
GRandLine: Adaptively Secure DKG and Randomness Beacon
with (Log-)Quadratic Communication Complexity
Renas Bacho

renas.bacho@cispa.de

CISPA Helmholtz Center for

Information Security,

Saarland University

Saarbrücken, Germany

Christoph Lenzen

lenzen@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Julian Loss

loss@cispa.de

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Simon Ochsenreither

s.ochsenreither@gmail.com

Vector Informatik GmbH

Stuttgart, Germany

Dimitrios Papachristoudis

dimpapach87@gmail.com

Researcher

Saarbrücken, Germany

ABSTRACT
A randomness beacon is a source of continuous and publicly verifi-

able randomness which is of crucial importance for many applica-

tions. Existing works on randomness beacons suffer from at least

one of the following drawbacks: (i) security only against static (i.e.,

non-adaptive) adversaries, (ii) each epoch takes many rounds of

communication, or (iii) computationally expensive tools such as

proof-of-work (PoW) or verifiable delay functions (VDF). In this

work, we introduce GRandLine, the first adaptively secure random-

ness beacon protocol that overcomes all these limitations while

preserving simplicity and optimal resilience in the synchronous

network setting. We achieve our result in two steps. First, we de-

sign a novel distributed key generation (DKG) protocol GRand that

runs in O(_𝑛2 log𝑛) bits of communication but, unlike most con-

ventional DKG protocols, outputs both secret and public keys as

group elements. Here, _ denotes the security parameter. Second,

following termination of GRand, parties can use their keys to de-

rive a sequence of randomness beacon values, where each random

value costs only a single asynchronous round and O(_𝑛2) bits of
communication. We implement GRandLine and evaluate it using a

network of up to 64 parties running in geographically distributed

AWS instances. Our evaluation shows that GRandLine can produce

about 2 beacon outputs per second in a network of 64 parties. We

compare our protocol to the state-of-the-art randomness beacon

protocols OptRand (NDSS ’23), BRandPiper (CCS ’21), and Drand,

in the same setting and observe that it vastly outperforms them.

CCS CONCEPTS
• Security and privacy→ Public key (asymmetric) techniques;
• Theory of computation→ Cryptographic protocols.

KEYWORDS
Adaptive Security, DKG, Randomness Beacon, Aggregatable PVSS,

Pairing-Based Cryptography, Transparent Setup

1 INTRODUCTION
Distributed randomness plays a crucial role in many cryptographic

and distributed system applications. A randomness beacon [15,

16, 31] is a source of public, unpredictable, and unbiased random

values that can be used by anyone in a secure manner. A well-

designed randomness beacon protocol ensures that random values

are generated in a decentralized and secure manner, preventing a

threshold of 𝑡 out of 𝑛 collaborating parties from biasing or pre-

dicting the random outputs. Randomness beacon protocols have

wide-ranging applications in both academia and industry. In many

consensus protocols [50, 77] they are used to securely choose a

leader or a committee among participating parties (e.g., through a

verifiable random function [46]) to perform specific tasks. In this

manner, these protocols can achieve better efficiency and circum-

vent impossibility results that apply to their deterministic coun-

terparts. In mix networks [36], randomness beacons are used to

shuffle messages and thus provide unlinkability between sender

and receiver of a message. In privacy-oriented cryptocurrencies and

voting systems [50], randomness beacons provide user anonymity

and unlinkability to their actions. In recent years, randomness bea-

cons have attracted significant interest and numerous protocols

have been proposed [29, 53]. However, existing randomness beacon

protocols found in the literature suffer from at least one of the

following drawbacks: (i) they achieve security only against static

(i.e., non-adaptive) adversaries, (ii) each epoch takes many rounds

of communication, or (iii) they rely on computationally expensive

tools such as proof-of-work (PoW) or verifiable delay functions

(VDF). Motivated by this unsatisfactory state of affairs, we give

a novel randomness beacon protocol GRandLine which improves

upon the state-of-the-art by combining, for the first time, all of the
following properties:

1

• Adaptive Security. We prove GRandLine secure in the pres-

ence of an adaptive adversary. Many other protocols [46,

71, 75] are only proven statically secure.

• One-Round Epoch. Each epoch in GRandLine takes only a

single asynchronous round of communication and is non-

interactive. It only requires synchrony for its pre-processing

phase. This sets GRandLine apart from all other protocols

except Drand [64].

• Communication-Efficient. GRandLine has a communication

cost ofO(_𝑛2) bits per epoch, where _ is the security param-

eter. This sets GRandLine apart from BRandPiper [16] and

1
For the sake of clarity, we only compare to adaptively secure protocols in this list.

1

https://orcid.org/0009-0007-7037-2458
https://orcid.org/0000-0002-3290-0674
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0009-0009-2568-5628
https://orcid.org/0009-0004-4341-0680

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

RandShare [75], which have (worst-case) cubic or higher

communication cost per epoch.

• Optimal Resilience.GRandLine has optimal resilience thresh-

old 𝑡 < 𝑛/2 (i.e., corruption threshold) in the synchronous

network. This sets GRandLine apart from SPURT [31] and

RandShare [75], which tolerate only suboptimal 𝑡 < 𝑛/3.
• Lightweight Tools.After its pre-processing phase,GRandLine

only uses lightweight cryptography such as hash functions

and pairings. Notably, it does not rely on tools such as PoW

or VDF. This sets GRandLine apart from RandChain [49]

and RandRunner [70], which rely on PoW and VDF, respec-

tively.

• Quadratic Pre-Processing. GRandLine has a pre-processing
phase with onlyO(_𝑛2 log𝑛) bits communication cost. This

sets GRandLine apart from Drand [64], OptRand [15], and

BRandPiper [16], which have cubic or higher communica-

tion cost for pre-processing.

We achieve our result in two steps. First, we design a novel dis-

tributed key generation (DKG) protocol GRand with O(_𝑛2 log𝑛)
bits communication cost that, unlike most of the conventional DKG

protocols, outputs both secret and public keys as group elements.

It is the first DKG protocol in any network setting that achieves

subcubic communication cost with optimal resilience threshold.

Second, we give a simple construction that allows to use the keys

output by GRand for a non-interactive and unique locally verifiable
threshold signature

2
from which we naturally derive a one-round

randomness beacon using a final hash operation. For a detailed

comparison of existing work on randomness beacon and DKG pro-

tocols, we refer to Table 1 and Table 2, respectively. Further, recent

work [29, 53] give an excellent systematization of knowledge (SoK)

for the extensive literature on randomness beacons.

1.1 Technical Overview
The idea of using a threshold signature scheme with unique sig-

natures (per message𝑚 and public key pk) and a non-interactive

signing procedure is a well-known approach to generate one-round

distributed randomness. It is most commonly used in consensus

protocols and dates back to the seminal work of Cachin et al. [21].

For epoch 𝑒 ≥ 1, this works as follows:

• Each party 𝑃𝑖 non-interactively creates a signature share

𝜎𝑖 on the message𝑚 := 𝑒 and sends 𝜎𝑖 to all other parties.

• Upon receiving 𝑡 + 1 valid shares {𝜎𝑖 }𝑖∈S , a party locally

reconstructs the full signature 𝜎 . The randomness beacon

value is then computed as hash 𝑂𝑒 := H(𝜎).
In this manner, one obtains a simple and efficient randomness bea-

con protocol which is also used by many blockchain and consensus

protocols [50, 77]. This construction relies on a setup in which a

secret key sk is (𝑡, 𝑛)-secret shared among all parties. In a fully dis-

tributed system, this is commonly established via a DKG protocol

for field elements [22]. Concretely, this means that at the end of the

DKG protocol each party 𝑃𝑖 holds a secret key share sk𝑖 ∈ Z𝑝 such

that sk𝑖 = 𝑓 (𝑖) for a polynomial 𝑓 ∈ Z𝑝 [𝑋] of degree 𝑡 . Further,
the public key shares pk𝑖 := 𝜔

sk𝑖 ∈ G are publicly known where G
is a prime order 𝑝 group with generator 𝜔 . Unfortunately, even the

2
By “locally verifiable” we mean that the final threshold signature does not have an

efficient (independent of 𝑛) verification algorithm, but the partial signatures have.

most efficient DKG protocols [2, 73] incur a communication cost of

O(_𝑛3) to generate their keys. So what does that mean for us?

Challenges in Subcubic DKG. A common approach to generate a

secret key sk ∈ Z𝑝 shared among a set of 𝑛 parties with at most 𝑡 of

them being malicious is as follows. Each party 𝑃𝑖 samples a random

value 𝑟𝑖 ←$
Z𝑝 and shares it among all parties using a verifiable se-

cret sharing (VSS) scheme where 𝑟𝑖 lies on a polynomial 𝑓𝑖 ∈ Z𝑝 [𝑋]
of degree 𝑡 . Then, parties agree on a subset 𝐼 ⊂ [𝑛] of at least 𝑡 + 1
dealers whose VSS sharings completed successfully. Finally, each

party 𝑃𝑖 combines the shares it received from dealers in 𝐼 to obtain

a share sk𝑖 of the final secret sk. Crucially, we have the guarantee
that the secret key sk can be reconstructed even when corrupt par-

ties refuse to participate in the reconstruction. However, the best

known VSS schemes have quadratic communication cost [5, 73],

which leads to cubic communication cost in the overall protocol.

One way to overcome this issue is to let a randomly sampled (and

sometimes anonymous) committee of small size (e.g., in the range

of O(_)) perform the task of sharing a secret. This technique is com-

monly used in consensus protocols to boost its scalability [46], most

notably in the Algorand blockchain. However, in order to achieve

security against an adaptive adversary, these protocols come with

undesirable features such as sub-optimal resilience threshold of

𝑡 < 𝑛/4, reliance on secure erasures of internal states, and ineffi-

cient primitives such as fully homomorphic encryption (FHE) [45].

Further, to sample the committee in the first place, these protocols

rely on an initial seed of common randomness, which creates a

circularity (without assuming some form of trusted setup).

Starting Point: Aggregatable PVSS. Publicly verifiable secret

sharing (PVSS) schemes [74] are VSS schemes with the additional

property that any third party can verify that the sharing has been

done correctly. In particular, this avoids the need for a complaint

phase as is required in regular VSS schemes, which greatly sim-

plifies constructions based on PVSS schemes. Recently, Gurkan et

al. [48] introduced a PVSS scheme that supports aggregation of

several PVSS transcripts while preserving security (called aggregat-
able PVSS or simply APVSS). From that the authors design a DKG

protocol whose secret and public keys both are group elements

in an underlying pairing group. Crucially, the authors leverage

the property of aggregation from their APVSS scheme in order to

reduce the communication and computation cost of parties by rely-

ing on gossiping techniques rather than all-to-all communication.

However, given a known lower bound of Ω(𝑛2) communicated

messages for Byzantine broadcast [37] (without assuming shared

randomness in the first place), their protocol still has cubic com-

munication cost due to the invocation of 𝑛 instances of Byzantine

broadcast. Additionally, their techniques only work against a static

adversary that corrupts a mere log𝑛 parties maliciously. Is there a

way to regain all the desirable features simultaneously?

Recursion inAPVSS to theRescue. To solve the problem, we take

inspiration from the world of recursive algorithms. In a recursive

algorithm, the function calls itself with smaller input values in such

a way that eventually a base case is reached which is easy to solve.

The result of the function for the current input is then obtained

from simple operations on the returned value for the smaller input.

This technique has also found application in distributed protocols

in order to improve communication cost. The recursive Phase-King

2

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Table 1: Comparison table of representative distributed randomness beacon protocols.

Protocol Network Resil. Adapt. Unpred. Resp. Rounds Commun. Crypto. Primit. Setup Preproc.

Cachin et al. [21] async 1/3 ✗ ✓ ✓ 1 O(_𝑛2) Uniq. Th. Signature CRS O(_𝑛3)
RandHerd [75] async 1/3 ✗ ✓ ✓ ABA O(_𝑐2 log𝑛) PVSS & Th. Schnorr CRS O(_𝑛3)
Herb [27] sync 1/3 ✗ ✓ ✗ 𝑡 + 1 O(_𝑛3) Thresh. ElGamal CRS O(_𝑛3)
Drand [64] sync 1/2 ✗ ✓ ✓∗ 1 O(_𝑛2) Thresh. BLS CRS O(_𝑛3)

SPURT [31] part sync 1/3 ✗ ✓ ✓ 9 O(_𝑛2) PVSS & Pairing CRS ✗†

Algorand [46] part sync 1/3 ✗ Ω(𝑡) ✗ BC O(_𝑐𝑛) VRF Seed O(_𝑛3)
HydRand [71] sync 1/3 ✗ 𝑡 + 1 ✗ 3 O(_𝑛2) PVSS Seed O(_𝑛3)
OptRand [15] sync 1/2 ✗ ✓ ✓ 11 O(_𝑛2) PVSS & Pairing 𝑞-SDH O(_𝑛3)
RandShare [75] async 1/3 ✓ ✓ ✓ ABA O(_𝑛4) VSS CRS ✗

SPURT [10] part sync 1/3 ✓ ✓ ✓ 9 O(_𝑛2) PVSS & Pairing CRS & AGM ✗†

RandChain [49] sync 1/2 ✓ O(_) ✓ ΔPoW O(_𝑛) PoW & VDF CRS ✗⋄

RandRunner [70] sync 1/2 ✓ 𝑡 + 1 ✗ ΔVDF O(_𝑛2) Trapdoor VDF Seed O(_𝑛3)
BRandPiper [16] sync 1/2 ✓ ✓ ✗ 11 O(_𝑓 𝑛2) VSS 𝑞-SDH O(_𝑓 𝑛3)
OptRand [10] sync 1/2 ✓ ✓ ✓ 11 O(_𝑛2) PVSS & Pairing 𝑞-SDH & AGM O(_𝑛3)
Drand [9] sync 1/2 ✓ ✓ ✓∗ 1 O(_𝑛2) Thresh. BLS CRS & AGM O(_𝑛3)
GRandLine sync 1/2 ✓ ✓ ✓∗ 1 O(_𝑛2) PVSS & Pairing CRS & AGM O(_𝑛2 log𝑛)

Resil. denotes the Byzantine resilience threshold. Adapt. denotes adaptive adversary. Unpred. denotes unpredictability. Resp. denotes responsiveness, i.e., progresses at the actual speed of the network.
∗
In

Drand and GRandLine, this is achieved only after the pre-processing phase. OptRand is responsive only when there are 𝑡 < 𝑛/4 corrupt parties in the system. Asynchronous protocols are by default responsive.

Rounds denotes the number of (a)synchronous rounds per epoch. In RandHerd and RandShare, parties run 𝑛 asynchronous Byzantine agreement (ABA) instances in parallel which leads to expected O(log𝑛)
rounds per epoch. Algorand assumes a broadcast channel BC which leads to 𝑡 + 1 rounds per epoch when implemented with an actual broadcast protocol. In RandChain and RandRunner, each epoch takes

one computational round to evaluate the VDF or PoW which is much larger than a synchronous network round. Comm. denotes the communication cost in bits. In RandHerd and Algorand, 𝑐 denotes the

average size of a randomly chosen committee. In BRandpiper, 𝑓 ≤ 𝑡 denotes the actual number of faults in the system. Crypto. Primit. denotes the cryptographic primitives in usage. Setup denotes the setup

assumption. CRS denotes a common reference string setup. Seed denotes an initial random seed used to run the protocol. 𝑞-SDH denotes the powers-of-tau setup [63] and AGM denotes the algebraic group

model [42]. Preproc. denotes the communication cost for pre-processing. This can either be a DKG, an SMR, or some other distributed protocol that generates the initial random seed. Since the protocols with an

initial seed do not specify how to obtain it (other than by trusted setup), we assume the most efficient DKG for this task. † SPURT guarantees only a weak form of liveness: 𝑡 out of 𝑛 consecutive epochs might

fail to produce an output. ⋄ RandChain uses Nakamoto consensus and also suffers from blockchain-related attacks.

protocol [57, 59] for Byzantine agreement is a well-known example

for this. The standard, non-recursive Phase-King protocol [14] runs

over 𝑡 + 1 phases with a different leader (called the king) in each

phase. The protocol succeeds because at least one honest party is

guaranteed to be a leader. Interestingly, the need to run over 𝑡 + 1
phases can be avoided using recursion. In the recursive variant, the

leader is replaced by one half of the entire system, whose value is

generated by the recursive invocation of the protocol. Essentially,

in this manner there are only two phases, with the first half of the

system emulating the leader of the first phase and the second half

of the system emulating the leader of the second phase. Since at

least one of these halves has an honest majority and thus emulates

an honest leader, the protocol terminates after these two phases. In

this manner, the communication cost of the protocol can be brought

down from cubic to only quadratic.

We explain how we use a similar idea to design a DKG protocol

whose secret and public keys both are group elements. Concretely,

we want to devise a recursive protocol that allows parties to agree

on an aggregated PVSS transcript 𝐴𝑇 with contribution from at

least one honest party. From this transcript 𝐴𝑇 each party can

locally and without any further interaction derive its share of the

secret by a simple decryption operation (we will explain this in

more detail soon). In order to achieve our goal in an efficient way

(with the hope to not exceed quadratic communication cost), we

carefully put together aggregation properties of PVSS and recent

techniques from the theory of verifiable information dispersal for

communication-efficient broadcast protocols [61]. On a high level,

our protocol works as follows. We split the system of 𝑛 parties into

two halves and run the protocol recursively and in parallel in both

halves separately, so that each half ends up with a single transcript.

In the next step, for each half, the protocol emulates an efficient

single-sender broadcast protocol for long messages to transmit

the transcript to all parties. For this step, we use the techniques

developed in [61] that rely on erasure codes and cryptographic

accumulators. Finally, all parties aggregate these two transcripts

and end up with a single (aggregated) PVSS transcript𝐴𝑇 . Crucially,

contribution from at least one honest party to the aggregate 𝐴𝑇

provides secrecy guarantees as discussed in [10, 15]. Conversely,

such honest contribution is guaranteed by an argument similar

to [57, 59], since at least one of the two halves has honest majority

(relying on the fact that 𝑡 < 𝑛/2).

From Aggregated PVSS to DKG. For the following discussion,

let 𝑒 : G1 × G2 → G𝑇 be an asymmetric pairing of (multiplicative)

groups of prime order 𝑝 with generators 𝑔 ∈ G1 and ℎ ∈ G2. We

recall that a PVSS transcript generated by some dealing party 𝑃∗
consists of a vector of commitments C := (𝐶1, . . . ,𝐶𝑛) ∈ G𝑛

1
, a

vector of encryptions E := (𝐸1, . . . , 𝐸𝑛) ∈ G𝑛
2
, and some auxiliary

data 𝜋 which usually includes some proof. The commitments are

computed as 𝐶𝑖 := 𝑔
𝑓 (𝑖)

for all 𝑖 ∈ [𝑛] where 𝑓 ∈ Z𝑝 [𝑋] is some

polynomial of degree 𝑡 chosen randomly by the dealer 𝑃∗, while the

encryptions are computed as 𝐸𝑖 := pk𝑓 (𝑖)
𝑖

. Here, (pk𝑖 , sk𝑖) is the key
pair of party 𝑃𝑖 from a plain PKI setup such that pk𝑖 = ℎ

sk𝑖 ∈ G2.
The distinctive property of a PVSS scheme is that any subset S
of at least 𝑡 + 1 parties can pool their decrypted shares {𝐷𝑖 }𝑖∈S
to reconstruct the secret 𝐷0 encoded in the transcript, while this

remains infeasible with 𝑡 or less such shares. By combining several

PVSS transcripts with contribution from at least one honest dealing

party, we have the guarantee that the secret of the aggregated tran-

script 𝐴𝑇 remains hidden from the adversary. In most applications

3

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

of PVSS, the aggregated transcript 𝐴𝑇 is used to obtain one-time

randomness by direct reconstruction of the secret (and possibly

subsequent hashing). This is also the case for several previous ran-

domness beacon protocols such as OptRand [15] and SPURT [31].

We are taking a different route inspired by the work [48]. Specifi-

cally, we think of the commitments 𝐶1, . . . ,𝐶𝑛 as public key shares

and of the decryptions𝐷1, . . . , 𝐷𝑛 as secret key shares. That is, each

party 𝑃𝑖 outputs a secret key share SK𝑖 := 𝐷𝑖 ∈ G2, a vector of

public key shares (PK1, . . . , PK𝑛) where PK 𝑗 := 𝐶 𝑗 ∈ G1 for all

𝑗 ∈ [𝑛], and a public key PK := 𝐶0 ∈ G1 computed by standard

Lagrange interpolation in the exponent from 𝐶1, . . . ,𝐶𝑛 .

From One to Infinity: Towards a Simple Randomness Beacon.
Clearly, GRand is different from most DKG protocols found in the

literature that output secret keys in a field rather than a group.

However, a delightful key insight in [48] is that this setup is enough

to generate a stream of one-round randomness values. The idea is

inspired from the threshold BLS signature [17] and its application to

randomness generation as introduced by Cachin et al. Specifically,

each party 𝑃𝑖 non-interactively creates a threshold BLS signature

share 𝜎𝑖 := H1 (𝑚)sk𝑖 on the epoch number 𝑚 := 𝑒 ∈ Z≥1 with

its secret key share sk𝑖 and multicasts (i.e., sends it to all parties)

it. Upon receiving 𝑡 + 1 valid shares {𝜎𝑖 }𝑖∈S (which is checked

by a pairing equation 𝑒 (𝑔, 𝜎𝑖) = 𝑒 (pk𝑖 ,H1 (𝑚)) from 𝑃𝑖 ’s public

key share pk𝑖), a party locally reconstructs the full signature 𝜎 =

H1 (𝑚)sk by Lagrange interpolation in the exponent and derives

the randomness beacon value as another hash 𝑂𝑒 = H2 (𝜎). With

our DKG protocol GRand that generates keys (PK𝑖 , SK𝑖) as group
elements, the operation H1 (𝑚)SK𝑖

is not possible. However, when

we think of the operation of „raising the group element H1 (𝑚) to a

power of sk𝑖 “ as an abstract group action sk𝑖⊙H1 (𝑚), we realize that
the action

3 SK𝑖 ⊙H1 (𝑚) defined as 𝑒 (H1 (𝑚), SK𝑖) ∈ G𝑇 is possible.

Therefore, we let each party 𝑃𝑖 non-interactively create a share

𝜎𝑖 as 𝑒 (H1 (𝑚), SK𝑖). And upon receiving 𝑡 + 1 valid such shares,

each party can locally reconstruct the full signature by Lagrange

interpolation in the exponent as 𝜎 = 𝑒 (H1 (𝑚), SK). Again, the
randomness beacon value for epoch 𝑒 is then derived as another

hash𝑂𝑒 := H2 (𝜎). Intuitively, since the secret key SK is hidden from

the adversary, the signature 𝜎 should remain unpredictable so that

𝑂𝑒 gives a random and unbiased randomness value. However, there

is one crucial issue with this approach: the verification of beacon
shares 𝜎𝑖 . Previously, it was possible to verify such a (signature)

share by a pairing check, but now the beacon share 𝜎𝑖 is an element

in the target group G𝑇 itself so that there is possibly no way to

verify correctness of 𝜎𝑖 = 𝑒 (H1 (𝑚), SK𝑖). To resolve this issue,

the authors in [48] augment the public keys and shares 𝜎𝑖 with

additional elements inspired by Escala-Groth non-interactive zero-

knowledge (NIZK) proofs. While their construction in the appendix

is reasonably efficient, it still requires a lot of pairings and elements.

Further, it lacks an adaptive security proof.

A Simple Two-Step Trick. In order to regain efficiency, we use

the following two-step approach. After the DKG setup, each party

𝑃𝑖 locally samples an element 𝛼𝑖 ←$
Z∗𝑝 uniformly at random and

sends an ElGamal encryption cm𝑖 := (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖) of its secret
key SK𝑖 to all parties. Correctness of its second component can

3
Note that this does not define a group action in the mathematical sense. Here, we use

the term group action only informally to convey the intuition.

be checked via a pairing equation. Crucially, this requires only a

single round of communication (no broadcast in the sense of con-

sensus is needed) and therefore does not add asymptotic overhead.

These additional elements allow parties to verify received beacon

shares. Concretely, each party computes 𝜗𝑖 := (H1 (𝑚)𝛼𝑖 , 𝜎𝑖) along
with an efficient Chaum-Pedersen NIZK proof of discrete logarithm

equality 𝜋𝑖 := Dleq(𝑔,𝑔𝛼𝑖 ,H1 (𝑚),H1 (𝑚)𝛼𝑖) to prove correctness

of H1 (𝑚)𝛼𝑖 . Upon receiving such a tuple (𝜗𝑖 , 𝜋𝑖), any party can

verify the correctness of the beacon share 𝜎𝑖 using a pairing equa-

tion that involves the element cm𝑖,2. Having done this, each party

can compute the randomness beacon value 𝑂𝑒 for epoch 𝑒 = 𝑚

as described before. Intuitively, security is preserved because the

elements 𝑔𝛼𝑖 ,H1 (1)𝛼𝑖 ,H1 (2)𝛼𝑖 , . . . do not reveal too much informa-

tion about 𝛼𝑖 , thus making it hard for the adversary to compute SK𝑖

from the (randomized) element ℎ−𝛼𝑖 SK𝑖 . Overall, an epoch takes

only a single round of communication in which each party 𝑃𝑖 sends

two group elements 𝜗𝑖 := (H1 (𝑚)𝛼𝑖 , 𝜎𝑖) and a simple NIZK proof

𝜋𝑖 to the other parties. Further, (PK𝑖 , cm𝑖) can be thought of as an

updated public key share of 𝑃𝑖 which is three group elements, and

verification of a beacon share 𝜎𝑖 takes two pairing operations (the

same as threshold BLS!) and verification of the NIZK proof 𝜋𝑖 .

Adaptive Security. Our randomness beacon and DKG protocols

are both secure under adaptive corruptions. In this model, the ad-

versary can decide which parties to corrupt during the execution

of the protocol based on its view of the execution. Particularly for

distributed protocols, an adaptive adversary is a safer and more

realistic assumption. The standard notion of security for DKG pro-

tocols entails a full simulation of the protocol without leaking any

additional information (called fully simulatable). For our DKG pro-

tocol, we do not achieve this property but the weaker notion of

unpredictability (cf. Definition 4). More importantly, we show that

using our DKG protocol for subsequent distributed randomness gen-

eration suffices to obtain an adaptively secure randomness beacon

protocol (in the random oracle model). In this sense, we follow the

methodology of previous works [9] that have shown that weaker

security notions for DKG are sufficient to obtain secure randomness

beacons and threshold signatures. We emphasize that our random-

ness beacon is even more efficient than constructions that are only

proven statically secure. The rationale behind that is the following.

Only very recently, the works [15, 31] discovered the power of

aggregatable PVSS (APVSS) for simple and efficient randomness

beacons, outperforming previous constructions for even statically

secure randomness beacons. A follow-up work [10] then showed

their adaptive security by giving an adaptive security proof for their

underlying (efficient) APVSS schemes. Inspired by the work [10],

we show adaptive security of our APVSS-based randomness beacon

construction in the algebraic group model.

Concurrent Work. Concurrent with or subsequent to our work,

two other constructions for shared randomness generation have

been proposed [32, 41]. The first one [32] focuses on the weighted

setting for DKG and threshold verifiable unpredictable function

(VUF), but the authors do not consider subcubic DKG protocols.

The second one [41] focuses on communication-efficiency in DKG

and achieves: (i) a DKG protocol with O(_𝑛2.5 log𝑛) bits of com-

munication cost that outputs secret keys as group elements, and (ii)

a DKG protocol with O(_2𝑛2.5 log𝑛) bits of communication cost

4

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Table 2: Comparison table of representative distributed key generation (DKG) protocols.

