
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

There Is Always a Way Out! Destruction-Resistant Key
Management: Formal Definition and Practical Instantiation

Yuan Zhang

University of Electronic Science

and Technology of China

Chengdu, China

zhangyuan@uestc.edu.cn

Yaqing Song

University of Electronic Science

and Technology of China

Chengdu, China

YaqingS@163.com

Shiyu Li

University of Electronic Science

and Technology of China

Chengdu, China

Shai_Li@yeah.net

Weijia Li

University of Electronic Science

and Technology of China

Chengdu, China

tokio_0@163.com

Zeqi Lai

Tsinghua University

Beijing, China

zeqilai@tsinghua.edu.cn

Qiang Tang

The University of Sydney

Sydney, Australia

qiang.tang@sydney.edu.au

ABSTRACT
A central advantage of deploying cryptosystems is that the security

of large high-sensitive data sets can be reduced to the security of a

very small key, i.e., a master key. The most popular way to manage

the master key is to use a (𝑡, 𝑛)−threshold secret sharing scheme:

a user splits her/his key into 𝑛 shares, distributes them among 𝑛

key servers, and can recover the key with the aid of any 𝑡 of them.

However, it is vulnerable to device destruction: if all key servers

and user’s devices break down, the key will be permanently lost. We

propose a Destruction-Resistant Key Management scheme, dubbed

DRKM,which ensures the key availability even if destruction occurs.

In DRKM, a user utilizes her/his 𝑛∗ personal identification factors

(PIFs) to derive a cryptographic key but can retrieve the key using

any 𝑡∗ of the 𝑛∗ PIFs. As most PIFs can be retrieved by the user

per se without requiring stateful devices, destruction resistance is

achieved. With the integration of a (𝑡, 𝑛)−threshold secret sharing

scheme, DRKM also provides portable key access for the user (with

the aid of any 𝑡 of 𝑛 key servers) before destruction occurs. DRKM

can be utilized to construct a destruction-resistant cryptosystem

(DRC) in tandem with any backup system. We formally prove the

security of DRKM, implement a DRKM prototype, and conduct a

comprehensive performance evaluation to demonstrate its high

efficiency. We further utilize Cramer’s Rule to reduce the required

buffer to retrieve a key from 25 MB to 40 KB (for 256-bit security).

KEYWORDS
Destruction resistance, key management

1 INTRODUCTION
Secure and efficient key management schemes are cornerstones of

any cryptosystem, which should satisfy the desired requirements

of availability (users can always correctly recover their keys) and

portability (users can access their keys from multiple devices). To

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies YYYY(X), 1–18
© YYYY Copyright held by the owner/author(s).

https://doi.org/XXXXXXX.XXXXXXX

this end, a user always stores her/his cryptographic keys in a repos-

itory [1–5]. Generally, the repository can be either instantiated by

deploying a local device [3, 4] or subscribing to key access services

from a dedicated service provider [5]. Such a repository always

refers to a key server in literature [6, 7]. This paradigm has been

widely utilized in commercial systems, e.g., Microsoft Azure [1]

and Google Cloud Platform [2].

Despite the advantage of deploying a key server, a critical issue—

vulnerability of the system against device destruction—arises nat-

urally: as uncontrollable and unpredictable threats towards the

key server always exist in reality, the user has to bear the risk

that her/his keys would be permanently lost if the key server is

destroyed. We stress that device destruction is not just a theoretical

concern, and recent incidents have shown that it would happen

with various manifestations which typically consist of hardware

destruction and software unavailability [8–10]. Notably, a private

key stored in a hard drive was permanently unavailable to its owner

due to a hard drive breakdown, which directly caused that 7500

bitcoins (which are worth more than $280 million today) could

never be used by the owner [8]. In addition, after the key server

storing users’ cryptographic keys is hacked by ransomware attacks,

all cryptographic services have been paralysed [9, 10]. As such,

remaining availability in case of device destruction has become a

primary requirement for key management schemes.

The most popular method to manage cryptographic keys is the

threshold secret sharing scheme [11] (as well as its variants [12]),

where 𝑛 key servers are deployed, and each of them maintains a

share of the key such that the key can be recoveredwith any 𝑡 shares.

Such a key management scheme provides a strong guarantee in

terms of security and reliability: even if an adversary compromises

𝑡 − 1 key servers, he cannot get any information about the key; the

destruction of any 𝑛−𝑡 key servers cannot hamper the key recovery.

Due to the theoretically desirable properties and practical natures,

threshold secret sharing schemes still serve as a key component

for lots of high-sensitive systems (e.g., vault systems [13]) in the

current age, even though the pioneering work was proposed by

Shamir [11] more than 40 years ago. However, the fundamental

issue of remaining at least 𝑡 key servers available under any cir-

cumstance still exists. In reality, misfortunes causing simultaneous

destruction of all key servers could still happen in any system, no

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

matter what high degree of reliable measures would be taken. For

instance, Amazon Web Services (AWS) suffered a major outage

[14] due to misoperations, where all servers in the Amazon Simple

Storage Service (S3) subsystems broke down, and many popular

websites, e.g., Netflix and Slack, were affected [15]. Severe natural

disasters also would directly destroy local servers and make them

permanently unavailable to their users. A notable example is that

the eruption of the Tonga volcano [16] in 2022 destroyed critical

information infrastructure almost all over the country.

A natural way to mitigate this problem is to employ additional

servers providing backup services: if some key servers break down,

backup servers can continue to handle users’ requests
1
. Neverthe-

less, this remedy cannot be applied for key management, since

multiple backups of keys increase the danger of security breaches.

This motivates us to consider the following question:

Motivation question 1

Can we have a key management scheme that ensures key avail-
ability even if all repositories (including users’ devices and key
servers) are destroyed?

The key observation behind ourwork is that destruction-resistant

key availability can only be achieved by a key generation mecha-

nism that enables the user to recover the key as needed without

requiring any stateful2 device. With the observation, we introduce

two new concepts: reconstructable secret and un-reconstructable

secret, depending on whether a stateful device is necessary for re-

covering the secret. We then propose a practical key derivation

mechanism to generate reconstructable secrets, where the key

idea is to generate the reconstructable secret using users’ personal

identification factors (PIFs)
3
. Specifically, we categorize PIFs into

three types: device-dependent ones, device-independent ones, and

storage-independent ones, where processing device-dependent/device-

independent PIFs (for cryptography purposes), such as biometric

characteristics [19–22], requires a stateful/stateless device, and pro-

cessing storage-independent PIFs, e.g., passwords, does not even

require some additional storage. A systematic analysis is provided

in Section 2. We also notice that reconstructable secrets can be

directly derived from device/storage-independent PIFs. With recon-

structable secrets, it seems that a destruction-resistant key manage-

ment scheme can be trivially constructed: a user constructs a master

key from multiple reconstructable secrets and further utilizes it to

derive other cryptographic keys. However, the above scheme is also

confronted with the following issues.

Regarding functionality, the key recovery depends on a strong

assumption that the user needs to keep all device-independent PIFs

available under any circumstance. As a counterexample, if the user

utilized a fingerprint to generate the master key, when large-scale

disasters occur, the user’s finger may be injured, and consequently

the user cannot recover the master key until the finger heals.

1
To resist the destruction caused by natural disasters, the backup servers can be

deployed around the world. However, this approach may violate data protection

regulations in several countries [17, 18] and would be expensive to deploy in practice.

2Stateful means that the device stores some secret information related to the user.

3
We utilize the terminology of “PIFs” here to distinguish from authentication factors

(AFs). In digital systems, a PIF is the factor that uniquely identifies a user while an

AF is considered as a special PIF that can be utilized to construct secure and usable

authentication schemes. In other words, some PIFs cannot serve as AFs, e.g., DNA

is a PIF but cannot be used to construct usable authentication schemes (due to its

inconvenience and high costs).

Regarding convenience, the portability is also lost, since “device-

independent” is not equivalent to “portable” (even if a PIF is device-

independent, the user may not retrieve it anytime and anywhere).

For instance, if a user has a camera capable of collecting irises,

she/he can derive a secret from the iris. Subsequently, the user

can only recover the secret when she/he equips such a specific-

purpose device (that may not be the same as the previous one

but has the same functionalities). Such a secret fails to achieve

portability, and migrating it may cause new issues in terms of

security and efficiency.

The above limitations further motivate us to consider the follow-

ing question:

Motivation question 2

Can we have a destruction-resistant key management scheme that
enables key recovery from a subset of original PIFs while achieving
portability before destruction occurs?

We stress that the conventional threshold secret sharing [11] and

its distributed variants [12] fail to achieve the key recovery from a

subset of original PIFs, since they essentially share the same para-

digm: first determine the secret and then split it into multiple shares;

any threshold number of shares can reconstruct the secret. How-

ever, in destruction-resistant key management introduced before,

the “shares” (i.e., the reconstructable secrets) are pre-determined

by PIFs, and the master key is derived from them. To achieve the

key recovery from a subset of original PIFs, a threshold key deriva-

tion mechanism should be designed, such that the master key can

be “derived” from all pre-determined “shares” but can be recov-

ered with only the threshold number of them. (By comparison, the

“shares” are determined by PIFs rather than the master key as in

conventional threshold secret sharing. The detailed comparison is

provided in Appendix B.)

To achieve portability, the user can derive 𝑛 different recon-

structable secrets from different PIFs, employ 𝑛 key servers, and

let each key server maintain one secret. By doing so, the user can

access the master key with the aid of key servers in a portable

way
4
before the destruction occurs. Whereas, such an approach is

vulnerable to trawling attacks [23]. Specifically, a PIF is not only

used for generating the master key in one system but also used in

other systems for other cryptographic purposes, e.g., secure authen-

tication. In the above approach, the key servers can compromise

enough information about the user’s PIFs from the reconstructable

secrets, which enables adversarial key servers to impersonate the

user to access other services where the same PIFs are used for

authentication.

To the best of our knowledge, we still lack a destruction-resistant
key management scheme that enables key recovery from a subset
of original PIFs after destruction occurs while achieving portability
before destruction occurs.

1.1 Our contributions
In this paper, we propose a Destruction-Resistant Key Management

scheme, dubbedDRKM,which goes one step beyond existing schemes

[11, 12]. Specifically, our contributions are summarized as follows.

4
The user can authenticate herself/himself with portable PIFs.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

Concepts of storage/device-independent PIFs. We first propose

three new concepts about personal identification factors (PIFs)—

storage-independent PIFs, device-independent PIFs, and device-

dependent PIFs—based on whether a PIF can be retrieved by the

user per se without requiring any storage or a stateful device.
Concepts of (un-)reconstructable secrets.We introduce two con-

cepts about secrets—reconstructable secrets and un-reconstructable

secrets. We point out that reconstructable secrets can be directly

derived from storage/device-independent PIFs. We also present

a series ofmethods to derive reconstructable secrets from device-

dependent PIFs in tandemwith storage/device-independent PIFs

under certain conditions.

Construction for destruction-resistant key management. We

propose DRKM, a destruction-resistant and portable key man-

agement scheme. To achieve destruction resistance, DRKM uti-

lizes a threshold key derivation mechanism to enable a user to

derive a master key from 𝑛∗ PIFs (which include storage/device-

independent ones and might include device-dependent ones)

during the setup phase and to recover the master key using any

𝑡∗ of the 𝑛∗ PIFs after destruction occurs. To achieve portability,

DRKM adopts a multi-server-aided paradigm and utilizes a con-

ventional (𝑡, 𝑛)-threshold secret sharing scheme (𝑡 and 𝑛 are

independent of 𝑡∗ and 𝑛∗) to distribute the master key among 𝑛

key servers. As long as any 𝑡 of 𝑛 key servers are available, the

user can access the master key in a portable way (i.e., she/he

does not maintain any secret in local devices.). DRKM is compat-

ible with existing backup systems and can be directly extended

to a destruction-resistant cryptosystem (DRC) in tandem with

any commercial cloud storage service, such as Google Drive

[24], Dropbox [25].

Formal security proofs and prototype implementation. We

provide formal security definitions of DRKM and prove its secu-

rity. Particularly, we prove that an adversary, who compromises

𝑡 − 1 key servers and 𝑡∗ − 1 reconstructable secrets, cannot get
any information about the master key. We implement a DRKM

prototype and conduct a comprehensive performance evalua-

tion which shows that it would take about 120 ms to derive

a master key from 10 popular PIFs and take less than 5 ms to

recover the master key from any 𝑡∗ secrets with 𝑡∗ = 12 and

𝑛∗ = 20. In addition, we utilize Cramer’s Rule [26] to signifi-

cantly reduce the required buffer to retrieve a key from 25 MB

to 40 KB (for 256-bit security).

We demonstrate the viability of DRKM for two existing appli-

cations that can benefit from the desirable property of destruction

resistance in Section 5.6. One of two applications extends to DRCs.

We show how DRKM supports these applications without chang-

ing the current system architecture. Since destruction resistance is

a fundamental requirement of any cryptosystem, we believe that

DRKM has further useful applications.

1.2 Technical overview
The core of achieving destruction resistance is to be free from the

reliance on stateful devices. In Section 2, we divide PIFs into three

categories: storage-independent PIFs, device-independent PIFs, and

device-dependent PIFs. A user can directly derive reconstructable

secrets from storage/device-independent PIFs, and these secrets

are independent of any stateful devices. We also present a series of

methods to derive reconstructable secrets from device-dependent

PIFs in conjunction with storage/device-independent PIFs.

With the above methods, a user first derives 𝑛∗ reconstructable
secrets from PIFs and then aggregates these secrets to obtain a mas-

ter key. The challenge in designing DRKM is to achieve threshold

retrieval for the aggregated master key, i.e., a master key is aggre-

gated from 𝑛∗ pre-determined secrets and can be retrieved from

any 𝑡∗ of them. To address the challenge, we utilize a threshold

key derivation mechanism. Specifically, the user first constructs a

𝑛∗-degree polynomial 𝑝 (𝑥) using the 𝑛∗ secrets as its roots. In this

polynomial, the constant term serves as the master secret, and the

coefficients of 𝑝 (𝑥) of degree 𝑛∗ − 1 down to 𝑡∗ are published as

the auxiliary information 𝑎𝑢𝑥 . With 𝑡∗ secrets and 𝑎𝑢𝑥 , the degree
of the polynomial 𝑝 (𝑥) can be reduced from 𝑛∗ to 𝑡∗ − 1. The user
can compute the coefficients of 𝑝 (𝑥) from degree 𝑡∗ − 1 down to 0

so as to obtain the master key.

We also integrate an aggregation-then-split mechanism into

DRKM to achieve portable key access in normal times against trawl-

ing attacks. The master key derived from the 𝑛∗ reconstructable
secrets is further split into 𝑛 shares using a conventional (𝑡, 𝑛)-
threshold secret sharing scheme, and each key server maintains a

share. Adversarial key servers cannot compromise any information

about the reconstructable secrets from the secret shares. This yields

the final DRKM: before the destruction occurs, the user can recover

the master key with the aid of key servers in a portable way; once

the destruction occurs (i.e., the key servers and the user’s devices

are destroyed), the user can retrieve any 𝑡∗ reconstructable secrets
using all available PIFs at that time and recover the master key

from them. In the extreme case where all devices, key servers, and

even 𝑎𝑢𝑥 is unavailable, the user can also recover the master key

from 𝑛∗ original PIFs. A destruction-resistant cryptosystem (DRC)

can be developed by directly integrating DRKM and a full-fledged

backup system.

1.3 Comparison with concurrent work
A very recent work concurrent to DRKM (i.e., threshold multi-factor

key derivation function, short for TMFKDF) proposed by Nair et al.

[27] could be a partial solution to construct a destruction-resistant

key management scheme: a user first randomly chooses a master

key, splits it into multiple shares using a conventional threshold

secret sharing scheme and encrypts each share under a PIF (using

some key derivation functions).

