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Abstract. Since 2015, there has been a significant decrease in the asymp-
totic complexity of computing discrete logarithms in finite fields. As a
result, the key sizes of many mainstream pairing-friendly curves have to
be updated to maintain the desired security level. In PKC’20, Guille-
vic conducted a comprehensive assessment of the security of a series of
pairing-friendly curves with embedding degrees ranging from 9 to 17. In
this paper, we focus on five pairing-friendly curves with embedding de-
grees 10 and 14 at the 128-bit security level, with BW14-351 emerging as
the most competitive candidate. First, we extend the optimized formula
for the optimal pairing on BW13-310, a 128-bit secure curve with a prime
p in 310 bits and embedding degree 13, to our target curves. This gen-
eralization allows us to compute the optimal pairing in approximately
log r/(2φ(k)) Miller iterations, where r and k are the order of pairing
groups and the embedding degree respectively. Second, we develop op-
timized algorithms for cofactor multiplication for G1 and G2, as well as
subgroup membership testing for G2 on these curves. Finally, we provide
detailed performance comparisons between BW14-351 and other popu-
lar curves on a 64-bit platform in terms of pairing computation, hashing
to G1 and G2, group exponentiations, and subgroup membership test-
ings. Our results demonstrate that BW14-351 is a strong candidate for
building pairing-based cryptographic protocols.

Keywords: pairing-friendly curves · BW14-351 · the 128-bit security
level

1 Introduction

The past two decades have witnessed the application of elliptic curve pairings
in public-key cryptosystems, such as Direct Anonymous Attestation (DAA) [13,
51], Succinct Non-interactive Arguments of Knowledge (SNARKs) [3,21,22,30],
and Verifiable Delay Function(VDF) [20]. A cryptographic pairing is a non-
degenerate bilinear map defined as e : G1 × G2 → GT , where the three pairing
groups G1, G2, and GT have the same large prime order r. Specifically, G1 and



G2 are two independent subgroups of an elliptic curve E over a finite field Fpk ,
while GT is a subgroup of the multiplicative group F∗

pk . The value of k is the
smallest positive integer such that E[r] ⊆ E(Fpk).

The security of pairing-based cryptographic protocols relies on the hard-
ness of the discrete logarithm problem (DLP) in the three pairing groups. The
best-known attack algorithm for solving the DLP on an elliptic curve (ECDLP)
in the two input pairing groups G1 and G2 is the Pollard rho algorithm [43],
which requires around

√
r group operations. Thus, the size of the prime r is at

least 256 bits for reaching the 128-bit security level. As for the DLP on a finite
field (FFDLP) Fpk in GT whose characteristic p is not small, the best-known
algorithm is the number field sieve (NFS) [44]. According to the standardization
reported by ENISA [1] in 2013, a 3072-bit finite field is 128-bit secure. Since
then, a series of variants of NFS have been proposed [9, 36, 38], resulting in a
drastic decrease for the security level of mainstream pairing-friendly curves. In
particular, Kim and Barbulescu [38] proposed the special extended tower num-
ber field sieve (SexTNFS), which is applied to a composite extension field whose
characteristic p can be parameterized by a tiny-coefficients polynomial of moder-
ate degree. This variant is almost tailored to mainstream pairing-friendly curves,
such as the Barreto-Naehrig(BN) [11] and Barreto-Lynn-Scott(BLS) [11] fami-
lies. For example, the estimates in [8,32] suggest that the updated security level
of the previous 128-bit secure BN curve has dropped down to 100 ∼ 103 bits.

In PKC’20, Guillevic [31] analyzed the consequence of the improvement of
NFS in detail and recommended a list of pairing-friendly curves with embed-
ding degrees from 10 to 16. In particular, Guillevic pointed out that the size of
the prime p on both BN and BLS12 curves has to be increased to 446 bits to
match the updated 128-bit security level, and the BLS12-446 curve is the most
efficient choice for pairing computation at this security level across different
pairing-friendly curves. However, owing to the large size of the characteristic p,
both BLS12-446 and BN446 suffer a performance penalty concerning operations
associated with G1. Therefore, two new curves derived from [24, Construction
6.6] have emerged for fast group exponentiation in G1: BW13-310 and BW19-
286 [15]. Recently, Dai, Zhang and Zhao [18] proposed a new formula for comput-
ing pairing on BW13-310. More specifically, the number of iterations in Miller’s
algorithm on the curve is only around log r/(2φ(k)). However, due to the lack
of twists, the trick of denominator elimination is no longer applicable. In other
words, even though the length of the Miller loop on BW13-310 is extremely short,
the computational cost for each Miller doubling/addition step is expensive. In
addition, since the group G2 on BW13-310 is defined over the full extension field
Fp13 , the operations associated with G2 are costly, such as hashing to G2 and
group exponentiation in G2. It motivates us to search for new pairing-friendly
curves such that the Miller loop can be performed in log r/(2φ(k)) iterations,
and the trick of denominator elimination applies as well.
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1.1 Our Contributions

In this work, we revisit the cyclotomic pairing-friendly curves presented in [24]
with embedding degrees 10 and 14. A comprehensive research is presented that
aims to facilitate the implementation of pairing-based cryptographic protocols
using these curves. Our contributions are summarized as follows.

• We generalize the optimized formula for the optimal pairing on BW13-310
to our target curves. Specifically, the automorphism action can be extracted
from the Miller function evaluation, reducing the number of Miller itera-
tions to approximately log r/(2φ(k)). In addition, we refine the best-known
algorithm for the final exponentiation to save several field multiplications.

• We develop new algorithms for key building blocks involved in implementing
pairing-based protocols on our target curves, including cofactor multiplica-
tion for G1 and G2, and subgroup membership testing for G2.

• Utilizing the RELIC toolkit [2], we present high-speed software implementa-
tions of pairing computation, hashing to G1 and G2, group exponentiations,
and subgroup membership testings over two target curves named BW10-511
and BW14-351 on a 64-bit platform. Our results show that compared to
popular curves at the updated 128-bit security level, including BLS12-446,
BN446, and BW13-310, BW14-351 is competitive for building pairing-based
cryptographic protocols. In more detail,

- the performance of pairing computation on BW14-351 is even slightly
faster than that on BN446 and BW13-310, while about 16.2% slower
than that on BLS12-446;

- in terms of group exponentiations in G1 and GT , BW14-351 is about
49.4% and 20.4% faster than BLS12-446, 118.5% and 100% faster than
BN446, while 35.1% and 3.4% slower than BW13-310;

- compared to BW13-310, BW14-351 incurs a lighter penalty for hashing
to G2 and group exponentiation in G2, while is still slower than BN446
and BLS12-446.

Code: Our code is available at https://github.com/eccdaiy39/BW10-14.

2 Preliminaries

In this section, we recall some basic properties of ordinary elliptic curves, pairings
and endomorphisms.

2.1 Ordinary elliptic curves over finite fields

Let Fp be a prime field with characteristic p > 3. Let E be an elliptic curve over
Fp of the form y2 = x3 + ax + b, where a, b ∈ Fp such that 4a3 + 27b2 ̸= 0.
The j-invariant of E is defined as j(E) = 1728 4a3

4a3+27b2 . We denote by E(Fp) the
group of Fp-rational points of E, together with the identity element OE . Then
the order of E(Fp) is given by #E(Fp) = p + 1 − t, where t is the trace of the
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Frobenius endomorphism π : (x, y) → (xp, yp). If t ̸= 0, then the curve E is
said to be ordinary, and supersingular otherwise. Let r be a large prime divisor
of #E(Fp), and let E[r] denote the r-torsion subgroup of E. The embedding
degree k of E with respect to r and p is the smallest positive integer such that
E[r] ⊆ E(Fpk). If k > 1, then k is the smallest integer such that r | pk − 1.

An endomorphism α of E over F̄p is a non-constant rational map from E
to itself over F̄p, where F̄p is the algebraic closure of Fp. The set of all endo-
morphisms of E over F̄p, together with the zero map defined by 0(P ) = OE ,
forms a ring denoted as End(E). We denote by K the imaginary quadratic
field K = Q(

√
−D), where D is the square-free part of 4p − t2. Let OK be

the largest subring of K. Since E is ordinary, End(E) is an order in OK , i.e.,
Z[π] ⊆ End(E) ⊆ OK . For any α ∈ End(E), the characteristic equation of α
can be represented as x2 + mx + n = 0 for two integers m and n, where n is
called the norm of α, i.e., Nrd(α) = n. In particular, the characteristic equation
of π is given as π2 − tπ + p = 0. For each endomorphism α, there is a unique
endomorphism α̂ such that α ◦ α̂ = Nrd(α), which is called the dual of α.

Let Aut(E) be the automorphism group of E, and let d = gcd(k,#Aut(E)). If
d > 1, then there exists a unique degree-d twist E′ such that r | #E′(Fpk/d) with
an untwisting isomorphism ϕ: E′ → E. In elliptic curve cryptography, ordinary
elliptic curves with j-invariant 0 or 1728 are particularly interesting as they are
equipped with an efficiently computable endomorphism. More precisely,

• if j(E) = 0, then we have a = 0 and p ≡ 1 mod 3 [50, Proposition 4.33].
There exists an endomorphism E → E given as τ : (x, y) → (ω · x, y), where
ω is a primitive cube root of unity in F∗

p. The characteristic equation of τ is
τ2 + τ + 1 = 0 and the dual of τ is τ̂ : (x, y) → (ω2 · x, y);

• if j(E) = 1728, then we have b = 0 and p ≡ 1 mod 4 [50, Theorem 4.23].
There exists an endomorphism E → E given as τ : (x, y) → (−x, i ·y), where
i is a primitive fourth root of unity in F∗

p. The characteristic equation of τ
is τ2 + 1 = 0 and the dual of τ is τ̂ : (x, y) → (−x,−i · y).