Protocol Network Resil. Adapt. Commun. Rounds Field Crypto. Prim. Setup

Kokoris et al. [54] async 1/3 ✓ O(_𝑛4) O(𝑛) ✓ AVSS CRS
Abraham et al. [3, 43] async 1/3 ✗ O(_𝑛3) O(1) ✗ PVSS, Pairing CRS
Das et al. [33, 34] async 1/3 ✗ O(_𝑛3) O(log𝑛) ✓ AVSS CRS
Bingo [2] async 1/3 ✓ O(_𝑛3) O(1) ✓ AVSS, Pairing q-SDH, AGM
HARTS

†
[11] async 1/3 ✓ O(_𝑛3 log𝑛) O(1) ✓ AVSS CRS, AGM

Shrestha et al. [73] sync 1/2 ✗ O(_𝑛3) O(𝑛) ✓ VSS q-SDH
Gurkan et al. [48] sync log𝑛 ✗ O(_𝑛3 log𝑛) O(𝑛) ✗ PVSS, Pairing CRS
NI-DKG

◦
[25, 47, 52] sync 1/2 ✗ O(_𝑛4)⋄ O(𝑛) ✓ PVSS CRS

Gennaro et al. [44] sync 1/2 ✓ O(_𝑛4)⋄ O(𝑛) ✓ VSS CRS, AGM
Canetti et al. [22] sync 1/2 ✓ O(_𝑛4)⋄ O(𝑛) ✓ VSS, Erasures CRS
Jarecki et al. [51] sync 1/2 ✓ O(_𝑛4)⋄ O(𝑛) ✓ PVSS CRS

GRand [our work] sync 1/2 ✓ O(_𝑛2 log𝑛) O(𝑛) ✗ PVSS, Pairing CRS, AGM

Resil. denotes the Byzantine resilience threshold. Adapt. denotes adaptive adversary. The protocol [44] was proven adaptively secure in the AGM [9]. Comm. denotes the
communication cost in bits. ⋄ Most protocols [22, 44, 51] assume a broadcast channel, which we implement with the commonly-used Dolev-Strong broadcast protocol [38]. However,

we note that it is possible to achieve cubic communication cost by using an optimal broadcast protocol. Rounds denotes the number of (a)synchronous rounds to terminate.

For asynchronous protocols, this is the expected number of rounds (as these protocols are randomized). Field denotes if the secret key is a field element or not (group element).

Crypto. Primit. denotes the cryptographic primitives in usage. The protocol [22] relies on secure erasure of secret states. Setup denotes the setup assumptions, including idealized

models. ◦ The protocols [25, 47, 52] follow the common technique [51], where each party broadcasts a PVSS transcript for a field element, and primarily focus on the concrete

computational efficiency of the PVSS scheme (which are rather inefficient compared to PVSS schemes for group elements). †We note that HARTS [11] can generate a batch of up to

𝑡 + 1 independent keys with cubic communication cost and thus has amortized quadratic communication cost per key.

that outputs secret keys as field elements. Further, none of these

works consider adaptive adversaries.

1.2 Outline of the Paper
The rest of the paper is organized as follows. In Section 2, we define

our model and relevant preliminaries, including cryptographic and

consensus primitives. In Section 3, we present our new DKG pro-

tocol GRand. In Section 4, we present our one-round randomness

beacon GRandLine on top of GRand. In Section 5, we implement

GRandLine and compare it to the state-of-the-art randomness bea-

cons in the same setting. In Appendix A, we give a detailed discus-

sion on existing work in randomness beacon and DKG protocols.

In Appendix B, we cover additional preliminaries relevant for the

paper. In Appendix C, we present figures for some of the building

blocks of GRand. In Appendix D, we provide a security and com-

plexity analysis for our randomness beacon and DKG protocols.

2 PRELIMINARIES AND MODEL
In this section, we fix the model and preliminaries for our paper.

Throughout the paper, we consider a complete network P of 𝑛

parties 𝑃1, . . . , 𝑃𝑛 connected by pairwise authenticated channels,

i.e., the receiver of a message is aware of the sender’s identity.

General Notation. Let _ denote the security parameter. Through-

out the paper, we assume that global parameters par := (G1,G2,G𝑇 ,
𝑝, 𝑔, ℎ, 𝑒) are fixed and known to all parties. Here, 𝑒 : G1×G2 → G𝑇
is a type 3 asymmetric pairing of prime order 𝑝 cyclic groups with

generators 𝑔 ∈ G1, ℎ ∈ G2. That means, there is no efficiently com-

putable homomorphism from G1 to G2 and vice versa. For concrete
choices, we will assume _ = 128 and that G1,G2 are instantiated
with a 256-bit elliptic curve. We use G to denote a group specified

by par . For two integers 𝑎 ≤ 𝑏, we define the set [𝑎, 𝑏] := {𝑎, . . . , 𝑏};
if 𝑎 = 1, we write this set as [𝑏], and if 𝑎 = 0, we write it as J𝑏K.

For an element 𝑥 in a set 𝑆 , we write 𝑥 ←
$
𝑆 to mean that 𝑥 was

sampled from 𝑆 uniformly at random. All our algorithms may be

randomized (unless stated otherwise) and written in uppercase

letters. By 𝑥 ← A(𝑥1, . . . , 𝑥𝑛) we mean running algorithm A on

inputs (𝑥1, . . . , 𝑥𝑛) and uniformly random coins and then assigning

the output to 𝑥 . If A has oracle access to some algorithm B during

its execution, we write 𝑥 ← AB (𝑥1, . . . , 𝑥𝑛). We write GA
to denote

the output of the game G involving algorithm A. We measure the

communication complexity of our distributed protocols in bits.

Network Model. We assume a synchronous network model, i.e.,

communication proceeds in compute-send-receive rounds of a pri-

ori known length Δ. When a correct party sends a message𝑚 at

the beginning of a round, the message is guaranteed to be received

by the end of that round. In particular, messages sent by a correct

party cannot be dropped from the network and are always delivered.

Correct parties have local clocks that move at the same speed and

they start the protocol at the same time.

Adversarial Model.We consider an adversary who can corrupt up

to 𝑡 = ⌈𝑛/2⌉ − 1 parties maliciously and may cause them to deviate

from the protocol arbitrarily. The adversary is strongly adaptive and
can choose its corruptions at any time during the execution of the

protocol. When it corrupts a party, it can delete or substitute any

undelivered messages that this party previously sent while being

correct. Note that once a party is corrupted, it remains corrupted.

Further, we assume that the adversary is in full control over message

delays, subject to the network delay Δ. In particular, the adversary

is rushing: in any synchronous round of a protocol execution, it can

observe the messages of all the correct parties and then decide on

what messages to deliver to correct parties for that round. We refer

to the correct parties as honest and the faulty parties as corrupt.

Public Key Infrastructure.We assume that the parties have es-

tablished a bulletin board public key infrastructure (PKI) before

5

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

the protocol execution. Concretely, this means that every party

𝑃𝑖 has a public-secret key pair (pk𝑖 , sk𝑖), where pk𝑖 is known to

all parties but sk𝑖 is known only to 𝑃𝑖 . For this, we assume that

each party generates its keys locally (where corrupt parties may

choose their keys arbitrarily) and then makes its public key known

to everybody using a public bulletin board. Further, we assume that

the pairs (pk𝑖 , sk𝑖) also (implicitly) include verification-signing key

pairs (vk𝑖 , sik𝑖) for a digital signature scheme to provide authentica-

tion. In particular, we assume that parties sign each message before

they send it to other parties. As common in this line of work [39],

we treat signatures as information-theoretic objects with perfect

unforgeability and perfect correctness (cf. Appendix B).

IdealizedModels.Weassume the randomoraclemodel (ROM) [13].

In this model, a hash function H is treated as an idealized random

function to which the adversary gets oracle access. Further, we

assume the algebraic group model (AGM) [42]. In this model, all

algorithms are treated as algebraic (over a group G): whenever an
algorithm A outputs a group element Z ∈ G, it additionally out-

puts a vector z = (𝑧1, . . . , 𝑧𝑘) of integers such that Z =
∏

𝑖∈[𝑘] 𝑔
𝑧𝑖
𝑖
,

where (𝑔1, . . . , 𝑔𝑘) ∈ G𝑘 is the list of group elements A has received

so far (either as input or as oracle responses).

ComputationalAssumptions.We rely on the co-one-more discrete
logarithm (co-OMDL) assumption [10] for our security proofs. This

is a generalization of the standard one-more discrete logarithm

(OMDL) assumption to capture also type 3 bilinear groups as used

widely in practice for efficiency reasons. Throughout the paper, we

denote by DL𝑔 an oracle that on input an element b := 𝑔𝑧 ∈ G1
returns the discrete logarithm 𝑧 of b to base 𝑔.

Definition 1 (co-OMDL Problem). Let (G1,G2, 𝑝, 𝑔, ℎ) be cyclic
groups of prime order 𝑝 as specified by par . For an algorithm A and
𝑘 ∈ N, we define the experiment 𝑘-COMDLA as follows:

• Offline Phase. Sample (𝑧1, . . . , 𝑧𝑘) ←$
Z𝑘𝑝 uniformly at ran-

dom and set b𝑖 := (𝑔𝑧𝑖 , ℎ𝑧𝑖) ∈ G1 × G2 for all 𝑖 ∈ [𝑘].
• Online Phase. RunA on input (G1,G2, 𝑝, 𝑔, ℎ) and (b1, . . . , b𝑘).

In this phase, A gets access to the oracle DL𝑔 .
• Winning Condition. Let (𝑧′

1
, . . . , 𝑧′

𝑘
) denote the output of A.

Return 1 if (i) 𝑧′
𝑖
= 𝑧𝑖 for 𝑖 ∈ [𝑘], and (ii) DL𝑔 was queried at

most 𝑘 − 1 times during the online phase. Otherwise, return 0.

We say that the co-one-more discrete logarithm problem of degree
𝑘 is (Y,𝑇)-hard if for all algorithms A running in time at most 𝑇 ,
Pr[𝑘-COMDLA = 1] ≤ Y. Conversely, we say that an algorithm A
(Y,𝑇)-solves the co-one-more discrete logarithm problem of degree 𝑘
if it runs in time at most 𝑇 and Pr[𝑘-COMDLA = 1] > Y.

2.1 Cryptographic Primitives
In this section, we define syntax and security notions for the cryp-

tographic primitives used in the paper.

(Aggregatable) Publicly Verifiable Secret Sharing. In a verifi-

able secret sharing (VSS) scheme, a dealer distributes shares of a

secret among a group of parties such that it can be reconstructed

only if a threshold of these parties collaborate. In a publicly verifi-

able secret sharing (PVSS) scheme, any third party can verify the

correctness of the sharing, thus avoiding the need for a complaint

phase as in VSS schemes. Henceforth, we consider PVSS schemes

that support aggregation of several sharings while preserving public

verifiability (called aggregatable PVSS scheme).

Definition 2 (Aggregatable PVSS Scheme). Let G be a cyclic
group of prime order 𝑝 specified by par . A (𝑡, 𝑛)-threshold aggregat-

able PVSS (APVSS) scheme over G is a tuple of algorithms APVSS =

(Keys, Enc,Dec,Dist,Agg,ConId,Ver,Rec) such that:

• Keys: The randomized key generation algorithm takes as
input system parameters par and an identity index 𝑖 ∈ [𝑛].
It outputs a public key pk𝑖 and a secret key sk𝑖 .

• Enc: The randomized encryption algorithm takes as input a
public key pk𝑖 and a message𝑚. It outputs a ciphertext 𝑐 .

• Dec: The deterministic decryption algorithm takes as input
a secret key sk𝑖 and a ciphertext 𝑐 . It outputs a message𝑚
(optionally with a proof of correct decryption). We require
that for all messages𝑚, Pr[Decsk𝑖 (Encpk𝑖 (𝑚)) =𝑚] = 1.

• Dist: The randomized secret sharing algorithm takes as input
a secret key sk𝑖 and public keys pk

1
, . . . , pk𝑛 . It outputs a

vector of encrypted shares E = (Encpk
1

(𝑆1), . . . , Encpk𝑛 (𝑆𝑛))
and a proof 𝜋 , where 𝑆1, . . . , 𝑆𝑛 are shares of a secret 𝑆 ∈ G.
We refer to 𝑇 := (E, 𝜋) as a PVSS transcript.

• Agg: The deterministic aggregation algorithm takes as input
PVSS transcripts (E1, 𝜋1), . . . , (E𝑘 , 𝜋𝑘), 𝑘 ∈ N. It outputs an
(aggregated) PVSS transcript 𝑇 := (E, 𝜋).
• ConId: The deterministic contributor identifier algorithm

takes as input an (aggregated) PVSS transcript 𝑇 = (E, 𝜋)
and a public key pk𝑖 . It outputs 1 (accept) or 0 (reject). In the
first case, we refer to 𝑃𝑖 as a contributor to 𝑇 .4

• Ver: The deterministic verification algorithm takes as input
public keys pk

1
, . . . , pk𝑛 , and an (aggregated) PVSS transcript

𝑇 = (E, 𝜋). It outputs 1 (accept) or 0 (reject). In the first case,
we call the transcript 𝑇 valid; otherwise we call it invalid.

• Rec: The deterministic reconstruction algorithm takes as
input 𝑡 + 1 shares 𝑆1, . . . , 𝑆𝑡+1. It outputs a secret 𝑆 ∈ G.

Discussion. We defer formal definitions for correctness and se-

crecy of an APVSS scheme to Appendix B.1. Our definition above

(and those in the appendix) are based on the ones from [10]. Essen-

tially, the only difference to their definitions is the following. Their

aggregation algorithm takes exactly 𝑡 + 1 transcripts as input, in
contrast to ours that can take any finite number of transcripts as

input, even a single one. In particular, our definition generalizes

theirs and we do not need to explicitly separate anymore between

a standard PVSS transcript and an aggregated one. However, when

we want to emphasize that the transcript was formed by aggrega-

tion of several (possibly themselves aggregated) transcripts, we will

make this explicit and call the transcript aggregated. Having said

this, we appropriately adapted some other algorithms and security

notions to our generalized setting. Further, for an APVSS scheme,

we require the secrecy notion of aggregated unpredictability as de-

fined in [10] (slightly adapted). This notion captures malleability

attacks and prohibits any 𝑡-bounded (i.e., corrupting at most 𝑡 par-

ties) adversary from learning the secret of an aggregated transcript

that has contribution from at least one honest party, even if the

adversary is allowed to contribute to the aggregation itself.

4
We remark that ConId could return 1 on an invalid transcript.

6

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Linear Erasure and Error Correcting Codes.We use standard

(𝑞,𝑏)-Reed-Solomon (RS) codes [68]. This primitive allows to en-

code 𝑏 data symbols into code words of 𝑞 symbols (using the al-

gorithm Encode) such that 𝑏 elements of the code word suffice to

recover the original data (using the algorithm Decode). In our DKG

construction, we will use Reed-Solomon codes with varying (𝑞,𝑏).
Concretely, we use codes with 𝑞 being the number of parties in

some designated subset of parties Q ⊆ P = {𝑃1, . . . , 𝑃𝑛} (called a

committee) and 𝑏 being ⌈𝑞/2⌉. In the special case Q = P, we have
(𝑞,𝑏) := (𝑛, 𝑡 + 1). We defer formal definitions to Appendix B.1.

Cryptographic Accumulator. A cryptographic accumulator [62]

allows to accumulate several elements from some set 𝐷 into an

accumulated value 𝑧 (using the algorithm Eval). Further, for each
element in 𝐷 it allows to generate a compact proof of member-

ship in 𝐷 (using the algorithm Wit) called a witness. The standard

security notion of collision-resistance requires that it is hard for

an adversary to create invalid proofs of membership. An example

of cryptographic accumulators are Merkle trees, where the root

is the accumulation value and the authentication paths are mem-

bership proofs (i.e., witnesses) for the leaves. In this paper, we use

an accumulator scheme with membership proofs and accumula-

tion value each of size O(_). This can be implemented using the

accumulator scheme of [19] built upon class groups of unknown

order. Alternatively, we can use Merkle trees at the cost of O(log𝑛)
multiplicative overhead in the communication complexity. We defer

formal definitions to Appendix B.1.

2.2 Consensus Primitives
In this section, we define syntax and security notions for the con-

sensus primitives used in the paper.

Byzantine Agreement.A Byzantine agreement (BA) protocol [56]

allows a set of parties, each holding an input 𝑣𝑖 ∈ 𝑉 from a value

set 𝑉 with |𝑉 | ≥ 2, to agree on a common output value 𝑣 ∈ 𝑉 that

was input from at least one honest party. In our definition, we also

account for some probability of failure Y which corresponds to the

adversary’s ability in breaking underlying cryptographic tools.

Definition 3 (Byzantine Agreement). Let Π be a protocol
executed by 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , where each party 𝑃𝑖 holds an input
value 𝑣𝑖 ∈ 𝑉 . We define the following properties for Π which each
holds with probability at least 1 − Y in the presence of an adversary
corrupting at most 𝑡 parties:

• Validity. Π is (𝑡, Y)-valid if the following holds: if every honest
party has the same input value 𝑣 as input, then every honest
party outputs this value 𝑣 .

• Consistency. Π is (𝑡, Y)-consistent if the following holds:
every honest party that outputs a value outputs the same
value 𝑣 .

• Termination. Π is (𝑡, Y)-terminating if the following holds:
every honest party terminates with an output value 𝑣 ∈ 𝑉 .

We say that Π is a (𝑡, Y)-secure Byzantine agreement protocol if it is
(𝑡, Y)-valid, (𝑡, Y)-consistent, and (𝑡, Y)-terminating.

Distributed Randomness Beacon. A randomness beacon is a

distributed protocol that allows a set of 𝑛 parties to generate a se-

quence of unpredictable and unbiased random values, one for each

epoch. Each party 𝑃𝑖 has a local log that is defined as a write-once

array Σ𝑖 = (Σ𝑖 [1], Σ𝑖 [2], . . .) with Σ𝑖 [ℓ] being its beacon output at

epoch ℓ ≥ 1. Initially, each value is set to ⊥. We say that party 𝑃𝑖
outputs a beacon value in epoch ℓ if it writes a value on Σ𝑖 [ℓ]. A se-

cure randomness beacon has to satisfy the properties of consistency,

availability, bias-resistance, and 𝑑-unpredictability. We elaborate

on these security notions. Consistency and availability guarantee

that each honest party outputs the same value 𝜎𝑒 ∈ {0, 1}_ in each

epoch 𝑒 ≥ 1. Bias-resistance guarantees that the beacon outputs are

indistinguishable from uniformly random numbers. This property

ensures that the adversary has no power in biasing the beacon

output, even when controlling up to 𝑡 parties in the system. On

the other hand, this notion does not prohibit the adversary from

learning the beacon output some epochs ahead of the honest parties.

That is ensured by the notion of 𝑑-unpredictability, which states

that the adversary does not learn the beacon output 𝑑 epochs be-

fore the honest parties. Conversely, an adversary could predict the

beacon output some epochs ahead of the honest parties, e.g., by

corrupting the next 𝑡 leaders whose previously committed values

determine the next 𝑡 beacon outputs (cf. GRandPiper [16] and Hy-

dRand [71]) without actually having the power to bias it. We defer

formal definitions to Appendix B.2.

3 DISTRIBUTED KEY GENERATION
In this section, we design a novel distributed key generation (DKG)

protocol whose secret and public keys both are group elements.

This is different frommost DKG protocols that output secret keys in

a field rather than a group. However, as demonstrated delightfully

by Gurkan et al. [48], this is enough for applications such as efficient

randomness beacons. We first formally define a DKG protocol.

Definition 4 (DKG Protocol). Let Π be a protocol executed by 𝑛
parties 𝑃1, . . . , 𝑃𝑛 , where for all 𝑖 ∈ [𝑛], 𝑃𝑖 outputs a secret key share
SK𝑖 , a vector of public key shares (PK1, . . . , PK𝑛), and a public key
PK . We define the following properties for Π which each holds with
probability at least 1 − Y in the presence of an adversary corrupting
at most 𝑡 parties:

• Consistency. Π is (𝑡, Y)-consistent if the following holds: all
honest parties output the same public key PK and the same
vector of public key shares (PK1, . . . , PK𝑛).

• Correctness. Π is (𝑡, Y)-correct if the following holds: there
exists a deterministic algorithm Rec that on input any set
of 𝑡 + 1 secret key shares {SK𝑖 }𝑖∈𝐼 outputs the same unique
secret key SK . Further, SK is a valid secret key for PK .

• Secrecy. Π is (𝑡, Y,𝑇)-secret if for all algorithms A that run
in time at most 𝑇 , its success probability in the following
experiment is at most Y.
– Offline Phase. Initialize a corruption index set C := ∅

and letH := [𝑛] \ C. Run A on input par .
– Corruption Queries. At any point of the experiment,

A may corrupt a party by submitting an index 𝑖 ∈ H .
In this case, return the internal state of 𝑃𝑖 and update
C := C ∪ {𝑖}. Henceforth, A has full control over 𝑃𝑖 .

– Online Phase. Initiate an execution of Π with A having
full control over parties in C. Let 𝑦 := PK ← Π be the
public key output by honest parties, and 𝑥 := SK .

– Winning Condition. Let 𝑆∗ denote the output of A. Then,
A is considered successful iff |C| ≤ 𝑡 and 𝑆∗ = 𝑥 .

7

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

We say thatΠ is a (𝑡, Y,𝑇)-secureDKG protocol if it is (𝑡, Y)-consistent,
(𝑡, Y)-correct, and (𝑡, Y,𝑇)-secret.

3.1 Components of our DKG Protocol
In this section, we describe the building blocks that will be used in

the construction of our DKG protocolGRand. Although we instanti-
ate these building blocks with specific schemes, our construction of

GRand in the next section is done in an abstract way such that these
building blocks can also be instantiated with other such schemes.

Aggregatable PVSS Scheme. We will make use of an APVSS

scheme in the construction of GRand. Concretely, we instantiate
this with our APVSS scheme given in Figure 6 (cf. Appendix C).

Our APVSS scheme is similar to the one of Bhat et al. [15] which

is essentially SCRAPE [23] augmented with a signed NIZK proof

of knowledge of discrete logarithm for Z = 𝑔𝛼 where 𝛼 := 𝑓 (0)
for a randomly chosen degree-𝑡 polynomial 𝑓 ∈ Z𝑝 [𝑋]. The only
difference is that the reconstructed secret in our scheme is 𝑆 := ℎ𝛼 ,

whereas the one in their scheme is 𝑆 ′ := 𝑒 (𝑔, ℎ𝛼) where 𝑔 ∈ G1 is
an additional generator. This choice is motivated by their security

analysis, which is a reduction from the co-decisional bilinear squar-

ing (co-DBS) problem. However, since in our randomness beacon

we never explicitly reconstruct the secret, it does not make much

of a difference for our security proof and thus we can sidestep the

need for further generators in the source groups. Finally, aggre-

gated unpredictability of our APVSS scheme follows directly from

aggregated unpredictability of their APVSS scheme (cf. [10] for a

proof of the latter), since any prediction 𝑆∗ := ℎ𝛼 for the former

gives a prediction 𝑆 ′∗ := 𝑒 (𝑔, 𝑆∗) for the latter.
Byzantine Agreement Protocol.We will make use of a BA pro-

tocol in the construction of GRand. Concretely, we instantiate this
with the BA protocol given in Appendix C.1. Essentially, this is

merely a variant of the BA protocol of Momose and Ren [59]. Their

protocol has optimal resilience 𝑡 < 𝑛/2 and achieves a communica-

tion complexity of O(_𝑛2) bits assuming threshold signatures of

size O(_) from a trusted setup. The threshold signatures are used

to prove knowledge of a threshold of signatures from other parties

on the same message. Instead, we implement these threshold sig-

natures with the recent transparent-setup threshold signatures of

Attema et al. [7] at the cost of multiplicative logarithmic overhead

in the communication complexity.
5
Importantly, this scheme has

the following desirable features: (i) It does not require a trusted

setup phase, i.e., all public parameters are random coins. (ii) The

𝑘-aggregation algorithm can be evaluated by any party with input

at least 𝑘 valid signatures from distinct signers, and it only takes the

signatures and public values as input. (iii) It allows for any threshold

𝑘 ≤ 𝑛 which can be chosen by the aggregator at aggregation time

independent of the setup phase. (iv) It is non-interactive, correct,

and unforgeable against an adaptive adversary. Having said this,

our resulting Byzantine agreement protocol has a communication

complexity of O(_𝑛2 log𝑛) and terminates in a linear number of

rounds. For more details on the transparent threshold signatures,

we refer to the original work [7]. Further, we briefly discuss the

security guarantees of the resulting BA protocol in Appendix C.1.

5
When the network of parties is of small size 𝑛 ∈ O(_) , we can instead directly use

an aggregated BLS signature augmented with the 𝑛-bit long vector of signers.

Deliver Protocol. We will make use of a protocol in the construc-

tion of GRand that allows parties to efficiently broadcast a long

message. Concretely, we instantiate this with the protocol Deliver
given in Figure 5 (cf. Appendix C). The protocol design was intro-

duced in [16, 61] and is based on erasure codes and cryptographic

accumulators. Deliver is a two-round protocol that is invoked by a

party 𝑃𝑖 that wants to efficiently broadcast a long message𝑚 to all

parties in some set Q. In contrast to [16, 61], we make use ofDeliver
for sets of varying sizes. We parameterize Deliver by a set Q of 𝑞

parties among which it is executed. It is invoked by a party 𝑃𝑖 ∈ Q
and takes as input a long message𝑚, the accumulation value 𝑧 for

an encoding of𝑚, and Q along with implicit parameters 𝑞 = |Q|
and 𝑏 = ⌈𝑞/2⌉. For this, 𝑃𝑖 first splits𝑚 into 𝑏 data symbols and

encodes these into 𝑞 code words using an (𝑞,𝑏)-erasure code RS.
Then, 𝑃𝑖 sends the 𝑗-th code word, the accumulation value 𝑧 for the

set of 𝑞 code words along with a witness to 𝑃 𝑗 ∈ Q. Upon receiving

a valid triple of this type, 𝑃 𝑗 forwards it to all other parties in Q.
Finally, upon receiving 𝑏 valid code words corresponding to the

accumulation value 𝑧, 𝑃 𝑗 reconstructs the full message𝑚 using the

decoding algorithm. In this way, message𝑚 can efficiently reach

all honest parties in Q when the sender 𝑃𝑖 was honest. Finally, we

note that correctness of Deliver is implied by collision-resistance of

the underlying cryptographic accumulator scheme, since the only

way to reconstruct a different message𝑚′ ≠ 𝑚 is by receiving a

witness for non-membership. For more details, we refer to [61].

3.2 Design of our DKG Protocol
In this section, we present our DKG protocol GRand. At its heart
lies a recursive protocol GenAPVSS that allows parties to aggre-

gate several PVSS transcripts with contribution from at least one

honest party in an efficient manner. From such an aggregated PVSS

transcript parties can locally derive their secret key shares without

any further interaction between them.

Recursive PVSS Aggregation.We give an informal description of

the protocol GenAPVSS (cf. Figure 1). We parameterize GenAPVSS
by a setQ of𝑞 parties amongwhich it is executed. Upon termination

of the protocol, all parties output a common, single PVSS transcript

𝐴𝑇 which is obtained by aggregation of two transcripts. The high-

level idea of the protocol is to split the system Q of all parties into

two disjoint sets (called committees) Q1,Q2 of roughly equal size,

let each committee Q𝑖 , 𝑖 ∈ [2], run the protocol among themselves,

and then broadcast the resulting PVSS transcript 𝑇𝑖 to the other

committee Q1−𝑖 . All parties then terminate with the aggregation

𝐴𝑇 := Agg(𝑇1,𝑇2). In more detail, this works as follows.

