
Registered (Inner-Product) Functional Encryption

Danilo Francati1[0000−0002−4639−0636], Daniele Friolo2[0000−0003−0836−1735], Monosij Maitra3,5⋆⋆, Giulio
Malavolta4,5, Ahmadreza Rahimi5[0009−0004−2340−6588], and Daniele Venturi2[0000−0003−2379−8564]

1 Aarhus University, Denmark
dfrancati@cs.au.dk

2 Sapienza University of Rome, Italy
friolo@di.uniroma1.it

venturi@di.uniroma1.it
3 Ruhr-Universität Bochum, Germany

monosij.maitra@rub.de
4 Bocconi University, Italy

5 Max-Planck Institute for Security and Privacy, Germany
giulio.malavolta@unibocconi.it

ahmadrezar@pm.me

Abstract. Registered encryption (Garg et al., TCC’18) is an emerging paradigm that tackles the key-
escrow problem associated with identity-based encryption by replacing the private-key generator with
a much weaker entity known as the key curator. The key curator holds no secret information, and is
responsible to: (i) update the master public key whenever a new user registers its own public key to
the system; (ii) provide helper decryption keys to the users already registered in the system, in order
to still enable them to decrypt after new users join the system. For practical purposes, tasks (i) and (ii)
need to be efficient, in the sense that the size of the public parameters, of the master public key, and of
the helper decryption keys, as well as the running times for key generation and user registration, and
the number of updates, must be small.
In this paper, we generalize the notion of registered encryption to the setting of functional encryption
(FE). As our main contribution, we show an efficient construction of registered FE for the special case
of (attribute hiding) inner-product predicates, built over asymmetric bilinear groups of prime order. Our
scheme supports a large attribute universe and is proven secure in the bilinear generic group model. We
also implement our scheme and experimentally demonstrate the efficiency requirements of the registered
settings. Our second contribution is a feasibility result where we build registered FE for P/poly based
on indistinguishability obfuscation and somewhere statistically binding hash functions.

Keywords: Registered encryption; functional encryption, inner-product predicate encryption.

⋆⋆ Research conducted partially at Technische Universität Darmstadt, Germany.



1 Introduction

Functional encryption (FE) [SW05, O’N10, BSW11] enriches standard public-key encryption with fine-
grained access control over encrypted data. This added feature is made possible by having a so-called master
secret key msk that can be used (by an authority) to generate decryption keys skf associated with functions
f , in such a way that decrypting any ciphertext c, corresponding to a plaintext m, reveals f(m) and nothing
more. Recent years have seen a flourish of works exploring FE constructions in various settings and from
different assumptions [GGH+13, SW14, GGHZ16, GKP+13, BGG+14, ABSV15, GLSW15, Lin16, AS17,
AJL+19, Agr19, JLMS19, JLS21, BDGM20, WW21, GP21, BDGM22, GJLS21, JLS22, GVW12, AV19,
AMVY21, AKM+22], and its applications to building powerful cryptographic tools such as reusable garbled
circuits [GKP+13], adaptive garbling [HJO+16], multi-party non-interactive key exchange [GPSZ17], univer-
sal samplers [GPSZ17], verifiable random functions [GHKW17, Bit20], and indistinguishability obfuscation
(iO) [BV15, AJ15] (which, in turn, implies a plethora of other cryptographic primitives [SW14]).

An important limitation of FE is the well-known key escrow problem: the authority holding the master
secret key (sometimes referred to as the private key generator – PKG) can generate secret keys for any
function, allowing it to arbitrarily decrypt messages intended for specific recipients. This requires a fully
trusted PKG which severely restricts the applicability of FE in many scenarios.

Registered Encryption. A recent line of research proposes to tackle the key-escrow problem in the
much simpler case of identity-based encryption6 (IBE) [Sha84]. This led to the notion of registered IBE
(RIBE) [GHMR18]7, where the main idea is to replace the PKG with a much weaker entity called the key
curator (KC), whose role is to register the public keys of the users (without possessing any secret key). In
particular, in a RIBE scheme there is an initial setup phase in which a common reference string (CRS) is
sampled. The CRS is given to the KC which publishes an (initially empty) master public key. Each user now
can also use the CRS and sample its own public and secret key, and can register its identity and the chosen
public key to the KC; the KC is required to generate a new master public key, which includes the newly
registered public keys, and which will permit encrypting messages to any of the registered users. Moreover,
since the master public key is updated over time, the KC is responsible for providing any decrypting party
with a so-called helper decryption key, i.e., auxiliary information connecting its public key with the updated
master public key.

Recently, the notion of RIBE has been extended to the setting of attribute-based encryption (ABE) [HLWW22],
where one can encrypt messages with respect to policies, and where decryptors can recover the message if their
attributes satisfy the policy embedded in the ciphertext. However, their registered ABE (RABE) schemes
[HLWW22] are required to hide only messages in the ciphertext. In particular, they do not hide the policies
embedded in the ciphertexts, since they are required in the clear for decryption to work. This restricts using
RABE in scenarios where hiding the policy is also important.

More generally, the current state of affairs leaves open the question of building registered FE (RFE),
where any user can sample its own key pair (pk, sk) as before, along with fixing a function of its choice
(say f , from a class of functions), and register (pk, f) with the KC. In such a setting, one can then encrypt
messages m that the registered user can decrypt with sk and a helper secret key to learn only f(m). Overall,
this would achieve the analogous functionality to that of the celebrated notion of FE, without suffering from
the key escrow issue. The focus of our work is to make progress on this problem.

1.1 Our Contributions

We initiate the study of RFE in this paper by providing two constructions – one for a special class of FE,
and another for the general class of all functions.

6 IBE can be seen as a special case of FE for equality predicates fy such that fy(x,m) = m if and only if y = x (and
⊥ otherwise). Here, x and y have the role of the parties’ identities (which do not need to be secret), and m is the
encrypted message.

7 The original paper define the primitive as registration based encryption. However, we choose to call it as registered
IBE, in line with the more recent work in [HLWW22].

2



In particular, as our first contribution, we provide the first RFE scheme for the class of inner-product
predicates (a.k.a. (attribute hiding) inner-product predicate encryption), i.e., a registered IPE (RIPE) from
asymmetric bilinear maps on prime-order groups. More concretely, our scheme supports the function class
F = {fx(·, ·)}x∈Zn+

q
defined as:

fx(m,y) =

{
m if ⟨x,y⟩ = 0

⊥ otherwise
(1)

where x and y are n-size vectors over Zn+

q = Zn
q \ {0n}, and q is a prime. Below we summarize our result

informally in Theorem 1 and also later in Table 1 (Section 3 on page 10) when we discuss related works to
compare it with existing registered encryption schemes.

Theorem 1 (Informal). Let λ be a security parameter, n be the length of supported vectors, and L be
a bound on the maximum number of users. There is a (black-box) construction of RIPE supporting a large
universe and up to L users in the generic bilinear group model, satisfying the following properties:

– The CRS is of size n · L2 · poly(λ, logL).
– The master public key and each helper decryption key is of size n · poly(λ, logL).
– Key-generation and registration runs in time L · poly(λ, logL) and n · L2 · poly(λ, logL), respectively.
– Each registered user receives at most O(logL) updates from the KC over the entire lifetime of the system.

Moreover, both encryption and decryption runs in time n · poly(λ, logL).

Our scheme is proven secure in the bilinear generic group model [BCFG17, BFF+19]. We emphasize that our
scheme supports attribute-hiding and a large universe unlike [HLWW22]. In particular, our scheme satisfies
the strong notion of two-sided security8 [FFMV23, KSW08], where no information about the attribute vector
y is revealed (besides the orthogonality test) even if decryption succeeds, akin to what [KSW08] achieved.9

Somewhat interestingly, our proof strategy and construction template are substantially different from
the typical inner-product predicate encryption schemes in the literature (e.g., [KSW08]). Roughly speaking,
traditional proof strategies work by “programming” the function output (for the challenge ciphertext) in
the key given by the adversary, and then arguing that this new key is indistinguishable from the original
distribution. In the registered setting, the adversary can sample its own key, so the reduction has no control
over it and cannot modify its distribution. Thus we see RIPE as the main technical contribution of this work.

We also implemented our scheme and describe the results in Section 7. The benchmarks are achieved with
a set of L = 100 to L = 1000 users with attribute vectors of length varying between n = 10 and n = 100. Our
results demonstrate concrete, practical efficiency of our scheme beyond the realms of only feasibility. Further,
following the generic and non-cryptographic transformations described in [KSW08, Section 5], our RIPE
scheme can also support constant-degree polynomial evaluations, disjunctions, conjunctions, and evaluating
CNF and DNF formulas.

As our second contribution, we build RFE for all circuits from indistinguishability obfuscation (iO). This
is a feasibility result extending the iO-based RABE schemes in [HLWW22] to the setting of RFE. In more
detail, we achieve the following:

Theorem 2 (Informal). Let λ be the security parameter. Assuming somewhere statistically binding hash
functions [HW15, OPWW15] and iO [BGI+12], there is a (non black-box) construction of RFE supporting
arbitrary functions and an arbitrary number of users, satisfying the following properties:

– The CRS, master public key, and each helper decryption key is of size poly(λ).
– Key-generation and registration runs in time poly(λ) and L ·poly(λ), respectively, where L stands for the

current number of registered users.

8 Two-sided security in PE allows an adversary to obtain secret keys for predicates that can decrypt a challenge
ciphertext, provided the challenge message pair consists of the same message.

9 Generic compilers from any ABE for LSSS (or equivalently, monotone span programs) to (hierarchical) IPE are
known (e.g., [AHY15]). However, such compilers do not ensure attribute privacy which we crucially require from
our (registered) IPE scheme.

3



– Each registered user receives at most O(logL) updates from the KC over the entire lifetime of the system,
where L is as defined in the previous item.

Moreover, both encryption and decryption runs in time poly(λ). Further, the above scheme achieves the same
efficiency as that of iO-based RABE from [HLWW22].

2 Technical Overview

In the following, we first describe the notion of registered FE and its properties of interest. Next, we provide
a brief overview of the techniques behind our schemes.

RFE definition. We discuss the notion of RFE at a high level. Fundamentally, RFE allows users to generate
their own keys (associated to functions of their choice) without the need of a trusted authority, which is
replaced with a KC that does not hold any secret. The KC is simply responsible of managing a data structure
containing the public keys (plus the corresponding functions) of registered users. Roughly, the RFE syntax
goes as follows: For some security parameter λ and a function class F , the algorithm Setup(1λ, |F|) initializes
the system to output a common reference string crs.10 Given crs, the KC initializes a state α = ⊥ (i.e., the
data structure) and the master public key mpk = ⊥. A user can now register its own (pk, f) pair as follows:
it samples (pk, sk)←$ KGen(crs, α) and submits a registration request (pk, f) to the KC, where f ∈ F
is a function it wishes to associate with pk. The KC updates its state as α = α′ and mpk = mpk′ where
(mpk′, α′) are output by the deterministic registration algorithm RegPK(crs, α, pk, f). Intuitively, a ciphertext
c←$ Enc(mpk,m) computed with mpk can be later decrypted by the users registered before or during mpk
was generated. The registered user uses sk to decrypt c. However, mpk is updated periodically (after each
registration) – so the user issues an update request to the KC that, in turn, deterministically returns a
helper secret key hsk = Update(crs, α, pk). The hsk provides necessary information to make a (previously
registered) user’s secret key sk valid with respect to a new mpk. With hsk, the user can decrypt to learn
f(m) = Dec(sk, hsk, c). For optimal efficiency, an RFE system with L registered users should satisfy the
following properties:

(1) Compact parameters: The sizes of crs,mpk, hsk must be small, e.g., poly(λ, logL).
(2) Efficiency: This measures key-generation and registration runtimes, and the number of updates as de-

scribed below.
(a) Each execution of KGen and RegPK should run in time poly(λ, logL).
(b) Each registered user receives at most O(logL) number of new updates (i.e., new hsks) over the

lifetime of the system.