Essentially, TMFKDF inherits the threshold property of the con-

ventional threshold secret sharing scheme, where the master key

is randomly chosen by the user rather than determined by PIFs.

Therefore, some metadata, e.g., the encrypted shares, is inherently

needed for key recovery, and dedicated storage for metadata is

always required. By comparison, DRKM is completely orthogonal

to the conventional sample-share-and-reconstruct idea as in TM-

FKDF. With DRKM, the user can also recover the master key from

𝑛∗ reconstructable secrets even if any storage is unavailable.

In DRKM, it seems that some metadata is also required in some

cases. For instance, if the user derives reconstructable secrets from

biometric characteristics [19–22], some metadata, e.g., error correct-

ing code [28, 29], is required to ensure the consistency of secrets

in different derivations. However, we stress that such metadata in

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

DRKM is totally different from ciphertext in TMFKDF due to the

following reasons.

The metadata in DRKM can be shared among different systems

in which PIFs are utilized for other purposes, e.g., user authentica-

tion. As such, dedicated storage is not required, and the user can

retrieve the metadata from other systems on demand. However, for

TMFKDF, dedicated storage for ciphertext cannot be shared among

other systems. Furthermore, it is promising to free from metadata

in DRKM by utilzing new PIFs where deriving secrets from them

does not require any storage. A detailed comparison is provided in

Section 5.4.

Roadmap. The remainder of this paper is organized as follows.

We introduce the concepts of storage/device independent PIFs in

Section 2. We propose DRKM in Section 3 and give the formal

security proof in Section 4. In Section 5, we detail the implementa-

tion and evaluate the performance of DRKM. Finally, we draw the

conclusion and outlook for future research directions in Section 6.

2 PIFS AND RECONSTRUCTABLE SECRETS
2.1 Definitions of PIFs
We analyze popular PIFs and give a brief introduction to them in

Appendix C, referring to “something the user knows”, “someone

the user is”, and “something the user has” [30]. Intuitively, a PIF

can uniquely identify a user, and thereby each PIF indicates a sole

secret utilized to distinguish different PIFs. We observe that the

utilization of some PIFs has to depend on stateful hardware devices

that maintain the necessary state information, e.g., hardware to-

kens. Additionally, a succinct description of PIF is required, which

includes the directions for use and necessary auxiliary information.

The secret is private, and the description is public. We formally

define a general PIF as follows.

Definition 1. A PIF is a triple of arguments (sta, 𝜇, 𝑑𝑒𝑠𝑝), where
sta is state information, 𝜇 is a unique secret, and 𝑑𝑒𝑠𝑝 is a description
of the PIF, including the directions for use and necessary auxiliary
information.

We take a SIM card [31] as an example: sta represents the SIM
card itself, 𝜇 is the secret key fused in it, and𝑑𝑒𝑠𝑝 includes necessary

auxiliary information (e.g., public parameters and authentication

protocols used in the SIM card).

With the previous analyses, we can heuristically divide the

above PIFs into three categories—storage-independent ones, device-

independent ones, and device-dependent ones. In reality, passwords

and PIN codes can be reconstructed from users’ memory and are

inherently independent of any personal or public storage. Biometric

characteristics can be reconstructed by specific-purpose devices

(e.g., cameras used to collect irises) instead of stateful devices. For
device-dependent PIFs (e.g., SIM cards, hardware tokens, and Intel

SGX), once a stateful device is destroyed, the corresponding PIF

cannot be recovered by the user per se.

Obliviously, storage-independent PIFs are also device-independent

but device-independent ones need public information for recon-

struction and are dependent on public storage. We capture the stor-

age independence, device independence, and device dependence of

PIFs by the following definitions, respectively.

Definition 2. (Storage-independent PIF). A storage-independent
PIF is stateless and can be represented by a triple of arguments (⊥
, 𝜇, 𝑑𝑒𝑠𝑝), where ⊥ represents that the generation and maintenance
of 𝜇 do not rely on any public or personal storage.

Definition 3. (Device-independent PIF). A device-independent PIF
is stateless and can be represented by a triple of arguments (info, 𝜇, 𝑑𝑒𝑠𝑝),
where the generation and maintenance of 𝜇 is independent of devices
and only rely on some public storage info.

Definition 4. (Device-dependent PIF). A device-dependent PIF is
stateful and can be represented by a triple of arguments (sta, 𝜇, 𝑑𝑒𝑠𝑝),
where the generation and maintenance of 𝜇 depend on a hardware
device specified by sta.

Weobserve that all biometric characteristics are device-independent,

as they are determined by a user per se. However, they may not

totally independent of storage, since some public information, e.g.,

error correcting code [28, 29], is needed when utilizing them. In

cryptographic applications, how to make biometric characteristics

free from dedicated storage is a fascinating open problem.

2.2 Reconstructable secrets
We first consider what it means to be “reconstructable”. Informally,

a value is reconstructable if it is available without a specific stateful

device and can be accessed anytime and anywhere. Reconstructable

values generalize the notion of storage/device-independent PIFs,

which is captured by Definition 5. For completeness, we also define

un-reconstructable values in Definition 5.

Definition 5. A two-valued probability distribution (𝜎, 𝛼) gen-
erated by an efficient probabilistic algorithm is reconstructable if
it does not take state information sta as inputs, where 𝛼 represents
some (public) auxiliary knowledge about 𝜎 or its distribution. (𝜎, 𝛼)
is un-reconstructable if the efficient probabilistic algorithm takes state
information sta as inputs.

We can trivially extend reconstructable values (𝜎, 𝛼) to recon-

structable secrets by further requiring 𝜎 to be kept secretly. Sim-

ilarly, a secret derived from an un-reconstructable value is un-

reconstructable. In reality, we can utilize storage/device-independent

PIFs to serve as reconstructable values to derive reconstructable

secrets. For instance, fuzzy extractor algorithms [28, 29] can be

utilized to extract a secret from a feature template of biometric

characteristics. The secret is reconstructable, since fuzzy extrac-

tion algorithms ensure that the same secret can be extracted from

similar but not identical feature templates. Directly (only) using

passwords and PINs as reconstructable secrets cannot achieve a

reasonable security guarantee due to their inherent limitations. To

mitigate this problem, we can integrate multiple PIFs to derive a

high min-entropy reconstructable secret. With the above analysis,

we draw Theorem 1.

Theorem 1. A value 𝑠 = F({𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚}) is recon-
structable if 𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚 are storage/device-independent, and
F is some function.

Proof. For 𝑖 = 1, . . . ,𝑚, 𝑃𝐼𝐹𝑖 = (⊥ /info𝑖 , 𝜇𝑖 , 𝑑𝑒𝑠𝑝𝑖), 𝑠 = F({𝑃𝐼𝐹1,
𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚}) = F({𝜇𝑖 }1≤𝑖≤𝑚, {info𝑖 }1≤𝑖≤𝑚), where ({𝜇𝑖 }1≤𝑖≤𝑚,
{info𝑖 }1≤𝑖≤𝑚) satisfies Definition 5, and {𝜇𝑖 }1≤𝑖≤𝑚 are secret in-

formation. Hence, 𝑠 is a reconstructable secret. □

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

)

User

ID,	RAND,	AUTH

Server

SIM card
𝐾

𝐼𝐷 𝑀𝐴𝐶 = 𝑓1	(𝐾, 𝑆𝑄𝑁||𝑅𝐴𝑁𝐷)
𝐴𝐾 = 𝑓5(𝐾, 𝑅𝐴𝑁𝐷)
𝐴𝑈𝑇𝐻 = 𝑆𝑄𝑁 ⊕𝐴𝐾	||	𝑀𝐴𝐶

𝐴𝐾 = 𝑓5(𝐾, 𝑅𝐴𝑁𝐷)
𝑋𝑀𝐴𝐶 = 𝑓1	(𝐾, 𝑆𝑄𝑁||𝑅𝐴𝑁𝐷)

𝑋𝐴𝑈𝑇𝐻 = 𝑆𝑄𝑁⊕ 𝐴𝐾	||	𝑀𝐴𝐶
𝑋𝑀𝐴𝐶	?= 𝑀𝐴𝐶

𝑋𝑅𝐸𝑆 = 𝑓2(𝐾, 𝑅𝐴𝑁𝐷)

𝑅𝐸𝑆 = 𝑓2(𝐾, 𝑅𝐴𝑁𝐷)

𝑋𝑅𝐸𝑆
𝑋𝑅𝐸𝑆	?= 𝑅𝐸𝑆

Success/Fail

𝐾

Figure 1: User authentication based on
SIM cards.

Hardware token

User Server

𝑆𝑒𝑒𝑑 𝑆𝑒𝑒𝑑

𝑇𝑖𝑚𝑒 𝑇𝑖𝑚𝑒

Request

𝑂𝑇𝑃 = 𝐻𝑀𝐴𝐶(𝑠𝑒𝑒𝑑, 𝑇𝑖𝑚𝑒)𝑂𝑇𝑃′ = 𝐻𝑀𝐴𝐶(𝑠𝑒𝑒𝑑, 𝑇𝑖𝑚𝑒)
𝑂𝑇𝑃′

𝑂𝑇𝑃3?= 𝑂𝑇𝑃Success/Fail

c

Figure 2: User authentication based on
RSA SecurIDs.

U2F token

User Server

𝑠𝑘 𝑝𝑘

Request

Generate 𝑁𝑜𝑛𝑐𝑒

𝜎 = 𝑆𝑖𝑔𝑛./(𝑁𝑜𝑛𝑐𝑒)
𝑁𝑜𝑛𝑐𝑒

Success/Fail
0/1 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝑝𝑘, 𝜎)

𝜎

Figure 3: User authentication based on
U2F tokens.

If all 𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚 are storage-independent, the secret 𝑠 =

F({𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑚}) does not rely on any public or personal

storage, since 𝑠 can be represented as 𝑠 = F({𝜇𝑖 }1≤𝑖≤𝑚,⊥).

2.3 Conditionally reconstructable secrets
It seems impractical to derive a reconstructable secret from a device-

dependent PIF, since a secret derived from a device-dependent PIF

cannot be recovered by the user if the device is destroyed. However,

we observe that a conditional reconstructable secret can be gener-

ated by a “hybrid model”, i.e., we can derive a reconstructable secret

from a special class of device-dependent PIFs in tandem with some

storage/device-independent PIF(s) under a specific assumption.

For the device-dependent PIFs introduced in Appendix C, i.e.,

SIM cards, hardware tokens, and SGX, they essentially share the

same paradigm, where a secret generated by the manufacturer is

fused in the device. The user can only utilize the secret to compute

authentication credentials but cannot extract it. We observe that if

the underlying authentication scheme is based on the symmetric-

key cryptographic primitives (e.g., MAC), the server will store the

same secret that is fused in the device after registration. In this case,

once the device is destroyed, the server (or the device’s manufac-

turer) still stores the secret. As such, the secret can be recovered

with the aid of the server or the manufacturer even if device de-

struction occurs.

In the following, we discuss how to derive a conditionally recon-

structable secret from each of the device-dependent PIFs introduced

in Appendix C.

SIM card. As shown in Figure 1, a user can utilize a SIM card

to compute a MAC on a storage/device-independent PIF and set

the MAC as the conditionally reconstructable secret derived from

the SIM card. Since MAC is existentially unforgeable, and the PIF

is secretly maintained by the user, the MAC-based secret is only

known to the user. In addition, as the secret fused in the SIM card is

also maintained by the cellular communication service provider, the

user can recover the MAC-based secret with the aid of the provider.

Hardware token. For HMAC-based hardware tokens (as shown in

Figure 2), the user can derive a conditionally reconstructable secret

in the same way as that from the SIM card. However, ECDSA-based

hardware tokens (as shown in Figure 3) cannot be utilized to derive

a reconstructable secret, since the manufacturer does not maintain

the secret stored in the user’s hardware token. However, we notice

that for some existing hardware tokens, this can be achieved by

utilizing a well-known attack, i.e., the backdoor attack released

by Snowden [32], where this approach actually does not need the

assistance from the manufacturer [33].

Intel SGX. The Root Provisioning Key (PRK) fused in Intel SGX

is shared by a user and Intel. Intel SGX architecture provides the

EGETKEY instruction to derive a key from the RPK [34–36]. The

user initializes an enclave for a storage/device-independent PIF and

invokes EGETKEY for the enclave. The key output by the EGETKEY
is the reconstructable secret derived from the Intel SGX. When

reconstructing the secret, the user only needs to establish an enclave

for the previous storage/device-independent PIF and gets the secret

by calling the EGETKEY instruction.

Limitations of hybrid model. Regarding security, the user has

to fully trust the servers or the manufacturers. Malicious servers

and manufacturers may abuse the user’s secret. Regarding relia-

bility, the reconstructable secrets derived by the hybrid method

are conditionally reconstructable. The servers or manufacturers

have another mechanism to authenticate the user when the user’s

devices are destroyed, e.g., real-name systems. The reconstructabil-

ity depends on the reliability of the servers or the manufacturers.

Once the servers and manufacturers are destroyed, the user cannot

recover the reconstructable secrets.

It is worth stressing that the above limitations are not contradictory
to our primary motivation of resistance against device destruction
due to the following reasons. First, the manufacturers and cellular

communication service providers play an important role in con-

structing critical infrastructures, and thereby they would take lots

of measures to ensure the reliability and security of their devices.

Second, if the manufacturers and cellular communication service

providers misbehave, it would cause a huge loss. As such, both the

manufacturers and cellular communication service providers bear

rigorous accountability from governments in reality. By compari-

son, the measures taken by application service providers and users

to improve the reliability and security of key servers and devices

are always weak, and the accountability is somewhat trivial.

3 THE PROPOSED DRKM
3.1 Notation
We utilize ℓ to denote the security parameter, and |𝑎 | denotes the
absolute value of 𝑎. ®𝐴 denotes a set {𝐴1, . . . , 𝐴𝑛}. [1, 𝑛] denotes the
set {1, 2, . . . , 𝑛}. 𝑎 $← 𝐴 denotes that 𝑎 is uniformly chosen from 𝐴.

3.2 Definition of DRKM
DRKM consists of three entities: a user U, a set of key servers

®KS = {KS1,KS2, . . . ,KS𝑛}, and a backup system. There are four

algorithms in DRKM, Setup,Managing, Access, and Recovery.
• 𝑃𝑃 ← Setup(ℓ).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Indistinguishability: IND-KeyA1

(ℓ)

1: {𝑆, 𝑠1, . . . , 𝑠𝑛, 𝑎𝑢𝑥} ← Managing(𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗)

2: 𝑆★
$← {0, 1} |𝑆 |

3: 𝑏
$← {0, 1}

4: If 𝑏 = 1, 𝐾𝑒𝑦 = 𝑆 ; else, 𝐾𝑒𝑦 = 𝑆★

5: 𝑏′ ← A1 (𝐾𝑒𝑦, 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑃𝐼𝐹𝑖1 , . . . , 𝑃𝐼𝐹𝑖𝑡∗−1 , 𝑎𝑢𝑥)
6: If 𝑏′ = 𝑏, return 1

7: Else, return 0.

PIF privacy: PIF-PrivacyA2

(ℓ)

1: {𝑆, 𝑠1, . . . , 𝑠𝑛, 𝑎𝑢𝑥} ← Managing(𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗)

2: Select a subset

−−→
𝑃𝐼𝐹 1 of {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ }, where |

−−−→
𝑃𝐼𝐹1 | = 𝑡∗−1

3: Generate a PIF set

−−−→
𝑃𝐼𝐹0, where

−−−→
𝑃𝐼𝐹0 ∩ {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } = ∅

and |−−−→𝑃𝐼𝐹0 | = 𝑡∗ − 1

4: 𝑏
$← {0, 1}

4:

−−→
𝑃𝐼𝐹 =

−−−→
𝑃𝐼𝐹𝑏

5: 𝑏′ ← A2 (
−−→
𝑃𝐼𝐹, 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑎𝑢𝑥)

6: If 𝑏′ = 𝑏, return 1; else, return 0.