Let Q = Q1 ∪ Q2 be a (deterministic) partition of Q into two

disjoint sets called committees. For each 𝑖 ∈ [2], run the protocol

GenAPVSS among parties in Q𝑖 and let 𝑇𝑖 denote the common

output. Now, instead of directly sending the whole transcript 𝑇𝑖 to

all parties in the opposite committee Q1−𝑖 , each party sends only a

much shorter accumulation value 𝑧𝑖 for𝑇𝑖 . To counteract malicious

behavior, all parties in Q establish consensus on both accumulation

values 𝑧1, 𝑧2 via two separate instances of a Byzantine agreement

protocol BA. Note that at this stage, parties in Q𝑖 do not know

anything about the opposite committee Q1−𝑖 ’s transcript𝑇1−𝑖 other
than the accumulation value 𝑧1−𝑖 and vice versa. Therefore, for each
𝑖 ∈ [2], parties in Q𝑖 next broadcast their transcript𝑇𝑖 to all parties

8

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Let Q ⊆ P be a set of 𝑞 parties and let 𝑏 := ⌈𝑞/2⌉. Further, let Q = Q1 ∪ Q2 be a (deterministic) partition of Q into two disjoint subsets

(each called a committee) of size 𝑞1 := ⌈𝑞/2⌉ and 𝑞2 := ⌊𝑞/2⌋, respectively. Hereafter, we use the notation ⟨𝑚⟩ := Encode(𝑚1, . . . ,𝑚𝑏) for
a (𝑞,𝑏)-Reed-Solomon code RS = (Encode,Decode) and where (𝑚1, . . . ,𝑚𝑏) is a deterministic partition of𝑚. We describe the protocol

from the view of party 𝑃𝑖 and let 𝑙 ∈ {1, 2} be such that 𝑃𝑖 ∈ Q𝑙 .
• Initialization. Initialize empty lists C, T,Z of length 2 and set Z[𝑗] := ⊥ (default value) for 𝑗 ∈ {1, 2}. // Variables are defined.
• Recursive Execution. Run GenAPVSS(Q𝑙) among parties in Q𝑙 and let 𝑇𝑙 denote the output. If |Q𝑙 | = 1, then obtain 𝑇𝑙 by

locally executing 𝑇𝑙 ← Dist(sk𝑖 , (pk1, . . . , pk𝑛)). // Both committees run the protocol recursively and output a PVSS transcript each.
• Accumulator Delivery. Compute an accumulation value 𝑧𝑙 for the encoding ⟨𝑇𝑙 ⟩ and send 𝑧𝑙 to all parties in Q. Upon receiving

the same value 𝑧 𝑗 from ⌊𝑞 𝑗/2⌋ + 1 distinct parties in Q 𝑗 (i.e., a majority set of parties), update Z[𝑗] := 𝑧 𝑗 for each 𝑗 ∈ {1, 2} at
most once. // Parties only accept the majority value 𝑧 𝑗 received from each committee Q 𝑗 .

• Accumulator Agreement. For each 𝑗 ∈ {1, 2}, run Byzantine agreement BA𝑗 on input Z[𝑗] among parties in Q. Let 𝑧 𝑗 denote
the output, and update Z[𝑗] := 𝑧 𝑗 . // Parties establish consensus on both accumulation values 𝑧1, 𝑧2 (one from each committee).

• Transcript Delivery. If Z[𝑙] ≠ ⊥, then invoke Deliver on input (Q,𝑇𝑙 ,Z[𝑙]) among parties in Q. Further, only participate in

another instance ofDeliverwith respective accumulation value 𝑧 ≠ ⊥ if 𝑧 ∈ Z[·]. Upon decoding a message𝑇𝑗 (with accumulation

value Z[𝑗]), update T[𝑗] := 𝑇𝑗 for each 𝑗 ∈ {1, 2} at most once. // Parties efficiently broadcast their 𝑇𝑗 to all parties in Q.
• Committee Selection. For each 𝑗 ∈ {1, 2}, update C[𝑗] := Ver(T[𝑗], (pk

1
, . . . , pk𝑛)) ∈ {0, 1}. For each 𝑗 ∈ {1, 2}, run (binary)

Byzantine agreement BA𝑗 on input C[𝑗] among parties in Q. Let 𝑏 𝑗 denote the output bit, and update C[𝑗] := 𝑏 𝑗 . // Parties decide
on which committee(s) have correctly delivered a valid PVSS transcript 𝑇𝑗 with resp. accumulation value 𝑧 𝑗 .

• Transcript Agreement. For each 𝑗 ∈ {1, 2} such that C[𝑗] = 1, invoke Deliver on input (Q, T[𝑗],Z[𝑗]) among parties in Q.
Upon decoding a message 𝑇𝑗 (with respective index 𝑗) such that C[𝑗] = 1 and Ver(𝑇𝑗 , (pk1, . . . , pk𝑛)) = 1, update T[𝑗] := 𝑇𝑗 at
most once. // This ensures that 𝑇𝑗 reaches all honest parties in Q.

• Final Aggregation. Compute the aggregation 𝐴𝑇 := Agg(T[1], T[2]) and output. // Aggregate both transcripts and terminate.

Figure 1: Description of our APVSS transcript generation protocol GenAPVSS for the set Q ⊆ P from the view of party 𝑃𝑖 .

Let P = {𝑃1, . . . , 𝑃𝑛}. The protocol outputs a vector of secret key shares (SK1, . . . , SK𝑛) ∈ G𝑛
2
where SK 𝑗 is known only to 𝑃 𝑗 , a vector

of public key shares (PK1, . . . , PK𝑛) ∈ G𝑛
1
, and a public key PK ∈ G1.

• Transcript Generation. Run GenAPVSS(P) among all parties in P and obtain a PVSS transcript 𝐴𝑇 := {C, E, 𝜋} from the

execution. // This generates a common (aggregated) PVSS transcript 𝐴𝑇 for all parties in P.
• Key Derivation. Compute the decryption 𝐷𝑖 := Decsk𝑖 (𝐸𝑖). Terminate with output (PK1, . . . , PK𝑛) := (𝐶1, . . . ,𝐶𝑛) and

SK𝑖 := 𝐷𝑖 . // Parties derive their secret key shares directly from the PVSS transcript 𝐴𝑇 without further interaction. In particular,
these key shares interpolate a degree-𝑡 polynomial 𝑓 ∈ Z𝑝 [𝑋] in the exponent.

Figure 2: Description of our DKG protocol GRand from the view of party 𝑃𝑖 .

in Q using the protocol Deliver on input (Q,𝑇𝑖 , 𝑧𝑖). This ensures
efficient delivery of the large transcript𝑇𝑖 to all other parties. Since

an adversarial-controlled committee could simply refuse to deliver

its transcript to some of the honest parties, we introduce two further

steps to maintain consistency. First, parties in Q decide on whether

the previous step succeeded via two separate instances of binary

Byzantine agreement, one to decide for each committee. Second,

parties proceedwith another invocation ofDeliver to guarantee that
all honest parties obtain the transcripts among {𝑇1,𝑇2} for which
the respective Byzantine agreement execution output 1. Parties

conclude the protocol with aggregation of these transcripts and

terminate with 𝐴𝑇 := Agg(𝑇1,𝑇2) as output.

Our DKG Protocol. A formal description of the protocol GRand
is given in Figure 2. The protocol consists of two simple steps. First,

parties in P execute the protocolGenAPVSS to establish consensus

on an aggregated PVSS transcript 𝐴𝑇 := {𝐶 𝑗 , 𝐸 𝑗 , 𝜋} 𝑗∈[𝑛] (which
has contribution from at least one honest party by design and

thus is secure from the adversary). Then, each party 𝑃𝑖 computes its

secret share𝐷𝑖 := Decsk𝑖 (𝐸𝑖) and terminates. The public key shares

of GRand are defined as (PK1, . . . , PK𝑛) := (𝐶1, . . . ,𝐶𝑛) with the

secret key shares being (SK1, . . . , SK𝑛) := (𝐷1, . . . , 𝐷𝑛). Using the
specific APVSS scheme described in Figure 6, the public key shares

ofGRand are PK𝑖 = 𝑔
𝑓 (𝑖)

and the secret key shares are SK𝑖 = ℎ
𝑓 (𝑖)

,

where 𝑓 ∈ Z𝑝 [𝑋] is the hidden polynomial of degree 𝑡 encoded

in the APVSS transcript 𝐴𝑇 . We note that even though 𝑃𝑖 knows

ℎ𝑓 (𝑖) , it does not know 𝑓 (𝑖) itself. In particular, this DKG protocol

is different from many DKG protocols in the literature where the

hidden polynomial itself is distributed among the parties.

3.3 Security and Complexity Analysis
In this section, we give a security and complexity analysis of our

DKG protocol GRand. In the following, let APVSS be an aggregat-

able PVSS scheme, let BA be a Byzantine agreement protocol, and

let AC be a cryptographic accumulator scheme. Then, assuming

aggregated unpredictability of APVSS, security of BA, and collision-
resistance of AC, this implies security of GRand. Further, it has log-
quadratic communication complexity and linear round complexity

when instantiated with our components from Section 3.1. For a full

proof of the following theorem, we refer to Appendix D.1.

9

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

Let 𝑒 : G1 × G2 → G𝑇 be a pairing with generators 𝑔 ∈ G1, ℎ ∈ G2. Let H1 : {0, 1}∗ → G1 and H2 : G𝑇 → {0, 1}_ be two cryptographic

hash functions modeled as random oracle. Hereafter, let 𝑔𝑟 := H1 (𝑟) for all 𝑟 ∈ N.
• Setup Phase. Parties execute the DKG protocol GRand and obtain a vector of secret key shares (SK1, . . . , SK𝑛) ∈ G𝑛

2
, a vector

of public key shares (PK1, . . . , PK𝑛) ∈ G𝑛
1
, and a public key PK ∈ G1. // This serves as setup for the randomness beacon which

starts following a one-time, one-round commitment phase.
• Commitment Phase. Initialize an empty local set G := ∅. Sample 𝛼𝑖 ←$

Z∗𝑝 uniformly at random and multicast (i.e., send

to all parties) the commitment cm𝑖 := (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Upon receiving cm𝑗 = (cm𝑗,1, cm𝑗,2) from party 𝑃 𝑗 , check if equality

𝑒 (PK 𝑗 , ℎ) = 𝑒 (cm𝑗,1, ℎ)𝑒 (𝑔, cm𝑗,2) holds. Only if this equality holds, update the set G := G ∪ {𝑃 𝑗 }. // This step is done only once,
and each party stores the commitments cm𝑗 it received from other parties.

• Beacon Epoch r. Compute 𝜎𝑖 := (𝑔𝛼𝑖𝑟 , 𝑒 (𝑔𝑟 , SK𝑖)) along with 𝜋𝑖 := Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟), and multicast (𝜎𝑖 , 𝜋𝑖). Upon receiving

(𝜎 𝑗 , 𝜋 𝑗) from party 𝑃 𝑗 ∈ G, check if 𝜋 𝑗 verifies using cm𝑗,1 and 𝜎 𝑗,1. Further, check if 𝜎 𝑗,2 = 𝑒 (𝑔𝑟 , cm𝑗,2)𝑒 (𝜎 𝑗,1, ℎ).
• Reconstruction Phase. Upon receiving 𝑡 + 1 valid tuples {(𝜎 𝑗 , 𝜋 𝑗)} 𝑗∈S from distinct parties in G, compute 𝜎 := 𝑒 (𝑔𝑟 , SK) by

Lagrange interpolation in the exponent from {𝜎 𝑗,2 = 𝑒 (𝑔𝑟 , SK 𝑗)} 𝑗∈S . // Only local computation without interaction.
• Beacon Output. Upon reconstruction of 𝜎 in epoch 𝑟 , output the beacon value as 𝜚𝑟 := H2 (𝜎) ∈ {0, 1}_ . // The beacon value is

output as soon as 𝑡 + 1 valid tuples are received.

Figure 3: Description of the randomness beacon protocol GRandLine from the view of party 𝑃𝑖 .

Theorem 1. If APVSS is (𝑡, Y𝐴,𝑇𝐴, 𝑞𝑠)-aggregated unpredictable,
if BA is (𝑡, Y𝐵,𝑇𝐵)-secure, and if AC is (𝑛, Y𝐶 ,𝑇𝐶)-collision-resistant,
then GRand (cf. Figures 1 and 2) is a (𝑡, Y,𝑇)-secure DKG protocol,
where

Y ≤ 2𝑛 (Y𝐴 + 2Y𝐵 + 𝑛Y𝐶) , 𝑇 ≥ 𝑇𝐴 +𝑇𝐵 +𝑇𝐶 + O(𝑛2).

Using the components in Section 3.1, GRand has a communication
complexity of O(_𝑛2 log𝑛) bits and terminates in O(𝑛) rounds.

4 DISTRIBUTED RANDOMNESS BEACON
In this section, we design an efficient and simple randomness beacon

protocol. The construction is inspired by the threshold VUF design

of Gurkan et al. [48] and can be thought of as an optimized version

of their protocol that comes with an adaptive security proof. As

such, our protocol is comparable with the threshold BLS signature.

4.1 Design of our Randomness Beacon
In this section, we present our randomness beacon GRandLine.
For a formal description of the protocol, we refer to Figure 3 be-

low. Let H1 and H2 be hash functions modeled as random oracle

and denote 𝑔𝑟 := H1 (𝑟) for all 𝑟 ∈ N. Parties begin by executing

GRand upon which every party 𝑃𝑖 obtains a public-secret key pair

(PK𝑖 , SK𝑖) := (𝑔𝑓 (𝑖) , ℎ𝑓 (𝑖)) for a hidden polynomial 𝑓 ∈ Z𝑝 [𝑋]
of degree 𝑡 . The idea now is to use 𝜗𝑖 := 𝑒 (𝑔𝑟 , SK𝑖) ∈ G𝑇 as a

partial signature on the epoch number 𝑟 ∈ N, obtain the full sig-

nature 𝜗 := 𝑒 (𝑔𝑟 , SK) via Lagrange interpolation in the exponent

from enough shares, and derive the randomness beacon value as

H2 (𝜗) ∈ {0, 1}_ . However, the problem with a naive implementa-

tion of this approach is that no party can verify the correctness of

a received share 𝜗𝑖 = 𝑒 (𝑔𝑟 , ℎ) 𝑓 (𝑖) . In order to resolve this issue, we

augment the signature shares with additional elements from which

its correctness can be checked via pairing equations. For this, we

follow an economical two-step approach. After DKG setup, each

party 𝑃𝑖 locally samples an 𝛼𝑖 ←$
Z∗𝑝 uniformly at random and

multicasts (i.e., sends to all parties) cm𝑖 = (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Correct-
ness of its second component can be checked via a pairing equation.

After this commitment phase, the actual randomness beacon starts.

For epoch 𝑟 ≥ 1, each party computes 𝜎𝑖 := (𝑔𝛼𝑖𝑟 , 𝜗𝑖) along with a

Chaum-Pedersen NIZK proof of discrete logarithm equality [26]

as 𝜋𝑖 := Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟) to prove correctness of 𝑔
𝛼𝑖
𝑟 . Upon re-

ceiving such a tuple, any party can verify the correctness of the

partial signature 𝜗𝑖 using a pairing equation. Having done this,

each party can compute the randomness beacon value for epoch 𝑟

as described above. Overall, partial signatures consist of two group

elements along with a simple proof of discrete logarithm equality.

And verification of a share takes a single pairing equation with two

pairing operations (as for the regular BLS signature).

4.2 Security and Complexity Analysis
In this section, we give a security and complexity analysis of our

randomness beacon protocol GRandLine. On an high level, con-

sistency and availability follow from uniqueness of the signature

𝜗 := 𝑒 (H1 (𝑟), SK) (per message 𝑟 and public key PK) and soundness
of the Chaum-Pedersen NIZK proof system for discrete logarithm

equality. Unpredictability follows from unforgeability of 𝜗 , and the

final hash operation H2 (𝜗) guarantees uniformity in the random

oracle model. Essentially, these are the standard arguments for

the transformation from unique threshold signatures to random-

ness beacons [21], but with the additional argument of soundness

of NIZK proofs for correctness of the threshold signature. Using

known techniques [9] to handle adaptive corruptions, we give a

security reduction from the hardness of 𝑛-COMDL to the unforge-

ability of the threshold signature.

Intuitively, the adversary essentially has three options to success-

fully forge a signature 𝜗∗ = 𝑒 (H1 (𝑟∗), SK) on some message (i.e.,

epoch number) 𝑟∗. It either finds the secret key SK , the encryption
secret 𝛼𝑖 for an honest party’s 𝑖 ∈ [𝑛], or the discrete logarithm of

the element H1 (𝑟∗). But this should be infeasible given secrecy of

the underlying DKG protocol and the ElGamal encryption used for

commitments cm𝑖 := (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Further, the output BLS sig-
natures H1 (1)𝛼𝑖 ,H1 (2)𝛼𝑖 , . . . do not reveal additional information.

We make this intuition sound by building a reduction that embeds

the 𝑛-COMDL challenge b in either the PVSS transcript of some

party (that remains honest at the end), in the ElGamal encryption

10

GRandLine: DKG and Randomness Beacon withQuadratic Communication

secrets 𝛼1, . . . , 𝛼𝑛 of parties, or in the random oracle outputs H1 (·),
a choice that remains hidden from the adversary. Leveraging the

algebraic group model, we are able to solve b using the polynomial

equations that come from the forgery and additional data output

by the adversary. For a full proof of the following theorem, we refer

to Appendix D.2.

Theorem 2. If 𝑛-COMDL is (Y𝐴,𝑇𝐴)-hard in the AGM and BA is
(𝑡, Y𝐵,𝑇𝐵)-secure, then GRandLine (cf. Figure 3) is a (𝑡, Y,𝑇 , 𝐿, 𝑞ℎ, 1)-
secure randomness beacon protocol in the AGM + ROM, where

Y ≤ 𝐿𝑛
(
12Y𝐴 + 4𝑛Y𝐵 +

𝑞2
ℎ
+ 4𝑞ℎ
2𝑝

)
, 𝑇 ≥ 𝑇𝐴 +𝑇𝐵 + O(𝐿𝑛2) .

Further, GRandLine has a communication complexity of O(_𝑛2) bits
per epoch, and each epoch takes one asynchronous round.

5 IMPLEMENTATION & EVALUATION
In this section, we evaluate the performance of our randomness

beacon protocol GRandLine for various network sizes. Concretely,

we evaluate its throughput (i.e., the number of beacon values output

per second) and compare it to existing state-of-the-art randomness

beacons in the same setting: OptRand [15], BRandPiper [16], and

Drand [64]. Although we developed our code to be agnostic to the

choice of a pairing-friendly curve, we have used BLS12-381 for our

instantiation. In particular, we have used the implementation of

BLS12-381 by arkworks [6] for primitive elliptic curve operations.

5.1 Implementation Details
We have implemented our prototype of GRandLine using the Rust

programming language and the arkworks ecosystem [6]. We use a

custom, optimized APVSS scheme implementation for our underly-

ing cryptographic operations [65] and tokio [30] for networking.

The implementation follows strictly the description in Figure 3 and

it is publicly available at our GitHub repository [66].

An important note: We emphasize that we have not implemented

our DKG protocol and instead manually set up the keys of parties

for our experiments. The same is also true for the other random-

ness beacon protocols of interest, BRandPiper and OptRand. Their

publicly available implementations [58, 72] have the output gen-

erated from a potential pre-processing phase already configured.

Without major modifications on their codes, it is not possible for

us to run and evaluate their pre-processing phase. That being said,

we likewise decided to not implement our DKG protocol.

Instantiation.We instantiate pairings with the BLS12-381 pairing-

friendly family of elliptic curves. For efficiency, we use in our imple-

mentation G1 as the group for encrypted shares of the underlying

APVSS scheme and G2 as the group for commitment shares. For

our group generators 𝑔1 ∈ G1 and 𝑔2 ∈ G2, we use fixed generators
of unknown exponent. We simulate our protocol’s setup phase by

precomputing and using config files with the PVSS public keys and

BLS12-381 public keys for Schnorr digital signatures.

5.2 Experimental Setup
We demonstrate the efficiency of GRandLine by evaluating our

implementation with a varying total number of nodes, i.e., 4, 8,

16, 32, and 64. All experiments were conducted over Amazon EC2

where each replica was executed on a t3.medium instance. Each

instance has 2 vCPUs, all cores sustained a Turbo CPU clock speed

of up to 3.1GHz. The machines have up to 5 Gbps bandwidth, 4GB

memory and run Ubuntu 22.04 LTS.

Network. To simulate execution over the Internet and to ensure

comparability with other proposals, all of our experiments were

conducted over Amazon EC2 where each replica was executed on a

t3.medium instance across 8 regions: N. Virginia (us-east-1), Ohio

(us-east-2), N. California (us-west-1), Oregon (us-west-2), Stock-

holm (eu-north-1), Frankfurt (eu-central-1), Tokyo (ap-northeast-1),

Sydney (ap-southeast-2). For any choice of total number of nodes,

we distribute the nodes evenly across all eight regions. For our

runs with 4 nodes we used the following regions: N. Virginia (us-

east-1), N. California (us-west-1), Frankfurt (eu-central-1), Tokyo

(ap-northeast-1). In all cases, we create an overlay network among

nodes where all nodes are pairwise connected in a complete graph.

Baselines.We compare the performance of our implementation

to three state-of-art publicly available implementations: BRand-

Piper [58], Drand [64] and OptRand [72]. Our choice is motivated

by the fact that all of these schemes are adaptively secure, have

optimal resilience threshold 𝑡 < 𝑛/2, and do not use cryptographi-

cally heavy tools such as proof-of-work or (trapdoor) VDFs. For a

comparison of the computation costs, we refer to Table 3.

5.3 Evaluation Results
Similar to previous work [31], we run each experiment three times

for about 10 minutes each and took the average over these three

runs. Additionally, we note that many other previous works [12,

15, 16, 71] do not specify the number of runs for their experiments

(which could therefore potentially be only a single run). We report

the throughput of GRandLine and the comparative randomness

beacons as the number of beacon outputs per second in Figure 4.

Figure 4: Performance graph for the randomness beacon protocols: Op-

tRand, BRandPiper, Drand, and GRandLine.

GRandLine. Compared to all three baselines, GRandLine outputs
beacons at significantly higher rates. In particular, our evaluation

results show that with 4, 8, 16, 32, and 64 nodes, GRandLine gener-
ates on average 11, 8, 7, 4, and 2 beacons per second, respectively.

11

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

Table 3: Computation cost per epoch for non-leader, leader parties.

Protocol Balanced Rounds Pairings NIZKs (Ver) NIZKs (Gen) Exponents Public Ver

Drand [64] ✓ 1 2𝑛 0 0 𝑡 + 2 2, 0

OptRand [15] ✗ 11 4𝑛 + 1, 2𝑛 + 1 𝑛, 𝑛2 + 𝑛 𝑛 + 1 2𝑛 + 𝑡 + 2 2𝑛 + 3, 3𝑡 + 3
BRandPiper [16] ✗ 11 4𝑛, 2𝑛 0 0, 𝑛2 𝑛, 𝑛2 2𝑛, 𝑡 + 1
GRandLine ✓ 1 2𝑛 + 1 𝑛 1 𝑡 + 2 2𝑡 + 2, 4𝑛 + 𝑡 + 1

Balanced denotes balanced computation cost across all parties. Rounds denotes the number of rounds per epoch. Pairings denotes the number of pairing operations performed by

each non-leader, leader party. NIZKs (Ver) denotes the number of NIZK verifications performed by each non-leader, leader party. OptRand and GRandLine employ Chaum-Pedersen

proofs of discrete logarithm equality for the NIZKs. NIZKs (Gen) denotes the number of NIZKs generated by each non-leader, leader party. BRandPiper employs KZG proofs for the

NIZKs whose verification uses pairings. Exponents denotes the number of group exponentiations performed by each non-leader, leader party. For Drand and GRandLine, this can

be done using one multi-exponentiation and one regular exponentiation. For OptRand, this can be done using one multi-exponentiation and 2𝑛 + 1 regular exponentiations. For
BRandPiper, this can be done using one resp. 𝑛 multi-exponentiation(s) by a non-leader resp. leader party. Public Ver denotes the number of pairings, group exponentiations

performed to publicly verify an epoch beacon output. Here, we directly incorporate the NIZK verifications into the group exponentiation count.

The average time between generating two consecutive beacons is

87.19ms, 117.37ms, 133.29ms, 249.65ms, and 489.89ms, respectively.

We recall that each experiment was run for about 10 minutes.

OptRand.The protocol proceeds through epochs of up to 11 rounds,
where each epoch 𝑒 ≥ 1 is delegated by a different leader 𝐿𝑒 chosen

in a round-robin fashion. In each epoch 𝑒 ≥ 1, the leader 𝐿𝑒 is

instructed to collect and aggregate 𝑡 + 1 valid PVSS transcripts that

other parties send to it at the beginning of the epoch. Later, parties

collectively reconstruct the secret 𝑆𝑒 of the aggregated transcript

and compute the beacon value 𝑂𝑒 for epoch 𝑒 as hash 𝑂𝑒 := H(𝑆𝑒).
Further, the protocol relies on an initial setup where parties start

with agreed-upon buffers B(𝑃𝑖) for all 𝑖 ∈ [𝑛] that contain random

PVSS transcripts each. In their public implementation [72] this

phase is skipped and already configured. Finally, the protocol has

two modes of operation: an optimistically-responsive mode and a

non-optimistic mode. The former allows for responsive progress

when there are 𝑡 < 𝑛/4 actual corrupt parties in the system, which

results in much higher throughput compared to the latter.

We test only against OptRand’s optimistically-responsive variant,

since its non-optimistic variant performs comparably to BRand-

Piper (cf. [15] for a discussion on that). OptRand is leader-based, has

many rounds of communication per epoch, and the epoch leader

has to carry most of the computation which leads to a bottleneck

for higher values of 𝑛. This results in significantly lower through-

put per second compared to GRandLine where the computation

cost is balanced across all nodes (cf. Table 3). Further, OptRand’s

reference implementation is instantiated with the BN128 pairing-

friendly curve from libff [55]. Unfortunately, while this curve allows

OptRand to benefit from more efficient modular operations, it is be-

low acceptable security standards [69]. Concretely, it provides only

100-bit security level. By instantiating GRandLine with a similar

curve, specifically arkworks’ ark-bn254 crate [1], we estimate that

our protocol is capable of generating roughly twice the number of

beacons compared to what is shown in Figure 4.

BRandPiper. The protocol proceeds through epochs of 11 rounds,

where each epoch 𝑒 ≥ 1 is delegated by a different leader 𝐿𝑒 chosen

in a round-robin fashion. In each epoch 𝑒 ≥ 1, the leader 𝐿𝑒 shares 𝑛

randomly chosen secrets s𝑒 = (𝑠𝑒,1, . . . , 𝑠𝑒,𝑛) ∈ Z𝑛𝑝 among all parties

via an efficient multi-secret VSS scheme. Later, parties collectively

reconstruct the ephemeral randomness 𝑅𝑒 as a sum of 𝑛 secrets

𝑠𝑒,𝑖 , . . . , 𝑠𝑒−𝑛+1,𝑖 from 𝑛 consecutive leaders (i.e., one secret from

each leader). The randomness beacon value 𝑂𝑒 for epoch 𝑒 is then

computed as hash 𝑂𝑒 := H(𝑅𝑒). Further, the protocol relies on an

initial setup where parties start with agreed-upon buffers B(𝑃𝑖) for
all 𝑖 ∈ [𝑛] that contain elements from amulti-secret VSS sharings. In

their public implementation [58] this phase is skipped and already

configured. Finally, the protocol is not responsive.

BRandPiper’s throughput depends heavily on an estimate for the

synchronous network delay parameter Δ. A higher value for Δ leads

to increased security but reduces the performance and vice versa.

For BRandPiper, we first look for the smallest value for Δ that does

not break their implementation and then measure throughput with

this value for the delay parameter. Like OptRand’s non-optimistic

variant, BRandPiper outputs beacons every 11Δ. BRandPiper suffers
from increased overheads incurred by both synchronization as well

as cryptographic operations due to its round-robin leader election

and the use of multi-secret VSS. In particular, our results shown in

Figure 4 confirm that BRandPiper’s performance is severely limited

by the presence of a single slow node in the system.

Drand. The protocol uses the non-interactive and unique threshold
BLS signature to generate the beacon value. Concretely, in each

epoch 𝑒 ≥ 1, parties collectively reconstruct the full signature 𝜎𝑒
on the message𝑚 := 𝑒 and compute the beacon value𝑂𝑒 for epoch

𝑒 as hash 𝑂𝑒 := H(𝜎𝑒). Further, the protocol relies on an initial

key setup realized through Pedersen’s DKG protocol [67], which

essentially runs 𝑛 parallel instances of Feldman’s VSS with some

additional verification steps. It has a communication cost of O(_𝑛4)
bits and outputs secret keys as field elements.