RFE can support an unbounded or a bounded number of users. In particular, for the unbounded case, the
setup is independent of the number of users. (In this case, the parameter L in efficiency conditions refer
to the current number of registered users.) For the bounded case, the setup depends on a bound L (fixed
a-priori). Security of RFE is analogous to that of RIBE [GHMR18] and RABE [HLWW22]. In particular, an
adversary A, that corrupts a subset of k registered users (i.e., A knows the set {(ski, (pki, fi))}i∈[k]), cannot
distinguish between Enc(mpk,m0) and Enc(mpk,m1), as long as fi(m0) = fi(m1),∀i ∈ [k]. This should hold
even if A registers malformed public keys. We refer to Appendix A for more details.

Slotted RFE. Following Hohenberger et al. [HLWW22], we first define and use slotted RFE as a stepping
stone towards building full-fledged RFE. Differently to RFE, there is only a single update (referred to as
aggregation) in slotted RFE, where users are assigned to “slots” and the master public key is only computed
once all slots are filled. In more detail, initialization and key generation work as before, except now that the
Setup (resp. KGen) takes as an extra input the maximum number of slots/keys L that can be aggregated
(resp. a user index i ∈ [L]). The KC takes all L pairs {(pki, fi)}i∈[L] together, aggregrates (i.e. updates) it

10 Although the common reference string is generated by a trusted setup, the important difference is that there is no
long-term secret that needs to be stored throughout the lifetime of the system. Furthermore, in some cases, the
setup algorithm could be “transparent”, and therefore computable using just a hash function.

4



to compute a short mpk and L helper secret keys {hski}i∈[L] for each user. Encryption and decryption again
works as before.

Akin to RFE, slotted RFE security requires that, for an aggregated mpk w.r.t. to all L slots, Enc(mpk,m0)
and Enc(mpk,m1) are computationally indistinguishable, so long as fj(m0) = fj(m1) for all corrupted slots
j ∈ [L]. We refer to Appendix A.1 for more details.

Hohenberger et al.[HLWW22] lifted slotted RABE to a standard RABE via a generic compiler, and the
same holds for slotted RFE (with minor syntactic changes). Loosely speaking, they use a “powers-of-two”
approach, where users are assigned to different slotted schemes with increasing capacities, and they are moved
forward as new users join the system. The same idea yields a fully-fledged RFE that supportsO(logL) number
of updates and incurs a multiplicative O(logL) overhead on the size of crs,mpk, hsk, and the key-generation
and encryption runtimes compared to that of the underlying slotted RFE scheme. The registration runtime
is dominated by O(tAggr+L · thsk), where tAggr and thsk are the aggregation runtime and the helper decryption
key size of the slotted RFE respectively. For completeness, we present the transformation in Appendix C.

2.1 (Bounded Users) Slotted RIPE from Pairings

We begin with an overview of our scheme for inner-product predicates. This is a special case of FE, where
vectors x ∈ Zn+

q (= Zn
q \ {0n}) denote functions fx (associated to keys), and messages consist of a tuple

(y,m). The function fx can be recast as:

fx(y,m) =

{
m if ⟨x,y⟩ = 0

⊥ otherwise

where we denote the length of vectors by n = n(λ), and assume the attribute space to be U = Zn+

q (i.e.,
domain of vectors). Our scheme follows the blueprint of [HLWW22]. However, unlike [HLWW22], that reveals
the policy in clear, achieving attribute-hiding security in this setting of predicate encryption requires us to
introduce crucial modifications, which we highlight after the overview of our scheme below. Furthermore,
the security analysis is completely different.

Single-Slot Scheme. We begin by discussing a simplified scheme with L = 1 (i.e., there is a single slot).
Below is a description of each algorithm in the scheme.

– Generating the CRS: We first describe the CRS generation. The CRS can be split into three different
parts, a general part, a slot-specific part, and a key-specific part. We will describe how each part is
generated individually.
• General part: First, we generate an asymmetric pairing group of prime order q, denoted as G =

(G1,G2,GT, q, g1, g2, e). Then, we sample α, β, γ←$ Zq and set h = gβ1 , Z = e(g1, g2)
α. (We will need

γ for the multi-slot scheme, which we describe later.)
• Slot-specific part: We associate each slot with a set of group elements, for this case we sample t←$ Zq

and set A = gt2 and B = gα2A
β = gα+βt

2 .
• Key-specific part: We also associate a group element to each component of the key vector, plus the

secret key. To do this, for each w ∈ [n+ 1], we sample uw ← Zq and set Uw = guw
1 .

In the end, we set the CRS to be:

crs =
(
G, Z, h,A,B, {Uw}w∈[n+1]

)
.

– Generating keys: To compute a new pair of public/secret keys, we sample a non-zero secret key
sk←$ Zq and set pk = U−sk

n+1. Note that we are conceptually treating the secret key as one more element
of the predicate vector. This is an important structural difference with respect to [HLWW22].

– Key Aggregation: Since we only have one slot, given pk and crs, and a predicate vector (or key)
x = (x1, . . . , xn), we set the master public key as:

mpk =

(
G, h, Z, {Uw}w∈[n+1], pk ·

n∏
w=1

U−xw
w

)
.

5



– Encryption: To encrypt a messagem ∈ GT with respect to a non-zero attribute vector y = (y1, . . . , yn) ∈
Zn+

q , and the master public key mpk, we create a ciphertext that has two components, a message-
embedding component, and a key-slot-embedding component.
• Message embedding: We sample s←$ Z∗

q , and set C1 = m · Zs, C2 = gs1.
• Key-slot embedding: First, we sample r, z←$ Zq \ {0}. Then, we set

C3,w = hyw·r+s · U−z
w (∀w ∈ [n]), C3,n+1 = hs · U−z

n+1, and

C3,n+2 = hs · pk−z
n∏

w=1

Uz·xw
w .

The final ciphertext will be (C1, C2, {C3,w}w∈[n+1]).
– Decryption: Before describing the actual decryption, let us check the intuition behind each element of

the ciphertext. The first component C1 = m · Zs is just a masking of the message with a random power
of Z from the CRS. Consider B from crs, and the ciphertext components C1 and C2, and observe:

C1

e(C2, B)
=

m · e (g1, g2)α·s

e (g1, g2)
α·s · e (g1, g2)sβt

=
m

e (hs, A)
.

Thus, to recover the message, it suffices to recompute e(hs, A). Note that hs is already present in some
form in the C3,∗ components. We can partition C3,∗ terms into three different groups, and see how hs

appears in each one:
1. For all w ∈ [n], we have C3,w = hs · hyw·r · U−z

w . In this case, there are extra terms yw · r as well as
Uw present in the ciphertext. However, since x and y are orthogonal (otherwise decryption fails), we
can eliminate these extra terms by raising each C3,w to the power of xw for w ∈ [n] and compute
their product. Thus, we will have:

n∏
w=1

Cxw
3,w =

n∏
w=1

hxw·s · hxw·yw·r ·
n∏

w=1

U−z·xw
w = hs·

∑n
w=1 xw · hr·

∑n
w=1 xw·yw︸ ︷︷ ︸
=1

·
n∏

w=1

U−z·xw
w .

Therefore, we are left with two terms hs·
∑n

w=1 xw and
∏n

w=1 U
−z·xw
w .

2. For w = n+ 1, we have C3,n+1 = hs · U−z
n+1, where the term hs is masked with U−z

n+1.

3. For w = n+ 2, we have C3,n+2 = hs · pk−z∏n
w=1 U

z·xw
w = hs · Uz·sk

n+1 ·
∏n

w=1 U
z·xw
w .

Multiplying together the remaining components we obtain:

C3,n+2 · Csk
3,n+1 ·

n∏
w=1

Cxw
3,w = hs · hs·sk · hs·

∑n
w=1 xw = hs·(1+sk+

∑n
w=1 xw).

The decryptor can now raise hs·(1+sk+
∑n

w=1 xw) to the power of (1 + sk +
∑n

w=1 xw)
−1 to get hs. Once

hs is obtained, it can be paired with A, available from crs, to decrypt the message.

Multi-Slot Scheme. To gain an intuition on how our scheme handles multiple slots, we describe a toy
example where L = 2, i.e., we are in the two-slot setting. Notice that one trivial generalization is to in-
dividually generate public keys as before, and concatenate them into the master public key. However, this
approach will not work, since we want the master public key size to be independent of the number of slots.
Instead, we expand the slot-specific components in the CRS to A1, B1 (for slot 1) and A2, B2 (for slot 2),
which are generated in the same way as A,B in the one-slot setting, but using independent random elements
t1, t2←$ Zq in generating A1, A2. We will also need to link the slots to the keys, so that we can use the slot
in the key-generation algorithm. For this, instead of generating only one set of {Uw}w∈[n], we generate them
with respect to both slots

{Uw,1 = g
uw,1

1 }w∈[n+1] and {Uw,2 = g
uw,2

1 }w∈[n+1]

6



where the elements {uw,i}i∈{1,2} are chosen independently and uniformly at random. Accordingly, in the key
generation we can set

pk1 = U−sk1
n+1,1 and pk2 = U−sk2

n+1,1

and we aggregate the keys as

{Ûw = Uw,1 · Uw,2}w∈[n+1] and Ûn+2 = pk1 · pk2 ·
n∏

w=1

U
−xw,1

w,1

n∏
w=1

U
−xw,2

w,2

where x1 and x2 are the chosen keys. One can encrypt using the new Û values instead of U , however, once
we try to decrypt and expand the corresponding equations, we realize that many terms will not cancel out
as before. For example, if a message is encrypted for slot 1, during decryption we will have,

∏
w∈[n]

C
xw,1

3,w =
∏

w∈[n]

h(yw·r+s)·xw,1 ·
n∏

w=1

U
−z·xw,1

w,1 ·
n∏

w=1

U
−z·xw,1

w,2

Csk1
3,n+1 = hs·sk1 · U−z·sk1

n+1,1 · U
−z·sk1
n+1,2

C3,n+2 = hs · Uz·sk1
n+1,1 · U

z·sk2
n+1,2 ·

n∏
w=1

U
z·xw,1

w,1

n∏
w=1

U
z·xw,2

w,2

where the terms in blue can be canceled out using a similar multiplication trick as before. However, the terms
U−z·sk1
n+1,2 , Uz·sk2

n+1,2,
∏

w∈[n] U
−z·xw,1

w,2 and
∏n

w=1 U
z·xw,2

w,2 cannot be canceled as they do not appear anywhere else,
and further we assume the decryptor only knows sk1, but not sk2. We can circumvent this issue by introducing
some “cross-terms” into the CRS, and use them in the aggregation to compute helper secret keys that enables
the decryptor (holding sk1 and x1) to cancel such terms. We create these terms such that they include both
slot-specific and key-specific parts. Intuitively, they bind each slot to other slots and keys together. For slots
i, j ∈ [2] where i ̸= j and key indices w ∈ [n+ 1], we define these terms as:

Wi,j,w = A
uj,w

i .