Figure 4: The security experiments of DRKM.

On input the security parameter ℓ , this algorithm returns public

parameters 𝑃𝑃 , where two thresholds, i.e., (𝑡, 𝑛) and (𝑡∗, 𝑛∗), are
included. (𝑡, 𝑛) is independent of (𝑡∗, 𝑛∗). The larger 𝑡 and 𝑡∗ are,
the stronger the security guarantee is but the higherU’s costs to

access and recover the keys are.

• {𝑆, 𝑠1, . . . , 𝑠𝑛, 𝑎𝑢𝑥} ←Managing(𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ , sta).
On input 𝑛∗ PIFs {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } and (optional) public state

information sta, this algorithm returns a master key 𝑆 , 𝑛 shares

{𝑠1, . . . , 𝑠𝑛} of 𝑆 , and auxiliary information 𝑎𝑢𝑥 . U generates a

master key 𝑆 using {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ }, sends the secret share 𝑠𝑖 to
KS𝑖 .U stores 𝑎𝑢𝑥 with a backup system.

• 𝑆 ← Access(𝑠𝑖1 , . . . , 𝑠𝑖𝑡 , 𝑎𝑢𝑥).
On input any 𝑡 of 𝑛 shares {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 }, this algorithm returns 𝑆 .

U gets {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 } from 𝑡 key servers and 𝑎𝑢𝑥 from the backup

system and can access 𝑆 .

• 𝑆 ← Recovery(𝑃𝐼𝐹𝑖1 , . . . , 𝑃𝐼𝐹𝑖𝑡∗ , 𝑎𝑢𝑥, sta).
On input 𝑡∗ PIFs {𝑃𝐼𝐹𝑖1 , . . . , 𝑃𝐼𝐹𝑖𝑡∗ }, 𝑎𝑢𝑥 , and (optional) sta, this

algorithm returns the master key 𝑆 . If the number of available key

servers is less than 𝑡 ,U utilizes available PIFs {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑡∗ } to
recover 𝑆 .

3.3 Functionality of DRKM
The primary functionality of DRKM is to ensure that users can re-

cover their keys when both key servers and devices are unavailable.

In the following, we refine three cases and discuss the functionality

that should be satisfied case by case.

• Normal times. In normal times, both dedicated storage for

sensitive information and general storage for non-sensitive

information are available to users, i.e., any 𝑡 key servers

and the backup system are available. DRKM should achieve

portability in normal times, i.e., enable users to access their

master keys without maintaining any secret locally.

• Partial destruction. Partial destruction means that dedicated

storage for sensitive information is destroyed but general

storage for non-sensitive information is available to users.

It indicates that all key servers and devices are destroyed

but the backup system and any 𝑡∗ of 𝑛∗ PIFs are available.
In this case, DRKM should enable users to recover their

master keys.

• Full destruction. In the full destruction case, neither dedi-

cated storage for sensitive information nor general storage

for non-sensitive information is available to users, i.e., all

key servers and devices are destroyed, and even the backup

system is unavailable to users. Under this circumstance,

DRKM should ensure the key recovery if all 𝑛∗ PIFs are
available.

3.4 Security of DRKM
The security goals of DRKM are as follows.

• Regardless of any information an adversary already has, he

cannot extract any information about a user’s master key

𝑆 used for key derivation from the interaction messages

between the user and other entities.

• An adversary who compromises key servers cannot obtain

any information about PIFs that are utilized to derive the

master key.

The security of DRKM is formally captured by Definition 6 and

Definition 7, where the security experiments are provided in Figure

4. In Definition 6, we consider the adversary who can (1) corrupt

𝑡∗ − 1 PIFs used to derive the master key; (2) compromise 𝑡 − 1 key
servers and the cloud server, but still cannot distinguish the master

key from a uniformly-chosen key
5
with probability better than 1/2.

In Definition 7, given 𝑡 − 1 shares, an adversary cannot determine

which PIFs are used to derive the master key corresponding to the

𝑡 − 1 shares.

Definition 6. (Indistinguishability). DRKM satisfies indistin-
guishability against any probabilistic polynomial-time (PPT) adver-
sary A1 who compromises 𝑡 − 1 key servers and 𝑡∗ − 1 PIFs iff there
is a negligible function 𝑛𝑒𝑔𝑙 such that

Pr[IND-KeyA1

(ℓ) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (ℓ).

Definition 7. (PIF privacy). DRKM protects the PIFs used to derive
the master key against any PPT adversary A2 who compromises 𝑡
shares if there exists a negligible function 𝑛𝑒𝑔𝑙 such that

Pr[PIF-PrivacyA2

(ℓ) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (ℓ).

3.5 Construction of DRKM
We instantiate the backup system using a cloud server CS. A user

U, a set of key servers
®KS = {KS1,KS2, . . . ,KS𝑛}, and a cloud

5
The uniformly-chosen key has the same length as the master key.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

)

server CS are involved in DRKM. We assume thatU has 𝑛∗ recon-
structable secrets which are derived from

−−→
𝑃𝐼𝐹 = {𝑃𝐼𝐹1, 𝑃𝐼𝐹2, . . . , 𝑃𝐼𝐹𝑛∗ }6.

Setup.With the security parameter ℓ , public parameters 𝑃𝑃 =

{𝑝, 𝑡∗, 𝑡, 𝑛∗, 𝑛, F} are determined, where 𝑝 is a prime, 𝑡∗ and 𝑡 are
two thresholds, 𝑛∗ is the number of PIFs ofU, 𝑛 is the number of

the key servers, and F is secure key derivation function.

Managing.U utilizes her/his PIFs to manage ®𝐾 as follows.

• For 𝑃𝐼𝐹𝑖 ∈
−−→
𝑃𝐼𝐹 and 𝑖 = 1, 2, . . . , 𝑛∗, U computes 𝑠∗

𝑖
as

follows.

- If 𝑃𝐼𝐹𝑖 is storage/device-independent, compute 𝑠∗
𝑖
= F(𝑃𝐼𝐹𝑖)

by Theorem 1
7
.

- If 𝑃𝐼𝐹𝑖 is device-dependent,U can compute a conditionally

reconstructable secrets by utilizing the methods provided

in Section 2.3.

• U generates a polynomial

𝑝 (𝑥) =
𝑛∗∏
𝑖=1

(𝑥 − 𝑠∗𝑖),

such that 𝑝 (𝑠∗
𝑖
) = 0 for 𝑖 = 1, 2, . . . , 𝑛∗.

• U outputs the coefficients of 𝑝 (𝑥) of degree 𝑛∗ − 1 down
to 𝑡∗ as the auxiliary information 𝑎𝑢𝑥 , i.e.,

𝑎𝑢𝑥 = {−
𝑛∗∑︁
𝑖=1

𝑠∗𝑖 ,
∑︁

𝐴⊆[1,𝑛∗]
|𝐴 |=2

(
∏
𝑖∈𝐴

𝑠∗𝑖),−
∑︁

𝐴⊆[1,𝑛∗]
|𝐴 |=3

(
∏
𝑖∈𝐴

𝑠∗𝑖),

. . . , (−1)𝑛
∗−𝑡∗ ·

∑︁
𝐴⊆[1,𝑛∗]
|𝐴 |=𝑛∗−𝑡∗

(
∏
𝑖∈𝐴

𝑠∗𝑖)}.

• U computes 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖
as the master key.

• U uniformly chooses 𝑎1, . . . , 𝑎𝑡−1
$← 𝑍𝑝 and generates a

polynomial 𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1 over 𝑍𝑝 with

degree at most 𝑡 − 1.
• U computes 𝑠𝑖 = 𝑓 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛.

• U establishes a secure channel with KS𝑖 and sends 𝑠𝑖 to

KS𝑖 .U outsources 𝑎𝑢𝑥 to CS.
• KS𝑖 securely stores 𝑠𝑖 .S

Access.U accesses 𝑆 with the aid of
®KS as follows.

• U establishes a secure channel with KS𝑖 , and KS𝑖 sends
𝑠𝑖 to U via the secure channel. This can be achieved by

utilizing an authentication scheme based on

−−→
𝑃𝐼𝐹 .

• Upon receiving 𝑡 secret shares (denoted by {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 } for
the sake of brevity), U computes 𝑤𝑖𝑙 =

∏
1≤ 𝑗≤𝑡
𝑗≠𝑙

𝑖 𝑗
𝑖 𝑗−𝑖𝑙 for

𝑙 = 1, . . . , 𝑡 and then computes 𝑆 =
∑𝑡
𝑙=1

𝑤𝑖𝑙 𝑠𝑖𝑙 .

Recovery. When the number of available key servers is less

than 𝑡 ,U recovers 𝑆 with available PIFs as follows.

• U derives 𝑡∗ secrets from available PIFs ⊆ −−→𝑃𝐼𝐹 . For the sake
of brevity, we denote the secrets by {𝑠∗

1
, . . . , 𝑠∗

𝑡∗ }.

6
In reality, the number of PIFs can be different from that of reconstructable secrets.

For the sake of simplicity, we assume that they are equal.

7
DRKM supports to derive a secret from multiple PIFs. In the construction, we only

describe how to derive a secret from a single storage/device-independent PIF for clarity.

• U generates a new polynomial

𝑝1 (𝑥) = 𝑥𝑛
∗
+
𝑛∗−𝑡∗∑︁
𝑖=1

𝑎𝑢𝑥𝑖 · 𝑥𝑛
∗−𝑖 ,

where 𝑎𝑢𝑥𝑖 denotes the 𝑖-th element in 𝑎𝑢𝑥 .

• U solves Equation (1) to obtain 𝑏𝑡∗−1, · · · , 𝑏0.
𝑝1 (𝑠∗1) = 𝑏0 + 𝑏1𝑠∗1 + · · · + 𝑏𝑡∗−1𝑠

∗
1

𝑡∗−1

· · ·

𝑝1 (𝑠∗𝑡∗) = 𝑏0 + 𝑏1𝑠∗𝑡∗ + · · · + 𝑏𝑡∗−1𝑠
∗
𝑡∗
𝑡∗−1

(1)

• U computes 𝑆 = |𝑏0 |.
Note that Equation (1) can be represented by

©­­«
1 𝑠∗

1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬ ·
©­«

𝑏0
· · ·
𝑏𝑡∗−1

ª®¬ = ©­«
𝑝1 (𝑠∗

1
)

· · ·
𝑝1 (𝑠∗𝑡∗)

ª®¬ .
To get 𝑏0,U only needs to compute

©­«
𝑏0
· · ·
𝑏𝑡∗−1

ª®¬ =
©­­«

1 𝑠∗
1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬
−1

· ©­«
𝑝1 (𝑠∗

1
)

· · ·
𝑝1 (𝑠∗𝑡∗)

ª®¬ .
3.6 Remark
In practice, directly solving Equation (1) may result in buffer over-

flows, which further causes key recovery failure, since 𝑠∗
𝑖
is too

long (at least 256 bits). Essentially, we need to solve the following

system of non-homogeneous linear equations:

©­­«
1 𝑠∗

1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬ ·
©­«

𝑏0
· · ·
𝑏𝑡∗−1

ª®¬ = ©­«
𝑝1 (𝑠∗

1
)

· · ·
𝑝1 (𝑠∗𝑡∗)

ª®¬ ,
where 𝑏0, . . . , 𝑏𝑡∗−1 are unknown. We present an efficient algorithm

to solve the equation as follows.

We set

𝐴 =
©­­«

1 𝑠∗
1
· · · 𝑠∗

1

𝑡∗−1

· · · · · · · · · · · ·
1 𝑠∗

𝑡∗ · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬ ,
and notice that 𝐴 is a 𝑡∗ × 𝑡∗ Vandermonde matrix.

Consider the determinant of 𝐴 as

𝑑𝑒𝑡 (𝐴) =
∏

1≤ 𝑗≤𝑖≤𝑡∗
(𝑠∗𝑖 − 𝑠

∗
𝑗).

When 𝑠∗
1
, . . . , 𝑠∗

𝑡∗ are different, 𝑑𝑒𝑡 (𝐴) ≠ 0. According to Cramer’s

Rule [26], iff 𝑑𝑒𝑡 (𝐴) ≠ 0, the above system of non-homogeneous

linear equations has a unique solution:(
𝑑𝑒𝑡 (𝐴1)
𝑑𝑒𝑡 (𝐴) , · · · ,

𝑑𝑒𝑡 (𝐴𝑡∗)
𝑑𝑒𝑡 (𝐴)

)𝑇
, (2)

where

𝐴 𝑗 =
©­­«

1 𝑠∗
1
· · · 𝑠∗

1

𝑗−1 𝑝1 (𝑠∗
1
) 𝑠∗

1

𝑗+1 · · · 𝑠∗
1

𝑡∗−1

· ·
1 𝑠∗

𝑡∗ · · · 𝑠∗𝑡
𝑗−1 𝑝1 (𝑠∗𝑡) 𝑠∗

1

𝑗+1 · · · 𝑠∗
𝑡∗
𝑡∗−1

ª®®¬
for 𝑗 = 1, . . . , 𝑡∗.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Assume the algebraic complements of 𝐴 are {𝐴𝑖 𝑗 }, where 1 ≤
𝑖, 𝑗 ≤ 𝑡∗. Then we have

𝑑𝑒𝑡 (𝐴 𝑗) =
𝑡∗∑︁
𝑖=1

𝑝1 (𝑠∗𝑖)𝑑𝑒𝑡 (𝐴𝑖 𝑗).

In the implementation, directly computing 𝐴−1 would take ≈ 25

MB buffer when we set ℓ = 256 bits and 𝑡∗ = 5, which always

causes buffer overflow. By using Equation (2), we can efficiently

solve Equation (1) without errors, where the required buffer is

reduced to ≈ 40 KB.

3.7 Deploying DRKM
DRKM is compatible with existing cryptosystems. In reality,U has

two methods to deploy DRKM as follows.

Integrating with encryption. For registered cryptosystems,

U can utilize 𝑆 to encrypt a set existing cryptographic keys ®𝐾 and

outsource the ciphertexts to CS. Subsequently,U can access 𝑆 with

the aid of key servers or with 𝑡∗ PIFs and decrypt the ciphertexts

to obtain ®𝐾 . U can utilize private-key encryption or public-key

encryption, and we discuss their pros and cons.

Private-key encryption. The computation costs of private-key

encryption are much less than that of public-key one. In addition,U
can decrypt ®𝐾 on demand when utilizing the CTR mode. However,

when a user generates a new key,U has to recover the master key

𝑆 and then encrypt the new key, which introduces extra costs.

Public-key encryption. Some public-key encryption algorithms,

e.g., ElGamal encryption, support updating the ciphertexts without

decryption when the public/private keys are updated (i.e., support

for proxy re-encryption). Specifically, whenU updates 𝑆 ,U does

not need to first decrypt ®𝐶 with the previous private key and then

encrypt ®𝐾 with the newly-generated public key. U can directly

utilize the proxy re-encryption to update the ciphertexts of ®𝐾 . What

is more, WhenU has a newly-generated key,U can directly utilize

the public key to encrypt the key without recovering 𝑆 .

Integrating with KDFs. For a new cryptosystem, a more effi-

cient method is to directly derive various new keys from 𝑆 with

mature KDFs [37, 38]. In this case, the user does not need to perform

encryption or decryption operations.