Although the threshold BLS signature allows for asynchronous

communication, the actual deployment of Drand relies on a period

parameter that determines the time after which a beacon value

is output. Concretely, in each period of 30 seconds only a single

beacon value is output. We note that we were only able to evaluate

Drand’s throughput for up to 32 nodes, as in our experiments,

Drand’s initialization step keeps failing for 64 or more nodes, even

for large estimates of the network delay. The same issue was already

reported in previous works [16, 31]. In accordance with previous

works [15, 16, 31], we measure Drand’s throughput after its DKG

phase by computing the time from the start of the epoch until the

beacon is reconstructed. We observe that GRandLine outperforms

Drand despite their similarity in computational cost (cf. Figure 3).

We suspect there may be implementation inefficiencies in Drand

that hindered its throughput. Another reason could be the choice of

12

GRandLine: DKG and Randomness Beacon withQuadratic Communication

programming language. Our protocol is implemented in Rust which

is highly optimized for fast execution and has a better run-time

performance due to the lack of garbage collection. On the other

hand, Drand is implemented in Go-lang whose garbage collector

can negatively influence consistency of performance (especially, at

these high rates of throughput).

6 CONCLUSION
In this work, we presented a novel distributed key generation (DKG)

protocol GRand and a novel distributed randomness beacon pro-

tocol GRandLine. Our DKG protocol GRand has a communication

complexity of O(_𝑛2 log𝑛) bits while preserving optimal Byzan-

tine resilience threshold 𝑡 < 𝑛/2 in the synchronous network set-

ting. This gives the first DKG protocol in any network setting

that achieves subcubic communication complexity (cf. Table 2).

Our randomness beacon protocol GRandLine has a communica-

tion complexity of O(_𝑛2) bits per epoch, where each epoch takes

only a single asynchronous round of communication and is non-

interactive (cf. Table 1). In each epoch, GRandLine employs only

lightweight cryptography such as hash functions and pairings. Fur-

ther, both our protocols are secure in the presence of a strongly

adaptive adversary. Finally, we have implemented GRandLine in
Rust (with manually configured key setup) and found that it vastly

outperforms previous randomness beacons in the same setting.

While our DKG protocol has a low communication complexity,

it only terminates after a linear number O(𝑛) of rounds. Espe-
cially in large-scale systems, a lower number of rounds is highly

desirable, preferably independent of the number 𝑛 of all parties.

Therefore, an intriguing question is how to lower the number of

rounds from linear O(𝑛) to expected constant O(1) while preserv-
ing quadratic communication complexity. On the other hand, our

randomness beacon has low communication and round complex-

ity, but has slightly worse computational complexity compared to

the randomness beacon derived from threshold BLS. Concretely,

each party needs to compute two pairing evaluations along with a

Chaum-Pedersen NIZK (for discrete logarithm equality) verification

to verify other parties’ beacon shares. In contrast, the threshold BLS

scheme only requires one pairing evaluation for this step. Finally,

our randomness beacon protocol requires O(𝑛) pairing evaluations
and NIZK verifications for public verifiability of an epoch beacon

value. This is where it significantly falls behind threshold BLS, but

is comparable to the other protocols (cf. Table 3). However, using

standard batch verification techniques [76], this can be reduced to

only six multi-exponentiations and two pairing evaluations.

ACKNOWLEDGMENTS
We would like to thank Adithya Bhat, Aniket Kate, Kartik Nayak,

and Nibesh Shrestha for helpful discussions on the implementation

of OptRand. We would also like to thank Zubayr Khalid for help-

ing with our experiments. This work is funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) –

507237585, and by the European Union, ERC-2023-StG-101116713.

Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union.

Neither the European Union nor the granting authority can be held

responsible for them.

REFERENCES
[1] 2023. Library implementation for the BN254 pairing-friendly elliptic curve.

docs.rs. (2023). https://docs.rs/ark-bn254/0.4.0/ark_bn254/index.html

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2023. Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and

Distributed Key Generation. In Advances in Cryptology – CRYPTO 2023: 43rd
Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA,
USA, August 20–24, 2023, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg,
39–70. https://doi.org/10.1007/978-3-031-38557-5_2

[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Reaching Consensus for Asynchronous Distributed

Key Generation. In 40th ACM Symposium Annual on Principles of Distributed
Computing. Association for Computing Machinery, Portland, OR, USA, 363–373.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2018. Dfinity

Consensus, Explored. Cryptology ePrint Archive, Report 2018/1153. (2018).

https://eprint.iacr.org/2018/1153.

[5] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-Threshold AVSS

with Optimal Communication Complexity. 479–498. https://doi.org/10.1007/978-

3-662-64331-0_25

[6] arkworks contributors. 2022. arkworks zkSNARK ecosystem. (2022). https:

//arkworks.rs

[7] Thomas Attema, Ronald Cramer, and Matthieu Rambaud. 2021. Compressed 𝛴-

Protocols for Bilinear Group Arithmetic Circuits and Application to Logarithmic

Transparent Threshold Signatures. 526–556. https://doi.org/10.1007/978-3-030-

92068-5_18

[8] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. 2023. Network-

Agnostic Security Comes (Almost) for Free in DKG and MPC. In Advances in
Cryptology – CRYPTO 2023: 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part I.
Springer-Verlag, Berlin, Heidelberg, 71–106. https://doi.org/10.1007/978-3-031-

38557-5_3

[9] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Threshold

BLS Signature Scheme. 193–207. https://doi.org/10.1145/3548606.3560656

[10] Renas Bacho and Julian Loss. 2023. Adaptively Secure (Aggregatable) PVSS

and Application to Distributed Randomness Beacons. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS ’23).
Association for Computing Machinery, New York, NY, USA, 1791–1804. https:

//doi.org/10.1145/3576915.3623106

[11] Renas Bacho, Julian Loss, Gilad Stern, and Benedikt Wagner. 2024. HARTS:

High-Threshold, Adaptively Secure, and Robust Threshold Schnorr Signatures.

Cryptology ePrint Archive, Paper 2024/280. (2024). https://eprint.iacr.org/2024/

280 https://eprint.iacr.org/2024/280.

[12] Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, and Michael

Reiter. 2023. HashRand: Efficient Asynchronous Random Beacon without Thresh-

old Cryptographic Setup. Cryptology ePrint Archive, Paper 2023/1755. (2023).

https://eprint.iacr.org/2023/1755 https://eprint.iacr.org/2023/1755.

[13] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. 62–73. https://doi.org/10.1145/168588.

168596

[14] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. 1989. Towards Optimal

Distributed Consensus (Extended Abstract). 410–415. https://doi.org/10.1109/

SFCS.1989.63511

[15] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2023. OptRand:

Optimistically Responsive Reconfigurable Distributed Randomness. Proceedings
2023 Network and Distributed System Security Symposium (2023). https://api.

semanticscholar.org/CorpusID:257499606

[16] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. RandPiper - Reconfiguration-Friendly Random Beacons with Quadratic

Communication. 3502–3524. https://doi.org/10.1145/3460120.3484574

[17] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. 31–46.

https://doi.org/10.1007/3-540-36288-6_3

[18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable

Delay Functions. 757–788. https://doi.org/10.1007/978-3-319-96884-1_25

[19] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for

Accumulators with Applications to IOPs and Stateless Blockchains. 561–586.

https://doi.org/10.1007/978-3-030-26948-7_20

[20] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-delay

and randomness beacons in Ethereum.

[21] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptog-

raphy. 18, 3 (July 2005), 219–246. https://doi.org/10.1007/s00145-005-0318-0

[22] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.

1999. Adaptive Security for Threshold Cryptosystems. 98–115. https://doi.org/

10.1007/3-540-48405-1_7

13

https://docs.rs/ark-bn254/0.4.0/ark_bn254/index.html
https://doi.org/10.1007/978-3-031-38557-5_2
https://eprint.iacr.org/2018/1153
https://doi.org/10.1007/978-3-662-64331-0_25
https://doi.org/10.1007/978-3-662-64331-0_25
https://arkworks.rs
https://arkworks.rs
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1007/978-3-031-38557-5_3
https://doi.org/10.1145/3548606.3560656
https://doi.org/10.1145/3576915.3623106
https://doi.org/10.1145/3576915.3623106
https://eprint.iacr.org/2024/280
https://eprint.iacr.org/2024/280
https://eprint.iacr.org/2024/280
https://eprint.iacr.org/2023/1755
https://eprint.iacr.org/2023/1755
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1109/SFCS.1989.63511
https://api.semanticscholar.org/CorpusID:257499606
https://api.semanticscholar.org/CorpusID:257499606
https://doi.org/10.1145/3460120.3484574
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/3-540-48405-1_7

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

[23] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness

Attested by Public Entities. 537–556. https://doi.org/10.1007/978-3-319-61204-

1_27

[24] Ignacio Cascudo and Bernardo David. 2020. ALBATROSS: Publicly AttestabLe

BATched Randomness Based On Secret Sharing. 311–341. https://doi.org/10.

1007/978-3-030-64840-4_11

[25] Ignacio Cascudo and Bernardo David. 2024. Publicly Verifiable Secret Sharing

Over lass Groups and Applications to DKG and YOSO. In Advances in Cryptology
– EUROCRYPT 2024: 43rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zurich, Switzerland, May 26–30, 2024,
Proceedings, Part V. Springer-Verlag, Berlin, Heidelberg, 216–248. https://doi.

org/10.1007/978-3-031-58740-5_8

[26] David Chaum and Torben P. Pedersen. 1993. Wallet Databases with Observers.

89–105. https://doi.org/10.1007/3-540-48071-4_7

[27] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. 2019. Homomorphic

Encryption Random Beacon. Cryptology ePrint Archive, Report 2019/1320.

(2019). https://eprint.iacr.org/2019/1320.

[28] Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. 2023. Bicorn:

An optimistically efficient distributed randomness beacon. Cryptology ePrint

Archive, Report 2023/221. (2023). https://eprint.iacr.org/2023/221.

[29] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed Ran-

domness Beacons. In 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023. IEEE, 75–92. https://doi.org/10.1109/
SP46215.2023.10179419

[30] Tokio contributors. 2023. Tokio library for networking in Rust. (2023). https:

//tokio.rs/

[31] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt:

Scalable Distributed Randomness Beacon with Transparent Setup. 2502–2517.

https://doi.org/10.1109/SP46214.2022.9833580

[32] Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang. 2024. Distributed

Randomness using Weighted VRFs. Cryptology ePrint Archive, Paper 2024/198.

(2024). https://eprint.iacr.org/2024/198 https://eprint.iacr.org/2024/198.

[33] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2023. Practi-

cal Asynchronous High-threshold Distributed Key Generation and Distributed

Polynomial Sampling. In 32nd USENIX Security Symposium (USENIX Security
23). USENIX Association, Anaheim, CA, 5359–5376. https://www.usenix.org/

conference/usenixsecurity23/presentation/das

[34] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation.

2518–2534. https://doi.org/10.1109/SP46214.2022.9833584

[35] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. 66–98. https://doi.org/10.1007/978-3-319-78375-8_3

[36] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-

Generation Onion Router. 303–320.

[37] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on information exchange for

Byzantine agreement. J. ACM 32, 1 (jan 1985), 191–204. https://doi.org/10.1145/

2455.214112

[38] D. Dolev and H. R. Strong. 1983. Authenticated Algorithms for Byzantine Agree-

ment. SIAM J. Comput. 12, 4 (1983), 656–666. https://doi.org/10.1137/0212045
arXiv:https://doi.org/10.1137/0212045

[39] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE
Transactions on Information Theory 29, 2 (1983), 198–208. https://doi.org/10.1109/

TIT.1983.1056650

[40] Justin Drake. 2018. Minimal VDF randomness beacon. (2018). https://ethresear.

ch/t/minimal-vdf-randomness-beacon/3566

[41] Hanwen Feng, Zhenliang Lu, and Qiang Tang. 2024. Breaking the Cubic Barrier:

Distributed Key and Randomness Generation through Deterministic Sharding.

Cryptology ePrint Archive, Paper 2024/168. (2024). https://eprint.iacr.org/2024/

168 https://eprint.iacr.org/2024/168.

[42] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The Algebraic Group Model

and its Applications. 33–62. https://doi.org/10.1007/978-3-319-96881-0_2

[43] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2021. Efficient Asynchronous Byzantine Agreement without Private Setups.

Cryptology ePrint Archive, Report 2021/810. (2021). https://eprint.iacr.org/2021/

810.

[44] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. 20, 1 (Jan.

2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

[45] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia

Yakoubov. 2021. Random-Index PIR and Applications. 32–61. https://doi.org/10.

1007/978-3-030-90456-2_2

[46] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurren-

cies. In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). Association for Computing Machinery, New York, NY, USA, 51–68.

https://doi.org/10.1145/3132747.3132757

[47] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.

Cryptology ePrint Archive, Report 2021/339. (2021). https://eprint.iacr.org/2021/

339.

[48] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Aggregatable Distributed Key Generation. 147–176.

https://doi.org/10.1007/978-3-030-77870-5_6

[49] Runchao Han, Jiangshan Yu, and Haoyu Lin. 2020. RandChain: Decentralised

Randomness Beacon from Sequential Proof-of-Work. Cryptology ePrint Archive,

Report 2020/1033. (2020). https://eprint.iacr.org/2020/1033.

[50] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY Tech-

nology Overview Series, Consensus System. (2018). arXiv:cs.DC/1805.04548

[51] Stanislaw Jarecki and Anna Lysyanskaya. 2000. Adaptively Secure Threshold

Cryptography: Introducing Concurrency, Removing Erasures. 221–242. https:

//doi.org/10.1007/3-540-45539-6_16

[52] Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Hamza Saleem, and

Sri Aravinda Krishnan Thyagarajan. 2023. Non-interactive VSS using Class

Groups and Application to DKG. Cryptology ePrint Archive, Paper 2023/451.

(2023). https://eprint.iacr.org/2023/451 https://eprint.iacr.org/2023/451.

[53] Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. 2023. SoK: Public

Randomness. Cryptology ePrint Archive, Paper 2023/1121. (2023). https:

//eprint.iacr.org/2023/1121 https://eprint.iacr.org/2023/1121.

[54] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures. 1751–1767. https://doi.org/10.1145/

3372297.3423364

[55] SCIPR Lab. 2021. C++ library for Finite Fields and Elliptic Curves. GitHub

repository. (2021). https://github.com/scipr-lab/libff

[56] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine

Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (jul 1982), 382–401.

https://doi.org/10.1145/357172.357176

[57] Christoph Lenzen and Sahar Sheikholeslami. 2022. A Recursive Early-Stopping

Phase King Protocol. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing (PODC’22). Association for Computing Machinery, New

York, NY, USA, 60–69. https://doi.org/10.1145/3519270.3538425

[58] Zhongtang Luo. 2022. Implementation for RandPiper. Github. (2022). https:

//github.com/zhtluo/randpiper-rs

[59] Atsuki Momose and Ling Ren. 2021. Optimal Communication Complexity of Au-

thenticated Byzantine Agreement. In 35th International Symposium on Distributed
Computing (DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs)),
Seth Gilbert (Ed.), Vol. 209. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 32:1–32:16. https://doi.org/10.4230/LIPIcs.DISC.2021.32

[60] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).

https://bitcoin.org/bitcoin.pdf

[61] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. 2020.

Improved Extension Protocols for Byzantine Broadcast and Agreement. In

34th International Symposium on Distributed Computing (DISC 2020) (Leibniz
International Proceedings in Informatics (LIPIcs)), Hagit Attiya (Ed.), Vol. 179.

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 28:1–

28:17. https://doi.org/10.4230/LIPIcs.DISC.2020.28

[62] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In Top-
ics in Cryptology – CT-RSA 2005, AlfredMenezes (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 275–292.

[63] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. 2022.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies. Cryptology

ePrint Archive, Report 2022/1592. (2022). https://eprint.iacr.org/2022/1592.

[64] Drand Organization. 2020. Drand - A Distributed Randomness Beacon Daemon.

GitHub repository. (2020). https://github.com/drand/drand

[65] Dimitrios Papachristoudis. 2023. Cryptography for GRandLine. GitHub reposi-

tory. (2023). https://github.com/DiPa0123/Optrand-PVSS

[66] Dimitrios Papachristoudis. 2023. Implementation of GRandLine. GitHub reposi-

tory. (2023). https://github.com/DiPa0123/GRandLine

[67] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. 129–140. https://doi.org/10.1007/3-540-46766-1_9

[68] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[69] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S. Wahby. 2022.

Internet Research Task Force (IRTF) Draft for Pairing-Friendly Curves. (Nov.

2022). https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/

[70] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and

Edgar R. Weippl. 2021. RandRunner: Distributed Randomness from Trapdoor

VDFs with Strong Uniqueness.

[71] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. 2020.

HydRand: Efficient Continuous Distributed Randomness. 73–89. https://doi.org/

10.1109/SP40000.2020.00003

[72] Nibesh Shrestha. 2022. Implementation for OptRand. Github. (2022). https:

//github.com/nibeshrestha/optrand/tree/crypto_dev

[73] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. 2021. Synchro-

nous Distributed Key Generation without Broadcasts. Cryptology ePrint Archive,

14

https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-031-58740-5_8
https://doi.org/10.1007/978-3-031-58740-5_8
https://doi.org/10.1007/3-540-48071-4_7
https://eprint.iacr.org/2019/1320
https://eprint.iacr.org/2023/221
https://doi.org/10.1109/SP46215.2023.10179419
https://doi.org/10.1109/SP46215.2023.10179419
https://tokio.rs/
https://tokio.rs/
https://doi.org/10.1109/SP46214.2022.9833580
https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/198
https://www.usenix.org/conference/usenixsecurity23/presentation/das
https://www.usenix.org/conference/usenixsecurity23/presentation/das
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1145/2455.214112
https://doi.org/10.1145/2455.214112
https://doi.org/10.1137/0212045
https://arxiv.org/abs/https://doi.org/10.1137/0212045
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://eprint.iacr.org/2024/168
https://eprint.iacr.org/2024/168
https://eprint.iacr.org/2024/168
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2021/810
https://eprint.iacr.org/2021/810
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1145/3132747.3132757
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2021/339
https://doi.org/10.1007/978-3-030-77870-5_6
https://eprint.iacr.org/2020/1033
https://arxiv.org/abs/cs.DC/1805.04548
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/3-540-45539-6_16
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/1121
https://eprint.iacr.org/2023/1121
https://eprint.iacr.org/2023/1121
https://doi.org/10.1145/3372297.3423364
https://doi.org/10.1145/3372297.3423364
https://github.com/scipr-lab/libff
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3519270.3538425
https://github.com/zhtluo/randpiper-rs
https://github.com/zhtluo/randpiper-rs
https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://eprint.iacr.org/2022/1592
https://github.com/drand/drand
https://github.com/DiPa0123/Optrand-PVSS
https://github.com/DiPa0123/GRandLine
https://doi.org/10.1007/3-540-46766-1_9
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1109/SP40000.2020.00003
https://github.com/nibeshrestha/optrand/tree/crypto_dev
https://github.com/nibeshrestha/optrand/tree/crypto_dev

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Report 2021/1635. (2021). https://eprint.iacr.org/2021/1635.

[74] Markus Stadler. 1996. Publicly Verifiable Secret Sharing. 190–199. https://doi.

org/10.1007/3-540-68339-9_17

[75] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. 444–460. https://doi.org/10.1109/SP.2017.45

[76] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy

Golan-Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold Cryp-

tosystems. 877–893. https://doi.org/10.1109/SP40000.2020.00059

[77] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. 347–356.

https://doi.org/10.1145/3293611.3331591

A MORE ON RELATEDWORK
In this section, we provide a detailed discussion on existing work

of randomness beacon and distributed key generation protocols.

Distributed Key Generation.Most of the DKG protocols found in

the literature are in synchrony [22, 44, 47, 48, 51, 73]. Among these,

only the protocols [22, 44, 51] are proven adaptively secure. All of

these synchronous DKG protocols with the exception of Shrestha

et al. [73] assume the existence of a broadcast channel, which is

invoked O(𝑛) times among all parties. More importantly, these

DKG protocols require each party to broadcast a message of size at

least _, which inevitably results in Ω(_𝑛3) bits communication cost

by a known lower bound for Byzantine broadcast [37] (without as-

suming shared randomness in the first place). Recent works [25, 52]

follow the common paradigm [47, 51] of letting each party broad-

cast a PVSS transcript for a field element from which each party can

locally compute its share of the secret key. Crucially, these works

primarily focus on the concrete computational efficiency of the

underlying PVSS (or non-interactive VSS) scheme. By working over

class groups, these schemes gain an efficiency advantage compared

to the previous works [47, 51]. Yet, these PVSS schemes are still

much less efficient compared to conventional PVSS schemes for

group elements. DKG protocols in asynchrony have only gained

attention very recently by the works in [2, 3, 11, 33, 34, 54]. All

these constructions have cubic or higher communication cost, and

the one of Abraham et al. [2] relies on a powers-of-tau setup.

Broadcast Instantiation. Most synchronous DKG protocols as-

sume the existence of a broadcast channel, which is invoked O(𝑛)
times. Essentially, the broadcast channel is used for the commit-

ment (or delivery) phase and followed by a complaint phase. The

PVSS-based constructions circumvent the need of the complaint

phase, but in general at the cost of higher computational cost. More

importantly, the commitment phase alone involves 𝑛-times access

to the broadcast channel on messages of size at least _. To imple-

ment the broadcast channel, the adaptively secure Dolev-Strong

broadcast protocol [38] is commonly used, which has O(_𝑛3) com-

munication cost. However, recent works provide the following: (i)

a statically secure broadcast protocol [8] with O(_𝑛2) bits commu-

nication cost (in the honest majority setting), and (ii) an adaptively

secure broadcast protocol [41] (and this work) with O(_𝑛2 log𝑛)
communication cost by employing transparent threshold signatures

of size O(_ log𝑛). However, without assuming shared randomness,

all these DKG protocols inevitably have at least cubic communica-

tion cost by the known lower bound for Byzantine broadcast [37].

Randomness Beacons.We categorize existing randomness bea-

cons according to their assumptions and reliance on cryptographic

tools. Essentially, there are two types of designs: the first uses thresh-

old cryptography, while the second relies on specialized tools such

as proof-of-work (PoW) or VDF.

Threshold Cryptography. The protocol of this type employ thresh-

old cryptography in order to generate randomness. For this, there

are two approaches. In the first one [4, 21, 27, 64, 75], parties gener-

ate a (𝑡, 𝑛)-threshold key (sk1, . . . , sk𝑛) by running a DKG protocol

from which the randomness beacon value is derived as a unique

threshold signature on some message (typically the hash of the

current epoch number). The setup phase of these protocols has a

communication cost of O(_𝑛3) or higher due to the use of a DKG

protocol for field elements. On the other hand, once the setup phase

has terminated, these protocols achieve an improved communica-

tion cost of O(_𝑛2) per beacon output within optimal one round.

The second approachworks through (P)VSS [15, 16, 23, 31, 35, 49, 70,

71, 75]. Notable randomness beacons here are SPURT [31], BRand-

Piper [16], and OptRand [15]. The idea of this approach is to gener-

ate a new random value at each epoch by combining secret sharings

from at least 𝑡 + 1 parties. This ensures that the combined secret

has contribution from at least one honest party that chose its secret

uniformly at random so the randomness beacon value also inherits

that property. Still, most of these protocols assume a setup phase

that when actually implemented incurs cubic or higher communi-

cation cost. Further, they have a computation-heavy epoch where

most of the computation is carried by one single party (the epoch

leader). Finally, HashRand [12] is a recent randomness beacon in

asynchrony that works without the use of a threshold cryptographic

setup. It is based on a (small) committee selection from which the

secret shares of an AVSS scheme are reconstructed. The committee

requires the presence of only one honest party for security. Their

techniques rely on secure erasures of secret states and without that

their protocol has a communication cost of O(_𝑛3 log𝑛) per epoch.
Further, it has post-quantum security.

Specialized Tools. The protocols in this category employ verifi-

able delay functions (VDFs) [18, 40] or proof-of-work (PoW) [60] in

order to generate randomness [20, 24, 28, 40, 49, 70]. VDFs are func-

tions that require a certain amount of time to compute but can be

verified quickly. Solana uses VDFs in its proof-of-history consensus

protocol to establish a global source of time and generate random

values. While VDF-based protocols have good communication cost,

they require specialized hardware to compute the VDFs efficiently,

which might not be accessible to all participants. The same applies

to PoW-based protocols that rely on the assumption that the adver-

sary has less computational hash power than the honest parties.

In general, these primitives are computationally expensive tools

with specialized hardware and are highly energy-consuming. We

elaborate briefly. RandRunner [70] works in synchrony and uses a

trapdoor VDF. Such a trapdoor VDF can generate unique function

values efficiently with the knowledge of the trapdoor, but takes

some high specified time 𝑇 otherwise. RandRunner has a commu-

nication cost of O(_𝑛2) bits per beacon output. However, it only

achieves (𝑡 + 1)-unpredictability, since an adaptive adversary can

corrupt the next 𝑡 leaders and thus learn the beacon values for the

next 𝑡 epochs. RandChain [49] uses a combination of PoW, VFD,

and Nakamoto Consensus, and has a communication cost of O(_𝑛)
bits per beacon output. One crucial drawback is that the beacon

output is only guaranteed to be 1/5-fair. Further, it suffers from
blockchain-related attacks.15

https://eprint.iacr.org/2021/1635
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP40000.2020.00059
https://doi.org/10.1145/3293611.3331591

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

B ADDITIONAL PRELIMINARIES
In this section, we provide formal definitions and security notions

for additional primitives used in the main body. This is an extension

of the primitives defined in Section 2.

B.1 Cryptographic Primitives
Linear Erasure and Error Correcting Codes.We use standard

(𝑞,𝑏)-Reed-Solomon (RS) codes. This primitive allows to encode 𝑏

data symbols into code words of 𝑞 symbols such that 𝑏 elements of

the code word suffice to recover the original data.

Definition 5 (Reed-Solomon Code.). A Reed-Solomon code is
a tuple of deterministic algorithms Σ = (Encode,Decode) with the
following properties:

• Encode: The deterministic encoding algorithm takes as in-
put 𝑏 data symbols (𝑚1, . . . ,𝑚𝑏). It outputs a code word
(𝑠1, . . . , 𝑠𝑞) of length 𝑞. Knowledge of any 𝑏 elements of the
code word uniquely determines the input message and the
remaining of the code word.

• Decode: The deterministic decoding algorithm takes as input
a code word (𝑠1, . . . , 𝑠𝑞) of length 𝑞. It outputs 𝑏 data symbols
(𝑚1, . . . ,𝑚𝑏). This algorithm tolerates up to 𝑐 errors and 𝑑
erasures in a code word (𝑠1, . . . , 𝑠𝑞) if and only if𝑞−𝑏 ≥ 2𝑐+𝑑 .

Cryptographic Accumulator. A cryptographic accumulator al-

lows to accumulate several elements from some set 𝐷 into an accu-

mulated value 𝑧. Further, for each element in𝐷 it allows to generate

a compact proof of membership in 𝐷 .

Definition 6 (Cryptographic Accumulator). A cryptographic
accumulator scheme is a tuple of probabilistic polynomial-time algo-
rithms Σ = (Gen, Eval,Wit,Ver) with the following properties:

• Gen: The randomized accumulator key generation algo-

rithm takes as input the security parameter _ and an accu-
mulation threshold 𝑛. It outputs a (public) accumulator key
ak.

• Eval: The deterministic evaluation algorithm takes as input
an accumulator key ak and a set𝐷 = {𝑑1, . . . , 𝑑𝑛} of elements.
It outputs an accumulation value 𝑧 for 𝐷 .

• Wit: The possibly randomized witness creation algorithm

takes as input an accumulator key ak, an accumulation value
𝑧 for 𝐷 , and an element 𝑑𝑖 . It outputs ⊥ if 𝑑𝑖 ∉ 𝐷 , and a
witness𝑤𝑖 otherwise.

• Ver: The deterministic verification algorithm takes as input
an accumulator key ak, an accumulation value 𝑧 for 𝐷 , a
witness𝑤𝑖 , and an element 𝑑𝑖 . It outputs 1 (accept) if𝑤𝑖 is a
valid proof for membership 𝑑𝑖 ∈ 𝐷 and 0 (reject) otherwise.

We continue with the standard security notion of a collision-

resistant accumulator scheme. Intuitively, it states that it is hard

for an adversary to create invalid proofs of membership.

