
Thwarting Last-Minute Voter Coercion

Rosario Giustolisi, Maryam Sheikhi Garjan and Carsten Schuermann
IT University of Copenhagen

Abstract—Counter-strategies are key components of coercion-
resistant voting schemes, allowing voters to submit votes that
represent their own intentions in an environment controlled by
a coercer. By deploying a counter-strategy a voter can prevent
the coercer from learning if the voter followed the coercer’s
instructions or not. Two effective counter-strategies have been
proposed in the literature, one based on fake credentials and
another on revoting. While fake-credential schemes assume that
voters hide cryptographic keys away from the coercer, revoting
schemes assume that voters can revote after being coerced.

In this work, we present a new counter-strategy technique
that enables flexible vote updating, that is, a revoting approach
that provides protection against coercion even if the adversary
is able to coerce a voter at the very last minute of the voting
phase. We demonstrate that our technique is effective by
implementing it in Loki, an Internet-based coercion-resistant
voting scheme that allows revoting. We prove that Loki satisfies
a game-based definition of coercion-resistance that accounts
for flexible vote updating. To the best of our knowledge, we
provide the first technique that enables deniable coercion-
resistant voting and that can evade last-minute voter coercion.

1. Introduction

One of the central challenges of remote and Internet-
based voting schemes is that the act of casting the vote
no longer takes place in a protected, restricted, and safe
environment, such as a polling station, but in an environment
that might very well be under an adversary’s control. The
adversary may use this influence to perpetrate attacks with
the goal to subvert an election.

The lack of physical limitations, exposure to blackmail,
and other threats, compromise secrecy and integrity of the
ballot and introduce risks of coercion. Voter coercion is
generally understood as the undue influence of an adversary
over a voter, allowing the adversary to force a voter to cast
a ballot reflecting the adversary’s rather than the voter’s in-
tention, or to force a voter to abstain from voting altogether.
Hence, it implies that a voter must not receive any evidence
that may be used to prove to a third-party, for example, a
family patriarch, a party representative, or any other kind of
coercer, how the voter voted.

Coercion-resistant Internet-based voting schemes protect
against voter coercion in uncontrolled environments. Most
schemes achieve coercion resistance by either fake creden-
tials or by deniable revoting. Common to both approaches

is the use of counter-strategies, which allow voters to follow
a different procedure than coercer’s instructions. A counter-
strategy is successful if the coercer cannot tell whether the
voter followed the coercer instructions or not.

In fake credentials, voters create and cast fake ballots
when voting under coercion. Such ballots are verifiably
removed from the tally. In deniable revoting, voters update
or nullify previously cast votes while being under coercion.

These approaches need different assumptions. Fake-
credential schemes assume that voters i) cannot be coerced
during registration, ii) can store and hide cryptographic
key material during the voting phase, and iii) need to lie
convincingly while being coerced. Revoting-based voting
schemes assume that i) voter authentication is inalienable
during the voting phase, and ii) the adversary does not
coerce the voter at the end of the voting phase, namely,
the voter has always a chance to revote after being coerced.
A way to remove the latter assumption is to use flexible
vote updating, that is, a revoting approach that allows the
adversary to coerce a voter at any point of the election,
including the very last minute of the voting phase.

In this work, we propose the first counter-strategy tech-
nique that allows a voter to deniably revote while resisting
coercion at any point of an election. Our technique relies
on two key insights. First, we observe that a Voting server
can efficiently generate noise ballots that obfuscate the
encrypted ballots cast by voters without knowing the original
vote (e.g., by re-randomizing them). Such noise ballots hide
revoting patterns induced by voters or coercers.

Second, we observe that the Voting server and the voter
are the only parties who know with certainty for each ballot
associated with the voter whether it is a ballot cast by
the voter or a noise ballot cast by the Voting server. A
coercer cannot tell the difference between the two provided
that votes are continuously being obfuscated and that a
voter might (or might not) have cast other votes while not
being coerced. Hence, when the voter casts a ballot, the
Voting server can challenge the voter to identify the ballots
previously cast by the voter. Based on whether the voter
correctly identifies their previous ballots, the Voting server
generates a noise ballot that either obfuscates the current
voter ballot or obfuscates the most recent noise ballot cast
by the Voting server.

The hallmark characteristic of our technique is therefore
that it provides the voter with a counter-strategy to defend
against a coercer: respond with a misidentification of pre-
viously cast ballots, which the coercer cannot know. We
thus shift the last-vote-counts policy to a last-correct-vote-

counts policy. This allows us to implement our technique
into a novel voting scheme, Loki, which evades last-minute
coercion and supports flexible vote updating.

Contributions. The main contribution of this paper is
a novel technique that enables flexible vote updating.
To the best of our knowledge, no previously proposed
counter-strategy that allows revoting can evade last-minute
coercion. Another contribution of this work is Loki, a
coercion-resistant Internet voting scheme that implements
our counter-strategy to support flexible vote updating. We
prove that Loki satisfies ballot privacy if the underlying
ballot encryption scheme is Indistinguishable Relaxed Cho-
sen Ciphertext Attack (IND-RCCA) [1] secure. We also
prove that Loki satisfies coercion resistance under the DDH
assumption and provides strong verifiability guarantees un-
der the DLP assumption in the random oracle model. Loki
is the first strongly verifiable revoting scheme providing
protection against coercion even if the adversary is able to
coerce a voter at the very last minute of the voting phase.
Loki’s tallying complexity is linear in the number of voters.
Given the same trust assumptions, prior work can either
provide revoting or last-minute coercion-resistance, but not
both, and with more costly tallying based on the number of
ballots. We provide a prototype implementation of Loki in
Python showing that Loki key functions require only a few
milliseconds to run on a MacBook Pro laptop.

2. Related work

Several voting schemes have provided strategies to
achieve coercion-resistance and public verifiability. Civitas
[2] implements Juels et al.’s (JCJ) coercion-resistant voting
scheme [3]. Although the scheme is coercion-resistant, it
does not provide a strategy for evading coercion in case
of revoting, namely, a voter cannot deny revoting to a co-
ercer. Efficiency improvements to Juels et al.’s scheme have
been proposed [4], [5] but none of them supports deniable
revoting. Achenbach et al. [6] extends Juels et al.’s scheme
to achieve deniable revoting. More recently, VoteAgain [7]
advanced an efficient way to achieve deniable revoting.
However, both VoteAgain and Achenbach et al. strategies
cannot address last-minute coercion as they assume that
the coercer must give up control over the voter before the
polls close to allow the voter to revote. In contrast, we
show how one can remove such an assumption. Password-
based voting schemes [8], [9] that use panic passwords as
counter-strategies for fake credentials are coercion-resistant
and allow revoting, but ballot overwriting or re-cast are
exposed hence they are not deniable. Other approaches allow
for revoting [10], [11], but the revoting strategy is either
deniable or publicly verifiable.

Various definitions of coercion-resistance for voting
schemes have been proposed [12]–[14], including epistemic
[15] and game-based [7], [16]–[18] approaches, which have
already been used to analyse several voting protocols [19]–
[23]. Caveat Coercitor [24] introduces a relaxed version
of coercion-resistance, namely, coercion attempts can be

detected. In this approach, a voter changing their mind
and overwriting their ballots would be signaled as a co-
ercion attempt. Our work, in contrast, aims to the non-
relaxed versions of coercion-resistance game-based notions.
The notions of individual verifiability and universal verifi-
ability have been extensively studied in voting [25]–[29].
Interestingly, Cortier and Lallemand [30] have shown that
intuitively contrasting properties such as verifiability and
privacy are somehow linked. They demonstrated that a vot-
ing scheme that does not meet individual verifiability fails
to achieve vote privacy, when one considers the same trust
assumptions. Schemes [7], [31] and definitions [18], [30],
[32] that address weak trust assumptions, such as accounting
for malicious bulletin boards and voters not checking their
ballots, have been proposed. Our work considers verifiability
notions by Cortier et al. [18] in which a voting scheme
is strongly verifiable if registration authority and bulletin
board are not simultaneously dishonest. However, Hirschi
et al. [33] have recently shown that it is still necessary to
assume that the bulletin board presents the same content to
all readers. Therefore, we consider a voting scheme strongly
verifiable if registration authority and tally servers are not
simultaneously dishonest. Conversely, a voting scheme is
weakly verifiable if both registration authority and tally
servers are honest.

3. A new technique for flexible vote updating

3.1. In a nutshell

Our technique considers a Voter, who cast vote ballots
and a Voting server, which is in charge of collection and
publishing valid ballots in a trusted append-only bulletin
board. For each voter, the bulletin board publishes a cast
ballot record (CBR), which is a list of ballots associated
with the voter. All the ballots included in a CBR are either
generated by the voter or by the Voting server on behalf
of the voter. In particular, the Voting server periodically
casts noise ballots that are indistinguishable from the voter’s
ballots and serve to obfuscate the voter’s casting behaviour
and guarantee deniable vote updating to the voter.

The key idea behind our technique is that the voter
can eventually signal to the Voting server which ballots
are cast by the voter while being coerced. To do so, voter
and Voting server keep track of a list of indexes that refers
to the voter’s CBR. The list contains the indexes of the
ballots cast by the voter according to their CBR. Thus, when
the voter casts a ballot, this also includes (an encryption
of) the list of indexes. If a voter has already voted then,
under coercion, they will need to provide an incorrect list
of indexes, otherwise they will expose their “misbehaviour”
to the coercer. This prompts the Voting server to add a noise
ballot that “cancels” the ballot cast under coercion. This is
possible because voter and the Voting server are the only
two entities who exactly know which ballots in the voter
CBR are cast under coercion and which ones are not.

Our technique can be seen as a mix of fake-credential
and deniable revoting approaches. The fake-credential ap-

i0 i1 · · · ik ik+1 · · · il il+1 · · · im im+1 im+2 · · ·

V0 PKV0
βc2 βc2

oo · · · β
ℓ=[]
c1 βc1

oo βc1
oo βc1

oo βc1
oo β

ℓ=[]
c2 βc1

ww

βc1
oo

V1 PKV1 β0 β0
oo β0

oo β0
oo · · · β

ℓ=[]
c2 βc2

oo βc2
oo β

ℓ=[il]
0 β0

oo β0
oo

V2 PKV2
β0 β0

oo · · · β
ℓ=[]
c1 βc1

oo · · · β
ℓ=[ik]
c2 βc2

oo βc2
oo β

ℓ=[ik]
c1 βc2

ww

βc2
oo

V3 PKV3 β0 β0
oo β0

oo β0
oo β0

oo β0
oo β0

oo β0
oo β0

oo β0
oo

Figure 1: Our technique in practice. Each CBR is a row in this figure. Ballots cast by a voter under coercion are in circles,
while coercion-free cast ballot are in diamond. Ballots cast by Voting server are in squares, and an arrow indicates which
ballot is obfuscated. The CBR for V0 exhibits an example of coercion during registration and at the last minute, in which
the voter cannot revote. Both CBRs for for V1 and V2 exhibit examples of voters being able to revote after being coerced.
The CBR for V3 exhibits an example of voter abstention. The last column shows the ballots that are considered for tallying.

proach requires a coercion-free registration phase to set up
real and fake credentials. This is because both real and fake
credentials are fixed and do not change once they have been
created. Our technique does not need such an assumption
because the list of indexes is not fixed but dynamically
changes according to the voter cast behavior. The deniable
revoting approach instead requires that the voter revotes after
coercion. Our technique does not rely on such an assumption
because the voter can signal to the Voting server coercion
as soon as this happens.

