
Quarantined-TreeKEM: a Continuous Group Key Agreement for
MLS, Secure in Presence of Inactive Users
Céline Chevalier

DIENS, École normale supérieure,

CNRS, PSL University, Inria

Paris, France

CRED, Paris-Panthéon-Assas University

Paris, France

celine.chevalier@ens.fr

Guirec Lebrun

DIENS, École normale supérieure,

CNRS, PSL University, Inria

Paris, France

ANSSI

Paris, France

guirec.lebrun@ens.fr

Ange Martinelli

ANSSI

Paris, France

ange.martinelli@ssi.gouv.fr

Abdul Rahman Taleb

ANSSI

Paris, France

abdulrahman.taleb@ssi.gouv.fr

ABSTRACT
The recently standardized secure group messaging protocol “Mes-

saging Layer Security” (MLS) is designed to ensure asynchronous

communications within large groups, with an almost-optimal com-

munication cost and the same security level as point-to-point secure

messaging protocols such as “Signal”. In particular, the core sub-

protocol of MLS, a Continuous Group Key Agreement (CGKA)

called TreeKEM, must generate a common group key that respects

the fundamental security properties of “post-compromise security”

and “forward secrecy” which mitigate the effects of user corruption

over time.

Most research on CGKAs has focused on how to improve these

two security properties. However, post-compromise security and

forward secrecy require the active participation of respectively all

compromised users and all users within the group. Inactive users

– who remain offline for long periods – do not update anymore

their encryption keys and therefore represent a vulnerability for

the entire group. This issue has already been identified in the MLS

standard, but no solution, other than expelling these inactive users

after some disconnection time, has been found.

We propose here a CGKA protocol based on TreeKEM and fully

compatible with the MLS standard, that implements a “quarantine”

mechanism for the inactive users in order to mitigate the risk in-

duced by these users during their inactivity period and before they

are removed from the group. That mechanism indeed updates the

inactive users’ encryption keys on their behalf and secures these

keys with a secret sharing scheme. If some of the inactive users

eventually reconnect, their quarantine stops and they are able to

recover all the messages that were exchanged during their offline

period. Our “Quarantined-TreeKEM” protocol thus increases the

security of original TreeKEM, with a very limited – and sometimes

negative – communication overhead.

KEYWORDS
MLS, TreeKEM, CGKA,Quarantine, Forward Secrecy, Post-Compromise

Security

1 INTRODUCTION
While point-to-point secure communication has reached a high

degree of maturity with the development of end-to-end secure

messaging (SM) protocols that have been thoroughly studied, group

communication has suffered until recently from a lack of dedicated

research. In practice, secure messaging applications that offer a

functionality of group communication rely on ad-hoc protocols
that are either less secure than their point-to-point counterpart (e.g.

the SenderKey protocol, used by WhatsApp [1]) or that are quite

inefficient, especially with a communication cost scaling linearly

with the number 𝑛 of group members.

To remedy this situation, the IETF has released in July 2023,

after a five-year study, RFC 9420 [9] that standardizes “Messaging

Layer Security” (MLS). This state-of-the-art Secure Group Messag-

ing (SGM) protocol is designed to enable secure communication in

large groups of users – up to tens of thousands members – with an

almost-optimal communication cost.

The core component of MLS is its mechanism of authenticated

key exchange between all members of a group, called a “Contin-

uous Group Key Agreement” (CGKA) [5], which needs to be run

continuously for security considerations.

The CGKA protocol that has been most thoroughly studied, and

that was adopted in the final IETF standard, is TreeKEM [13]. Its

architecture, close to the original ART protocol [16], relies on binary

trees in order to exchange handshake data between 𝑛 users with

an almost-optimal complexity of 𝑂 (log
2
(𝑛)).

1.1 Security Properties of a CGKA
Among all the security properties that a CGKA must fulfill (cf. Sec-

tion 2.4.1), two in particular – Post-Compromise Security (PCS) and

Forward Secrecy (FS) – require an active participation of respec-

tively all compromised users and all group members, who must

update their keying material and the one of the tree’s internal nodes

above them. These properties are especially hard to ensure in a

CGKA, due to the asynchronicity of the protocol and the fact that

within a potentially large group, it appears unlikely that all users

behave correctly by updating regularly their keying material.

Chevalier et al.

1.1.1 Post-Compromise Security (PCS). This property represents

the ability of a protocol to heal from the corruption of a group

member, that leaked that user’s private state, provided that the

adversary remains passive after the end of that compromise.

Most papers aiming to improve the security of CGKA protocols

focus on post-compromise security and try to minimize the original

number 𝑛 of rounds (𝑛 being the number of group members) nec-

essary to heal a fully-compromised tree. For instance, the CoCoA

protocol [3] allows concurrent updates in a single round, with a

mechanism of prioritization between them, that permits to reach

PCS in only ⌈log(𝑛)⌉ +1 rounds. Going further, the alternate DeCAF
protocol [2] reduces this healing complexity to ⌊log(𝑡)⌋ + 1 rounds
when only 𝑡 users among 𝑛 are compromised.

But the most efficient method to ensure PCS is the “Propose &

Commit” paradigm, which has been part of the MLS IETF working

draft since version 8 [8]. This protocol allows a full healing of the

binary tree in only two rounds, whatever the number of compro-

mised users, yet at the cost of a non-negligible communication

overhead (since the binary tree is temporarily destructured).

1.1.2 Forward Secrecy (FS). This fundamental security property

states that non-compromised past communication cannot be jeop-

ardized in the future by any user corruption. This property can be

ensured at the scale of a session (in the case of a CGKA, by securing

past epochs) or of a message, using symmetric ratchet to make

the symmetric encryption key evolve after sending each encrypted

message. Similarly to PCS, FS at the scale of an epoch relies on the

fresh randomness brought by the key agreements performed by the

CGKA. However, it suffers from the need to update all encryption
keys in the tree (not only all users’ keys but also the ones of all

internal nodes).

To the best of our knowledge, the only work improving the

original FS of TreeKEM is the RTreeKEM protocol of [4]. It provides

a stronger forward secrecy than other CGKAs, by automatically

updating – using a non-standard “updatable public-key encryption

scheme”
1
– the encryption keys of all internal nodes and leaves

that receive or emit any encrypted message.

1.1.3 Dealing with Inactive Users. However, none of these works
deals with the issue of user behavior, which is yet at the root of

a major security flaw. Indeed, even if a protocol can force online

users to regularly update their keys and if the question of updating

the internal nodes has already been addressed in various ways (e.g.

by blanking entire “direct paths”, from users to the root, in the

“Propose & Commit” model or by somehow merging several con-

current path updates in [25], [3] or [2]), the case of users remaining

offline for long periods is not considered, as it is seen intrinsic to

the asynchronicity of the protocol. Since these inactive users no

longer update their encryption keys, it only takes one of them to

compromise the forward secrecy of the entire group. Similarly, a

single corrupted inactive user is enough to undermine the whole

group’s post-compromise security. RFC 9420 identifies this problem

but only recommends that users who have been offline for too long

be removed from the group.

1
This scheme is derived from the secretly key-updatable PKE from [20], that is used in

a variant of our QTK protocol and is described in Section 2.3.

1.2 Our Contribution
We propose in this paper Quarantined-TreeKEM (QTK), a TreeKEM-

based CGKA protocol which mitigates the effects, both on forward

secrecy and post-compromise security, of inactive group members

who no longer update their keying material and the one of their

direct path (i.e. the internal nodes above them).

Instead of passively waiting for that inactive users to be eventu-

ally expelled from the group, our protocol temporarily puts them

aside, in what we call a “quarantine”. We call “ghosts” such quaran-

tined users. The randomly-chosen user who initiates this procedure

(cf. Section 3.3 for details on the selection of this “quarantine ini-

tiator”) for a certain ghost is responsible for blanking the latter’s

direct path and updating its encryption keys on its behalf, so that

future handshake messages delivered by the Delivery Service are

not encrypted with an old and potentially compromised encryption

key known by this ghost, but with fresh keying material.

The use of a proxy to update another user’s encryption keying

material on its behalf has been proposed by the Tainted TreeKEM

protocol [21] in order to add or remove users without having to

blank their direct paths. However, Tainted TreeKEM does not im-

prove TreeKEM’s security and instead enhances the CGKA’s effi-

ciency by keeping a Ratchet Tree structured at all time.

Moreover, unlike a proxy in Tainted TreeKEM, the quarantine

initiator in Quarantined-TreeKEM does not retain the (secret) de-

cryption key belonging to the ghost user. Instead, the secret seed

that was used to deterministically generate the ghost’s encryption

key-pair is split up using a secret sharing scheme and distributed

to all group members. The ghost’s secret seed and private key are

then deleted from the initiator’s internal state. In this way, the con-

fidentiality of the ghost’s secret key no longer relies on the security

of a single user (the quarantine initiator) but on that of several

active group members (the number of which depends on the secret

sharing parameters).

When a ghost finally reconnects and updates its keying material,

its quarantine automatically stops and the users that kept shares

related to that ghost send them to it. The former ghost is therefore

able to reconstruct the secret seeds corresponding to its quarantine

keys and to eventually decrypt the handshake messages that it

missed during its offline time and that remained buffered by the

Delivery Service. In the few cases where the former ghost does not

receive enough shares to reconstruct its quarantine keys – which

is highly unlikely in large groups –, it remains able to reconnect to

the group but it looses its quarantine history.

This quarantine mechanism strongly strengthens TreeKEM’s

post-compromise security by enabling this property at the begin-

ning of a ghost’s quarantine – after a period of inactivity that is

fully controlled by the protocol – instead of after some hypothet-

ical update of that inactive user, that may never happen until its

eviction from the group.

Regarding forward secrecy, our protocol does not change the

time at which this property is assured for the group
2
. Neverthe-

less, before forward secrecy is reached, QTK greatly decreases, in

2
Indeed, forward secrecy needs the update of every group member – including inactive

users – after the generation of the challenge group key. As a reconnecting ghost

recovers its quarantine history, forward secrecy is assured only when all the ghosts in

the group have either been removed from the group or have already recovered their

quarantine shares and updated.

Quarantined-TreeKEM

comparison with TreeKEM, the chances of an adversary to suc-

cessfully attack past communication by corrupting inactive users.

These chances are captured by the concept of “critical window”,

issued from [21] and detailed in Section 4.2 and Figure 5, that corre-

sponds to the period of vulnerability of a user. The critical window

of a ghost with QTK is much smaller than the one of an inactive

user with TreeKEM, as depicted by Figure 6, which enhances the

protocol’s security.

Figure 1: Comparison of the forward secrecy and post-
compromise security of TreeKEM and our QTK protocol,
with a focus on an inactive user that weakens the security of
the entire group. Post-compromise security is achieved ear-
lier with QTK and forward secrecy is enhanced by reducing
the period of vulnerability of that inactive user.

As in MLS standard and several recent works [21], [3], [2], the

security of QTK is analyzed in this paper by considering a par-

tially active adversary that is able to corrupt any user and leak

all of its secret elements except for its private signature key, and

consequently cannot impersonate these compromised users. The

justification of this adversarial model is detailled in Section 4.1,

while the main risks induced by a fully active adversary on our

quarantine mechanism and some solutions to overcome them are

briefly discussed in Appendix A.1.

1.3 Outline of the Paper
We describe in Section 3 how our QTK protocol works, and in

particular, how a quarantine is carried out from start to end and

how a secret sharing scheme is used to distribute secret information

among the group.

Security is studied in Section 4 in a game-based model inspired

from [21]. We show that our protocol is CGKA-secure in this frame-

work and that the main differences with standard TreeKEM are the

periods during which users are vulnerable to corruption, through

the aforementioned concept of critical window (cf. Section 4.2).

Section 5 details the performances of our protocol in terms of

communication cost. After theoretical computations, the commu-

nication overhead induced by a ghost’s quarantine, for realistic

parameters, is given at the end of this section in order to show

the feasibility of our QTK CGKA in real-life use cases. Indeed, it

appears that the overhead of a quarantine is very limited and is

sometimes less costly than the regular updates performed by an

active user.

Finally, we present in Appendix B an enhancement to our basic

QTK protocol, called “jointly-implemented quarantine”, that further

increases the security offered by QTK by using several users instead

of a single one for each operation of quarantine initialization or

update.

Furthermore, we propose as additional content to our study an

open-source implementation of our QTK protocol, forked from an

official implementation of MLS in Kotlin. This programwill be made

public at the time of publication of this paper and can be provided

to reviewers, on request.

2 PRELIMINARIES
2.1 Notations and Terminology
The output of a probabilistic algorithm is represented by “←” and

the one of a deterministic algorithm is given by “:=”.

“.| |.” is used for the concatenation operation. |S| denotes the car-
dinality of a set S. ⌊ ⌉ and ⌈ ⌉ respectively denote the rounding and
ceiling values of a decimal number.

log() denotes the logarithm in base 2.

In the context of a secret sharing scheme, [𝑥]𝑖 denotes the spe-
cific share 𝑖 associated to the value 𝑥 ;

[𝑥] = ([𝑥]𝑖)𝑖∈J0,𝑛−1K represents the entire collection of 𝑛 shares

associated with 𝑥 .

In order to dissociate internal nodes from leaves in the Ratchet

Tree of a CGKA, we note 𝑥𝑣𝑖 the value 𝑥 associated to an internal

node 𝑣𝑖 whereas the value 𝑥 related to a leaf ℓ𝑖 (a.k.a a user 𝑢𝑖) is

simply noted 𝑥𝑖 .

2.2 Secret Sharing [24]
Let us recall the definition of a secret sharing scheme, issued from

[14].

Definition 2.1 (Threshold Secret Sharing Scheme). A (𝑡,𝑚)-(threshold)
secret sharing scheme over a finite set Z is a pair of efficient al-

gorithms (Distr, Comb) that respectively perform the following

tasks:

• Distributing the secret: Distr is a probabilistic algorithm
that splits up a secret 𝛼 ∈ Z, according to parameters 𝑡 ,𝑚

(which respectively denote the recovery threshold and the

total number of shares to emit), into a collection of𝑚 shares

([𝛼]𝑖)𝑖∈J0,𝑚−1K such that at least 𝑡 of them are necessary

to reconstruct the shared secret 𝛼 .

[𝛼] = ([𝛼]0, · · · , [𝛼]𝑚−1) ← 𝐷𝑖𝑠𝑡𝑟
(
𝛼, 𝑡,𝑚

)
• Reconstructing the secret: Comb is a deterministic com-

bination algorithm that reconstructs the shared secret 𝛼

with a subset ([𝛼]𝑖)𝑖∈I⊆J0,𝑚−1K of the share collection, of
size at least 𝑡 .

