two cat-

egories from the point of the underlying cryptosystem: symmetric-

key-based ones and public-key-based ones.

For symmetric-key-based hardware tokens, typical examples

include RSA SecurID [92], which is constructed on a hash-based

MAC (HMAC) [93]. A simplified authentication procedure is shown

in Figure 2. The hardware token stores a seed that is shared with

a server. During the sign-on phase, the hardware token and the
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server invoke a one-time password algorithm (which is based on

an HMAC) using the seed and current time as input [94]. The user

sends the password generated by the hardware token to the server.

The server verifies whether the received password is the same as

the locally generated one. If so, the user passes the authentication.

For public-key-based hardware tokens, typical examples include

U2F token [33, 95], which is based on ECDSA [96]. Figure 3 shows

the authentication procedure. The hardware token stores a private

key, and the corresponding public key is stored on the server. In

the sign-on phase, the server sends a nonce 𝑁𝑜𝑛𝑐𝑒 as a challenge

to the hardware token, and the hardware token signs 𝑁𝑜𝑛𝑐𝑒 and

returns the signature to the server. The server verifies the signature

with the corresponding public key. If it is valid, the user passes the

authentication.

It is difficult to forge a valid hardware token. However, once an

adversary can physically access the hardware token, he can easily

impersonate the user to pass the authentication.

• Trusted execution environment (TEE). TEEs are isolated private

enclaves inside CPU, which are used to protect data. Intel Software

Guard Extensions (Intel SGX) is the most widely-used TEE archi-

tecture [34]. It can also be utilized to authenticate users by using

its two root keys: the root provisioning key (RPK) and the root seal

key (RSK), where RPK and RSK are fused in CPU by the manufac-

turer. Due to the space limitation, please refer to Ref. [34–36] for

more details. In addition, except Intel SGX, other TEEs, e.g., ARM

TrustZone [97], are also widely used for authentication.

Such hardware units rely on specific manufacturers and are not

easily forged, but they may suffer from side-channel attacks [98].

Users and servers have to equip the same TEEs.

Appendix D RELATEDWORK
D.1 Key management schemes
Many key management schemes have been proposed in the past

few years. We discuss them in the following.

Hardware-based key management schemes. Users can lo-

cally manage their keys by utilizing secure hardware devices [99].

For example, Intel Software Guard Extensions (SGX), aiming to

protect the confidentiality and integrity of computations on sen-

sitive data performed on a computer, can also be utilized for key

management. Priebe et al. proposed a secure database using SGX

[100], which can be utilized for key management. However, such a

scheme requires the user to possess a device equipped with Intel

central processing units (CPUs) that support Intel SGX. In addition,

Intel SGX is vulnerable to side-channel attacks [98, 101].

Another approach to key management is to generate keys based

on the physical characteristics of a hardware device rather than

storing them within it. For example, although the manufacturing

process is the same among different ICs, each IC is actually different

from others, which is called manufacturing variability and can be

utilized for key generation.Maes et al. proposed physical unclonable

functions (PUFs) to derive keys by leveraging the variability [102].

Kim et al. proposed a lightweight PUF-based key generation using

various index voting architecture [103].

Hardware-based key management schemes essentially shift the

problem of managing multiple keys from protecting each individual

key to protecting another key that can unlock them. Once an adver-

sary physically accesses the hardware devices, he may recover the

user’s keys. To resist such an adversary, a widely-used remedy is to

introduce an additional authentication mechanism: only the user

who passes the authentication can utilize the hardware devices.

For example, before using a SIM card, the user needs to input a

PIN code to unlock it [104]. The user needs to input the correct

password before utilizing the hardware token for authentication

[105]. MacOS provides a secure container, called Keychain, which

assists users in managing their keys and passwords [5]. MacOS

authenticates the users by using passwords, fingerprints, or faces,

and only authenticated users can access the Keychain.

Whereas, the functionality and security of hardware-based key

management schemes depend on the reliability of the hardware

devices. Once the hardware devices are destroyed (e.g., due towrong

formatting), the user would never recover her/his keys. Especially,

the hardware devices are individually maintained by the users and

are vulnerable to being lost or stolen. In addition, hardware-based

key management schemes fail to achieve portable key access.

Software (or extended services) based key management
schemes. To free the costs and issues introduced by local key

management, users prefer to employ a service provider to achieve

key management. For instance, Amazon provides key management

services for users [106], where a master key is generated by each

user and utilized to encrypt other keys. The master key and the

ciphertexts of other keys are well maintained by Amazon. Microsoft

Azure [1] and Google cloud platform (GCP) [2] provide the same key

management services for users. With the assistance of the service

providers, the users are able to manage and access their keys on any

device. Nevertheless, for these key management services, service

providers rely on hardware security modules (HSM) to manage

users’ master keys, e.g., Amazon utilizes a distributed fleet of FIPS

140-2 validated HSMs to securely manage the users’ master keys

[106]. Once the HSMs are destroyed for some reason (e.g., servers

are destroyed due to geological disasters), the users’ master keys

would no longer be recovered.

To eliminate the reliance on security hardware devices, server-

aided key management schemes have been proposed in the past few

years. A user utilizes a master key to encrypt other keys, and the

master key is split among key servers in a threshold way [107, 108].

As long as the number of available key servers is larger than the

threshold, the user can recover the key. An adversary who compro-

mises less than a threshold number of key servers cannot obtain

anything about the master key. A notably example is Keywhiz, an

open-source distributed key management software [58].