We add {Wi,j,w}i̸=j∈[2],w∈[n+1] to the CRS as:

crs =

(
G, Z, h, {Ai, Bi}i∈[2] ,

{
{Uw,i} , {Wi,j,w}i̸=j

}
i,j∈[2],w∈[n+1]

)
.

In addition, we will let the user publish {W ski
j,i,n+1}i∈{1,2},j ̸=i in their respective public keys, to enable the

other users to cancel out the desired cross terms, and publish in the ciphertext an additional element C4 = gz1 ,
to be paired with the W ’s in order to compute the correct terms.

The above scheme is correct but unfortunately insecure. At a high level, the problem is that the adversary
can pair C4 with wrong elements and generate unintended relations between z and other components, in the
exponent. To prevent this, instead of putting gz1 directly in the ciphertext, we introduce an extra component
Γ = gγ1 , γ←$ Zq in the CRS, and set C4 = Γ z. The only other modification that we must apply is the
generation of the CRS itself, where for slots i, j ∈ {1, 2} with i ̸= j, and key indices w ∈ [n+ 1], we define:

Wi,j,w = A
uj,w/γ
i .

This forces a (possibly malicious) decryptor to pair C4 only with the elements Wi,j,w to remove the additional
cross-terms described above. The rest of the construction remains the same. See Section 6 for more details.

Proof Sketch. We prove the above slotted RIPE scheme secure in the generic bilinear group model (GGM).
Recall that in the GGM, the adversary is supplied with handles to the corresponding group elements from the
scheme. Further, it can also learn handles to arbitrary linear combinations of existing and new elements (in

7



the same group Gt, t ∈ {1, 2,T}) via the group oracles it is provided with. Additionally, since we are in the
bilinear setting, the adversary also gets access to the pairing oracle that allows it to learn handles referring
to the product of any two terms from the source groups G1 and G2. However, the only crucial information
it can actually learn in this whole interaction is via the zero-tests that work again only in GT.

Our formal multi-slot RIPE scheme in Section 6 introduces several variables with different combinations
of indices. To argue indistinguishability in a convenient way between subsequent hybrids in the proof, we first
switch from the GGM to the symbolic group model (SGM) via the Schwarz-Zippel lemma. In particular, the
SGM allows us to represent all the terms, that the adversary can learn in the security game, as multivariate
polynomials (in respective groups) from a ring of variables. The heart of the proof relies on arguing prop-
erties of the coefficients of these polynomials that correspond to successful zero-tests, which aids in proving
indistinguishability directly. In particular, these claims set in while proving attribute hiding by switching
the challenge attribute from y0 to y1 in the ciphertext elements C3,w ∀w ∈ [n+2], and helps in arguing the
following:

1. Coefficients of such polynomials formed by pairing terms C3,w ∈ G1 with any element in G2, except
Ai, i ∈ [2], must be all zero.

2. Such a coefficient vector must be orthogonal to yb for b ∈ {0, 1}, and in particular, either be a constant
multiple of the vector x̃i = (xi, ski), i ∈ [2] or be all zero.

The claim in Item 1 follows from observing that the monomials formed symbolically (in the exponent) when
pairing C3,w with anything in G2 (except A1 or A2) are all linearly independent and do not cancel out.
Item 2 follows from two observations. The first one is that the randomness r (appearing as an independent
symbolic term, but only in the components C3,w’s) can only cancel out in zero-tests when the coefficients
are orthogonal to yb. The second one follows additionally from linear independence of some specific symbolic
terms and observing further that the vector of first n+1 coefficients can be expressed as a constant multiple
of x̃i. Overall, these claims ensure that the only non-trivial adversarial queries can be for vectors lying in
the span of both registered and valid predicates. The rest of the proof follows from the admissibility of the
adversary, and by reusing these claims. We refer to Theorem 6 for more details.

Comparison with the slotted RABE of [HLWW22]. Our slotted RIPE scheme from prime-order
pairings (in Section 6) shares some similarities at a high level with the slotted RABE from composite-order
pairings by Hohenberger et al.[HLWW22]. For instance, the message-embedding mechanism in both schemes
are same, which is by masking the message with the randomness in the term e (hs, Ai). (This is also a
standard technique in many other pairing-based schemes.) The use of “slot”-based framework to embed
users’ keys is also similar, but only at the level of a blueprint. In particular, that is where the similarity
ends. More specifically, the way slots and attributes are “glued” together in our scheme is fundamentally
different: in [HLWW22], the ciphertext has two specific components, an attribute-specific component and a
slot-specific one, where one party can decrypt a message if it manages to succeed to decrypt the slot-specific
component and the attribute-specific component simultaneously. But in our scheme, the slot and attribute
elements are entwined in the same ciphertext component. In essence, we conceptually treat the secret key as
“one more dimension” in the predicate vector, whereas the scheme in [HLWW22] uses a separate machinery
that takes care of the key component. Further, unlike [HLWW22] which reveals the policy in the ciphertext,
we carefully ensure attribute hiding by multiplying a randomizer r ∈ Z+

q to the attribute y. As a result, we
achieve totally different functionalities and stronger security notions. Finally, our scheme supports vectors
from Zn+

q where q is a λ-bit prime and n denotes supported the vector length. As stated in [HLWW22,
Section 7.2], this enables our scheme to support a large attribute universe in contrast to the pairing-based
RABE in [HLWW22], that only supports a small attribute universe.

2.2 (Unbounded Users) Slotted RFE from iO

As a feasibility result, we show (slotted) RFE for all circuits based on indistinguishability obfuscation
(iO) [BGI+12] and (succinct) somewhere statistically binding hash functions (SSB) [HW15, OPWW15].
In particular, we generalize the techniques from Hohenberger et al. [HLWW22] to get a slotted RFE from
iO (which can be lifted to RFE with the powers-of-two trick). Below is a brief overview of this slotted RFE.

8



The CRS is set as the SSB hash key hk, and users’ keys are generated through a PRG G and a
seed s (i.e., (pk, sk) = (G(s), s)). To aggregate ((pki, fi))i∈[L], the KC computes a Merkle tree hash h =
Hash(hk, ((pki, fi))i∈[L]) and sets mpk = (hk, h). The helper secret key hski (of the i-th slot) is essentially
the SSB opening πi for the i-th (hashed) block (pki, fi). A ciphertext c (encrypting m) is simply the obfus-

cation C̃ of a circuit Ch,m that, on input (i, pki, fi, πi, ski), returns fi(m) if the following two conditions are
satisfied: πi is a valid opening for the i-th block (pki, fi) and (pki, ski) is a valid key-pair. Decryption works

using ski and hski = πi to evaluate C̃ on input (i, pki, fi, πi, ski). The scheme supports the function class
P/poly. Compactness of parameters is evident from SSB succinctness. Due to a poly-logarithmic overhead
from the powers-of-two trick, the final RFE can support an arbitrary number of users by setting L = 2λ.
The registration runtime remains linear in the current/effective number of registered users at the time of
registration. We provide more details in Appendices B and C.

2.3 On Function Privacy in (Slotted) RFE

By definition, RFE allows users to sample their own keys and functions. Thus, the notion of function-privacy,
that is typically considered in the setting of (secret-key) FE [SSW09, BS15], does not make much sense from
this perspective. However, one can still define function-privacy w.r.t. any other registered or unregistered
party. In more detail, in the case of RFE, a user choosing its own keys and functions may want to hide its
function from any party including the KC. Capturing this requires a mild change in the RFE syntax, where
the function can be input to the KGen algorithm instead of RegPK and also require that the generated user
key-pair is tied to this function. The KC gets access of only the users’ public keys to aggregate and generate
mpk, hsk.11 The security definition would need to change accordingly. In particular, it would now additionally
require each public key to computationally hide the function tied to it.

All our schemes can be modified to satisfy this syntax. For example, our slotted RIPE from pairings can
be easily adapted to this notion since the extended key x̃i = (xi, ski, 1) is embedded in the public-key pki for

slot i ∈ [2] as pki =
∏n+1

w=1 U
−x̃w,i

w,i . This holds similarly for the cross-terms as well. Using a NIZK, the users
can prove that they always choose a non-zero vector as its predicate. It is also easy to verify the same for our
slotted RFE from iO. However, for simplicity, we avoid formalizing this in our definitions and schemes. Our
formal constructions from Section 6 and Appendix B are thus in the standard registered setting (i.e., without
function-privacy). Building more efficient function-private RFE for specific functions is left as a future work.

11 In such a setting (rogue) users can try to register arbitrary functions of their choice which would allow them to
learn arbitrary information about encrypted messages. To prevent this, one can restrict the function class at setup
meaningfully (e.g., excluding trivial functions like identity). Any user wanting to register its public key would then
need to prove the validity of its chosen function w.r.t. this class of functions.

9



Reference Type CRS size
Keygen
runtime

Registration
key runtime

Master
public key size

Helper
dec. key size # Updates

Unbounded
users BB Assumptions

[GHMR18] IBE O(1) O(1) poly(logL) poly(logL) poly(logL) O(logL) ✓ ✗ iO + SSB

[GHMR18] IBE O(1) O(1) O(L) poly(logL) poly(logL) O(logL) ✓ ✗ CDH/LWE

[GHM+19] Anon. IBE O(1) O(1) poly(logL) poly(logL) poly(logL) O(logL) ✓ ✗ CDH/LWE

[GV20] IBE O(1) O(1) poly(logL) poly(logL) poly(logL) O(logL) ✓ ✗ CDH/LWE

[CES21] IBE O(1) O(1) poly(logL) O(
√
L) poly(logL) O(logL) ✓ ✗ CDH/LWE

[GKMR22]
IBE

O(1)-size ciphertexts
O(

√
L) O(

√
L) O(

√
L) O(

√
L) O(

√
L) O(

√
L) ✗ ✓

Pairings of
Prime Order

[GKMR22]
IBE

O(logL)-size ciphertexts
O(

√
L) O(

√
L) O(

√
L logL) O(

√
L logL) O(logL) O(logL) ✗ ✓

Pairings of
Prime Order

[DKL+23] IBE poly(logL) poly(logL) O(L) poly(logL) poly(logL) O(logL) ✓ ✓ LWE

[HLWW22]
ABE

small attribute space U
LSSS policies

L2 · poly(|U|, logL) L · poly(|U|, logL) L · poly(|U|, logL) |U| · poly(logL) |U| · poly(logL) O(logL) ✗ ✓
Pairings of

Composite Order

[HLWW22]
ABE

large attribute space U
arbitrary policies

O(1) O(1) O(L) O(1) O(1) O(logL) ✓ ✗ iO + SSB

Ours §6
Inner-Product PE

large function space F
n-size vectors

n · L2 · poly(logL) L · poly(logL) n · L2 · poly(logL) n · poly(logL) n · poly(logL) O(logL) ✗ ✓

Pairings of
Prime Order
+ GGM

Ours §B
FE

large function space F
arbitrary functions

O(1) O(1) O(L) O(1) O(1) O(logL) ✓ ✗ iO + SSB

Table 1. Comparing known registered encryption schemes in terms of efficiency and assumptions. We only consider
worst-case time complexity. For schemes supporting an unbounded (resp. bounded) number of users, L denotes the
current number of registered (resp. the maximum number of supported) users. We omit λ to simplify the table, e.g.
for k ∈ N, O(k) and poly(log k) respectively denote k ·poly(λ) and poly(λ, log k) etc. U (from [HLWW22]) denotes the
attribute space supported by the corresponding scheme. F denotes the function space supported by our schemes in

§A and §6 (each function f ∈ F of our RIPE is an n-length vector from Zn+

q ). BB is an abbreviation for “black-box”.