𝛼 := 𝐶𝑜𝑚𝑏
(
([𝛼]𝑖)𝑖∈I ,I

)
A secret sharing scheme must abide by the correctness property,

which states that for every secret 𝛼 ∈ Z, for every possible output

[𝛼] of the distributing algorithm Distr(𝛼 , t, m) and every subset I

Chevalier et al.

of J0,𝑚 − 1K of size at least 𝑡 , we have:
𝐶𝑜𝑚𝑏

(
([𝛼]𝑖)𝑖∈I ,I

)
= 𝛼

Nota: We only consider in this paper:

• Perfect secret sharing schemes, for which any collection

of 𝑡 − 1 shares related to a secret 𝛼 ∈ Z gives strictly no

information about that shared secret. Consequently, for any

unbounded adversaryA trying to recover 𝛼 given a subset

([𝛼]𝑖)𝑖∈I′⊆J0,𝑚−1K of size strictly smaller than 𝑡 , we have:

𝑃𝑟
[
𝛼 ← A

(
([𝛼]𝑖)𝑖∈I′ ,I′

)]
=

1

|Z|

• Ideal secret sharing schemes: these are perfect schemes

that additionally generate shares belonging to the same

setZ as the shared secret, thus with identical sizes.

2.3 Secretly Key-Updatable Public Key
Encryption

Informally, a secretly key-updatable public key encryption scheme

(skuPKE) (originally defined in [20]) is a PKE whose public and

private keys can be updated by independently generated update

elements (Θ, 𝜃). The update element Θ for the public encryption

key 𝑝𝑘 can be publicly disclosed, whereas the update element 𝜃 for

the private decryption key 𝑠𝑘 must remain secret.

Definition 2.2 (Secretly Key-Updatable Public Key Encryption [20]).
A secretly key-updatable public key encryption scheme (skuPKE)

consists of six polynomial-time algorithms:

• KeyGen takes as input the security parameter 𝜆 and prob-

abilistically outputs a couple of public and private keys

(𝑝𝑘, 𝑠𝑘).
• Enc takes as input a public key 𝑝𝑘 ∈ PK and a plaintext

𝑚 ∈ M and probabilistically yields a ciphertext 𝑐 .

• Dec takes as input a secret key 𝑠𝑘 ∈ SK and a ciphertext

𝑐 ∈ C and deterministically generates a plaintext 𝑚. As

for a regular PKE, a skuPKE scheme is correct if we have:
∀(𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆),
∀𝑚 ∈ M,Dec(𝑠𝑘, Enc(𝑝𝑘,𝑚)) =𝑚.

• UpdGen takes as input the security parameter 𝜆 and prob-

abilistically outputs a couple of public and private update

elements (Θ, 𝜃).
• UpdPk takes as input a public key 𝑝𝑘 ∈ PK and a public

update element Θ and yields an updated public key 𝑝𝑘′.

• UpdSk takes as input a private key 𝑠𝑘 ∈ SK and a private

update element 𝜃 and outputs an updated private key 𝑠𝑘′.

(𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆) (Θ, 𝜃) ← UpdGen(1𝜆)
𝑐 ← Enc(𝑝𝑘,𝑚) 𝑝𝑘′ := UpdPk(𝑝𝑘,Θ)
𝑚 := Dec(𝑠𝑘, 𝑐) 𝑠𝑘′ := UpdSk(𝑠𝑘, 𝜃)

2.4 TreeKEM CGKA Protocol
We give hereunder a brief description of how TreeKEM – as stan-

dardized in RFC 9420 [9] – works as a Continuous Group Key

Agreement (CGKA) protocol.

2.4.1 Continuous Group Key Agreement. ACGKA is a sub-protocol

of a “secure group messaging” protocol, that aims to securely gen-

erate a group key which is common to all group members and

evolves over time in order to provide the security properties of for-

ward secrecy and post-compromise security. The definition below

is adapted [4] in order to take into account TreeKEM’s Propose &

Commit paradigm.

Definition 2.3 (Propose & Commit CGKA). A CGKA with the

Propose & Commit Paradigm is a tuple of the following algorithms:

• Initialization: user 𝑢𝑖 creates its initial state 𝛾𝑖 :
𝛾𝑖 ← init(𝑢𝑖)

• Group Creation: user𝑢𝑖 , with state𝛾𝑖 , creates a new group

that must include users from the list

𝐺 = (𝑢𝑖)𝑖∈J1,𝑛K. A message welcome𝑊 is sent to all mem-

bers from 𝐺 , with the information necessary to join the

group: (𝛾 ′𝑖 ,𝑊) := create − group(𝛾𝑖 ,𝐺)

• Propose: user 𝑢𝑖 proposes a change to the group’s state

through an action𝑎 ∈ A, withA ⊇ {Add, Remove, Update}
the set of actions authorized by the CGKA. In particular:

– add(𝑢 𝑗): 𝑢𝑖 proposes to add user 𝑢 𝑗 to the group;

– remove(𝑢 𝑗): 𝑢𝑖 proposes to remove 𝑢 𝑗 from the group;

– update:𝑢𝑖 updates its own encryption keying material

(the one of its leaf) and generates an updated state 𝛾 ′
𝑖
.

User 𝑢𝑖 then broadcasts a Proposal message 𝑃 to the entire

group: (𝛾 ′𝑖 , 𝑃) ← propose(𝛾𝑖 , 𝑎 [, 𝑢 𝑗])

• Commit: when receiving a set of 𝑝 proposal messages

P = {𝑃𝑖 }𝑖∈J1,𝑝K, user 𝑢𝑖 validates them and updates its own

encryption keying material and the one of its direct path,

generating a new group key 𝑘 . It then updates its state

into 𝛾 ′
𝑖
to take into account that changes, and broadcasts

a Commit message 𝐶 as well as (potentially) a Welcome

message for the new group members:

(𝛾 ′𝑖 , 𝑘,𝐶 [,𝑊]) ← commit(𝛾𝑖 , P)

• Process: user 𝑢𝑖 processes a Commit message 𝐶 or a Wel-

come Message𝑊 it has received from a committer, updates

accordingly its own state and computes the new group

key 𝑘 resulting from these changes:

(𝛾 ′𝑖 , 𝑘) := process(𝛾𝑖 ,𝑚 ∈ {𝐶,𝑊 })

A CGKA must fulfill the following properties, stated informally

below and evaluated in the security game of Section 4.1.2.

• Correctness: every user in the group must compute the

same group key.

• Privacy: a group key is indistinguishable from a random

value for an adversary who has access to the transcript of

handshake messages exchanged within the group until the

generation of that group key.

• Forward secrecy and post-compromise security, as de-
scribed in Section 1.1.

2.4.2 Ratchet Tree. In order to optimize the communication cost

between group members, TreeKEM implements an architecture

based on a binary tree called “Ratchet Tree”, where users are at

the leaves and the group key is elaborated at the root. Similarly to

Quarantined-TreeKEM

TreeKEM, we consider in this paper a descending full binary tree,

where the two nodes beneath another node are called its “children”

and the one above is its “parent”.

We explain beneath some tree notions that are used in TreeKEM

to perform dynamic tree operations such as updates.

Node’s State. Each node of this Ratchet Tree, except for the root,

is associated with a local state with public and private components.

• The public state
𝑝𝛾 comprises, among other elements

– for an internal node 𝑣 : its public encryption key 𝑝𝑘𝑣 ;

– for a user (leaf) 𝑢𝑖 : its public encryption and signa-

ture keys 𝑝𝑘𝑖 and 𝑠𝑝𝑘𝑖 , with the related credentials. It

also includes the signature, under the user’s private

signature key, of the other fields of that public state.

• The private state
𝑠𝛾 contains:

– the group key and all the group secrets derived from

it;

– the private encryption keys of that node and of its

filtered direct path, as well as the temporary secret

elements (leaf secret, path secrets) associated with that

keys.

As we see in Section 4.1.1, the private state of a leaf does not com-

prise the user’s private signature key. This one must indeed be

separated from the other private elements of that user and stored

in a secure enclave. This compartmentalization is of importance in

case of user corruption.

Blank Nodes. Deleted nodes from TreeKEM’s Ratchet Tree are

not removed – since the latter must remain a full binary tree, with

two children for each internal node – but their state is deleted

instead. Such empty nodes are called “blank” and do not take part

in TreeKEM’s processes until they are filled again.

Resolution of a Node. The resolution of a node 𝑣 from a binary

tree is a set of nodes defined as follows:

• if 𝑣 is a non-blank node, then 𝑅𝑒𝑠 (𝑣) = {𝑣};
• if 𝑣 is a blank leaf, then 𝑅𝑒𝑠 (𝑣) = ∅;
• if 𝑣 is a blank internal node, then

𝑅𝑒𝑠 (𝑣) = ∪𝑣′∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑣)𝑅𝑒𝑠 (𝑣 ′).

(Filtered) Direct Path and Copath of a Leaf. A user𝑢𝑖 ’s direct path

is composed of all the ancestors of the leaf associated with that

user, up to the root. Its filtered direct path, written P𝑖 , is its direct
path whose nodes that have a child with an empty resolution are

removed. A user’s copath, CP𝑖 , contains the siblings of the direct
path’s nodes.

2.4.3 Updates with TreeKEM. The update of the encryption keying

material is implemented differently in TreeKEM whether it belongs

to a user (i.e. a leaf) or an internal node.

Indeed, as stated in Definition 2.3, all tree operations are per-

formed in two rounds with the “Propose & Commit” paradigm from

TreeKEM:

• a first one where any user is free to submit proposals (adding
new users, removing current group members, updating its

own keying material...);

• a second one where the valid proposals are grouped to-

gether and implemented within a commit by a single user,

called “committer”.

Update of the Committer’s Filtered Direct Path. During a “commit”

process, as shown by Figure 2, the committer randomly draws

a secret seed called “leaf secret”; this one is derived, with a key

derivation function, into a “node secret” that serves as a seed to

deterministically generate a fresh encryption key-pair.

In parallel, the leaf secret is derived into another secret 𝑝𝑠𝑣1 ,

called a “path secret”, that is associated with this leaf’s parent 𝑣1.

This path secret 𝑝𝑠𝑣1 is itself derived into a node secret to deter-

ministically generate an encryption key-pair for the benefit of that

leaf’s parent 𝑣1. It is then derived once again into a new path se-

cret 𝑝𝑠𝑣2 , related to another node 𝑣2, higher in the leaf’s filtered

direct path, and so on, up to the tree root.

The group key 𝑘 is then computed by deriving the root’s path

secret 𝑝𝑠𝑟𝑜𝑜𝑡 .

Figure 2: Update, with TreeKEM, of a user’s filtered direct
path (here user A). This process updates the encryption key-
pairs of that user and of all its ancestors; it also generates a
new group key.

Broadcast of a CommitMessage to the Ratchet Tree. After updating
its encryption key-pair, its filtered direct path and the group key,

the committer 𝑢𝑐 must transmit to the other group members the

information they need to compute the new group key. To do so, the

committer generates a commit message𝐶 that is broadcasted to the

whole group (through a central server that simply plays a role of

an untrusted Delivery Service).

This commit message 𝐶 consists of:

• the list of proposals that the commit implements (P);
• the updated (signed) public local state

𝑝𝛾 ′𝑐 of the committer;

• the new public encryption keys (𝑝𝑘′𝑣𝑝)𝑣𝑝 ∈P𝑐 from the com-

mitter’s filtered direct path;

• the path secrets of the nodes 𝑣𝑝 ∈ P𝑐 from the committer’s

filtered direct path, encrypted under the public keys of the

nodes 𝑣𝑟 belonging to the resolution R𝑣𝑝 of 𝑣𝑝 ’s child on

the committer’s copath.

𝐶 (𝑢𝑐) = P | | 𝑝𝛾 ′𝑐 | |
(
𝑝𝑘′𝑣𝑝

)
𝑣𝑝 ∈P𝑐 | |

(
Enc(𝑝𝑘𝑣𝑟 , 𝑝𝑠𝑣𝑝)

)𝑣𝑟 ∈R𝑣𝑝
𝑣𝑝 ∈P𝑐

2.4.4 Tree Evolution and Epochs. The evolution of the group over

time is represented by the notion of “epoch”. Each epoch corre-

sponds to a given state of the user group, with a certain group key.

Each time this group state is modified by a commit, the group key

evolves and the epoch is incremented of one unit.

We now describe our QTK protocol, with its associated mecha-

nism of “quarantine” applied on inactive users.

Chevalier et al.

3 QTK PROTOCOL
Definition 3.1 (Quarantine TreeKEM (QTK)). The Quarantine

TreeKEM protocol is a TreeKEM-based CGKA, associated with

a (𝑡,𝑚)-perfect secret sharing scheme
3
, that implements a mecha-

nism of quarantine for inactive users – called “ghost users” – within

the group.

This quarantine process updates the ghosts’ keying material

on their behalf and uses the secret sharing scheme to collectively

secure the secret information related to these updates.

In this paper, we describe QTKwith processes from the TreeKEM

protocol standardized by IETF [9]. However, our protocol remains

compatible with most – if not all – TreeKEM-derived CGKAs that

are proposed in the literature ([3], [2], [4], [25], [21]. . .).

3.1 Message Delivery Mode
We detail two variants of our QTK protocol, that depend on the

ability of the Central Server’s Delivery Service to perform fine-

grained message-delivery:

• broadcast-only setting: all handshakemessages are broad-

casted to the entire group;

• server-aided setting: the regular TreeKEM messages (pro-

posals, commits...) are broadcasted, but two types of mes-

sages specific to our protocol (“Share Distribution Message”

and “Share Recovery Message”, cf. below) are only sent to

the adequate recipients.

The server-aided setting, already studied in the CGKA litera-

ture [17], [18], [6], permits to greatly improve the communication

cost, especially in large groups, but it is not as generalizable as a

broadcast-only protocol – such as the standardized MLS – where

no assumption is made on the Central Server’s capacities.

3.2 QTK Public States
In TreeKEM, each user keeps an updated view of the whole Ratchet

Tree, and in particular, of all other group members, through their

public states
𝑝𝛾 (a.k.a “leaf nodes”).

In our QTK protocol, this public state includes two additional

fields necessary to conduct a quarantine:

• The first one (𝑒𝑝𝑘) corresponds to the epoch of last update of

the user’s encryption key-pair, that the committer of every

epoch checks when creating its commit, in order to detect

inactive users that are to be quarantined (cf. Section 3.3).

• The second one (𝑒𝑞𝑢𝑎𝑟) is the epoch corresponding to the

start of the quarantine. This field allows committers to

check whether a ghost reaches the maximum quarantine

duration 𝛿𝑞𝑢𝑎𝑟 that is parametrized at the application level.

For active users, this field remains empty.