For the two types of curves, there exist the following two endomorphisms on E′:

η = ϕ−1 ◦ τ ◦ ϕ, ψ = ϕ−1 ◦ π ◦ ϕ,

where η and ψ have the same characteristic equations as τ and π, respectively.

2.2 Optimal pairing

Given a random point Q ∈ E(Fpk) and an integer m, a Miller function fm,Q is
a normalized rational function in Fpk(E) with divisor

div(fm,Q) = m(Q)− ([m]Q)− (m− 1)(OE). (1)

Let G1 and G2 be respectively 1- and p-eigenspaces of π acting on E[r], i.e.,
G1 = E(Fp)[r] and G2 = E[r] ∩ Ker(π − [p]). Let GT be the group of r-th roots
of unity in F∗

pk . Let λ =
∑L

i=0 cip
i be a multiple of the prime r with ci ∈ Z for
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each i. Then, the general expression of the optimal pairing [49, Theorem 7] on
E is given as:

e :G2 ×G1 → GT ,

(Q,P )→

(
L∏

i=0

fp
i

ci,Q
(P )·

L−1∏
i=0

ℓ[si+1]Q,[cipi]Q(P )

ν[si]Q(P )

)(pk−1)
r

,

(2)

where si =
∑L

j=i cjp
j , ℓ[i]R,[j]R is the straight line passing through [i]R and

[j]R, and ν[i+j]R is the vertical line passing through [i+j]R. The Miller function
fci,Q evaluated at the point P for each i can be obtained by executing Miller’s
algorithm [42], which is described in Alg. 1. Vercauteren [49, Theorem 7] proved
that there exists a short vector (c0, c1, · · · , cL) satisfying that max |ci| ≈ r1/φ(k).
Thus, the optimal pairing can be computed in approximately log r/φ(k) Miller
iterations. Moreover, if the embedding degree k is even, the vertical line evalu-
ations can be ignored because these values lie in the subfield Fpk/2 and can be
“killed” by the exponentiation by (pk − 1)/r.

Algorithm 1: Miller’s Algorithm
Input: P ∈ G1, Q ∈ G2, m =

∑L
i=0 mi2

i with mi ∈ {−1, 0, 1}
Output: fm,Q(P )
1: T ← Q, f ← 1
2: for i = L− 1 down to 0 do
3: f ← f2 · ℓT,T (P )

ν[2]T (P )
, T ←− [2]T

4: if mi = 1 then
5: f ← f · ℓT,Q(P )

νT+Q(P )
, T ← T +Q

6: elif mi = −1 then
7: f ← f · ℓT,−Q(P )

νT−Q(P )
, T ← T −Q

8: end if
9: end for

10: return f

3 Elliptic Curves with Embedding Degrees 10 and 14

The construction of pairing-friendly curves necessitates special methods to en-
sure a small embedding degree k, which is crucial for efficient pairing compu-
tation. In addition, we also expect pairing-friendly curves have j-invariant 0 or
1728 such that they are equipped with efficiently computable endomorphisms
and efficient formulas for point operation. Using the Brezing-Weng method [12],
Freeman, Scott and Teske [24, Sect. 6] constructed a list of such curves with
embedding degrees 10 and 14, which are summarized in Tab. 1. The formulas
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for optimal pairing on these curves are given in Tab. 2. It is straightforward
to see that the number of iterations in Miller’s algorithm on these curves is
approximately log r/φ(k).

Remark 1. Using Eq. (2), the formula for the optimal pairing for the Cyclo(6.5)-
10 family is expressed as

(
fpz2,Q(P )

)(p10−1)/r. Since a non-degenerate power of
a pairing remains a pairing, we can replace fpz2,Q(P ) by fz2,Q(P ) to save one
Frobenius map.

Table 1. Important parameters for pairing-friendly curves with embedding degrees 10
and 14 from [24, Sect. 6].

family k j(E) p r t

Cyclo(6.3) 10 1728 1
4
(z14 − 2z12 + z10 + z4 + 2z2 + 1) Φ20(z) z2 + 1

Cyclo(6.5) 10 1728 1
4
(z12−z10+z8−5z6+5z4−4z2+4) Φ20(z) −z6+z4−z2+2

Cyclo(6.6) 10 0 1
3
(z3 − 1)2(z10 − z5 + 1) + z3 Φ30(z) z3 + 1

Cyclo(6.3) 14 1728 1
4
(z18 − 2z16 + z14 + z4 + 2z2 + 1) Φ28(z) z2 + 1

Cyclo(6.6) 14 0 1
3
(z − 1)2(z14 − z7 + 1) + z15 Φ42(z) z8 − z + 1

3.1 New formulas for optimal pairings on target curves

Recently, Dai, Zhang and Zhao [18] proposed a faster formula for pairing com-
putation on the BW13-310 curve such that the length of the Miller loop can
be reduced to around log r/(2φ(k)). In this subsection, we show how to gener-
alize this technique to our target curves. On this basis, we further propose an
improved algorithm to reduce the performance penalty introduced by this new
technique.

By the fact that the endomorphism ring of ordinary elliptic curves is com-
mutative, we find that τ(Q) ∈ G2 for any Q ∈ G2 as

π ◦ τ(Q) = τ ◦ π(Q) = τ([p]Q) = [p]τ(Q) and [r]τ(Q) = τ([r]Q) = OE .

Furthermore, since the group order of G2 is prime, the endomorphism τ acts on
G2 as a scalar, which is denoted as λ2. In detail, we can fix the parameter of τ
such that

λ2 =


− zk/2, in the Cyclo(6.3)-10, 14 and Cyclo(6.5)-10 families;
zk, in the Cyclo(6.6)-10 family;
−zk − 1, in the Cyclo(6.6)-14 family.

(3)
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Table 2. Original formulas for optimal pairings on pairing-friendly curves with em-
bedding degrees 10 and 14.

family-k short vector optimal pairing

Cyclo(6.3)-10 [z2,−1, 0, 0]
(
fz2,Q(P )

)(p10−1)/r

Cyclo(6.5)-10 [−1, z2, 0, 0]
(
fz2,Q(P )

)(p10−1)/r

Cyclo(6.6)-10 [z, 0,−1, z2]
(
fz,Q(P ) · fp3

z2,Q
(P ) · ℓπ7(Q),π3([z2]Q)(P )

)(p10−1)/r

Cyclo(6.3)-14 [z2,−1, 0, 0, 0, 0]
(
fz2,Q(P )

)(p14−1)/r

Cyclo(6.6)-14 [z2, z, 1, 0, 0, 0]
(
fz2,Q(P ) · fp

z,Q(P ) · ℓπ2(Q),π([z]Q)(P )
)(p14−1)/r

By combining the two endomorphisms π and τ , we fortunately find that πm ◦
τ(Q) = [z]Q for any Q ∈ G2, where

m =


(k + 2)/4, in the Cyclo(6.3)-10 and Cyclo(6.3)-14 families;
7, in the Cyclo(6.5)-10 and Cyclo(6.6)-10 families;
1, in the Cyclo(6.6)-14 family.

This observation enables us to rewrite the formulas for optimal pairings on our
target curves such that the number of Miller iterations can be reduced to around
log r/(2φ(k)), which is summarized in Lemma 1 below.

Lemma 1. Let notation be as above. Then fz2,Q = fzz,Q · fp
m

z,Q ◦ τ̂ , where τ̂ is
the dual of τ .

Proof. It can obtained from [35, Lemma 3.5] that

fz2,Q = fzz,Q · fz,[z]Q. (4)

Since πm ◦ τ(Q) = [z]Q, it follows from [53, Theorem 1] and [17, Theorem 1]
that

fz,[z]Q = fz,πm◦τ(Q) = fp
m

z,τ(Q) = fp
m

z,Q ◦ τ̂p
m

= fp
m

z,Q ◦ τ̂ . (5)

Inserting Eq. (5) into Eq. (4), we have

fz2,Q = fzz,Q · fp
m

z,Q ◦ τ̂ ,

which completes the proof. ⊓⊔

Based on Lemma 1, we can derive new formulas for optimal pairings on our
target curves by executing the following two steps:

-Step 1. We first replace fz2,Q(P ) by fzz,Q(P ) · f
pm

z,Q(τ̂(P )) in the original
formulas for optimal pairings. In particular, we can also replace the point [z]Q
by πm ◦ τ(Q) at the final line in the Cyclo(6.6)-10 and Cyclo(6.6)-14 families.
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Table 3. Optimized formulas for optimal pairings on pairing-friendly curves with em-
bedding degrees 10 and 14.

family-k optimal pairing

Cyclo(6.3)-10
(
fz·p7
z,Q (P ) · fz,Q(τ̂(P ))

)(p10−1)/r

Cyclo(6.5)-10
(
fz·p3
z,Q (P ) · fz,Q(τ̂(P ))

)(p10−1)/r

Cyclo(6.6)-10
(
f1+z·p3
z,Q (P ) · fz,Q(τ̂(P )) · (yP − yQ)

p7
)(p10−1)/r

Cyclo(6.3)-14
(
fz·p10
z,Q (P ) · fz,Q(τ̂(P ))

)(p14−1)/r

Cyclo(6.6)-14
(
f1+z·p13
z,Q (P ) · fz,Q(τ̂(P )) · (yP − yQ)

p
)(p14−1)/r

Table 4. Parameters of the pairing-friendly curves with embedding degrees 10 and 14
at the updated 128-bit security level.