3 Related Work

The first paper [GHMR18] defined and built RIBE from iO and SSB hashes; this was later improved by Garg
et al. [GHM+19] building RIBE (with the same level of efficiency) from standard assumptions (e.g., from
CDH/LWE) even for anonymous IBE. Subsequent work on RIBE focused on adding verifiability [GV20],
proving lower bounds on the number of decryption updates [MQR22], improving on practical efficiency
of the garbled circuit construction [CES21], providing effcient black-box construction from pairings with
O(
√
L) mpk [GKMR22]. More recently, Döttling et al. [DKL+23] obtain a lattice-based RIBE with the sizes

of crs,mpk, hsk as well as key generation runtime growing as poly(logL), with a O(L) registration runtime
and O(logL) number of updates. Very recently, [HLWW22] extended RIBE to the setting of ABE. They
built a (black-box) registered ABE (RABE) scheme supporting a bounded number of users and linear secret
sharing schemes as access policies from assumptions on composite-order pairing groups. However, their
(pairing-based) scheme, the size of CRS and runtime of aggregate and keygen depend linearly on the size of
attribute space |U|. The dependence on |U| allows their scheme to only support a small attribute space (e.g.,
|U| = poly(λ)). Notably, our (pairing-based) RIPE does not suffer from this limitation since our parameters
depend only on the vector length n = n(λ) (see Table 1); so we can support a large attribute universe.

In [GV20], the authors further introduced an RABE extension to more general access structures. Specif-
ically, they proposed a universal definition of registration-based encryption in which the algorithms take
as an additional input the description of an FE scheme (although no construction was presented). Such
algorithms compile the standard algorithmic behavior of the FE scheme into a (verifiable) registration-based
one. However, our tailored notion for the functional encryption setting is more natural and follows directly
from the RABE definition.

Finally, we also mention a related work on dynamic decentralized FE [CDSG+20] (DDFE), where there
is no trusted authority and users sample their own keys. DDFE, as a notion, posits other general (and albeit
unrelated) requirements like (conditional) aggregation of labelled data which comes from different users using
seperate FE instances. However, a crucial difference from the registered setting, is that in DDFE there is no
requirement on the master public key size, which can be as large as the number of registered users. This is a

10



major challenge (and arguably the defining feature) of all registered settings. Chotard et al.[CDSG+20] also
built IP-DDFE, that outputs the inner-product value ⟨x,y⟩, while our scheme is for the more challenging
orthogonality-test predicate (with two-sided security).

Open Problems. We view our work as an initial first step in the world of registered FE, however many open
problems remain. For example, a natural question is if registered FE can be obtained generically from any
compact, polynomially-hard FE. Another interesting direction is to design schemes for specialized function
classes from weaker assumptions. Finally, a technical open problem is to prove our pairing-based RIPE
scheme (or some modification thereof) secure in the standard model.

4 Organization

We organize the rest of the paper as follows. The formal definitions of both RFE and slotted RFE extend the
same for the RABE setting from [HLWW22] in a straighforward way. Hence, we provide the RFE definitions
in Appendix A. Our main focus in this paper is on building (slotted) registered IPE. Thus, we first define
slotted RIPE formally in Section 5.1 and extend the definitions to slotted RFE for the case of general
functions in Appendix A.1. Our slotted RIPE scheme from bilinear pairings and its proofs are provided
in Section 6. We demonstrate our implementation results of the above slotted RIPE scheme in Section 7.
Our slotted RFE for general functions and unbounded users, built on iO (plus an SSB hash and a PRG),
generalizes a construction from [HLWW22] and is presented in Appendix B. In Appendix C, we transform
slotted RFE into RFE extending the generic compiler from [HLWW22].

5 Preliminaries

Notations. We write [n] = {1, 2, . . . , n} and [0, n] = {0} ∪ [n]. Capital bold-face letters (such as X) are
used to denote random variables, small bold-face letters (such as x) to denote vectors, small letters (such
as x) to denote concrete values, calligraphic letters (such as X ) to denote sets, serif letters (such as A) to
denote algorithms. All of our algorithms are modeled as (possibly interactive) Turing machines. For a string
x ∈ {0, 1}∗, we let |x| be its length; if X is a set or a list, |X | represents the cardinality of X . When x is
chosen uniformly in X , we write x←$ X . If A is an algorithm, we write y←$ A(x) to denote a run of A on
input x and output y; if A is randomized, y is a random variable and A(x; r) denotes a run of A on input x
and (uniform) randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and
for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number of steps (in the
input size). We write C(x) = y to denote the evaluation of the circuit C on input x and output y. For any

integer k ∈ N, we denote Zk+

q = Zk
q \{0k} as the set of all non-zero k-size vectors over Zq, and Z+

q = Zq \{0}.

5.1 Slotted Registered Inner-Product Encryption

We now present the slotted RIPE definitions below. Let n = n(λ) be a polynomial in λ and q be a prime.
A slotted RIPE with message spaceM and attribute space U is composed of the following polynomial-time
algorithms:

Setup(1λ, 1n, 1L) : On input the security parameter 1λ, the vector length n, and the number of slots L, the
randomized setup algorithm outputs a common reference string crs.

KGen(crs, i) : On input the common reference string crs and a slot index i ∈ [L], the randomized key-
generation algorithm outputs a public key pki and a secret key ski.

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L], and a public key pki, the
deterministic key validation algorithm outputs a decision bit b ∈ {0, 1}.

Aggr(crs, ((pki,xi))i∈[L]) : On input the common reference string crs and a L pairs (pk1,x1), . . . , (pkL,xL)
each composed of a public key pki and its corresponding (non-zero) vector xi ∈ U , the deterministic
aggregation algorithm outputs the master public key mpk and a L helper decryption keys hsk1, . . . , hskL.

11



Enc(mpk,y,m): On input the master public key mpk, a (non-zero) attribute vector y ∈ U , and a message
m ∈M, the randomized encryption algorithm outputs a ciphertext c.

Dec(sk, hsk, c): On input a secret key sk, an helper decryption key hsk, and a ciphertext c, the deterministic
decryption algorithm outputs a message m ∈M∪ {⊥}.

Completeness, Correctness, and Efficiency. Completeness of slotted RIPE says that honestly generated
public keys for a slot index i ∈ [L] are valid with respect to the same slot i, i.e., IsValid(crs, i, pki) = 1.
Similarly, correctness says that honest ciphertexts correctly decrypt (to functions of the plaintext) under
honestly generated and aggregated keys. For compactness and efficiency, we extend the requirements of RFE
(Definition 6 in Appendix A) to the slotted RIPE setting. The formal definitions are provided below.

Definition 1 (Completeness of slotted RIPE). A slotted RIPE scheme ΠsRIPE = (Setup,KGen, IsValid,Aggr,
Enc,Dec) with message spaceM and attribute space U is complete if ∀λ ∈ N, n ∈ N, L ∈ N and ∀i ∈ [L],

P
[
IsValid(crs, i, pki) = 1

∣∣crs←$ Setup(1λ, 1n, 1L), (pki, ski)←$ KGen(crs, i)
]
= 1.

Definition 2 (Perfect Correctness of slotted RIPE). A slotted RIPE scheme ΠsRIPE = (Setup,KGen,
IsValid,Aggr,Enc,Dec) with message spaceM and attribute space U is correct if ∀λ ∈ N, n ∈ N, L ∈ N, i ∈ [L],
∀crs output by Setup(1λ, 1n, 1L), ∀(pki, ski) output by KGen(crs, i), ∀ collection of public key {pkj}j∈[L]\{i}
such that IsValid(crs, j, pkj) = 1, ∀m ∈ M, ∀x1, . . . ,xL ∈ U , and ∀y ∈ U such that ⟨xi,y⟩ = 0 for every
i ∈ [L], we have:

P

[
Dec(ski, hski, c) = m

∣∣∣∣∣ (mpk, (hskj)j∈[L]) = Aggr(crs, ((pkj ,xj))j∈[L]),
c←$ Enc(mpk,y,m)

]
= 1.

Definition 3 (Compactness and Efficiency for slotted RIPE). This definition is identical to that of
slotted RFE (Definition 10).

We now define the security of slotted RIPE formally below.

Definition 4 (Security of slotted RIPE). Let ΠsRIPE = (Setup,KGen, IsValid,Aggr,Enc,Dec) be a slotted
RIPE scheme with message spaceM and attribute space U . For any adversary A, define the following security
game GamesRIPEΠsRIPE,A(λ, b) with respect to a bit b ∈ {0, 1} between A and a challenger.

• Setup phase: Upon getting an attribute length n and a slot count L from the adversary A, the challenger
samples crs←$ Setup(1λ, 1n, 1L) and gives crs to A. The challenger also initializes a counter ctr = 0, a
dictionary D, and a set of slot indices CL = ∅ to account for corrupted slots.

• Pre-challenge query phase: A can issue the following queries.
− Key-generation query: A specifies a slot index i ∈ [L]. As a response, the challenger increments

ctr = ctr + 1, samples (pkctr, skctr)←$ KGen(crs, i), updates the dictionary as D[ctr] = (i, pkctr, skctr)
and replies with (ctr, pkctr) to A.

− Corruption query: A specifies an index c ∈ [ctr]. In response, the challenger looks up the tuple
D[c] = (i′, pk′, sk′) and replies with sk′ to A.

• Challenge phase: For each i ∈ [L], A specifies a tuple (ci,xi, pk
∗
i ) where:

– either ci ∈ [ctr] that refers to a challenger-generated key from before which it associates with a non-
zero predicate xi ∈ U : in this case, the challenger looks up D[ci] = (i′, pk′, sk′) and halts if i ̸= i′.
Else, the challenger sets pk∗i = pk′. Further, if A issued a corrupt query before on ci, the challenger
adds i to CL.

– or ci = ⊥ that refers to a self-generated (and corrupt) secret key for an arbitrary non-zero predicate
xi ∈ U : in this case, the challenger aborts if IsValid(crs, i, pk∗i ) = 0. Else if pk∗i is valid, it adds the
index i to CL.

Additionally, A sends a challenge pair (y0,m0), (y1,m1) ∈ U ×M. In response, the challenger computes(
mpk, (hski)i∈[L]

)
= Aggr

(
crs, (pk∗i ,xi)i∈[L]

)
and c∗←$ Enc(mpk,yb,mb), and replies with c∗ to A.

• Output phase: A returns a bit b′ ∈ {0, 1} which is also the output of the experiment.

12



A is called admissible if the challenge pair (y0,m0), (y1,m1) satisfy the following:

– ∀xi ∈ U with i ∈ CL, it holds that:

either ⟨xi,y0⟩ = ⟨xi,y1⟩ = 0 or both ⟨xi,y0⟩, ⟨xi,y1⟩ ≠ 0, and

– if ∃xi ∈ U with i ∈ CL such that ⟨xi,y0⟩ = ⟨xi,y1⟩ = 0, then m0 = m1.

We say that ΠsRIPE is secure if for all polynomials n = n(λ), L = L(λ) and for all PPT and admissible A in
the above security hybrid, there exists a negligible function negl(·) such that for all λ ∈ N,∣∣∣Pr[GamesRIPEΠsRIPE,A(λ, 0) = 1

]
− Pr

[
GamesRIPEΠsRIPE,A(λ, 1) = 1

]∣∣∣ = negl(λ).

Remark 1. As discussed for general RFE in Remark 3 (in Appendix A), security without post-challenge
queries imply security with post-challenge queries in the slotted setting as well. This is because Aggr is
deterministic and does not require any secret. Hence, an adversary can simulate the post-challenge queries
itself.