3.2. Description

Figure 1 deptics our technique in practice. At registra-
tion, a registration ballot, which includes the voter’s public
credentials, initialises the voter CBR. An authority or the
voters themselves can cast such ballot. Note that the voter
can even be coerced at registration and can reveal the content
of the registration ballot to the coercer, without needing
to lie. During the voting phase, the CBR is continuously
populated with ballots generated either by the voter or by
the Voting server. We require that the noise ballots generated
by the Voting server are indistinguishable from the voter
ballots. Let us consider βℓ

v as a ballot which contains a
voter’s vote for a candidate v. The voter generate this
ballot including a list ℓ of indexes into the voter’s CBR
to signal if the ballot was coerced or not, and sends it to
the Voting server. As a response, the Voting server appends
the voter ballot to the voter’s CBR and checks whether ℓ
correctly identifies all ballots (if any) previously cast by the
voter. If so, the Voting server appends to the voter’s CBR
an additional noise ballot which encrypts the same vote
contained in the ballot just cast by the voter. Otherwise,
an incorrect ℓ is signalling coercion, therefore the Voting
server appends a noise ballot which encrypts the same vote

contained in the second-to-last ballot stored in the CBR.
Since i) a voter ballot is always followed by at least one
noise ballot cast by the Voting server, and ii) the Voting
server periodically obfuscates the last ballot in each CBR,
the second-last ballot is a noise ballot and guarantees to
always be an obfuscation of a correct voter ballot, that is, the
last ballot that the voter sent identifying the list ℓ correctly.
In fact, all noise ballots appearing in the CBR contain the
vote of the correct voter ballot.

Our technique allows us to define a quantitative mea-
sure of coercion-resistance, which illustrates that it protects
against a brute force attack perpetrated by the coercer. In
such a scenario, the coercer may attempt to guess the correct
list of indexes ℓ by asking the voter to submit several ballots
with different lists of indexes. The number of required
attempts exhibits exponential growth. Assuming that the
CBR contains m ballots, the coercer needs to guess the k
out of m ballots. With growing m, it becomes increasingly
difficult for the coercer to guess the index list ℓ that identifies
the complete set of uncoerced ballots. More precisely, the
coercer needs to submit

∑m
k=0

(
m−k
k

)
= fm+1 ballots to be

sure to guess the correct sequence of indexes ℓ at least once,
with fm+1 being the (m+1)th Fibonacci number. Note that
such brute force attack would allow the coercer to update
any previously cast votes. It does not help the coercer to
guess whether the voter followed the coercer instructions or
not.

The design of our technique is based on the fact that
Voting server and voter are the only parties who know
exactly the voter’s casting behaviour, thus it can be applied
if the following criteria are satisfied.

1) The Voting server is trusted for coercion resistance.
2) The voter can cast at least one uncoerced vote.
3) Voter authentication to the Voting server is inalienable.
4) An append-only bulletin board guarantees that every-

one sees the same data.
5) Voter’s ballots and Voting server’s noise ballots are

identifiable to the voter/voting server and indistinguish-
able to anyone else.

Note that all the criteria outlined above but the last one
are necessary conditions for achieving coercion-resistance in
elections that offer deniable revoting in general [6]. The last
criterion might be achieved in different ways. For example,
in KTV-Helios [34] and VoteAgain [7], the Voting server
casts dummy ballots, which are encryptions of zeros that
obfuscate voter ballots. Soroush [35] proposes the idea in
which the Voting server periodically re-encrypts the last
ballot associated to the voter as noise ballots to achieve
deniable vote updating. In BeleniosRF [31], the Voting
server re-randomizes the ballot cast by a voter to achieve
strong receipt-freeness.

4. Loki

Loki is divided into the classic three phases of an
election system: registration, voting, and tallying. At reg-
istration, the tallying servers jointly generate public and
private keys for the election. For each voter, the registration
authority generates the respective key material and creates
a CBR in the bulletin board. The registration authority
initialises the CBR with the voter’s public credentials and
with a registration ballot β0. The ballot contains a “0”, which
represents a null vote.

Let us consider ℓid as the list of indexes into the CBR
of voter id. When the voter sends to the Voting server a new
ballot including a new list of indexes ℓv, the Voting server
appends the encrypted voter ballot to the voter’s CBR. If ℓv
correctly extends ℓid, the Voting server appends to the CBR
another ballot, i.e. a noise ballot, which re-randomizes the
voter ballot with correspondingly updated encryptions and
proofs. Otherwise the Voting server appends to the CBR a
ballot re-randomization of the second-to-last ballot stored
in the CBR. Differently from the fake crendential approach,
Loki requires voters to remember only small integer, if
needed at all. In fact, a voter needs to remember the indexes
of their previous ballots only if they want to change their
vote.

Verifiability of the Voting server is guaranteed by a
disjunctive non-interactive zero-knowledge proofs (NIZKP)
of knowledge that takes in encryptions of both ℓv and ℓid,
which are publicly available in the bulletin board, ensuring
the correct operation of the Voting server without revealing
the content of the list of indexes. For tallying, Loki sup-
ports homomorphic tallying and other techniques that are
commonly used in cryptographic voting protocols.

4.1. Threat model

In addition to Voter and Voting server, Loki involves a
Registration authority1 and the Tally servers. The latter are

1. Loki includes this party for simplicity. However, it is not strictly
required by our technique as voters themselves can cast the registration
ballots and can also be under coercion while doing so (e.g., V0 in Fig. 1).

in charge of tallying and publishing the final result of the
election in the bulletin board. The tally servers form a k-out-
of-t threshold encryption system trusted for ballot privacy
and coercion resistance. The registration authority is trusted
for ballot privacy and verifiability as it generates the keys
for the voters, while the Voting server is only trusted for
coercion resistance, namely, it should not prove to a coercer
that the Voting server casts a noise ballot. However, any
process performed by the Voting server on a voter’s CBR is
publicly verifiable.

We consider a computationally bounded adversary
whose efforts are towards coercing some voters into casting
ballots for a particular candidate or to abstain. As any other
coercion-resistant revoting based scheme [3], [6], [7], we
require the inalienability of voter authentication until the
polls have closed, meaning that the adversary can neither
eliminate nor duplicate a voter’s mean of authentication.
Inalienability of authentication means that the voter authen-
ticates by an inherence-based factor (e.g. biometric authenti-
cation) and it is required to prevent a coercer to cast ballots
unbeknownst to the voter. This is also known as the over-
the-shoulder adversary [8] and it is a necessary condition to
achieve coercion-resistance in elections that offer deniable
revoting in general [6]. Inalienable authentication can be
achieved today by using existing biometric cards like the
ones deployed by Samsung, Mastercard, and EVM [37]–
[39]. These systems already provide an infrastructure for
key management.

Differently from other coercion-resistant schemes based
on revoting, we do not need to assume that the voter can cast
one more vote after being coerced. We also do not require
the classic assumptions in fake-credential based schemes
[3], [6], such as the need for voters to hide cryptographic
keys, no coercion at registration, or the need for voters to
lie convincingly when they are under coercion.

A comparision of Loki with other coercion-resistant
schemes is shown in Table 1. For ballot privacy, all schemes
require the majority of tally servers and registrars to be
honest. Loki, VoteAgain, and Achenbach et al. achieve
verifiability with an honest registration authority and dis-
honest Voting server and tally servers. This is known as
strong verifiability [18]. Conversely, JCJ achieves only weak
verifiability since it needs to trust registration authority and
the tally servers. For coercion-resistance, all the schemes in
Table 1 requires the majority of tally servers to be honest.
JCJ, VoteAgain, and Loki additionally require some trust on
registrar, polling authority and Voting server, respectively.

4.2. Cryptographic primitives

Exponential ElGamal encryption [40] and NIZKP are
the only two cryptographic primitives needed in Loki.

Let λ be a security parameter. Let G be a cyclic group
of prime order p generated by generator g. We denote the
integers modulo p with Zp and write r

$←− Zp for r being
chosen uniformly from Zp. Loki is built on the ElGamal
encryption scheme for group G, with generator g of order

TABLE 1: Comparision of different coercion-resistant voting schemes, with trusted parties for ballot privacy and coercion-
resistance. Strong verifiability assumes that the registrar or the talliers are trusted. Weak verifiability assumes that both
registrar and talliers are trusted. The number of ballots is denoted by nb while the number of voters is denoted by nv.

JCJ [3] Achenbach et al. [6] VoteAgain [7] Loki
Deniable revoting No Yes Yes Yes

Last-minute coercion Yes No No Yesresistance
Ballot privacy Talliers + Talliers + Talliers + Talliers +

Registrar Registrar Polling authority† Registrar
Verifiability Weak Strong Strong Strong

Coercion-resistance Talliers + Talliers Talliers + Talliers +
Registrar‡ Polling authority Voting server

Complexity n2
b n2

b nb log nb nv

Inalienable Registration Voting Voting Voting
authentication phase phase phase phase

†The original paper claims only talliers, but a privacy attack is possible with an untrusted polling authority [36].
‡The original paper assumes a trusted registrar, but it can be distributed to several parties as long as one of them is trusted [2].

p and message space M = gb, where b = {0, 1} consisting
of the following algorithms.

EKeyGen(1λ), which, on input of security parameter 1λ,
outputs a pair of ElGamal decryption and encryption
keys (sk, pk) where sk

$←− Zp and pk = gsk.

Enc(pk,m; r), which, given a public key pk, a message
m ∈ M, and some randomness r

$←− Zp, outputs a
ciphertext (c1, c2) = (gr,m · pkr).

Dec(sk, ct = (c1, c2)), which outputs m = c−sk
1 · c2.

ReEnc(pk, ct = (c1, c2); r), which, using randomness
r

$←− Zp, outputs the reencryption of ct: (c1·gr, c2·pkr).
For verifiability, we use a system of NIZKP. To define

our relation for verifying the correct construction of a ballot,
we compose the following relations.

• Proof of plaintext knowledge is a NIZKP of knowledge πe

proving that ct is the correct encryption of a message m ∈
M using the public encryption key pk and randomness r
known to the prover. The corresponding relation Re is
defined as follows:

((ct, pk,M), (r,m)) ∈ Re iff ct = Enc(pk,m; r)∧m ∈M

• Proof of correct decryption is a NIZKP of knowledge πd

for proving that ct is decrypted by applying the private
encryption key sk on ciphertext ct. The corresponding
relation Rd is defined as follows:

((pk,m, ct), sk) ∈ Rd iff m = Dec(sk, ct) ∧ pk = gsk

• Proof of private key knowledge is a NIZKP of knowledge
πs for proving that a verifying upk is generated by the
following algorithm.

SKeyGen(1λ) which, on input security parameter 1λ,
outputs a pair of keys (usk, upk) such that upk = gusk.
The corresponding relation Rs is defined as follows:

(upk, usk) ∈ Rs iff upk = gusk

• Proof of correct re-encryption is a NIZKP of knowledge
πre for proving that ct′ is a re-encryption of a ciphertext ct
w.r.t. public encryption key pk and the prover knows the
randomness r. The corresponding relation Rre is defined
as follows:

((pk, ct, ct′), r) ∈ Rre iff ct′ = ReEnc(pk, ct; r)

We use disjunctive NIZKP as introduced by Cramer et
al. [41]. Let R = R1 ∨ · · · ∨ Rn for n > 1 such that
((x1, . . . , xn), ω) ∈ R being defined as follows:

(x=(x1, . . . , xn), ω)∈R iff (x1, ω)∈R1∨· · ·∨(xn, ω)∈Rn

This construction enables a prover to demonstrate the
knowledge of ω, such that (xi, ω) ∈ R, but without
revealing i. This is captured by the following algorithms.

DisjProof(x, ω), which on input public statement x and
private witness ω of a disjunctive relation R = R1 ∨
· · · ∨ Rnoutputs a NIZKP π that proves the knowledge
of ωj w.r.t xj of relation Rj and simulates the proof of
knowledge other relations.

Verify(x, π) which, on input public statement x and NIZKP
π checks the proof π w.r.t. x of relation R and outputs
⊤ if the checks succeeds, otherwise return ⊥.