3.3 Start of a Quarantine
3.3.1 Initialization Process. At each commit, the unique commit-

ter
4
checks that the encryption keys of all other active users in the

tree have not exceeded a maximum age defined by the parameter

3
Cf. Section 2.2 for additional details on that primitive.

4
TreeKEM selects the committer for a given epoch as the first group member trying to

exchange content data after a proposal has been issued by another user and has not

yet been taken into account in a commit.

𝛿𝑖𝑛𝑎𝑐𝑡 . If, at a given epoch 𝑒𝑖 , certain users have keys that are too

old (𝑒𝑖 − 𝑒𝑝𝑘 ≥ 𝛿𝑖𝑛𝑎𝑐𝑡), they are declared “ghost users” and the

committer is responsible for quarantining them.

We note G𝑖 the set of ghost users at epoch 𝑒𝑖 , andNG𝑖 ⊆ G𝑖 the
subset of ghost users starting their quarantine at epoch 𝑒𝑖 .

The quarantine initialization process, at epoch 𝑒𝑖 , consists of the

following steps:

(1) The committer 𝑢𝑐 for that epoch, as “quarantine initiator”,

updates the ghost list G𝑖+1 for the epoch 𝑒𝑖+1 that will

follow the commit, by adding new ghosts and removing

ghosts that are reconnecting or that have reached the limit

of their quarantine duration and must be removed from the

group at epoch 𝑒𝑖+1.

(2) The committer blanks the direct paths of the new ghosts so

that they are (functionally) directly linked to the tree root.

(3) For each of the new ghosts, the committer randomly draws

a seed from a seed space S, that is used to deterministically

generate a fresh encryption key-pair:

∀𝑢𝑔 ∈ NG𝑖+1, 𝑠𝑖+1𝑔

$← S

(𝑝𝑘𝑖+1𝑔 , 𝑠𝑘𝑖+1𝑔) := KeyGen(1𝜆 ; 𝑠𝑖+1𝑔)

(4) With a (𝑡,𝑚)-perfect secret sharing scheme, the committer

splits up the seeds into𝑚 shares (the number of shares being

defined by the share distribution method), with a threshold

𝑡 < 𝑚 whose choice is a trade-off between security and

availability of the protocol
5
:

∀𝑢𝑔 ∈ NG𝑖+1, [𝑠𝑖+1𝑔] ← 𝐷𝑖𝑠𝑡𝑟 (𝑠𝑖+1𝑔 , 𝑡,𝑚)
with [𝑠𝑖+1𝑔] := {[𝑠𝑖+1𝑔]0, · · · , [𝑠𝑖+1𝑔]𝑚−1}.

(5) The committer records in its private state
𝑠𝛾𝑐 the first share

[𝑠𝑖+1𝑔]0 of each new ghost and distributes the remaining

𝑚 − 1 shares in the tree, according to a share distribution

process detailed below.

(6) The committer includes in its pending commit message the

new ghosts’ public keys, along with its own new key and

the new ones from its direct path P𝑖+1𝑐 .

(7) The committer deletes from its private state the secret key

𝑠𝑘𝑖+1𝑔 , seed 𝑠𝑖+1𝑔 and shares ([𝑠𝑖+1𝑔]𝑖)𝑖∈J1,𝑚−1K of each ghost.

3.3.2 Share Distribution in the Ratchet Tree. The distributionwithin
the tree of the shares previously emitted depends on the message de-

livery mode (cf. Section 3.1) and on the share distribution method.

Figure 3 compares the two share distribution methods, detailed

below, for an unbalanced Ratchet Tree.

In the broadcast-only setting, the default share distributionmethod

is adapted to the architecture of a binary tree, and therefore op-

timizes the communication cost of this exchange. We however

propose an alternate method, called “horizontal share distribution”

that must be used when the conditions are not conducive to that

5
Indeed, with a high threshold, the secret sharing scheme needs most of the shares in

order to reconstruct the secret. It is therefore more secure than with a low threshold;

however the probability to be unable to legitimately recover that secret increases, at

the expense of the scheme’s availability. We underline that in even in case of failure of

the secret sharing reconstruction, the ghost remains able to reconnect to the group.

Quarantined-TreeKEM

default method (when the number of users is too low to gener-

ate a number of shares greater than or equal to the secret sharing

threshold). In the server-aided setting, on the other hand, only the

horizontal share distribution method can be implemented.

Default Method: Shares with Path Secrets. By default, shares are

joined to the path secrets created by the committer’s path update,

which implies that they are sent to the same recipients as these

ones
6
. Consequently, the same share is distributed to all users

7

beneath each node belonging to the resolution of the nodes in the

committer’s copath.

Consequently, the number of users who keep a same share

strongly varies, according to their relative positions in the tree

with respect to the committer. Indeed, the committer and its sibling

– if any – are the only keepers of the first two shares [𝑠𝑖+1𝑔]0 and
[𝑠𝑖+1𝑔]1 associated with a new ghost 𝑢𝑔 , whereas on the other end

of the tree, the whole opposite subtree at the root of the tree (filled

with up to
𝑛
2
users for a full binary tree) is given the same share

[𝑠𝑖+1𝑔]𝑚−1.
When the structure of the Ratchet Tree differs from a full, blank-

node-free, binary tree, the number of nodes in the committer’s

filtered direct path may vary from 1 to 𝑛 − 1 (depending on the tree

balance and on the committer’s location in this tree). As this value

also represents the number of path secrets, and therefore the num-

ber of shares to transmit, in a worst-case scenario where this path

only comprises one node
8
, the default share distribution method

only generates two shares: one corresponding to that single node

in the committer’s filtered direct path, and one for the committer

itself. Clearly, this number of shares is too low to be acceptable,

especially in order to implement a recovery threshold for the secret

sharing scheme.

Consequently, an alternative share distribution method must be

used when the number of shares emitted with the default method

falls below a minimum value𝑚𝑚𝑖𝑛 > 2, defined at the application

level.

Alternate Method: the Horizontal Share Distribution. In this case,

the committer no longer tries to include the shares in the encrypted

path secrets. Instead, shares are encrypted with the public keys of

the internal nodes belonging to a same (horizontal) level L, that is
chosen so that its number of nodes is greater than or equal to the

minimum value𝑚𝑚𝑖𝑛 . In the end, a share is received by all active

users under the same node from that level. The committer (and all

users depending on the same node from level L) is assigned the

first share [𝑠𝑔]0 and the other shares are then attributed from left

to right, from that starting point.

With a broadcast-only protocol, these encrypted shares are joined

to the commit message, which saves the cost of additional signa-

tures. In the server-aided paradigm, each share is sent in a separate

“Share Distribution Message”, which comprises:

• the encrypted share;

6
The only exception is if the only recipient of an encrypted path secret is the ghost

user itself. In this case, the path secret is sent anyway, but without any share attached,

which decreases by one the total number of emitted shares.

7
Active group members and ghost users as well, except for the ghost associated with

the shares.

8
This scenario may happen even with a large number of users and even for a left-

balanced binary tree, if we have a group of 2
𝑥 + 1 users and if the committer happens

to be the single leaf of the right root’s subtree.

Figure 3: Compared share distribution methods, with the
default method (top) and the horizontal share distribution
(bottom). The latter must be used when the number 𝑚 of
emitted shares falls under the minimum allowed value𝑚𝑚𝑖𝑛 .

• the index of the internal node under whose key the share

is encrypted;

• the sender’s signature.

3.3.3 Commit Message. A commit message with a quarantine ini-

tialization, in the broadcast-only setting, therefore comprises the

following parts (in blue: additional elements compared to a classical

commit message from TreeKEM):

• The committer’s new signed public state
𝑝𝛾𝑖+1𝑐 , which in-

cludes the committer’s updated public encryption key 𝑝𝑘𝑖+1𝑐 .

• The updated public encryption keys of the committer’s

filtered direct path 𝑣𝑝 ∈ P𝑖+1𝑐 and of the new ghosts 𝑢𝑔 ∈
NG𝑖+1:

(𝑝𝑘𝑖+1𝑣𝑝
)𝑣𝑝 ∈P𝑖+1

𝑐
| | (𝑝𝑘𝑖+1𝑔)𝑢𝑔∈NG𝑖+1

• The leaf indices of the new ghosts whose shares are sent –

in the same order – in this commit message: (ℓ𝑔)𝑢𝑔∈NG𝑖+1 .
• With the default share distribution method: For each node

𝑣𝑟 ∈ R𝑖+1𝑣𝑝
from the resolution of the committer’s copath,

the encryption, under 𝑣𝑟 ’s public key, of:

– the adequate path secret 𝑝𝑠𝑖+1𝑣𝑝
(which is the seed of

node 𝑣𝑝 ∈ P𝑖+1𝑐 , the closest ancestor of 𝑣𝑟 on the

committer’s direct path);

– a share – dedicated to 𝑣𝑟 – for the secret seed 𝑠𝑖+1𝑔 of

each of the 𝜈 =
��NG𝑖+1�� new ghosts 𝑢𝑔 ∈ NG𝑖+1:(

𝐸𝑛𝑐
(
𝑝𝑘𝑖𝑣𝑟 , 𝑝𝑠

𝑖+1
𝑣𝑝
| | [𝑠𝑖+1

1
]𝑣𝑟 | | · · · | | [𝑠𝑖+1𝜈]𝑣𝑟

))𝑣𝑝 ∈P𝑖+1
𝑐

𝑣𝑟 ∈R𝑖+1𝑣𝑝

Chevalier et al.

• With the horizontal share distribution method: The encryp-
tions of path secrets and shares are dissociated. Conse-

quently, for each node 𝑣𝑟 from the resolution of the com-

mitter’s copath and each node 𝑣ℓ of the tree level L𝑖+1

chosen for the horizontal distribution, we have:

– the encryption, under 𝑣𝑟 ’s public key, of the corre-

sponding path secret 𝑝𝑠𝑖+1𝑣𝑝
;

– the encryption, under 𝑣ℓ ’s public key, of one share

associated with each new ghost 𝑢𝑔 ∈ NG𝑖+1.((
𝐸𝑛𝑐

(
𝑝𝑘𝑖𝑣𝑟 , 𝑝𝑠

𝑖+1
𝑣𝑝

))𝑣𝑝 ∈P𝑖+1
𝑐

𝑣𝑟 ∈R𝑖+1𝑣𝑝

,(
𝐸𝑛𝑐

(
𝑝𝑘𝑖𝑣ℓ , [𝑠

𝑖+1
1
]𝑣ℓ | | · · · | | [𝑠𝑖+1𝜈]𝑣ℓ

))
𝑣ℓ ∈L𝑖+1

)
3.3.4 Shareholder Rank. In order to avoid redundancy at the stage

of share recovery, at the end of the ghost’s quarantine, we imple-

ment a process to prioritize shareholders that keep the same share,

through the concept of “shareholder rank”.

An active user who receives shares related to one or several

ghosts’ quarantine(s) is called a “shareholder”. A group of share-

holders that have received the same share is called a “shareholder

family” with respect to that share. As every user has a complete

view of the Ratchet Tree, including the location of every other

group member, a shareholder is able to determine – with both share

distribution methods – its shareholder family related to the share

it has received, and its own position within this family.

The shareholder rank corresponds to a shareholder’s location in

its shareholder family, starting from left to right.

3.3.5 Shareholder Share Recording. A shareholder 𝑢𝑠 records in its

private state
𝑠𝛾𝑠 information about the share(s) it has received, as a

list of tuples of the following form:

• the ghost’s leaf index: ℓ𝑔 ;

• the ghost’s share received: [𝑠𝑖+1𝑔]𝑖𝑛𝑑 ;
• its shareholder rank related to this share: 𝑟𝑘 ;

• the index associated with the share: 𝑖𝑛𝑑 ;

• the creation epoch of this share: 𝑒𝑖+1.
All these fields, except the ghost’s leaf index and the share itself,

are locally computed by the shareholder, thanks to its complete

view of the Ratchet Tree, with no need of extra communication.

Every time a ghost quarantine expires (either with a successful

reconnection or with a removal from the group – after reaching

the maximum quarantine duration 𝛿𝑞𝑢𝑎𝑟), shareholders delete from

their share recording all the data associated to this ghost.

A shareholder considers that a ghost successfully completed its

quarantine recovery when it receives the second Update proposal
9

from that ghost after its reconnection. On the other side, a ghost

removal is notified by a Committer
10

in a formal Remove operation

inluded in the commit message.

9
The reconnecting ghost updates a first time when going back online, and a second

time after receiving all its shares and recovering the associated quarantine keys.

10
Committers not only check the seniority of all users’ encryption keys, they also

verify that ghosts do not exceed the maximum quarantine duration 𝛿𝑞𝑢𝑎𝑟 , thanks to

the “quarantine start epoch” field in the public state of the latter.

3.4 Course of a Quarantine
During its quarantine, a ghost remains part of the group, and as

such, receives all handshake and application messages that are

exchanged within the group – except for its own shares.

Quarantine Key Update. When preparing a commit, a committer

checks the age of the ghosts’ quarantine keys thanks to the “quar-

antine start epoch” field of the ghosts’ public state (cf. Section 3.2).

When a quarantine key gets older than a limit given by a parameter

called 𝛿𝑞𝑢𝑎𝑟−𝑢𝑝𝑑 , a process of “quarantine key update” is initiated.

This process is similar to the initialization of a quarantine, except

that the committer in charge of the update may not be the one

who started the quarantine. As in a quarantine initialization, the

committer (called an updater) draws a random secret seed on behalf

of the ghost, generates an encryption key-pair, splits up the seed

into shares that are distributed to the online users. Once again,

these new shareholders may not be the same as the one from the

quarantine start. Consequently, depending on their activity in the

group, active users may record zero, one or several shares associated

to the quarantine of a given ghost.

Figure 4: Timeline of a quarantine with QTK protocol.
(𝑝𝑘𝑖𝑔, 𝑠𝑘𝑖𝑔)𝑥 denotes a ghost’s encryption key-pair of gener-
ation 𝑖, updated by user 𝑥 . 𝛿𝑖𝑛𝑎𝑐𝑡 is the duration, after the last
key update, before initiating a quarantine; 𝛿𝑞𝑢𝑎𝑟 is the length
of this quarantine before removing the ghost, and 𝛿𝑞𝑢𝑎𝑟−𝑢𝑝𝑑
is the period of quarantine key update.

3.5 End of a Quarantine
When a ghost user 𝑢𝑔 finally reconnects at epoch 𝑒𝑟𝑒𝑐 , the end-of-

quarantine process is automatically activated.

(1) The former ghost 𝑢𝑔 – which, at this stage, does not know

yet that it was quarantined – asks the Delivery Service

of the central server to provide it with the messages that

were buffered during its offline period. Instead, the server

notifies it its “quarantined” status.