6 Slotted Registered IPE from Prime-Order Pairings

Bilinear groups. Our slotted RIPE is based on asymmetric bilinear groups. We use cyclic groups of prime
order q with an asymmetric bilinear map endowed on them. We assume a PPT algorithm GroupGen that
takes a security parameter λ as input and outputs G = (G1,G2,GT, q, g1, g2, e), where G1,G2,GT are cyclic
groups of prime order q, g1 (resp. g2) is random generator in G1 (resp. G2) and e : G1 × G2 → GT is a
non-degenerate bilinear map.

We assume the message space M = GT for our scheme. Our slotted RIPE supports an a-priori fixed
number of slots L = L(λ), i.e., the scheme supports a bounded number of slots. Below, we describe our
formal scheme.

Construction 1 The slotted RIPE scheme ΠsRIPE = (Setup,KGen, IsValid,Aggr,Enc,Dec) with message

spaceM = GT and attribute space U = Zn+

q is as follows:

Setup(1λ, 1n, 1L): On input the security parameter λ, the attribute size n and the number of slots L, compute
G = (G1,G2,GT, q, g1, g2, e)←$ GroupGen(1λ) and generate the common reference string as follows.

1. Sample α, β, γ←$ Z+
q and set h = gβ1 , Z = e(g1, g2)

α, Γ = gγ1 , n
′ = n+ 1.

2. For each index i ∈ [0, L], do the following:
(a) for each w ∈ [n′], sample uw,i←$ Zq and set Uw,i = g

uw,i

1 .

(b) for a slot index i > 0, sample ti←$ Zq and set Ai = gti2 , Bi = gα2 ·A
β
i .

(c) for a slot index i > 0, ∀w ∈ [n′], j ∈ [0, L] \ {i}, set Wi,j,w = A
uw,j/γ
i .

3. Sample x̃0 = (x̃1,0, . . . , x̃n,0, r̃0)←$ Zn′+

q . Set sk0 = x̃0 and

T0 =

(
n∏

w=1

U
−x̃w,0

w,0

)
· U−r̃0

n′,0 , W̃i,0 =

(
n∏

w=1

W
x̃w,0

i,0,w

)
·W r̃0

i,0,n′ , ∀i ∈ [L].

Also, set pk0 =

(
T0,
{
W̃i,0

}
i∈[L]

)
.

Finally, output the common reference string

crs = (G, Z, h, Γ, {Ai, Bi}i∈[L] , {{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}}w∈[n′], pk0)

KGen(crs, i): On input the common reference string crs and a slot index i ∈ [L], do the following.

13



1. Parse the common reference string

crs =

(
G, Z, h, Γ, {Ai, Bi}i∈[L] ,

{
{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}

}
w∈[n′]

, pk0

)
.

2. Sample r̃i←$ Z+
q and pick elements Un′,i and {Wj,i,n′}j∈[L]\{i} from crs.

3. Compute Ti = U−r̃i
n′,i and W̃j,i = W r̃i

j,i,n′ ,∀j ∈ [L] \ {i}.
4. Output pki =

(
Ti, {W̃j,i}j∈[L]\{i}

)
and ski = r̃i.

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L] and a purported public key

pki =
(
Ti, {W̃j,i}j∈[L]\{i}

)
, the key-validation algorithm first affirms that each of the components in pki

is a valid group element, namely:

(
Ti

?
∈ G1 \ {1G1

} ∧ W̃j,i

?
∈ G2 \ {1G2

}, ∀j ∈ [L] \ {i}
)

where 1Gt

denotes the identity in Gt for t ∈ [2]. If the checks pass, it picks the elements Un′,i and {Wj,i,n′}j∈[L]\{i}
from crs and checks further that

e
(
T−1
i ,Wj,i,n′

) ?
= e

(
Un′,i, W̃j,i

)
,∀j ∈ [L] \ {i}.

If all checks pass, it outputs 1. Else, it outputs 0.
Aggr(crs, ((pki,xi))i∈[L]): On input the common reference string crs and a set of L public keys pki =(

Ti, {W̃j,i}j∈[L]\{i}

)
together with vectors xi = (x1,i, . . . , xn,i) ∈ Zn+

q (representing predicates fxi), com-

pute the following.
1. Parse the common reference string

crs =

(
G, Z, h, Γ, {Ai, Bi}i∈[L] ,

{
{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}

}
w∈[n′]

, pk0

)
.

2. Fuse the predicate vector xi into pki by updating each of its components as

Ti =

(
n∏

w=1

U
−xw,i

w,i

)
· Ti , W̃j,i =

(
n∏

w=1

W
xw,i

j,i,w

)
· W̃j,i,∀j ∈ [L] \ {i}

and set pki =

(
Ti,
{
W̃j,i

}
j∈[L]\{i}

)
. Further, parse pk0 as follows:

pk0 =

(
T0,
{
W̃j,0

}
j∈[0,L]\{0}

)
.

3. For each w ∈ [n′], compute Ûw =
∏

i∈[0,L] Uw,i and Ûn′+1 =
∏

i∈[0,L] Ti.

4. Compute the cross-terms as follows. For each slot index i ∈ [L]:

(a) for each w ∈ [n′], compute Ŵw,i =
∏

j∈[0,L]\{i} Wi,j,w.

(b) compute Ŵn′+1,i =
(∏

j∈[0,L]\{i} W̃i,j

)−1

.

5. Output the master public key and the slot-specific helper secret keys as

mpk =

(
G, h, Z, Γ,

{
Ûw

}
w∈[n′+1]

)
, and hski =

(
G, i,xi, Ai, Bi,

{
Ŵw,i

}
w∈[n′+1]

)
,∀i ∈ [L].

Enc(mpk,y,m): On input the master public key mpk, a vector y = (y1, . . . , yn) ∈ Zn+

q (as an attribute) and
a message m ∈ GT, the ciphertext is computed as:

1. Parse mpk =

(
G, h, Z, Γ,

{
Ûw

}
w∈[n′+1]

)
.

2. Set ỹ = (y, 0, 0) ∈ Zn′+1
q and sample s, r, z←$ Z+

q . Also, parse ỹ = (ỹ1, . . . , ỹn′+1).

14



3. Message embedding: set C1 = m · Zs and C2 = gs1.

4. Attribute and Slot embedding: for each w ∈ [n′ + 1], set C3,w = hỹw·r+s · Û−z
w . Set C4 = Γ z.

5. Output the ciphertext c =
(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

Dec(sk, hsk, c): Parse the input secret key sk, helper secret key hsk and ciphertext c as sk = r̃i, and

hsk =

(
G, i,xi, Ai, Bi,

{
Ŵw,i

}
w∈[n′+1]

)
, c =

(
C1, C2, {C3,w}w∈[n′+1], C4

)
,

for some i ∈ [L]. Let x̃i = (x̃1,i, . . . , x̃n′+1,i) = (xi, r̃i, 1) ∈ Zn′+1
q , Xi =

∑n′+1
w=1 x̃w,i ∈ Zq. Compute and

output the following:

C1

e(C2, Bi)
·

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
· e
(
C4, Ŵ

x̃w,i

w,i

)}X−1
i

.

Remark: In the setup algorithm in our scheme, we introduce a dummy slot “0” and pre-register an honestly
generated dummy key pk0. This slot does not impact the security definition in any way because the associated
secret key sk0 is thrown away once the one-time setup is executed. This modification is done only for a simpler
analysis of the security proof in the GGM.

Theorem 3 (Completeness of Construction 1). The slotted RIPE scheme ΠsRIPE with message space

M = GT and attribute space U = Zn+

q from Construction 1 is complete.

Proof. Fix the security parameter λ, n = n(λ), and L = L(λ). Let crs←$ Setup(1λ, 1n, 1L). Take any index

i ∈ [L] and let (pki, ski)←$ KGen(crs, i). Recall pki =
(
Ti, {W̃j,i}j∈[L]\{i}

)
and ski = r̃i ∈ Z+

q , where

Ti = U−r̃i
n′,i and W̃j,i = W r̃i

j,i,n′ ,∀j ∈ [L] \ {i}

and Un′,i and {Wj,i,n′}j∈[L]\{i} are elements from the crs. The theorem follows by observing that ∀j ∈ [L]\{i}
we have

e
(
T−1
i ,Wj,i,n′

)
= e

(
U r̃i
n′,i,Wj,i,n′

)
= e

(
Un′,i,W

r̃i
j,i,n′

)
= e

(
Un′,i, W̃j,i

)
.

Theorem 4 (Compactness and Efficiency of Construction 1). The slotted RIPE scheme ΠsRIPE with

message spaceM = GT and attribute space U = Zn+

q from Construction 1 satisfies the following properties:

– |crs| = n · L2 · poly(λ), |mpk| = n · poly(λ), |hsk| = (n · poly(λ) +O(logL))

– Runtime(KGen) = O(L) · poly(λ), Runtime(IsValid) = L · poly(λ), Runtime(Aggr) = n · L2 · poly(λ).

Proof. Recall n′ = n+ 1. We demonstrate each property individually.

• |crs| = n · L2 · poly(λ): The common reference string crs consists the following elements. The description
of group G, which is of size poly(λ), the group elements Z, h, Γ group G1, where their sizes are also in
poly(λ). The set of G2 elements {Ai, Bi}i∈[L], which is of size L · poly(λ), the set {Uw,i}i∈[0,L],w∈[n′] of

G1 elements which is of size n · L · poly(λ), pk0 and its helper secret keys which consists of L+ 1 group
elements, of total size L · poly(λ), and finally the largest part of the crs will be the set

{Wi,j,w}i∈[L],j∈[0,L]\{i},w∈[n′] (of G2 elements)

whose size will be n · L2 · poly(λ). Hence, we have |crs| = n · L2 · poly(λ).
• |mpk| = n · poly(λ): The master public keympk consists of elements G, h, z, Γ of size poly(λ), and

{
Ûw

}
w∈[n′+1]

of size n · poly(λ).

15



• ∀i ∈ [L], |hski| = (n · poly(λ) +O(logL)): Each hski consists of elements G, i, Bi, Ai,xi,
{
Ŵw,i

}
w∈[n′+1]

where

G, Bi, Ai are of size poly(λ), i is of size O(logL), and xi and
{
Ŵw,i

}
w∈[n′+1]

of size n · poly(λ).

• Runtime(KGen) = O(L) · poly(λ): Note that we do not need to parse the full crs here. For a particular
i ∈ [L], we only pick the elements Un′,i and Wj,i,n′ for all j ∈ [L] \ {i}, which can be done in total O(L)
time. The key generation algorithm has to perform L − 1 exponentiations on the cross terms to create
the W̃ part of the public key, so this operation only takes linear time in L. The rest of the operations
can be performed in constant time.

• Runtime(IsValid) = L · poly(λ): Note that we do not need to parse the full crs here. For a particular
i ∈ [L], we only pick the elements Un′,i and Wj,i,n′ for all j ∈ [L] \ {i}, which can be done in total
O(L) time. Further, the validation algorithm simply computes and checks L−1 pairings. Assuming each
pairing takes poly(λ) time, the total running time becomes L · poly(λ).

• Runtime(Aggr) = n · L2 · poly(λ): We analyze the running time of the Aggr algorithm by analyzing each
step individually.

– Step 1: The aggregation parses the crs which takes n · L2 · poly(λ) time.

– Step 2: In order to compute Ti, we need to compute
∏n

w=1 U
−xw,i

w,i for each user. This part takes

n ·L ·poly(λ) time. Using the same logic, computing W̃j,i for all users, also takes n ·L2 ·poly(λ) time.
– Step 3: This step takes n · L · poly(λ) time.