The last building blocks of Loki are the discrete probability
distributions DR and DT , as introduced in KTV-Helios [17],
which are used respectively to sample the number of ballots,
both re-randomized and voter’s ones, and to determine the
time to cast each of them in the voting phase. Note that
both distributions should not map any value to 0 otherwise
no voters’ ballots would be re-randomized. Also, while DR
can be a uniform distribution, DT is a distribution that
represents typical vote casting behaviour2. To avoid race
conditions on cast ballots, the distributions generate sorted
timestamps. Voters can distinguish their ballots from the
noise ballots independently of casting frequency since they

2. If DT is a uniform distribution, an adversary might be able to distin-
guish revoting from re-randomized ballots due to vote casting behaviour.

know the ciphertexts of their ballots on the bulletin board.
The Voting server generates the distributions for each CBR
before the voting phase begins. Since the number of required
attempts to brute force a CBR exhibits exponential growth,
the Voting server can set the number of noise ballots, which
is sampled by DR, to a relatively small value.

4.3. List of indexes encoding

Before we present Loki, we first describe how one can
encode a list of indexes so that it can be consistently updated
as soon as new ballots are included into a voter CBR. To
do so, we first associate to each ballot in the CBR a ’0’
if the ballot is a re-randomization by the Voting server,
and a ’1’ if the ballot is generated by the voter. The given
(binary) value is then stored as decimal value in the list
of indexes. For example, let us assume a CBR with 5
ballots, that is, [β0, β1, β2, β3, β4], where β2 is the only
ballot generated by the voter while all the other ballot are
re-randomizations generated by the Voting server. The list
of indexes associated to the last ballot, i.e. ℓ(β4) is then
represented by (0, 0, 1, 0, 0), that is, ℓ(β4) = 4. If a new
ballot re-randomization is added to the CBR, then the list
of indexes is updated to (0, 0, 1, 0, 0, 0), that is, ℓ(β5) = 8.
Otherwise ℓ(β5) = 9 because the voter generates the last
ballot. Thus, every new ballot re-randomization sets the
value of the list of indexes ℓ(βi) to the twice of the previous
value, i.e. ℓ(βi) = 2 · (ℓ(βi−1)) while a new ballot generated
by the voter sets the new value to ℓ(βi) = 2 · (ℓ(βi−1)) + 1.

If a list of indexes ℓ is encrypted using ElGamal, i.e.,
ctℓ := (c1, c2) = (gr, gℓ ·pkr) then its value can be updated
as outlined above either it is a new ballot re-randomization
or it is a ballot generated by the voter. In the first case, ctℓi :=
(ctℓi−1)

2 = (c1
2, c2

2); in the latter case, ctℓi := (c1
2, g ·c22).

4.4. Formal description of Loki

Figure 2 describes the algorithms defining Loki. The
scheme is organized in the following three phases.

Registration phase: The algorithm Setup(1λ, I,V) →
((pkT , skT), (pkvs, skvs)) allows, respectively, tallying
servers and the Voting server to generate the tallying key pair
(pkT , skT)

3 and the Voting server key pair (pkvs, skvs). The
BB is initialised with the lists of candidates V and eligible
voters I. The registration authority registers the voter id to
the election by running Register(id) → (Lid, (usk, upk)).
It sets ℓv = ℓid = 0 and initialises the CBR list with β0

so that Lid = [id, upk, ct0], where ct0 = (ct0, ctℓ0 , ctℓid , r),
ct0 = Enc(pkT , 0; r) and ctℓ0 = ctℓid = Enc(pkvs, 0; r).
The Voting server finally executes Append(BB, β0)).

Voting phase: The voter encrypts and generates the proof
for their ballots. The Voting server validates the ballots
and appends them to the bulletin board. It also appends
re-randomized ballots, i.e. noise ballots, based on the list

3. The secret key is generated in a distributed way, thus no single
Tallying server learns the key.

of indexes provided in the voter ballot. We use disjunctive
NIZKP to make the ballots generated by the voter indis-
tinguishable from the noise ballots generated by the Voting
server. Our disjunctive NIZKP π proves that (x, ω) ∈ R,
where R = Rid ∨Rpred ∨Rpred2 where Rid, Rpred, and Rpred2 are
defined as in Figure 2. This phase proceeds as follows.
- The Voting server does not receive a ballot from

the voter id. Then, based on the probability dis-
tributions DT and DR, the Voting server computes
Obfuscate(BB, skvs, id) → BB, which appends a ballot
that re-randomizes the last element in Lid at time t. In this
case, the Voting server proves (x, ω) ∈ Rpred and simulates
the other two relations.

- The voter generates a new ballot by
Vote(id, usk, pkT , pkvs, v, ℓv) → β, where
β = (id, upk, ct) and ct = (ctv, ctℓv , ctℓid , π), and sends
it to the Voting server through an authenticated channel.
In this case, the voter’s π proves that (x, ω) ∈ Rid and
simulates the other two relations. The Voting server first
appends ct to BB by Append(BB, β) → BB, and then
it computes Obfuscate(BB, skvs, id), which generates
a ballot β′. If Dec(skvs, ct

ℓv
i−1) = Dec(skvs, ct

ℓid
i−1),

then β′ re-randomizes the vote in β. The Voting server
proves (x, ω) ∈ Rpred and simulates the other two
relations. Otherwise, it re-randomizes the vote encrypted
in the ballot before β, namely, it re-encrypts the vote
in the last re-randomization in Lid. In this case, the
Voting server proves (x, ω) ∈ Rpred2 and simulates the
other two relations. The ballot β′ contains updated and
re-randomized values of both ℓv and ℓid.
The voter runs VerifyVote(BB, upk, usk, β)→ ⊥/⊤ to

check that their ballot is included in the bulletin board.

Tallying phase: the tallying servers take the last ballot
from each CBR, add the corresponding encryption for each
candidate, and decrypt the results with proof of correct-
ness. The tallying servers execute Tally(BB, skT)→(R,Π).
Anyone can verify the result R of tallying by executing
VerifyTally(BB, R,Π), which checks Π w.r.t. BB and R.

5. Ballot privacy

Our ballot privacy definition is based on the game-based
definition by Bernhard et al. [17], [42]. The indistinguisha-
bility game tracks on two bulletin boards, in which only
one bulletin board is available to a probabilistic polynomial
time (PPT) adversary A. The goal of the adversary, who
controls the Voting server and a subset of voters, is to
distinguish whether the given result comes from the bulletin
board accessible to A or not. Therefore, such definition
ensures that one cannot learn anything about the individual
voter’s vote more than one can learn from the election result
alone, which is derived from the public election information
included on the bulletin board.

The ballot privacy experiment ExpBP,b
ES,A(λ, I,V) is de-

scribed in Algorithm 1. The adversary A has access to BBb

and can query the following oracles:

• Setup(1λ, I,V)→ ((pkT , skT), (pkvs, skvs)): on input of the security parameter 1λ, electoral roll I, and candidate
list V computes (pkT , skT)

$←− EKeyGen(1λ) and (pkvs, skvs)
$←− EKeyGen(1λ).

• Register(id)→ (Lid, (usk, upk)): on implicit input (pkT , I,V), and voter identity id ∈ I, do the following.
1) Compute (usk, upk)

$←− SKeyGen(1λ) to create a public and secret key pair (usk, upk) for the voter.
2) Compute ct0

$←− Enc(pkT , 0; r) and ctℓ0
$←− Enc(pkvs, 0; r).

3) Set ctℓid = ctℓ0 to generate the voter initial ballot β0 = (id, upk, ct0) where ct0 = (ct0, ctℓ0 , ctℓid , r). Return
(Lid, (usk, upk)), where Lid = [id, upk, ct0] is the initial CBR list for the registered voter with identity id.

• Vote(id, usk, pkT , pkvs, v, ℓv) → β: on input voter identity id ∈ I, voter secret key usk, the tallier public key
pkT , the Voting server public key pkvs, vote option v ∈ V, list of indexes ℓv ∈ Zp, implicit input (V, I) and Lid

of length i− 1, where cti−1 = (ctvi−1, ct
ℓv
i−1, ct

ℓid
i−1, πi−1) is the last ballot on Lid, do the following.

1) Set cti = (ctℓidi−1)
2.

2) Compute ctv
$←− Enc(pkT , v; r

v) ctℓv
$←− Enc(pkvs, ℓv; r

ℓv) ctℓid
$←− ReEnc(pkvs, g · (cti); rℓid).

3) Run π
$←−DisjProof(x, ω), where x=(Lid, pkT , pkvs,V, (ctv, ctℓv , ctℓid)) and ω=(usk, (rv, v), (ℓv, r

ℓv), rℓid)
s.t.

(x, ω) ∈ Rid
i iff ctv = Enc(pkT , v; r

v) ∧ v ∈ V ∧ ctℓv = Enc(pkvs, ℓv; r
ℓv)∧

ctℓid = ReEnc(pkvs, g · cti; rℓid) ∧ upkid = guskid

where Ri = Rid
i ∨Rpred

i ∨Rpred2
i , i ≥ 1 and ct−1 = ct0.

4) Set ct = (ctv, ctℓv , ctℓid , π). Return the ballot β = (id, upk, ct) as ith ballot of Lid.

• Validate(BB, β) → ⊤/⊥: on input a ballot β = (id, upk, ct), where ct = (ctv, ctℓv , ctℓid , π), and implicit input
(Lid, pkT , pkvs, I,V) checks that i) id ∈ I, ii) β does not already appear in BB, and iii) ⊤ ← Verify(x, π). If any
of the checks fail, it returns ⊥ otherwise ⊤.

• Append(BB, β) → BB: on implicit input t from DT , and on input a ballot β = (id, upk, ct) checks that
Validate(BB, β) = ⊤. If so, it updates BB at time t by extending the voter CBR list Lid with ct.

• VerifyVote(BB, upk, usk, β)→ ⊥/⊤: on input a ballot β = (id, upk, ct), checks that ct is in Lid on BB and that
Validate(BB, β) = ⊤. If any of the checks fail, it returns ⊥ otherwise ⊤.

• Obfuscate(BB, skvs, id)→ β: on input BB, id, and skvs, obtains Lid of length i−1, where βi−1 = (id, upk, cti−1)
is the last ballot on Lid, and cti−1 = (ctvi−1, ct

ℓv
i−1, ct

ℓid
i−1, πi−1). Then, do the following.

1) Set cti = (ctℓidi−1)
2. Compute ctℓv

$←− ReEnc(pkvs, cti; r
ℓv) and ctℓid

$←− ReEnc(pkvs, cti; r
ℓid).

2) If Dec(skvs, ct
ℓv
i−1) = Dec(skvs, ct

ℓid
i−1), then compute ctv

$←− ReEnc(pkT , ct
v
i−1; r

v) and run π
$←−

DisjProof(x, ω), where x = (Lid, pkT , pkvs,V, (ctv, ctℓv , ctℓid)) and ω = (skvs, r
v, rℓv , rℓid) s.t.

(x, ω) ∈ Rpred
i iff ctv = ReEnc(pkT , ct

v
i−1; r

v) ∧ ctℓv = ReEnc(pkvs, cti; r
ℓv)∧

ctℓid = ReEnc(pkvs, cti; r
ℓid) ∧ Dec(skvs, ct

ℓv
i−1) = Dec(skvs, ct

ℓid
i−1)

3) Else compute ctv
$←− ReEnc(pkT , ct

v
i−2; r

v) and run π
$←− DisjProof(x, ω), where x =

(Lid, pkT , pkvs,V, (ctv, ctℓv , ctℓid)) and ω = (skvs, r
v, rℓv , rℓid) s.t.

(x, ω) ∈ Rpred2
i iff ctv = ReEnc(pk, ctvi−2; r

v) ∧ ctℓv = ReEnc(pkvs, cti; r
ℓv)∧

ctℓid = ReEnc(pkvs, cti; r
ℓid) ∧ Dec(skvs, ct

ℓv
i−1) ̸= Dec(skvs, ct

ℓid
i−1)

where Ri = Rid
i ∨Rpred

i ∨Rpred2
i , i ≥ 1 and ct−1 = ct0.

4) Set ct = (ctv, ctℓv , ctℓid , π) and β = (id, upk, ct) and run Append(BB, β)→ BB.