Key rotation. Although an adversary who compromises less than

𝑡∗ PIFs cannot get any information about the master key, the PIF

leakage would reduce the security level of DRKM. Therefore, the

master key should be updated after some PIFs are leaked.U can

re-execute the algorithms in DRKM to rotate the master key using

undisclosed PIFs. In this way, an adversary who compromises some

previously used PIFs cannot get any information about the updated

master key.

4 SECURITY ANALYSIS
4.1 Indistinguishability
The security of DRKM relies on the entropy of the master key

derived from the PIFs. Assume that {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } are utilized
to compute the master key, where the min-entropy of 𝑠∗

𝑖
derived

from 𝑃𝐼𝐹𝑖 is 𝑥𝑖 and 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛∗ . We assume that an

adversary A1 has corrupted 𝑡 − 1 key servers and obtained 𝑡∗ − 1

Indistinguishability: eIND-KeyA1

(ℓ)

1: {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ } are derived from {𝑃𝐼𝐹1, · · · , 𝑃𝐼𝐹𝑛∗ } with F

2: Compute 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖

3: Compute 𝑎𝑢𝑥 (shown in theManaging algorithm)

4: 𝑎1, . . . , 𝑎𝑡−1 ← 𝑍𝑝

5: Generate 𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1

6: Compute 𝑠𝑖 = 𝑓 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛

7: 𝑆★
$← {0, 1} |𝑆 |

8: 𝑏
$← {0, 1}

9: If 𝑏 = 1, 𝐾𝑒𝑦 = 𝑆 ; else, 𝐾𝑒𝑦 = 𝑆★

10: 𝑏′ ← A1 (𝐾𝑒𝑦, 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑠∗1, . . . , 𝑠
∗
𝑡∗−1, 𝑎𝑢𝑥)

11: If 𝑏′ = 𝑏, return 1; else, return 0

Figure 5: The eIND-KeyA1

(ℓ) game.

secrets {𝑠∗
1
, . . . , 𝑠∗

𝑡∗−1}. A1 cannot break the security of DRKM, i.e.,

DRKM satisfies Definition 6, which is captured by Theorem 2.

Theorem 2. Assuming F is a secure KDF, DRKM is secure against
any PPT adversary A1 who compromises up to 𝑡 − 1 key servers and
𝑡∗ − 1 secrets {𝑠∗

1
, . . . , 𝑠∗

𝑡∗−1}, i.e., A1 cannot get any information
about 𝑆 from 𝑡 − 1 shares and 𝑡∗ − 1 secrets.

Proof. To prove Theorem 2, we define the eIND-KeyA1

(ℓ)
game as shown in Figure 5. eIND-KeyA1

(ℓ) outputs 1 iff 𝑏 = 𝑏′, i.e.,
A1 can distinguish 𝑆 from a random string. We prove the theorem

as a series of games.

Game 1: this game is the same as the eIND-KeyA1

(ℓ) game with

the exception of one difference: A1 is given 𝑡 − 1 random numbers

chosen from 𝑍𝑝 rather than 𝑡 − 1 shares. If there is a difference

in A1 success probability between Game 1 and eIND-KeyA1

(ℓ), it
indicates that A1 can get extra information about the 𝑆 from 𝑡 − 1
shares.

In DRKM, we utilize Shamir’s threshold secret sharing scheme

to share the master key 𝑆 among the key servers. If the min-entropy

of 𝑆 is 𝑙-bit, the probability of A1 successfully guessing 𝑆 is also

2
−𝑙

without any auxiliary information.

In DRKM, we have 𝑆 = 𝑓 (0) = ∑𝑡
𝑖=1𝑤𝑖𝑠𝑖 . Furthermore, we have

𝑤𝑖𝑠𝑡 = 𝑆 −∑𝑡−1
𝑖=1 𝑤𝑖𝑠𝑖 . We notice that any value of 𝑆 corresponds

to a unique value of 𝑠𝑡 . If A1 correctly guesses 𝑠𝑡 , he can get the

correct 𝑆 . Next, we prove that {𝑠1, . . . , 𝑠𝑡−1} does not imply any

information about 𝑠𝑡 . These points (1, 𝑠1), . . . , (𝑡, 𝑠𝑡) correspond to

a unique function 𝑓 (𝑥) = 𝑆 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1. For the fixed
points (1, 𝑠1), . . . , (𝑡 − 1, 𝑠𝑡−1), any value of 𝑠𝑡 may correspond to

a unique function with degree 𝑡 − 1. Hence, A1 cannot get any

information about 𝑠𝑡 from {𝑠1, . . . , 𝑠𝑡−1}.
Without {𝑠1, . . . , 𝑠𝑡−1}, the probability of A1 successfully guess-

ing 𝑠𝑡 is 2
−𝑙
. Hence, we have

| Pr[eIND-KeyA1

(ℓ) = 1] − Pr[Game 1A1
(ℓ) = 1] | ≤ 2

−𝑙 .

Game 2: Game 2 is the same with Game 1, with one difference.

A1 in Game 2 is given 𝑡∗ − 1 random secrets which have the same

distribution with 𝑠𝑖1 , . . . , 𝑠
∗
𝑖𝑡−1

, 𝑠∗
1
.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

)

We suppose that the lower entropy of a PIF, the higher the risk of

leakage. In Game 1, A1 has obtained 𝑡
∗ − 1 secrets {𝑠∗

1
, . . . , 𝑠∗

𝑡∗−1}.
With the auxiliary information 𝑎𝑢𝑥 ,A1 can construct a polynomial

𝑝1 (𝑥) = 𝑥𝑛
∗
+
𝑛∗−𝑡∗∑︁
𝑖=1

𝑎𝑢𝑥𝑖 · 𝑥𝑛
∗−𝑖 ,

where 𝑎𝑢𝑥𝑖 denotes the 𝑖-th element in 𝑎𝑢𝑥 .

With 𝑡∗ − 1 sub-secrets {𝑠∗
1
, . . . , 𝑠∗

𝑡∗−1}, A1 can construct the

following equation system
𝑝1 (𝑠∗1) = 𝑏𝑡∗−1𝑠∗1

𝑡∗−1 + · · · + 𝑏1𝑠∗1 + 𝑏0
· · ·

𝑝1 (𝑠∗𝑡∗−1) = 𝑏𝑡∗−1𝑠∗𝑡∗−1
𝑡∗−1 + · · · + 𝑏1𝑠∗𝑡∗−1 + 𝑏0

,

where 𝑏𝑡∗−1, · · · , 𝑏0 are the unknown to be solved. There exists

countless valid {𝑏𝑡∗−1, · · · , 𝑏0}, andA1 cannot determine which is

the correct 𝑏0. The straightforward way for A1 to determine 𝑏0 is

to construct another equation with 𝑠∗
𝑡∗ as

𝑝1 (𝑠∗𝑡∗) = 𝑏𝑡∗−1𝑠
∗
𝑡∗
𝑡∗−1 + · · · + 𝑏1𝑠∗𝑡∗ + 𝑏0 .

The maximum probability that the adversary can obtain a new

secret is 2
−𝑥𝑡∗ (where A1 directly guesses 𝑠∗

𝑡∗). Therefore, given

𝑡∗ − 1 secrets {𝑠∗
1
, . . . , 𝑠∗

𝑡∗−1} and the auxiliary information 𝑎𝑢𝑥 , the

probability of A1 getting the master key 𝑆 is no more than 2
−𝑥𝑡∗ .

Hence, we have

| Pr[Game 1A1
(ℓ) = 1 − Pr[Game 2A1

(ℓ) = 1] | ≤ 2
−𝑥𝑡∗ .

Next, we analyze the probability of A1 winning Game 2. In our

proof, we follow the security definition of KDF proposed in [39], as

shown in Definition 8.

Definition 8. A key derivation function (KDF) is secure with
respect to an𝑚-min-entropy source of key material Σ if no adversary
A can distinguish the key generated from Σ and a random string of
the same length with probability better 1/2 + 2−𝑚 .

If F is a secure KDF, the min-entropy of 𝑆 is
∑𝑡∗
𝑖=1 𝑥𝑖 -bit. Hence,

we have

Pr[Game 2A1
(ℓ) = 1] ≤ 1

2

+ 2−
∑𝑡∗

𝑖=1 𝑥𝑖 .

Therefore, the probability of A1 winning eIND-KeyA1

(ℓ) is no
more than

1

2
+ 2−

∑𝑡∗
𝑖=1 𝑥𝑖−1 + 2−𝑥𝑡∗ . □

Remark. Theorem 2 implies that the master key 𝑆 is a uni-

form 𝑙-bit cryptographic key, where 𝑙 ≥ ∑𝑡∗
𝑖=1 𝑥𝑖 . Theoretically, the

min-entropy of the secrets derived from the biometric character-

istic is determined by the user per se. However, in practice, the

biometrics extraction algorithms would influence the entropy of

the extracted secrets. The entropy of the secrets derived from the

device-dependent PIFs is determined by the security parameter of

the corresponding authentication schemes.

4.2 PIF privacy
We prove that DRKM satisfies Definition 7, i.e., an adversary A2

who compromises 𝑡 − 1 secret shares cannot get any information

about the secrets {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ }, where the min-entropy of 𝑠∗
𝑖
derived

from 𝑃𝐼𝐹𝑖 is 𝑥𝑖 and 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛∗ . This security notion is

captured by Theorem 3.

PIF privacy: ePIF-PrivacyA2

(ℓ)

1: {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ } are derived from {𝑃𝐼𝐹1, · · · , 𝑃𝐼𝐹𝑛∗ } with F

2: Compute 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖

3: Compute 𝑎𝑢𝑥 (shown in theManaging algorithm)

4: Generates a polynomial 𝑝 (𝑥) = ∏𝑛∗
𝑖=1 (𝑥 − 𝑠∗𝑖)

5: Select a set {𝑠∗
𝑖1
, . . . , 𝑠∗

𝑖𝑡−1
}

6: Generate a PIF set

−−−→
𝑃𝐼𝐹0, where

−−−→
𝑃𝐼𝐹0 ∩ {𝑃𝐼𝐹1, . . . , 𝑃𝐼𝐹𝑛∗ } = ∅

and |−−−→𝑃𝐼𝐹0 | = 𝑡∗ − 1
7: Derive {𝑠∗

1

′
, . . . , 𝑠∗

𝑡∗−1
′
} from −−−→𝑃𝐼𝐹0

8: Set 𝑠𝑢𝑏𝑆0 = {𝑠∗
1

′
, . . . , 𝑠∗

𝑡∗−1
′
}, 𝑠𝑢𝑏𝑆1 = {𝑠∗𝑖1 , . . . , 𝑠

∗
𝑖𝑡−1
}

9: 𝑏
$← {0, 1}

10: 𝑏′ ← A1 (𝑠𝑢𝑏𝑆𝑏 , 𝑠𝑖1 , . . . , 𝑠𝑖𝑡−1 , 𝑎𝑢𝑥)
11: If 𝑏′ = 𝑏, return 1; else, return 0.

Figure 6: The ePIF-PrivacyA2

(ℓ) game.

Theorem 3. DRKM protectsU’s PIFs used to derive 𝑆 againstA2

who compromises 𝑡 − 1 key servers.

Proof. To prove Theorem 3, we define aPIF-PrivacyA2

(ℓ) game,

as shown in Figure 6.

Given points {(1, 𝑠1), (2, 𝑠1), . . . , (𝑡 − 1, 𝑠𝑡−1)} on the function

𝑓 (𝑥), A2 aims to determine whether some function 𝑝′ (𝑥) (with
degree 𝑡∗) generate by 𝑠𝑢𝑏𝑆0 as zero points satisfies 𝑓 (0) = |𝑝 (0) |.
For the PIF-PrivacyA2

(ℓ) game, we have

Pr[PIF-PrivacyA2

(ℓ) = 1] = Pr[𝑏
′
= 𝑏]

= Pr[𝑏
′
= 0|𝑏 = 0] + Pr[𝑏

′
= 1|𝑏 = 1] .

When 𝑏 = 0, A2 can win if it guesses out some zero point of

𝑝 (𝑥) and guesses out the master key 𝑆 . Therefore, we have

Pr[𝑏
′
= 0|𝑏 = 0] = 1

2

(1
2

+ 2−𝑥𝑖 ∗ 2−𝑙),

where 𝑙 is the min-entropy of 𝑆 , and 𝑥𝑖 is the min-entropy of the

zero point (i.e., the PIF).

When 𝑏 = 1, A2 can win if (1) it guesses out some zero point

of 𝑝 (𝑥) which is included in 𝑠𝑢𝑏𝑆0 or (2) it guesses out some zero

point of 𝑝 (𝑥) which is not included in 𝑠𝑢𝑏𝑆0 but guesses out the

master key 𝑆 . Hence, we have

Pr[𝑏
′
= 1|𝑏 = 1]

=
1

2

(1
2

+
𝐶𝑡
∗−2

𝑛∗−1
𝐶𝑡
∗−1

𝑛∗
∗ 2−𝑥𝑖 + (1 −

𝐶𝑡
∗−2

𝑛∗−1
𝐶𝑡
∗−1

𝑛∗
) ∗ 2−𝑙)

=
1

2

(1
2

+ 𝑡 − 1
𝑛
∗ 2−𝑥𝑖 + (1 − 𝑡 − 1

𝑛
) ∗ 2−𝑙)

≤ 1

2

(1
2

+ 2−𝑙 + 2−𝑥𝑖).

Therefore, we have

Pr[PIF-PrivacyA2

(ℓ) = 1] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (ℓ).

This concludes the proof. □

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

PIF Computation delay (ms)

Fingerprint [40] ≈1.60
Face [41] ≈1.50
Iris [42] ≈3.00
Hand geometry [43] ≈7.6
Palmprint [44] ≈6
ECG [46] ≈0.32
Hand gesture [45] ≈90 − 110

SIM card ≈0.003
Hardware token ≈1.36
Intel SGX ≈0.56

Table 1: Computation delay of deriving secrets from PIFs.

5 IMPLEMENTATION AND EVALUATION
We implement a DRKM prototype and conduct a comprehensive

performance evaluation. All experiments are conducted on a lap-

top with an Intel Core i5 processor running at 2 GHz using four

cores and 16 GB DDR3 of RAM. Our source code is available on

https://github.com/DRKM-code/DRKM.git.
We evaluate the performance from the following aspects.

5.1 Deriving secrets from PIFs
We present the computation delay to derive reconstructable secrets

from different PIFs, as shown in Table 1.

Someone the user is.We investigate existing biometric feature

recognition and extraction methods. A minutiae-based fingerprint

individuality model [40] is utilized to extract features from users’

fingerprints. We leverage the scheme [41] for face recognition to

extract the face features. We utilize the algorithm in [42] for iris

recognition to extract the features of irises. The extracted iris fea-

tures can be formatted with the biometric standards. We utilize the

hand geometry recognition scheme [43], the palmprint recognition

scheme [44], and the hand gesture recognition scheme [45] to ex-

tract the hand characteristics, respectively. We utilize Deep-ECG

[46], a CNN-based biometric approach for ECG signals, to extract

the features of ECG.

Something the user has. We simulate the authentication algo-

rithms of a SIM card, hardware token, and Intel SGX on a laptop,

and evaluate the performance. The hardware PIFs are dependent on

stateful devices. Recalling Section 2, we can derive a reconstructable

secret from a device-dependent PIF with the aid of another recon-

structable secret.

5.2 Key derivation and management
We investigate existing authentication schemes and choose the

applicable methods to derive secrets from PIFs. The computation

delay for deriving reconstructable secrets from different PIFs is

shown in Section 5.1. If 𝑛 is larger than 10,U can derive multiple

instances from a type of PIF. For example, ifU needs to derive 20

reconstructable secrets, she/he can choose 2 irises, 2 hand geome-

tries, 2 Palmprints, 1 ECG, 2 SIM cards, 1 hardware token, and 10

fingerprints. In the following, we assume thatU has obtained 𝑛∗

secrets.