curve family-k seed z
r

bits
p

bits
pk

bits
DL cost
in Fpk

BW10-480 Cyclo(6.5)-10 25 + 214 + 215 + 218 + 236 + 240 321 480 4791 128
BW10-511 Cyclo(6.6)-10 27 + 213 + 226 − 232 256 511 5101 150
BW10-512 Cyclo(6.3)-10 1 + 23 + 217 + 232 + 235 + 236 294 512 5111 129
BW14-351 Cyclo(6.6)-14 26 − 212 − 214 − 222 265 351 4908 149
BW14-382 Cyclo(6.3)-14 1 + 210 + 213 − 216 + 219 + 221 256 382 5338 129

-Step 2. Utilizing the property that a non-degenerate power of a pairing re-
mains a pairing, we then can raise the output of the Miller loop to a pk−m-
power such that the exponent of the second Miller function is equal to 1.
The new formulas for the optimal pairing for our selected curves are summa-
rized in Tab. 3. Clearly, the most costly part of the Miller loop is to compute
fz·p

k−m

z,Q (P ) · fz,Q(τ̂(P )), enabling the execution of Miller’s algorithm in around
log|z| iterations within the same loop, albeit with a slightly higher computa-
tional cost per iteration. However, compared to the original formulas, the new
ones require an additional exponentiation by z. Fortunately, the exponentiation
can be integrated with the computation of fz,Q(τ̂(P )) to share several squarings.
Specifically, we first calculate fz,Q(P ) and store all line function evaluations re-
quired for computing fz,Q(τ̂(P )) at the first loop. Subsequently, given the initial
value fp

k−m

z,Q (P ), we then compute fz·p
k−m

z,Q (P ) · fz,Q(τ̂(P )) at the second loop.
The optimized procedure for computing this value is presented in Alg. 2. Thanks
to the final exponentiation, the value of g−1 can be replaced by ḡ in Line 10 of
Alg. 2, where ḡ represents the conjugate of g.

3.2 Choice of parameters at the 128-bit security level

The choice of parameters of pairing-friendly curves should be careful for achiev-
ing high performance implementation at the desired security level. In this paper,

8



Algorithm 2: Computing fz·p
k−m

z,Q (P ) · fz,Q(τ̂(P ))

Input: P ∈ G1, Q ∈ G2, z =
∑L

i=0 zi · 2
i with zi ∈ {−1, 0, 1}

Output: fz·pk−m

z,Q (P ) · fz,Q(τ̂(P ))
1: T ← Q, f ← 1, tab← [ ], j ← 0
2: for i = L− 1 down to 0 do
3: f ← f2 · ℓT,T (P ), tab[j]← ℓT,T (τ̂(P )), T ←− 2T , j ← j + 1 // SDBL
4: if zi = 1 then
5: f ← f · ℓT,Q(P ),tab[j]← ℓT,Q(τ̂(P )), T ← T +Q, j ← j + 1 // SADD
6: elif zi = −1 then
7: f ← f ·ℓT,−Q(P ), tab[j]←ℓT,−Q(τ̂(P )), T ← T−Q, j ←j+1 // SADD
8: end if
9: end for

10: g ← fpk−m , h← g, j ← 0
11: for i = L− 1 down to 0 do
12: h← h2·tab[j], j ← j + 1
13: if zi = 1 then
14: h← h · g·tab[j], j ← j + 1
15: elif zi = −1 then
16: h← h · ḡ·tab[j], j ← j + 1
17: end if
18: end for
19: return h

we focus on the performance of pairing computation at the 128-bit security level.
To this end, the size of full extension field Fpk should be large enough to resist
attacks from the variants of NFS. The concrete security can be estimated using
the source code provided by Guillevic and Singh [33], which is available at

https://gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage.
On this basis, to maximize the efficiency of pairing computation, we also expect

(a) the selected prime p satisfies that p ≡ 1 mod k;
(b) the sum of bit length and Hamming weight (in non-adjacent form) of the

selected seed z is as small as possible.

In more detail, the condition (a) ensures that the full extension field Fpk can
be represented as Fp[v]/(v

k − α) for some α ∈ F∗
p [40, Theorem 3.75], which

actually can be constructed as a tower of quadratic and k/2-th extensions:

Fp
ξk/2−α−−−−−→ Fpk/2

v2−ξ−−−→ Fpk .

This construction induces fast multiplication and squaring arithmetic opera-
tions in Fpk ; the condition (b) aims to minimize the number of Miller iterations
in Alg. 2. In fact, the computation of the final exponentiation also benefits from
condition (b) since this step consists of a large number of exponentiations by
z (see Sect. 4.3). Tab. 4 summarizes our chosen seeds z under the above con-
ditions, together with the corresponding sizes of the curve parameters. Notably,
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while Guillevic [31, Tab. 6] selected a seed for the Cyclo(6.6)-14 family, this seed
fails to meet the condition (a).

Curve name: For convenience, all the candidate curves listed in Tab. 4
are collectively called BW curves since they are essentially generated using the
Brezing-Weng method. Moreover, we distinguish each curve by its embedding
degree and the size of the characteristic p. For instance, the BW14-351 curve is
referred to as the curve constructed from the Cyclo(6.6)-14 family defined over
a 351-bit prime field.

4 Pairing Computation

In this section, we first describe explicit formulas for Miller doubling and addition
steps. In particular, the technique of lazy reduction [6,45] has been fully exploited
to reduce the number of modular reductions required in Miller’s algorithm. Then,
we show how to perform the final exponentiation efficiently. Finally, we present
detailed operation counts for pairing computation on different curves.

Notations. The cyclotomic group GΦk(p) is defined by GΦk(p) = {a ∈ Fpk |
aΦk(p) = 1}. The notation × is used to denote field multiplication without re-
duction. We use the following notation to denote the cost of operations:(i) a,
m, mu, s, su, i and r denote the cost of addition, multiplication, multiplication
without reduction, squaring, squaring without reduction, inversion and modular
reduction in Fp, respectively; (ii) ã, m̃, m̃u, m̃ξ, s̃, s̃u, ĩ and r̃ represent the
cost of addition, multiplication, multiplication without reduction, multiplication
by ξ, squaring, squaring without reduction, inversion and modular reduction in
Fpk/2 , respectively; (iii) M, S, f and I represent the cost of multiplication, squar-
ing, Frobenius map and inversion in Fpk , respectively; (iv) Sc and e represent
the cost of squaring and exponentiation by z in the cyclotomic group GΦk(p),
respectively.

4.1 Miller loop on curves of form y2 = x3 + b

Let E : y2 = x3 + b be a curve over Fp with embedding degree 10 or 14. Then
E admits a quadratic twist E′ : y2 = x3 + b/ξ3 over Fpk/2 . The associated
untwisting isomorphism from E′ to E is given by

ϕ : (x, y) → (xξ, yξv).

To avoid field inversions when performing point operations, points can be repre-
sented in projective coordinates. For this curve shape, it is convenient to use Ja-
cobian coordinates, that is, an affine point (x, y) corresponds to a triplet (X,Y, Z)
with x = X/Z2 and y = Y/Z3.

Shared doubling step (SDBL) Let T = (X,Y, Z) ∈ E′(Fpk/2)[r] be in
Jacobian coordinates. The formula for computing the doubling point [2]T =
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(X3, Y3, Z3) is derived from [7, Sect. 4.3], where

X3 = X(
9

4
X3 − 2Y 2), Y3 =

9

4
X3(2Y 2 − 3

2
X3)− Y 4, Z3 = Y Z.

By the form of the untwisting map ϕ, the image point ϕ(T ) ∈ G2 can be rep-
resented as (Xξ, Y ξv, Z). Thanks to the technique of denominator elimination,
the line function lϕ(T ),ϕ(T ) evaluated at P = (xP , yP ) and τ̂(P ) = (x̃P , yP ) can
be simplified as

lϕ(T ),ϕ(T )(P ) = 2Z3Z
2yP +

(
(3X3 − 2Y 2) · ξ − 3X2Z2xP

)
v,

lϕ(T ),ϕ(T )(τ̂(P )) = 2Z3Z
2yP +

(
(3X3 − 2Y 2) · ξ − 3X2Z2x̃P

)
v.

It is evident that the two line evaluations share a large amount of variables. In
addition, the technique of lazy reduction can be employed when computing Y3.
Thus, we can obtain the above two line evaluations using the following sequence
of operations:

A = 3X2, B = A ·X,C =
B

2
, D = C +

C

2
, E = Y 2, F = 2E,U0 = D × (F − C),

U1 = E × E, Y3 = (U0 − U1) mod p,X3 = X · (D − F ), Z3 = Y · Z,G = Z2,

I = G · Z3 · (2yP ), J = A ·G,K = (B − F ) · ξ, L = J · xP ,M = J · x̃P ,
lϕ(T ),ϕ(T )(P ) = I + (K − L)v, lϕ(T ),ϕ(T )(τ̂(P )) = I + (K −M)v.

The total operation count for point doubling and two line evaluations is 5m̃ +
m̃u + s̃u + m̃ξ + 3s̃ + 3k

2 m + r̃ + 13ã + a, assuming that the computation of
division by 2 and U0 − U1 requires one and two additions, respectively.