• Tally(BB, skT)→ (R,Π): on input BB and the decryption key skT computes the election result as follows. Let
N be the number of voters, let {ctx}Nx=1 be the encrypted vote of the last ballots from each CBR in BB, and let
ctx = {cti}|V|i=1 where cti denotes the encrypted vote for the candidate vi ∈ V.

1) Compute Ti =
∏N

x=1 ct
i
x. The tally ti for candidate vi is produced by decrypting Ti with the key skT .

2) Compute the result R = (t1, . . . , t|V|) and Π, a Fiat-Shamir proof of correct decryption. Output (R,Π).

• VerifyTally(BB, (R,Π))→ ⊥/⊤: on input BB, the tally result (R,Π), verifies the correctness of (R,Π) on BB.
If any of the checks fails, it returns ⊥ otherwise ⊤.

Figure 2: The algorithms defining Loki

ExpBP,b
ES,A(λ, I,V) :

((pkT , skT), (pkvs, skvs))← Setup(λ, I,V)
Initialize BB0, BB1

b′ ← AO(pkT , I, (pkvs, skvs))
return b′

OvoteLR(id, v0, v1) :
if v0 /∈ V or v1 /∈ V or id /∈ I then return ⊥
βv0 ← Vote(id, pk, uskid, v0, ℓ)
βv1 ← Vote(id, pk, uskid, v1, ℓ)
if Validate(BBb, βvb) = ⊥ then return ⊥
BB0 ← Append(BB0, βv0)
BB1 ← Append(BB1, βv1)

Ocast(βA) :
if Validate(BBb, βA) = ⊥ then return ⊥
BB0 ← Append(BB0, βA)
BB1 ← Append(BB1, βA)

Oboard() :
return BBb

Otally() :
(R,Π0)← Tally(BB0, skT)
Π1 ← SimTally(BB1, R)
return (R,Πb)

Algorithm 1: The ballot privacy experiment
ExpBP,b

ES,A(λ, I,V), in which the adversary A has access
to oracles O = {OvoteLR,Ocast,Oboard,Otally}. The
adversary can call Otally only once.

• OvoteLR, which allows the adversary A to simulate hon-
est voters. The voter id casts a ballot βv0 for the candidate
v0 ∈ V in BB0 and a ballot βv1 for the candidate v1 ∈ V
in BB1 provided that Validate(BBb, βvb) = ⊤, which
verifies the input of the oracle OvoteLR and βvb with
respect to BBb. The ballot βvb is appended to BBb.

• Ocast, which allows the adversary to cast a ballot βA on
behalf of any upki. The ballot βA is appended to both
bulletin boards as long as Validate(BBb, βvb)=⊤.

• Oboard, which allows A to see the public content of a
bulletin board depending on the bit b in the experiment.

• Otally, which allows the adversary to see the voting result
R and the proof of correct tallying Πb over the last votes
at the end of the voting phase. The result R is returned
by tallying BB0 in both experiments, and the proof is
simulated when b = 1. The adversary can call the oracle
Otally only once.

The adversary A outputs a guess b′ at the end of the game.
We say that the adversary wins the game if b′ = b.

Definition 1. Ballot privacy. Let ES = (Setup, Register,
Vote, Validate, Append, VerifyVote, Obfuscate, Tally,
VerifyTally) be an election scheme for a candidate list V,
and security parameter λ. We say that ES meets ballot
privacy if there exists a simulation algorithm SimTally such

that for any PPT adversaries A:

|Pr[ExpBP,0
ES,A(λ, I,V) = 1]− Pr[ExpBP,1

ES,A(λ, I,V) = 1]|

is a negligible function in the security parameter λ.

5.1. Loki satisfies ballot privacy

In Loki, the (dishonest) Voting server generates noise
ballots by re-randomizing the honest voter’s ballots. Infor-
mally, a voting system is susceptible of replay attacks if
it allows an adversary to copy a legitimate voter’s ballot
from the bulletin board and then can submit the ballot as
the adversary’s own. This results in a violation of ballot
privacy. Loki is designed to prevent manipulation of the
data beyond re-randomization of the voter’s ballot by the
adversary (Voting server). Since Loki’s ballot encryption
scheme consists of ElGamal encryption and NIZKP, which
can only be malleable for randomization (by Voting server
as an adversary), we can prove ballot privacy by showing
that Loki is IND-RCCA secure.

Theorem 1. Loki achieves ballot privacy if the underlying
ballot encryption scheme is IND-RCCA secure.

Proof: We define a sequence of games to show that
our scheme provides ballot privacy. In these games, the
adversary A interacts with a challenger in the ballot privacy
experiment, starting with b = 0 and ending up with b = 1.
Each game has a bulletin board in which the adversary
can see the ballots. The ballots on the bulletin board are
generated by OvoteLR and Ocast. The Voting server (i.e.,
the adversary) can generate noise ballots for the voter CBR
list using Oboard to get the voter ballots from BB, then re-
randomizing them using skvs, and finally casting the noise
ballots via Ocast. The result is calculated on the last ballots
by Otally. The OvoteLR simulates the potential vote of an
honest voter in our scheme. We show that the advantage
of the adversary A in distinguishing the transition over the
sequence of games is negligible in the security parameter.

Let (upki, (v0i , β
0
i), (v

1
i , β

1
i)) be the last query and out-

put of the oracle OvoteLR(i, v0i , v
1
i) for each voter with

identity i, where βb
i ← Vote(i, pk, uski, vb, ℓ) is the en-

crypted ballot (or the noise ballot of an encrypted ballot)
corresponding to the vote vbi in the bulletin board BBb

(b = 0, 1). For each Ocast query, we have β0
i = β1

i with
respect to v0i = v1i . Recall that in our scheme, we use
NIZKP for the ballot and the tally proofs. These proofs can
be simulated under the programmable random oracle.
Game G1. Let G1 be the game corresponding to
ExpBP,b

ES,A(λ, I,V) for b = 0. In this case, A sees BB0 where
the output of the oracle Otally() is computed on BB0.
Game G2. Let G2 be the same as G1, except that all
proofs made by honest parties are simulated. In this game,
the output of tally proof Π0 in G1 is also simulated by
SimTally(BB0, R). If the adversary A can distinguish this
game from G1 then we can use A to construct an adversary
that breaks the zero-knowledge property of the proof system.

In the following games, we make incremental changes
to replace ballots not cast by the adversary A in the bulletin
board BB0 with the corresponding ballots in BB1.
Game G3. Let G3 = {Gi

2}ni=1 be a sequence of games, with
n being the number of the last ballots cast by OvoteLR in
BB0 and BB1. Let G1

2 be the same game as the G2 with
the only difference that the last ballot β1

1 , instead of β0
1 ,

is placed in BB0 for upk1. For i > 1, Gi
2 is the same

game as Gi−1
2 except that β1

i , instead of β0
i , is now placed

in BB0. We prove that the advantage of A to distinguish
these sequence of the games, namely, G1

2, G
2
2, . . . , G

n
2 is

negligible. We reduce the advantage of an adversary B
against IND-RCCA to the advantage of the adversary A
in distinguishing Gi

2 and Gi−1
2 . The IND-RCCA is essen-

tially the same as IND-CCA2, with one key difference:
the decryption oracle returns ⊤ whenever it is queried to
decrypt any ciphertext that decrypts to m ∈ {m0,m1},
where {m0,m1} is the challenge plaintext. In the IND-
RCCA game, it is not advantageous for the adversary to
generate new ciphertexts that can decrypt to the plaintext of
the challenge ciphertext. Let B be the adversary who is given
the challenge ciphertext ct∗ corresponding to (v0i , v

1
i) in the

IND-RCCA security reduction game. The adversary B in
the reduction game returns βi = (i, upk, ct) as a last ballot
for upki, such that ct = (ct∗, ctℓ, ctℓid , π). In our ballot
privacy game, the challenger decrypts the ballots returned
by Ocast, where the adversary can generate a ballot on
behalf of a corrupted voter upkj ̸= upki or can re-randomize
the honest voter’s ballot. The corrupted voters’ ballots may
contain the encryption of challenge (v0i , v

1
i). The decryption

oracle in the security reduction game will return ⊤ for these
ciphertexts. To solve this problem, the adversary B modifies
the ciphertext of ballot with upkj ̸= upki as follows: Let
ct = (c1, c2) be the adversary’s ciphertext ct ∈ (j, upk, ctj)
where j ̸= i. The adversary B modifies ct to the ciphertext
ct′ = (c1, c2 · pk

H(upkj)
T) and forwards ct′ to the IND-

RCCA decryption oracle, which returns vi · pk
H(upkj)
T . The

adversary B then extracts and returns vi as a result of
decryption in the ballot privacy game to the adversary A.
Note that in the reduction phase, the ciphertext of a ballot
cast by A that contains upki is forwarded to the decryption
oracle. If the decryption oracle returns ⊥, the adversary B
response with v0.

The adversary B simulates a distinguishing game be-
tween Gi−1

2 and Gi
2 for the adversary A as follows:

• Answer the query of OvoteLR(j, v0j , v
1
j) by simulating

the right vote of the query, namely, (j, v1j), for the voter
upkj where j < i, until the ballots of upki−1 have been
generated.

• Generate a ballot for upki which is an answer to the query
to OvoteLR(i, v0, v1), using the IND-RCCA challenge
oracle on (v0i , v

1
i). Let ct∗ be the challenge ciphertext cor-

responding to (v0i , v
1
i) in the IND-RCCA security game.

The adversary B returns βi = (i, upk, ct) as a last ballot
for upki, such that ct = (ct∗, ctℓ, ctℓid , π)

• Continue simulating the game for the voter upkj where
j > i and use (j, v0j) as the vote of upkj from now on.

• Tally all honest (simulated) ballots including the ballot
with ct∗ based on the left votes of OvoteLR(i, v0, v1).
The votes of the ballots returned byOcast (the adversary’s
ballot) in the tally phase are counted by querying the
decryption oracle on the adversary’s vote ciphertexts.
All adversary’s votes together with the honest left votes
generate the tally result (R,Π), where the tally proof Π
is simulated as in G2.

• Send A’s guess bit b to the IND-RCCA challenger.
In the IND-RCCA security game, if the challenger chose
b = 0 (i.e., the challenge ciphertext ct∗ ∈ βi corresponds
to v0), then B perfectly simulates Gi−1

2 for A. If b = 1,
then it simulates Gi

2. The NIZKP protocol ensures that the
adversary A cannot manipulate the ballot βi beyond re-
randomization due to its knowledge soundness. Furthermore,
the soundness of the NIZKP does not allow A to create a
valid proof for a ballot containing the re-randomized ct∗

with upkj ̸= upki. Hence, the adversary B breaks the
IND-RCCA security game with the same advantage as the
adversary A distinguishes the games Gi

2 and Gi−1
2 .

Game G4. Let G4 be the last game in G3, namely, Gn
2 in

which the view of the adversary A of the bulletin board
BB0 is switched with BB1. The advantage of the adversary
A in distinguishing the sequence of these games is equal
to the advantage of the adversary B in the IND-RCCA
security game. The game G4 is equal to ExpBP,1 except
that all ballot proofs of honest voters are generated by a
zero-knowledge simulator. Thus, the game G4 and ExpBP,1

are indistinguishable due to the zero-knowledge property.
Since our ballot encryption scheme, consisting of ElGamal
encryption plus disjunctive NIZKP construction, is only
malleable for re-randomization by the adversary, then the
scheme is IND-RCCA secure. Therefore,

|Pr[ExpBP,0
ES,A(λ, I,V) = 1]− Pr[ExpBP,1

ES,A(λ, I,V) = 1]|

is negligible in the security parameter λ.
In Appendix A we show that Loki satisfies strong-

consistency and strong-correctness.