U computes the master key as 𝑆 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖
. Figure 7(a) shows

the computation delay onU of deriving 𝑆 from 𝑛∗ secrets, where
we set different 𝑛∗. The computation delay is an average of deriving

10 master keys.

U computes the auxiliary information 𝑎𝑢𝑥 which assistsU in

recovering the master key from the PIFs. Figure 7(b) shows the

computation delay onU of 𝑎𝑢𝑥 with different 𝑛∗ and 𝑡∗. The delay
of computing 𝑎𝑢𝑥 decreases with 𝑡∗. U shares 𝑆 among the key

servers in a threshold way. Specifically,U first computes 𝑛 secret

shares {𝑠1, · · · , 𝑠𝑛}. Figure 7(c) shows the delay in computing the

secret shares.

U can use private-key encryption or public-key encryption to

encrypt ®𝐾 . Figure 7(d) and 7(e) show the computational delay for

encrypting different size 𝐾 with different encryption algorithms

including RSA-OAEP [47], ElGamal [48], and [CTR]AES. The com-

putation delay for private-key encryption is much less than that

for public-key encryption.

In DRKM,U needs to send the secret shares to the key servers

and outsource the auxiliary information and the ciphertexts to

CS. In Figure 8(a), we show the communication costs on U and

KS𝑖 . As shown in Figure 8(b), the communication costs on CS are

approximate to the size of 𝐾 when using private-key encryption.

For the same size 𝐾 , the communication costs on CS increase with

𝑛∗ − 𝑡∗, because the larger 𝑛∗ − 𝑡∗ is, the larger size of 𝑎𝑢𝑥 is when

recovering 𝑆 . Figure 8(c) shows the communication costs of CS.
The communication costs when using public-key encryption are

significantly larger than those when using [CTR]AES.

5.3 Key access and recovery
When U needs to access the master key, U interacts with the

key server via the secure channels to get 𝑡 secret shares. In Figure

8(d), we show the communication costs onU and each key server

with different 𝑛 and 𝑡 .U also needs to download the ciphertexts

from CS.U can download the ciphertexts on demand when using

private-key encryption. Figure 8(e) shows the communication costs

of CS andU, whereU only accesses one key. Figure 9(a) shows

the delay onU to compute 𝑆 from 𝑡 secret shares.

If the number of available key servers is less than 𝑡 , U has to

recover the master by utilizing available PIFs. U needs to get at

least 𝑡∗ secrets from available PIFs. We assume thatU has derived

𝑡∗ secrets. Figure 9(b) shows the delay onU to recover 𝑆 from 𝑡∗

secrets and 𝑎𝑢𝑥 . The results show that the delay of recovering 𝑆

from secrets is less than 5 ms.

5.4 Comparison with KDF
The core of DRKM is to convert a user’s PIFs to a reconstructable

master key which is utilized to encrypt the user’s keys used in

various cryptosystems. A natural method to transform a PIF into

a key is key derivation functions (KDF). In this subsection, we

compare DRKM with different KDFs and further elaborate on the

desirable advantages of DRKM.

We start with password-based key derivation functions (PBKDFs)

[49–53] that derive keys from users’ passwords. The proliferation

of PBKDFs provides protection for users without introducing key

management problems. Typically, PBKDF1 and PBKDF2 [49] are

widely used in network applications, e.g., WPA [54] and WPA2

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

)

10 12 14 16 18 20
The number of PIFs n*

12

14

16

18

20

22

24

C
om

p.
 d

el
ay

 (m
s)

 o
f c

om
pu

tin
g

S

Average computation
 delay of

(a) Generating 𝑆 .

10 12 14 16 18 20
The number of PIFs n*

30

35

40

45

50

55

60

C
om

p.
 d

el
ay

 (m
s)

 fo
r

au
x

t* = 8
t* = 10
t* = 12

(b) Computing 𝑎𝑢𝑥 .

10 12 14 16 18 20
The number of key server n

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
om

p.
 d

el
ay

 (m
s)

 o
f c

om
pu

tin
g

s i

t = 8
t = 10
t = 12

(c) Computing 𝑠𝑖 .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
om

p.
 d

el
ay

 (m
s)

 o
f e

nc
ry

pt
in

g
K

[CTR]AES-128
[CTR]AES-256

(d) Private-key encryption.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0

10

20

30

40

50

60

C
om

p.
 d

el
ay

 (s
) o

f e
nc

ry
pt

in
g

K

RSA-OAEP (=128)
ElGamal (=128)

(e) Public-key encryption.
Figure 7: The computation delay ofU in the Managing phase.

10 12 14 16 18 20
The number of key servers n

0.1

0.2

0.3

0.4

0.5

0.6

C
om

m
. c

os
ts

 (K
B

) i
n

M
an

ag
in

g

Comm. costs of
Comm. costs of i

(a) Sending/receiving 𝑠𝑖 .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
om

m
. c

os
ts

 (K
B

) o
f n* t*=2

n* t*=6
n* t*=8

(b) [CTR]AES-128/256.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
om

m
. c

os
ts

 (K
B

) o
f

RSA-OAEP
ElGamal
[CTR]AES-256

(c) RSA-OAEP/ElGamal.

10 12 14 16 18 20
The number of key server n

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

C
om

m
. c

os
ts

 (K
B

) o
f t = 8

t = 10
t = 12

(d) Getting 𝑠𝑖 from KS𝑖 .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The size of K (KB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
om

m
. c

os
ts

 (K
B

) o
f

/ RSA-OAEP (=128)
ElGamal (=128)
[CTR]AES-128

(e) Downloading𝐶 .
Figure 8: The communication costs ofU, KS𝑖 , and CS.

10 12 14 16 18 20
The number of key servers n

0.010

0.012

0.014

0.016

0.018

0.020

C
om

p.
 d

el
ay

 (m
s)

 o
f

t = 8
t = 10
t = 12

(a) Accessing 𝑆 .

10 12 14 16 18 20
The number of PIFs n*

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
om

p.
 d

el
ay

 (m
s)

 o
f r

ec
ov

er
in

g
S

t* = 8
t* = 10
t* = 12

(b) Recovering 𝑆 .
Figure 9: The computation delay ofU.

[55] protocols in wireless communication systems. However, the

schemes based on PBKDFs are generally confronted with dictio-

nary guessing attacks, since passwords are inherently low-entropy.

Many recent security incidents [56, 57] have shown that utilizing

passwords as the sole defense line is indeed insufficient.

Recently, Nair et al. [27] proposed a threshold multi-factor key

derivation function (TMFKDF), which allows a user to derive a key

from 𝑛∗ PIFs, and recover the key from any 𝑡∗ of them. We compare

DRKM with the TMFKDF in the following aspects.

Regarding costs, Table 2 shows the comparison between DRKM

and TMFKDF in terms of computation delay of accessing the master

key with 𝑡 = 𝑡∗ = 8 and 𝑛 = 𝑛∗ = 10. The results show that in

normal times, the delay using DRKM is 5∼6 orders of magnitude

less than that of using TMFKDF.

Regarding functionality, the key recovery provided by TMFKDF

depends on the availability of metadata, i.e., encrypted shares. Users

cannot recover their keys without metadata even if they utilize 𝑛∗

storage-independent PIFs. In DRKM, users can directly retrieve their

keys from𝑛∗ PIFs without any storage, if all𝑛∗ PIFs are independent
of storage.

Regarding security, DRKM provides stronger protection than

𝑡∗-of-𝑛∗ TMFKDF. In DRKM, a master key is derived from 𝑛∗ PIFs
and then split into 𝑛 shares, where the shares are independent of

the secrets derived from PIFs. However, in [27], once an adversary

compromises a PIF, then he can get the corresponding share. Fur-

thermore, in reality, an adversary who compromises 𝑡∗ PIFs may

Method Computation delay (ms)

DRKM (Before destruction) 0.012

DRKM (After destruction) 90.72

Threshold MFKDF 89.82

Table 2: Comparison with the threshold MFKDF [27]. We set
𝑡 = 𝑡∗ = 8 and 𝑛 = 𝑛∗ = 10.

not recover the master key. Specifically, we assume that a user has

𝑛∗ PIFs, where 𝑛∗
1
PIF are storage/device-independent, 𝑛∗

2
PIFs are

device-dependent, and 𝑛∗ = 𝑛∗
1
+ 𝑛∗

2
. Then the user can derive at

least 𝑛∗
1
+ 𝑛∗

1
· 𝑛∗

2
(conditional) reconstructable secrets. Hence, the

user can generate 𝐶𝑛
∗

𝑛∗
1
+𝑛∗

1
∗𝑛∗

2

different master keys. By introducing

device-dependent PIFs, recovering some of these master keys needs

more than 𝑡∗ PIFs, since deriving a reconstructable secret from a

device-dependent PIF requires another new reconstructable secret.

Regarding practicability, DRKM enables users to balance secu-

rity and efficiency but the TMFKDF fails to achieve it. Specifically,

there are two independent thresholds (𝑡, 𝑛), (𝑡∗, 𝑛∗) in DRKM. The

threshold in TMFKDF is corresponding to (𝑡∗, 𝑛∗) in DRKM. Once

an adversary compromises 𝑡∗ shares (i.e., PIFs) of TMFKDF, he can

recover the key. In DRKM, such an adversary cannot get any infor-

mation about the master key, since the user can set 𝑡 ≥ 𝑡∗ without
changing (𝑡∗, 𝑛∗) to enhance the security guarantee. However, the

larger 𝑡 is, the more costs the user bears to access the master key

in normal times. The user can achieve a trade-off between security

and efficiency by adjusting (𝑡, 𝑛) while remaining (𝑡∗, 𝑛∗).

5.5 Comparison with alternative schemes
Currently, some products and solutions for secure and reliable key

management have been proposed, and they might be trivially ex-

tended to achieve destruction resistance. We will discuss them in de-

tail, analyze their inherent problems, and compare themwithDRKM

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

in the following. Our aim in presenting this section is twofold. The

first one is to show the advantages of DRKM in terms of security,

functionality, and efficiency. The second one is to demonstrate

that designing usable and destruction-resistant key management

schemes is very challenging. Generally, existing key management

schemes can be categorized into two types: fully local management

ones and fully outsourcing management ones.

Fully local management schemes. A user keeps her/his keys

in well-guarded devices and keeps them in safe places. Notable ex-

amples include YubiKey [3] and Ledger [4]. To achieve destruction

resistance, the user can simultaneously utilize YubiKey and Ledger

to store the same key (one for general use and the other one for

backup) and keep them in different secure locations.

However, the disadvantage of the above scheme is oblivious. The

user needs to ensure the security and reliability of the backup key,

which requires the user to continuously monitor its condition to

minimize the possibility of undetected leakage. Actually, this would

cause prohibitive costs for the user. As an empirical observation,

individuals do not always have a secure secondary location to store

the backup key.

Fully outsourcing management scheme. A user requests key

management services from service providers. Typical examples

include Keywhiz [58], where the user’s key is split into 𝑛 shares

in a threshold way and let each key server store one of them. The

user can recover her/his key by interacting with any 𝑡 of 𝑛 key

servers. Compared with a fully local management scheme, this

scheme achieves portability: it enables the user to recover the key as

needed without maintaining any secret on local devices. It achieves

destruction resistance to some extent: as long as 𝑡 key servers are

available, the key can be recovered.

Obliviously, the destruction resistance provided by this scheme

relies on a strong assumption that at least 𝑡 key servers would

not be destroyed. This problem cannot be trivially addressed by

requiring the key server to back up the share, as it increases the

danger of security breaches significantly [11].

DRKM: a hybrid “local + outsourcing” key management
scheme. In DRKM, a user derives a master key from her/his PIFs

and shares it among the key servers in a threshold way. DRKM

inherits the advantages of the above schemes: in normal times, the

user can access the master key by interacting with the key servers;

and once all key servers and the user’s devices are destroyed, the

master key can be recovered from a part of PIFs used for key deriva-

tion. DRKM also overcomes their drawbacks: compared with the

fully local management scheme, DRKM only requires a stateless
device and a small number of PIFs to recover the master key after

the destruction occurs; compared with the fully outsourcing man-

agement one, users in DRKM can retrieve their keys per se, even if

all key servers are unavailable.

5.6 Applications and compatibility
With storage/device-independent PIFs, we can easily construct

a destruction-resistant threshold multiple-factor authentication

scheme, where a user only needs to register with a service provider

by more than a threshold number of storage/device-independent

PIFs. After the destruction occurs, the user can still log in to the

service provider via available PIFs. We further emphasize the prac-

tical nature of DRKM as well as DRKM-based DRC (i.e., DRKM +

commercial backup system) in the following.

One potential application is to manage a secret—say, a key to a

bank’s vault—that is shared among a board of directors, where the

vault is protected by cryptosystems. Anytime when the vault needs

to be opened, it should be confirmed and agreed by a majority of

members. With DRKM, each member can contribute the secret us-

ing her/his PIFs with the (𝑡∗, 𝑛∗)-secret aggregation with threshold

retrieval mechanism, and then the secret is shared among multiple

key servers with the (𝑡∗, 𝑛∗)-secret sharing scheme. Each key server

is available for a specific member. Before device destruction occurs,

the members can recover the secret by interacting with their key

servers in a portable way. Once the number of the available key

servers is less than 𝑡∗, they can cooperatively recover the secret

using their PIFs. We stress that regarding device destruction and

security, neither Shamir’s secret sharing scheme nor the threshold

password-hardening protocols [11, 59–66] can achieve it.

Another promising application of DRKM and DRKM-based DRC

is to resist ransomware attacks. We notice that the success of ran-

somware attacks is to make devices unavailable to their users. As

such, if the maintenance of the most sensitive information (e.g.,

the master key) does not rely on any device, a ransomware attack

will be doomed to failure (we impliedly require a backup system

to store the non-sensitive information, such as ciphertexts, signa-

tures). With DRKM, a user can derive a master key from her/his PIFs

and maintain the master key locally or using a set of key servers.

Once the master key is hacked by ransomware attacks, the user

can recover the master key from the PIFs that are used to derive it.

Therefore, DRKM-based DRC can be directly deployed to thwart

ransomware attacks.

Recently, many novel PIFs have been proposed, e.g., PCR-Auth

[67] and Capacitive Plethysmogram [68]. We stress that DRKM has

forward-compatibility with future PIFs. As long as a PIF satisfies

Definition 2 and can be represented by a unique binary string,

it then can be utilized in DRKM to derive a master key, which

potentially applies to newly-discovered PIFs in the future.

6 CONCLUSION
In this paper, we have investigated popular personal identification

factors (PIFs) and proposed three concepts (i.e., storage-independent

PIFs, device-independent PIFs, and device-dependent PIFs), and

given the categorization criteria. We have proposed a series of

methods to derive reconstructable secrets from a special class of

device-dependent PIFs in tandem with storage/device-independent

ones. We have constructed DRKM, a destruction-resistant key man-

agement scheme with portability. We have formally proven the

security of DRKM. We have implemented a DRKM prototype and

conducted a comprehensive performance evaluation to demonstrate

its high efficiency.

For the future work, we will explore new storage-independent

PIFs with high min-entropy. Furthermore, with such PIFs, it may

be possible to construct a key management scheme that simulta-

neously achieves destruction resistance and portability after the

destruction occurs.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

)

REFERENCES
[1] M. Azure, “Key Management in Azure,” https://learn.microsoft.com/en-us/

azure/security/fundamentals/key-management, 2023.

[2] G. Developer, “Cloud Key Management,” https://cloud.google.com/security-key-

management/#section-3, 2023.

[3] Yubikey, https://www.yubico.com/products/yubikey-5-overview/, 2023.

[4] Ledger, https://www.ledger.com, 2023.