(2) 𝑢𝑔 refreshes its keying material into (𝑝𝑘𝑟𝑒𝑐+1𝑔 , 𝑠𝑘𝑟𝑒𝑐+1𝑔). Fol-
lowing this, it transmits to the group a “Quarantine End”

proposal, which is an “Update” proposal – used to refresh

a user’s encryption key-pair – that additionally indicates

that its sender has come back online and needs to carry out

a reconnection process.

(3) Upon receiving the “Quarantine End” proposal, each active

user within the group verifies whether it possesses, in its

private state, one or several quarantine shares linked to the

former ghost and checks its associated shareholder rank(s).

Quarantined-TreeKEM

If such shares exist and if the associated shareholder rank

is 𝑟𝑘 = 1 , the user, called a primary shareholder, encrypts

them – along with their associated indices – under𝑢𝑔’s new

encryption key and dispatches the ciphertext in a “Share

Recovery Message”.

(4) In parallel, the committer for the epoch 𝑒𝑟𝑒𝑐+1, that has
received the “Quarantine End” proposal, includes in its

commit message the encryption, under the former ghost’s

fresh encryption key, of the new group key induced by the

current commit. The idea is that even if the former ghost

has troubles recovering its quarantine history (because of

missing shares that prevent it from reconstructing the quar-

antine keys), it remains able to join the group from now

on.

(5) The Delivery Service forwards to the former ghost all pend-

ing messages that were buffered by the server, much like

when an active user reconnects.

(6) After receiving a sufficient number of Share Recovery Mes-

sages sent by the online users at epoch 𝑒𝑟𝑒𝑐+1, the former

ghost reconstructs the initial quarantine seed 𝑠
𝑞1
𝑔 that was

split up at the beginning of its quarantine and recovers the

related quarantine encryption key-pair. If needed, the for-

mer ghost proceeds similarly with intermediate quarantine

encryption keys, whose seeds are also reconstructed with

shares sent at epoch 𝑒𝑟𝑒𝑐+1:

∀𝑖 ∈ J1, 𝑘K , 𝑠𝑞𝑖𝑔 := 𝐶𝑜𝑚𝑏
(
([𝑠𝑞𝑖𝑔] 𝑗) 𝑗∈I′ ,I′

)
(𝑝𝑘𝑞𝑖𝑔 , 𝑠𝑘

𝑞𝑖
𝑔) := KeyGen(1𝜆 ; 𝑠𝑞𝑖𝑔)

With its quarantine key-pair(s), the former ghost can now

decrypt all the handshake and content messages that were

exchanged during its quarantine period.

(7) If the number of shares received at the previous stage is

not enough to reconstruct one of its quarantine seeds
11
,

the former ghost sends to the group a “Share Resend” pro-

posal, identifying the missing shares with their indices and

creation epochs.

When receiving this proposal, secondary shareholders (with

shareholder rank 𝑟𝑘 = 2) for the missing shares send the

appropriate Share Recovery Messages, either in broadcast

or straightly to the former ghost if the Delivery Service

allows it.

If the new batch of Share Recovery Messages is still not

enough to reconstruct the associated seed, this process is

iterated until the seed is reconstructed or the number of

Share Resend proposals reaches a maximum value 𝑛𝑚𝑎𝑥
𝑟𝑒𝑠𝑒𝑛𝑑

that is part of the parameters set.

If, despite these attempts, some quarantine seeds cannot

be reconstructed, the content related to the period they

cover is considered lost for the former ghost. The parameter

𝑛𝑚𝑎𝑥
𝑟𝑒𝑠𝑒𝑛𝑑

therefore represents a necessary tradeoff between

communication cost and availability of the CGKA.

11
This may happen if too many of the primary shareholders are unresponsive (e.g.

because they are themselves quarantined or even removed from the group) at the time

of the ghost’s reconnection.

4 SECURITY OF QTK PROTOCOL
4.1 Security Model
We use the security model from [21], which considers a game-based

“CGKA security” with a partially active and fully adaptive adversary.

The concept of “safe predicate” is used to rule out, in the associated

security game, trivial attacks such as the compromise of a group

key for a given epoch by corrupting one of the group members at

that same epoch.

4.1.1 Adversarial Model. In that model, the adversary has full con-

trol over the Delivery Service from the server: therefore it can

arbitrarily block messages and change their delivery order. Fur-

thermore, the adversary is able to corrupt any group member at

any time for a limited period of time defined by the predicates

start-corrupt and end-corrupt. In this case, the private state of

the corrupted users is leaked.

However, [21] restricts the adversary’s ability to impersonate

group members, even in case of corruption. The Authentication

Service provided by the server is consequently assumed secure and

the corruption of a group member neither leaks its private signature

key nor gives the adversary a signature oracle.

This partially-active adversarial model corresponds to the one

used by the MLS standard. TreeKEM uses a mechanism of “confir-

mation tag” from [7] to mitigate the effect of an active adversary

by forcing it to access both a user’s signature key or oracle and the

current group key in order to impersonate that user. However, this

security mechanism is of no use against a full user’s compromise,

where the adversary accesses both the victim’s signature key or

oracle and its private state. [12] explicitly states that vulnerability

of MLS and consequently advises additional security measures to

protect a user’s signature key:

• compartmentalization between the signature key and other

secret elements, and protection of this key by a secure

enclave in the user’s device;

• rotation of the signature key, with credential revocation.

4.1.2 CGKA Security Game. We state below the definition of CGKA

security, issued from [21] and adapted to include the Propose &

Commit paradigm of TreeKEM and the quarantine from QTK.

Definition 4.1 (Asynchronous CGKA Security). The security for

CGKA is modelled using a game between a challenger C and an

adversary A. At the beginning of the game, the challenger creates

a group G with identities (𝑢1, · · · , 𝑢𝑛). The adversary A can then

make a sequence of the queries enumerated below, in any arbitrary

order
12
. At a high level, propose(·, add, ·) and propose(·, remove, ·)

allow the adversary to control the structure of the group, whereas

the query process allows it to control the message scheduling.

Moreover,the start-upd-quarantine and end-quarantine queries
allow the adversary to arbitrarily quarantine any group member,

while choosing the timing of this quarantine as well as the quaran-

tine initiator
13
.

12
Except for some natural constraints on the queries order, such as ending a corruption

or a quarantine after the start of the process, which are explicitly indicated.

13
These queries give the adversary more capabilities in the security game than in the

regular execution of QTK, where the starting and ending epochs of a quarantine are

determined by the inactive user’s behavior.

Chevalier et al.

(1) propose(𝑢𝑖 , 𝑎, [𝑢 𝑗]): user 𝑢𝑖 proposes to implement action

𝑎 ∈ A ⊇ {add, remove, update} regarding user 𝑢 𝑗 .
(2) commit(𝑢𝑐 , P): user𝑢𝑐 implements a list of proposals P that

it received after the previous commit query, and updates

accordingly its state 𝛾𝑐 and its filtered direct path.

(3) start-upd-quarantine(𝑢𝑐 , 𝑢𝑔): user 𝑢𝑐 initiates a quaran-
tine for user 𝑢𝑔 or updates 𝑢𝑔’s quarantine keys if the latter

is already quarantined. This query necessarily precedes

a commit(𝑢𝑐 , ·) query associated with user 𝑢𝑐 , where the

latter distributes the secret shares for 𝑢𝑔’s quarantine keys.

(4) end-quarantine(𝑢𝑐 , 𝑢𝑔): the quarantine of the ghost user
𝑢𝑔 ends. This query necessarily follows a

start-upd-quarantine(·, 𝑢𝑔, ·) request for that user and
precedes the queries below, during which 𝑢𝑔 updates its

state 𝛾𝑔 and recovers the shares of all its quarantine seeds:

• a propose(𝑢𝑔, update) query where the ghost’s key-

ing material is refreshed before the ghost receives the

shares of its quarantine keys;

• a commit(𝑢𝑐 , ·) query performed by user 𝑢𝑐 .

(5) process(𝑞,𝑢𝑖): if the query 𝑞 belongs to one of the previous

categories, this action forwards the Welcome (𝑊) or Com-

mit (𝐶) message to user 𝑢𝑖 which immediately processes

it.

(6) start-corrupt(𝑢𝑖): from now on the private state
𝑠𝛾𝑖 of 𝑢𝑖

is leaked to the adversary.

(7) end-corrupt(𝑢𝑖): ends the leakage of user 𝑢𝑖 ’s private state.
This query necessarily follows a start-corrupt request for
that user.

(8) challenge(𝑞∗): the adversary A picks a query 𝑞∗ corre-
sponding to an action 𝑎∗ ∈ { create-group, commit }. Let
𝑘0 denote the group key that is sampled during this opera-

tion and 𝑘1 be a fresh random key. The challenger tosses a

coin 𝑏 and – if the safe predicate below is satisfied – the key

𝑘𝑏 is given to the adversary (if the predicate is not satisfied

the adversary gets nothing).

At the end of the game, the adversary outputs a bit
ˆ𝑏 and wins if

ˆ𝑏 = 𝑏. We call a CGKA scheme (𝑄, 𝜖, 𝑡)-CGKA-secure if for any
adversary A making at most 𝑄 queries of the form propose, com-
mit, start-upd-quarantine and end-quarantine and running in

time 𝑡 , it holds:

Adv
CGKA (A) :=

��
Pr[1← A | 𝑏 = 0] − Pr[1← A | 𝑏 = 1]

�� ≤ 𝜖

Nota: As the group only evolves, in the security game, by queries

made by the adversary, we designate time points by the queries

associated with them. No adequation can be made between epochs

and queries in the Propose & Commit paradigm, since some of the

latter induce a change of epoch (commit, start-quarantine) and
the others do not.

4.2 Safe Predicate
The safe predicate defines the trivial situations where a challenge

group key cannot be protected from an adversary, in particular

when the adversary corrupts a user that possesses that challenge

group key. Therefore, these situations must be identified and ex-

cluded from the security game that defines the CGKA security.

4.2.1 Proper Critical Window. The first component of the safe

predicate is the “(proper) critical window” of a user 𝑢𝑖 , in the view

of a user 𝑢∗ at a time point represented by a query 𝑞∗. This concept
from [21], that we adapt below to fit a Propose & Commit CGKA,

defines the period during which a group key 𝑘∗ issued by 𝑢∗ at
time 𝑞∗ can possibly be leaked by 𝑢𝑖 if the latter is corrupted at that

time.

Definition 4.2 (Proper Critical Window). Let Π be a Propose &

Commit CGKA protocol as defined in Definition 2.3 and 𝐺∗ the
set of users after processing a query 𝑞∗ corresponding to an action

𝑎∗ ∈ {create-group, commit} of a user 𝑢∗ ∈ 𝐺∗, that ends up in

generating a new group key 𝑘∗.
Let S∗

𝑖
= {(𝑝𝑘∗

𝑖
, 𝑠𝑘∗

𝑖
), {(𝑝𝑘∗𝑣 , 𝑠𝑘∗𝑣)}𝑣∈P(𝑢𝑖) } be the set of encryp-

tion key-pairs associated with a user 𝑢𝑖 ∈ 𝐺∗ – possibly 𝑢∗ itself –
and the nodes in 𝑢𝑖 ’s filtered direct path, according to the view of

𝑢∗ at time 𝑞∗.
The proper critical window of 𝑢𝑖 in the view of 𝑢∗ at time 𝑞∗ is

the period of time between two bounds 𝑞− < 𝑞∗ and 𝑞+ > 𝑞∗ s.t.:
• 𝑞− is the query that starts to setS∗

𝑖
in𝑢𝑖 ’s state before 𝑞

∗
, in

the view of 𝑢∗. More precisely, this is the earliest commit
query, processed by 𝑢∗ and setting:

– either (𝑝𝑘∗
𝑖
, 𝑠𝑘∗

𝑖
) into 𝑢𝑖 ’s state, through an update

proposal;

– or part of {(𝑝𝑘∗𝑣 , 𝑠𝑘∗𝑣)}𝑣∈P(𝑢𝑖) into 𝑢𝑖 ’s filtered direct

path.

• 𝑞+ is the query that completely invalidates S∗
𝑖
in 𝑢𝑖 ’s state

after 𝑞∗, in the view of 𝑢∗. In other terms, it corresponds

to the latest commit processed by 𝑢∗, that refreshes the
remaining parts of 𝑢𝑖 ’s state with keys belonging to S∗

𝑖
.

Nota: This definition also applies to CGKAs outside the Propose

& Commit paradigm, by disregarding update proposals that only
refresh a leaf’s keying material. In this case, key rotation is only

realized by commits that update both users’ keying material and

the one of their filtered direct path.

TreeKEM Critical Window. Figure 5 illustrates the notion of criti-

cal window with a generic TreeKEM-based protocol. This window

is wrapped around the group key creation time and is bounded, in

the general case
14
, by:

• a lower bound 𝑞− : 𝑢𝑖 ’s last update before 𝑞∗.
• an upper bound 𝑞+: its first last update after 𝑞∗.

QTK Critical Windows. For the QTK protocol, we consider sepa-

rately the cases where the query𝑞∗ occurs before or during a ghost’s
quarantine. We also distinguish four types of users related to that

ghost, with different (proper) critical windows that are detailed in

Figure 8 in Appendix A:

• the ghost user itself;

• the quarantine updater: this is the committer who last

updated the ghost’s quarantine keys before the challenge

query 𝑞∗. If 𝑞∗ occurs before any quarantine update, the

quarantine updater is the quarantine initiator;

14
Specificities of CGKAs may slightly modify these bounds, like in Tainted TreeKEM

[21] where the critical window is not bounded by the update times but by the confir-

mation or rejection time of these updates.

Quarantined-TreeKEM

Figure 5: Critical window, for a TreeKEM-based CGKA, of a
user 𝑢𝑖 in the view of a user 𝑢∗ issuing a challenge group key
𝑘∗ at time 𝑞∗.

• the ghost’s shareholders: users who detain a share of the

ghost’s quarantine encryption key used at time 𝑞∗;

• the other active users. These group members are not share-

holders because they were not part of the group yet when

the ghost’s quarantine key was last updated before 𝑞∗.
Figure 6 compares the critical windows of QTK and TreeKEM.

The significant reduction, in QTK, of an inactive user’s proper crit-
ical window (in red) casts the light on the security improvement

brought by QTK protocol. Indeed, even if, with our protocol, a sin-

gle inactive user may still prevent the group from reaching forward

secrecy and post-compromise security, the period during which a

corruption of that inactive user jeopardizes a group key – which

is precisely what its critical window refers to – is greatly reduced.

The only other way for the adversary to leak the group key is to

corrupt a sufficient number of shareholders associated with that

ghost; this risk is evaluated by the concept of shared critical window
(cf. below).

Case 1: 𝑞∗ precedes the ghost’s quarantine. In that case, there

are no changes from the standard TreeKEM protocol. Active users

have a regular critical window around the challenge query 𝑞∗, as
in Figure 5.