Definition 7 (Collision-Resistant Accumulator). Let Σ =

(Gen, Eval,Wit,Ver) be a cryptographic accumulator scheme. For an
algorithm A and 𝑛 ∈ N, define the experiment CRAΣ,𝑛 as follows:

(1) Offline Phase. Run the accumulator key generation algorithm
to get ak ← Gen(_, 𝑛).

(2) Online Phase. Run A on input par and (𝑛, 𝑎𝑘). At some point
in the experiment, A returns a tuple ({𝑑1, . . . , 𝑑𝑛}, 𝑑′,𝑤 ′).

(3) Output Determination. Compute the accumulation value
𝑧 ← Eval(ak, {𝑑1, . . . , 𝑑𝑛}). Return 1 if Ver(ak, 𝑧,𝑤 ′, 𝑑′) = 1

and 𝑑′ ∉ {𝑑1, . . . , 𝑑′}. Return 0 otherwise.
We say that Σ is (Y,𝑇 , 𝑛)-collision-resistant if for all algorithms A
that run in time at most 𝑇 and all 𝑘 ∈ [𝑛], Pr[CRA

Σ,𝑘
= 1] ≤ Y.

Conversely, we say that A (Y,𝑇 , 𝑛)-breaks collision-resistance of Σ if
it runs in time at most 𝑇 and Pr[CRA

Σ,𝑘
= 1] > Y for some 𝑘 ∈ [𝑛].

Digital Signature Scheme. A digital signature scheme provides a

user with a verification-signing key pair (vk, sik), where the signing
key is only known to the user but the verification key is public.

The signing key allows the user to sign any message of its choice,

while any third party that knows vk can verify that the message

was indeed signed by that particular user.

Definition 8 (Digital Signature Scheme). A digital signature
scheme is a tuple of algorithms DS = (SKey, Sign,Ver) with the
following properties:

• SKey: The randomized key generation algorithm takes as
input system parameters par and an identity index 𝑖 ∈ [𝑛].
It outputs a verification key vk𝑖 and a signing key sik𝑖 .

• Sign: The possibly randomized signing algorithm takes as
input a signing key sik𝑖 and a message𝑚. It outputs a signa-
ture 𝜎 . We also write ⟨𝑚⟩𝑖 to denote the message-signature
pair (𝑚,𝜎) where 𝜎 ← Sign(sik𝑖 ,𝑚).

• Ver: The deterministic verification algorithm takes as input
a verification key vk𝑖 , a message 𝑚, and a signature 𝜎 . It
outputs 1 (accept) or 0 (reject). In the first case we call the
signature 𝜎 valid (relative to vk𝑖); otherwise we call it invalid.

For a secure digital signature scheme, we require that an ad-

versary cannot create a signature on a new message, even after

obtaining many signatures on messages of its choice.

Definition 9 (Unforgeability Under Chosen Message At-

tack). Let DS = (SKey, Sign,Ver) be a digital signature scheme.
For an algorithm A, define the unforgeability under chosen message
experiment UF-CMAA

DS as follows:
• Offline Phase. Run SKey on input (par, 𝑖) to obtain a key

pair (vk𝑖 , sik𝑖). Run A on input (par, vk𝑖). InitializeM := ∅.
• Signing Oracle Queries. At any point of the experiment, A

gets access to an oracle that answer queries of the following
type:WhenA submits amessage𝑚, return𝜎 ← Sign(sik𝑖 ,𝑚)
and updateM :=M ∪ {𝑚}.

• Output Determination.When A outputs a message𝑚∗ and
a signature 𝜎∗, do the following. If Ver(vk𝑖 ,𝑚∗, 𝜎∗) = 1 and
𝑚∗ ∉M, return 1. Otherwise, return 0.

We say that DS is (Y,𝑇 , 𝑞𝑠)-unforgeable under chosen message at-

tacks (UF-CMA) if for all algorithms A that run in time at most 𝑇
and make at most 𝑞𝑠 signing oracle queries, Pr[UF-CMAA

DS = 1] ≤ Y.
Conversely, we say that A (Y,𝑇 , 𝑞𝑠)-breaks unforgeability of DS un-
der chosen message attacks if it runs in time at most𝑇 , makes at most
𝑞𝑠 signing oracle queries, and Pr[UF-CMAA

DS = 1] > Y.

Aggregatable PVSS Scheme.We define the security notions for

an APVSS schemes (cf. Definition 2). We start with correctness and

public verifiability of (aggregated) transcripts.

16

GRandLine: DKG and Randomness Beacon withQuadratic Communication

• Correctness.We say that APVSS is correct if for all key pairs
(pk

1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par) and all 𝑖 ∈ [𝑛],

Pr[Ver((pk 𝑗) 𝑗∈[𝑛] ,𝑇) = 1 ∧ ConId(pk𝑖 ,𝑇) = 1] = 1,

where the probability is taken over all transcripts 𝑇 output

by Dist(sk𝑖 , (pk𝑖)𝑖∈[𝑛]).
• Public Verifiability. We say that APVSS is publicly verifiable

if for all key pairs (pk
1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par)

and all (E, 𝜋) such that Ver((pk
1
, . . . , pk𝑛), (E, 𝜋)) = 1,

there exists a unique 𝑆 ∈ ˆG such that

Rec({Decsk𝑖 (E𝑖)}𝑖∈I) = 𝑆 ∀I ⊂ [𝑛], |I | = 𝑡 + 1.
We require that the secret reconstructed from an aggregated tran-

script 𝑇 = Agg(𝑇1, . . . ,𝑇𝑘) corresponds to the sum of the secrets

𝑆𝑖 that can be reconstructed from the 𝑇𝑖 individually. Further, we

require that the set of contributors to𝑇 consists of the contributors

to the single transcripts 𝑇𝑖 . Formally, we define this as follows.

Definition 10 (Correctness of Aggregation). Let APVSS =

(Keys, Enc,Dec,Dist,Agg,ConId,Ver,Rec) be a publicly verifiable
APVSS scheme over ˆG. We say that APVSS is correctly aggregat-

able if for all (pk
1
, sk1), . . . , (pk𝑛, sk𝑛) ∈ Keys(par), all 𝑘 ∈ N,

and all transcripts (E1, 𝜋1), . . . , (E𝑘 , 𝜋𝑘) the following is true. If for
all 𝑖 ∈ [𝑘], we have Ver((pk

1
, . . . , pk𝑛), (E𝑖 , 𝜋𝑖)) = 1, then for

all I ⊂ [𝑛], |I | = 𝑡 + 1, the (aggregated) transcript (E′, 𝜋 ′) :=
Agg((E1, 𝜋1), . . . , (E𝑘 , 𝜋𝑘)) satisfies

Rec({Decsk𝑖 (E
′
𝑖)}𝑖∈I) =

∏
𝑗∈[𝑘]

Rec({Decsk𝑖 (E𝑗,𝑖)}𝑖∈I),

where we write E𝑗 = (E𝑗,1, . . . , E𝑗,𝑛). Additionally, we require that
ConId(pk𝑖 ,𝑇) = 1 for an 𝑖 ∈ [𝑛] if and only if there is an 𝑗 ∈ [𝑘]
such that ConId(pk𝑖 ,𝑇𝑗) = 1.

We recall the security notion for APVSS schemes called aggre-
gated unpredictability as introduced in [10]. Intuitively, it captures

malleability attacks and prohibits any 𝑡-bounded (i.e., corrupting at

most 𝑡 parties) adversary from learning the secret of an aggregated

transcript that has contribution from at least one honest party.

Definition 11 (Aggregated Unpredictability of APVSS). Let
APVSS = (Keys, Enc,Dec,Dist,Agg,ConId,Ver,Rec) be a publicly
verifiable APVSS scheme over ˆG. For an algorithm A, we define the
aggregated unpredictability experiment AggPredAAPVSS,𝑡 as follows:

• Offline Phase. Initialize T := ∅. For all 𝑖 ∈ [𝑛], run Keys on
input (par, 𝑖) to generate keys (pk𝑖 , sk𝑖) ← Keys(par, 𝑖). On
input par and {pk𝑖 }𝑖∈[𝑛] , A returns an index set C ⊂ [𝑛]
of initially corrupted parties along with updated public keys
{ ˆpk𝑖 }𝑖∈C . Set pk𝑖 := ˆpk𝑖 for all 𝑖 ∈ C.

• Corruption Queries. At any point of the experiment, A may
corrupt a party by submitting an index 𝑖 ∈ [𝑛] \ C. In this
case, return the secret key sk𝑖 and set C := C ∪ {𝑖}.

• Transcript Queries. At any point of the experiment, A gets
access to an oracle of the following type: When A submits a
request (givePVSS, 𝑖) for an 𝑖 ∈ [𝑛] \ C, do the following. On
behalf of dealer 𝑃𝑖 , run Dist on input sk𝑖 and pk

1
, . . . , pk𝑛 .

Return the output 𝑇 = (E, 𝜋) and set T := T ∪ {(𝑇, 𝑖)}.
• Output Determination. When A outputs an aggregated tran-

script (E′, 𝜋 ′) and an element 𝑆∗ ∈ ˆG, proceed as follows:

– Return 1 if |C| ≤ 𝑡 , Ver((pk
1
, . . . , pk𝑛), (E′, 𝜋 ′)) = 1,

𝑆∗ = Rec({Decsk𝑖 (E′𝑖)}𝑖∈[𝑡+1]), and there is an index
𝑖 ∈ [𝑛] \ C such that ConId((E′, 𝜋 ′), pk𝑖) = 1.

– Return 0 otherwise.
We say that APVSS is (𝑡, Y,𝑇 , 𝑞𝑠)-aggregated unpredictable if for
all algorithms A that run in time at most 𝑇 and make at most 𝑞𝑠
transcript queries, Pr[AggPredAAPVSS,𝑡 = 1] ≤ Y. Conversely, we say
that A (𝑡, Y,𝑇 , 𝑞𝑠)-breaks aggregated unpredictability of APVSS if
it runs in time at most 𝑇 , makes at most 𝑞𝑠 transcript queries, and
Pr[AggPredAAPVSS,𝑡 = 1] > Y.

B.2 Consensus Primitives
Distributed Randomness Beacon.We provide a formal definition

of a distributed randomness beacon and corresponding security

notions. We follow the definition given in [10].

Definition 12 (𝑑-Secure Randomness Beacon). Let RB be an
epoch-based protocol executed by 𝑛 parties 𝑃1, . . . , 𝑃𝑛 . We define the
following security properties for RB:

• Consistency. RB is (𝑡, 𝐿)-consistent if the following holds
whenever at most 𝑡 parties are corrupted: if an honest party
outputs a value 𝜎𝑒 ∈ {0, 1}_ in epoch 𝑒 ∈ [𝐿], then all honest
parties output 𝜎𝑒 in epoch 𝑒 .

• Availability. RB is (𝑡, 𝐿)-available if the following holds
whenever at most 𝑡 parties are corrupted: for each 𝑒 ∈ [𝐿],
every honest party outputs a value 𝜎𝑒 ∈ {0, 1}_ in epoch 𝑒 .

• Bias-Resistance. RB is (𝑡, Y,𝑇 , 𝐿)-bias-resistant if it is (𝑡, 𝐿)-
available, (𝑡, 𝐿)-consistent, and the following holds for all
algorithms A,D such that A is 𝑡-bounded and both A and
D run in time at most 𝑇 . Denote by ΣA,𝐿 the probability
distribution induced by the outputs of an honest party in an
execution of RB until epoch 𝐿 with A as adversary. Then��

Pr

𝜎←ΣA,𝐿
[D(𝜎) = 1] − Pr

𝑢←𝑈𝐿

[D(𝑢) = 1]
�� ≤ Y,

where 𝑈𝐿 denotes the uniform distribution over the 𝐿-fold
Cartesian product of {0, 1}_ with itself.

• 𝑑-Unpredictability. RB is (𝑡, Y,𝑇 , 𝐿, 𝑞ℎ, 𝑑)-unpredictable if
it is (𝑡, 𝐿)-available, (𝑡, 𝐿)-consistent, and for all 𝑒 ∈ [𝐿]
and algorithms A that run in time at most 𝑇 and make at
most 𝑞ℎ random oracle queries, A’s success probability in the
𝑑-unpredictability experiment defined hereafter is at most Y.

We say that RB is a (𝑡, Y,𝑇 , 𝐿, 𝑞ℎ, 𝑑)-secure randomness beacon pro-
tocol if it is (𝑡, Y,𝑇 , 𝐿)-bias-resistant, (𝑡, Y,𝑇 , 𝐿, 𝑞ℎ, 𝑑)-unpredictable,
(𝑡, 𝐿)-available, and (𝑡, 𝐿)-consistent.

Definition 13 (𝑑-Unpredictability for RB). Let RB be an
epoch-based protocol as defined above. For an algorithmA and 𝑒 ∈ [𝐿],
we define the experiment 𝑑-UnpredA,𝑒RB,𝑡 as follows:

• Offline Phase. For all 𝑖 ∈ [𝑛], generate keys as (pk𝑖 , sk𝑖) ←
Keys(par, 𝑖). On input par and {pk𝑖 }𝑖∈[𝑛] , A returns an in-
dex set C ⊂ [𝑛] of initially corrupted parties along with
updated public keys { ˆpk𝑖 }𝑖∈C . Set pk𝑖 := ˆpk𝑖 for all 𝑖 ∈ C.
Initiate an execution of RB with A controlling parties in C.

• Random Oracle Queries. At any point of the experiment,
A gets access to an oracle of the following type: When A
submits a query 𝑚, check if 𝐻 [𝑚] = ⊥. In this case, set
𝐻 [𝑚] ← {0, 1}_ . Return 𝐻 [𝑚].

17

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

• Corruption Queries. At any point of the experiment, A may
corrupt a party 𝑃𝑖 by submitting an index 𝑖 ∈ [𝑛] \ C. In
this case, return the internal state of 𝑃𝑖 and set C := C ∪ {𝑖}.
Henceforth, A fully controls 𝑃𝑖 .

• Online Phase. RunRB withA. WhenA outputs a tuple (𝜎′
ℓ
, ℓ)

for an ℓ > 𝑒 , the experiment ends with output 0 in case there
is an honest party that has output a value 𝜎𝑒+1 for epoch 𝑒 +1.
Continue the execution of RB for another ℓ − 𝑒 epochs.

• Winning Condition. Return 1 if |C| ≤ 𝑡 , ℓ ≥ 𝑒 + 𝑑 , 𝐿 ≥ ℓ ,
and 𝜎′

ℓ
= 𝜎ℓ . Otherwise, return 0.

C ADDITIONAL FIGURES
In this section, we provide figures for components of our DKG

protocol. In Figure 5, we give a description of the deliver function

whose purpose is to efficiently broadcast a long message to all

parties in some designated set. In Figure 6, we give a description of

the aggregatable PVSS scheme which allows for public verifiability

of a sharing with the additional feature of secure aggregation of

several sharings. For the description, we denote by LC the linear

vector space over Z𝑝 of length 𝑛 and dimension 𝑡 + 1 defined as

LC := {(𝑓 (1), . . . , 𝑓 (𝑛)) | 𝑓 ∈ Z𝑝 [𝑋] (𝑡) }, (★)

where Z𝑝 [𝑋] (𝑡) denotes the set of all polynomials in Z𝑝 [𝑋] of
degree at most 𝑡 . Its dual space LC⊥ is defined as

LC⊥ := {(`1𝑟 (1), . . . , `𝑛𝑟 (𝑛)) | 𝑟 ∈ Z𝑝 [𝑋] (𝑛−𝑡) },
where `𝑖 :=

∏
𝑗∈[𝑛]\{𝑖 } 1/(𝑖 − 𝑗). Further, we denote by ⟨𝑚⟩𝑖 the

tuple consisting of message𝑚 and a signature 𝜎𝑖 of 𝑃𝑖 on𝑚.

C.1 Byzantine Agreement Protocol
In this section, we present the Byzantine agreement protocol de-

signed by Momose and Ren [59] in which we implement the thresh-

old signatures with the ones of Attema et al. [7]. On a high level,

the protocol recursively calls itself two times on each half and uses

threshold signatures (with variable thresholds) to prove knowledge

of a threshold of signatures from different parties on the same mes-

sage. We emphasize that the transparent threshold signatures [7]

we use are not unique and thus not suitable for randomness beacons.

We provide a formal description of the BA protocol in Figure 7. As

a building block, it uses the protocol in Figure 8. For more details,

we refer directly to the original work [59].

Transparent Threshold Signatures. In the following, we elabo-

rate on the setup of the transparent threshold signatures of Attema

et al. [7]. Concretely, it requires a plain PKI and additional O(𝑛)
random group elements for a vector commitment schemewhich can

for example be derived from random oracles. Essentially, the latter

defines the public parameters of the commitment scheme, which is

an unstructured public random string. In the recursive Byzantine

agreement protocol, threshold signatures are used within sets of

parties that are determined at the onset of the protocol execution

(as the partition of the set of parties is deterministic). Therefore, the

setup can be run for each such set of parties specified by the proto-

col, once the set of all parties along with their PKI keys is fixed. By

the recursion, the total number of such sets is 1+2+4+ . . .+𝑛 ≤ 2𝑛

with exponentially decreasing sizes. Thus, the total number of addi-

tional random group elements required for setup is still O(𝑛) with
essentially no overhead in the running time.

Security. The authors show that their BA protocol [59] is secure

against an adaptive adversary, assuming perfect security of the

threshold signature. Conversely, if the threshold signature has only

computational security, we can build a straightforward reduction

from the security of the Byzantine agreement protocol to the se-

curity of the threshold signature. For this, observe that a total of

O(𝑛 log𝑛) threshold signatures are exchanged in an execution of

the BA protocol, and any violation of security in the BA protocol

is directly incurred by a threshold signature. Therefore, a guess

with success probability more than 1/𝑛2 suffices to build an effi-

cient reduction against the security of the threshold signature. In

particular, the security of the threshold signature of Attema et al.

implies the security of our Byzantine agreement protocol.

D SECURITY PROOFS FOR DKG AND
RANDOMNESS BEACON

In this section, we provide the security and complexity proofs for

the theorems given in the main body of the paper.

D.1 Proofs for our DKG Protocol
Here, we give a proof of Theorem 1. We split our proof into two

parts. First, we show security of GRand in the sense of Definition 4,

assuming security of the underlying components. Second, we com-

pute the communication and round complexity of GRand when

using our concrete components. In this context, we note that secu-

rity of GRand with our concrete components follows from the first

part, since the security of these components was already discussed

in previous sections of this paper.

Proof. Before we do the analysis, we briefly recall the high-level

idea of the DKG protocol design. For the following discussion, we

assume for the sake of presentation that the number of all parties 𝑛

is a power of two 𝑛 := 2
𝑘
, 𝑘 ∈ Nk, and recall that P := {𝑃1, . . . , 𝑃𝑛}.

For the protocol description, we follow the direct down-top ap-

proach. First, each party 𝑃2𝑖−1, 𝑖 ∈ [𝑛/2], generates a random

(𝑡, 𝑛)-threshold PVSS transcript 𝑇2𝑖−1 by itself, which encodes a

degree-𝑡 polynomial 𝑓2𝑖−1 ∈ Z𝑝 [𝑋] in the exponent. Then, each

party 𝑃2𝑖−1 interacts with its neighbor 𝑃2𝑖 with the goal to exchange
their transcripts and aggregate them to a single (aggregated) tran-

script 𝐴𝑇𝑖 := Agg(𝑇2𝑖−1,𝑇2𝑖). Then, we split P into disjoint sets of

neighboring parties (that we call committees) Q𝑖 := {𝑃2𝑖−1, 𝑃2𝑖 } for
all 𝑖 ∈ [𝑛/2], so that

Q1 = {𝑃1, 𝑃2}, Q2 = {𝑃3, 𝑃4}, . . . , Q𝑛/2 = {𝑃𝑛−1, 𝑃𝑛}.
We consider committee Q1 and its interaction with Q2, but note
that each committee Q 𝑗 , 𝑗 ∈ [𝑛/2], executes the same instructions.

Let 𝐴𝑇1 and 𝐴𝑇2 denote the transcripts established by committees

Q1 andQ2, respectively. First, each party 𝑃𝑖 ∈ Q1 generates an accu-
mulation value 𝑧1 for𝐴𝑇1 and sends it to all parties in Q := Q1∪Q2.
Then, parties in Q collectively execute two instances of Byzantine

agreement BA in order to have consensus on the values 𝑧1, 𝑧2. Fol-

lowing this, each party 𝑃𝑖 ∈ Q1 broadcasts 𝐴𝑇1 to all parties in

Q using Deliver on input (𝐴𝑇1, 𝑧1). In the next step, parties in Q
collectively execute two instances of (binary) Byzantine agreement

BA in order to decide which committee(s) delivered its transcript

correctly. Finally, each party 𝑃𝑖 ∈ Q broadcasts𝐴𝑇𝑗 , 𝑗 ∈ {1, 2}, to all
parties in Q using Deliver on input (𝐴𝑇𝑗 , 𝑧 𝑗) in case the committee

18

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Let Q ⊆ P be a set of 𝑞 parties and let 𝑏 := ⌈𝑞/2⌉ be the decoding threshold for a (𝑞,𝑏)-Reed-Solomon code RS = (Encode,Decode).
Further, let AC = (Gen, Eval,Wit,Ver) be an accumulator scheme, and let 𝑧 ← Eval(ak, Encode(𝑚)) be the accumulation value for a

deterministic encoding of message𝑚.

• Round 1. Split𝑚 into 𝑏 data symbols (𝑚1, . . . ,𝑚𝑏) as per a predefined policy. Run Encode on input (𝑚1, . . . ,𝑚𝑏) to obtain 𝑞
code words (𝑠1, . . . , 𝑠𝑞). For all 𝑗 ∈ [𝑞], compute a witness𝑤 𝑗 ←Wit(ak, 𝑧, 𝑠 𝑗) and send ⟨𝑠 𝑗 ,𝑤 𝑗 , 𝑧⟩𝑖 to party 𝑃 𝑗 ∈ Q.

• Round 2. Any party 𝑃 𝑗 ∈ Q does the following. Upon receiving the first valid code word ⟨𝑠 𝑗 ,𝑤 𝑗 , 𝑧⟩∗ for 𝑧, forward this code

word to all parties in Q. // Valid here means that the tuple (𝑠 𝑗 ,𝑤 𝑗 , 𝑧) verifies according to Ver(ak, 𝑧,𝑤𝑖 , 𝑠𝑖) = 1.
• Local Output. Upon receiving 𝑏 valid code words for 𝑧, run Decode on these code words to obtain𝑚.

Figure 5: Description of the Deliver protocol on input (Q,𝑚, 𝑧) invoked by party 𝑃𝑖 .

Let 𝑒 : G1 × G2 → G𝑇 be a pairing with generators 𝑔 ∈ G1, ℎ ∈ G2, and let (pk𝑖 , sk𝑖) be the key pair of party 𝑃𝑖 where pk𝑖 = ℎ
sk𝑖

.

The secret sharing algorithm Dist (invoked by some dealing party 𝑃𝐿) takes as input a secret key sk𝐿 and public keys pk
1
, . . . , pk𝑛 . It

outputs a PVSS transcript 𝑇𝐿 := {C, E, 𝜋} as follows.
(1) Sample a polynomial 𝑓 (𝑋) = 𝛼 + 𝛼1𝑋 + . . . + 𝛼𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] of degree 𝑡 uniformly at random.

(2) Set the commitments 𝐶𝑖 := 𝑔
𝑓 (𝑖) ∈ G1 and encrypted shares 𝐸𝑖 := pk𝑓 (𝑖)

𝑖
∈ G2 for all 𝑖 ∈ [𝑛].

(3) Compute a Schnorr NIZK proof of knowledge \ = (𝑐, 𝑟) of discrete logarithm for Z := 𝑔𝛼 . Set 𝜋 := ⟨Z , \⟩𝐿 .
The aggregation algorithm Agg takes as input 𝑘 ≥ 1 transcripts {C𝑖 , E𝑖 , 𝜋𝑖 }𝑖∈[𝑘] and outputs a transcript 𝑇 := {C, E, 𝜋}. Let `1, . . . , `𝑡+1
denote the Lagrange coefficients for the set {1, . . . , 𝑡 + 1} at the point 𝑥 = 0.

(4) Set 𝐶𝑖 := C1,𝑖 · . . . · C𝑘,𝑖 and 𝐸𝑖 := E1,𝑖 · . . . · E𝑘,𝑖 for all 𝑖 ∈ [𝑛]. Further, set 𝜋 := (𝜋1, . . . , 𝜋𝑘). Publish the (aggregated) transcript

𝑇 := {C, E, 𝜋} where C = (𝐶1, . . . ,𝐶𝑛) and E = (𝐸1, . . . , 𝐸𝑛).
The contributor identifier algorithm ConId takes as input a transcript 𝑇 := {C, E, 𝜋} and a public key pk𝑖 .

(5) Parse 𝜋 as (𝜋1, . . . , 𝜋𝑘). For all 𝑗 ∈ [𝑘], check if the signature on 𝜋 𝑗 verifies using pk𝑖 . If one of these checks succeeds, output 1
(contribution from 𝑃𝑖). Otherwise, output 0 (no contribution from 𝑃𝑖).

The verification algorithm Ver takes as input public keys pk
1
, . . . , pk𝑛 and a transcript𝑇 = {C, E, 𝜋}. It outputs 1 (accept) or 0 (reject). Let

LC be the linear space over Z𝑝 as defined above in (★) and let LC⊥ be its dual space.

(6) Sample (a1, . . . , a𝑛) ←$
LC⊥ and check if 𝐶

a1
1
· . . . ·𝐶a𝑛

𝑛 = 1. For all 𝑖 ∈ [𝑛], check if 𝑒 (𝑔, 𝐸𝑖) = 𝑒 (𝐶𝑖 , pk𝑖).
(7) Parse 𝜋 as (𝜋1, . . . , 𝜋𝑘) and check if Z1 · . . . · Z𝑘 = 𝐶0 (obtained by Lagrange interpolation in the exponent from C). Further, check

if the NIZK proofs \𝑖 and signatures on 𝜋𝑖 (using pk𝑖) for all 𝑖 ∈ [𝑘] verify.
(8) If one of the above checks fails, output 0 (invalid transcript). Otherwise, output 1 (valid transcript).

The decryption algorithm Dec (on input encrypted shares E = (𝐸1, . . . , 𝐸𝑛)) and the reconstruction algorithm Rec.

(9) On input a secret key sk𝑖 , compute the secret share 𝑆𝑖 = 𝐸
1/sk𝑖
𝑖

. A secret share 𝑆 𝑗 (with corresponding index 𝑗) is considered

valid if 𝑒 (𝐶 𝑗 , ℎ) = 𝑒 (𝑔, 𝑆 𝑗). Otherwise, the share is considered invalid.

(10) On input 𝑡 + 1 valid secret shares {𝑆𝑖 }𝑖∈𝐼 , reconstruct the secret 𝑆 by Lagrange interpolation in the exponent for the set 𝐼 .

Concretely, the reconstructed secret is of the form 𝑆 = ℎ𝑓 (0) ∈ G2.

Figure 6: Description of the algorithms of our aggregatable PVSS scheme.

Q 𝑗 was determined to be successful in the previous step. This en-

sures that the transcripts reach all honest parties. Parties conclude

by locally aggregating 𝐴𝑇 := Agg(𝐴𝑇1, 𝐴𝑇2) the valid PVSS tran-

scripts and progress to the next level of iteration. This high-level

idea applies to all levels ℓ ∈ [log𝑛] of the iteration/recursion: the
two neighboring committees Q2𝑖−1 and Q2𝑖 of size 𝑞/2 := 2

ℓ−1

each interact with each other to exchange their newly generated

PVSS transcripts from the previous level and finally aggregate them.

At the end of the protocol, all parties obtain the same, aggregated

PVSS transcript 𝐴𝑇 from which they directly derive the key shares

without any further interaction.

Security Analysis. Let A be an adversary that (𝑡, Y,𝑇)-breaks se-
curity of GRand. Using this adversary, we build a reduction against

the aggregated unforgeability of the underlying aggregatable PVSS

scheme APVSS. For this, we split our proof into two parts. First, we
provide a simulation of the aggregated unforgeability experiment

to A via a sequence of games. In particular, we interpolate between

some games using reductions against the security of the Byzantine

agreement protocol BA and the security of the cryptographic ac-

cumulator scheme AC. Second, we bound A’s winning probability
in the final game by providing an efficient reduction against the

aggregated unforgeability of APVSS. We consider the following

sequence of games with A as adversary. Throughout, we denote by

C ⊂ [𝑛] the set of corrupt parties and byH := [𝑛] \ C the set of

honest parties.