Shared addition step (SADD) Let T = (X,Y, Z), Q = (X2, Y2, Z2) ∈
E′(Fpk/2)[r] be in Jacobian coordinates with Z ̸= 0, Z2 = 1 and T ̸= Q. Then
one can compute the point T + Q = (X3, Y3, Z3) using the mixed addition for-
mula [7, Sect. 4.3], which is given as

θ=Y2Z
3−Y, β=X2Z

2−X,X3=θ
2−2Xβ2−β3, Y3=θ(Xβ

2−X3)−Yβ3, Z3=Zβ.

Subsequently, the line function lϕ(T ),ϕ(Q) evaluated at P and τ̂(P ) can be ex-
pressed as

lϕ(T ),ϕ(Q)(P ) = Z3yp +
(
(θX2 − Y2Z3) · ξ − θxP

)
v,

lϕ(T ),ϕ(Q)(τ̂(P )) = Z3yp +
(
(θX2 − Y2Z3) · ξ − θx̃P

)
v.

Again, by taking advantage of the technique of lazy reduction, we perform the
following sequence of operations to compute the above point addition and two

11



line evaluations, which costs 6m̃ + 4m̃u + m̃ξ + 3s̃ + 3k
2 m + 2r̃ + 12ã:

A = Z2, θ = Y2 ·A · Z − Y, β = X2 ·A−X,B = β2, C = β ·B,D = X ·B,
X3 = θ2 − 2D − C,U0 = θ × (D −X3), U1 = Y × C, Y3 = (U0 − U1) mod p,

Z3 = Z · β,E = Z3 · yP , F = θ · xP , G = θ · x̃P , U2 = θ ×X2, U3 = Y2 × Z3,

H = (U2 − U3) mod p, I = H · ξ, lϕ(T ),ϕ(Q)(P ) = E + (I − F )v,

lϕ(T ),ϕ(Q)(τ̂(P )) = E + (I −G)v.

4.2 Miller loop on curves of form y2 = x3 + ax

Let E : y2 = x3 + ax be a curve over Fp with embedding degree 10 or 14. Then
E admits a quadratic twist E′ : y2 = x3 + a′ over Fpk/2 , where a′ = a · ξ2.
As a consequence, the associated untwisting isomorphism from E′ to E can be
expressed as

ϕ : (x, y) → (x, y) → (x/ξ, y/(ξv)).

For this curve shape, we represent an affine point (x, y) in the weight-(1, 2)
coordinates (X,Y, Z) satisfying that x = X/Z and y = Y/Z2 [16, Sect. 4].

Shared doubling step (SDBL) Let T = (X,Y, Z) ∈ E′(Fpk/2)[r] be in weight-
(1, 2) coordinates. For this curve shape, the point doubling formula for computing
[2]T = (X3, Y3, Z3) is derived from [16, Sect. 4], which is expressed as

X3 = (X2 − a′Z2)2, Y3 = 2Y (X2 − a′Z2)
(
2(X2 + a′Z2)2 −X3

)
, Z3 = 4Y 2.

In this case, it is more convenient to perform line evaluations on the twisted
curve. In other words, we compute the line function lT,T evaluated at ϕ−1(P ) =
(xP ξ, yP ξv) and ϕ−1 ◦ τ̂(P ) = (−xP ξ, ỹP ξv). The explicit formulas are given by

lT,T (ϕ
−1(P )) = (X3 − a′XZ2)− (3X2Z + a′Z3)xP ξ + 2Y ZyP ξv,

lT,T (ϕ
−1 ◦ τ̂(P )) = (X3 − a′XZ2) + (3X2Z + a′Z3)xP ξ + 2Y ZỹP ξv.

Accordingly, the point doubling and two line evaluations can be accomplished by
performing the following sequences of operations at a cost of 5m̃ + 5s̃ + 3k

2 m +
2m̃ξ + m̃a′ + 9ã (m̃a′ denotes the cost of multiplication by a′):

A =X2, B =2Y,C =a′ ·Z2, D =A− C,E =A+ C,X3 =D2, Z3 =B2, F =B · Z,
Y3= B ·D · (2E2 −X3), G= F · ξ, I= X ·D,H= (2A+ E) · Z · xP , J = yP ·G,
J̃= ỹP ·G,K=H · ξ, lT,T (ϕ

−1(P ))=I −K + Jv, lT,T (ϕ
−1 ◦ τ̂(P ))=I +K + J̃v.

Shared addition step (SADD) Let T = (X,Y, Z), Q = (X2, Y2, Z2) ∈
E′(Fpk/2)[r] be in weight-(1, 2) coordinates with Z ̸= 0, Z2 = 1 and T ̸= Q. We

12



adopt the mixed addition formula [16, Sect. 4] to compute the point T + Q =
(X3, Y3, Z3), which is given by

U = X −X2Z, S = U2Z,X3 = (Y − Y2Z
2)2 − (X +X2Z)S,

Y3 =
(
(Y − Y2Z

2)(XS −X3)− Y SU
)
UZ,Z3 = (UZ)2.

Subsequently, the line function lT,Q evaluated at ϕ−1(P ) and ϕ−1 ◦ τ̂(P ) are
given by

lT,Q)(ϕ
−1(P )) =

(
(Y − Y2Z

2)X2 − UZY2
)
− (Y − Y2Z

2)ξxP + yPUZξv,

lT,Q(ϕ
−1 ◦ τ̂(P )) =

(
(Y − Y2Z

2)X2 − UZY2
)
+ (Y − Y2Z

2)ξxP + ỹPUZξv.

The following sequence of operations can be used for computing the above mixed
point addition and two line evaluations at a cost of 6m̃ + 6m̃u + 2m̃ξ + 3s̃ +
3k
2 m + 3r̃ + 10ã:

A = Z2, B = X2 · Z,C = Y2 ·A,D = X −B,E = Y − C,F = Z ·D,G = F ·D,
X3 =

(
E × E − (X +B)×G

)
mod p,H = X ·G−X3, I = E · F, J = G2,

Y3=(I×H−Y × J) mod p, Z3 =F 2,K =(E×X2−F × Y2) mod p, L =E · xP · ξ,
M = F · ξ,N =M · yP , Ñ =M · ỹP , lT,Q(ϕ

−1(P )) = (K − L) +Nv,

lT,Q(ϕ
−1 ◦ τ̂(P )) = (K + L) + Ñv.

4.3 The final exponentiation

The final exponentiation is the other time-consuming stage of pairing compu-
tation. This step aims to raise the output of the Miller loop to the power of
(pk − 1)/r. For our target curves, the large exponent can be split into two parts:

(pk−1)/r = (p+ 1)(pk/2 − 1)︸ ︷︷ ︸
easy part

·Φk(p)/r︸ ︷︷ ︸
hard part

·

The exponentiation to the power of the easy part yields an element f ∈ GΦk(p),
which costs only I + 3M + 2f. The major bottleneck of the final exponentia-
tion arises from the exponentiation to the power of the hard part. Observing
that a non-degenerate power of a pairing remains a pairing, Fuentes-Castañeda
et al. [25] proved that it suffices to raise f to the power of a multiple h of Φk(p)/r,
where h can be written in the base p as

h = h0 + h1 · p+ · · ·+ hφ(k)−1 · pφ(k)−1.

As a consequence, the LLL algorithm is applied to obtain small coefficients hi.
In essence, this method aims to minimize the number of iterations required for
the final exponentiation. Nevertheless, it may still be challenging to devise an
optimized routine of the φ(k) small exponentiations fhi . For example, when
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applying this method to the BW14-351 curve, the six coefficients hi are given as
follows:

h0 = z13 + z12 + z11 − z6 + 3z5 + z3,

h1 =− z13 − z12 − 2z11 − z10 − z9 + z6 − 2z5 + z4 − 3z3,

h2 =(1 + z3)(z10 + z9 + z8)− z6 + 2z5 − z4 − z3 + 2z2 − z,

h3 =− z13 − z12 − z11 + z6 − 2z5 + z4 + z2 + z + 1,

h4 = z13 + z12 + z11 − z8 − z7 − 2z6 + 2z5 − z4 − 3,

h5 =z14 − z11 + 4z6 − 2z5 + z4.

Thus, the cost of computing fhi consists of 14 exponentiations by z and a large
amount of full extension field multiplications.

Based on the fact that fΦk(p) = 1, we can further substitute the exponent h
with λ = h+δΦk(p) for some integer δ. In particular, since Φk(p) =

∑φ(k)
i=0 (−1)ipi

in our case, the new exponent λ can be written in the base of p as

λ = λ0 + λ1 · p+ · · ·+ λφ(k) · pφ(k),

where λi = hi+(−1)iδ for i ∈ {0, 1, · · · , φ(k)− 1} and λφ(k) = δ. Therefore, the
careful selection of the parameter δ may facilitate faster final exponentiation.
We now revisit the final exponentiation on the BW14-351 curve. By setting
λ6 = −(z13 + z12 + z11 + 3z5) + (z6 + z5 + z4), we have

λ0 = h0 + λ6 = z5 + z4 + z3, λ1 = h1− λ6 =−z11− z10 − z9 − 3z3,

λ2=h2 +λ6=z
10+z9+z8− z3 +2z2 − z, λ3 = h3 − λ6 = z2 + z + 1,

λ4 = h4 + λ6 = −z8 − z7 − z6 − 3, λ5 = h5− λ6 = z14 + z13 + z12 + 3z6.

It is straightforward to see that the six coefficients λi satisfy the following rela-
tions:

λ3 = z2 + z + 1, λ0 = z3λ3, λ4 = −(z3λ0 + 3), λ2 = −(z2λ4 + zλ3),

λ1 = z3λ4, λ6 = z2λ1 + zλ0, λ5 = −z3λ1.