[5] A. Developer, “Keychain Services,” https://developer.apple.com/documentation/

security/keychain_services, 2023.

[6] M. Christodorescu, S. Gaddam, P. Mukherjee, and R. Sinha, “Amortized Thresh-

old Symmetric-Key Encryption,” in Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2021, pp. 2758–2779.

[7] S. Keelveedhi, M. Bellare, and T. Ristenpart, “DupLESS: Server-Aided Encryption

for Deduplicated Storage,” in Proceedings of Usenix Security Symposium (USENIX
Security), 2013, pp. 179–194.

[8] G. Poonia, “The Reason not to Throw Away Old Hard Drives Might Be Surpris-

ing—There Could be Bitcoin on There,” https://www.deseret.com/2021/12/10/

22827963/james-howells-threw-away-hard-drives-with-\bitcoin-password,

2021.

[9] C. Osborne, “Colonial Pipeline Ransomware Attack: Everything You Need to

Know,” https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-

everything-you\-need-to-know/, 2021.

[10] J. Reed, “Costa Rica State of Emergency Declared After Ransomware

Attacks,” https://securityintelligence.com/news/costa-rica-state-emergency-

ransomware/, 2022.

[11] A. Shamir, “How to Share a Secret,” Communications of the ACM, vol. 22, no. 11,

pp. 612–613, 1979.

[12] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song,

“CHURP: Dynamic-Committee Proactive Secret Sharing,” in Proceedings of ACM
Conference on Computer and Communications Security (CCS), 2019, pp. 2369–
2386.

[13] Vault, https://developer.hashicorp.com/vault, 2023, HashiCorp Developer.

[14] https://aws.amazon.com/cn/message/41926/, 2017.

[15] N. Agrawal, “Amazon Cloud Service Outage Breaks Parts of the Inter-

net,” https://www.latimes.com/business/technology/la-fi-tn-amazon-service-

outage-20170228-story.html, 2017.

[16] Wikipedia, “2021–22 Hunga Tonga–Hunga Haapai Eruption and Tsunami,”

https://en.wikipedia.org/wiki/2021âĂŞ22_Hunga_TongaâĂŞHunga_Ha’apai_

eruption_and_tsunami, 2021.

[17] C. Legislature, “California Consumer Privacy Act of 2018 (as amended by the

California Privacy Rights Act of 2020),” 2020.

[18] E. Parliament and Council, “General Data Protection Regulation, Regulation

(EU) 2016/679 (as amended).” 2016.

[19] A. Takahashi, Y. Koda, K. Ito, and T. Aoki, “Fingerprint Feature Extraction by

Combining Texture, Minutiae, and Frequency Spectrum Using Multi-Task CNN,”

in Proceedings of IEEE International Joint Conference on Biometrics (IJCB), 2020,
pp. 1–8.

[20] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “Deepmarks: A Secure

Fingerprinting Framework for Digital Rights Management of Deep Learning

Models,” in Proceedings of ACM International Conference on Multimedia Retrieval
(ICMR), 2019, pp. 105–113.

[21] D. Aggarwal, J. Zhou, and A. K. Jain, “Fedface: Collaborative Learning of Face

Recognition Model,” in Proceedings of IEEE International Joint Conference on
Biometrics (IJCB), 2021, pp. 1–8.

[22] https://www.cbsnews.com/essentials/the-best-smart\watches-for-heart-

health-monitoring-2023-08-23, 2023.

[23] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted Online Password

Guessing: An Underestimated Threat,” in Proceedings of ACM Conference on
Computer and Communications Security (CCS), 2016, pp. 1242–1254.

[24] GoogleDrive, https://www.google.com/intl/en-GB/drive/, 2023.

[25] Dropbox, https://www.dropboxforum.com, 2023.

[26] A. Ben-Israel, “A Cramer Rule for Least-Norm Solutions of Consistent Linear

Equations,” Linear Algebra and Its Applications, vol. 43, pp. 223–226, 1982.
[27] V. Nair and D. Song, “Multi-Factor Key Derivation Function (MFKDF) for Fast,

Flexible, Secure, & Practical KeyManagement,” in Proceedings of USENIX Security
Symposium (USENIX Security), 2023.

[28] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong

Keys from Biometrics and Other Noisy Data,” in Proceedings of European Cryp-
tology Conference (EUROCRYPT), 2004, pp. 523–540.

[29] A. Juels andM. Sudan, “A Fuzzy Vault Scheme,”Designs, Codes and Cryptography,
vol. 38, no. 2, pp. 237–257, 2006.

[30] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, andM. Yung, “Fourth-Factor Authen-

tication: Somebody You Know,” in Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2006, pp. 168–178.

[31] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An Empirical Study of Wireless

Carrier Authentication for SIM Swaps,” in Proceedings of Symposium on Usable
Privacy and Security (SOUPS), 2020, pp. 61–79.

[32] “Edward Snowden: Timeline,” https://www.bbc.com/news/world-us-canada-

23768248, 2013.

[33] E. Dauterman, H. Corrigan-Gibbs, D. Mazières, D. Boneh, and D. Rizzo, “True2F:

Backdoor-Resistant Authentication Tokens,” in Proceedings of IEEE Symposium
on Security and Privacy (S&P), 2019, pp. 398–416.

[34] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint Archive,
2016.

[35] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,

and U. R. Savagaonkar, “Innovative Instructions and Software Model for Iso-

lated Execution,” in Proceedings of International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP), vol. 10, no. 1, 2013.

[36] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology for

CPU Based Attestation and Sealing,” in Proceedings of International Workshop
on Hardware and Architectural Support for Security and Privacy (HASP), vol. 13,
no. 7, 2013.

[37] Q. Dang, “Recommendation for Existing Application-Specific Key Derivation

Functions,” NIST SP 800-135, Revision 1, 2011.
[38] L. Chen, “Recommendation for Key Derivation Using Pseudorandom Functions,”

NIST SP 800-108r1, 2022.
[39] H. Krawczyk, “Cryptographic Extraction and Key Derivation: The HKDF

Scheme,” in Proceedings of International Cryptology Conference (CRYPTO), vol.
6223, 2010, pp. 631–648.

[40] J. Chen and Y.-S. Moon, “A Minutiae-Based Fingerprint Individuality Model,”

in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2007, pp. 1–7.

[41] FingerTec, “FingerTec Face Recognition Technology White Paper,” https://www.

fingertec.com/download/tips/whitepaper-02.pdf, 2009.

[42] J. Daugman, “How Iris Recognition Works,” in The Essential Guide to Image
Processing, 2009, pp. 715–739.

[43] S. Angadi and S. Hatture, “Hand Geometry Based User Identification Using

Minimal Edge Connected Hand Image Graph,” IET Computer Vision, vol. 12,
no. 5, pp. 744–752, 2018.

[44] M. Ahmadi and H. Soleimani, “Palmprint Image Registration Using Convolu-

tional Neural Networks and Hough Transform,” arXiv preprint arXiv:1904.00579,
2019.

[45] Y. Fang, K. Wang, J. Cheng, and H. Lu, “A Real-Time Hand Gesture Recognition

Method,” in Proceedings of IEEE International Conference on Multimedia and
Expo (ICME), 2007, pp. 995–998.

[46] D. Labati Ruggero, E. Munoz, V. Piuri, R. Sassi, and F. Scotti, “Deep-ECG Convo-

lutional Neural Networks for ECG Biometric Recognition,” Pattern Recognition
Letters, vol. 126, pp. 78–85, 2019.

[47] M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption,” in Proceedings
of Workshop on the Theory and Application of of Cryptographic Techniques
(EUROCRYPT), 1994, pp. 92–111.

[48] T. ElGamal, “A Public Key Cryptosystem and A Signature Scheme based on

Discrete Logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4,
pp. 469–472, 1985.

[49] B. Kaliski, “PKCS# 5: Password-Based Cryptography Specification Version 2.0,”

Tech. Rep., 2000.

[50] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New Generation of

Memory-Hard Functions for Password Hashing and Other Applications,” in

IEEE European Symposium on Security and Privacy (EuroS&P), 2016, pp. 292–302.
[51] F. F. Yao and Y. L. Yin, “Design and Analysis of Password-Based Key Derivation

Functions,” in The Cryptographers’ Track at the RSA Conference, 2005, pp. 245–
261.

[52] C. Percival and S. Josefsson, “The Scrypt Password-Based Key Derivation Func-

tion,” Tech. Rep., 2016.

[53] M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recommendation for Password-

Based Key Derivation,” NIST Special Publication, vol. 800, p. 132, 2010.
[54] I. C. S. L. M. S. Committee et al., “Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications,” IEEE Std. 802.11-1997, 1997.
[55] IEEE, “IEEE Standard for Information Technology: Telecommunications and In-

formation Exchange between Systems, Local and Metropolitan Area Networks,

Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications Amendment 6: Medium Access Control

(MAC) Security Enhancements,” IEEE Std. 802.11i-2004, 2004.
[56] S. Ikeda, “Half a Million Zoom Accounts Compromised by Credential Stuffing,

Sold on Dark Web,” https://www.cpomagazine.com/cyber-security/half-a-

million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-

web/, 2020.

[57] M. Kapko, “PayPal Warns 35,000 Customers of Exposure Following Credential

Stuffing Attack,” https://www.cybersecuritydive.com/news/paypal-credential-

stuffing-attack/640804/, 2023.

[58] Keywhiz, https://square.github.io/keywhiz/, 2015.

[59] C. Baum, T. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai, “PESTO: Proac-

tively Secure Distributed Single Sign-on, or How to Trust a Hacked Server,” in

Proceedings of IEEE European Symposium on Security and Privacy (EuroS&P),
2020, pp. 587–606.

13

https://learn.microsoft.com/en-us/azure/security/fundamentals/key-management
https://learn.microsoft.com/en-us/azure/security/fundamentals/key-management
https://cloud.google.com/security-key-management/#section-3
https://cloud.google.com/security-key-management/#section-3
https://www.yubico.com/products/yubikey-5-overview/
https://www.ledger.com
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services
https://www.deseret.com/2021/12/10/22827963/james-howells-threw-away-hard-drives-with-\bitcoin-password
https://www.deseret.com/2021/12/10/22827963/james-howells-threw-away-hard-drives-with-\bitcoin-password
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you\-need-to-know/
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you\-need-to-know/
https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://developer.hashicorp.com/vault
https://aws.amazon.com/cn/message/41926/
https://www.latimes.com/business/technology/la-fi-tn-amazon-service-outage-20170228-story.html
https://www.latimes.com/business/technology/la-fi-tn-amazon-service-outage-20170228-story.html
https://en.wikipedia.org/wiki/2021–22_Hunga_Tonga–Hunga_Ha'apai_eruption_and_tsunami
https://en.wikipedia.org/wiki/2021–22_Hunga_Tonga–Hunga_Ha'apai_eruption_and_tsunami
https://www.cbsnews.com/essentials/the-best-smart\watches-for-heart-health-monitoring-2023-08-23
https://www.cbsnews.com/essentials/the-best-smart\watches-for-heart-health-monitoring-2023-08-23
https://www.google.com/intl/en-GB/drive/
https://www.dropboxforum.com
https://www.bbc.com/news/world-us-canada-23768248
https://www.bbc.com/news/world-us-canada-23768248
https://www.fingertec.com/download/tips/whitepaper-02.pdf
https://www.fingertec.com/download/tips/whitepaper-02.pdf
https://www.cpomagazine.com/cyber-security/half-a-million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-web/
https://www.cpomagazine.com/cyber-security/half-a-million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-web/
https://www.cpomagazine.com/cyber-security/half-a-million-zoom-accounts\-compromised-by-credential-stuffing-sold-on-dark-web/
https://www.cybersecuritydive.com/news/paypal-credential-stuffing-attack/640804/
https://www.cybersecuritydive.com/news/paypal-credential-stuffing-attack/640804/
https://square.github.io/keywhiz/

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

[60] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and X. Shen, “PROTECT: Efficient

Password-Based Threshold Single-Sign-on Authentication for Mobile Users

against Perpetual Leakage,” IEEE Transactions on Mobile Computing, vol. 20,
no. 6, pp. 2297–2312, 2020.

[61] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “TOPPSS: Cost-Minimal Password-

Protected Secret Sharing Based on Threshold OPRF,” in Proceedings of Interna-
tional Conference on Applied Cryptography and Network Security (ACNS), 2017,
pp. 39–58.

[62] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee, “PASTA: Password-Based

Threshold Authentication,” in Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2018, pp. 2042–2059.

[63] Y. Zhang, C. Xu, N. Cheng, and X. S. Shen, “Secure Password-Protected En-

cryption Key for Deduplicated Cloud Storage Systems,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[64] R. W. Lai, C. Egger, M. Reinert, S. S. Chow, M. Maffei, and D. Schröder, “Simple

Password-Hardened Encryption Services,” in Proceedings of Usenix Security
Symposium (USENIX Security), 2018, pp. 1405–1421.

[65] C. Jia, S. Wu, and D. Wang, “Reliable Password Hardening Service with Opt-

Out,” in Proceedings of International Symposium on Reliable Distributed Systems
(SRDS), 2022.

[66] L. Chen, Y.-N. Li, Q. Tang, and M. Yung, “End-to-Same-End Encryption: Modu-

larly Augmenting an App with an Efficient, Portable, and Blind Cloud Storage,”

in Proceedings of USENIX Security Symposium (USENIX Security), 2022, pp. 2353–
2370.

[67] L. Huang and C. Wang, “PCR-Auth: Solving Authentication Puzzle Challenge

with Encoded Palm Contact Response,” in IEEE Symposium on Security and
Privacy (S&P), 2022, pp. 1034–1048.

[68] J. Wu, X. Ji, Y. Lyu, X. Luo, Y. Meng, E. Morales, D. Wang, and X. Luo, “Touch-

screens Can Reveal User Identity: Capacitive Plethysmogram-Based Biometrics,”

IEEE Transactions on Mobile Computing, 2022.
[69] A. Rényi et al., “On Measures of Entropy and Information,” in Proceedings

of Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no.
547-561, 1961.

[70] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[71] A. Narayanan and V. Shmatikov, “Fast Dictionary Attacks on Passwords Us-

ing Time-Space Tradeoff,” in Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2005, pp. 364–372.

[72] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, Name and Bifacial-Security:

Understanding Passwords of Chinese Web users,” in Proceedings of USENIX
Security Symposium (USENIX Security), 2019, pp. 1537–1555.

[73] D. Wang, Q. Gu, X. Huang, and P. Wang, “Understanding Human-Chosen

PINs: Characteristics, Distribution and Security,” in Proceedings of ACM on Asia
Conference on Computer and Communications Security (ASIA CCS), 2017, pp.
372–385.

[74] C.-P. Schnorr, “Efficient Identification and Signatures for Smart Cards,” in Pro-
ceedings of Conference on the Theory and Application of Cryptology (ASIACRYPT),
1989, pp. 239–252.

[75] A. Figueroa, “Fingerprint Recognition: the Most Popular Biometric,”

https://www.rootstrap.com/blog/fingerprint-recognition-the-most-popular-

biometric/, 2022.

[76] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition, 2009.

[77] Y. Tang, F. Gao, J. Feng, and Y. Liu, “FingerNet: An Unified Deep Network

for Fingerprint Minutiae Extraction,” in Proceedings of IEEE International Joint
Conference on Biometrics (IJCB), 2017, pp. 108–116.

[78] C. Wu, K. He, J. Chen, Z. Zhao, and R. Du, “Liveness Is not Enough: Enhancing

Fingerprint Authentication with Behavioral Biometrics to Defeat Puppet At-

tacks,” in Proceedings of Usenix Security Symposium (USENIX Security), 2020, pp.
2219–2236.

[79] M. Wang and W. Deng, “Mitigating Bias in Face Recognition Using Skewness-

Aware Reinforcement Learning,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 9322–9331.