Game G0: This is the real game. In particular, the game samples

system parameters par and initializes a corruption set C := ∅ and
updatesH := [𝑛] \ C throughout the game. Then, the game runs

A on input par with access to a corruption oracle. Whenever A
decides to corrupt a party 𝑃𝑖 ∈ H , the game faithfully returns the

internal state of party 𝑃𝑖 to A and updates C := C∪{𝑖}. Henceforth,

19

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

Let Q ⊆ P be a set of 𝑞 parties and let 𝑏 := ⌊𝑞/2⌋ + 1. Partition Q into two disjoint subsets Q = Q1 ∪ Q2 (each called a committee) of size
𝑞1 := ⌈𝑞/2⌉ and 𝑞2 := ⌊𝑞/2⌋, respectively. Let 𝑙 ∈ {1, 2} be such that 𝑃𝑖 ∈ Q𝑙 and fix some small constant const ∈ Z≥1.

• Graded Consensus. Execute GBA(Q, 𝑣𝑖) (cf. Figure 8) among all parties in Q. Let (𝑣𝑖 , 𝑔𝑖) denote the output.
• First Recursion. If 𝑙 = 1, execute BA(Q1, 𝑣𝑖) among parties in Q1. Let 𝑣 denote the output. In case |Q1 | ≤ const, parties can

execute any Byzantine agreement protocol to obtain 𝑣 .

• Proposal Phase. If 𝑙 = 1, send ⟨propose, 𝑣⟩𝑖 to all parties in Q. Upon receiving the same proposal value 𝑣 from ⌊𝑞1/2⌋ + 1
different parties in Q1 (a majority) and if 𝑔𝑖 = 0, update 𝑣𝑖 = 𝑣 .

• Graded Consensus. Execute GBA(Q, 𝑣𝑖) among all parties in Q. Let (𝑣𝑖 , 𝑔𝑖) denote the output.
• Second Recursion. If 𝑙 = 2, execute BA(Q2, 𝑣𝑖) among parties in Q2. Let 𝑣 denote the output. In case |Q2 | ≤ const, parties can

execute any Byzantine agreement protocol to obtain 𝑣 .

• Proposal Phase. If 𝑙 = 2, send ⟨propose, 𝑣⟩𝑖 to all parties in Q.
• Output Generation. Upon receiving the same proposal value 𝑣 from ⌊𝑞2/2⌋ + 1 different parties in Q2 (a majority) and if 𝑔𝑖 = 0,

update 𝑣𝑖 = 𝑣 . Terminate with output 𝑣𝑖 .

Figure 7: Recursive Byzantine agreement protocol BA described from the view of party 𝑃𝑖 on input 𝑣𝑖 .

Let Q ⊆ P be a set of 𝑞 parties among which the protocol is executed and let 𝑏 := ⌊𝑞/2⌋ + 1. We denote by 𝜋𝑏 (𝑚) a threshold signature

on𝑚 with threshold 𝑏, which is a proof of knowledge of 𝑏 signatures on𝑚 from different parties.

• Echo Phase. Initialize sets𝑊,𝐶1,𝐶2 := ∅, grade 𝑔 := 0, and variable sent := 0. Send ⟨echo, 𝑣𝑖 ⟩𝑖 to all parties.

• Forward Phase. Upon receiving 𝑏 valid echo messages ⟨echo, 𝑣⟩𝑗 on the same value 𝑣 from different parties, update𝑊 :=

𝑊 ∪ {(𝑣, 𝜋𝑏 (echo, 𝑣))}. Once𝑊 ≠ ∅, send ⟨𝑣, 𝜋𝑏 (𝑣)⟩𝑖 ∈𝑊 to all parties and update sent = 1.

• First Vote Phase. If sent = 1 and did not receive a valid tuple (𝑣, 𝜋𝑏 (𝑣)) for a different value 𝑣 ≠ 𝑣 , send ⟨vote1, 𝑣⟩𝑖 to all parties.

Upon receiving 𝑏 valid votes ⟨vote1,𝑤⟩𝑗 on the same value𝑤 from different parties, update 𝐶1 := 𝐶1 ∪ {(𝑤, 𝜋𝑏 (vote1,𝑤))}.
• Second Vote Phase. Once 𝐶1 ≠ ∅, send ⟨vote2,𝑤⟩𝑖 along with ⟨𝑤, 𝜋𝑏 (vote1,𝑤)⟩𝑖 ∈ 𝐶1 to all parties.

• Output Generation. Upon receiving 𝑏 valid votes ⟨vote2, 𝑢⟩𝑗 on the same value 𝑢 from different parties, update 𝐶2 := 𝐶2 ∪
{(𝑢, 𝜋𝑏 (vote2, 𝑢))}. If 𝐶1 ≠ ∅, set 𝑣𝑖 := 𝑣 ∈ 𝐶1. If further 𝑣 ∈ 𝐶2, set 𝑔 := 1. Terminate with (𝑣𝑖 , 𝑔).

Figure 8: Graded Byzantine agreement protocol GBA described from the view of party 𝑃𝑖 on input (Q, 𝑣𝑖) .

A gets full control over 𝑃𝑖 . Further, all honest parties follow the

protocol instructions for the DKG protocol as specified in Figure 1.

In particular, at the beginning of the protocol, each party 𝑃𝑖 hon-

estly samples a polynomial 𝑓𝑖 ∈ Z𝑝 [𝑋] of degree 𝑡 and computes

a PVSS transcript 𝑇𝑖 . After the protocol execution, each party 𝑃𝑖
outputs a transcript 𝐴𝑇 and derives the public key PK , the vector
of public key shares, and its secret key share SK𝑖 . At the end of

the game, A outputs a secret 𝑆∗. It wins the game if |C| ≤ 𝑡 and
𝑆∗ = 𝑆𝐾 . Clearly, A’s advantage in winning the game is given by

Pr[G0 = 1] = Y.
Game G1: This game is identical to the previous game, except that

we add an abort condition. The idea of this hybrid is to rule out

failure of the protocol Deliver. Namely, whenever an instance of

Deliver fails to output the correct message, the game aborts. At

each level 𝑟 ∈ [log𝑛] of the recursion, there are 2𝑛 · 2𝑟−1 instances
of Deliver. Summing these up over all levels, we obtain

log𝑛∑︁
𝑟=1

2𝑛 · 2𝑟−1 = 2𝑛 ·
log𝑛∑︁
𝑟=1

2
𝑟−1 ≤ 2𝑛2 .

It is easy to see that Deliver only fails when an invalid proof of

membership is received. As such, the probability of failure ofDeliver
is directly given by the probability of finding a collision for the

cryptographic accumulator scheme AC underlying Deliver. As this
probability is given by Y𝐶 , we can bound the winning probability

of this game by

Pr[G1 = 1] ≥ Pr[G0 = 1] − 2𝑛2Y𝐶 .

Game G2: This game is identical to the previous game, except that

we add another abort condition. The idea of this hybrid is to rule out

failure of the consensus protocol BA. Namely, whenever an instance

of the Byzantine agreement protocol BA fails to establish consensus,

the game aborts. At each level 𝑟 ∈ [log𝑛] of the recursion, there
are 4 · 2𝑟−1 instances of the protocol (each of the 2

𝑟−1
committees

executes two instances of BA for accumulation value agreement

and two instances of BA for committee selection). Summing these

up over all levels, we obtain

log𝑛∑︁
𝑟=1

4 · 2𝑟−1 = 4 ·
log𝑛∑︁
𝑟=1

2
𝑟−1 ≤ 4𝑛.

As each instance of BA fails with probability Y𝐵 , we can bound the

winning probability of this game by

Pr[G2 = 1] ≥ Pr[G1 = 1] − 4𝑛Y𝐵 .
Game G3: This game is identical to the previous game, except that

we add another abort condition. So far we have rule out failure of

the distributed protocols BA and Deliver. From Lemma 1, it follows

that the protocol execution then established the same aggregated

transcript 𝐴𝑇 for all parties that has contribution from at least

one honest party. As such, the idea of this hybrid is to guess this

special party 𝑃∗ ∈ [𝑛] that contributes to the aggregate 𝐴𝑇 and

that remains honest until the end of the game. Concretely, at the

beginning of the game, the gamemakes a random guess by sampling

𝑖∗ ←
$
[𝑛] and executes the game as in G2. At the end of the game,

20

GRandLine: DKG and Randomness Beacon withQuadratic Communication

the game aborts if 𝑃𝑖∗ ≠ 𝑃∗ or 𝑃𝑖∗ ∉ H . Since the choice of 𝑖∗

remains information-theoretically hidden from A’s view, we can
bound the winning probability of this game by

Pr[G3 = 1] ≥ Pr[G2 = 1]/(2𝑛) .
Note that the factor 𝑛 comes from the condition 𝑃𝑖∗ = 𝑃

∗
, while the

factor 2 comes from the condition 𝑃𝑖∗ ∈ H . It remains to bound

the probability that the final game G3 outputs 1. For that, we build

an efficient reduction R against the aggregated unforgeability of

APVSS. The design should be straightforward.

Building a reduction. At the beginning of the aggregated unforge-
ability experiment, R submits a submits a request (givePVSS, 𝑖∗)
and obtains a PVSS transcript 𝑇𝑖∗ . Then it simulates the game G3

to A by sampling random degree-𝑡 polynomials 𝑓𝑖 ∈ Z𝑝 [𝑋] for all
𝑖 ∈ H \ {𝑖∗} and computing corresponding PVSS transcripts𝑇𝑖 . For

party 𝑃𝑖∗ , however, it uses 𝑇𝑖∗ . Whenever A decides to corrupt a

party 𝑃𝑖 ∈ H , the reduction R simply forwards this query to its own

challenger for the aggregated unforgeability experiment and re-

turns the output to the adversary A. In this manner, R can correctly

answer all corruption queries of A. At the end of the simulation to A,
the adversary A outputs a secret 𝑥∗ to R. We assume that the adver-

sary outputs a correct forgery 𝑥∗, so that 𝑥∗ is the secret of the final
aggregated transcript𝐴𝑇 which has contribution from 𝑃𝑖∗ . Now, the

reduction R outputs the tuple (𝐴𝑇,𝑇𝑖∗ , 𝑥∗) to the challenger of the

aggregated unforgeability experiment. In particular, the winning

conditions are satisfied: (i) |C| ≤ 𝑡 is clear, since the same holds

true for the adversary A. (ii) Ver((pk
1
, . . . , pk𝑛), 𝐴𝑇) = 1 is clear,

since the DKG protocol execution succeeded by assumption. (iii)

The existence of an index 𝑖 ∈ H such that ConId(𝐴𝑇, pk𝑖) = 1 is

clear, since 𝑖∗ is this index. Having said this, it follows immediately

that we can bound the winning probability of the final game by

Pr[G3 = 1] ≤ Y𝐴 .
Overall, we obtain the final bound

Y𝐴 ≥
1

2𝑛

(
Y − 2𝑛2Y𝑐 − 4𝑛Y𝐵

)
⇐⇒ Y ≤ 2𝑛 (Y𝐴 + 2Y𝐵 + 𝑛Y𝐶) .

We proceed with the proof for the statement that the DKG protocol

is complete assuming no failure of the distributed protocols BA and

Deliver. Here, complete means that all honest parties at the end

of the protocol execution output the same transcript 𝐴𝑇 that has

contribution from at least one honest party.

Lemma 1. If the protocols BA andDeliver are perfectly secure, then
GRand (cf. Figures 1 and 2) is a complete DKG protocol in the sense
that all honest parties output the same transcript𝐴𝑇 with contribution
from at least one honest party at the end of the protocol.

Proof. We will show this lemma using an iterative argument.

Concretely, we show that the recursive protocol GenAPVSS exe-

cuted among a set of parties Q := Q1 ∪ Q2 succeeds under the

assumption that Q has honest majority. By this we mean that after

termination, all honest parties output a common transcript 𝐴𝑇 that

has contribution from at least one subcommittee among {Q1,Q2}
with honest majority itself (the existence of such a subcommittee is

clear, otherwise Q itself would not have honest majority). From this,

it then follows that GRand is complete, since at least one of the two

committees P = P1 ∪ P2 from the first recursion step has honest

majority (as we assume 𝑡 < 𝑛/2), say P1 for example. Then, the

same argument also applies to P1 and its splitting P1 = P1,1 ∪P1,2,
and so on. Since at the bottom level, there is a pair of neighboring

parties that form a committee, we know that both their initially

sampled PVSS transcript will be included in all subsequent levels

and thus also in the final aggregate 𝐴𝑇 .

We start with the proof. Consider a committee Q = Q1∪Q2 with
honest majority among which the protocol GenAPVSS is executed.

It follows that one of the two committees Q1,Q2 also has honest

majority, and we assume w.l.o.g. Q1 to be this committee. Further,

we assume that parties in Q1 have already established a common

PVSS transcript 𝑇1. We will show that at the end, all parties in Q
obtain a common PVSS transcript 𝐴𝑇 that has contribution 𝑇1. In

the first step of the protocol, all parties in Q1 generate an accumu-

lation value 𝑧1 for 𝑇1 and then send it to all parties in Q. Since Q1
has honest majority and we assume that all messages are signed

by a party before it sends it, all parties in Q will set their local

accumulation value list as Z[1] := {𝑧1} and have agreement on it

(without possibly knowing this). Then, parties run two instances

of the Byzantine agreement protocol, which by consistency estab-

lishes the same accumulation values 𝑧1, 𝑧2 for all parties in Q. By
validity of BA, we know that 𝑧1 is the correct accumulation value

for𝑇1, which was sent by an honest majority of parties in Q. In the

next step, each party in Q1 broadcasts 𝑇1 to all parties in Q using

Deliver. Since this protocol uses Reed-Solomon codes with a recon-

struction threshold of 𝑞/2 + 1 (majority threshold) and there are at

least 𝑞/2+1 honest parties in Q, all parties in Q will reconstruct the

correct transcript 𝑇1 after this step. On the other hand, we cannot

say anything regarding a hypothetical transcript𝑇2 with accumula-

tion value 𝑧2 coming from the other committee Q2. It could be that

corrupt parties in Q2 (which can form the majority in that commit-

tee) send a valid transcript 𝑇2 to only some honest parties in Q or

even none so that not all honest parties might be able to reconstruct

the full message. Therefore, in the next step, parties execute two

instances 2BA1, 2BA2 of binary Byzantine agreement on input 1 if

it was able to reconstruct a transcript 𝑇𝑖 with accumulation value

𝑧𝑖 and on input 0 otherwise. The security guarantees of Byzantine

agreement now have the following implications. If the output for

say B𝑖 is 1, then there must have been at least one honest party that

provided the input 1 into the protocol. In particular, that honest

party was able to reconstruct a transcript 𝑇𝑖 with accumulation

value 𝑧𝑖 from the previous step. If the output for BA𝑖 is 0, then we

cannot say anything further (as it could be that some honest parties

have input 0 and others 1). But since all honest parties in Q were

able to reconstruct the full transcript 𝑇1 coming from the (honest)

committee Q1, we know that all honest parties input 1 into BA1
and therefore by validity of Byzantine agreement they all output 1.

In the final step of the protocol, all parties that have a transcript 𝑇𝑖
with accumulation value 𝑧𝑖 send it to all other parties in Q using

the Deliver protocol. If the output of BA𝑖 was 0, then parties simply

ignore any transcript𝑇𝑖 delivered by any party. If the output of BA𝑖
was 1, then all honest parties will reconstruct 𝑇𝑖 , as there was at

least one honest party that invoked the deliver protocol on 𝑇𝑖 by

the properties of BA as already clarified. As BA1 has output 1, we
know that all honest parties will have the same transcript 𝑇1 at the

end of this step. Further, if BA2 has also output 1, then likewise all

honest parties will have the same transcript 𝑇2 at the end of this

step. If BA2 has output 0, then we know that all honest parties will

21

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

simply ignore any transcript 𝑇2 delivered by any party and thus

all honest parties will agree on 𝑇2 = ∅ simply. Having said all this,

we have shown that in case the committee Q has honest majority,

then all honest parties will end up with the same transcripts 𝑇1
and 𝑇2 (coming from the children committees Q1 and Q2) where at
least one of them is a valid and true PVSS transcript 𝑇𝑖 ≠ ∅. As a
result, after the local aggregation step of {𝑇𝑖 }𝑖∈[2] , all honest par-
ties obtain the same transcript 𝐴𝑇 := Agg(𝑇1,𝑇2). This concludes
our discussion on our initial goal to show that all honest parties

terminate GenAPVSS with the same aggregated transcript that has

at least one honest contribution. Termination of the protocol is

clear, as all building blocks are deterministic and run in a finite

number of rounds. □

Communication Complexity. In the following, we measure the

communication complexity ofGRand. We begin by focusing on one

particular level of the recursive protocol GenAPVSS and then sum

over the total number of log𝑛 levels. For this, let us consider the

level ℓ ∈ [log𝑛] of the recursion tree (ℓ = 1 denotes the bottom level

in which parties form committees of size 2) with Q1 and Q2 each of

size 2
ℓ−1

that merge into Q which is of size 𝑞 := 2
ℓ
. We count the

communicated bits among honest parties in the committee Q and

then multiply this with the number 𝑛/𝑞 of parent committees at

that particular level ℓ . However, in contrast to the previous analysis

we do not now assume that Q has honest majority. The reason for

this is that even though our protocol is deterministic, it could be

possible that in a corrupt majority committee the honest parties

communicate much more bits (e.g., O(_𝑞3) bits) than in an honest

majority committee which would have devastating consequences

for the overall communication complexity. Therefore, we do not

make any assumptions on Q and its children committees Q1,Q2.
We begin with the analysis assuming the worst-case scenario in

which both committees are corrupt and all honest parties in both

committees start each with a different transcript. In the first stage,

each party in Q multicasts an accumulation value of size O(_) to all
other parties in Q. Thus, this step takes a total communication of

O(_𝑞2) bits, as the number of parties in Q is 𝑞. In the next stage, the

parties execute two instances of the Byzantine agreement protocol

BA, which itself has a communication complexity of O(_𝑞2 log𝑞)
bits. Here, we assume the scenario where the adversary lets the

honest parties agree all on a different accumulation value which

is the one from its own local PVSS transcript. Afterwards, parties

invoke the deliver protocol on their PVSS transcript which is of size

O(_𝑛). By definition of the deliver, each party splits its transcript

into chunks of size 𝑂 (_𝑛/𝑞) and sends its chunk to one particular

party. Therefore, the total communication complexity of this step

is 𝑞 · O(_𝑛/𝑞 · 𝑞) = O(_𝑛𝑞) bits. In the next step of the deliver

protocol, each party multicasts a chunk it received from a different

party only in case the augmented accumulation value corresponds

to its own accumulation value and it does so only once in total.

Hence, this step also incurs the same number of communicated bits

which is O(_𝑛𝑞). Following this, the next two steps of the recursive
protocol are identically to the preceding two steps: two instances

of (binary) Byzantine agreement followed by an invocation of the

deliver protocol. As a result, we obtain O(_𝑛𝑞 + _𝑞2 log𝑞) bits
for the total communication complexity of honest parties in the

committee Q of size 𝑞. Since there are 𝑛/𝑞 such parent committees,

we get a communication complexity of 𝑛/𝑞 · O(_𝑛𝑞 + _𝑞2 log𝑞) =
O(_𝑛2+_𝑛𝑞 log𝑞) bits for that particular level. By summing over all

levels for ℓ ∈ [log𝑛] with 𝑞 = 2
ℓ
, we obtain a total communication

complexity of

log𝑛∑︁
ℓ=1

O(_𝑛2 + _𝑛𝑞 log𝑞) = O(_𝑛2 log𝑛) +
log𝑛∑︁
ℓ=1

O(_𝑛2ℓ ℓ)

≤ O(_𝑛2 log𝑛) +
log𝑛∑︁
ℓ=1

O(_𝑛2ℓ log𝑛) ≤ O(_𝑛2 log𝑛)

bits, as claimed. This concludes our discussion on the communica-

tion complexity of GRand.
Round Complexity. We proceed with the round complexity of

GRand which is the same as the one of the recursive protocol

GenAPVSS. For this, we first give a formula for the round complex-

ity of our Byzantine agreement protocol in Appendix C.1. Denote

by 𝑟 (𝑛) the round complexity of the protocol that consists of two

sequential executions of the four-round graded Byzantine agree-

ment protocol GBA with two rounds of proposal phases and two

sequential executions of the Byzantine agreement protocol recur-

sively on committees of size 𝑛/2. From this observation, we easily

derive the recursive formula

𝑟 (𝑛) = (4 + 𝑟 (𝑛/2) + 1) + (4 + 𝑟 (𝑛/2) + 1)
= 2𝑟 (𝑛/2) + 10,

where at the lowest level of the recursion we have 𝑟 (1) = 0, since a

Byzantine agreement protocol involving a single party is trivial. It

can easily be seen that 𝑟 (𝑛) = 10𝑛 − 10 is the correct solution for

this recursive formula. We use this now to establish a formula for

the round complexity of our recursive protocol GenAPVSS. The
protocol consists of the following steps: two parallel executions of

the protocol itself with committees of size𝑛/2, a one-round accumu-

lator proposal step, two parallel executions of Byzantine agreement

protocol, an invocation of the two-round deliver protocol, again

two parallel executions of Byzantine agreement, and finally again

an invocation of the two-round deliver protocol. From this obser-

vation, we derive for the round complexity 𝑅(𝑛) of GenAPVSS the

following recursive formula

𝑅(𝑛) = (𝑅(𝑛/2) + 1) + (𝑟 (𝑛) + 2) + (𝑟 (𝑛) + 2)
= 𝑅(𝑛/2) + 2𝑟 (𝑛) + 5
= 𝑅(𝑛/2) + 20𝑛 − 15,

where at the lowest level of the recursion we trivially have 𝑅(1) = 0.

Again this can be solved using standard techniques, which gives

us the solution 𝑅(𝑛) = 40𝑛 − 15 log𝑛 − 2 − 40. This concludes our
security and complexity analysis of GRand. □

D.2 Proofs for our Randomness Beacon
Here, we give a proof for Theorem 2. Since the claim on the com-

munication and round complexity of GRandLine is trivial to verify,

we will only focus on the security analysis.

Proof. In the following, we prove 1-unpredictability and bias-

resistance of our randomness beacon GRandLine. We do this by

showing that it is hard for an algebraic adversary to output a fu-

ture randomness beacon value that is valid. Since our randomness

22

GRandLine: DKG and Randomness Beacon withQuadratic Communication

beacon values are derived as a unique (deterministic) threshold

signature from threshold keys output by GRand, it is enough to

show that the adversary cannot produce a forged signature for

a future epoch. Since we hash the final epoch signature through

a random oracle H2, the 1-unpredictability and bias-resistance of

GRandLine follows. Having said that, let A be an algebraic algo-

rithm that (𝑡, Y,𝑇 , 𝐿, 𝑞ℎ, 1)-breaks unpredictability of GRandLine,
and let b = (b1, . . . , b𝑛) ∈ (G1 × G2)𝑛 be the co-one-more discrete

logarithm challenge of degree 𝑛 with corresponding oracle DL𝑔
where b𝑖 = (b𝑖,1, b𝑖,2) = (𝑔𝑧𝑖 , ℎ𝑧𝑖) for all 𝑖 ∈ [𝑛]. Without loss of

generality, we assume that A queries the random oracle H2 before

producing its prediction 𝜚𝑟 := H2 (𝜎) for some round 𝑟 ∈ [𝐿]. Fur-
ther, we assume that all parties are honest prior to the execution of

the protocol. It is straightforward how to adjust the proof to the

general case. Hereafter, let C ⊂ [𝑛] be the dynamically changing set

of corrupt parties and letH := [𝑛] \ C be the set of honest parties.

Initially, we have C = ∅. We consider the following sequence of

games with A as adversary.

Game G0: This is the real game. Generate the system parameters

par = (G1,G2,G𝑇 , 𝑝, 𝑔, ℎ, 𝑒) where 𝑒 : G1 × G2 → G𝑇 is an asym-

metric type 3 pairing of prime order 𝑝 cyclic groups with generators

𝑔 ∈ G1, , ℎ ∈ G2. For all indices 𝑖 ∈ [𝑛], generate the key pairs as

(pk𝑖 , sk𝑖) ← Keys(par, 𝑖) such that pk𝑖 = ℎ
sk𝑖

. Whenever A decides

to corrupt a party 𝑃𝑖 , return the internal state of that party and

set C := C ∪ {𝑖}. Thereafter, A gets full control over 𝑃𝑖 . Execute

the DKG protocol GRand on behalf of the honest parties and let

(PK1, . . . , PK𝑛) and (SK1, . . . , SK𝑛) be the vector of public and se-

cret key shares, respectively. For all 𝑖 ∈ H , execute the commitment

phase by sampling 𝛼𝑖 ←$
Z∗𝑝 uniformly at random and publishing

cm𝑖 = (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Answer random oracle queries 𝑟𝑖 to H1 by

sampling 𝛾𝑖 ←$
Z𝑝 and returning 𝐻1 [𝑟𝑖] := 𝑔𝛾𝑖 ∈ G1. Answer

random oracle queries 𝑠𝑖 to H2 by sampling 𝜚𝑖 ←$
{0, 1}_ and

returning 𝐻2 [𝑠𝑖] := 𝜚𝑖 . For all 𝑖 ∈ H and epoch numbers 𝑟 ≥ 1,

compute the beacon share 𝜎𝑖 of party 𝑃𝑖 as (𝑔𝛼𝑖𝑟 , 𝑒 (𝑔𝑟 , SK𝑖)) along
with a proof of discrete logarithm equality 𝜋𝑖 := Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟)
certifying the correctness of 𝑔

𝛼𝑖
𝑟 and publish it. Output the beacon

value 𝜚𝑟 := 𝑒 (𝑔𝑟 , SK) for epoch 𝑟 (either by Lagrange interpola-

tion in the exponent from beacon shares {𝑒 (𝑔𝑟 , SK𝑖)}S or directly

from the knowledge of the secret key SK). At any point of the

game, say in epoch 𝑟 , A outputs a prediction (𝜚∗
ℓ
, ℓ) for an epoch

ℓ ∈ [𝐿]. The adversary wins the game if ℓ > 𝑟 and 𝜚∗
ℓ
= 𝜚ℓ where

𝜚ℓ := H2 (𝑒 (𝑔ℓ , SK)). Clearly, A’s advantage in winning the game is

per definition given by

Pr[G0 = 1] = Y.
Game G1: This game is identical to the previous game, except that

we add an abort condition. Before the execution of the game, sample

a guess ℓ∗ ←
$
[𝐿] uniformly at random. Then, execute the game as

before and abort the game if ℓ ≠ ℓ∗. Since the choice of ℓ∗ remains

hidden from A and does not affect the subsequent execution of the

game, we bound the winning probability of this game by

Pr[G1 = 1] ≥ Pr[G0 = 1]/𝐿.
Game G2: This game is identical to the previous game, except that

we reprogram the random oracleH1 on input ℓ differently (note that

ℓ = ℓ∗ is the epoch for which A provides a prediction, i.e., a forgery

for the underlying threshold signature). To this end, program H1

on input 𝑟𝑖 as follows. For 𝑟𝑖 ≠ ℓ , sample 𝛾𝑖 ←$
Z𝑝 uniformly

at random and return 𝐻1 [𝑟𝑖] := 𝑔𝛾𝑖 . For 𝑟𝑖 = ℓ , however, return

𝐻1 [ℓ] := b1,1 where b1,1 ←$
G1 is some randomly sampled group

element. Clearly, this game is indistinguishable from the previous

one so that there is no change in the winning probability, i.e.,

Pr[G2 = 1] = Pr[G1 = 1] .
Game G3: This game is identical to the previous game, except that

we add another abort condition. The idea of this hybrid is to guess a

party 𝑃𝑖∗ ∈ [𝑛] that contributes to the keys generated from GRand
and that remains honest until the end of the game. Note that the

keys output by GRand are directly derived from the final APVSS

transcript𝐴𝑇 ← GenAPVSSwhich is just an aggregation of several
initially sampled PVSS transcripts with contribution from at least

one honest party 𝑃∗. Before the execution of the game, make a

guess by sampling 𝑖∗ ←
$
[𝑛]. Then, execute the game as before

and let 𝑃∗ ∈ H be the honest party whose initial PVSS transcript is

included in the final aggregated transcript 𝐴𝑇 during the execution

of GRand. At the end, abort the game if 𝑃𝑖∗ ≠ 𝑃
∗
. Since the choice

of 𝑖∗ remains information-theoretically hidden from A’s view, we
bound the winning probability of this game by

Pr[G3 = 1] ≥ Pr[G2 = 1]/𝑛.
Game G4: This game is identical to the previous game, except that

we add another abort condition. Namely, whenever an instance of

the Byzantine agreement protocol BA fails to establish consensus,

the game aborts. At each level 𝑟 ∈ [log𝑛] of the recursive setup
phase, there are 4 · 2𝑟−1 instances of the consensus protocol (each
of the 2

𝑟−1
committees executes two instances of BA to agree on

accumulation values and two instances of BA to agree on which

PVSS transcripts of the children committees to aggregate). Summing

these up over all levels, we obtain

log𝑛∑︁
𝑟=1

4 · 2𝑟−1 = 4 ·
log𝑛∑︁
𝑟=1

2
𝑟−1 ≤ 4𝑛.