In conclusion, the hard part exponentiation on the BW14-351 curve benefits
from the easy relation between λi. In Tab. 5, we list our selected coefficients
λ0, λ1, · · · , λφ(k) and the corresponding sequence of operations on the five can-
didate curves.

4.4 Computational cost

The construction of tower fields and the curve equations for the five candidate
pairing-friendly curves are presented in Tab. 6. We now discuss the operation
counts of pairing computation on these curves. To this aim, we first count the
number of finite field arithmetic operations. For the Frobenius map and the
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Table 5. The exponentiation of the hard part on the five candidate pairing-friendly
curves. The values of f3 and f4 can be obtained during the computation of fz. There-
fore, we assume that the computation of f3 requires one multiplication, while the
computation of f4 is free. The notation f̄i is denoted as the conjugate of fi.

BW10-480
λ0 = z8−4z2, λ1 = z10−z8−4z4+4z2, λ2 = z6−z4−4, λ3=−z6+4, λ4=0

Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:10e + 6M + 3f
f1 ← fz4 , f2 ← fz2

1 · f̄4, f3 ← fz2

2 , f4 ← fz2

3 , f5 ← f2 · f̄1, f6 ← f4 · f̄3,
h← f3 · fp

6 · f
p2

5 · f̄2
p

BW10-511
λ0 = −z13 + 2z10 − z7 − 3, λ1 = −z10 + 2z7 − z4, λ2 = −z7 + 2z4 − z,
λ3=(z

14−2z11+z8+3z)−(z9−2z6+z3), λ4=(z
11−2z8+z5)−(z6−2z3+1)

Input:f ∈ GΦ10(p), Output:h ∈ GT , Cost:14e + 9M + Sc + 4f
f1 ← fz6−2z3+1, f2 ← fz

1 , f3 ← fz2

2 , f4 ← fz
3 , f5 ← fz

4 , f6 ← fz2

5 · f3,

f7 ← fz
6 · f̄3, f8 ← f5 · f̄1, h← f̄6 · f̄4p · f̄2p

2

· f7p
3

· f8p
4

BW10-512
λ0 = z6 − 2z4 + z2, λ1 = z4 − 2z2 + 1, λ2 = −z12 + 2z10 − z8 − 4,
λ3 = −z10 + 2z8 − z6, λ4 = −z8 + 2z6 − z4

Input:f ∈ GΦ10(p), Output:h ∈ GT , Cost:12e + 7M + Sc + 4f
f1 ← fz4−2z2+1, f2 ← fz2

1 , f3 ← fz2

2 , f4 ← fz2

3 , f5 ← fz2

4 · f4,
h← f2 · fp

1 · f̄5
p2 · f̄4p

3

· f̄3p
4

BW14-351

Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:14e + 12M + 6f
f1 ←fz2+z+1, f2 ←fz

1 , f3 ←fz2

2 , f4 ← fz
3 , f5 ← fz2

4 · f3f5 ← f̄5, f6 ←fz2

5 ,

f7 ← f2 · f6, f8 ← fz
6 , f9 ← fz2

8 , f10 ← f4 · f9, f11 ← f̄9
z
,

h← f3 · f̄8p · f̄7p
2

· f1p
3

· f5p
4

· f11p
5

· f10p
6

BW14-382
λ0= z10− 2z8 + z6, λ1= z8−2z6+z4, λ2= z6 − 2z4+ z2, λ3= z4−2z2+1,
λ4 = −z16 + 2z14 − z12 − 4, λ5=−z14+2z12−z10, λ6=−z12+2z10−z8
Input:f ∈ GΦ14(p), Output:h ∈ GT , Cost:16e + 7M + Sc + 4f
f1 ← fz4−2z2+1, f2 ← fz2

1 , f3 ← fz2

2 , f4 ← fz2

3 , f5 ← f4 · fp
3 · f

p2

2 ,
f6 ← (fz6

5 · f4)p
4

, h← fp3

1 · f5 · f̄6

inversion operation, we adopt the formulas described in [32, Sect. 5]. For multi-
plication and squaring arithmetic, we combine the lazy reduction technique [6,45]
and the Karatsuba algorithm [37]. In particular, cyclotomic squaring arithmetic
can be accelerated using the formula described in [29, Sect.2.1]. The exact op-
eration counts for finite field arithmetic across different pairing-friendly curves
are presented in Tab. 7.

Recall from Sect. 3.1 that the optimized formulas for the Miller function on
our target curves are expressed as

f
z·pk−m

z,Q (P ) · fz,Q(τ̂(P )) · fz,Q(P ) · (yP − yQ)
pm

, if j(E) = 1728;

fz·p
k−m

z,Q (P ) · fz,Q(τ̂(P )), if j(E) = 0.
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Table 6. Parameters of full extension fields and curve equations for the five candidate
pairing-friendly curves.

curve full extension field original curve E twisted curve E′

BW10-480 Fp
ξ5+11−−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 + x y2 = x3 + ξ2x

BW10-511 Fp
ξ5+4−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 − 2 y2 = x3 − 2/ξ3

BW10-512 Fp
ξ5+17−−−−→ Fp5

v2−ξ−−−→ Fp10 y2 = x3 + x y2 = x3 + ξ2x

BW14-351 Fp
ξ7−2−−−→ Fp7

v2−ξ−−−→ Fp14 y2 = x3 + 3 y2 = x3 + 3/ξ3

BW14-382 Fp
ξ7−17−−−−→ Fp7

v2−ξ−−−→ Fp14 y2 = x3 + x y2 = x3 + ξ2x

The computation of fz·p
k−m

z,Q (P ) ·fz,Q(τ̂(P )) can be performed using Alg. 2, and
it requires additional 2M+ f+ ã to complete the final step of the Miller iteration
on curves with j-invariant 1728. In conclusion, the total operation count of Miller
Loop (ML) is

ML = 2M + f + ã︸ ︷︷ ︸
if j(E) = 1728

+(nbits(z)− 1) · SDBL + (hw(z)− 1) · SADD︸ ︷︷ ︸
Lines 1-9 in Alg.2

+

(
(nbits(z)− 1) + 2hw(z)− 2

)
· M +

(
nbits(z)− 1

)
· S + f︸ ︷︷ ︸

Lines 10-16 in Alg.2

,
(6)

where nbits(z) and hw(z) represent the bit length and the Hamming weight in
2-non-adjacent form of the seed z, respectively. We use n1, n2, n3 and n4 to
denote the number of e, M, Sc and f required for the exponentiation to the
power of the hard part, respectively. Then the total operation count of the final
exponentiation (FE) is

FE = I+3M+2f︸ ︷︷ ︸
easy part

+n1
(
(nbits(z)−1)Sc+(hw(z)−1)M

)
+n2M + n3Sc+n4f︸ ︷︷ ︸

hard part

=I+
(
n1(hw(z)− 1)+n2 + 3

)
M+

(
n1(nbits(z)− 1)+n3

)
Sc+(n4+2)f.

(7)

In the following, we take BW14-351 as an example to analyze the detailed op-
eration count of pairing computation.
Example 1. The selected seed z of BW14-351 has nbits(z) = 23 and hw(z) = 4.
Then, it follows from Eq. (6) that the cost of the Miller Loop is:

ML =22(M+ S + 5m̃+m̃u + s̃u +m̃ξ +3s̃+ 21m+ r̃+ 13ã+ a)+
3(M + 6m̃ + 4m̃u + m̃ξ + 3s̃ + 21m + 2r̃ + 12ã) + (28M + 22S + f)

=53M+44S+128m̃+34m̃u+75s̃+22s̃u+25m̃ξ+ 525m+28r̃+f+322ã+22a
=216m̃+193m̃u+219m̃ξ+75s̃+22s̃u+134r̃ + f+ 525m+966ã+22a
=537m + 11271mu + 582su + 83543a + 2975r
=11808mu + 582su + 83543a + 3512r.
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Table 7. Costs of arithmetic operations in a tower extension field Fpk on the five
candidate curves.

curve m̃ = m̃u + r̃ s̃ = s̃u + r̃ ĩ m̃ξ, m̃a′

BW10-480 15mu+122a + 5r 7mu+6su+84a+5r ≈ i + 2m̃ + 22m 5a, 10a

BW10-511 15mu + 98a + 5r 7mu+6su+60a + 5r ≈ i + 2m̃ + 22m 2a, -

BW10-512 15mu+122a + 5r 7mu+8su+84a+5r ≈ i + 2m̃ + 22m 5a, 10a

BW14-351 24mu+162a + 7r 15mu+ 6su+106a + 7r ≈ i + 3m̃ + 38m a, -

BW14-382 24mu+210a + 7r 15mu+ 6su+154a + 7r ≈ i + 3m̃ + 38m 5a, 10a

Sc S M I f

m̃ + s̃ + 2ã 2m̃ + 5ã + 2m̃ξ 3m̃u+8ã+2m̃ξ+2r̃ ĩ+2m̃+m̃ξ+2s̃+ã (k−2)m

Furthermore, it can be obtained from Tab. 5 that the parameters n1, n2, n3 and
n4 are equal to 14, 12, 0 and 6, respectively. By Eq. (7), the cost of the final
exponentiation is:

FE = (I + 3M + 2f) + (14e + 12M + 6f) = I + 57M + 308Sc + 8f
= ĩ + 310m̃ + 171m̃u + 115m̃ξ + 310s̃ + 114r̃ + 96m + 1073ã
= i + 16266mu + 134m + 1860su + 5159r + 118894a
= i + 16400mu + 1860su + 118894a + 5293r.

In total, the cost of pairing computation on BW14-351 is

ML + FE = i + 28208mu + 2442su + 202437a + 8805r.