To achieve portability, password-hardening protocols [59–66]

can also be utilized for key management, where a user hardens

her/his password with the aid of the key servers in a threshold

and oblivious way. After being hardened, the password is secure

against dictionary guessing attacks (DGA), which enhances the

security significantly. The hardened password is utilized to com-

pute authentication credentials and generate the master key. Such a

password-hardening-based key management scheme is destruction-

resistant, since the password is memorable, and any destruction

of the user’s devices would not cause unavailability of the pass-

word. Whereas, it is still unsatisfactory in real-world deployment,

since the password serves as the sole secret. Once the password is

compromised, no security is guaranteed. In reality, compromising
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users’ passwords is not so hard for a sophisticated adversary, even

if they are hardened by the key servers [23, 71, 72].

In addition to directly sharing the master key among multiple

key servers, distributed encryption schemes have been proposed

as a variant of distributed key management schemes. Agrawal et

al. proposed the first formal threshold symmetric-key encryption

based on distributed pseudorandom functions in DiSE [107], where

the user employs a group of key servers to generate an encryption

key for each message. Specifically, the user generates a commit-

ment to a message and sends the commitment to each server, and

each server computes a response utilizing its key share for the user.

The user aggregates a threshold number of responses and gets the

message-specific key to encrypt the message. However, DiSE may

introduce heavy computation and communication costs to the user

when encrypting a large set of messages. Christodorescu et al. pro-

posed an amortized threshold symmetric-key encryption scheme

[6], which enables the user to encrypt a large set of messages using

a single interaction. In addition, Jarecki et al. constructed an obliv-

ious key management system based on oblivious pseudorandom

functions [109]. This scheme has an updatable encryption capabil-

ity, and the update procedure of the ciphertexts does not require

the user to interact with the key servers.

Whereas, in the above schemes, sophisticated adversaries may

corrupt enough key servers given enough time and get the users’

master key. To resist such adversaries, multiple proactivization

mechanisms for secret sharing have been proposed [12, 110–114]. In

these schemes, time is divided into fixed intervals called epochs, and

the secret shares are updated with the new ones without changing

the master key in different epochs. To further enhance security,

the key servers can be replaced by the newly employed ones in

different epochs while maintaining the master key.

These server-aided key management schemes are free from re-

liance on secure hardware devices. However, these schemes cannot

resist the destruction of key servers. The functionality and relia-

bility totally rely on that the key servers can provide services for

users. Once the key servers are destroyed, the user would never

recover their keys.

D.2 Portable authentication
Biometric characteristics provide a convenient and portable way

for users to authenticate themselves with servers. Despite the ben-

efits of using biometric characteristics, there exist security issues.

Specifically, storing a user’s biometric characteristic template on

the server side as an authentication credential makes the user’s bio-

metric characteristic vulnerable if the credential database is leaked.

Furthermore, an attacker may perform trawling attacks to obtain

authentication credentials based on different biometric character-

istics from different authentication systems. This can enable the

attacker to retrieve the user’s master key if the user utilizes the

same characteristics when deploying DRKM.

A method to mitigate the above attacks is to require the server to

store the encrypted templates. The adversary cannot get anything

about users’ biometric characteristics from the compromised cre-

dential database. However, this method cannot resist the internal

adversary e.g., the malicious insiders working at the server, who

can still get the users’ templates.

Recently, the authentication protocol, FIDO U2F [105], has been

proposed, which enables users’ biometric templates to be stored

on the users’ devices instead of the server side. Specifically, the

user installs an FIDO authenticator on her/his device. During the

registration phase, the user unlocks the FIDO authenticator using

fingerprint or other biometric characteristics and generates a new

public/private key pair. The public key is sent to the server, and the

private key and the biometric characteristic templates are stored on

the device. During the sign-on phase, the server sends a challenge

message, e.g., a nonce, to the user. The user unlocks the FIDO au-

thenticator using the same biometric characteristics as that utilized

in the registration phase and signs the challenge message using the

private key. The user sends the signature back to the server, and the

server verifies it with the stored public key. If it is valid, the user

passes the authentication. As such, deploying FIDO authenticators

can avoid the leakages of biometric information.

Appendix E ARTIFACT
Abstract. Our artifact consists of a DRKM prototype. DRKM is a

portable and destruction-resistant key management system. It can

support that a user derives a master key from multiple PIFs and

utilizes the master key to manage other cryptographic keys. DRKM

also supports the user to retrieve the master key from a part of PIFs

utilized for key derivation.

Scope. Our artifact can be used to prove the correctness and feasi-

bility of DRKM and evaluate its performance. Specifically, it demon-

strates that DRKM can be deployed in practice and function well. It

can be used to evaluate the computation delay and communication

costs. It can also be used to validate the evaluation results presented

in Section 5.

Content. The artifact comprises the following sub-directories:

-__pycache__, which contains the packaged interfaces.

-key_manager.py, which contains the sourcecode of Managing.
-key_recover.py, which contains the sourcecode of Recovery.
-key_visit.py, which contains the sourcecode of Access.

Hosting. Our artifact is available on the GitHub repository

https://github.com/DRKM-code/DRKM.git.

Requirements. We developed and evaluated our artifact on a

laptop with an Intel Core i5 CPU and 16 GB LPDDR4X of RAM.

The prototype is implemented in Python with the Crypto library.

Moreover, to run the prototype correctly, some basic packages

including mpmath, pip, pkg_resources, and sympy are required.
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