[80] P. Yao, J. Li, X. Ye, Z. Zhuang, and B. Li, “Iris Recognition Algorithm Using

Modified Log-Gabor Filters,” in Proceedings of International Conference on Pattern
Recognition (ICPR), vol. 4, 2006, pp. 461–464.

[81] R. P. Wildes, “Iris Recognition: An Emerging Biometric Technology,” Proceedings
of the IEEE, vol. 85, no. 9, pp. 1348–1363, 1997.

[82] H. Proença and J. C. Neves, “IRINA: Iris Recognition (even) in Inaccurately

Segmented Data,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 538–547.

[83] A. Boukhayma, R. d. Bem, and P. H. Torr, “3D Hand Shape and Pose from Images

in the Wild,” in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 10 843–10 852.

[84] Y. Song, Z. Cai, and Z.-L. Zhang, “Multi-Touch Authentication Using Hand

Geometry and Behavioral Information,” in Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2017, pp. 357–372.

[85] Y. Han, T. Tan, Z. Sun, and Y. Hao, “Embedded Palmprint Recognition System

on Mobile Devices,” in Proceedings of International Conference on Biometrics
(ICB), 2007, pp. 1184–1193.

[86] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand Keypoint Detection in Single

Images Using Multiview Bootstrapping,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1145–1153.

[87] I. Odinaka, P.-H. Lai, A. D. Kaplan, J. A. O’Sullivan, E. J. Sirevaag, and J. W.

Rohrbaugh, “ECG Biometric Recognition: A Comparative Analysis,” IEEE Trans-
actions on Information Forensics and Security, vol. 7, no. 6, pp. 1812–1824, 2012.

[88] M. Li and S. Narayanan, “Robust ECG Biometrics by Fusing Temporal and

Cepstral Information,” in Proceedings of International Conference on Pattern
Recognition (ICPR), 2010, pp. 1326–1329.

[89] J. Arkko and H. Haverinen, “Extensible Authentication Protocol Method for 3rd

Generation Authentication and Key Agreement (EAP-AKA),” Tech. Rep., 2006.

[90] J. Arkko, V. Lehtovirta, and P. Eronen, “Improved Extensible Authentication

Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-

AKA’),” Tech. Rep., 2009.

[91] ETSI, “Universal Mobile Telecommunications System (UMTS); LTE; 3G Security;

Specification of the MILENAGE algorithm set: An Example Algorithm Set for

the 3GPP Authentication and Key Generation Functions f1, f1*, f2, f3, f4, f5 and

f5*;,” 3GPP TS 35.205 version 10.0.0 Release 10, 2011.
[92] RSA, “RSA SecurID Hardware Authenticators,” https://www.tokenguard.com/

RSA-SecurID-Hardware.asp/, 2023.

[93] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message

Authentication,” in Proceedings of Annual International Cryptology Conference
(CRYPTO), 1996, pp. 1–15.

[94] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-Based One-Time

Password Algorithm,” Tech. Rep., 2011.

[95] D. Balfanz, J. Ehrensvard, and J. Lang, “FIDO U2F Raw Message Formats,” FIDO
Alliance, 2017.

[96] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature

Algorithm (ECDSA),” International Journal of Information Security, vol. 1, no. 1,
pp. 36–63, 2001.

[97] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive Sur-

vey,” ACM Computing Surveys, vol. 51, no. 6, pp. 1–36, 2019.
[98] O. Oleksenko, B. Trach, R. Krahn,M. Silberstein, and C. Fetzer, “Varys: Protecting

SGX Enclaves from Practical Side-Channel Attacks,” in Proceedings of USENIX
Annul Technical Conference (USENIX ATC), 2018, pp. 227–240.

[99] J. S. Dwoskin and R. B. Lee, “Hardware-Rooted Trust for Secure Key Manage-

ment and Transient trust,” in Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2007, pp. 389–400.

[100] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A Secure Database Using

SGX,” in Proceedings of IEEE Symposium on Security and Privacy (S&P), 2018, pp.
264–278.

[101] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGXPECTRE: Stealing

Intel Secrets from SGX Enclaves via Speculative Execution,” in Proceedings of
IEEE Symposium on Security and Privacy (S&P), 2019, pp. 142–157.

[102] R. Maes, V. v. d. Leest, E. v. d. Sluis, and F. Willems, “Secure Key Generation

from Biased PUFs,” in Proceedings of International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2015, pp. 517–534.

[103] J.-H. Kim, H.-J. Jo, K.-K. Jo, S.-H. Cho, J.-Y. Chung, and J.-S. Yang, “Reliable and

Lightweight PUF-Based Key Generation Using Various Index Voting Architec-

ture,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2020, pp. 352–357.

[104] S. Willassen, “Forensics and the GSM Mobile Telephone System,” International
Journal of Digital Evidence, vol. 2, no. 1, pp. 1–17, 2003.

[105] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis, “Universal 2nd Factor (U2F)

Overview,” FIDO Alliance, 2017.
[106] A. W. Services, “AWS Key Management Service: Developer Guide,” https://docs.

aws.amazon.com/pdfs/kms/latest/developerguide/kms-dg.pdf, 2023.

[107] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal, “DiSE: Distributed

Symmetric-Key Encryption,” in Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2018, pp. 1993–2010.

[108] G. R. Blakley, “Safeguarding Cryptographic Keys,” in Managing Requirements
Knowledge, International Workshop on. IEEE Computer Society, 1979, pp. 313–313.

[109] S. Jarecki, H. Krawczyk, and J. Resch, “Updatable Oblivious Key Management

for Storage Systems,” in Proceedings of ACM Conference on Computer and Com-
munications Security (CCS), 2019, pp. 379–393.

[110] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive Secret Sharing or:

How to Cope with Perpetual Leakage,” in Proceedings of International Cryptology
Conference (CRYPTO), 1995, pp. 339–352.

[111] D. A. Schultz, B. Liskov, and M. Liskov, “Mobile Proactive Secret Sharing,” in

Proceedings of ACM Symposium on Principles of Distributed Computing (PODC),
2008, pp. 458–458.

[112] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “COBRA: Dynamic Proac-

tive Secret Sharing for Confidential BFT Services,” in Proceedings of IEEE Sym-
posium on Security and Privacy (S&P), 2022, pp. 1528–1528.

14

https://www.rootstrap.com/blog/fingerprint-recognition-the-most-popular-biometric/
https://www.rootstrap.com/blog/fingerprint-recognition-the-most-popular-biometric/
https://www.tokenguard.com/RSA-SecurID-Hardware.asp/
https://www.tokenguard.com/RSA-SecurID-Hardware.asp/
https://docs.aws.amazon.com/pdfs/kms/latest/developerguide/kms-dg.pdf
https://docs.aws.amazon.com/pdfs/kms/latest/developerguide/kms-dg.pdf

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

)

[113] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous Verifiable

Secret Sharing and Proactive Cryptosystems,” in Proceedings of ACM Conference
on Computer and Communications Security (CCS), 2002, pp. 88–97.

[114] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Reiter, and E. G. Sirer,

“Efficient Verifiable Secret Sharing with Share Recovery in BFT Protocols,” in

Proceedings of ACM Conference on Computer and Communications Security (CCS),
2019, pp. 2387–2402.

Appendix A PRELIMINARIES
Min-entropy [69]. For adversaries, an attack strategy is guessing

random values used in cryptosystems (e.g., the secret keys). The

probability of an adversary guessing out the key is determined

by the entropy of the key. In information theory, the entropy of a

random variable is the level of uncertainty inherent in the random

variable’s possible outcomes.

Shannon [70] first introduces the concept of information entropy.

𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} is a discrete and finite set. Assume that 𝑋 is a

random variable where the value domain is 𝐴 and the probability

of choosing 𝑎𝑖 from 𝐴 is 𝑝𝑖 , i.e., Pr[𝑋 = 𝑎𝑖] = 𝑝𝑖 . The information

entropy of 𝑋 is

𝐻 (𝑋) = −
𝑛∑︁
𝑖=1

𝑝𝑖 log𝑝𝑖 .

The predictability of the random variable 𝑋 is max{𝑝𝑖 }𝑖∈[1,𝑛] ,
which corresponds to the min-entropy of 𝑋 is

𝐻∞ (𝑋) = −log(max{𝑝𝑖 }𝑖∈[1,𝑛]) .

Shamir’s secret sharing [11]. In Shamir’s secret sharing scheme,

a dealer shares a secret among 𝑛 parties, and each party has a share.

Any 𝑡 parties can pool their shares and reconstruct the secret. Any

𝑡 − 1 parties who collude cannot obtain any information about the

secret. Shamir’s secret sharing scheme consists of two algorithms,

Split and Reconstruction, which are provided in the following.

Split. A dealer chooses a secret 𝑎 ∈ 𝑍𝑝 and split it into 𝑛 shares.

• The dealer uniformly chooses 𝑎1, . . . , 𝑎𝑡−1
$← 𝑍𝑝 and gen-

erates a polynomial 𝑓 (𝑥) = 𝑎 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥𝑡−1 over
𝑍𝑝 with degree at most 𝑡 − 1.
• The dealer computes shares 𝑠𝑖 = 𝑓 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛 and

distributes them among 𝑛 parties, letting each party have a

share.

Reconstruction. The dealer recovers the secret 𝑎 with any 𝑡 of

𝑛 shares.

• Upon having 𝑡 secret shares (denoted by {𝑠𝑖1 , . . . , 𝑠𝑖𝑡 } for the
sake of brevity), the dealer computes 𝑤𝑖𝑙 =

∏
1≤ 𝑗≤𝑡
𝑗≠𝑙

𝑖 𝑗
𝑖 𝑗−𝑖𝑙

for 𝑙 = 1, . . . , 𝑡 .

• The dealer reconstructs the secret by computing𝑎 =
∑𝑡
𝑙=1

𝑤𝑖𝑙 𝑠𝑖𝑙 .

Appendix B COMPARISONWITH SHAMIR’S
SECRET SHARING

In this subsection, we elaborate on the key difference between the

threshold key derivationmechanism utilized in DRKM and Shamir’s

secret sharing.

We first abstract the threshold key derivation mechanism from

the construction of DKRM (shown in Section 3.5), which consists

of Aggregation and Reconstruction.

Aggregation. Given 𝑛∗ shares {𝑠∗
1
, . . . , 𝑠∗

𝑛∗ }, a dealer aggregates
them into one secret and computes necessary auxiliary information

used for reconstruction.

• The dealer computes 𝑎 =
∏𝑛∗

𝑖=1 𝑠
∗
𝑖
, where 𝑎 is the secret by

aggregating the shares.

• The dealer computes

𝑝 (𝑥) =
𝑛∗∏
𝑖=1

(𝑥 − 𝑠∗𝑖),

such that 𝑝 (𝑠∗
𝑖
) = 0 for 𝑖 = 1, 2, . . . , 𝑛∗.

• The dealer outputs the coefficients of 𝑝 (𝑥) of degree 𝑛∗ − 1
down to 𝑡∗ as the auxiliary information 𝑎𝑢𝑥 , i.e.,

𝑎𝑢𝑥 = {−
𝑛∗∑︁
𝑖=1

𝑠∗𝑖 ,
∑︁

𝐴⊆[1,𝑛∗]
|𝐴 |=2

(
∏
𝑖∈𝐴

𝑠∗𝑖),−
∑︁

𝐴⊆[1,𝑛∗]
|𝐴 |=3

(
∏
𝑖∈𝐴

𝑠∗𝑖),

. . . , (−1)𝑛
∗−𝑡∗ ·

∑︁
𝐴⊆[1,𝑛∗]
|𝐴 |=𝑛∗−𝑡∗

(
∏
𝑖∈𝐴

𝑠∗𝑖)}.

Reconstruction. Given any 𝑡∗ of 𝑛∗ shares and auxiliary infor-

mation, the dealer can recover the secret.

• Upon having 𝑡∗ shares (denoted by {𝑠∗
1
, . . . , 𝑠∗

𝑡∗ } for the sake
of brevity), the dealer generates a new polynomial

𝑝1 (𝑥) = 𝑥𝑛
∗
+
𝑛∗−𝑡∗∑︁
𝑖=1

𝑎𝑢𝑥𝑖 · 𝑥𝑛
∗−𝑖 ,

where 𝑎𝑢𝑥𝑖 denotes the 𝑖-th element in 𝑎𝑢𝑥 .

• The dealer solves Equation (3) to obtain 𝑏𝑡∗−1, · · · , 𝑏0.
𝑝1 (𝑠∗1) = 𝑏0 + 𝑏1𝑠∗1 + · · · + 𝑏𝑡∗−1𝑠

∗
1

𝑡∗−1

· · ·

𝑝1 (𝑠∗𝑡∗) = 𝑏0 + 𝑏1𝑠∗𝑡∗ + · · · + 𝑏𝑡∗−1𝑠
∗
𝑡∗
𝑡∗−1

(3)

|𝑏0 | is the reconstructed secret.

From the perspective of construction, the threshold key deriva-

tion mechanism contains an Aggragation algorithm instead of a

Split one as in Shamir’s secret sharing (provided in Appendix A).

This is because the “shares” in the former are pre-determined and

aggregated into one secret, while in the latter, the secret is first

chosen, and the “shares” are determined by the secret.

Appendix C POPULAR PIF INTRODUCTION
Generally, users’ personal identification factors (PIFs) can be divided

into three categories: something the user knows, someone the user

is, and something the user has [30].

C.1 Something the user knows
This type of PIFs binds a user’s identity with a secret only known

to the user. As long as the user outputs the correct secrets, she/he

can identify herself/himself.

• Password.A password is a character string chosen by a user and

can be utilized to construct a portable authentication scheme, where

the user takes her/his password as the sole input for authentication

[62]. Password is memorable and thereby is destruction-resistant.

Generally, a cryptographic hash function is used to “obfuscate” the

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

password, and the hashed password serves as the authentication

credential. However, the password is inherently low-entropy and

is vulnerable to dictionary guessing attacks (DGA) [23, 71, 72].

• PIN code.A personal identification number (PIN) code is a set of

numbers (which generally consists of four or six digits) generated

by the user. PIN codes’ entropy is much lower than passwords.

Therefore, PIN codes should not be utilized to serve as the sole PIF

in the system [73].

• Private key. In public-key cryptosystems, a private key is a

string uniformly chosen from some set (where the number of ele-

ments in the set should be large enough) and is used to generate a

corresponding public key. With the pair of keys, an identification

scheme can be constructed (e.g., the Schnorr identification scheme

[74]). In reality, a private key is always stored in a stateful device

or hardware security module (as it is high-entropy), and thereby

cannot be recovered if the device (or hardware module) is destroyed.

C.2 Someone the user is
This type of PIFs is essentially the characteristics that can uniquely

identify the user. The most widely used PIFs are users’ biometric

characteristics. Such a PIF is not necessarily maintained in some

device. As a consequence, most of these PIFs (discussed in this

paper) are destruction-resistant.

A general procedure of biometric characteristic recognition is

described as follows. A user collects biometric characteristics with

the aid of stateful devices (e.g., obtaining a face image by using a

camera), and then some features can be extracted from the charac-

teristics. With the features, some templates can be derived to serve

as authentication credentials. We investigate popular biometric PIFs

and feature extraction methods. Subsequently, a “fresh” template

can be extracted from the user’s biometric characteristics to be com-

pared with the pre-generated templates for user authentication. The

widely-used biometric characteristics, e.g., fingerprints and faces,

can be easily collected using smartphones. With the proliferation

of wearable devices, it is also convenient to collect other biometric

characteristics, e.g., ECGs [22]. Typical biometric characteristics

are introduced in the following.