– Step 4: Since we need to compute Ŵw,i, for each w ∈ [n′] and each index i ∈ [L], this step takes
n · L2 · poly(λ).

Above, steps 2, 4 dominate the runtime for Aggr which is n · L2 · poly(λ).

Theorem 5 (Perfect Correctness of Construction 1). The slotted RIPE scheme ΠsRIPE with message

spaceM = GT and attribute space U = Zn+

q from Construction 1 is perfectly correct.

Proof. Fix some λ, attribute size n = n(λ), a slot count L = L(λ) and an index i ∈ [L]. Let crs←$ Setup(1λ, 1n, 1L)
and (pki, ski)←$ KGen(crs, i) be defined as in the scheme from Construction 1. Take any set of public keys{
pkj
}
j∈[L]\{i}, where IsValid(crs, j, pkj) = 1. Therefore, we have

pkj =

(
Tj ,
{
W̃ℓ,j

}
ℓ∈[L]\{j}

)
,∀j ∈ [L] \ {i} , skj = r̃j for some r̃j ∈ Z+

q .

For each j ∈ [L], let xj ∈ Zn+

q be the predicate vector associated to pkj and let x̃j = (xj , r̃j , 1). Further,
let mpk and hski be as computed by Aggr(crs, ((pkj ,xj))j∈[L]). Now, note that in the Dec algorithm, the
computation associated to the message components yield

C1

e(C2, Bi)
=

m · Zs

e
(
gs1, g

α
2 ·A

β
i

) =
m · e (g1, g2)α·s

e (g1, g2)
α·s · e (g1, g2)sβti

=
m

e (g1, g2)
sβti

(2)

Now observe that for any vector xi ∈ Zn+

q for some i ∈ [L] and an attribute y ∈ Zn+

q with ⟨xi,y⟩ = 0, it
also holds that ⟨x̃i, ỹ⟩ = ⟨xi,y⟩+ ⟨r̃i, 0⟩+ 1 · 0 = 0. For brevity, we set up the notations gT = e (g1, g2) and
the discrete logarithm as DL(K) = k, where K = gkt for any k ∈ Zq (i.e., irrespective of any group type
t ∈ {1, 2,T}) for the rest of the proof. To ensure correctness with the rest of decryption above, it is thus
enough to show that

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
· e
(
C4, Ŵ

x̃w,i

w,i

)}
= gsβtiXi

T (3)

so that Dec yields the message m ∈ GT. We will analyze individual pairing products in the above form
separately. Before that we note a few things about the public keys after they are fused with the predicate

16



vectors during Aggr. For any i ∈ [L], j ∈ [0, L], we have

Tj =

 ∏
w∈[n]

U
−xw,j

w,j

 · U−r̃j
n′,j =

∏
w∈[n′]

g
−uw,j x̃w,j

1 = g
−

∑
w∈[n′] uw,j x̃w,j

1 =⇒ DL(Tj) = −
∑

w∈[n′]

uw,j x̃w,j ,

W̃i,j =

 ∏
w∈[n]

W
xw,j

i,j,w

 ·W r̃j
i,j,n′ =

∏
w∈[n′]

(
A

uw,j/γ
i

)x̃w,j

= A
1
γ ·

∑
w∈[n′] uw,j x̃w,j

i = A
−DL(Tj)/γ
i ,

where we redefined x̃n′,0 = r̃0. Further, for any w ∈ [n′] and i ∈ [L], we have:

Ŵ
x̃w,i

w,i =
∏

j∈[0,L]\{i}

W
x̃w,i

i,j,w =
∏

j∈[0,L]\{i}

(
A

uw,j/γ

i

)x̃w,i
= A

(x̃w,i·
∑

j∈[0,L]\{i} uw,j)/γ
i (4)

Defining the first pairing product as θ1 =
∏n′+1

w=1 e
(
C

x̃w,i

3,w , Ai

)
, we have:

θ1 =
n′+1∏
w=1

e

((
hỹw·r+s · Û−z

w

)x̃w,i

, Ai

)

=

n′+1∏
w=1

{
e
(
hr·x̃w,iỹw , Ai

)
· e
(
hs·x̃w,i , Ai

)
· e
(
Û−zx̃w,i
w , Ai

)}

= e
(
hr·

∑n′+1
w=1 x̃w,iỹw , Ai

)
· e
(
g
sβ

∑n′+1
w=1 x̃w,i

1 , Ai

)
·
n′+1∏
w=1

e
(
Û−zx̃w,i
w , Ai

)

= e
(
h0, Ai

)
· e
(
gsβXi

1 , gti2

)
·
n′+1∏
w=1

e
(
Û−zx̃w,i
w , Ai

)
= gsβtiXi

T · θ11 · θ12,

where θ11 =

n′∏
w=1

e
(
Û−zx̃w,i
w , Ai

)
and θ12 = e

(
Û−z
n′+1, Ai

)
(recall x̃n′+1,i = 1)

Then, we have

θ11 =
∏

w∈[n′]

e

 L∏
j=0

U
−zx̃w,i

w,j , Ai

 =
∏

w∈[n′]

e

((
g
∑L

j=0 uw,j

1

)−zx̃w,i

, gti2

)

=
∏

w∈[n′]

g
−ztix̃w,i

∑L
j=0 uw,j

T =
∏

w∈[n′]

g
zti(−x̃w,iuw,i)
T ·

∏
w∈[n′]

g
−ztix̃w,i

∑
j∈[0,L]\{i} uw,j

T

= g
ztiDL(Ti)
T · ζ1, where ζ1 =

∏
w∈[n′]

g
−ztix̃w,i

∑
j∈[0,L]\{i} uw,j

T and

θ12 = e
(
Û−z
n′+1, Ai

)
=e

 L∏
j=0

T−1
j , Az

i

 =

L∏
j=0

e
(
T−1
j , Az

i

)
=

L∏
j=0

e

 n′∏
w=1

U
x̃w,j

w,j , Az
i


=

L∏
j=0

e
(
g
∑

w∈[n′] uw,j x̃w,j

1 , Az
i

)
=

L∏
j=0

e
(
g
−DL(Tj)
1 , gzti2

)
=

L∏
j=0

g
−ztiDL(Tj)
T

= g
−ztiDL(Ti)
T · ζ2, where ζ2 = g

−zti
∑

j∈[0,L]\{i} DL(Tj)

T .

Therefore, we have θ1 = gsβtiXi

T ·
(
�����
g
ztiDL(Ti)
T · ζ1

)
·
(
�����
g
−ztiDL(Ti)
T · ζ2

)
⇒ θ1 = gsβtiXi

T · ζ1 · ζ2

17



Defining the second pairing product as θ2 =
∏n′+1

w=1 e
(
C4, Ŵ

x̃w,i

w,i

)
, we have:

θ2 =

{ ∏
w∈[n′]

e
(
gzγ1 , Ŵ

x̃w,i

w,i

)}
· e
(
gzγ1 , Ŵn′+1,i

)
(recall x̃n′+1,i = 1 and C4 = Γ z = gzγ)

=

{ ∏
w∈[n′]

e

(
gzγ1 , A

(x̃w,i·
∑

j∈[0,L]\{i} uw,j)/γ
i

)}
· e

gzγ1 ,

 ∏
j∈[0,L]\{i}

W̃i,j

−1


=
∏

w∈[n′]

e

(
gzγ1 , g

(tix̃w,i·
∑

j∈[0,L]\{i} uw,j)/γ
2

)}
·
∏

j∈[0,L]\{i}

e

(
gzγ1 ,

(
A

−DL(Tj)/γ
i

)−1
)

=
∏

w∈[n′]

g
ztix̃w,i·

∑
j∈[0,L]\{i} uw,j

T ·
∏

j∈[0,L]\{i}

e
(
gzγ1 , g

tiDL(Tj)/γ
2

)
= ζ−1

1 ·
∏

j∈[0,L]\{i}

g
ztiDL(Tj)
T = ζ−1

1 · g
zti

∑
j∈[0,L]\{i} DL(Tj)

T = ζ−1
1 · ζ−1

2

This completes the proof since

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
·e
(
C4, Ŵ

x̃w,i

w,i

)}
=θ1 · θ2 = gsβtiXi

T · ζ1 · ζ2 · ζ−1
1 · ζ−1

2 =gsβtiXi

T .

Theorem 6 (Security of Construction 1). The slotted RIPE scheme ΠsRIPE with message spaceM = GT

and attribute space U = Zn+

q from Construction 1 is secure in the GGM.

Below, we show that our slotted RIPE scheme ΠsRIPE (Construction 1) is secure in the generic group model.
We start with some notations and definitions for generic and symbolic group models.

Generic Bilinear Group Model. Our definitions for generic bilinear group model is adapted from
[BCFG17, AY20]. Let G = (G1,G2,GT, q, g1, g2, e) be a bilinear group setting, L1,L2,LT be lists of group
elements in G1,G2, and GT respectively. Let D be a distribution over L1,L2,LT. The generic group model
for a bilinear group setting G and a distribution D is described in Figure 1. In this model, the challenger first
initializes the lists L1,L2,LT by sampling the group elements according to D, and the adversary receives
handles for the elements in the lists. For t ∈ {1, 2,T}, Lt[h] denotes the h-th element in the list Lt. The
handle to this element is simply the pair (t, h). An adversary A running in the generic bilinear group model
can apply group operations and the bilinear map e to the elements in the lists. To do this, A has to call the
appropriate oracle specifying handles for the input elements. A also gets access to the internal state variables
of the challenger via handles, and we assume that the equality queries are “free”, in the sense that they do
not count when measuring the computational complexity A. For t ∈ {1, 2,T}, the challenger computes the
result of a query, say δ ∈ Gt, and stores it in the corresponding list as Lt[pos] = δ where pos is its next empty
position in Lt, and returns to A its (newly created) handle (t, pos). Handles are not unique (i.e., the same
group element may appear more than once in a list under different handles). As in [AY20], the equality test
oracle in [BCFG17] is replaced with the zero-test oracle ZtT(·) that, on input a handle (t, h), returns 1 if
Lt[h] = 0 and 0 otherwise only for the case t = T.

Symbolic Group Model. The symbolic group model (SGM) for a bilinear group setting G and a distribu-
tion D gives to the adversary the same interface as the corresponding generic group model (GGM), except
that internally the challenger stores lists of elements from the ring Zq[x1, . . . , xk] instead of lists of group
elements, where {xk}k∈N are indeterminates. The oracles Addt(·, ·),Negt(·),Mape(·, ·),ZtT(·) compute addi-
tion, negation, multiplication, and zero tests respectively in the ring. For our proof, we will work in the ring
Zq[x1, . . . , xk, 1/xi] for some i ∈ [k]. Note that any element f ∈ Zq[x1, . . . , xk, 1/xi] can be represented as

f(x1, . . . , xn) =
∑
c∈Zk

ηc

k∏
i=1

xcii with c = (c1, . . . , ck) ∈ Zk

18



State: Lists L1,L2,LT over G1,G2,GT respectively.

Initializations: Lists L1,L2,LT sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear map, and zero-tests.

– ∀t ∈ {1, 2,T}: Addt(h1, h2) appends Lt[h1] + Lt[h2] to Lt and returns its handle (t, |Lt|).
– ∀t ∈ {1, 2,T}: Negt(h) appends −Lt[h] and returns its handle (t, |Lt|).
– Mape(h1, h2) appends e(L1[h1],L2[h2]) and returns its handle (T, |LT|).
– ZtT(h) returns 1 if LT[h] = 0 and 0 otherwise.