Table 8. Operation Counts of pairing computation on the five candidate pairing-
friendly curves.

curve ML FE ML+FE

BW10-480 12861mu + 1290su
+115357a + 4761r

i + 11591mu + 2412su
+111610a + 4682r

i + 24452mu + 3702su
+226967a + 9443r

BW10-511 10027mu + 822su
+71412a + 3508r

i + 12452mu + 2706su
+94203a + 5130r

i + 22479mu + 3528su
+165615a + 8638r

BW10-512 11761mu + 1170su
+105417a + 4341r

i + 12820mu + 2610su
+123314a + 5130r

i + 24581mu + 3780su
+228731a + 9471r

BW14-351 11808mu + 582su
+83543a + 3512r

i + 16400mu + 1860su
+118894a + 5293r

i + 28208mu + 2442su
+202437aa + 8805r

BW14-382 12594mu + 720su
+115874a + 3874r

i + 19883mu + 2034su
+191396a + 6137r

i +32477mu+ 2754su
+307270a + 10011r
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In Tab. 8, we summarize the costs of pairing computation on the five candidate
curves. It should be noted that the selected primes p for BW10-480, BW10-511,
and BW10-512 can be represented by 8 computer words in a 64-bit processor,
while for BW14-351 and BW14-382 only require 6 computer words. As illustrated
in [4, Sect. 8], it is reasonable to estimate that m8 ≈ (136/78)m6 ≈ 1.74m6 and
a8 ≈ (8/6)a6 ≈ 1.33a6, where mi and ai denote the costs of multiplication and
addition in Fp, with p a i computer word size prime in a 64-bit processor. Based
on the estimate and Tab. 8, we predict that BW14-351 is the most efficient
choice among the five candidate curves for pairing computation.

5 Subgroup Membership Testing

In pairing-based cryptographic protocols, subgroup membership testing plays
a critical role in defending against small subgroup attacks. [10, 41]. Recent re-
search [17,47] has demonstrated that efficiently computable endomorphisms are
powerful tools for accelerating these testings in various pairing groups. In this
section, we describe the application of state-of-the-art technique [17] to our spe-
cific pairing-friendly curves. Furthermore, we also introduce a faster method for
G2 membership testing.

5.1 G1 membership testing

Given a candidate point P , the process of verifying whether P ∈ G1 can be
divided into two phases. Concretely, one can first check whether P ∈ E(Fp),
followed by verifying that the order of P is exactly r. It is clear that the compu-
tational cost largely comes from the second phase. Let the endomorphism τ on
G1 act as scalar multiplication by λ1, and let Lτ be a two dimensional lattice as

Lτ = {(a0, a1) ∈ Z2|a0 + a1 · λ1 ≡ 0 mod r}.

By [49, Theorem 2], the norm of the shortest vector in Lτ is about log r/2. We
let (a0, a1) be a vector in Lτ with gcd(h1, h

′
1) = 1, where h1 = #E(Fp)/r and

h′1 =

{(
a20 − a0 · a1 + a21

)
/r, if j(E) = 0;(

a20 + a21)/r, if j(E) = 1728.
(8)

Dai et al. [17] prove that the short vector (a0, a1) can be used to accelerate G1

membership testing, i.e.,

P ∈ G1 ⇔ P ∈ E(Fp) and [a0]P + [a1]τ(P ) = OE .

In general, the constraint gcd(h1, h
′
1) = 1 is mild and thus one can find a valid

short vector close to the shortest one on many pairing-friendly curves. It means
that the process of G1 membership testing requires about log r/2 iterations.
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5.2 GT membership testing
In the case of GT membership testing, the Frobenius endomorphism is critical in
finding valid short vectors. To illustrate it, we first use Lπ to denote the following
φ(k) dimensional lattice:

Lπ = {(a0, · · · , aφ(k)−1) ∈ Zφ(k)|a0 + a1 · p+ · · ·+ aφ(k)−1 · pφ(k)−1 ≡ 0 mod r}.

The norm of the shortest vector in Lπ is about log r/φ(k). For a given short
vector c = (c0, c1, · · · , cφ(k)−1) ∈ Lπ, we define that

hT = Φk(p)/r and h′T =
∑φ(k)−1

i=0
ci · pi.

Dai et al. found that if the short vector c satisfies gcd(hT , h
′
T ) = 1, then

α ∈ GT ⇔ αΦk(p) = 1 and
φ(k)−1∏
i=0

αci·pi

= 1.

Likewise, the condition gcd(hT , h
′
T ) = 1 is mild, and thus the process of GT

membership testing requires about log r/φ(k) iterations.
Modified short vector: The previous idea for optimizing the final exponen-
tiation still applies to GT membership testing such that several full extension
field multiplications can be saved. Specifically, once the candidate element α
proved to be a member of GΦk(p), one can replace the original valid vector c by
c′ = (c0 + δ, c1 − δ, · · · , cφ(k)−1 − δ, δ) for some integer δ for our target curves as

φ(k)−1∏
i=0

αci·pi

= 1 ⇔ αδ·Φk(p) ·
φ(k)−1∏
i=0

αci·pi

= 1.

In particular, if the first i tuples of c′ are 0, we then can obtain a new vector
as (ci+1 + (−1)i+1δ, · · · , cφ(k)−1 − δ, δ, 0, · · · , 0). For instance, using the Magma
code provided in [17, Sect. 5], a valid vector for GT membership testing on
BW14-351 is given by c = (1,−1, 1, z2 − 1,−z2 + z + 1,−z). Taking δ = −1, we
have

(c0 − 1, c1 + 1, · · · , c6 − 1, 1) = (0, 0, 0, z2,−z2 + z,−z + 1,−1).

By left-shifting the above vector, a modified short vector (z2,−z2 + z,−z +
1,−1, 0, 0, 0) is obtained. Consequently, it is equivalent to checking that

α · α(p+p3+p5)·p = αp+p3+p5

, αp3

= αz2

· α(z−z2)·p · α(1−z)·p2

.

5.3 G2 membership testing
Recall from Sect. 2.1 that ψ and η represent two efficiently computable en-
domorphisms on E′ with j(E′) = 0 or 1728. For a given short vector c =
(c0, c1, · · · , cφ(k)−1) ∈ Lπ, we define that

h2 = #E′(Fpk/2)/r and h′2 =
∑φ(k)−1

i=0
ci · pi.
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Dai et al. method for G2 membership testing is summarized as follows: If the
short vector c satisfies that gcd(h2, h

′
2) = 1, then

Q ∈ G2 ⇔ Q ∈ E′(Fpk/2) and
φ(k)−1∑
i=0

[ci]ψ
i(Q) = OE′ .

Again, the above computation requires about log r/φ(k) iterations. In the fol-
lowing, we develop a faster method for G2 membership testing, which is tailored
to our target curves. To this aim, we first determine the characteristic equation
of the endomorphism Ψ = ψ ◦ η.

Lemma 2. Let E be an ordinary curve over Fp with #E(Fp) = p + 1 − t,
admitting a twist E′. If j(E′) = 0 or 1728, then the characteristic equation of Ψ
is given as follows:

(1) j(E′) = 0 : Ψ2 + t±3f
2 Ψ + p = 0 with t2 − 4p = −3f2;

(2) j(E′) = 1728 : Ψ2 ± fΨ + p = 0 with t2 − 4p = −f2.

Proof. We only give the proof of the case j(E′) = 0 (The proof of the remaining
case is similar). As mentioned in Sect. 2.1, the characteristic equation of Ψ can
be expressed as

Ψ2 +mΨ + n = 0 (9)

for some integers m and n. Since Nrd(ψ) = p and Nrd(η) = 1, we have

n = Nrd(Ψ) = Nrd(ψ) · Nrd(η) = p.

Furthermore, the characteristic equation of ψ and η are given as follows:

ψ2 − tψ + p = 0, η2 + η + 1 = 0.

It is easy to deduce that

ψ =
t±

√
−3 · f
2

and η =
−1±

√
−3

2
.

By the fact that Ψ = ψ ◦ η, we have

Ψ =
t±

√
−3 · f
2

· −1±
√
−3

2
=

−(t± 3f)±
√
−3 · (t− f)

4
. (10)

On the other hand, it can be obtained from Eq. (9) that

Ψ =
−m±

√
m2 − 4n

2
. (11)

By comparing Eqs.(10) and (11), we conclude that m = (t± 3f)/2, which com-
pletes the proof. ⊓⊔
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Recall that the endomorphism η acts on G2 as scalar multiplication by λ2 that
is defined in Eq. (3). By combining the actions of ψ and η on G2 together, we
have Ψ(Q) = [ℓ]Q for any Q ∈ G2, where ℓ = p · λ2 mod r. Since the order of Ψ
restricting on the Fpk/2 rational endomorphism ring is equal to 2k or 3k on our
target curves, we have r | Φ2k(ℓ) or r | Φ3k(ℓ). The degree of each of the two
cyclotomic polynomials is equal to 2φ(k). For this reason, we can construct the
following 2φ(k) dimensional lattice:

LΨ = {(a0, · · · , a2φ(k)−1) ∈ Z2φ(k)|a0+a1 ·ℓ+· · ·+a2φ(k)−1 ·ℓ2φ(k)−1 ≡ 0 mod r}.

Given a short vector c = (c0, c1, · · · , c2φ(k)−1) ∈ LΨ , we define that

g(Ψ) = Ψ2 − tΨΨ + p and h(Ψ) =
∑2φ(k)−1

i=0
ciΨ

i,

where tΨ is the trace of Ψ that is given in Lemma 2. By taking full advantage
of the endomorphism Ψ , a new method for G2 membership testing is proposed,
which is tailored to our target curves.