• Fingerprint. Fingerprints are the most widely utilized biometric

characteristic for user authentication [75]. A fingerprint can be

transformed into a unique image with ridges and valleys, where

a ridge is a single curved segment, and a valley is a region be-

tween two adjacent ridges, and minutiae-based feature extraction

is the most commonly-used method in fingerprint recognition

[19, 20, 40, 76, 77]. For users, it is convenient to utilize fingerprints

to authenticate herself/himself, since most devices have fingerprint

recognition functions. Fingerprints serving as PIF achieve com-

promise resilience, since the user can use different fingerprints in

different systems. However, it is not so hard to collect targeted

users’ fingerprints for adversaries in the physical world [78].

• Face. Facial recognition is also widely used for user authenti-

cation. As facial recognition only requires a camera to collect the

face image, most smartphones utilize the face as the PIF. In prac-

tice, extraction methods based on either geometrical features or

statistical features [21, 79] can be utilized to extract features from

users’ faces. Compared with fingerprints, users’ faces fail to achieve

compromise resilience.

• Iris. An iris camera captures a user’s pupil and extracts the iris

image from the pupil by using Gabor filters [80]. Compared with

fingerprint-based and face-based authentication, iris-based authen-

tication is more accurate for identifying users [81, 82]. Although

irises also fail to achieve compromise resilience, collecting users’

irises is much harder than collecting fingerprints and faces for adver-

saries. However, iris recognition requires a specific-purpose device

to scan the iris, which causes high costs to deploy the iris-based

authentication.

•Hand. In reality, the physical characteristics of a hand (e.g., hand
geometry [83, 84], palmprints [85], and hand gestures [86]) can also

serve as PIFs for user authentication, where hand geometry and

hand gestures can be utilized to achieve non-contact recognition.

The accuracy rate is significantly affected by the environment, e.g.,

lighting, and the devices collecting palmprints are generally larger,

compared with those collecting fingerprints and faces.

• Electrocardiographic (ECG). An ECG records the electrical ac-

tivity of the heart and mainly consists of P wave, QRS complex, and

T wave. ECG is highly personalized and can serve as PIF [87, 88].

ECG-based authentication requires specific types of equipment, e.g.,

ECG monitors.

C.3 Something the user has
This type of PIFs binds a user’s identity with a stateful device or

hardware unit. Anyone who possesses the device (or the unit) can

pass authentication.

• Subscriber identity module (SIM) card. A SIM card is an in-

tegrated circuit card, that has been utilized in cellular networks,

e.g. 3G and 4G [31]. The authentication protocol is based on mes-

sage authentication code (MAC) [89, 90]. Specifically, a SIM card

stores a universal international mobile subscriber identity (IMSI)

number and a 128-bit key which is shared with a server (deployed

by the communication service provider). The user and the server

initialize the same sequence number 𝑆𝑄𝑁 . A typical SIM-based

authentication procedure is shown in Figure 1, which follows a

challenge-response paradigm. When subscribing to cellular net-

works, the user sends her/his IMSI number as 𝐼𝐷 to the server.

The server first generates a challenge message, including a random

number 𝑅𝐴𝑁𝐷 and a MAC for 𝑅𝐴𝑁𝐷 and 𝑆𝑄𝑁 , and sends it to

the user. The user then verifies the received MAC and generates

a response message by computing a MAC for 𝑅𝐴𝑁𝐷 . The server

finally verifies the MAC and allows the user to subscribe if it is

valid. In Figure 1, the MAC is based on pseudorandom functions

𝑓 1(·), 𝑓 2(·), and 𝑓 5(·), and are instantiated by AES in practice [91].

With the proliferation of mobile devices, e.g., smartphones, SIM

cards are widely used for authentication in daily life, which is con-

venient for users. This also implies that the utilization of SIM cards

has to rely on devices with the cellular communication module.

• Hardware token. Hardware tokens can be divided into two cat-

egories from the point of the underlying cryptosystem: symmetric-

key-based ones and public-key-based ones.

For symmetric-key-based hardware tokens, typical examples

include RSA SecurID [92], which is constructed on a hash-based

MAC (HMAC) [93]. A simplified authentication procedure is shown

in Figure 2. The hardware token stores a seed that is shared with

a server. During the sign-on phase, the hardware token and the

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

There Is Always a Way Out! Destruction-Resistant Key Management Proceedings on Privacy Enhancing Technologies YYYY(X

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

)

server invoke a one-time password algorithm (which is based on

an HMAC) using the seed and current time as input [94]. The user

sends the password generated by the hardware token to the server.

The server verifies whether the received password is the same as

the locally generated one. If so, the user passes the authentication.

For public-key-based hardware tokens, typical examples include

U2F token [33, 95], which is based on ECDSA [96]. Figure 3 shows

the authentication procedure. The hardware token stores a private

key, and the corresponding public key is stored on the server. In

the sign-on phase, the server sends a nonce 𝑁𝑜𝑛𝑐𝑒 as a challenge

to the hardware token, and the hardware token signs 𝑁𝑜𝑛𝑐𝑒 and

returns the signature to the server. The server verifies the signature

with the corresponding public key. If it is valid, the user passes the

authentication.

It is difficult to forge a valid hardware token. However, once an

adversary can physically access the hardware token, he can easily

impersonate the user to pass the authentication.

• Trusted execution environment (TEE). TEEs are isolated private

enclaves inside CPU, which are used to protect data. Intel Software

Guard Extensions (Intel SGX) is the most widely-used TEE archi-

tecture [34]. It can also be utilized to authenticate users by using

its two root keys: the root provisioning key (RPK) and the root seal

key (RSK), where RPK and RSK are fused in CPU by the manufac-

turer. Due to the space limitation, please refer to Ref. [34–36] for

more details. In addition, except Intel SGX, other TEEs, e.g., ARM

TrustZone [97], are also widely used for authentication.

Such hardware units rely on specific manufacturers and are not

easily forged, but they may suffer from side-channel attacks [98].

Users and servers have to equip the same TEEs.

Appendix D RELATEDWORK
D.1 Key management schemes
Many key management schemes have been proposed in the past

few years. We discuss them in the following.

Hardware-based key management schemes. Users can lo-

cally manage their keys by utilizing secure hardware devices [99].

For example, Intel Software Guard Extensions (SGX), aiming to

protect the confidentiality and integrity of computations on sen-

sitive data performed on a computer, can also be utilized for key

management. Priebe et al. proposed a secure database using SGX

[100], which can be utilized for key management. However, such a

scheme requires the user to possess a device equipped with Intel

central processing units (CPUs) that support Intel SGX. In addition,

Intel SGX is vulnerable to side-channel attacks [98, 101].

Another approach to key management is to generate keys based

on the physical characteristics of a hardware device rather than

storing them within it. For example, although the manufacturing

process is the same among different ICs, each IC is actually different

from others, which is called manufacturing variability and can be

utilized for key generation.Maes et al. proposed physical unclonable

functions (PUFs) to derive keys by leveraging the variability [102].

Kim et al. proposed a lightweight PUF-based key generation using

various index voting architecture [103].

Hardware-based key management schemes essentially shift the

problem of managing multiple keys from protecting each individual

key to protecting another key that can unlock them. Once an adver-

sary physically accesses the hardware devices, he may recover the

user’s keys. To resist such an adversary, a widely-used remedy is to

introduce an additional authentication mechanism: only the user

who passes the authentication can utilize the hardware devices.

For example, before using a SIM card, the user needs to input a

PIN code to unlock it [104]. The user needs to input the correct

password before utilizing the hardware token for authentication

[105]. MacOS provides a secure container, called Keychain, which

assists users in managing their keys and passwords [5]. MacOS

authenticates the users by using passwords, fingerprints, or faces,

and only authenticated users can access the Keychain.

Whereas, the functionality and security of hardware-based key

management schemes depend on the reliability of the hardware

devices. Once the hardware devices are destroyed (e.g., due towrong

formatting), the user would never recover her/his keys. Especially,

the hardware devices are individually maintained by the users and

are vulnerable to being lost or stolen. In addition, hardware-based

key management schemes fail to achieve portable key access.

Software (or extended services) based key management
schemes. To free the costs and issues introduced by local key

management, users prefer to employ a service provider to achieve

key management. For instance, Amazon provides key management

services for users [106], where a master key is generated by each

user and utilized to encrypt other keys. The master key and the

ciphertexts of other keys are well maintained by Amazon. Microsoft

Azure [1] and Google cloud platform (GCP) [2] provide the same key

management services for users. With the assistance of the service

providers, the users are able to manage and access their keys on any

device. Nevertheless, for these key management services, service

providers rely on hardware security modules (HSM) to manage

users’ master keys, e.g., Amazon utilizes a distributed fleet of FIPS

140-2 validated HSMs to securely manage the users’ master keys

[106]. Once the HSMs are destroyed for some reason (e.g., servers

are destroyed due to geological disasters), the users’ master keys

would no longer be recovered.

To eliminate the reliance on security hardware devices, server-

aided key management schemes have been proposed in the past few

years. A user utilizes a master key to encrypt other keys, and the

master key is split among key servers in a threshold way [107, 108].

As long as the number of available key servers is larger than the

threshold, the user can recover the key. An adversary who compro-

mises less than a threshold number of key servers cannot obtain

anything about the master key. A notably example is Keywhiz, an

open-source distributed key management software [58].

To achieve portability, password-hardening protocols [59–66]

can also be utilized for key management, where a user hardens

her/his password with the aid of the key servers in a threshold

and oblivious way. After being hardened, the password is secure

against dictionary guessing attacks (DGA), which enhances the

security significantly. The hardened password is utilized to com-

pute authentication credentials and generate the master key. Such a

password-hardening-based key management scheme is destruction-

resistant, since the password is memorable, and any destruction

of the user’s devices would not cause unavailability of the pass-

word. Whereas, it is still unsatisfactory in real-world deployment,

since the password serves as the sole secret. Once the password is

compromised, no security is guaranteed. In reality, compromising

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Proceedings on Privacy Enhancing Technologies YYYY(X) Yuan Zhang, Yaqing Song, Shiyu Li, Weijia Li, Zeqi Lai, and Qiang Tang

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

users’ passwords is not so hard for a sophisticated adversary, even

if they are hardened by the key servers [23, 71, 72].

In addition to directly sharing the master key among multiple

key servers, distributed encryption schemes have been proposed

as a variant of distributed key management schemes. Agrawal et

al. proposed the first formal threshold symmetric-key encryption

based on distributed pseudorandom functions in DiSE [107], where

the user employs a group of key servers to generate an encryption

key for each message. Specifically, the user generates a commit-

ment to a message and sends the commitment to each server, and

each server computes a response utilizing its key share for the user.

The user aggregates a threshold number of responses and gets the

message-specific key to encrypt the message. However, DiSE may

introduce heavy computation and communication costs to the user

when encrypting a large set of messages. Christodorescu et al. pro-

posed an amortized threshold symmetric-key encryption scheme

[6], which enables the user to encrypt a large set of messages using

a single interaction. In addition, Jarecki et al. constructed an obliv-

ious key management system based on oblivious pseudorandom

functions [109]. This scheme has an updatable encryption capabil-

ity, and the update procedure of the ciphertexts does not require

the user to interact with the key servers.

Whereas, in the above schemes, sophisticated adversaries may

corrupt enough key servers given enough time and get the users’

master key. To resist such adversaries, multiple proactivization

mechanisms for secret sharing have been proposed [12, 110–114]. In

these schemes, time is divided into fixed intervals called epochs, and

the secret shares are updated with the new ones without changing

the master key in different epochs. To further enhance security,

the key servers can be replaced by the newly employed ones in

different epochs while maintaining the master key.

These server-aided key management schemes are free from re-

liance on secure hardware devices. However, these schemes cannot

resist the destruction of key servers. The functionality and relia-

bility totally rely on that the key servers can provide services for

users. Once the key servers are destroyed, the user would never

recover their keys.

D.2 Portable authentication
Biometric characteristics provide a convenient and portable way

for users to authenticate themselves with servers. Despite the ben-

efits of using biometric characteristics, there exist security issues.

Specifically, storing a user’s biometric characteristic template on

the server side as an authentication credential makes the user’s bio-

metric characteristic vulnerable if the credential database is leaked.

Furthermore, an attacker may perform trawling attacks to obtain

authentication credentials based on different biometric character-

istics from different authentication systems. This can enable the

attacker to retrieve the user’s master key if the user utilizes the

same characteristics when deploying DRKM.

A method to mitigate the above attacks is to require the server to

store the encrypted templates. The adversary cannot get anything

about users’ biometric characteristics from the compromised cre-

dential database. However, this method cannot resist the internal

adversary e.g., the malicious insiders working at the server, who

can still get the users’ templates.

Recently, the authentication protocol, FIDO U2F [105], has been

proposed, which enables users’ biometric templates to be stored

on the users’ devices instead of the server side. Specifically, the

user installs an FIDO authenticator on her/his device. During the

registration phase, the user unlocks the FIDO authenticator using

fingerprint or other biometric characteristics and generates a new

public/private key pair. The public key is sent to the server, and the

private key and the biometric characteristic templates are stored on

the device. During the sign-on phase, the server sends a challenge

message, e.g., a nonce, to the user. The user unlocks the FIDO au-

thenticator using the same biometric characteristics as that utilized

in the registration phase and signs the challenge message using the

private key. The user sends the signature back to the server, and the

server verifies it with the stored public key. If it is valid, the user

passes the authentication. As such, deploying FIDO authenticators

can avoid the leakages of biometric information.

Appendix E ARTIFACT
Abstract. Our artifact consists of a DRKM prototype. DRKM is a

portable and destruction-resistant key management system. It can

support that a user derives a master key from multiple PIFs and

utilizes the master key to manage other cryptographic keys. DRKM

also supports the user to retrieve the master key from a part of PIFs

utilized for key derivation.

Scope. Our artifact can be used to prove the correctness and feasi-

bility of DRKM and evaluate its performance. Specifically, it demon-

strates that DRKM can be deployed in practice and function well. It

can be used to evaluate the computation delay and communication

costs. It can also be used to validate the evaluation results presented

in Section 5.

Content. The artifact comprises the following sub-directories:

-__pycache__, which contains the packaged interfaces.

-key_manager.py, which contains the sourcecode of Managing.
-key_recover.py, which contains the sourcecode of Recovery.
-key_visit.py, which contains the sourcecode of Access.

Hosting. Our artifact is available on the GitHub repository

https://github.com/DRKM-code/DRKM.git.

Requirements. We developed and evaluated our artifact on a

laptop with an Intel Core i5 CPU and 16 GB LPDDR4X of RAM.

The prototype is implemented in Python with the Crypto library.

Moreover, to run the prototype correctly, some basic packages

including mpmath, pip, pkg_resources, and sympy are required.

18

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Technical overview
	1.3 Comparison with concurrent work

	2 PIFs and reconstructable secrets
	2.1 Definitions of PIFs
	2.2 Reconstructable secrets
	2.3 Conditionally reconstructable secrets

	3 The proposed DRKM
	3.1 Notation
	3.2 Definition of DRKM
	3.3 Functionality of DRKM
	3.4 Security of DRKM
	3.5 Construction of DRKM
	3.6 Remark
	3.7 Deploying DRKM

	4 Security analysis
	4.1 Indistinguishability
	4.2 PIF privacy

	5 Implementation and evaluation
	5.1 Deriving secrets from PIFs
	5.2 Key derivation and management
	5.3 Key access and recovery
	5.4 Comparison with KDF
	5.5 Comparison with alternative schemes
	5.6 Applications and compatibility

	6 Conclusion
	References
	A Preliminaries
	B Comparison with Shamir's secret sharing
	C Popular PIF Introduction
	C.1 Something the user knows
	C.2 Someone the user is
	C.3 Something the user has

	D Related work
	D.1 Key management schemes
	D.2 Portable authentication

	E Artifact