As each instance of BA fails with probability Y𝐵 , we can bound the

winning probability of this game by

Pr[G4 = 1] ≥ Pr[G3 = 1] − 4𝑛Y𝐵 .
Game G5: This game is identical to the previous game, except that

we add another abort condition. Namely, whenever the adversary

can forge a NIZK proof of knowledge of discrete logarithm \ for

one of its PVSS transcripts, the game aborts. As the NIZK proof

of our PVSS scheme is a regular Schnorr proof with statistical

soundness, we may bound the soundness error simply by 1/𝑝 . Since
the adversary makes a total of 𝑞ℎ random oracle queries, we can

bound the winning probability of this game by

Pr[G5 = 1] ≥ Pr[G4 = 1] − 𝑞ℎ
𝑝
.

Game G6: This game is identical to the previous game, except that

we add another abort condition. Namely, whenever the adversary

can forge a NIZK proof of discrete logarithm equality 𝜋 for one

of his partial signatures during a randomness beacon epoch, the

game aborts. As the NIZK proof of discrete logarithm equality is

a standard Chaum-Pedersen proof with statistical soundness, we

23

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

may bound the soundness error simply by 1/𝑝 . Since the adver-
sary makes a total of 𝑞ℎ random oracle queries, we can bound the

winning probability of this game by

Pr[G6 = 1] ≥ Pr[G5 = 1] − 𝑞ℎ
𝑝
.

Game G7: This game is identical to the previous game, except that

we add another abort condition. Namely, whenever the adversary

finds a collision among the random oracle queries to the hash

function H1 : {0, 1}∗ → G1, the game aborts. As the adversary has

a total of 𝑞ℎ tries and can run the birthday paradox algorithm, we

can bound the winning probability of this game by

Pr[G7 = 1] ≥ Pr[G6 = 1] −
𝑞2
ℎ

2𝑝
.

As A is an algebraic adversary, at the end of the game it returns the

forgery (𝜚ℓ , ℓ) where 𝜚ℓ = H2 (𝑒 (𝑔ℓ , SK)) together with an algebraic
representation (w.l.o.g. we assume that the adversary queries the

random oracle on 𝑒 (𝑔ℓ , SK) before outputting 𝜌ℓ)(
{𝑎0, 𝑎𝑖,1, . . . , 𝑏𝑖,2}𝑛𝑖=1, {𝑏𝑖,3}

𝑞ℎ
𝑖=1
, {𝑟𝑖,1, . . . , 𝑟𝑖,𝑛}𝑞𝑠𝑖=1, {𝑐𝑖, 𝑗,1, . . . , 𝑐𝑖, 𝑗,3}

𝑛
𝑖,𝑗=1,

{𝑑𝑖,1,2, . . . , 𝑑𝑖,𝑛,2}𝑞ℎ𝑖=1, {𝑒𝑖,1,2, . . . , 𝑒𝑖,𝑛,2}
𝑞ℎ
𝑖=1
, {𝑓𝑖,1,2, . . . , 𝑓𝑖,𝑛,2}𝑞ℎ𝑖=1,

{𝑑𝑖, 𝑗,1, 𝑒𝑖, 𝑗,1, 𝑓𝑖, 𝑗,1}𝑛𝑖,𝑗=1, {𝑠𝑖,1,1, . . . , 𝑠𝑖,𝑛,𝑛}
𝑞𝑠
𝑖=1
, {𝑡𝑖,1,1, . . . , 𝑡𝑖,𝑛,𝑛}𝑞𝑠𝑖=1,

{𝑢𝑖,1,1, . . . , 𝑢𝑖,𝑛,𝑛}𝑞𝑠𝑖=1, {𝑣𝑖,1, . . . , 𝑣𝑖,𝑛}
𝑞𝑠
𝑖=1

)
of elements in Z𝑝 such that 𝑒 (𝑔ℓ , SK) equals

!

= 𝑒 (𝑔, ℎ)𝑎0 ·
𝑛∏
𝑖=1

𝑒 (𝑔,𝑌𝑖)𝑎𝑖,1 · 𝑒 (𝑔, pk𝑖)𝑎𝑖,2 · 𝑒 (𝑔, cm𝑖,2)𝑎𝑖,3

·
𝑛∏
𝑖=1

𝑒 (𝐶𝑖 , ℎ)𝑏𝑖,1 · 𝑒 (cm𝑖,1, ℎ)𝑏𝑖,2

·
𝑞ℎ∏
𝑖=1

𝑒 (ℎ1,𝑖 , ℎ)𝑏𝑖,3 ·
𝑞𝑠∏
𝑖=1

𝑛∏
𝑗=1

𝑒 (𝜎𝑖, 𝑗 , ℎ)𝑟𝑖,𝑗

·
𝑛∏

𝑖, 𝑗=1

𝑒 (𝐶𝑖 , 𝑌𝑗)𝑐𝑖,𝑗,1 · 𝑒 (𝐶𝑖 , pk 𝑗)𝑐𝑖,𝑗,2 · 𝑒 (𝐶𝑖 , cm𝑗,2)𝑐𝑖,𝑗,3

·
𝑛∏

𝑖, 𝑗=1

𝑒 (cm𝑖,1, 𝑌𝑗)𝑑𝑖,𝑗,1 ·
𝑞ℎ∏
𝑖=1

𝑛∏
𝑗=1

𝑒 (ℎ1,𝑖 , 𝑌𝑗)𝑑𝑖,𝑗,2

·
𝑞𝑠∏
𝑖=1

𝑛∏
𝑗,𝑘=1

𝑒 (𝜎𝑖, 𝑗 , 𝑌𝑘)𝑠𝑖,𝑗,𝑘 ·
𝑛∏

𝑖, 𝑗=1

𝑒 (cm𝑖,1, pk 𝑗)𝑒𝑖,𝑗,1

·
𝑞ℎ∏
𝑖=1

𝑛∏
𝑗=1

𝑒 (ℎ1,𝑖 , pk 𝑗)𝑒𝑖,𝑗,2 ·
𝑞𝑠∏
𝑖=1

𝑛∏
𝑗,𝑘=1

𝑒 (𝜎𝑖, 𝑗 , pk𝑘)𝑡𝑖,𝑗,𝑘

·
𝑛∏

𝑖, 𝑗=1

𝑒 (cm𝑖,1, cm𝑗,2) 𝑓𝑖,𝑗,1 ·
𝑞ℎ∏
𝑖=1

𝑛∏
𝑗=1

𝑒 (ℎ1,𝑖 , cm𝑗,2) 𝑓𝑖,𝑗,2

·
𝑞𝑠∏
𝑖=1

𝑛∏
𝑗,𝑘=1

𝑒 (𝜎𝑖, 𝑗 , cm𝑘,2)𝑢𝑖,𝑗,𝑘 ·
𝑞𝑠∏
𝑖=1

𝑛∏
𝑗=1

𝑒 (𝑔𝑖 , SK 𝑗)𝑣𝑖,𝑗 . (1)

Here, the representation is split (from left to right) into powers of

pairing evaluations on combinations of the generators 𝑔, ℎ, the poly-

nomial commitments𝐶1, . . . ,𝐶𝑛 and encrypted shares 𝑌1, . . . , 𝑌𝑛 of

the aggregated transcript output by GenAPVSS (which has contri-

bution from the designated party 𝑃∗), the public keys pk
1
, . . . , pk𝑛

of parties (these constitute the setup phase), the auxiliary commit-

ments cm1, . . . , cm𝑛 (these constitute the commitment phase), the

answers to hash queries ℎ1,𝑖 := H1 (𝑚𝑖), 𝑖 ∈ [𝑞ℎ], returned by the

random oracle, and the beacon value shares (seen as partial sig-

natures of the underlying threshold signature scheme) 𝑒 (𝑔𝑖 , SK 𝑗),
where 𝑖 ∈ [𝑞𝑠] and 𝑗 ∈ [𝑛], along with the correctness shares

𝜎𝑖, 𝑗 := 𝑔
𝛼 𝑗

𝑖
(recall that 𝑔𝑖 := H1 (𝑖) by definition). Here, 𝑞𝑠 is defined

as the current epoch in which the adversary outputs its prediction

and thus 𝑞𝑠 < ℓ by assumption (as the protocol is deterministic

after the setup phase and parties do output the beacon values in

sequence). Further, we assume w.l.o.g. that𝑚𝑖 = 𝑖 for all 𝑖 ∈ [𝑞𝑠].
In the following, we let 𝑄ℎ denote the set [𝑞ℎ] \ {ℓ} (recall that ℓ
is the index where the forgery happens). Then the above equation

over G𝑇 to base 𝑒 (𝑔, ℎ) yields

𝛾ℓ 𝑓 (0)
!

= 𝑎0 +
𝑛∑︁
𝑖=1

𝑎𝑖,1 𝑓 (𝑖)sk𝑖 + 𝑎𝑖,2sk𝑖 + 𝑎𝑖,3 (−𝛼𝑖 + 𝑓 (𝑖))

+
𝑛∑︁
𝑖=1

𝑏𝑖,1 𝑓 (𝑖) + 𝑏𝑖,2𝛼𝑖 +
∑︁
𝑖∈𝑄ℎ

𝑏𝑖,3𝛾𝑖 +
𝑞𝑠∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑟𝑖, 𝑗𝛾𝑖𝛼 𝑗

+
𝑛∑︁

𝑖, 𝑗=1

𝑐𝑖, 𝑗,1 𝑓 (𝑖) 𝑓 (𝑗)sk 𝑗 + 𝑐𝑖, 𝑗,2 𝑓 (𝑖)sk 𝑗 + 𝑐𝑖, 𝑗,3 𝑓 (𝑖) (−𝛼 𝑗 + 𝑓 (𝑗))

+
𝑛∑︁

𝑖, 𝑗=1

𝑑𝑖, 𝑗,1𝛼𝑖 𝑓 (𝑗)sk 𝑗 +
∑︁
𝑖∈𝑄ℎ

𝑛∑︁
𝑗=1

𝑑𝑖, 𝑗,2𝛾𝑖 𝑓 (𝑗)sk 𝑗

+
𝑞𝑠∑︁
𝑖=1

𝑛∑︁
𝑗,𝑘=1

𝑠𝑖, 𝑗,𝑘𝛾𝑖𝛼 𝑗 𝑓 (𝑘)sk𝑘 +
𝑛∑︁

𝑖, 𝑗=1

𝑒𝑖, 𝑗,1𝛼𝑖 sk 𝑗

+
∑︁
𝑖∈𝑄ℎ

𝑛∑︁
𝑗=1

𝑒𝑖, 𝑗,2𝛾𝑖 sk 𝑗 +
𝑞𝑠∑︁
𝑖=1

𝑛∑︁
𝑗,𝑘=1

𝑡𝑖, 𝑗,𝑘𝛾𝑖𝛼 𝑗 sk𝑘

+
𝑛∑︁

𝑖, 𝑗=1

𝑓𝑖, 𝑗,1𝛼𝑖 (−𝛼 𝑗 + 𝑓 (𝑗)) +
∑︁
𝑖∈𝑄ℎ

𝑛∑︁
𝑗=1

𝑓𝑖, 𝑗,2𝛾𝑖 (−𝛼 𝑗 + 𝑓 (𝑗))

+
𝑞𝑠∑︁
𝑖=1

𝑛∑︁
𝑗,𝑘=1

𝑢𝑖, 𝑗,𝑘𝛾𝑖𝛼 𝑗 (−𝛼𝑘 + 𝑓 (𝑘)) +
𝑞𝑠∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑣𝑖, 𝑗𝛾𝑖 𝑓 (𝑗)

+ 𝛾ℓ
(
𝑏ℓ,3 +

𝑛∑︁
𝑗=1

𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 +
𝑛∑︁
𝑗=1

𝑒ℓ, 𝑗,2sk 𝑗 +
𝑛∑︁
𝑗=1

𝑓ℓ, 𝑗,2 (−𝛼 𝑗 + 𝑓 (𝑗))
)
.

Note that we have split the terms into those that contain the ℓ-th

term and those that do not. As a result, the terms on the right-hand

side of the equation other than the last one are independent from

the variable 𝛾ℓ . By rewriting, we get the simplified identity (♠)

𝛾ℓ
©«𝑏ℓ,3 − 𝑓 (0) +

𝑛∑︁
𝑗=1

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 + 𝑓ℓ, 𝑗,2 (. . .)

]ª®¬ = 𝐴,

where 𝐴 is the negative/minus of the appropriate rest term. Let us

write this equation as 𝛾ℓ · 𝐵 = 𝐴 for the appropriate 𝐵. We consider

the following five events:

• 𝐸1 defined by the identity 𝐵 = 0.

• 𝐸2 defined by: there is no index 𝑖 ∈ H such that 𝑓𝑖 ≠ 0 that

are known polynomials in 𝑓ℓ,1,2, . . . , 𝑓ℓ,𝑛,2.

24

GRandLine: DKG and Randomness Beacon withQuadratic Communication

• 𝐸3 defined by: there is no index 𝑖 ∈ H such that 𝑒𝑖 ≠ 0 that

are known polynomials in the coefficients output by A.

• 𝐸4 defined by: there is no index 𝑖 ∈ H such that 𝑑ℓ,𝑖,2 ≠ 0

and 𝑓ℓ,𝑖,2 + 𝑠𝑖 ≠ 0 for known coefficients 𝑠𝑖 .

• 𝐸5 defined by: there is no index 𝑖 ∈ H s.t. 𝑟 ′
𝑖
≠ 0 and 𝑡 ′

𝑖
≠ 0

that are known polynomials in the coefficients output by A.
With this, we obtain the following technical lemma.

Lemma 2. Let G7 and events 𝐸𝑖 for 𝑖 ∈ [5] be defined as above.
Then there exist (algebraic) algorithms A𝑗 for 𝑗 ∈ [6] playing in game
𝑛-COMDL that run in time at most 𝑇 such that:

Pr[𝑛-COMDLA1 = 1] = Pr[GA
7
= 1 ∧ ¬𝐸1],

Pr[𝑛-COMDLA2 = 1] = Pr[GA
7
= 1 ∧ 𝐸1 ∧ ¬𝐸2],

Pr[𝑛-COMDLA3 = 1] = Pr[GA
7
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3],

Pr[𝑛-COMDLA4 = 1] = 1

2

Pr[GA
7
= 1 ∧ . . . ∧ 𝐸3 ∧ ¬𝐸4],

Pr[𝑛-COMDLA5 = 1] = 1

2

Pr[GA
7
= 1 ∧ . . . ∧ 𝐸4 ∧ ¬𝐸5],

Pr[𝑛-COMDLA6 = 1] = Pr[GA
7
= 1 ∧ 𝐸1 ∧ . . . ∧ 𝐸5] .

Moreover, 𝑇 ≤ 𝑇 ′ + O(𝐿𝑛2).

Proof. Let b = (b1, . . . , b𝑛) ∈ G𝑛 with b𝑖 = (𝑔𝑧𝑖 , ℎ𝑧𝑖) for 𝑖 ∈ [𝑛]
be the COMDL instance of degree 𝑛. Algorithms A𝑖 for 𝑖 ∈ [6] have
access to a (perfect) discrete logarithm oracle DL𝑔 in G1 (to base 𝑔)

which they can query at most 𝑛 − 1 times. When we say algorithm

A𝑖 queries the discrete logarithm oracle on b 𝑗 , we mean that it

queries DL𝑔 on the first component of b 𝑗 which is a group element

in G1. Before we start with the description of the algorithms A𝑖 ,
we describe four different algorithms Sim𝑖 for 𝑖 ∈ [4] that give a
perfect simulation of the game G7 to the adversary A.
Simulator Sim1 (b, par): On input b , Sim1 queries the discrete log-

arithm oracle DL𝑔 on b2, . . . , b𝑛 and gets (𝑧2, . . . , 𝑧𝑛). It generates
the public-secret key pairs of honest parties by sampling sk𝑖 ←$

Z𝑝

uniformly at random and publishes pk𝑖 := ℎ
sk𝑖

. Sim1 executes the

DKG protocol GRand on behalf of the honest parties by sampling

degree-𝑡 polynomials 𝑓𝑖 ∈ Z𝑝 [𝑋] uniformly at random for all 𝑖 ∈ H .

At any point of the simulation, Sim1 answers corruption queries

by returning the internal state of the respective party faithfully.

After this setup phase, it executes the commitment phase by sam-

pling 𝛼𝑖 ←$
Z∗𝑝 uniformly at random for all 𝑖 ∈ H and publishes

cm𝑖 = (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Further, for all 𝑖 ≠ ℓ it answers random

oracle queries 𝑟𝑖 to H by sampling 𝛾𝑖 ←$
Z𝑝 uniformly at ran-

dom and returning 𝐻1 [𝑟𝑖] := 𝑔𝛾𝑖 . For 𝑟𝑖 = ℓ , however, it returns

𝐻1 [ℓ] := b1. It answers random oracle queries to H2 by lazy sam-

pling as usual. After the setup phase, the sequential randomness

beacon phase begins. For all epochs 𝑟 < ℓ , Sim1 computes the bea-

con share 𝜎𝑖 = (𝑔𝛼𝑖𝑟 , 𝑒 (𝑔𝑟 , SK𝑖)) along with the proof of discrete

logarithm equality 𝜋𝑖 = Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟) for honest party 𝑃𝑖 by
simple computation from the knowledge of 𝛼𝑖 and SK𝑖 . It is clear

that this simulation is perfect, since the simulator follows all steps

of the protocol instructions faithfully and only changes the way

how the random group element 𝑔ℓ = H1 (ℓ) is generated (on which

the forgery is produced).

Simulator Sim2 (b, par): On input b , Sim2 generates the public-

secret key pairs of honest parties by sampling sk𝑖 ←$
Z𝑝 uniformly

at random and publishes pk𝑖 := ℎ
sk𝑖

. Sim2 executes the DKG pro-

tocol GRand on behalf of the honest parties by sampling degree-𝑡

polynomials 𝑓𝑖 ∈ Z𝑝 [𝑋] uniformly at random for all 𝑖 ∈ H . Af-

ter this setup phase, it executes the commitment phase as follows.

For all 𝑖 ∈ H , it generates the commitment cm𝑖 of party 𝑃𝑖 as

cm𝑖 := (b𝑖,1, b−1𝑖,2
SK𝑖) and publishes it. Further, for all 𝑖 it answers

random oracle queries 𝑟𝑖 to H by sampling 𝛾𝑖 ←$
Z𝑝 uniformly

at random and returning 𝐻1 [𝑟𝑖] := 𝑔𝛾𝑖 . It does so also for the ran-

dom oracle query 𝐻1 [ℓ]. It answers random oracle queries to H2

by lazy sampling as usual. After the setup phase, the sequential

randomness beacon phase begins. For all epochs 𝑟 < ℓ , Sim2 com-

putes the beacon share 𝜎𝑖 = (𝑔𝛼𝑖𝑟 , 𝑒 (𝑔𝑟 , SK𝑖)) along with the proof

of discrete logarithm equality 𝜋𝑖 = Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟) for honest
party 𝑃𝑖 by the identity 𝑔

𝛼𝑖
𝑟 = b

𝛾𝑖
𝑖,1
, by computation 𝑒 (𝑔𝑟 , SK𝑖) from

the knowledge of SK𝑖 , and 𝜋𝑖 by honest-verifier zero-knowledge

(HVZK) simulation. At any point of the simulation, Sim2 answers

corruption queries 𝑖 ∈ H by calling its discrete logarithm oracle

DL𝑔 on input b𝑖 to obtain 𝛼𝑖 := DL𝑔 (cm𝑖) and returning 𝛼𝑖 along

with other internal data such as sk𝑖 (note that 𝛼𝑖 is the only value

for party 𝑃𝑖 that was not generated honestly). Note that this is

different from the previous simulator in that it was able to return

the full internal state without calling its discrete logarithm ora-

cle. It is clear that this simulation is perfect, since the simulator

only changes the way how the commitments cm𝑖 for 𝑖 ∈ H are

generated (indistinguishable from an honest generation) and can

output beacon shares via random oracle programming and HVZK

simulation.

Simulator Sim3 (b, par): On input b , Sim3 generates the public-

secret key pairs of honest parties as pk𝑖 := b𝑖,2 and publishes

them. This implicitly fixes the secret keys as sk𝑖 = 𝑧𝑖 which is

the discrete logarithm value of b𝑖 . Sim3 executes the DKG proto-

col GRand on behalf of the honest parties by sampling degree-𝑡

polynomials 𝑓𝑖 ∈ Z𝑝 [𝑋] uniformly at random for all 𝑖 ∈ H . Af-

ter this setup phase, it executes the commitment phase by sam-

pling 𝛼𝑖 ←$
Z∗𝑝 uniformly at random for all 𝑖 ∈ H and publishes

cm𝑖 = (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Further, for all 𝑖 it answers random oracle

queries 𝑟𝑖 to H by sampling 𝛾𝑖 ←$
Z𝑝 uniformly at random and

returning 𝐻1 [𝑟𝑖] := 𝑔𝛾𝑖 . It does so also for the random oracle query

𝐻1 [ℓ]. It answers random oracle queries to H2 by lazy sampling

as usual. After the setup phase, the sequential randomness bea-

con phase begins. For all epochs 𝑟 < ℓ , Sim3 computes the beacon

share 𝜎𝑖 = (𝑔𝛼𝑖𝑟 , 𝑒 (𝑔𝑟 , SK𝑖)) along with the proof of discrete log-

arithm equality 𝜋𝑖 = Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟) for honest party 𝑃𝑖 as
follows: generation of 𝑔

𝛼𝑖
𝑟 and 𝜋𝑖 are by simple computation from

the knowledge of 𝛼𝑖 , and generation of 𝑒 (𝑔𝑟 , SK𝑖) is done via the
identity

𝑒 (𝑔𝑟 , SK𝑖) = 𝑒 (𝑔, SK𝑖)𝛾𝑖 = 𝑒 (𝑔𝑓 (𝑖) , ℎ)𝛾𝑖 = 𝑒 (PK𝑖 , ℎ)𝛾𝑖 .
At any point of the simulation, Sim3 answers corruption queries

𝑖 ∈ H by calling its discrete logarithm oracle DL𝑔 on input b𝑖 to

obtain sk𝑖 and returning sk𝑖 along with other internal data such as

𝛼𝑖 (note that sk𝑖 is the only value for party 𝑃𝑖 that was not gener-

ated honestly). It is clear that this simulation is perfect, since the

simulator follows all steps of the protocol instructions faithfully

and only changes the bulletin board keys are generated.

25

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

Simulator Sim4 (b, par): On input b , Sim4 queries the discrete loga-

rithm oracleDL𝑔 on b𝑡+2, . . . , b𝑛 and gets (𝑧𝑡+2, . . . , 𝑧𝑛). It generates
the public-secret key pairs of honest parties by sampling sk𝑖 ←$

Z𝑝

uniformly at random and publishes pk𝑖 := ℎ
sk𝑖

. Sim4 executes the

DKG protocol GRand on behalf of the honest parties by sampling

degree-𝑡 polynomials 𝑓𝑖 ∈ Z𝑝 [𝑋] uniformly at random for all 𝑖 ∈
H \ {𝑃∗}. For the designated party 𝑃∗ (that contributes to the final

aggregated PVSS transcript and remains honest), however, it gener-

ates the degree-𝑡 polynomial 𝑓𝑖∗ = 𝑑0+𝑑1𝑋+. . .+𝑑𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] such
that𝑔𝑑 𝑗 = b 𝑗+1 for all 𝑗 ∈ J𝑡K (i.e., the 𝑡 +1 coefficients of the polyno-

mial are given by the discrete logarithm values of b1, . . . , b𝑡+1). From
this, it can generate the commitments and encrypted shares of party

𝑃∗’s PVSS transcript by Lagrange interpolation in the exponent

and knowledge of the secret keys sk 𝑗 of all parties. In this context,

it is important to note the following crucial and subtle observation:

since Sim4 generates the public keys pk𝑖 of honest parties faithfully
and the adversary A is algebraic, it outputs the (updated) public

keys of corrupt parties as a linear combination of known values

which enables Sim4 to compute the respective secret keys from

this linear combination along with the algebraic representation.

At any point of the simulation, Sim4 answers corruption queries

by returning the internal state of the respective party faithfully.

Note that by assumption 𝑃∗ remains honest and for any other party

the simulator follows the protocol instructions honestly so that it

can return the internal state of the respective party without any

discrete logarithm query. After this setup phase, it executes the

commitment phase by sampling 𝛼𝑖 ←$
Z∗𝑝 uniformly at random

for all 𝑖 ∈ H and publishes cm𝑖 = (𝑔𝛼𝑖 , ℎ−𝛼𝑖 SK𝑖). Further, for all
𝑖 it answers random oracle queries 𝑟𝑖 to H by sampling 𝛾𝑖 ←$

Z𝑝
uniformly at random and returning𝐻1 [𝑟𝑖] := 𝑔𝛾𝑖 . It does so also for
the random oracle query 𝐻1 [ℓ]. It answers random oracle queries

to H2 by lazy sampling as usual. After the setup phase, the sequen-

tial randomness beacon phase begins. For all epochs 𝑟 < ℓ , Sim4

computes the beacon share 𝜎𝑖 = (𝑔𝛼𝑖𝑟 , 𝑒 (𝑔𝑟 , SK𝑖)) along with the

proof of discrete logarithm equality 𝜋𝑖 = Dleq(𝑔,𝑔𝛼𝑖 , 𝑔𝑟 , 𝑔𝛼𝑖𝑟) for
honest party 𝑃𝑖 by simple computation from the knowledge of 𝛼𝑖
and SK𝑖 . It is clear that this simulation is perfect, since the simulator

follows all steps of the protocol instructions faithfully for all parties

except 𝑃∗ and only changes the way the designated party generates
its PVSS transcript which is indistinguishable from an honestly

generated transcript.

Having defined the above simulators Sim𝑖 for 𝑖 ∈ [4], we can now

describe the algorithms A𝑖 and especially how they convert the

forgery output by A (winning game G7) into a valid solution to

the COMDL instance b with high probability, conditioned on some

event happening. Recall equation (♠) defined as 𝐵𝛾ℓ = 𝐴 for the

appropriate terms𝐴 and 𝐵. We now describe the algorithms A𝑖 that
simulate the game G7 to the adversary.

Algorithm A1 (b, par): Algorithm A1 works identical as the sim-

ulator Sim1. In particular, the simulation is perfect and the only

change is the way how the random group element 𝑔ℓ = H1 (ℓ)
is generated on which the forgery is produced. Suppose that A1

wins the game G7 and that event ¬𝐸1 happens, i.e., 𝐵 ≠ 0. Then

equation (♠) is a non-trivial equation of degree one in 𝛾ℓ = DL𝑔 (b1)
(as clarified before, the terms 𝐴 and 𝐵 are completely independent

from the variable 𝛾ℓ). By simple algebra, this allows A1 to solve

for 𝛾ℓ = 𝐴 · 𝐵−1 and thus efficiently output the discrete logarithm

values of the COMDL challenge b . Overall, we obtain

Pr[𝑛-COMDLA1 = 1] = Pr[GA
7
= 1 ∧ ¬𝐸1] .