6. Verifiability

We use the verifiability definition introduced in Cortier
et al. [18] to prove that Loki achieves verifiability with
an honest registration authority and dishonest Voting server
and tally servers. This is known as strong verifiability [18].
Therefore, we assume that the registration authority and the
voting device are trusted, the honest voter secret key is not
leaked to the adversary, and that the adversary can corrupt
a subset of voters. According to [18], a voting scheme
with |C| corrupted voters is called strongly verifiable if the
election result reflects the votes of 1) all honest voters who
checked their votes, which appear on the bulletin board; 2)
at most the |C| voters who are controlled by the adversary;
3) the voters who have not checked their ballots.

Let I be a list of the identity of the voters and
U be a list of the voter secret and public informa-
tion. To model strong verifiability, we apply the exper-
iment Expver

ES,A [18] as depicted in Algorithm 2. Let

C = {(idc1, vc1, ∗), (idc2, vc2, ∗), . . . , (idcnc
, vcnc

, ∗)} be the
votes of the voters who did not cast a valid ballot af-
ter being corrupted. The votes of the honest voters who
have checked their ballots on the bulletin board is denoted
by H = {(upkh1 , vh1 , ∗), (upkh2 , vh2 , ∗), . . . , (upkhn, vhn, ∗)}.
The tuples (idh, vh, ∗), denotes the last votes of the
voter id ∈ U. If the voter has submitted multiple
votes and checked all of them, we only include in H
the last vote checked by the voter. The honest voters
who never have checked their ballots are denoted by
H ′ = {(upkh′

1 , vh
′

1 , ∗), (upkh′

2 , vh
′

2 , ∗), . . . , (upkh′

n , vh
′

n , ∗)}.
The adversary A has access to the oracles outlined below,
which are part of Expver

ES,A as in Algorithm 2.
• Oregister(id), which allows the adversary to get a list of

registered voters. It generates (id, usk, upk, β0), returns
(id, upk, β0), and updates U ∪ (id, upk, usk, β0).

• Ocorrupt(id), which allows the adversary to obtain
(id, usk, upk) given a registered voter id. It checks
that id ∈ I, then returns (id, usk, upk) and updates
C ∪ (id, usk, upk).

• Ovote(id, v), which generate a ballot β. If id ∈ C or
id /∈ U or v /∈ V, then it returns 0, otherwise it returns
β ← Vote(id, uskid, pkT , pkvs, v, ℓ). It then replaces any
previous tuple (id, v′, β′) ∈ H ∪H ′ with β and v so that
(id, v, β) ∈ H ∪H ′.

Definition 2. Verifiability. Let ES = (Setup, Register,
Vote, Validate, Append, VerifyVote, Obfuscate, Tally,
VerifyTally) be an election scheme for an electoral roll I,
candidate list V, and security parameter λ. We say that ES
is verifiable if the advantage of any PPT adversary A such
that Pr[Expver

ES,A(λ, I,V) = 1] is negligible in the security
parameter λ.

6.1. Loki satisfies strong verifiability

In Loki, the Voting server generates re-randomized bal-
lots from the ballot cast by the voter. Given that the i) reg-
istration authority is honest, ii) the discrete logarithm prob-
lem assumption holds, and iii) the knowledge-soundness of
NIZKP, the re-randomization of the voter’s ballot does not
change the voter’s vote. Thus, the voting server can only
generate new copies of the ballots that have been cast by the
voter. Loki provides partial homomorphic tallying hence the
total number of votes cast for a candidate can be calculated
by adding the decrypting results of BB1 to BB2 disjointly,
such that BB = BB1 ∪ BB2. Moreover, for each BBi the
tallying phase generates a proof of correctness of tallying.

Theorem 2. Loki is strongly verifiable under the hardness
of Discrete Logarithm Problem (DLP) in the random oracle
model.

Proof: Let the adversary A output a set of votes, the
result R and the corresponding proof Π at the tally phase.
The last ballots from the voter CBRs form a set i.e.,
T = {β1, β2, . . . , βn}. The set of the last ballots T , the
result R, and the proof Π of valid decryption are published
on the BB. The homomorphic property of ElGamal and the

Expver
ES,A(λ, I,V) :

((pkT , skT), (pkvs, skvs))← Setup(λ, I,V)
(BB, R,Π)← AO(skvs, skT)
if VerifyTally(BB, (R,Π)) = ⊥ then return ⊥
if R = ⊥ then return ⊥
H = {(upkhi , vhi , ∗)}

nh
i=1 and H ′ = {(upkh′

i , vh
′

i , ∗)}nh′
i=1

if ∃{vci }
nc
i=1 such that 0 ≤ nc ≤ |C|,

∃{(upkh′

i , vh
′

i , ∗)}ti=1 ⊆ H ′ such that
R = ρ({vhi }

nh
i=1) + ρ({vci }

nc
i=1) + ρ({vh′

i }ti=1) then
return ⊥

else
return ⊤

end if

Oregister(id) :
if id /∈ U then

(β0, (uskid, upkid))← Register(id)
U← U ∪ (Lid, (uskid, upkid))
return (id, upk, β0)

else
return ⊥

end if

Ocorrupt(id) :
if id ∈ I and id /∈ H ∪H ′ then

return C = C ∪ (id, upk, usk)
else

return ⊥
end if
Ovote(id, v) :
if id ∈ C or id /∈ U or v /∈ V then return ⊥
β ← Vote(id, uskid, pkT , pkvs, v, ℓ)
H ∪H ′ ← Update(H ∪H ′, (upkid, v, β))

Algorithm 2: The verifiability experiment
Expver

ES,A(λ, I,V), in which the adversary A has access
to the oracles O = {Oregister,Ocorrupt,Ovote}.

soundness of proof Π verifies that the result R is obtained
from the correct decryption of ΠT

i=1ct
v
i where ctvi ∈ βi. We

can conclude that VerifyTally(R,Π) only returns ⊤, when
R is the correct result of T = {β1, β2, . . . , βn} on BB.

Let βi ∈ T be the last ballot of Li such that
βi = (i, upk, cti) where cti = (ctvi , ct

ℓv
i , ctℓidi , πi) and

Validate(BB, βi) = ⊤. We now prove that the ballot βi

is the re-randomized ballot of one of the following sets:

• H = {(upkh1 , vh1 , ∗), (upkh2 , vh2 , ∗), . . . , (upkhnh
, vhnh

, ∗)}
the last votes of the honest voters who have checked their
ballots.

• H ′ = {(upkh′

1 , vh
′

1 , ∗), (upkh′

2 , vh
′

2 , ∗), . . . , (upkh′

m , vh
′

m , ∗)}
the votes of the honest voters who have not checked
their ballots.

• C = {(upkc1, vc1, ∗), (upkc2, vc2, ∗), . . . , (upkcnc
, vcnc

, ∗)}
the last votes of the corrupted voters.

The knowledge soundness of the proof πi on the ballot βi

ensures that βi is generated by the voter or the Voting server.

Since the Voting server is only allowed to re-randomize the
ballot cast by the voter, and the secret key of the voter is
needed for generating a new encrypted vote, βi must contain
either the vote of an honest voter in H or H ′, or a vote of a
corrupted voter in C. In Loki, the registration ballot contains
a null vote, which is generated by the registration authority.
Hence, βi can be a null vote if a voter does not cast a vote
or check their ballot.

Let the ballot βi be the last ballot of the voter i in
the CBR Li. Let us assume that voter i voted only once
with a list of indexes ℓv and checked their ballot with the
function VerifyVote. Since generating a ballot requires the
voter’s secret key usk, then βi must be the re-randomization
of the voter (checked) ballot. The Voting server can re-
randomize the voter’s ballot based on the lists of indexes
in ctℓv and ctℓid . It provides a proof πi on βi which ensures
that βi has been generated by re-randomizing the voter’s
ballot if ℓv = ℓid or the second-last ballot of the CBR Li

otherwise. The knowledge soundness of the disjoint proof
πi ensures that βi is the re-randomization of the voter’s
last ballot even in the case that the voter voted multiple
times with valid lists of indexes and then checked their
ballots. Furthermore, the Voting server cannot manipulate
the voter’s vote by re-randomizing any ballot of Li as πi

guarantees that the Voting server re-randomized either the
last ballot of Li or the second-last ballot of Li. Assuming a
trusted registration authority, the hardness of DLP, and the
knowledge soundness of NIZKP, the adversary A cannot
generate a new ballot for honest voters in Loki and cannot
corrupt more voters than |C|. The adversary A cannot drop
the ballots that have been checked by honest voters without
being noticed otherwise A wins the game. The adversary A
cannot re-randomize any ballot in Li rather than the ballots
cast by voters with valid lists of indexes. This proves that the
result R output by Tally(BB, skT) corresponds to the result
of the tally function ρ computed on all last votes by honest
voters who checked their ballots, by at most |C| votes cast
by corrupted voters, and by a subset of votes cast by honest
voters who did not check their ballots.

The registration ballot that initialises the voter CBR
list is also verifiable. Let Lid = [id, upk, ct0] be the ini-
tial CBR list for the voter with identity id, where ct0 =
(ct0, ctℓ0 , ctℓid , r). Anyone can verify that the ballot cipher-
text (ct0, ctℓ0 , ctℓid) using the encryption randomness r.

7. Coercion resistance

Our coercion-resistance definition is inspired by the
receipt-free definition in Bernhard et al. [17]. As in former
coercion-resistance definitions, we assume that the adversary
is not monitoring the interactions of voters while they are not
coerced. We assume that Voting server, bulletin board, and
tally servers are trusted for coercion resistance. To model
coercion resistance, we define the experiment ExpCR,b

ES,A as
depicted in Algorithm 3, for a bit b, and election system ES
and a PPT adversary A using four oracles.
OvoteLR allows a voter id to cast a ballot βv for can-

didate v ∈ V on BB0. The function Append adds the ballot

ExpCR,b
ES,A(λ, I,V) :

((pkT , skT), (pkvs, skvs))← Setup(λ, I,V)
Initialize BB0, BB1

{((upkid, uskid), Lid)← Register(id)}id∈I
{BB0 ← Append(BB0, Lid)}id∈I
{BB1 ← Append(BB1, Lid)}id∈I
(upkj , vA)←
A({(upkid, Lid)}id∈I, pkT , pkvs, {uskid}id∈C)
if vA /∈ V or upkj /∈ {upkid}id∈I or
upkj ∈ {upkid}id∈C then

return ⊥
else

b′ ← AO({(upkid)}id∈I, pkT , pkvs, uskj , {uskid}id∈C)
end if
return b′

OvoteLR(id, v) :
if v /∈ V or (upkid, Lid) /∈ {(upkid, Lid)}id∈I then
return ⊥
βv ← Vote(id, uskid, pkT , pkvs, v, ℓ)
β ← Obfuscate(BB1, skvs, id)
BB0 ← Append(BB0, βv)
BB1 ← Append(BB1, β)
BB0 ← Append(BB0,Obfuscate(BB0, skvs, id))
BB1 ← Append(BB1,Obfuscate(BB1, skvs, id))

Ocast(id, βA) :
if Validate(BB0, βA) = ⊥ then return ⊥
if Validate(BB1, βA) = ⊥ then return ⊥
if id ∈ C then

β′ ← Obfuscate(Append(BB0, βA), skvs, id)
else

β′ ← Obfuscate(BB0, skvs, id)
end if
BB0 ← Append(Append(BB0, βA), β

′)
BB1 ← Append(BB1, βA)
BB1 ← Append(BB1,Obfuscate(BB1, skvs, id))

Oboard() :
return BBb

Otally() :
(R,Π0)← Tally(BB0, skT)
Π1 ← SimTally(BB1, R)
return (R,Πb)

Algorithm 3: The coercion resistance experiment
ExpCR,b

ES,A(λ, I,V), in which the adversary A has access
to the oracles O = {OvoteLR,Ocast,Oboard,Otally}.
Otally is called only once by A, at the end of voting.

βv to BB0. Assuming a coerced voter, the oracle OvoteLR
ensures deniable vote updating using the function Vote on
BB0 and Obfuscate on BB1. The ballot βv submitted by
the coerced voter is appended to BB0 as a new ballot, while
the obfuscated ballot β is appended to BB1. The function
Obfuscate generates noise ballots on both bulletin boards to

ensure deniable vote updating.