A ghost’s critical window extends from its last key update be-

fore 𝑞∗ to the one following this query, which occurs at its reconnec-
tion time at the end of its quarantine; in this case, this long critical

window is similar to the one of an inactive user with TreeKEM. This

issue can be partially solved, both in TreeKEM and in QTK, by forc-

ing the messaging application of the inactive user to locally delete,

after some time, the secret elements stored in its local state
15
.

Case 2: 𝑞∗ occurs within the ghost’s quarantine. The critical win-
dows of the users related to the ghost 𝑢𝑔 are defined as follows:

• Ghost user: the only critical window of a ghost starts at

its reconnection after a quarantine (query 𝑞
𝑔ℎ𝑜𝑠𝑡
𝑟𝑒𝑐), when it

recovers all the shares associated with its encryption key

used at time 𝑞∗. This window closes at the former ghost’s

following update (𝑞
𝑔ℎ𝑜𝑠𝑡

𝑢𝑝𝑑−𝑎𝑓 𝑡𝑒𝑟−𝑟𝑒𝑐), which overwrites the

sensitive former ghost’s local state. As the share recovery

may last for several epochs, depending on the activity sta-

tus of the shareholders during this reconnection stage, the

window size may vary between one and several epochs.

However, if a ghost never reconnects until its reaches its

quarantine maximum period 𝛿𝑞𝑢𝑎𝑟 and is removed from

the group, the aforementioned critical window does not

exist.

15
This operation does not require the inactive user to log in, but its messaging appli-

cation must at least run in the background, which cannot be imposed to all inactive

users.

• Shareholders: beside their proper critical window that

steams from their status of active user, these users have a

“shared critical window” defined and detailed below.

• Quarantine updater: its critical window only lasts during

the preparation of the commit that is joinedwith the quaran-

tine key update (from time 𝑞
𝑢𝑝𝑑𝑎𝑡𝑒𝑟

𝑞𝑢𝑎𝑟−𝑢𝑝𝑑 to

𝑞
𝑢𝑝𝑑𝑎𝑡𝑒𝑟

𝑐𝑜𝑚𝑚𝑖𝑡−𝑎𝑓 𝑡𝑒𝑟−𝑞𝑢𝑎𝑟−𝑢𝑝𝑑). Once the commitmessage is sent,

the quarantine updater deletes all sensitive information

from its state.

• Active users: non-shareholder active users at time 𝑞∗ have
a critical window similar to any TreeKEM-based CGKA pro-

tocol, centered around𝑞∗ and bounded by the prop-update
queries preceding and following that time point. These ac-

tive users may include the quarantine updater related to 𝑞∗

as well as most of the shareholders
16
.

Nota: To improve the security of QTK regarding the quaran-

tine updater, we present in Appendix B an enhancement called

“jointly-implemented quarantine”, where the ghost’s quarantine

keys are commonly generated by several users that only have a

partial knowledge of these sensitive data. Consequently, the proper

window of a single quarantine updater is replaced by several shared

windows, much more secure.

4.2.2 Shared Critical Window. In the context of QTK protocol,

which is associated to a secret sharing scheme which protects the

secret information by splitting it into shares, the notion of proper

critical window appears insufficient to implement the safe predicate.

We therefore define hereunder the concept of “shared critical win-

dow”, that represents the period during which a user (shareholder)

possesses shares of a secret information that can compromise the

group key 𝑘∗. Hence, the security cannot be evaluated anymore

with the safety of a single user; instead we must determine whether

a sufficient number of shareholders associated with the same secret

have remained uncorrupted as long as they held these shares.

Definition 4.3 (Shared Critical Window). Let Π be the QTK proto-

col associated with a (𝑡,𝑚)-perfect secret sharing scheme, 𝐺∗ the
set of users after processing a query 𝑞∗ corresponding to an action

𝑎∗ ∈ {create-group, commit} of a user 𝑢∗ ∈ 𝐺∗, that ends up in

generating a new group key 𝑘∗.
The shared critical window of a shareholder 𝑢𝑠 ∈ 𝐺∗ (possibly

𝑢∗ itself) related to a ghost user 𝑢𝑔 in the view of 𝑢∗ at time 𝑞∗, is
the period of time during which 𝑢𝑠 holds a share of a quarantine

secret key that leads to the challenge group key 𝑘∗.
Consequently, the corruption of at least 𝑡 shareholders (from

different shareholder families w.r.t that share collection) related to

a ghost 𝑢𝑔 results in the compromise of the group key 𝑘∗ generated
by 𝑢∗ at time 𝑞∗.

In the case of our QTK protocol, a shareholder of a ghost 𝑢𝑔
has a shared critical window that:

• starts at the commit associated with 𝑢𝑔’s last quarantine

key update before 𝑞∗: 𝑞𝑢𝑝𝑑𝑎𝑡𝑒𝑟
𝑐𝑜𝑚𝑚𝑖𝑡−𝑎𝑓 𝑡𝑒𝑟−𝑞𝑢𝑎𝑟−𝑢𝑝𝑑 ;

16
Indeed, some shareholders associated with a ghost, and even its quarantine initiator

or updater(s), may have become inactive at the time of a subsequent challenge request.

Chevalier et al.

Figure 6: Compared critical windows, between TreeKEM and
QTK, for the different types of users in a group, in the view
of user 𝑢∗ issuing a group key 𝑘∗ at time 𝑞∗. The crosshatched
brown box represents a shared critical window (cf. Defini-
tion 4.3), more secure than a proper one.

• ends at the shareholder’s update following 𝑢𝑔’s quarantine

end: 𝑞𝑠ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟
𝑢𝑝𝑑−𝑎𝑓 𝑡𝑒𝑟−𝑟𝑒𝑐 .

4.2.3 Safe Group Key. We adapt for the QTK protocol the safe

predicate concept from [21], that states the conditions needed for a

group key to be safe, by including in these conditions the shared

security implied by the above-mentioned shared critical window.

Definition 4.4 (Safe Predicate with a Shared Critical Window). Let
Π be a QTK protocol associated with a (𝑡,𝑚)-perfect secret sharing
scheme. Let 𝑘∗ be a group key generated in an action 𝑎∗ ∈ {create-
group, commit} at time 𝑞∗ ∈

q
𝑞1, 𝑞𝑄

y
and let 𝐺∗ be the set of

users ending up in the group after processing query 𝑞∗, as viewed
by the generating user 𝑢∗.

Moreover, let us consider an arbitrary number of ghost users

(𝑢𝑔 ∈ G∗) quarantined at time 𝑞∗, with their associated sharehold-

ers.

Then the challenge group key 𝑘∗ is considered safe if the follow-

ing two statements are fulfilled:

• No user from the group (including 𝑢∗ itself) has been cor-

rupted in its proper critical window at time 𝑞∗ in the view

of 𝑢∗;

• For each ghost 𝑢𝑔𝑖 quarantined at time 𝑞∗, strictly less than

𝑡 of its shareholders from different shareholder families, i.e.

with different shares, have been corrupted in their shared
critical windows at time 𝑞∗ in the view of 𝑢∗.

4.3 CGKA Security Proof for QTK
4.3.1 Overview. The security proof of our protocol relies on the

one from Tainted TreeKEM in [21]. This work defines the safe

predicate and the challenge graph (cf. below) associated with their

protocol and proves in a lemma – similar to our Lemma 4.5 beneath

– that the respect of the safe predicate implies no leakage of any

secret element from that challenge graph. Finally, it uses the concept

of “Generalized Selective Decryption” (GSD), adapted from [19],

to turn the selective CGKA security of Tainted TreeKEM into an

adaptive security in the Random Oracle Model.

As stated in [21], the part of that proof which uses GSD can be

generalized to other CGKAs, such as TreeKEM or QTK, since the

demonstration does not depend on the structure of the protocol’s

CGKA graph but only on its maximum number of nodes.

Consequently, our security proof for QTK consists in determin-

ing the safe predicate (already done in Section 4.2) and the challenge

graph corresponding to our protocol, and proving in Lemma 4.5

that no secret information from that challenge graph can lead to

the leakage of the challenge group key. These stages are sufficient

to prove the CGKA security of our protocol.

4.3.2 CGKA and Challenge Graphs. We must firstly define the

CGKA graph, adapted from [21], which represents the evolution

of the CGKA’s Ratchet Tree throughout the security experiment.

This graph is therefore the juxtaposition of different generations

of nodes from the Ratchet Tree, partially superposed when some

nodes remain unchanged from one epoch – i.e. one query in the

security experiment – to another. The edges of the CGKA graph are

either the derivations of the nodes’ secret seeds or the public-key

encryption of these seeds.

The challenge graph related to a challenge group key 𝑘∗, also
issued from [21], is the sub-graph of the CGKA graph composed

of all nodes – internal or leaves – that contain secret information

permitting to recover that challenge group key.

With a standard CGKA such as TreeKEM, the challenge graph

for a group in a consistent state
17

(at the time of the challenge

query 𝑞∗) simply consists in the Ratchet Tree at time 𝑞∗. When

the group view is in inconsistent state, the challenge graph is the

Ratchet Tree at time 𝑞∗ in the view of committer 𝑢∗𝑐 which generated

the challenge group key (cf. [21]).

The challenge graph for QTK, detailed in Figure 7, differs from

that of TreeKEM by:

• the addition of two nodes, corresponding to the quarantine

updater and to the reconnecting ghost;

• the particular case of the “challenge ghost node”, which

corresponds to the last updated ghost’s quarantine keys

before 𝑞∗. This node cannot be corrupted directly by the

adversary in the CGKA security experiment. Instead, its

corruption occurs if a sufficient number of its associated

shareholders are themselves corrupted.

To illustrate the latter point, we define another sub-graph of the

CGKA graph called the “Quarantine Graph”, related to a challenge

group key 𝑘∗. That graph comprises all the nodes from the CGKA

graph that record a share related to the challenge ghost node.

Lemma 4.5. For any safe challenge group key in QTK, i.e. for
which the safe predicate is respected, it holds that none of the seeds
and secret keys in the challenge graph are leaked to the adversary via
user corruptions.

Proof. We proceed with a proof by contradiction, by showing –

with a separate analysis for each user type – that the leakage of the

challenge key, resulting from the leakage of a secret element from

17
Consistency means that all users in the group have the same view of the Ratchet

Tree at a precise moment.

Quarantined-TreeKEM

Figure 7: CGKA, challenge and quarantine graphs for QTK
protocol.

its challenge graph, implies the violation of the safe predicate for

the concerned user.

The case of active users from the challenge graph and internal

nodes ancestors of these active users is similar to that of TreeKEM:

as the critical window of these users for the challenge group key

𝑘∗ is centered on the challenge query 𝑞∗ and bounded by these

users’ key updates – which refresh the leaves and blank their paths

–, a secret key or seed that may lead to the challenge group key

is recorded in these users’ private states only during their critical

window. Consequently, a leakage of such sensitive elements can be

generated only by corrupting one of these users during its critical

window, which is possible only by contradicting the safe predicate.

Similarly, a ghost user only records secret elements associated

with the challenge group key at its reconnection time, which also

corresponds to its critical window. This is also the case for the

quarantine updater, which has knowledge of the ghost’s secret key

associated with the challenge group key only when creating the

commit in which the shares are sent, which also corresponds to its

critical window.

A specific feature of QTK is the case of the share-holding nodes.

Regarding the shareholders (i.e. the share-holding leaves), their

shared critical window extends from the moment they receive the

shares to their (leaf) update following the ghost reconnection –

where they delete these shares. A leakage of the challenge group key

would imply to corrupt a sufficient number of them (with respect to

the secret sharing recovery threshold) during their shared critical

window, which is also a violation of the safe predicate.

As a leaf update is always associated with the blanking of the

leaf’s direct path, the shareholders’ update that constitutes the

upper bound of their critical window deletes in their internal state

the private keys and seeds of the share-holding internal nodes above

them. Consequently, the sensitive elements in these internal nodes

cannot be reached by the adversary unless by corrupting one of

their descendant shareholders during its critical window, which

also contradicts the safe predicate.

Theorem 4.6 (QTK CGKA Security). If the encryption scheme in
QTK is (𝜖, 𝑡)-IND-CPA-secure and if the cryptographic hash functions
used to derive the seeds are modelled as random oracles, then this
CGKA is (𝑄, 𝜖, 𝑡)-CGKA-secure, with 𝑄 the number of queries in the
security game, 𝑛 the number of users in the group and 𝜖 = 𝜖 ·8(𝑛𝑄)2+
𝑛𝑒𝑔𝑙 .

Proof. The proof of this theorem is straightly issued from Theo-

rem 3 and Theorem 4 from [21], which are used to prove the CGKA

security of Tainted TreeKEM but are also applicable to other CGKAs

such as TreeKEM and QTK. An overview of the proof for Tainted

TreeKEM [21] is detailed in Appendix A.3.

The security bound 𝜖 of QTK originates from the equation of

Theorem 3 which gives 𝜖 = 2𝑁 2𝜖 + 𝑚𝑁
2
ℓ−1 = 2𝑁 2𝜖 + 𝑛𝑒𝑔𝑙 , with 𝑁

the number of nodes in the CGKA graph,𝑚 the number of oracle

queries to the random oracle and ℓ the length of the secret seeds in

the CGKA graph.

For𝑄 queries in the CGKA security experiment, the CGKA graph

has a size bounded as 𝑁 < 2𝑛𝑄 (since the Ratchet Tree for 𝑛

users has at most 2𝑛 − 1 nodes and the CGKA in the worst case is

the juxtaposition of 𝑄 separate Ratchet Trees). This upper bound

determines the security factor 𝜖 = 𝜖 · 8(𝑛𝑄)2 + 𝑛𝑒𝑔𝑙 given above.

5 PERFORMANCES
We study here the communication cost per user induced by a single

ghost’s quarantine, in the broadcast-only and the server-aided set-

tings. This cost is measured as the size of the exchanged messages,

counted once between the sender and the Delivery Service, and

either 𝑛 − 1 times (in case of a broadcasted message) or once (in

case of a message sent individually to its recipient) between the

Delivery Service and the other users, the total being finally divided

by the number 𝑛 of users.

5.1 Broadcast-Only Regular Quarantine
5.1.1 Initialization and Updates. A ghost 𝑢𝑔 quarantined for a pe-

riod 𝑡𝑞𝑢𝑎𝑟 ≤ 𝛿𝑞𝑢𝑎𝑟 uses a number of quarantine encryption keys

defined as: 𝑛𝑞𝑘𝑒𝑦 :=

⌈
𝑡𝑞𝑢𝑎𝑟

𝛿𝑞𝑢𝑎𝑟−𝑢𝑝𝑑

⌉
.