Theorem 1. Let E be an ordinary curve over Fp with j-invariant 0 or 1728.
Let r be a large prime such that r | #E(Fp). Suppose E admit a twist E′ of
degree 2 such that r | #E′(Fpk/2). Let c = (c0, c1, · · · , c2φ(k)−1) ∈ LΨ ,and let
Res(h(Ψ), g(Ψ)) be the resultant of h(Ψ) and g(Ψ). Assume that the short vector
c satisfies that

gcd(Res
(
h(Ψ), g(Ψ)), h2 · r

)
= r. (12)

For any non-identity point Q of E′(Fpk/2), the point Q ∈ G2 = E′(Fpk/2)[r] if
and only if ∑2φ(k)−1

i=0
[ci]Ψ

i(Q) = OE′ . (13)

Proof. If Q ∈ G2, then we have Ψ(Q) = [ℓ]Q. As a result, we can easily check
that ∑2φ(k)−1

i=0
[ci]Ψ

i(Q) =
∑2φ(k)−1

i=0
[ciℓ

i]Q = OE′ .

Conversely, we let b0 and b1 be two integers satisfying that b0+ b1Ψ = h(Ψ) mod
g(Ψ). By the property of resultant, we have

Res(h(Ψ), g(Ψ)) = Res(b0 + b1Ψ, g(Ψ)) = b20 + b0b1tΨ + b21p.

Furthermore, by the fact that h(Ψ)(Q) = g(Ψ)(Q) = OE′ , we have

[b20 + b0b1tΨ + b21p]Q = (b0 + b1Ψ̂)(b0 + b1Ψ)(Q) = OE′ .

Therefore, the order of Q divides gcd(Res(h(Ψ), g(Ψ)), h2 · r). Since the selected
vector c is restricted by Eq. (12), we conclude that Q ∈ E′(Fpk/2)[r] = G2, which
completes the proof. ⊓⊔
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Likewise, the new approach requires about log r/(2φ(k)) bit operations, which
is about 2× as fast as the previous leading work [17]. In Tab. 9, we list the short
vectors that can be used for G1, G2, and GT membership membership testings
on the five candidate pairing-friendly curves. It is straightforward to see that
the computational cost of G2 membership testing on the five candidate curves
comes largely from a scalar multiplication by z.

Table 9. Short vectors for subgroup membership testings on five candidate pairing-
friendly curves.

curve G1 (a0, a1) G2 GT

BW10-480 (z3 − z,−1 − a0 · z) (1, 0, 0,−z, 0, 0, 0, 0) (z2, 0, 0, 0, 1)

BW10-511 (a1 · z − 1, z3 + z2 − 1) (1, 0,−z − 1,−1, 0, 0, 1, 1) (1,−z2, 0, z, 0)

BW10-512 (z3−z,−a0 · z−1) (0, 1, 0, z − 1, 0, 1,−z + 1,−1) (1, z2 − 1, 0, z2 − 1)

BW14-351 (z5+z4−z2−z,(1−z)·a0−1) (1, 1, 0,−1,−1, 0, 1, 0,−1,−1, 0, z+1) (z2, z−z2, 1−z,−1)

BW14-382 (z5 − z3 + z,−1 + a0 · z) (0, 1, z,−1, 0, 1, 0,−1, 1, 1, 0, z − 1) (z2,−1, z2,−1)

6 Cofactor Multiplication

Hashing a string into G1 or G2 is an important building block in pairing-based
cryptographic protocols. This operation consists of two phases: first mapping
a string into a curve point, followed by a cofactor multiplication so that the
resulting point falls into the target subgroup. In this section, we present efficient
algorithms for cofactor multiplication for G1 and G2 on our chosen target curves.

6.1 Cofactor multiplication for G1

Given a random point P ∈ E(Fp), cofactor multiplication for G1 is to map
the point P into G1. The naive way is to perform the scalar multiplication
[h1]P , where the cofactor h1 = #E(Fp)/r. EI Housni, Guillevic and Piellard [23]
observed that the cofactor h1 can be replaced by a smaller cofactor h̃1 on a large
class of cyclotomic pairing-friendly curves, where h̃1 is determined by the group
structure of E(Fp):

E(Fp) ∼= Zm1
⊕ Zh̃1·r with m1 | h̃1 and m1 · h̃1 = h1.

In particular, if the curve E has j-invariant 0 or 1728, then m1 is the largest
integer such that m2

1 | #E(Fp) and m1 | (p − 1). Thus, it is not difficult to
determine the value of m1 on the five candidate curves. In the optimal case, we
have m1 ≈ h̃1 and thus the new method would be twice as fast as the naive one,
e.g. for the BW10-480 curve.
Faster cofactor multiplication for G1: The algorithm of EI Housni-Guillevic-
Piellard can be further optimized in the case that m1 ≪ h̃1, such as for the
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BW10-511, BW10-512, BW14-351 and BW14-382 curves. In fact, a random point
P ∈ E(Fp) can be mapped into G1 as follows:

E(Fp)
m1−−→ E(Fp)[n1 · r]

a0+a1τ−−−−−→ E(Fp)[r] = G1.

In detail, the first step is to map the point P into the cyclic group E(Fp)[n1 · r]
by performing a scalar multiplication by m1, where n1 = h̃1/m1; the next step
is to clear the cofactor n1 using the endomorphism a0 + a1 · τ , where a0 and a1
are integers satisfying a0 + a1 · s1 ≡ 0 mod n1 and s1 denotes the scalar of the
endomorphism τ acting on E(Fp)[n1 ·r]. More specifically, the LLL algorithm can
be exploited to look for two integers a0 and a1 such that max{log|a0|, log|a1|} ≈
log n1/2. In conclusion, cofactor multiplication for G1 can always be performed
in around logm1 + log n1/2 ≈ log h1/2 iterations, which does not depend on the
group structure of E(Fp). In Tab.10, we summarize the parameters h1, m1 and
h̃1, and short vectors (a0, a1) across different pairing-friendly curves.

Table 10. Important parameters for cofactor multiplication for G1 on the five candi-
date pairing-friendly curves.

curve h1 m1 h̃1 n1 (a0, a1)

BW10-480 z4

4
z2

2
z2

2
1 −

BW10-511 (z2−z+1)(z3−1)2

3
(z3−1)

3
(z2 − z + 1)(z3 − 1) 3(z2 − z + 1) (1, z)

BW10-512 (z2−1)2(z2+1)
4

(z2−1)
2

(z2−1)(z2+1)
2

z2 + 1 (z,−1)

BW14-351 (z2−z+1)(z2+z+1)
3

1 (z2−z+1)(z2+z+1)
3

(z2−z+1)(z2+z+1)
3

(2z, z2+z−1)

BW14-382 (z2−1)2(z2+1)
4

(z2−1)
2

(z2−1)(z2+1)
2

z2 + 1 (z, 1)

6.2 Cofactor multiplication for G2

Cofactor multiplication for G2 aims to map a random point Q of E′(Fpk/2) into
G2. The naive way is to compute [h2]Q directly, where h2 = #E′(Fpk/2)/r. Since
the cofactor h2 is much larger than the cofactor h1 and G2 is defined over Fpk/2 ,
the computational cost of the cofactor multiplication for G2 is more expensive
than that for G1. To date, the fastest known algorithm [25] requires approx-
imately log h2/φ(k) iterations to clear the cofactor. Recently, Dai et al. [19]
proposed a fast method for this operation on curves with the lack of twists. In
this subsection, we show that this method can be generalized to our target curves
such that the number of iterations can be further reduced to log h2/(2φ(k)).

Lemma 3. Let G′
0 = {Q ∈ E′(Fpk/2)|Φk(ψ)(Q) = OE′}. Then the order of G′

0

is precisely equal to
#E′(F

pk/2 )·#E(Fp)

#E(Fp2 )
.
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Proof. Let G0 = {Q ∈ E(Fpk)|Φk(π)(Q) = OE}. It is easy to see that G0
∼= G′

0

and thus #G0 = #G′
0. By [19, Proposition 2], we have

#G0 =
#E(Fpk) ·#E(Fp)

#E(Fpk/2) ·#E(Fp2)
. (14)

On the other hand, it can be obtained from [34, Theorem 3] that

#E(Fpk) = #E(Fpk/2) ·#E′(Fpk/2). (15)

Inserting Eq.(14) into Eq.(15), it yields that

#G′
0 = #G0 =

#E′(Fpk/2) ·#E(Fp)

#E(Fp2)
, (16)

which completes the proof of this lemma. ⊓⊔

Since G2 is a subgroup of G′
0, we define that G′

0
∼= Zm2

⊕ Zm2·n2·r for some
integers m2 and n2. As a consequence, the process of mapping a random point
of E′(Fpk/2) into G2 can be divided into the following three steps:

E′(Fpk/2) → G′
0 → E′(Fpk/2)[n2 · r] → G2.

Since the integer k/2 is prime for our chosen curves, a random point Q ∈
E′(Fpk/2) can be mapped into the group G′

0 under the endomorphism ψ + 1.
It is clear that the computational cost of operations largely comes from the last
step. In the following, we show how to map a random point of E′(Fpk/2)[n2 · r]
into G2. To illustrate it, we first introduce the two lemmas.

Lemma 4. Let t′ be the trace of the pk/2 power Frobenius endomorphism of E′.
Let f, f ′ ∈ Z be such that t2 − 4p = −Df2 and t′2 − 4pk/2 = −Df ′2, where −D
is the square-free part of t2 − 4p. Let H be a cyclic subgroup of G′

0 with order
n2 · r. Then ψ(P ) = [a]Q for any Q ∈ H, where a = t±f(t′−2)

2f ′ mod n2 · r.