Ocast allows the adversary to cast a ballot βA on behalf
of a voter id. The ballot βA is appended to both bulletin
boards followed by noise ballots generated by the function
Obfuscate. The latter, based on its input, adds a new noise
ballot to each of the bulletin boards. Thus, considering the
coerced voter upkj , Ocast models the situation in which the
voter upkj evades coercion on BB0 (i.e., the noise ballot on
BB0 is not related to βA), versus the situation in which
the voter follows the instructions of the coercer (i.e., the
noise ballot on BB1 is related to βA). The adversary A can
generate a ballot βA = Vote(j, pkT , pkvs, uskj , vA, ℓA) for
a candidate vA ∈ V using the secret information uskj of
the coerced voter. Oboard allows the adversary to see BBb.
Otally allows the adversary to see the result R and proof Πb.
The result R is returned by tallying the last ballots on BB0

in both experiments, and the proof is simulated by SimTally
when b = 1. The key differences between our coercion-
resistance definition and the receipt-freeness one in [17] is
reflected by the Ocast and OReceipt oracles. In our Ocast,
the adversary generates the ballot, hence the voter does not
know the candidate chosen by the adversary. Conversely,
OReceipt in [17] requires the adversary to tell the voter the
name of the candidate the voter has to provide a receipt
for, hence the voter both generates and casts the ballot for
the adversary. Moreover, our definition allows the adversary
to force the voter to cast the adversary’s ballot at the last
minute of the election. In [17] this is impossible as the voter
has to nullify the adversary ballot in advance.

We now define an indistinguishability game between the
adversary A and the voter. The game tracks both bulletin
boards BB0 and BB1. BB0 contains the ballots of all voters
who have not been coerced as well as the ballots of voters
who successfully resisted coercion, i.e. voters who either
revoted before or after being coerced in a deniable way. BB1

instead contains the ballots of voters who submitted to the
coercer, i.e. voters who neither voted nor revoted after being
coerced. Each bulletin board also contains the ballots that
were cast by corrupted voters (id ∈ C) on behalf of A. The
adversary A has only access to one of these bulletin boards,
based on the bit b of the experiment. Both bulletin boards
contain the same number of ballots regardless of the value
of bit b. The result of the election is always computed on the
bulletin board BB0. The adversary A has also access to all
oracles while trying to guess b with which the experiment
was initialized. To this end, the adversary outputs a bit b′

and wins the game if b′ = b.

Definition 3. Coercion resistance. Let ES = (Setup,
Register, Vote, Validate, Append, VerifyVote, Obfuscate,
Tally, VerifyTally) be an election scheme for an electoral
roll I, candidate list V, and security parameter λ. We say
that ES is coercion resistant if there exists an algorithm
SimTally such that for any PPT adversaries A:

|Pr[ExpCR,0
ES,A(λ, I,V)=1]−Pr[ExpCR,1

ES,A(λ, I,V)=1]|

be a negligible function neg(λ) in the security param. λ.

7.1. Loki satisfies coercion resistance

Coercion resistance means that a coercer should not be
able to determine the behavior of the coerced voter, that is,
the coercer cannot tell whether a coerced voter submitted
to coercion for the given result of the election. In Loki, a
coercer should not be able to determine from the election
result whether a list of indexes ℓv provided by the voter is
valid or invalid. Furthermore, a coercer should not be able
to determine whether a registered voter voted or abstained
from voting in the voting phase.

Theorem 3. Loki provides coercion resistance under the
DDH assumption in the random oracle model.

Proof: Similarly to the proof of ballot privacy, we define
a sequence of games to show that Loki provides coercion
resistance. As in the ballot privacy proof, the result R
is computed on BB0 and SimTally(BBb, R) simulates the
proof of correct decryption in tally. In Loki, the situation
in which the voter evades last-minute coercion versus the
situation in which they do not, is captured by the list of
indexes ℓv. The adversary A generates a ballot βvA , which
is cast by the coerced voter, where βvA = (j, upk, ctj)
and ctj = (ctvA , ctℓvA , ctℓid , πj). The Voting server re-
randomizes the last-second ballot of the coerced voter
upkj if Dec(skvs, ct

ℓv) ̸= Dec(skvs, ct
ℓid) by executing

Obfuscate(BB, skvs, id) (defined in Section 4.4), which
generates noise ballots based on the voter ballot. Based
on the probability distributions DT and DR, the noise
ballots are appended on BB by the function Append. This
is captured in ExpCR,0

ES,A by the oracle Ocast. The case
of last-minute coercion is captured by calling the oracles
OvoteLR and Ocast respectively, while the case of coercion
then revoting is captured by calling the oracles Ocast and
OvoteLR respectively. Deniable vote updating is captured
in Loki by OvoteLR. The oracle OvoteLR appends the
voter ballot βv on BB0 and a noise ballot generated by
Obfuscate(BB1, skvs, j) on BB1.

Game G1. This game is similar to an election run in which
the voter upkj evades the coercion and provides an invalid
list of indexes to the adversary such that ℓvA ̸= ℓid, or
the voter revotes despite being instructed by the coercer to
abstain from revoting. This is equivalent to ExpCR,b

ES,A with
b = 0. Hence, the content of the bulletin board in this game,
which is the view of the adversary A in G1, is equal to BB0.
The tally result is equal to (R,Π0), which is the output of
Otally of the experiment ExpCR,0

ES,A. The coerced voter upkj
can evade coercion in the following cases.
• Last-minute coercion: the coerced voter upkj casts the

ballot βv before the adversary’s ballot βvA for a candi-
date vA, which is cast as a last-minute ballot. In this
case, the CBR contains the initial ballot β0 and the
ballots generated by calling the oracles OvoteLR(j, v)
and Ocast(j, βvA) respectively based on the probability
distributions DT and DR. Thus, the last ballot of the
coerced voter’s CBR is a randomized form of βv and βvA ,
respectively on BB0 and BB1. Note that the adversary

can call OvoteLR several times to cast new votes or to
generate a re-randomized ballot for βv with vote v.
For instance, let us assume that the voter does not change
their vote v. The bulletin board BB0 contains Lj such
that Lj = [j, upk, ct0, ctv, ct

r2
v , . . . , ct

rk
v , ctvA , ct

rk+1

v].
Let ct

ri
v denote the re-randomized ballot for the ballot

βv = (id, upk, ctv). In Loki, the noise ballot is generated
by Obfuscate based on the probability distributions DT
and DR. Similarly, the content of Lj on the BB1 is
Lj = [j, upk, ct0, ct

r1
0 , . . . , ct

rk
0 , ctvA , c

rk+1
vA].

• Coercion then revoting: the voter upkj casts the ballot
βv after the adversary’s ballot βvA . In this case, the
CBR contains the the adversary’s ballot βvA followed
by the noise ballots generated by Obfuscate and the
voter ballot βv. This is captured in ExpCR,0

ES,A by
calling the oracles Ocast(j, βvA) and OvoteLR(j, v)
respectively. For instance, the content of Lj on the BB0

is Lj = [j, upk, ct0, ctvA , ct
r1
0 , . . . , ct

rk−1

0 , ctv, ct
rk+1

v]
while the content of Lj on BB1 is
Lj=[j, upk, ct0, ctvA , ct

r1
vA , . . . , ct

rk−1

vA , ct
rk
vA , ct

rk+1

vA].

Game G2. This game is equal to G1, but with all the zero-
knowledge proofs in the ballots and tally being replaced by
simulations. The output of the tally proof Π0 in the game G1

is replaced by the output of SimTally(BB0, R). The games
G1 and G2 are indistinguishable because the proof has
the zero-knowledge property and can be indistinguishably
simulated using the programmable random oracle. Hence,
A has negligible advantage to distinguish G2 from G1.

In the following games, for each voter upki, we will
replace step by step all last ballots on the BB0, which rely
on b = 0, with the corresponding last ballots on the BB1.
Given a tuple (upki, β

0
i , β

1
i , v

0
i , v

1
i) where β0

i ∈ (BB0, upki)
and β1

i ∈ (BB1, upki), β0
i and β1

i are swapped if β0
i ̸= β1

i .
Therefore, the output ballots of the oracles OvoteLR and
Ocast are swapped except for the adversary ballot βvA . In
particular, we show the advantage of A through these tran-
sitions. For instance, the last randomized ballot of the voter
upkj , ctrk+1

v on BB0 is replaced with the randomization of
βvA , i.e. ctrk+1

vA , in the last-minute coercion case.
In the following game, we prove the indistinguishability

between games that only replace the last vote ciphertext
of upkj on BB0 with the corresponding vote ciphertext on
BB1, which can be generalised to any (last) ballot on BB0.

Game G3. This game is as G2, but the last output for the
voter upkj of Ocast in the last-minute coercion case, resp.,
OvoteLR in the coercion-then-revoting case, are swapped.
In the last-minute coercion case, the last ballot in the CBR
list Lj on BB0 is swapped with the last ballot in Lj on
BB1. In the coercion-then-revoting case, the vote ciphertext
ctv ∈ ct

rk+1

v in Lj , which is the re-randomized form of the
ballot generated by Vote(j, uskj , pkT , pkvs, v, ℓ) on BB0, is
swapped with the vote ciphertext ctrk+1

vA ∈ ct
rk+1

vA , which is
generated by Obfuscate on BB1.

Assuming that the Voting server is trusted, the ballot
encryption scheme based on ElGamal and NIZKP, is NM-
CPA secure under the DDH assumption in the random oracle

model [42]. NM-CPA is the same as IND-CCA2 but the ad-
versary cannot query the decryption oracle adaptively [40].
We prove that the adversary A has a negligible advantage in
distinguishing G2 and G3 in terms of the security parameter.

We provide a reduction to show that the advantage of
an adversary A′ against the NM-CPA security game can be
reduced to the advantage of the adversary A against distin-
guishing between G2 and G3. In Loki, β = (id, upk, ct)
where ct = (ctv, ctℓv , ctℓid , π). The ciphertext ctv is an
encryption of vote v with public key pkT , ctℓv and ctℓid are
the encryption of the lists of indexes with the public key
pkvs. We provide a reduction on ctv, which can also be ex-
tended to ctℓv and ctℓid . Let ct∗ be the challenge ciphertext
given to the adversary A′ with encryption public key pkT
related to votes {v, vA} in the NM-CPA security game. The
adversary A′ simulates G2 and G3 for the adversary A. It
returns β = (ct∗, ctℓv , ctℓid , π) as the last ballot for the voter
upkj in the query phase. Since the result R is only derived
from BB0, A′ can obtain the votes related to the adversary-
determined ballots using the decryption oracle of the NM-
CPA challenger. Then, the adversary A′ computes the tally
result where v is a vote of upkj and simulates the proof as
G2. Indeed, the adversary A′ simulates G2 if the challenge
ciphertext ct∗ is an encryption of v, otherwise it simulates
G3. A′ returns the bit bA′ as a result against the NM-CPA
security game based on the the output of the adversary A.
It follows that the adversarial advantage in distinguishing
G2 from G3 is at most equal to the adversarial advantage
against the NM-CPA security game, which is negligible in
security parameter λ.

Game G4. This game contains a sequence of the games
{Gi

4}ni=1 that swaps the last ballots of other voters on BB0,
namely, the set of voters {upki}ni=1 such that i ∈ I and
i ̸= j. For instance, G1

4 is equal to G3 but the last ballot of
the voter upk1 on the BB0 is replaced with the last ballot
of the same voter upk1 on BB1. At the end of Gn

4 , we have
replaced the view of the adversary A over the last ballots
from BB0, in the experiment ExpCR,0

ES,A and game G1, into
BB1, in the experiment ExpCR,1

ES,A. The advantage of the
adversary A in distinguishing between through the transition
over these games is negligible in security parameter λ as we
proved earlier. This can be generalized to any ballot on BB0,
including the ballots in the voters’ CBR. In this case, the
adversary’s view of G1, which is equal to ExpCR,0, can be
transferred to the to ExpCR,1 with BB1.