We recall that each quarantine initialization or update is asso-

ciated with a commit. The additional information, related to the

quarantine, in a commit message sent at epoch 𝑒𝑖 , is:

• the ghost’s leaf index ℓ𝑔 ;

• the ghost’s fresh quarantine public key 𝑝𝑘𝑖+1𝑔 ;

• the encrypted shares for the quarantine secret seed 𝑠𝑖+1𝑔 .

We consider here the most-likely case where an ideal secret
sharing scheme (cf. Section 2.2) is used in QTK. In this case, each

one of the𝑚 shares has a size equal to the seed from which they

originate. Therefore, ∀𝑗 ∈ J0,𝑚 − 1K ,
���[𝑠𝑖+1𝑔] 𝑗

��� = ���𝑠𝑖+1𝑔

��� = |𝑠 |.
The number of shares to distribute depends on the number 𝑛 of

users, on the tree structure and on the share distribution method.

Furthermore, the size of an encrypted share differs according to the

share distribution method:

• With the default share distribution method, each share

is joined to a path secret already encrypted by HPKE [10].

Consequently, it is not necessary neither to encapsulate

once again a symmetric key via a KEM, nor to provide

another authenticity tag (related to the AEAD encryption

schem), and the encryption cost of the share is thus linear

with its size: ∀𝑖 ∈ J0,𝑚 − 1K ,
���𝐸𝑛𝑐ℎ𝑝𝑘𝑒 ([𝑠]𝑖)��� = |𝑠 |.

• With thehorizontal share distributionmethod, all shares
are encrypted separately. Therefore, the communication

cost of the HPKE encryption of a single share is:

Chevalier et al.

∀𝑖 ∈ J0,𝑚 − 1K ,
���𝐸𝑛𝑐ℎ𝑝𝑘𝑒 ([𝑠]𝑖)��� = |𝑐𝑡 | + |𝑠 | + |𝑡𝑎𝑔|, with 𝑐𝑡

the ciphertext output by the KEM used within the HPKE ci-

phersuite and 𝑡𝑎𝑔 the authenticity tag yielded by the AEAD

encryption scheme.

Consequently, we have an initialization and update cost bounded

as follows:

𝑐𝑐𝑏𝑑𝑐𝑡
𝑖𝑛𝑖𝑡−𝑢𝑝𝑑 ∈

[
𝑛𝑞𝑘𝑒𝑦

(
|𝑝𝑘 | + |𝑖𝑛𝑡 | +𝑚 |𝑠 |

)
,

𝑛𝑞𝑘𝑒𝑦
(
|𝑝𝑘 | + |𝑖𝑛𝑡 | +𝑚(|𝑐𝑡 | + |𝑠 | + |𝑡𝑎𝑔 | + |𝑖𝑛𝑡 |)

)]
5.1.2 Quarantine End. As stated in Section 3.5, the reconnecting

ghost broadcasts a “Quarantine End” proposal and – in the worst

case – a number 𝜌 of “Share Resend” proposals. In return, its asso-

ciated shareholders forward it the shares of its quarantine keys.

Quarantine End Proposal. This message is based on an Update

proposal and has a size equal to the latter: |𝑞𝑢𝑎𝑟 − 𝑒𝑛𝑑 | = |𝑢𝑝𝑑 | =
|𝑠𝑖𝑔 | + |𝑝𝑘 | + |𝑠𝑝𝑘 | + |𝑐𝑟𝑒𝑑 | with “spk” and “cred” the former ghost’s

public signature key and associated credentials.

“Share Resend” Queries. These messages only comprise the cre-

ation epochs and the indices of the 𝑛𝑚𝑖𝑠𝑠𝑖𝑛𝑔 missing shares at that

time, encrypted under the current group key. Let us note |𝑖𝑛𝑡 | the
size of an integer used to represent an epoch or a leaf index and

let us consider a 𝑖𝑡ℎ “Share Resend” query (𝑖 ∈
r
1, 𝑛𝑚𝑎𝑥

𝑟𝑒𝑠𝑒𝑛𝑑

z
) with

𝑛𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑖
missing shares:

|𝑟𝑒𝑠𝑒𝑛𝑑𝑖 | = |𝑠𝑖𝑔| + 2𝑛𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑖 |𝑖𝑛𝑡 | ≤ |𝑠𝑖𝑔| + 2𝑛𝑚𝑖𝑠𝑠𝑖𝑛𝑔0 |𝑖𝑛𝑡 |
≤ |𝑠𝑖𝑔 | + 2𝑛𝑞𝑘𝑒𝑦𝑡 |𝑖𝑛𝑡 |

Consequently, the communication cost of 𝜌 “Share Resend” mes-

sages is bounded by: 𝑐𝑐𝑟𝑒𝑠𝑒𝑛𝑑 ≤ 𝜌
(
|𝑠𝑖𝑔| + 2𝑛𝑞𝑘𝑒𝑦𝑡 |𝑖𝑛𝑡 |

)
.

Share Recovery Messages. In response to its Quarantine End pro-

posal or its 𝑖𝑡ℎ Resend query, the reconnecting ghost receives from

the shareholders a number 𝑛𝑠ℎ𝑚𝑠𝑔𝑖 ≤ 𝑚 of initial Share Recovery

Messages for each of its 𝑛𝑞𝑘𝑒𝑦 quarantine keys.

This number depends on the number of active users within the

group at epoch 𝑒𝑟𝑒𝑐 . If 𝑛𝑠ℎ𝑚𝑠𝑔0 ∈ J𝑡,𝑚K, the former ghost does

not need to receive additional shares (𝜌 = 0). On the contrary, if

𝑛𝑠ℎ𝑚𝑠𝑔0 < 𝑡 , a number 𝜌 ∈
r
1, 𝑛𝑚𝑎𝑥

𝑟𝑒𝑠𝑒𝑛𝑑

z
of “Share Resend” queries

appears necessary.

The best case appears when a number 𝑡 of shareholders send

all the 𝑛𝑞𝑘𝑒𝑦 generations of shares to the reconnecting ghost. The

worst case, on the other hand, occurs when𝑚 shareholders send a

Share Recovery Message with only one share inside, which implies

in total 𝑛𝑞𝑘𝑒𝑦 .𝑚 distinct messages.

Reconnection Communication Cost. Consequently, the communi-

cation cost induced by the a quarantine end is bounded as follows:

𝑐𝑐𝑏𝑑𝑐𝑡
𝑒𝑛𝑑
∈
[
|𝑢𝑝𝑑 | + 𝑡

(
|𝑠𝑖𝑔 | + |𝑐𝑡 | + |𝑡𝑎𝑔 | + 𝑛𝑞𝑘𝑒𝑦 (|𝑠 | + 2 |𝑖𝑛𝑡 |)

)
,

|𝑢𝑝𝑑 | + 𝑛𝑚𝑎𝑥
𝑟𝑒𝑠𝑒𝑛𝑑

(
|𝑠𝑖𝑔| + 2𝑛𝑞𝑘𝑒𝑦𝑡 |𝑖𝑛𝑡 |

)
+𝑚𝑛𝑞𝑘𝑒𝑦

(
|𝑠𝑖𝑔 | + |𝑐𝑡 | + |𝑠 | + |𝑡𝑎𝑔 | + 2 |𝑖𝑛𝑡 |

)]
5.2 Server-Aided Regular Quarantine
5.2.1 Initialization and Updates. As only the horizontal share dis-

tribution method is used in this paradigm, the communication cost

of a quarantine initialization and updates is:

𝑐𝑐𝑠−𝑎
𝑖𝑛𝑖𝑡−𝑢𝑝𝑑 = 𝑛𝑞𝑘𝑒𝑦

(
|𝑝𝑘 | + |𝑖𝑛𝑡 | +(

1 + 𝑚−1
𝑛

) (
|𝑠𝑖𝑔| + |𝑐𝑡 | + |𝑠 | + |𝑡𝑎𝑔| + |𝑖𝑛𝑡 |

))
5.2.2 Quarantine End. Similarly to the broadcast-only setting, the

range of values depends on the shareholders’ responsiveness to

the reconnecting ghost’s Quarantine End proposal and on the way

these shareholders group the shares inside the Share Recovery

Messages.

𝑐𝑐𝑠−𝑎
𝑒𝑛𝑑
∈
[
|𝑢𝑝𝑑 | + 2

𝑛 𝑡
(
|𝑠𝑖𝑔 | + |𝑐𝑡 | + |𝑡𝑎𝑔| + |𝑖𝑛𝑡 | + 𝑛𝑞𝑘𝑒𝑦 (|𝑠 |

+ 2 |𝑖𝑛𝑡 |)
)
, |𝑢𝑝𝑑 | + 𝑛𝑚𝑎𝑥

𝑟𝑒𝑠𝑒𝑛𝑑

(
|𝑠𝑖𝑔| + 2𝑛𝑞𝑘𝑒𝑦𝑡 |𝑖𝑛𝑡 |

)
+ 2

𝑛𝑚𝑛𝑞𝑘𝑒𝑦
(
|𝑠𝑖𝑔 | + |𝑐𝑡 | + |𝑠 | + |𝑡𝑎𝑔| + 3 |𝑖𝑛𝑡 |

)]
5.3 Practical Efficiency
To give a broad idea of the communication cost induced by a ghost’s

quarantine, Table 1 details its communication cost under several

settings. The factors influencing this communication cost can be

sorted as follows:

• the algorithms used to ensure the HPKE and digital signa-

ture functionalities;

• the features of the user group (number of users and struc-

ture of the Ratchet Tree), issued from the group history;

• the quarantine parameters (maximum duration of a quar-

antine, frequency of quarantine key update, secret sharing

scheme recovery threshold...);

• some encoding settings (integer encoding).
In our instance, we consider two main paradigms that influence

the choice of algorithms: the classical framework, where our

protocol only implements pre-quantum encryption and signature

algorithms, and the post-quantum framework which uses post-

quantum encryption but keeps a classical signature primitive.

5.3.1 Parameter Choice.

Encryption and Signature Primitives. In the classical framework,

the encryption is carried out by the HPKE paradigm [10], with

an ECDH-KEM such as X25519 [11] to ensure the key transport

functionality and a symmetric encryption scheme like AES-256 for

the data encryption. In the post-quantum framework, the Data En-

capsulation Mechanism (DEM) remains unchanged but the classical

KEM is replaced by a post-quantum one. We choose to instantiate

Crystals Kyber [15], standardized by the NIST as ML-KEM, as our

post-quantum KEM.

In both frameworks, ECDSA [22] with an elliptic curve on a

256-bit prime field is selected as the digital signature algorithm
18
.

Quarantine Parameters. Given a key renewal period 𝛿𝑢𝑝𝑑 for ac-

tive users, we study the case of short, medium and long quarantines

of respective durations 𝑡𝑞𝑢𝑎𝑟𝑠 = 7.𝛿𝑢𝑝𝑑 , 𝑡𝑞𝑢𝑎𝑟𝑚 = 14.𝛿𝑢𝑝𝑑 , 𝑡𝑞𝑢𝑎𝑟ℓ =

28.𝛿𝑢𝑝𝑑 , with a quarantine key renewal period of 𝛿𝑞𝑢𝑎𝑟−𝑢𝑝𝑑 =

2.𝛿𝑢𝑝𝑑 .

18
We choose not to adopt post-quantum signatures in our PQ framework, as we

consider that it remains difficult to instantly forge a classical signature, even for a

quantum adversary.

Quarantined-TreeKEM

The original parameter 𝛿𝑢𝑝𝑑 is itself likely to vary greatly de-

pending on the settings of the applications using the CGKAprotocol.

However, if we take for instance a daily key renewal, our settings

correspond to a quarantine key refreshment every couple of days

and quarantines that last one, two and four weeks, which seems

consistent with realistic use cases of these quarantines.

As for the secret sharing parameters, the number of emitted

shares is computed as𝑚 = ⌈log(𝑛)⌉ + 1, which corresponds to the

number of shares needed by the default share distribution within a

well structured binary tree, knowing that even with an horizontal

share distribution, the number of emitted shares is roughly the

same. The recovery threshold is chosen as 𝑡 =
⌈
𝑚
2

⌉
, in order to have

a good trade-off between security and efficiency.

Group Parameters. We consider groups of various sizes, up to

2
16 = 65, 536 users, as the MLS protocol specifications indicate

the need to scale up to this order of magnitude. We point out

that the number of users has various – and potentially opposite –

consequences on a quarantine communication cost in the broadcast-
only setting:

• Regarding the initialization and update cost, the larger
the group, the higher the number of shares that have to

be distributed within the group. However, as this number

grows logarithmically with the number of users (for a per-

fect binary tree), the consequences on the communication

cost are quite negligible.

On the other side, large groups ensure that the default share
distribution method, far more efficient than the horizontal
one, can be implemented. With that default method, the

communication cost reaches the “best case” of the commu-

nication cost range provided in Table 1 (i.e. the smallest

value within that range).

• The quarantine end cost is more subtle: a high number

of users makes it unlikely that additional Share Recovery

Messages need to be requested.

However, it is also unlikely that shareholders keep sever-

als shares for the ghost with the same shareholder rank
19
.

Consequently, it increases the number of separate Share

Recovery Messages, which – especially due to the partic-

ularly important post-quantum encryption cost – impacts

all the more the communication cost.

The second factor being prominent over the first one, large

groups tend to have a quarantine end communication cost

close to the worst case (i.e. the highest value) of the range

displayed in Table 1.

We compare this communication cost with the one of a user

remained active at the same period and who updates its keying

material (by sending Update proposals of size |𝑢𝑝𝑑 |) with a renewal

period of 𝛿𝑢𝑝𝑑 .

Table 1 and Table 2 detail the practical overhead per user of a
quarantine, respectively in the classical and post-quantum frame-

work, with the above-chosen parameters.

19
Indeed, the bigger the group, the more unlikely it is that a given user keeps the same

relative position (i.e. shareholder rank) w.r.t. different quarantine updaters chosen at

random among all users.

Table 1: Practical communication cost per user of a ghost’s
quarantine in the classical framework. The “broadcast-only
average” column represents the most-likely case.

Quar. Group Quarantine Communication Cost per User (kB)

Length Size Broadcast-Only Server-Aided Active

Best AverageWorst Best Worst User

7.𝛿𝑢𝑝𝑑

8 1.65 – 2.45 – 4.39 1.37 – 2.11

1.67128 2.68 – 6.57 – 8.17 1.01 – 1.50

65,536 4.85 – 13.24 – 16.64 0.96 – 1.58

14.𝛿𝑢𝑝𝑑

8 2.46 – 3.86 – 7.36 2.16 – 3.38

3.33128 4.09 – 11.17 – 13.97 1,58 – 2.30

65,536 7.56 – 22.84 – 28.79 1.50 – 2.45

28.𝛿𝑢𝑝𝑑

8 4.35 – 7.15 – 14.29 3.99 – 6.32

6.66128 7.38 – 21.91 – 27.51 2.92 – 4.16

65,536 13.87 – 45.26 – 57.16 2.76 – 4.46

As expected, that PQ cost largely exceeds the one in the classi-

cal framework (cf. Table 1). However, even in the worst case, the

overhead of around 500 kB does not sound unrealistic given the

important communication cost that a CGKA already has.