All oracles return ⊥ when given invalid indices.

Fig. 1: GGM for bilinear group setting G = (G1,G2,GT, q, g1, g2, e) and distribution D.

using {ηc ∈ Zq}c∈Zk , where ηc = 0 for all but finite c ∈ Zk. Note that this expression is unique. We now
begin our proof for Theorem 6 below.
Proof. At a high level, we show a sequence of hybrids each of which is a game between a challenger and a
PPT adversary A. In the first (resp., last) hybrid, the challenger encrypts a pair (yb,mb) corresponding to
bit b = 0 (resp., b = 1). The intermediate hybrids ensure that the distributions in any pair of subsequent
hybrids from the first to the last one are statistically indistinguishable.

Since the proof is in the GGM, w.l.o.g. the challenger simulates all the generic bilinear group oracle queries
for A. In particular, the challenger stores the actual computed elements in the list Lt based on its group type
t ∈ {1, 2,T}. The handle to an actual element stored in any of these lists are just a tuple (t, pos) specifying
the group type t and its position in the table Lt. Since our scheme contains several variables, we will refrain
from explicitly specifying the handles to the actual elements for convenience. Further, when we move to the
SGM, we will denote any literal variable v as v and composite terms like v1v2 (resp., v1

v2
) as v1v2 (resp.,

v1
v2
) to

represent an individual monomial in a (possibly multivariate) polynomial. For variables denoted with Greek
alphabets, say α, β, γ, we represent their corresponding formal variables as α,β,γ. We also define Zq-span(S)
as the set of Zq-linear combinations of all elements in any set S. Assume A issues an arbitrary polynomial
number Qzt(λ) of queries to its ZtT oracle in each hybrid.

H1(λ) : This is the real scheme corresponding to bit b = 0 in the GGM. In more detail, the hybrid goes as
follows.

• Setup phase: A sends an attribute length n = n(λ) and slot count L = L(λ) to the challenger,
upon which it first initializes ctr = 0, a dictionary D, and the set CL = ∅ to account for corrupted
slots. Next, it computes G = (G1,G2,GT, q, g1, g2, e)←$ GroupGen(1λ) and initializes three tables as
Lt[1] = gt,∀t ∈ {1, 2,T}. The challenger prepares a tuple

(
G1,G2,GT, q, {(t, 1)}t∈{1,2,T}

)
, where (t, 1)

represents the handle to gt,∀t ∈ {1, 2,T}. To allow A to compute the group operations including the
bilinear map e, the challenger also simulates all the oracles Addt,Negt,Mape,ZtT with implicit access
to the lists {Lt}t∈{1,2,T}. It then computes the crs components as follows:

1. Set n′ = n + 1. Compute h = gβ1 , Γ = gγ1 ∈ G1 and Z = e(g1, g2)
α ∈ GT as in the real Setup

algorithm. Update L1 with the elements β, γ and LT with α respectively.
2. For each slot index i ∈ [0, L], do the following:

(a) ∀w ∈ [n′], compute Uw,i = g
uw,i

1 ∈ G1 as in the real scheme and update L1 with uw,i.

(b) ∀i > 0, compute Ai = gti2 , Bi = gα+β·ti
2 ∈ G2 as in the real scheme and update L2 with

ti, (α+ β · ti) in order.

(c) ∀i > 0, w ∈ [n′] and for each j ∈ [0, L] \ {i}, compute Wi,j,w = g
ti·uj,w

γ

2 ∈ G2 as in the real

scheme and update L2 with
ti·uj,w

γ .

19



3. For x̃0 = (x̃1,0, . . . , x̃n′,0)←$ Zn′+

q , set pk0 =

(
T0,
{
W̃i,0

}
i∈[L]

)
as in the real scheme. Define

u′
0 =

∑n′

w=1 uw,0 · x̃w,0 = −DL(T0) so that

T0 = g
u′
0

1 ∈ G1 , W̃i,0 = g
ti·u

′
0

γ

2 ∈ G2,∀i ∈ [L].

Update L1 with u′
0 and L2 with

{
ti·u′

0

γ

}
i∈[L]

in order.

4. Set

crs =

(
G, Z, h, Γ, {Ai, Bi}i∈[L] ,

{
{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}

}
w∈[n′]

, pk0

)
.

5. Return to A a tuple crs′ that includes
(
G1,G2,GT, q, {(t, 1)}t∈{1,2,T}

)
along with the handles to

all elements in the same order as they are arranged in the crs above.

• Pre-challenge query phase: A can issue key generation queries or corruption queries in this phase.

1. Consider the key-generation queries first. Upon getting a slot index i ∈ [L], the challenger updates
ctr = ctr + 1, sets xctr

i = xi and does the following:

(a) Sample r̃ctri ←$ Z+
q and compute pkctri =

(
T ctr
i ,
{
W̃ ctr

j,i

}
j∈[L]\{i}

)
as in KGen.

(b) Note that the element T ctr
i ∈ G1 from pkctri has the following structure:

T ctr
i = g

−r̃ctri un′,i
1 , where skctri = r̃ctri is the secret key.

Even given the handle to un′,i, A cannot compute a handle for DL(T ctr
i ) = −r̃ctri un′,i on its

own. Hence, the challenger updates L1 with DL(T ctr
i ).

(c) Further, each term in
{
W̃ ctr

j,i ∈ G2

}
j∈[L]\{i}

has the following structure:

W̃ ctr
j,i = W

r̃ctri

j,i,n′ = g

tjun′,i
γ ·r̃ctri

2

For reasons similar to Item (b) above, the challenger updates L2 with each element individ-

ually from the set
{
r̃ctri ·

tjun′,i
γ

}
j∈[L]\{i}.

(d) Define pkctr = pkctri , skctr = skctri and pk′ctr as a sequence of handles to all elements in the same
order as they are arranged in pkctr.

(e) Return the tuple (ctr, pk′ctr) to A and update D[ctr] = (i, pkctr, skctr).
2. When A sends c ∈ [ctr] issuing a corruption query, the challenger returns sk′ to A where D[c] =

(i′, pk′, sk′).

• Challenge phase: In this phase, A specifies the following challenge information:

{(ci,xi, pk
∗
i )}i∈[L] and ((y0,m0), (y1,m1)) ∈ (Zn+

q ×GT)
2.

Preprocessing the challenge information. For each i ∈ [L], the challenger checks that xi ̸= 0n and
does the following:

1. If ci ∈ [ctr], it checks D[ci] = (i′, pk′, sk′). If i ̸= i′, it halts. Else, it sets pk∗i = pk′. Further, if A
issued a corruption query for ci before, it updates CL = CL ∪ {i}.

2. If ci = ⊥, pk∗i represents a corrupt secret key generated by A itself. Hence, it parses pk∗i and
halts if IsValid(crs, i, pk∗i ) = 0.12 Else, it updates CL = CL ∪ {i}.

12 By Definition 4, A is supposed to send well-formed keys that passes the IsValid(crs, ·, ·) test. Hence, from now on
we do not mention it any more, but assume the challenger checks it implicitly.

20



Computing key aggregation. The challenger then computes(
mpk, (hski)i∈[L]

)
= Aggr

(
crs, ((pk∗i ,xi))i∈[L]

)
, where

mpk = (G, g, h, Z, Γ, {Ûw}w′∈[n′+1]), and {hski = (G, i, Ai, Bi, {Ŵw,i}w∈[n′+1])}i∈[L].

Computing the challenge ciphertext. The challenger now uses mpk and the pair (y0,m0), and gener-

ates c∗←$ Enc(mpk,y0,m0) where c∗ =
(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

1. Note that C1 = m0 · e(g1, g2)αs ∈ GT and C2 = gs1 ∈ G1. Accordingly, the challenger updates LT

with αs and L1 with s respectively.
2. With ỹ0 = (y0, 0, 0) = (y01 , . . . , y

0
n, 0, 0), note that the elements {C3,w ∈ G1}w∈[n′+1] have the

following structure:

for all w ∈ [n], C3,w = hy0
w·r+s · Û−z

w = g
rβy0

w+sβ−z·uw

1

for w = n′, C3,n′ = g
rβ·0+sβ−z·u′

n
1 = g

sβ−z·un′
1

for w = n′ + 1, C3,n′+1 = grβ·0+sβ
1 · Û−z

n′+1 = gsβ1 ·
L∏

i=0

T−z
i

= gsβ1 ·
L∏

i=0

g
z
∑n′

w=1 x̃w,i·uw,i

1

= gsβ1 ·
L∏

i=0

g
z·u′

i
1 = g

sβ+z·u′
0−z

∑L
i=1 DL(Ti)

1

where uw =

L∑
i=0

uw,i ,and un′ =

L∑
i=0

un′,i.

Accordingly, the challenger updates L1 with the elements {rβy0w+sβ−z ·uw}w∈[n], (sβ − z · un′),

and
[
sβ + z · u′

0 − z ·
∑L

i=1 DL(Ti)
]
in order.

3. Since C4 = gγz1 ∈ G1, it updates L1 with zγ.
Group oracle queries. Since Aggr is deterministic, A is able to compute

(
mpk, (hski)i∈[L]

)
on its own.

In the GGM, A is able to compute handles for the elements in mpk and {hski}i∈[L]. To this end, it
queries the appropriate group oracles to generate such handles as follows:
1. A only needs to compute the handles for {Ûw}w∈[n′+1] to complete its information about mpk.

Note that ∀w ∈ [n′], Ûw =
∏L

i=0 Uw,i = guw
1 , where uw =

∑L
i=0 uw,i. Hence, ∀w ∈ [n′], A invokes

the Add1 oracle L times iteratively on the handles in L1 for {uw,i}i∈[0,L] and gets a handle for

uw. Further, to get a handle for Ûn′+1 =
∏L

i=0 Ti, it has to first a get a handle for each Ti that
is fused with the predicate xi. Note the structure of each Ti after Step (2) in Aggr:

Ti = g
∑n′

w=1 −x̃w,i·uw,i

1 = g
∑n

w=1(−xw,i·uw,i)
1 × g

(−r̃i·un′,i)
1 ∈ G1.

Given a handle for the second multiplicand, it is easy to note that the first one is publicly
computable using Neg1 and Add1 oracles. Once A obtains the handles for {Ti}i∈[L], it can call

Add1 oracle on these handles to get the same for Ûn′+1.

2. A only needs to compute the handles for {Ŵw,i}w∈[n′+1] to get complete information about hski

for each i ∈ [L]. Note that ∀w ∈ [n′], Ŵw,i =
∏

j∈[0,L]\{i} Wi,j,w = g
ti·(uw−uw,i)/γ
2 , since (uw −

uw,i) =
∑

j∈[0,L]\{i} uw,j . It is again easy to see that a handle for such an element can be computed

by calling the Add2 oracle L − 1 times iteratively on the handles in L2 for
{ ti·uw,j

γ

}
j∈[0,L]\{i}.

Further, note that to get a handle for Ŵn′+1,i =
∏

j∈[0,L]\{i} W̃
−1
i,j , it has to first a get a handle

21



for each W̃j,i that is fused with the predicate xi. Note the structure of each W̃j,i after Step (2)
in Aggr:

W̃j,i =

(
n∏

w=1

W
x̃w,i

i,j,w

)
·W r̃i

i,j,n′ = g
∑n

w=1

tjuw,i
γ ·xw,i

2 × g

(
tjun′,i

γ ·r̃i
)

2 ∈ G2.