We have now proved that the advantage of A through
these games is neg(λ). Note that if the coerced voter gives
the adversary an ℓ ≥ 2n, where n is the total number
of ballots in the coerced CBR, the adversary can trivially
determine that ℓ is not valid. However, if the given ℓ
is smaller than 2n, the adversary cannot tell whether the
coercion attempt was successful or not. It can only guess all
the possible valid indexes from the knowledge of the number
of ballots in the CBR but cannot distinguish whether the last
ballot on the coerced CBR corresponds to the coerced vote.
This is because each ballot cast by a voter (possibly under
coercion) is always followed by a number of noise ballots

on the CBR, according to the distributions DR and DT .

TABLE 2: Performance of Loki.

nr. of candidates 2 4 16
Ballot 6.407ms 12.081ms 78.109ms

generation
Ballot 6.517ms 12.006ms 78.350ms

obfuscation
Ballot 0.529ms 0.596ms 5.618ms

verification

Tally
computation 1ms 5ms 16ms
(10 voters)

Tally
verification 0.7ms 3ms 12ms
(10 voters)

Tally
computation 0.3s 0.4s 1s

(10000 voters)
Tally

verification 0.1s 0.2s 0.8ms
(10000 voters)

Tally
computation 30s 44s 1.6min

(1000000 voters)
Tally

verification 10s 20s 1.3min
(1000000 voters)

8. Performance

We implement a prototype of Loki in Python [43] using
the zksk library [44] for the implementation of the disjunc-
tive zero-knowledge proofs. We empirically show that the
code implementing the key functions of Loki has a minimal
impact on the overall performance of the voting system.

We run our experiments in a 2023 MacBook Pro laptop
on an M2 Pro processor with 16GB of RAM. Table 2 shows
the results of the average time to run ballot generation, ob-
fuscation, and verification in Loki. It also shows the average
time to tally the result as well as its verification time. Ballot
generation and obfuscation for 2 candidates require less than
10ms, while ballot verification, tallying, and verification of
the election result require less than 1ms. Even considering
64 candidates, both ballot generation and obfuscation can
be computed under 1s, while ballot verification takes less
than 200ms.

The time required for re-randomizing a ballot is close
to that required for ballot generation. Both of them are not
affected by the number of voters, which only affects the
cost of tallying. Although our prototype implementation is
written in Python, the Voting server can efficiently populate
a voter CBR with periodic re-randomization of ballots. The
performance of Loki with respect to voters and noise ballots
only affects the capacity of the Voting server. With a large
number of voters, the Voting server can be distributed into
several servers, each of them responsible for a subset of

voters’ CBR. Differently from the other schemes, tallying
complexity is linear to the number of the voters. It is not
affected by the number of noise ballots because tallying
is performed to only the last ballot of each CBR. Better
performance can be achieved by using Baby-Step-Giant-
Step to speed up the tallying and by implementing Loki
in a more efficient language such as C++ or Rust.

9. Conclusion

In this paper we propose the first technique for deniable
vote updating that can also evade last-minute voter coer-
cion, which is normally ruled out by state-of-the-art voting
schemes that support revoting. Our technique relies on two
key insights. The first one is the introduction of a list of
voters’ votes (the CBR) which includes their obfuscations.
This approach is similar to introducing dummy ballots as
suggested, for example, in KTV-Helios [45] or VoteAgain
[7]. However, our technique does not necessarly need a
filtering phase removing dummy ballots as we show in
Loki, therefore tallying can be very efficient. The second
insight of our technique is the use of lists of indexes, which
allows the Voting server to distinguish a coerced from an
uncoerced ballot. Our approach takes advantage of the fact
that unbeknownst to the coercer, Voting server and voter
share the knowledge about which of the votes posted to the
CBR on the bulletin board were intended, re-randomized, or
coerced. Since by construction, this information is hidden
from the coercer, our technique provides the voter with a
mechanism to resist a coercer’s attempt to force the voter
to submit a ballot on his behalf or to abstain from voting.
A successful brute-force attack against a voter CBR would
require that the coercer casts several incorrect ballots. While
this is doable in principle, it is noticeable to the Voting
server, which can eventually refuse to add ballots at all and
block such an attack. Unless the coercer has given different
instructions to the voter, the latter just tells the coercer that
they have not voted yet. Even if the coercer instructs the
voter to vote at certain times, the coercer’s chances of guess-
ing the correct indexes are small because the probability
distribution determining the time to add the ballots to the
bulletin board is chosen by the Voting server and not by the
voter. In conclusion, our technique and its implementation
in Loki show that fake-credential and deniable vote updating
approaches are not mutually exclusive and can be combined
to achieve flexible vote updating.

References

[1] R. Canetti, H. Krawczyk, and J. B. Nielsen, “Relaxing chosen-
ciphertext security,” in Advances in Cryptology-CRYPTO 2003: 23rd
Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 17-21, 2003. Proceedings 23. Springer, 2003,
pp. 565–582.

[2] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure
voting system,” in 2008 IEEE Symposium on Security and Privacy
(sp 2008), 2008, pp. 354–368.

[3] A. Juels, D. Catalano, and M. Jakobsson, Coercion-Resistant Elec-
tronic Elections. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010.

[4] R. Araújo, S. Foulle, and J. Traoré, A Practical and Secure
Coercion-Resistant Scheme for Internet Voting. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 330–342. [Online]. Available:
https://doi.org/10.1007/978-3-642-12980-3 20

[5] W. Smith, “New cryptographic election protocol with best-known
theoretical properties,” Frontiers in Electronic Elections (FEE 2005),
10 2005.

[6] D. Achenbach, C. Kempka, B. Löwe, and J. Müller-Quade,
“Improved Coercion-Resistant electronic elections through deniable
Re-Voting,” USENIX Journal of Election Technology and Systems
(JETS), Aug. 2015. [Online]. Available: https://www.usenix.org/
conference/jets15/workshop-program/presentation/achenbach

[7] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso, “VoteAgain: A
scalable coercion-resistant voting system,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 1553–1570. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/lueks

[8] J. Clark and U. Hengartner, “Selections: Internet voting with over-the-
shoulder coercion-resistance,” in Financial Cryptography and Data
Security, G. Danezis, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 47–61.

[9] “Cobra: Toward concurrent ballot authorization for internet voting,”
in 2012 Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE 12). Bellevue, WA: USENIX
Association, Aug. 2012. [Online]. Available: https://www.usenix.org/
conference/evtwote12/workshop-program/presentation/Essex

[10] M. Kutylowski and F. Zagórski, “Verifiable internet voting solving
secure platform problem,” in Advances in Information and Computer
Security, Second International Workshop on Security, IWSEC 2007,
Nara, Japan, October 29-31, 2007, Proceedings, ser. Lecture Notes
in Computer Science, A. Miyaji, H. Kikuchi, and K. Rannenberg,
Eds., vol. 4752. Springer, 2007, pp. 199–213. [Online]. Available:
https://doi.org/10.1007/978-3-540-75651-4 14

[11] O. Spycher, R. Haenni, and E. Dubuis, “Coercion-resistant hybrid
voting systems,” in Electronic Voting 2010, EVOTE 2010, 4th
International Conference, Co-organized by Council of Europe,
Gesellschaft für Informatik and E-Voting.CC, July 21st - 24th,
2010, in Castle Hofen, Bregenz, Austria, ser. LNI, R. Krimmer and
R. Grimm, Eds., vol. P-167. GI, 2010, pp. 269–282. [Online].
Available: https://dl.gi.de/20.500.12116/19498

[12] S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-type proper-
ties of electronic voting protocols,” J. Comput. Secur., vol. 17, no. 4,
p. 435–487, dec 2009.

[13] D. Unruh and J. Müller-Quade, “Universally composable
incoercibility,” in Advances in Cryptology - CRYPTO 2010,
30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings, ser. Lecture Notes in Computer
Science, T. Rabin, Ed., vol. 6223. Springer, 2010, pp. 411–428.
[Online]. Available: https://doi.org/10.1007/978-3-642-14623-7 22

[14] R. Canetti and R. Gennaro, “Incoercible multiparty computation,” in
Proceedings of 37th Conference on Foundations of Computer Science,
1996, pp. 504–513.

[15] R. Küsters and T. Truderung, “An epistemic approach to coercion-
resistance for electronic voting protocols,” in 30th IEEE Symposium
on Security and Privacy (S&P 2009), 17-20 May 2009, Oakland,
California, USA. IEEE Computer Society, 2009, pp. 251–266.
[Online]. Available: https://doi.org/10.1109/SP.2009.13

[16] R. Küsters, T. Truderung, and A. Vogt, “A game-based definition
of coercion resistance and its applications,” J. Comput. Secur.,
vol. 20, no. 6, pp. 709–764, 2012. [Online]. Available: https:
//doi.org/10.3233/JCS-2012-0444

[17] D. Bernhard, O. Kulyk, and M. Volkamer, “Security proofs for
participation privacy, receipt-freeness and ballot privacy for the
helios voting scheme,” in Proceedings of the 12th International
Conference on Availability, Reliability and Security, Reggio Calabria,
Italy, August 29 - September 01, 2017. ACM, 2017, pp. 1:1–1:10.
[Online]. Available: https://doi.org/10.1145/3098954.3098990

[18] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène, “Election
verifiability for helios under weaker trust assumptions,” in Computer
Security - ESORICS 2014 - 19th European Symposium on Research
in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part II, ser. Lecture Notes in Computer Science,
M. Kutylowski and J. Vaidya, Eds., vol. 8713. Springer, 2014,
pp. 327–344. [Online]. Available: https://doi.org/10.1007/978-3-319-
11212-1 19

[19] X. Boyen, T. Haines, and J. Müller, “Epoque: Practical end-to-end
verifiable post-quantum-secure e-voting,” in 2021 IEEE European
Symposium on Security and Privacy (EuroS P), 2021, pp. 272–291.

[20] J. Liedtke, R. Küsters, J. Müller, D. Rausch, and A. Vogt, “Ordinos:
a verifiable tally-hiding electronic voting protocol,” in IEEE 5th
European Symposium on Security and Privacy (EuroS&P 2020),
2020.

[21] R. Küsters, J. Müller, E. Scapin, and T. Truderung, “select: A
lightweight verifiable remote voting system,” in 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), 2016, pp. 341–
354.

[22] R. Küsters, T. Truderung, and A. Vogt, “Formal analysis of
chaumian mix nets with randomized partial checking,” in 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014. IEEE Computer Society, 2014, pp. 343–358.
[Online]. Available: https://doi.org/10.1109/SP.2014.29

[23] R. Kusters, T. Truderung, and A. Vogt, “Verifiability, privacy, and
coercion-resistance: New insights from a case study,” in 32nd IEEE
Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA. IEEE Computer Society, 2011, pp.
538–553. [Online]. Available: https://doi.org/10.1109/SP.2011.21

[24] G. S. Grewal, M. D. Ryan, S. Bursuc, and P. Y. Ryan, “Caveat
coercitor: Coercion-evidence in electronic voting,” in 2013 IEEE
Symposium on Security and Privacy, 2013, pp. 367–381.

[25] V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung, “SoK:
Verifiability notions for e-voting protocols,” in IEEE Symposium on
Security and Privacy, 2016, pp. 779–798.

[26] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections (ex-
tended abstract),” in STOC. ACM, 1994, pp. 544–553.

[27] M. Hirt and K. Sako, “Efficient receipt-free voting based on ho-
momorphic encryption,” in Proceedings of the 19th International
Conference on Theory and Application of Cryptographic Techniques,
ser. EUROCRYPT’00. Berlin, Heidelberg: Springer-Verlag, 2000, p.
539–556.

[28] J. Cohen and M. Fischer, “A robust and verifiable cryptographically
secure election scheme (extended abstract),” in FOCS. IEEE, 1985,
pp. 372–382.

[29] J. Benaloh, “Verifiable secret-ballot elections,” Ph.D. dissertation,
Yale University, December 1996.