Table 2: Practical communication cost per user, in kilobytes,
induced by a ghost’s quarantine in the post-quantum frame-
work.

Quar. Group Quarantine Communication Cost per User (kB)

Length Size Broadcast-Only Server-Aided Active

Best AverageWorst Best Worst User

7.𝛿𝑢𝑝𝑑

8 10.6 – 28.3 – 43.9 13.7 – 17.9

9.7128 13.7 – 46.1 – 81.5 11.3 – 12.2

65,536 20.1 – 90.8 – 166.0 10.9 – 11.6

14.𝛿𝑢𝑝𝑑

8 14.8 – 45.8 – 75.7 22.3 – 30.1

19.5128 18.6 – 79.5 – 141.5 18.7 – 20.2

65,536 26.3 – 157.7 – 289.3 18.1 – 19.1

28.𝛿𝑢𝑝𝑑

8 24.8 – 86.7 – 149.8 42.4 – 58.7

38.9128 29.9 – 157.5 – 281.3 35.9 – 38.9

65,536 40.7 – 313.9 – 577.1 34.8 – 36.5

Chevalier et al.

REFERENCES
[1] 2023. WhatsApp Encryption Overview. Technical White Paper. WhatsApp Inc.

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[2] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo

Pascual-Perez, and Krzysztof Pietrzak. 2022. DeCAF: Decentralizable Continuous

Group Key Agreement with Fast Healing. Cryptology ePrint Archive, Report

2022/559. https://eprint.iacr.org/2022/559.

[3] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo

Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. 2022. CoCoA: Concur-

rent Continuous Group Key Agreement. In EUROCRYPT 2022, Part II (LNCS,
Vol. 13276), Orr Dunkelman and Stefan Dziembowski (Eds.). Springer, Heidelberg,

815–844. https://doi.org/10.1007/978-3-031-07085-3_28

[4] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2020.

Security Analysis and Improvements for the IETF MLS Standard for Group

Messaging. In CRYPTO 2020, Part I (LNCS, Vol. 12170), Daniele Micciancio and

Thomas Ristenpart (Eds.). Springer, Heidelberg, 248–277. https://doi.org/10.

1007/978-3-030-56784-2_9

[5] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2021.

Modular Design of Secure Group Messaging Protocols and the Security of MLS.

Cryptology ePrint Archive, Report 2021/1083. https://eprint.iacr.org/2021/1083.

[6] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. 2022. Server-

Aided Continuous Group Key Agreement. In ACM CCS 2022, Heng Yin, Angelos

Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press, 69–82. https://doi.org/

10.1145/3548606.3560632

[7] Joël Alwen, Daniel Jost, and Marta Mularczyk. 2022. On the Insider Security of

MLS. In CRYPTO 2022, Part II (LNCS, Vol. 13508), Yevgeniy Dodis and Thomas

Shrimpton (Eds.). Springer, Heidelberg, 34–68. https://doi.org/10.1007/978-3-

031-15979-4_2

[8] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-

Gordon, and Raphael Robert. 2019. The Messaging Layer Security (MLS) Protocol.
Internet-Draft draft-ietf-mls-protocol-08. Internet Engineering Task Force. https:

//datatracker.ietf.org/doc/draft-ietf-mls-protocol/08/ Work in Progress.

[9] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad

Omara, and Katriel Cohn-Gordon. 2023. The Messaging Layer Security (MLS)

Protocol. RFC 9420. https://doi.org/10.17487/RFC9420

[10] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.

Wood. 2022. Hybrid Public Key Encryption. RFC 9180. https://doi.org/10.17487/

RFC9180

[11] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

PKC 2006 (LNCS, Vol. 3958), Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal

Malkin (Eds.). Springer, Heidelberg, 207–228. https://doi.org/10.1007/11745853_

14

[12] Benjamin Beurdouche, Eric Rescorla, Emad Omara, Srinivas Inguva, and Alan

Duric. 2024. TheMessaging Layer Security (MLS) Architecture. Internet-Draft draft-
ietf-mls-architecture-13. Internet Engineering Task Force. https://datatracker.

ietf.org/doc/draft-ietf-mls-architecture/13/ Work in Progress.

[13] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. 2018. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic Groups A pro-
tocol proposal for Messaging Layer Security (MLS). Research Report. Inria Paris.

https://inria.hal.science/hal-02425247

[14] Dan Boneh and Victor Shoup. 2023. A Graduate Course in Applied Cryptography.
http://toc.cryptobook.us/

[15] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, JohnM.

Schanck, Peter Schwabe, and Damien Stehlé. 2017. CRYSTALS – Kyber: a CCA-

secure module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634.

https://eprint.iacr.org/2017/634.

[16] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.

2018. On Ends-to-Ends Encryption: Asynchronous GroupMessaging with Strong

Security Guarantees. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael

Backes, and XiaoFeng Wang (Eds.). ACM Press, 1802–1819. https://doi.org/10.

1145/3243734.3243747

[17] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. 2021. MLS Group

Messaging: How Zero-Knowledge Can Secure Updates. In ESORICS 2021, Part II
(LNCS, Vol. 12973), Elisa Bertino, Haya Shulman, and Michael Waidner (Eds.).

Springer, Heidelberg, 587–607. https://doi.org/10.1007/978-3-030-88428-4_29

[18] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest,

and Bas Westerbaan. 2021. A Concrete Treatment of Efficient Continuous Group

Key Agreement via Multi-Recipient PKEs. In ACM CCS 2021, Giovanni Vigna
and Elaine Shi (Eds.). ACM Press, 1441–1462. https://doi.org/10.1145/3460120.

3484817

[19] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof

Pietrzak, and Daniel Wichs. 2017. Be Adaptive, Avoid Overcommitting. In

CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.).

Springer, Heidelberg, 133–163. https://doi.org/10.1007/978-3-319-63688-7_5

[20] Daniel Jost, Ueli Maurer, and Marta Mularczyk. 2019. Efficient Ratcheting:

Almost-Optimal Guarantees for Secure Messaging. In EUROCRYPT 2019, Part I
(LNCS, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.). Springer, Heidelberg,

159–188. https://doi.org/10.1007/978-3-030-17653-2_6

[21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Mar-

garita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and

Krzysztof Pietrzak. 2021. Keep the Dirt: Tainted TreeKEM, Adaptively and

Actively Secure Continuous Group Key Agreement. In 2021 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, 268–284. https://doi.org/10.

1109/SP40001.2021.00035

[22] National Institute of Standards and Technology. 2023. Digital Signature Standard.

FIPS 186-5. https://doi.org/10.6028

[23] Saurabh Panjwani. 2007. Tackling Adaptive Corruptions in Multicast Encryp-

tion Protocols. In TCC 2007 (LNCS, Vol. 4392), Salil P. Vadhan (Ed.). Springer,

Heidelberg, 21–40. https://doi.org/10.1007/978-3-540-70936-7_2

[24] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.

http://dblp.uni-trier.de/db/journals/cacm/cacm22.html#Shamir79

[25] MatthewWeidner. 2019. Groupmessaging for secure asynchronous collaboration.

(2019). https://mattweidner.com/acs-dissertation.pdf

A ADDITIONAL SECURITY CONSIDERATIONS
A.1 Considerations on a Fully Active Adversary
As aforementioned, and accordingly to the security model of MLS

standard and other works – among which [21] –, the formal secu-

rity analysis of this paper deals with a partially active adversary

unable to impersonate any user, even in case of corruption. In that

framework, all user messages are thus considered legitimate.

We may wonder what would be the main security issues with

QTK, in case of a fully active attacker, that would not occur with

TreeKEM. To do so, we consider separately the cases of a share-

holder or a quarantine initiator/updater impersonation, that only

impact the availability of the protocol but not its security, and the

impersonation of a ghost, that lowers QTK’s security
20
.

A.1.1 Shareholder Impersonation. The only action that the proto-

col requires shareholders to carry out is to send to a reconnecting

ghost the shares that correspond to its quarantine keys. An im-

personated shareholder would therefore either voluntarily retain

the shares that it was supposed to transmit, send invalid shares

or even send wrong shares with bad indices
21
, in order to addi-

tionally collide with legitimate shares sent by other shareholders.

However, all these attacks only impact the ability of the former

ghost to reconstruct its quarantine keys, and, as a consequence, the

availability of the protocol – which can never be ensured against an

active adversary, for any CGKA and notably TreeKEM, especially

when the Delivery Service is controlled by this adversary.

A.1.2 Quarantine Initiator/Updater Impersonation. In this case, the

adversary can also impact the availability of the protocol by sending

invalid shares to all shareholders. The major flaw here is that the

unavailability issue only appears at the end of the quarantine, when

the ghost reconnects.

The adversary can also arbitrarily quarantine any user, even an

active one. If it is coupled with the distribution of invalid shares, it

eventually comes to temporarily expelling a user from the group,

since that user will not be able to recover its message history when

reconnecting. Nevertheless, such an attack does not exceed the

capacity of an active adversary in TreeKEM, who can also arbitrarily

20
The impersonation of the last type of user, the non-shareholding active user, has no

particular effect on QTK that would no occur on TreeKEM.

21
The share indices allow the reconstructing algorithm of the secret sharing scheme

to select a valid set of shares. Each “Share Recovery Message” therefore comprises one

or several shares, along with their associated indices (cf. Section 3.5).

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://eprint.iacr.org/2022/559
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://eprint.iacr.org/2021/1083
https://doi.org/10.1145/3548606.3560632
https://doi.org/10.1145/3548606.3560632
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/978-3-031-15979-4_2
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/08/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/08/
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9180
https://doi.org/10.17487/RFC9180
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://datatracker.ietf.org/doc/draft-ietf-mls-architecture/13/
https://datatracker.ietf.org/doc/draft-ietf-mls-architecture/13/
https://inria.hal.science/hal-02425247
http://toc.cryptobook.us/
https://eprint.iacr.org/2017/634
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1007/978-3-030-88428-4_29
https://doi.org/10.1145/3460120.3484817
https://doi.org/10.1145/3460120.3484817
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.6028
https://doi.org/10.1007/978-3-540-70936-7_2
http://dblp.uni-trier.de/db/journals/cacm/cacm22.html#Shamir79
https://mattweidner.com/acs-dissertation.pdf

Quarantined-TreeKEM

remove any user
22
. Furthermore, it is easy to trace a malicious

quarantine initiator that performs this type of attack, as any user

in the group:

• is able to check whether the quarantine is justified (which

is the case if the newly quarantined ghost has encryption

keys whose seniority exceed the maximum authorized limit

𝛿𝑖𝑛𝑎𝑐𝑡);

• knows which committer has initiated that – potentially

fallacious – quarantine.

A.1.3 Ghost Impersonation. The impersonation of a ghost strongly

impacts QTK’s forward secrecy. Indeed, the adversary may require

a reconnection of that ghost on its behalf and recover this way the

ghost’s quarantine keys, and thus, all the content history of the

group since the ghost’s last key update. We nevertheless underline

that even in that worst-case scenario, the forward secrecy yielded

by QTK only falls back to the one offered by the original TreeKEM

and never falls below.

Albeit such a fully-active adversary stands beyond our security

model, we recommend, in order to prevent this case, the use of

a multi-factor authentication that would require an active action

of the “human” user, either on the same device as the one using

the Secure Group Messaging application – such as the “One Tap”

version of the Google 2-step process or a biometric authentication

– or an out-of-band authentication on a separate device. We leave

the formal security analysis associated with such authentication

processes, in the framework of QTK as well as TreeKEM, as an open

problem for future work.

A.2 Detailed Critical Windows of QTK
In addition to Figure 6 from Section 4.2.1, Figure 8 hereunder details

the critical windows induced by our QTK protocol by considering

separately the different types of users in a group.

A.3 Security Proof for Tainted TreeKEM [21]
The security proof of Tainted TreeKEM in the ROM relies on the

concept of Generalized Selective Decryption (GSD), from [23], that

[21] has adapted to the framework of public-key encryption. This

notion states the indistinguishability of the secret key associated

with a node in a graph. We can straightforwardly deduce the CGKA-

security of a protocol from the GSD property, by considering the

GSD graph as the CGKA graph (cf. Section 4.3.2) and by focusing

on the indistinguishability of the secret element of the roots of the

CGKA-graph
23
.

Definition A.1 (Generalized Selective Decryption (GSD), adapted
from [23] by [21]). Let (KeyGen, Enc,Dec) be a public-key encryp-

tion scheme with secret key space K and message spaceM such

that K ⊆ M. The GSD game (for public-key encryption schemes)

is a two-party game between a challenger C and an adversary A.

On input an integer 𝑁 , for each 𝑣 ∈ J1, 𝑁 K the challenger C picks

22
With TreeKEM, any user can remove any other one without justification. Even

if the application level restricts this right to some administrators within the group,

impersonating these administrators gives the adversary a full control over the group

composition.

23
The roots of a CGKA-graph are the root of each generation of Ratchet Tree that

composes that graph.

Figure 8: Critical windows, for our QTK protocol, of various
types of users in the view of a user 𝑢∗ issuing a group key
𝑘∗ at time 𝑞∗. Brown crosshatched boxes represent “shared
critical windows”, specific to QTK protocol.

a key-pair (𝑝𝑘𝑣, 𝑠𝑘𝑣) ← KeyGen(𝑟) (where 𝑟 is a random seed)

and initializes the key graph𝐺 = (𝑉 , 𝐸) := (J1, 𝑁 K ,∅) and the set

of corrupted users 𝐶𝑜𝑟 = ∅. A can adaptively do the following

queries:

• (encrypt, 𝑢, 𝑣): On input two nodes 𝑢 and 𝑣 , C returns an

encryption 𝑐 = 𝐸𝑛𝑐 (𝑝𝑘𝑢 , 𝑠𝑘𝑣) of 𝑠𝑘𝑣 under 𝑝𝑘𝑢 along with

𝑝𝑘𝑢 and adds the directed edge (𝑢, 𝑣) to 𝐸. Each pair (𝑢, 𝑣)
can only be queried at most once.

• (corrupt, 𝑣): On input a node 𝑣 , C returns 𝑠𝑘𝑣 and adds 𝑣

to 𝐶𝑜𝑟 .

• (challenge, 𝑣), single access: On input a challenge node 𝑣 ,

C samples 𝑏 ←$ 0, 1 uniformly at random and returns 𝑠𝑘𝑣
if 𝑏 = 0, otherwise it returns a new secret key generated by

KeyGen using a new independent uniformly random seed.

In the context of GSD we denote the challenge graph as the graph

induced by all nodes from which the challenge node 𝑣 is reachable.