The bound on the running time of A1 is obvious.
Algorithm A2 (b, par): Algorithm A2 works identical as the sim-

ulator Sim2. In particular, the simulation is perfect and the only

change is the way how the commitments cm𝑖 are generated. In this

case, we have cm𝑖 = (b𝑖,1, b−1𝑖,2
SK𝑖) for all 𝑖 ∈ H (here,H ⊂ [𝑛] is

the set of all honest parties up to the point in which parties output

these commitments) and thus 𝛼𝑖 = DL𝑔 (b𝑖). Suppose that A2 wins
the game G7 and that event 𝐸1 ∧ ¬𝐸2 happens, i.e., 𝐵 = 0 and also

there is an index 𝑖 ∈ H such that 𝑓𝑖 ≠ 0 (we will define these very

soon). We let 𝐹 := 𝑓ℓ,1,2𝛼1 + . . . + 𝑓ℓ,𝑛,2𝛼𝑛 and from 𝐵 = 0 get the

identity

𝐹 = 𝑏ℓ,3 − 𝑓 (0) +
𝑛∑︁
𝑗=1

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 + 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
(r)

and so all terms on the right-hand side of the equation are inde-

pendent from the variables 𝛼1, . . . , 𝛼𝑛 and can also be concretely

computed by A2 as they are known. We consider the defining equa-

tion of 𝐹 in more detail now. Since the adversary A is algebraic, it

outputs its commitments cm𝑖 as (known) linear combinations of the

commitments of the honest parties, since all previously generated

elements output by the simulator Sim2 are generated honestly and

thus independent from the unknown b . For simplicity, we assume

for the remainder of this paragraph that C = [𝑡] andH = [𝑡 + 1, 𝑛].
As a result, there are linear polynomials 𝐹𝑖 ∈ Z𝑝 [𝑋] for all 𝑖 ∈ C
such that 𝛼𝑖 = 𝐹𝑖 (𝛼𝑡+1, . . . , 𝛼𝑛) = 𝐹𝑖 (𝑧𝑡+1, . . . , 𝑧𝑛) that only de-

pend on the outputs by the honest parties. Therefore, the defining

equation for 𝐹 can be transformed into

𝐹 = 𝑓0 + 𝑓𝑡+1𝛼𝑡+1 + 𝑓𝑡+2𝛼𝑡+2 + . . . + 𝑓𝑛𝛼𝑛
for some appropriately defined coefficients 𝑓0, 𝑓𝑡+1, . . . , 𝑓𝑛 ∈ Z𝑝 .
By assumption we suppose that A2 wins the game G7 and that

event ¬𝐸2 happens, that means there is an index 𝑖 ∈ H such that

𝑓𝑖 ≠ 0. Since the value of 𝐹 by equation (r) can be concretely

computed by A2, in combination with the above equation for 𝐹

linear in the variables 𝛼𝑡+1, . . . , 𝛼𝑛 the algorithm A2 proceeds as

follows. It computes all the values 𝛼 𝑗 = DL𝑔 (b 𝑗) by calling its

discrete logarithm oracle on input b 𝑗 for 𝑗 ∈ H \ {𝑖} and then

solves for the value 𝛼𝑖 in the above linear equation for 𝐹 . By simple

algebra, this allows A2 to solve for 𝛼1, . . . , 𝛼𝑛 and thus efficiently

output the discrete logarithm values of the COMDL challenge b .

Overall, we obtain

Pr[𝑛-COMDLA2 = 1] = Pr[GA
7
= 1 ∧ 𝐸1 ∧ ¬𝐸2] .

The bound on the running time of A2 is obvious.
Algorithm A3 (b, par): Algorithm A3 works identical as the sim-

ulator Sim3. In particular, the simulation is perfect and the only

change is the way the bulletin board keys are generated. In this

case, we have pk𝑖 = b𝑖,2 for all 𝑖 ∈ H and thus implicitly sk𝑖 = 𝑧𝑖
which is the discrete logarithm value of b𝑖 . Suppose that A3 wins

the game G7 and the event 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3 happens. Recall the 𝐸1
defining equation (q)

𝑛∑︁
𝑗=1

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 − 𝑓ℓ, 𝑗,2𝛼 𝑗 + 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
= 𝑓 (0) − 𝑏ℓ,3 .

26

GRandLine: DKG and Randomness Beacon withQuadratic Communication

Again, let 𝐹 := 𝑓ℓ,1,2𝛼1 + . . . + 𝑓ℓ,𝑛,2𝛼𝑛 as before. In contrast to the

previous paragraph, now the values 𝛼𝑖 for all 𝑖 ∈ C (here, C ⊂ [𝑛] is
the set of all corrupt parties up to the point in which parties output

their commitments cm𝑖) are known and independent of 𝑧1, . . . , 𝑧𝑛
that are the discrete logarithm values of b𝑖 . The reason for this is

that since the adversary A is algebraic, it outputs the commitments

cm𝑖,1 = 𝑔
𝛼𝑖 ∈ G1 with an algebraic representation of elements in

the prime field Z𝑝 . However, as the simulator Sim3 (that defines the

algorithm A3) only uses the elements b𝑖,2 ∈ G2 in the second source

group for its simulation of the protocol,A is agnostic of the elements

b𝑖,1 ∈ G1 and therefore has to explicitly provide knowledge of the

𝛼𝑖 for 𝑖 ∈ C through the algebraic representation. This argument

relies on the fact that the underlying pairing is of type 3 and there is

no efficient way for A to transform elements from one source group

to the other source group. The same argument also applies to the

evaluations of the hidden degree-𝑡 polynomial 𝑓 (𝑋) ∈ Z𝑝 [𝑋], as
the adversary outputs the commitments of its chosen polynomials

in the first source group G1 and therefore independent of the b𝑖,2
elements. As a result, the values 𝑓 (0), 𝑓 (1), . . . , 𝑓 (𝑛) are known to

A3 and independent from the variables 𝑧1, . . . , 𝑧𝑛 . Overall, the only

variables in the above equation (q) that depend on 𝑧1, . . . , 𝑧𝑛 are

the secret keys sk1, . . . , sk𝑛 . We simplify/update the equation as

𝑛∑︁
𝑗=1

𝑒 𝑗 sk 𝑗 = 𝑓 (0) − 𝑏ℓ,3 +
𝑛∑︁
𝑗=1

[
𝑓ℓ, 𝑗,2𝛼 𝑗 − 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
(q)

where 𝑒 𝑗 = 𝑑ℓ, 𝑗,2 𝑓 (𝑗) + 𝑒ℓ, 𝑗,2 for all 𝑗 ∈ [𝑛]. Since A is algebraic,

it outputs its (updated) keys pk𝑖 for 𝑖 ∈ C (up to the point in

which parties publish their keys on the bulletin board) as linear

combinations of the honest parties’ keys. For simplicity, we assume

that C = [𝑡] andH = [𝑡 + 1, 𝑛]. Thus, let us write
sk𝑖 = _0,𝑖 + _𝑡+1,𝑖𝑧𝑡+1 + . . . + _𝑛,𝑖𝑧𝑛

for all 𝑖 ∈ C and some coefficients _0,𝑖 , _𝑡+1,𝑖 , . . . , _𝑛,𝑖 ∈ Z𝑝 , since
sk𝑖 = 𝑧𝑖 for 𝑖 ∈ H . If we plug in these identities into (q), we obtain∑︁

𝑗∈C
𝑒 𝑗_0, 𝑗 +

∑︁
𝑗∈H

𝑧 𝑗

(
𝑒 𝑗 +

∑︁
𝑖∈C

_ 𝑗,𝑖

)
= [. . .]

⇐⇒
∑︁
𝑗∈C

𝑒 𝑗_0, 𝑗 +
∑︁
𝑗∈H

𝑧 𝑗
(
𝑒 𝑗 + _ 𝑗,1 + . . . _ 𝑗,𝑡

)
= [. . .]

where [. . .] is simply identical to the right-hand side of (q). From
this equation we see that it defines a polynomial of degree one in

the variables 𝑧𝑡+1, . . . , 𝑧𝑛 . We define the corresponding coefficients

of 𝑧 𝑗 for 𝑗 ∈ H as 𝑒 𝑗 , that is 𝑒 𝑗 := 𝑒 𝑗 +
∑
𝑖∈C _ 𝑗,𝑖 . By assumption

we suppose that A3 wins the game G7 and that event ¬𝐸3 happens,
that means there is an index 𝑖 ∈ H such that 𝑒𝑖 ≠ 0. Having said

that, algorithm A3 proceeds as follows. It computes all the values

𝑧 𝑗 = DL𝑔 (b 𝑗) by calling its discrete logarithm oracle on input b 𝑗
for 𝑗 ∈ H \ {𝑖} and then solves for the remaining variable 𝑧𝑖 in the

above linear equation. By simple algebra, this allows A3 to solve

for sk1, . . . , sk𝑛 and thus efficiently output the discrete logarithm

values of the COMDL challenge b that it received. Overall, we obtain

Pr[𝑛-COMDLA3 = 1] = Pr[GA
7
= 1 ∧ 𝐸1 ∧ 𝐸2 ∧ ¬𝐸3] .

The bound on the running time of A3 is obvious.
Algorithm A4 (b, par): Algorithm A4 works identical as the sim-

ulator Sim4. In particular, the simulation is perfect and the only

change is the way the final aggregated PVSS transcript is formed.

In this case, the simulator generates the degree-𝑡 polynomial 𝑓𝑖∗ =

𝑑0 + 𝑑1𝑋 + . . . + 𝑑𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] such that 𝑔𝑑 𝑗 = b 𝑗+1 for all 𝑗 ∈ J𝑡K
(i.e., the 𝑡 + 1 coefficients of the polynomial are given by the dis-

crete logarithm values of b1, . . . , b𝑡+1). Everything else is generated

honestly (in particular, the bulletin board keys and the PVSS tran-

scripts of other parties). Without loss of generality, we assume that

the adversary chooses all PVSS transcripts that contribute to the

final aggregated transcript𝐴𝑇 ← GenAPVSS output from the DKG

execution except the one from party 𝑃∗. Further, we assume for

simplicity that the final transcript only consists of two single PVSS

transcript (i.e., the contribution vector 𝑏 ∈ {0, 1}𝑛 is of weight two

|𝑏 | = 2). The general case in which there is more than one PVSS

transcript chosen by A works analogously (intuitively, it does not

make a difference if A outputs its PVSS transcripts separately or

aggregated). Now there are two cases that can happen: (i) A chooses

its PVSS transcript dependent from the transcript 𝑇 ∗ of the hon-
est party 𝑃∗, and (ii) A generates its PVSS transcript honestly and

independent from 𝑇 ∗. However, since parties augment the PVSS

transcript with a (non-interactive) proof od knowledge \ , the idea

is that the reduction can extract the evaluation 𝑓𝑖 (0) of the polyno-
mial 𝑓𝑖 ∈ Z𝑝 [𝑋] chosen by A (since the proof of knowledge comes

with an algebraic representation of the respective hash query for

the challenge in the Fiat-Shamir heuristic) and thereby solve for

𝑓𝑖∗ (0) in case A chose 𝑓𝑖 dependent on 𝑓𝑖∗ . This allows the reduction

to obtain the discrete logarithm value 𝑧1 = 𝑓𝑖∗ (0) and thus solve the
COMDL challenge. This intuition is made formal and explicit in the

security reduction of [10]. We omit it here and directly assume that

the adversary chooses its polynomial 𝑓𝑖 honestly and independent

of the honest party’s 𝑃∗ polynomial 𝑓𝑖∗ . On the other hand, the

adversary has also the possibility to choose its commitments cm𝑖

dependent of the elements output by the transcript 𝑇 ∗ (or equiva-
lently the aggregated transcript 𝐴𝑇), since the transcript includes

terms in both source groupsG1 andG2 to base 𝑔 and ℎ, respectively.
The bulletin board keys, however, remain independent from the

transcript or challenge b , as already clarified in the description of

Sim4. We will take these facts into consideration in our following

analysis. Suppose that A4 wins the game G7 and that the event

𝐸1 ∧ 𝐸2 ∧ 𝐸3 ∧ ¬𝐸4 happens. From event 𝐸1 we recall the equation

𝑛∑︁
𝑗=1

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 − 𝑓ℓ, 𝑗,2𝛼 𝑗 + 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
= 𝑓 (0) − 𝑏ℓ,3 .

From event 𝐸3 we know that 𝑒 𝑗 = 0 for all 𝑗 ∈ H where 𝑒 𝑗 =

𝑒 𝑗 +
∑
𝑖∈C _ 𝑗,𝑖 = 𝑒 𝑗 (observe that now _ 𝑗,𝑖 = 0 for all 𝑖 ∈ C and

𝑗 ∈ H as the secret keys are independent of the challenge b). It

follows that 0 = 𝑒 𝑗 = 𝑑ℓ, 𝑗,2 𝑓 (𝑗) + 𝑒ℓ, 𝑗,2. The easy case now is if

there is an 𝑗 ∈ H such that 𝑑ℓ, 𝑗,2 ≠ 0, as this allows us to rewrite

𝑓 (𝑗) = −𝑒ℓ, 𝑗,2/𝑑ℓ, 𝑗,2 and obtain a non-trivial equation

−
𝑒ℓ, 𝑗,2

𝑑ℓ, 𝑗,2
= 𝑧1 + 𝑧2 𝑗 + . . . + 𝑧𝑡+1 𝑗𝑡 (♥)

in the variables 𝑧1, . . . , 𝑧𝑡+1 (recall that the reduction A4 chooses the
polynomial 𝑓𝑖∗ such that its coefficients are the discrete logarithm

values of b1, . . . , b𝑡+1). Further, by calling its discrete logarithm or-

acle DL𝑔 on inputs b2, . . . , b𝑡+1, it can solve for 𝑧1 in the above

equation (♥) and thus efficiently output the discrete logarithm val-

ues of the COMDL challenge b . This case in the definition of event

27

R. Bacho, C. Lenzen, J. Loss, S. Ochsenreither, and D. Papachristoudis

¬𝐸4 is settled and thus for the remainder of this paragraph we

assume 𝑑ℓ, 𝑗,2 = 0 for all 𝑗 ∈ H . Having said that, the only unknown

terms dependent on 𝑧1, . . . , 𝑧𝑡+1 in 𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 are the
𝑓 (𝑗) for 𝑗 ∈ C. Since |C| ≤ 𝑡 , the algorithm A4 proceeds as fol-

lows. It calls its discrete logarithm oracle DL𝑔 on inputs 𝑔𝑓 (𝑗) for
all 𝑗 ∈ C, thus obtaining 𝑡 new linearly independent equations

𝑓 (𝑗) = 𝑧1 + 𝑧2 𝑗 + . . . + 𝑧𝑡+1 𝑗𝑡 (the equations written in matrix form

give a Vandermonde matrix which is well-known to have full rank)

with known values 𝑓 (𝑗). In particular, we can rewrite the above

equation from event 𝐸1 as

𝑛∑︁
𝑗=1

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 − 𝑓ℓ, 𝑗,2𝛼 𝑗 + 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
= 𝑓 (0) − 𝑏ℓ,3

which is equivalent to

𝑛∑︁
𝑗=1

[
−𝑓ℓ, 𝑗,2𝛼 𝑗 + 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
= 𝑓 (0) + 𝐷

⇐⇒
𝑛∑︁
𝑗=1

[
𝑓 (𝑗) − 𝛼 𝑗

]
𝑓ℓ, 𝑗,2 = 𝑓 (0) + 𝐷 (2)

where 𝐷 ∈ Z𝑝 is the appropriate (known) rest term. Note that

the terms 𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 vanish for 𝑗 ∈ H , the values 𝑒ℓ, 𝑗,2sk 𝑗 and
𝑏ℓ,3 are known, and finally the terms 𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 are also now

known for 𝑗 ∈ C. On the other hand, when the adversary A outputs

its commitments cm𝑖,2 in the second group G2 it outputs them

as a (known) linear combination of the elements ℎ, pk
1
, . . . , pk𝑛 ,

cm𝑡+1,2, . . . , cm𝑛,2, and 𝑌1, . . . , 𝑌𝑛 . As a result, this gives an identity

for all 𝑖 ∈ C as follows (4)

𝑓 (𝑖) − 𝛼𝑖 = 𝑟0,𝑖 +
𝑛∑︁
𝑗=1

𝑟 𝑗,𝑖 sk 𝑗 +
∑︁
𝑗∈H

𝑠 𝑗,𝑖
(
𝑓 (𝑗) − 𝛼 𝑗

)
+

𝑛∑︁
𝑗=1

𝑡 𝑗,𝑖 𝑓 (𝑗)sk 𝑗

where the 𝑟 𝑗,𝑖 , 𝑠 𝑗,𝑖 , 𝑡 𝑗,𝑖 ∈ Z𝑝 are known coefficients. We take the

sum of 𝑓ℓ,𝑖,2 (𝑓 (𝑖) − 𝛼𝑖) over all 𝑖 ∈ [𝑛] and also use the equations

given by (4) and the one given by (2) above. This results in

𝑓 (0) + 𝐷 =

𝑛∑︁
𝑖=1

𝑓ℓ,𝑖,2 (𝑓 (𝑖) − 𝛼𝑖) =
∑︁
𝑖∈H

𝑓ℓ,𝑖,2 (𝑓 (𝑖) − 𝛼𝑖) + 𝑟0

+
𝑛∑︁
𝑗=1

𝑟 𝑗 sk 𝑗 +
∑︁
𝑗∈H

𝑠 𝑗 (𝑓 (𝑗) − 𝛼 𝑗) +
𝑛∑︁
𝑗=1

𝑡 𝑗 𝑓 (𝑗)sk 𝑗

= 𝑟0 +
𝑛∑︁
𝑗=1

𝑟 𝑗 sk 𝑗 +
𝑛∑︁
𝑗=1

𝑡 𝑗 𝑓 (𝑗)sk 𝑗 +
∑︁
𝑗∈H
(𝑓ℓ, 𝑗,2 + 𝑠 𝑗) (𝑓 (𝑗) − 𝛼 𝑗)

(♣)
where we define the symbols

𝑟0 :=
∑︁
𝑖∈C

𝑓ℓ,𝑖,2𝑟0,𝑖 , 𝑟 𝑗 :=
∑︁
𝑖∈C

𝑓ℓ,𝑖,2𝑟 𝑗,𝑖 ,

𝑠 𝑗 :=
∑︁
𝑖∈C

𝑓ℓ,𝑖,2𝑠 𝑗,𝑖 , 𝑡 𝑗 :=
∑︁
𝑖∈C

𝑓ℓ,𝑖,2𝑡 𝑗,𝑖 .

Now the other case of ¬𝐸4 applies, which means that there is an

index 𝑖 ∈ H such that 𝑓ℓ,𝑖,2 + 𝑠𝑖 ≠ 0. In that case, we could let A4 in-
stead work identical as simulator Sim2. In particular, the simulation

is perfect and the only change is the way how the commitments

cm𝑖 are generated. In this case, we have cm𝑖 = (b𝑖,1, b−1𝑖,2
SK𝑖) for

all 𝑖 ∈ H and thus 𝛼𝑖 = DL𝑔 (b𝑖). Analogously, we can derive the

same (general) equation (♣), where 𝐷 only depends on 𝑓 (𝑗) and
sk 𝑗 for 𝑗 ∈ [𝑛] and is independent of 𝛼 𝑗 for 𝑗 ∈ H . As a result, this

equation gives a linear polynomial in the variables {𝛼 𝑗 } 𝑗∈H and

there is a non-zero coefficient 𝑓ℓ,𝑖,2 + 𝑠𝑖 ≠ 0 of 𝛼𝑖 for that particular

𝑖 given by event ¬𝐸4 happening. As for algorithm A2, the algorithm
A4 proceeds as follows. It computes all the values 𝛼 𝑗 = DL𝑔 (b 𝑗)
by calling its discrete logarithm oracle on input b 𝑗 for 𝑗 ∈ H \ {𝑖}
and then solves for the value 𝛼𝑖 given the above linear equation

(♣). By simple algebra, this allows A4 to solve for 𝛼1, . . . , 𝛼𝑛 and

thus efficiently output the discrete logarithm values of the COMDL

challenge b . Finally, we let algorithm A4 choose the simulation

strategies Sim2 and Sim4 each with probability 1/2 at the begin-
ning of its execution. Since, this choice remains completely hidden

from the adversary A’s view, we obtain

Pr[𝑛-COMDLA4 = 1] = 1

2

Pr[GA
7
= 1 ∧ . . . ∧ 𝐸3 ∧ ¬𝐸4] .

The bound on the running time of A4 is obvious.
Algorithm A5 (b, par): Before we proceed with the description of

algorithm A5, we give a brief summary of the identities we have so

far. From event 𝐸1 in its very plain form, we have the equation

𝑛∑︁
𝑗=1

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗 − 𝑓ℓ, 𝑗,2𝛼 𝑗 + 𝑓ℓ, 𝑗,2 𝑓 (𝑗)

]
= 𝑓 (0) − 𝑏ℓ,3 .

Together with event 𝐸4, we have as before

𝑓 (0) + 𝐷 = 𝑟0 +
𝑛∑︁
𝑗=1

𝑟 𝑗 sk 𝑗 +
𝑛∑︁
𝑗=1

𝑡 𝑗 𝑓 (𝑗)sk 𝑗

where by event 𝐸3 now

𝐷 = − ©«𝑏ℓ,3 +
∑︁
𝑗∈C

[
𝑑ℓ, 𝑗,2 𝑓 (𝑗)sk 𝑗 + 𝑒ℓ, 𝑗,2sk 𝑗

]ª®¬ .
Taking these together, we get

𝑓 (0) − (𝑟0 + 𝑏ℓ,3) =
𝑛∑︁
𝑗=1

𝑟 ′𝑗 sk 𝑗 +
𝑛∑︁
𝑗=1

𝑡 ′𝑗 𝑓 (𝑗)sk 𝑗 (♦)

for appropriate (known) coefficients 𝑟 ′
𝑗
and 𝑡 ′

𝑗
. This equation has

the same form as the one that algorithm A3 started with. From this

observation, we let algorithm A5 choose the simulation strategies

Sim3 and Sim4 each with probability 1/2 at the beginning of its ex-

ecution. This choice remains completely hidden from the adversary

A’s view. Therefore, the same calculations as for A3 and A4 with

our new coefficients and just adjusted event ¬𝐸5 (which is basically

just an adaption of events ¬𝐸3 and the first case of event ¬𝐸4), A5
can derive a solution for the COMDL challenge b with probability

1/2. We omit the whole calculation here again and simply proceed

with the next event. Overall, we obtain

Pr[𝑛-COMDLA5 = 1] = 1

2

Pr[GA
7
= 1 ∧ . . . ∧ 𝐸4 ∧ ¬𝐸5] .

The bound on the running time of A5 is obvious.
Algorithm A6 (b, par): Algorithm A6 works identical as the sim-

ulator Sim4. In particular, the simulation is perfect and the only

change is the way the final aggregated PVSS transcript is formed.

In this case, the simulator generates the degree-𝑡 polynomial 𝑓𝑖∗ =

𝑑0 + 𝑑1𝑋 + . . . + 𝑑𝑡𝑋 𝑡 ∈ Z𝑝 [𝑋] such that 𝑔𝑑 𝑗 = b 𝑗+1 for all 𝑗 ∈ J𝑡K
(i.e., the 𝑡 +1 coefficients of the polynomial are given by the discrete

28

GRandLine: DKG and Randomness Beacon withQuadratic Communication

logarithm values of b1, . . . , b𝑡+1). Everything else is generated hon-

estly (in particular, the bulletin board keys and the PVSS transcripts

of other parties). As clarified before, we make the assumptions as

in the fourth algorithm description A4. That is, we assume that

the adversary chooses its polynomial independent of the honest

party 𝑃∗’s transcript and thus we may also assume directly that the

aggregated transcript hides the polynomial 𝑓 = 𝑓𝑖∗ ∈ Z𝑝 [𝑋] (i.e.,
we ignore the shift caused by the adversary’s polynomials). We

suppose that A6 wins the game G7 and that the event 𝐸1 ∧ . . . ∧ 𝐸5
happens. Then the above equation (♦) simplifies into the following

𝑓 (0) − (𝑟0 + 𝑏ℓ,3) =
𝑛∑︁

𝑗∈C
𝑟 ′𝑗 sk 𝑗 +

𝑛∑︁
𝑗∈C

𝑡 ′𝑗 𝑓 (𝑗)sk 𝑗

⇐⇒ 𝑓 (0) = 𝑟0 + 𝑏ℓ,3 +
𝑛∑︁

𝑗∈C
𝑟 ′𝑗 sk 𝑗 +

𝑛∑︁
𝑗∈C

𝑡 ′𝑗 𝑓 (𝑗)sk 𝑗 .

Having computed that, the only unknown terms dependent on

𝑧1, . . . , 𝑧𝑡+1 on the right-hand side of this equation are the 𝑓 (𝑗) for
𝑗 ∈ C. Since |C| ≤ 𝑡 , the algorithm A6 proceeds as follows. It calls
its discrete logarithm oracle DL𝑔 on inputs 𝑔𝑓 (𝑗) for all 𝑗 ∈ C, thus
obtaining 𝑡 new linearly independent equations 𝑓 (𝑗) = 𝑧1+𝑧2 𝑗+. . .+
𝑧𝑡+1 𝑗𝑡 (the equations written in matrix form give a Vandermonde

matrix which is known to have full rank) with known values 𝑓 (𝑗).
Finally, the above equation allows A6 to compute 𝑓 (0) = 𝑧1 and
thus obtain in total 𝑡 + 1 points on the polynomial 𝑓 ∈ Z𝑝 [𝑋] of

degree 𝑡 . Hence, it can efficiently solve for the discrete logarithm

values of the COMDL challenge b . Overall, we obtain

Pr[𝑛-COMDLA6 = 1] = Pr[GA
7
= 1 ∧ . . . ∧ 𝐸4 ∧ 𝐸5] .

The bound on the running time of A6 is obvious. □

To end the proof, consider algorithm B playing in 𝑛-COMDL
as follows: B samples 𝑖∗ ←

$
[6] and then internally emulates A𝑖∗ .

Clearly, B is an algebraic algorithm running in time at most 𝑇 (the

running time of A𝑖 , 1 ≤ 𝑖 ≤ 6). An application of the law of total

probability yields the following

Pr[𝑛-COMDLB = 1] = 1

6

6∑︁
𝑖=1

Pr[𝑛-COMDLA𝑖 = 1]

≥ 1

12

· Pr[GA
7
= 1]

≥ 1

12

(
Y

𝐿𝑛
− 4𝑛Y𝐵 −

2𝑞ℎ

𝑝
−
𝑞2
ℎ

2𝑝

)
.

By simple rearrangement ot this identity, we conclude the proof of

Theorem 2 with the final bound

Y ≤ 𝐿𝑛
(
12Y𝐴 + 4𝑛Y𝐵 +

𝑞2
ℎ
+ 4𝑞ℎ
2𝑝

)
.

□

29

	Abstract
	1 Introduction
	1.1 Technical Overview
	1.2 Outline of the Paper

	2 Preliminaries and Model
	2.1 Cryptographic Primitives
	2.2 Consensus Primitives

	3 Distributed Key Generation
	3.1 Components of our DKG Protocol
	3.2 Design of our DKG Protocol
	3.3 Security and Complexity Analysis

	4 Distributed Randomness Beacon
	4.1 Design of our Randomness Beacon
	4.2 Security and Complexity Analysis

	5 Implementation & Evaluation
	5.1 Implementation Details
	5.2 Experimental Setup
	5.3 Evaluation Results

	6 Conclusion
	Acknowledgments
	References
	A More on Related Work
	B Additional Preliminaries
	B.1 Cryptographic Primitives
	B.2 Consensus Primitives

	C Additional Figures
	C.1 Byzantine Agreement Protocol

	D Security Proofs for DKG and Randomness Beacon
	D.1 Proofs for our DKG Protocol
	D.2 Proofs for our Randomness Beacon