Proof. The proof is given in [25, Lemma 2]. ⊓⊔

As illustrated in [25], Lemma 4 induces a fast approach for cofactor multiplica-
tion for G2 in log n2/φ(k) iterations on a large class of pairing-friendly curves.

Lemma 5. Let H be a cyclic subgroup of G′
0 with order n2 ·r. Then η(Q) = [b]Q

for any Q ∈ H, where

b =


−f ± (2a− t)

2f
mod n2 · r, if j(E) = 0,

±(2a− t)

f
mod n2 · r, if j(E) = 1728.

Proof. The proof is derived from [19, Lemma 2]. ⊓⊔
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In the following, we propose a more efficient approach for cofactor multiplication
for G2 suitable for curves listed in Tab. 1. Our main idea is summarized in the
theorem below.

Theorem 2. Let E be an ordinary elliptic curve admitting a degree-2 twist E′

over an extension field Fpk/2 , where k is the even embedding degree. Let H be
a cyclic subgroup of G′

0. If the curve E satisfies the following two conditions:
(i)j(E) ∈ {0, 1728}; (ii)3 ∤ k and 4 ∤ k, then there exists a polynomial

h(x) = h0 + h1x+ · · ·+ hs−1x
s−1 ∈ Z[x]

such that h(Ψ)(Q) ∈ G2 for any Q ∈ H, where s = 2φ(k) and |hi| < |n2|1/s for
i = 0, · · · , s− 1.

Proof. Since Ψ = ψ ◦ η, it can be deduced from Lemmas 4 and 5 that Ψ(Q) =
[λ2]Q, where λ2 = a · b mod n2 · r. Under the condition that 3 ∤ k and 4 ∤ k, we
can deduce that the order of Ψ acting on the group G′

0 is 2k or 3k, which means
that {

Φ3k(λ2) ≡ 0 mod n2 · r, if j(E) = 0;
Φ2k(λ2) ≡ 0 mod n2 · r, if j(E) = 1728.

In both cases, the degree of the cyclotomic polynomial is 2φ(k). Analogous to [25,
Theorem 1], there exists a polynomial

h(x) = h0 + h1x+ · · ·+ hφ(k)−1x
2φ(k)−1 ∈ Z[x]

such that h(λ2) is a multiple of n2, where |hi| < |n|1/2φ(k). Therefore, we have
h(Ψ)Q ∈ G2 for any Q ∈ H, which completes the proof of this theorem. ⊓⊔

By Theorem 2, the number of iterations for G2 cofactor multiplication can be
reduced to log n2

2φ(k) ≈ log h2

2φ(k) on the curves listed in Tab. 1, which is faster than the
previous leading work [25]. In the following, we take the BW14-351 curve as an
example to describe the main mechanics of the new algorithm.

Example 2 (Cofactor multiplication for G2 on BW14-351). We first can check
that gcd(#G′

0, p
7 − 1) = 1 on BW14-351, where #G′

0 can be obtained from
Lemma 3. It follows from [19, Proposition 1] that G′

0 is cyclic. Applying the
LLL algorithm, we can obtain a target vector (h0, h1, · · · , h11), where

hi =



0, if 9 ≤ i ≤ 11;
2, if i = 8;
z2 + z + 1, if i = 6;
zhi+1, if 2 ≤ i ≤ 5;
zh2 − 1, if i = 1;
h1 + h4 − h3 − h6 + z + 2, if i = 0;
− h1 − h4 + h2 + h5 + 1. if i = 7.
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Given a random point Q ∈ E′(Fp7), we fist obtain the point P = (ψ + 1)(Q).
Then, we have h(Ψ)P =

∑8
i=0 Ψ

i(Ri) ∈ G2, where Ri is given as follows:

R8 = [2]P,

R6 = [z2 + z + 1]P,

Ri = [z]Ri+1, 2 ≤ i ≤ 5,

R1 = [z]R2 − P,

R7 = −(R1 +R4) + (R2 +R5)− P,

R0 = (R1 +R4)− (R3 +R6) + [z]P +R8.

In total, cofactor multiplication for G2 on BW14-351 costs seven scalar multi-
plications by z, twenty one point additions, one ψ map, and eight Ψ maps.

7 Implementation Results

We first present Magma code to validate the correctness of our proposed al-
gorithms and formulas. Furthermore, we also provide high-speed software im-
plementation for several important pairing group operations on BW10-511 and
BW14-351. These two target curves are the winners for pairing computation
among our chosen five candidate curves with embedding degrees 10 and 14, re-
spectively. Our implementation is based on the RELIC toolkit, which is a well-
known cryptographic library for building pairing-based cryptographic protocols
on popular curves at the updated 128 security level, such as BN446 and BLS12-
446. In addition, we have observed that the implementation of pairing group
operations on BW13-310 presented in [18] also relies on this library. Therefore,
we have integrated our code into RELIC to enable fair performance comparisons
between the two target curves and these popular curves. Besides our proposed
algorithms, we exploit state-of-the-art techniques to implement the following
operations.

• The indifferentiable hashing function H1 : {0, 1}∗ → G1 can be implemented
by using the SwiftEC map [14], followed by a cofactor multiplication by h1.

• Since the cofactor h2 > r for our chosen curves, the construction of the
indifferentiable hashing function H2 : {0, 1}∗ → G2 only require the map
Fpk/2 → E′(Fpk/2) to be well-distributed [39, Sect. 1.2]. Consequently, we
can use either the Shallue–van de Woestijne map [48] or the SwiftEC map.

• We employ the GLV method [27] and GLS method [26] to perform group
exponentiations in G1 and GT , respectively.

• For group exponentiation in G2 on our target curves, we fortunately find
that Dai et al. method [18, Sect. 5] can be exploited to achieve a 2φ(k)-
dimensional scalar decomposition.

• In terms of the computation of pairings products, we adopt the strategies
proposed [28,46,52] such that the final exponentiation step and the squaring
computations at the Lines 3 and 12 of Alg. 2 can be shared.
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Table 11. Benchmarking results of pairing group operations across different pairing-
friendly curves reported in 103 cycles averaged over 104 executions.

Operation\Curve BLS12-446 BN446 BW13-310 BW10-511 BW14-351

hashing to G1 327 149 125 621 204
hashing to G2 1630 1361 16699 11981 7236

exp in G1 541 791 268 592 362
exp in G2 918 1394 7247 4621 3531
exp in GT 1322 2243 1062 1476 1098
test in G1 389 8 269 723 345
test in G2 333 487 1176 1262 923
test in GT 372 540 223 586 384

ML 1554 2480 1719 2819 1600
FE 1835 1589 2579 3872 2337

Single pairing 3389 4069 4298 6691 3937
2-pairings 4439 5717 5640 9016 5205
5-pairings 7614 10532 9621 15621 9008
8-pairings 10790 15349 13603 22191 12811

It should be noted that RELIC supports the GLV decomposition and the SwiftEC
map once the associated curve parameters are given. Specifically, fast constant-
time evaluation of the SwiftEC map in RELIC is based on the technique proposed
in [5].

The implementations are compiled with GCC 11.4.0 and flags -O3 -funroll-
loops -march=native -mtune=native. The benchmarks are executed on an In-
tel Core i9-12900K processor running at @3.2GHz with TurboBoost and hyper-
threading features disabled. Tab. 11 reports detailed performance comparisons
for each building block across different curves. The results reveal that BW14-351
outperforms BW10-511 for all pairing group operations. Moreover, BW14-351 ex-
hibits competitive performance compared to mainstream pairing-friendly curves.
Specifically, single pairing computation on BW14-351 is slightly faster than that
on BN446 and BW13-310, while about 16.2% slower than that on BLS12-446.
Regarding group exponentiations in G1 and GT , BW14-351 is about 49.4% and
20.4% faster than BLS12-446, 118.5% and 100% faster than BN446, while 35.1%
and 3.4% slower than BW13-310. Moreover, compared to BW13-310, BW14-
351 benefits from a lighter performance penalty for hashing to G2 and group
exponentiation in G2, although it remains slower than BN446 and BLS12-446.

These results show that each curve has its own strengths and no one can be
said to be perfect. The selection of a curve should be based on a careful analysis
of the protocol requirements and a thorough evaluation of the performance trade-
offs. The BW14-351 curve may be an appropriate choice if a protocol pursues
fast group exponentiations in G1 and GT , while wishes to minimize the perfor-
mance penalty for group exponentiations in G2. In addition, this curve provides
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the 149-bit security level on the finite field side, making it advantageous for
achieving long-term security.

8 Conclusion

In this paper, we provided a comprehensive research for a list of pairing-friendly
curves with embedding degrees 10 and 14. We generalized Dai-Zhang-Zhao al-
gorithm for pairing computation on BW13-310 to our target curves, so that
the number of Miller iterations can be reduced to approximately log r/(2φ(k)),
while the denominator elimination trick still can be applied. We also proposed
optimized algorithms for cofactor multiplication for G1 and G2, and subgroup
membership testing for G2 on these curves. After checking the correctness of our
proposed algorithms via Magma code, we presented high-speed software imple-
mentations on the BW10-511 and BW14-351 curves inside the RELIC library,
and compared performance tradeoffs with other popular curves at the same
security level, including BN446, BLS12-446 and BW13-310. Our results showed
that the BW14-351 curve is competitive for building pairing-based cryptographic
protocols at the updated 128-bit security level.
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