We require that none of the nodes in the challenge graph are in

𝐶𝑜𝑟 , that 𝐺 is acyclic and that the challenge node 𝑣 is a sink. Note

that A does not receive the public key of the challenge node, since

it is a sink.

Finally, A outputs a bit 𝑏0 and it wins the game if 𝑏0 = 𝑏. We

call the encryption scheme G(𝜖, 𝑡)-adaptive GSD-secure if for any
adversary A running in time 𝑡 it holds:

𝐴𝑑𝑣𝐺𝑆𝐷 (A) := |Pr[1← A|𝑏 = 0] − Pr[1← A|𝑏 = 1] | < 𝜖

Chevalier et al.

Theorem 3 from [21] beneath is a general result proving that a

GSD graphwhere edges are constructed by encrypting, with an IND-

CPA secure public-key encryption scheme, secret seeds belonging

to some nodes, and where public-private key-pairs are derived

from that same seeds via a random oracle, is GSD-secure. However,

in such a graph, all the seeds are random and independent. [21]

consequently adapts that result to their Tainted TreeKEM protocol

by considering that the seeds are derived the one from another

through a random oracle 𝐻1, different from the one 𝐻2 used to

generate the key-pairs. This leads to Theorem 4 detailed hereunder,

where the GSD graph corresponds to the CGKA graph of their

protocol.

Theorem A.2 (Theorem 3 from [21]). For any public-key encryp-
tion scheme Π = (KeyGen, Enc,Dec) and hash function 𝐻 , let the
encryption scheme Π′ = (KeyGen′, Enc′,Dec′) be defined as follows:

(1) KeyGen
′ simply picks a random seed 𝑠 as secret key and runs

KeyGen(𝐻 (𝑠)) to obtain the corresponding public key,
(2) Enc

′ is identical to Enc and
(3) Dec

′, given the secret key 𝑠 , extracts the secret key from
KeyGen(𝐻 (𝑠)) and uses Dec to decrypt the ciphertext.

If Π is (𝜖, 𝑡)-IND-CPA secure and 𝐻 is modelled as a random oracle,
then Π′ is (𝜖, 𝑡)-adaptive GSD-secure, where 𝜖 = 2𝑁 2 · 𝜖 + 𝑚𝑁

2
ℓ−1 , with

𝑁 the number of nodes,𝑚 the number of oracle queries to 𝐻 , ℓ the
seed length.

TheoremA.3 (Theorem 4 from [21]). If the encryption scheme in
TTKEM is (𝜖, 𝑡)-IND-CPA secure and 𝐻1, 𝐻2 are modelled as random
oracles, then TTKEM is (𝑄, 𝜖, 𝑡)-CGKA-secure, where 𝜖 = 𝜖 ·8(𝑛𝑄)2 +
negl.

We underline that, as explicitly stated by [21], the above The-

orem 4 is applicable to TreeKEM or other similar CGKAs – such

as our QTK protocol –, with a potentially different security bound

that only depends on the number of nodes in the CGKA graph (but

not on its structure).

B JOINTLY-IMPLEMENTED QUARANTINE
We present here an improvement of the original QTK CGKA, called

jointly-implemented quarantine, that upgrades the security of QTK

by replacing the initial proper critical window of a ghost’s quar-

antine updater by ℓ more secure shared critical windows related

to ℓ updaters. This method, which uses a secretly key-updatable

PKE (cf. Section 2.3) to generate the ghost’s quarantine encryp-

tion key-pair, has a communication cost increased by a factor ℓ for

the initialization and each update of the quarantine. However, this

communication overhead is mitigated by the fact that the higher se-

curity provided by this tweak permits to space out the intermediate

updates of the quarantine keys.

B.1 Overview
As recalled in Figure 9, a quarantine updater

24
has – beside the

classical critical window centered around 𝑞∗ that every active user

has in any CGKA protocol – a critical window that corresponds to

the generation of the ghost’s quarantine key-pair by this updater.

Therefore, until this window closes when the updater deletes the

24
The term “quarantine updater” also comprises the “quarantine initiator”.

secret key and seed (after sharing that seed), any corruption of this

particular user compromises the newly generated ghost’s encryp-

tion key, which impacts both forward secrecy and post-compromise

security.

A ℓ-jointly-implemented quarantine reduces this vulnerability

by having ℓ several users (generally two) generate in common the

ghost’s quarantine keys, in a way such that none of these users

knows the secret keys or seeds.

B.1.1 Initialization and Update. The initialization or the update of

a ℓ-jointly-implemented quarantine is effective after ℓ epochs of

preparation, using a secretly key-updatable PKE instead of a regular

PKE. We describe below the process of a quarantine initialization,

knowing that a quarantine key update is processed similarly.

(1) At epoch 𝑒𝑖 , the committer 𝑢𝑖𝑐 = 𝑢𝑖𝑛𝑖𝑡0 that decides to quar-

antine a new ghost 𝑢𝑔 proceeds to a regular quarantine ini-

tialization as described in Section 3.3, except that the quar-

antine does not start at the following epoch but ℓ epochs

after (at epoch 𝑒𝑖+ℓ).

• 𝑢𝑖𝑛𝑖𝑡0 generates a temporary fresh encryption key-pair

(𝑝𝑘𝑖𝑔, 𝑠𝑘
𝑖

𝑔) for the new ghost 𝑢𝑔 ∈ NG𝑖+ℓ :

𝑠𝑖𝑔
$← S

(𝑝𝑘𝑖𝑔, 𝑠𝑘
𝑖

𝑔) := KeyGen(1𝜆 ; 𝑠𝑖𝑔)

• It distributes to all group members the temporary pub-

lic key 𝑝𝑘
𝑖

𝑔 .

• It also sends to the group the shares issued from the

secret seeds at the origin of the ghost’s key-pair:

[𝑠𝑖𝑔] ← Distr(𝑠𝑖𝑔, 𝑡,𝑚)

• Right after, it deletes from its local state the ghost’s

quarantine secret seed and private key.

(2) At epochs 𝑒𝑖+1 to 𝑒𝑖+ℓ−1, the committers 𝑢
𝑖+𝑗
𝑐 = 𝑢𝑖𝑛𝑖𝑡 𝑗

(𝑗 ∈ J1, ℓ − 1K) – which must be different from 𝑢𝑖𝑛𝑖𝑡0 and

from each other – continue the process of quarantine ini-

tialization:

• 𝑢𝑖𝑛𝑖𝑡 𝑗 generates fresh update elements from a ran-

domly drawn seed.

𝑠
𝑖+𝑗
𝑔

$← S

(Θ𝑖+𝑗
𝑔 , 𝜃

𝑖+𝑗
𝑔) := UpdGen(1𝜆 ; 𝑠𝑖+𝑗𝑔)

• It updates, with the public update element Θ
𝑖+𝑗
𝑔 , the

ghost’s temporary public key sent by the previous

initiator 𝑢𝑖𝑛𝑖𝑡 𝑗−1 :

𝑝𝑘
𝑖+𝑗
𝑔 := UpdPk(𝑝𝑘𝑖+𝑗−1𝑔 ,Θ

𝑖+𝑗
𝑔)

• It distributes to all group members the new temporary

quarantine public key 𝑝𝑘
𝑖+𝑗
𝑔 .

• It shares within the group the seed 𝑠
𝑖+𝑗
𝑔 used to gener-

ate the update elements (Θ𝑖+𝑗
𝑔 , 𝜃

𝑖+𝑗
𝑔):

[𝑠𝑖+𝑗𝑔] ← Distr(𝑠𝑖+𝑗𝑔 , 𝑡,𝑚)

Quarantined-TreeKEM

Figure 9: Compared criticalwindows for the initialization of a
regular quarantine and a 2-jointly-implemented quarantine.
In the latter case, the single updater’s proper critical window
is replaced by the shared critical windows of the two updaters
𝑢𝑖𝑛𝑖𝑡0 and 𝑢𝑖𝑛𝑖𝑡1 .

• It deletes from its local state the seed 𝑠
𝑖+𝑗
𝑔 and the

private update element 𝜃
𝑖+𝑗
𝑔 .

(3) The quarantine is then effective at epoch 𝑒𝑖+ℓ , with a ghost’s
quarantine encryption key-pair corresponding to the tem-

porary key-pair of epoch 𝑒𝑖+ℓ−1:

(𝑝𝑘𝑖+ℓ𝑔 , 𝑠𝑘𝑖+ℓ𝑔) := (𝑝𝑘
𝑖+ℓ−1
𝑔 , 𝑠𝑘

𝑖+ℓ−1
𝑔)

Nota: If a ghost comes back online before epoch 𝑒𝑖+ℓ , its quaran-
tine initialization process instantly aborts and it can immediately

recover its offline history as with TreeKEM.

B.1.2 Quarantine End. At the end of the quarantine, the recon-

necting ghost recovers from the shareholders a sufficient number

of shares associated to its quarantine:

• shares of the seed 𝑠𝑖𝑔 that was used to generate the first

temporary key-pair (𝑝𝑘𝑖𝑔, 𝑠𝑘
𝑖

𝑔).

• shares of the seeds (𝑠𝑖+𝑗𝑔) 𝑗∈J1,ℓ−1K associated with all the

update elements (Θ𝑖+𝑗
𝑔 , 𝜃

𝑖+𝑗
𝑔) 𝑗∈J1,ℓ−1K.

It reconstructs the secret seeds (𝑠𝑖+𝑗𝑔) 𝑗∈J0,ℓ−1K associated with

these share collections. Then, it recomputes the initial temporary

private key 𝑠𝑘
𝑖

𝑔 from the secret seed 𝑠𝑖𝑔 and updates it ℓ − 1 times

with the reconstructed secret update elements 𝜃𝑖+1𝑔 , · · · , 𝜃𝑖+ℓ−1𝑔 , in

order to get the final private key 𝑠𝑘𝑖+ℓ𝑔 :

𝑠𝑖𝑔 := Comb([𝑠𝑖𝑔])

(𝑝𝑘𝑖𝑔, 𝑠𝑘
𝑖

𝑔) := KeyGen(1𝜆 ; 𝑠𝑖𝑔)
∀𝑗 ∈ J1, ℓ − 1K :

𝑠
𝑖+𝑗
𝑔 := Comb([𝑠𝑖+𝑗𝑔])

(Θ𝑖+𝑗
𝑔 , 𝜃

𝑖+𝑗
𝑔) := UpdGen(1𝜆 ; 𝑠𝑖+𝑗𝑔)

𝑠𝑘
𝑖+𝑗
𝑔 := UpdSk(𝑠𝑘𝑖+𝑗−1𝑔 , 𝜃

𝑖+𝑗
𝑔)

𝑠𝑘𝑖+ℓ𝑔 := 𝑠𝑘
𝑖+ℓ−1
𝑔

B.2 Security
As none of the quarantine updaters has access to the ghost’s quar-

antine secret key 𝑠𝑘𝑖+ℓ𝑔 but only to intermediate elements (indeed,

𝑢𝑖𝑛𝑖𝑡0 only knows the first temporary private key 𝑠𝑘
𝑖

𝑔 and (𝑢𝑖𝑛𝑖𝑡 𝑗) 𝑗∈J1,ℓ−1K
know nothing but their associated secret update element 𝜃

𝑖+𝑗
𝑔), the

corruption of all but one of them does not give the adversary any

clue to recover the quarantine private key. The only way for the

adversary to recover this private key is to corrupt each one of these

updaters 𝑢𝑖𝑛𝑖𝑡 𝑗 precisely during their critical window at epoch 𝑒𝑖+𝑗 .
We consequently consider that these updaters do not have any-

more a proper critical window related to the quarantine initializa-

tion or update, but a shared critical window with a full recovery
threshold25.

B.3 Performances
In this jointly-implemented quarantine variant, the communication

costs of the quarantine initialization, of each update and of the

“Share RecoveryMessages” in the reconnection process scale almost

linearly with the number of co-initiators and co-updaters involved.

Consequently, the communication cost of a ℓ-jointly-implemented

quarantine is increased as follows, compared to a regular broadcast-

only
26

quarantine:

𝑐𝑐
ℓ− 𝑗𝑜𝑖𝑛𝑡
𝑖𝑛𝑖𝑡−𝑢𝑝𝑑 = ℓ .𝑐𝑐𝑖𝑛𝑖𝑡−𝑢𝑝𝑑

𝑐𝑐
ℓ− 𝑗𝑜𝑖𝑛𝑡
𝑒𝑛𝑑

∈
[
|𝑢𝑝𝑑 | + ℓ .𝑡 .

(
|𝑠𝑖𝑔| + |𝑐𝑡 | + 𝑛𝑞𝑘𝑒𝑦 .(|𝑠 | + 2. |𝑖𝑛𝑡 |)

)
,

|𝑢𝑝𝑑 | + 𝑛𝑚𝑎𝑥
𝑟𝑒𝑠𝑒𝑛𝑑

.
(
|𝑠𝑖𝑔| + 2.ℓ .𝑛𝑞𝑘𝑒𝑦 .𝑡 . |𝑖𝑛𝑡 |

)
+ ℓ .𝑚.𝑛𝑞𝑘𝑒𝑦 .

(
|𝑠𝑖𝑔| + |𝑐𝑡 | + |𝑠 | + 2. |𝑖𝑛𝑡 |

)]
However, as stated above, this overhead is mitigated by the

possibility to decrease the quarantine key update frequency, due to

the higher security brought by the jointly-implemented quarantine

variant.

25
Which means that all these users without exception must be corrupted during their

critical window so that the adversary recovers the ghost’s quarantine key.

26
The improvement is similar with the server-aided variant.

	Abstract
	1 Introduction
	1.1 Security Properties of a CGKA
	1.2 Our Contribution
	1.3 Outline of the Paper

	2 Preliminaries
	2.1 Notations and Terminology
	2.2 Secret Sharing shamirsecretsharing
	2.3 Secretly Key-Updatable Public Key Encryption
	2.4 TreeKEM CGKA Protocol

	3 QTK protocol
	3.1 Message Delivery Mode
	3.2 QTK Public States
	3.3 Start of a Quarantine
	3.4 Course of a Quarantine
	3.5 End of a Quarantine

	4 Security of QTK protocol
	4.1 Security Model
	4.2 Safe Predicate
	4.3 CGKA Security Proof for QTK

	5 Performances
	5.1 Broadcast-Only Regular Quarantine
	5.2 Server-Aided Regular Quarantine
	5.3 Practical Efficiency

	References
	A Additional Security Considerations
	A.1 Considerations on a Fully Active Adversary
	A.2 Detailed Critical Windows of QTK
	A.3 Security Proof for Tainted TreeKEM SP:KPWKCCMYAP21

	B Jointly-Implemented Quarantine
	B.1 Overview
	B.2 Security
	B.3 Performances