[30] V. Cortier and J. Lallemand, “Voting: You can’t have privacy without
individual verifiability,” in CCS. ACM, 2018, pp. 53–66.

[31] P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo, “Beleniosrf:
A non-interactive receipt-free electronic voting scheme,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 1614–1625.
[Online]. Available: https://doi.org/10.1145/2976749.2978337

[32] G. Gallegos-Garcı́a, V. Iovino, A. Rial, P. B. Rønne, and
P. Y. A. Ryan, “(universal) unconditional verifiability in e-voting
without trusted parties,” CoRR, vol. abs/1610.06343, 2016. [Online].
Available: http://arxiv.org/abs/1610.06343

[33] L. Hirschi, L. Schmid, and D. A. Basin, “Fixing the achilles
heel of e-voting: The bulletin board,” in 34th IEEE Computer
Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia,
June 21-25, 2021. IEEE, 2021, pp. 1–17. [Online]. Available:
https://doi.org/10.1109/CSF51468.2021.00016

https://doi.org/10.1007/978-3-642-12980-3_20
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/Essex
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/Essex
https://doi.org/10.1007/978-3-540-75651-4_14
https://dl.gi.de/20.500.12116/19498
https://doi.org/10.1007/978-3-642-14623-7_22
https://doi.org/10.1109/SP.2009.13
https://doi.org/10.3233/JCS-2012-0444
https://doi.org/10.3233/JCS-2012-0444
https://doi.org/10.1145/3098954.3098990
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1109/SP.2014.29
https://doi.org/10.1109/SP.2011.21
https://doi.org/10.1145/2976749.2978337
http://arxiv.org/abs/1610.06343
https://doi.org/10.1109/CSF51468.2021.00016

[34] R. Küsters, T. Truderung, and A. Vogt, “A game-based definition of
coercion-resistance and its applications,” in CSF. IEEE, 2010, pp.
122–136.

[35] N. Soroush, “A new technique for deniable vote updating,” PhD
Colloquium - E-Vote-ID, 2021.

[36] T. Haines, J. Mueller, and I. Querejeta-Azurmendi, “Scalable
coercion-resistant e-voting under weaker trust assumptions,” in Pro-
ceedings of ACM SAC Conference (SAC’23), 2023.

[37] Mastercard, “Mastercard biometric card,” https://www.mastercard.us/
en-us/business/overview/safety-and-security/authentication-services/
biometrics/biometrics-card.html, 2023.

[38] Samsung, “Samsung’s biometric card,” https://news.samsung.com/
global/samsungs-biometric-card-ic-all-in-one-fingerprint-solution-
for-a-new-payment-experience, 2023.

[39] Thales, “Biometrics in payment: The case of the biometric bank
card,” https://www.thalesgroup.com/en/markets/digital-identity-and-
security/banking-payment/cards/biometrics-in-banking, 2021.

[40] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and opti-
mally efficient multi-authority election scheme,” European transac-
tions on Telecommunications, vol. 8, no. 5, pp. 481–490, 1997.

[41] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial
knowledge and simplified design of witness hiding protocols,” in
Advances in Cryptology - CRYPTO ’94, 14th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
21-25, 1994, Proceedings, ser. Lecture Notes in Computer Science,
Y. Desmedt, Ed., vol. 839. Springer, 1994, pp. 174–187. [Online].
Available: https://doi.org/10.1007/3-540-48658-5 19

[42] D. Bernhard, O. Pereira, and B. Warinschi, “How not to prove your-
self: Pitfalls of the fiat-shamir heuristic and applications to helios,”
in Advances in Cryptology–ASIACRYPT 2012: 18th International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Beijing, China, December 2-6, 2012. Proceedings
18. Springer, 2012, pp. 626–643.

[43] R. Giustolisi, M. Sheikhi, and C. Schuermann, “Loki prototype
implementation,” https://github.com/fgiustol/Loki, 2023.

[44] W. Lueks, B. Kulynych, J. Fasquelle, S. Le Bail-Collet, and
C. Troncoso, “Zksk: A library for composable zero-knowledge
proofs,” in Proceedings of the 18th ACM Workshop on Privacy
in the Electronic Society, ser. WPES’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 50–54. [Online].
Available: https://doi.org/10.1145/3338498.3358653

[45] O. Kulyk, V. Teague, and M. Volkamer, “Extending helios
towards private eligibility verifiability,” in E-Voting and Identity
- 5th International Conference, VoteID 2015, Bern, Switzerland,
September 2-4, 2015, Proceedings, ser. Lecture Notes in Computer
Science, R. Haenni, R. E. Koenig, and D. Wikström, Eds.,
vol. 9269. Springer, 2015, pp. 57–73. [Online]. Available:
https://doi.org/10.1007/978-3-319-22270-7 4

[46] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi,
“Sok: A comprehensive analysis of game-based ballot privacy defini-
tions,” in 2015 IEEE Symposium on Security and Privacy, 2015, pp.
499–516.

Appendix A.
Strong-consistency and strong-correctness

We now show that Loki also meets strong-consistency
and strong-correctness as defined by Bernhard et al. [46].
Strong-consistency ensures that the voting result R cor-
responds to the output of the counting function that is
directly applied on valid ballots. It also captures potential
information leaking in the output of the tally algorithm.
Strong-correctness ensures that no adversary can generate
a bulletin board BB such that Validate(BB, β) = ⊥ for a
ballot β which is generated honestly. The strong-consistency
experiment and the strong-correctness experiment are de-
fined in Algorithm 4 and in Algorithm 5 respectively.

Exps−cons
ES,A (λ, I,V) :

((pkT , skT), (pkvs, skvs))← Setup(λ, I,V)
{(Lid, (uskid, upkid))← Register(id)}id∈I
BB = [L1, . . . , Ln]← A(pk, {uski}i∈I)
if ∃βi such that ValidInd(βi) = ⊥ then return ⊥
(R,Π)← Tally(BB, skT)
if R =⊥ then return ⊥
if R ̸=ρ(Extract(β1,skT),. . .,Extract(βn,skT)) then

return ⊤
else

return ⊥
end if

Algorithm 4: The strong-consistency experiment
Exps−cons, in which the adversary A outputs the BB
such that (R,Π) is not consistent with the output of ρ
w.r.t. the Extract function on the last ballots {βi}i∈I of
the BB.

Exps−corr
ES,A (λ, I,V) :

((pkT , skT), (pkvs, skvs))← Setup(λ, I,V)
{(Lid, (uskid, upkid))← Register(id)}id∈I
(BB, usk, v, id)← A(pk, {uski}i∈I)
β ← Vote(id, usk, pkT , pkvs, v, ℓ)
if Validate(BB, β) = ⊥ then return ⊤
return ⊥

Algorithm 5: The strong-correctness experiment
Exps−corr, in which the adversary A outputs the BB
such that the honestly generated ballots are not valid
with respect to the BB.

Definition 4. Strong-Consistency. Let ES = (Setup,
RegisterVoter, Vote, Validate, Append, VerifyVote,
Obfuscate, Tally, VerifyTally) be an election scheme for
an electoral roll I, candidate list V, security parameter
λ, and the result function ρ : I × V → R. ES provides
strong-consistency if there exist the functions Extract and
ValidInd that satisfy the following conditions:

1) For ((pkT , skT), (pkvs, skvs)) ← Setup(λ, I,V), for
all {uski}i∈I output by (Lid, (uskid, upkid)) ←
Register(id), and for any (last) ballot β ←
Vote(id, usk, pkT , pkvs, v, ℓ) with v ∈ V, we have
Extract(β, skT) = (id, v)

https://www.mastercard.us/en-us/business/overview/safety-and-security/authentication-services/biometrics/biometrics-card.html
https://www.mastercard.us/en-us/business/overview/safety-and-security/authentication-services/biometrics/biometrics-card.html
https://www.mastercard.us/en-us/business/overview/safety-and-security/authentication-services/biometrics/biometrics-card.html
https://news.samsung.com/global/samsungs-biometric-card-ic-all-in-one-fingerprint-solution-for-a-new-payment-experience
https://news.samsung.com/global/samsungs-biometric-card-ic-all-in-one-fingerprint-solution-for-a-new-payment-experience
https://news.samsung.com/global/samsungs-biometric-card-ic-all-in-one-fingerprint-solution-for-a-new-payment-experience
https://www.thalesgroup.com/en/markets/digital-identity-and-security/banking-payment/cards/biometrics-in-banking
https://www.thalesgroup.com/en/markets/digital-identity-and-security/banking-payment/cards/biometrics-in-banking
https://doi.org/10.1007/3-540-48658-5_19
https://github.com/fgiustol/Loki
https://doi.org/10.1145/3338498.3358653
https://doi.org/10.1007/978-3-319-22270-7_4

2) For any bulletin board and ballot generated by any
PPT adversary A, such that (BB, β) ← A and
Validate(BB, β) = ⊤, then ValidInd(β) = ⊤.

3) The advantage of any PPT A such that
Pr[Exps−cons

ES,A (λ, I,V) = 1] is negligible in the
security parameter λ.

Definition 5. Strong-Correctness. Let ES = (Setup,
RegisterVoter, Vote, Validate, Append, VerifyVote,
Random, Tally, VerifyTally) be an election scheme for an
electoral roll I, candidate list V, and security parameter λ.
The scheme ES has the strong-correctness property if the
advantage of any PPT adversary A such that:

Pr[Exps−corr
ES,A (λ, I,V) = 1]

is negligible in the security parameter λ.

Theorem 4. Loki satisfies strong-consistency and strong-
correctness.

Proof: We first define the functions Extract(β, skT) =
(id, v) and ValidInd(β) w.r.t. Loki as follows:

1) Extract(β, skT) takes the ballot β = (id, upk, ctv) and
the extraction key skT , and verifies all the proofs in
ctv. It returns ⊥ if any of the checks fail; Otherwise
Dec(ctv, skT) = v and returns (id, v).

2) ValidInd(β) verifies that i) id ∈ I, ii) the proof of the
ballot β, It returns ⊤ otherwise returns ⊥.

It can be immediately seen that Loki meets the first two
properties of strong-consistency due to the correctness of the
encryption, the decryption scheme, and the zero-knowledge
proofs. To prove the third property, we show that the ad-
versary A cannot construct a bulletin board BB in such
a way that the tally algorithm contradicts with the out-
put of the result function ρ. For each voter id ∈ I, the
ideal result function selects the last ballot and counts the
result on (Extract(β1, skT), . . . ,Extract(βn, skT)). There-
fore, both Tally and ρ receive the same input, namely, a list
of ballots, as the revote policy is based on the last ballot for
each id ∈ I. The homomorphic property of the ElGamal
encryption and the proof of decryption ensures that the
result obtained by extracting the result from the multiplied
ciphertexts is equivalent to counting the votes (plaintext) of
(Extract(β1, skT), . . . ,Extract(βn, skT)). As a result, the
validity of all ballots in the BB and the homomorphic prop-
erty of the underlying ElGamal encryption scheme guaran-
tees that R = ρ(Extract(β1, skT), . . . ,Extract(βn, skT)) in
Loki with overwhelming probability.

To prove strong-correctness, we observe that in Loki,
an honestly generated ballot is not appended to the bulletin
board if the same ballot exists. An honest ballot is the output
of either the Obfuscate function or the Vote function. The
probability that a ballot generated by Obfuscate or Vote
is equal to a ballot already included in the bulletin board
is negligible, as both Obfuscate and Vote use probabilistic
encryption schemes. So, the adversary A has a negligible
advantage in Exps−corr.

	Introduction
	Related work
	A new technique for flexible vote updating
	In a nutshell
	Description

	Loki
	Threat model
	Cryptographic primitives
	List of indexes encoding
	Formal description of Loki

	Ballot privacy
	Loki satisfies ballot privacy

	Verifiability
	Loki satisfies strong verifiability

	Coercion resistance
	Loki satisfies coercion resistance

	Performance
	Conclusion
	References
	Appendix A: Strong-consistency and strong-correctness