Again, given a handle for the second multiplicand, the same can be computed publicly for
the entire product using handles for {Wi,j,w}. Once A obtains the handles to each element in

{W̃j,i}j∈[L]\{i}, it can call Add2 oracle on these handles to get the same for Ŵn+1,i.
3. Finally, it defines mpk′ and each hsk′i as sequences of handles to all elements (except i,xi) in the

same order as arranged in mpk and each hski,∀i ∈ [L].
• Output phase: A outputs a bit b′ ∈ {0, 1}.
For ease of presentation, in Table 2 we show all unit and composite terms generated in the scheme itself,
and stored in the respective lists.

L1 L2 LT

crs

g1 , β , γ

u′
0 =

n′∑
w=1

uw,0x̃w,0,

{
uw,i

}
i∈[0,L],w∈[n′]

g2 ,
{

ti , α+ βti
}

i∈[L]

tiu
′
0

γ
,

{
tiuw,j

γ

}
i∈[L]

j∈[0,L]\{i}
w∈[n′]

gT

α

{pkc}
c∈[Qk]

{
−r̃ciun′,i

}
c∈[Qk](

for {T c
i }c∈[Qk]

)
{

r̃ci ·
tjun′,i

γ

}
j∈[L]\{i}
c∈[Qk](

for
{
W̃ c

j,i

}
j∈[L]\{i},c∈[Qk]

) –

c

s (for C2) ,

zγ (for C4) ,

rβy0
w + sβ − zuw (for C3,w, ∀w ∈ [n]),

sβ − zun′ (for C3,n′) , where un′ =

L∑
i=0

un′,i

sβ − zDL(T ) (for C3,n′+1) , where DL(T ) =
L∑

i=0

DL(Ti)

– DL(m) + αs

Table 2. The above table shows all terms from the scheme for which handles are stored in the respective lists
Lt,∀t ∈ {1, 2,T}. Assume A issues some arbitrary polynomial number, Qk, of key queries in the pre-challenge query
phase (some of which may be corrupted). The table lists all the terms for each of these keys {pkc}c∈[Qk] received
by A in the second row. Hence, these terms are also indexed with superscripts for the key query count c ∈ [Qk]
(along with the slot index, say i ∈ [L], for which A asked the key). The terms corresponding to mpk and hski are not
shown in the table, since the handles for these are publicly computable by A using the group oracles. Note that such
terms correspond to keys for all the registered L slots (possibly all of which may be corrupted or even adversarially
generated). Hence, the individual variables in each of those terms in mpk and hski are independent of the counter
variable c ∈ [Qk] respectively. In c, observe that we also have (DL(m) + αs) in LT, where DL(m) ∈ Zq is w.r.t. gT.

22



H2(λ) : In this hybrid, we switch to the SGM partially. Namely, the interaction between challenger and A
remains exactly as it was in H1(λ), but now the challenger stores formal variables for all the terms from
Table 2 in the respective lists Lt,∀t ∈ {1, 2,T}. Thus, all the handles A receives refer to multivariate
polynomials from the following ring:

ζ =Zq

[
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
1

γ
, s, r, z, {yw}w∈[n′+1]

]
.

Concretely, A gets handles to formal polynomials from Lt for each t ∈ {1, 2,T}, where:
1. LT = {1,α,DL(m) + αs}.
2. L1 = Lcrs

1 ∪ L
key
1 ∪ Lc

1, where
(a) Lcrs

1 =
(
1,β,γ, u′0, {uw,i}i∈[0,L],w∈[n′]

)
,

(b) Lkey
1 =

(
{−r̃ciun′,i}c∈[Qk]

)
for some i ∈ [L], and

(c) Lc
1 =

(
s, zγ,

{
rβyw + sβ− z

∑L
i=0 uw,i

}
w∈[n]

, sβ− zun′ , sβ− zDL(T)

)
.

3. L2 = Lcrs
2 ∪ L

key
2 , where

(a) Lcrs
2 =

(
1, {ti,α+ βti}i∈[L],

tiu
′
0

γ
,
{

tiuw,j
γ

}
i∈[L],j∈[0,L]\{i},w∈[n′]

)
, and

(b) Lkey
2 =

({
r̃citjun′,i

γ

}
j∈[L]\{i},c∈[Qk]

)
for some i ∈ [L].

However, when A issues any zero-test query via ZtT oracle, the challenger replaces the formal variables
with their corresponding elements from Zq. In this case, if the variable is not assigned a value in Zq, it
samples the corresponding value from the same distribution as it did in H1(λ). However, once a value is
assigned to a variable, it is fixed throughout the rest ofH2(λ). We show in Lemma 1 thatH1(λ) ≡ H2(λ).
Given the tuple P = (L1,L2,LT), we define C(LT) = LT ∪ {V1 · V2 | ∀V1 ∈ L1, V2 ∈ L2}. Basically,
it is the set of all monomials from ζ with variables in GT that A can compute querying Mape on the
handles it received for elements in L1,L2. We estimate the size of C(LT) as follows. Note that we have
|C(LT)| = |LT|+ |L1| · |L2| where |LT| = 3,

|L1| = |Lcrs
1 |+

∣∣∣Lkey
1

∣∣∣+ |Lc
1|

≤ {(L+ 1)n′ + 4}+ LQk + (n+ 4) = L(n+Qk + 1) + 2n+ 9, and

|L2| = |Lcrs
2 |+

∣∣∣Lkey
2

∣∣∣
≤ {2 + 2L+ n′L2}+ {L(L− 1)Qk} = L2(n+Qk + 1)− L(Qk − 2) + 2.

There are several variables in ζ and several terms in L1,L2. Hence, for brevity, we do not state all the
elements of C(LT) explicitly with all possible cross combinations of the monomials from L1,L2. However,
it is easy to see by inspection that the maximal total degree of each term in C(LT) is d = 7 corresponding

to the term
[
rβyw ·

r̃citjun′,i
γ

]
for any w ∈ [n′], i ∈ [L], j ∈ [0, L] \ {i}, c ∈ [Qk]. We also note that any

handle submitted by A to the ZtT oracle during its interaction refers to a polynomial f ∈ ζ as

f

(
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
1

γ
, s, r, z, {yw}w∈[n′+1]

)
=

∑
θ∈C(LT)

ηΘΘ,

where the coefficients {ηΘ ∈ Zq}Θ∈C(LT) can be computed efficiently. Further, since all the monomials in
C(LT) are distinct, the coefficients ηΘ are unique.

H3(λ) : In this hybrid, all queries to ZtT oracle are answered using formal variables. Namely, for any ZtT
query on a handle to a polynomial f ∈ ζ, the challenger returns 1 if:

f

(
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
1

γ
, s, r, z, {yw}w∈[n′+1]

)
= 0.

We show in Lemma 2 that H2(λ) ≈ H3(λ).

23



H4(λ) : In this hybrid, the challenge ciphertext computes an encryption of m0 with respect to y1. That is,
everything remains as it is in H3(λ) except that the challenger generates

c∗ = (C1, C2, {C3,w}w∈[n′+1], C4)←$ Enc(mpk,y1,m0).

We show in Lemma 3 that H3 ≈ H4.
From here on, the challenger moves to H6(λ) directly if m0 = m1. Else if m0 ̸= m1, it still moves to
H6(λ), but via the next hybrids.

H5,1(λ) : In this hybrid, Zs ∈ GT is replaced with U←$ GT. We show in Lemma 4 that H4(λ) ≈ H5,1(λ).
H5,2(λ) : In this hybrid, the challenge ciphertext encrypts m1 instead of m0.
H5,3(λ) : In this hybrid, U is changed to the honestly computed Zs again. Since these hybrids are standard,

we show that directly in Lemma 5 that H5,1(λ) ≈ H5,2(λ) ≈ H5,3(λ).
H6(λ) : In this hybrid, the challenger moves to GGM from the symbolic setting of SGM. This is the real

scheme corresponding to bit b = 1 in the GGM and Lemma 6 shows that H5,3(λ) ≈ H6(λ).

Hybrid Indistinguishability. Here, we show the indistinguishability of consecutive hybrids.

Lemma 1 (H1(λ) ≡ H2(λ)). H1(λ) and H2(λ) are perfectly indistinguishable.

Proof. Note that A sees the same handles in both H1(λ) and H2(λ). So it can notice a difference between
the hybrids only if some zero-test query via the ZtT oracle is answered differently. However, these zero-test
queries are answered using values sampled from the same distribution in both the hybrids. Thus A’s view
remains the same in both the hybrids.

Lemma 2 (H2(λ) ≈ H3(λ)). H2(λ) and H3(λ) are statistically indistinguishable.

Proof. Note that H2(λ) and H3(λ) differs only when A submits a handle for some f ∈ ζ satisfying

f

(
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃
c
i }i∈[L],c∈[Qk]

, {ti}i∈[L],
1

γ
, s, r, z, {y0w}w∈[n′+1]

)
= 0, and

f

(
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
1

γ
, s, r, z, {yw}w∈[n′+1]

)
̸= 0

to the ZtT oracle. Denote this event as E2,3. It suffices to bound the probability of E2,3 occurring in H2(λ).
To this end, recall that the maximal total degree of any such polynomial f ∈ ζ that could be formed by
linear combinations of the monomials in C(LT) is d = 7. Further, for any such f ∈ ζ in H2(λ), observe that

all variables input to f are randomly sampled except {y0w}w∈[n′+1]. In particular, we have y0 ∈ Zn+

q supplied
by A itself and y0n′ , y0n′+1 = 0. Thus, fixing ỹ0, the maximal degree of each monomial in f becomes d−1 = 6.

We then define a new polynomial g ∈ Zq

[
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L], {yw}w∈[n′+1]

]
as

g
(
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
{
y0w
}
w∈[n′+1]

)
=

γ · f
(
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
1

γ
,
{
y0w
}
w∈[n′+1]

)
.

The polynomial g is introduced to clear any γ from the denominator that may appear in f and to make sure
that g is in the ring

Zq

[
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L], {yw}w∈[n′+1]

]
and not ζ. Note that since γ ̸= 0, E2,3 occurs if and only if

g
(
α, β, γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i }i∈[L],c∈[Qk]

, {ti}i∈[L],
{
y0w
}
w∈[n′+1]

)
= 0

24



and
g
(
α,β,γ, u′0, {uw,i}i∈[L],w∈[n′], {r̃

c
i}i∈[L],c∈[Qk]

, {ti}i∈[L],
{
y0w
}
w∈[n′+1]

)
̸= 0.

However, this implies that deg(g) ≤ 7 (γ may increase the maximal degree of each monomial by 1, even if
ỹ0 is fixed). We now note that all the remaining inputs in g are sampled independently and uniformly at
random. Hence, by Schwarz-Zippel lemma we have that Pr[E2,3] ≤ 7

q . As A issues Qzt(λ) queries to the ZtT

oracle, a union bound implies that A can distinguish the two hybrids with probability at most 7·Qzt(λ)
q . Thus,

H2(λ) ≈ H3(λ).

Lemma 3 (H3(λ) ≈ H4(λ)). H3(λ) and H4(λ) are statistically indistinguishable.

Proof. In H3(λ) and H4(λ), A interacts with the challenger in the SGM. In particular, all elements from
G1,G2 and GT are treated “symbolically” and indexed by their discrete logarithms. The only information
that A can learn in the SGM is by querying ZtT oracle. Without loss of generality, we need to care only about
the successful queries to the ZtT oracle. Recall the challenge ciphertext c∗ =

(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

The heart of this analysis is to prove properties about the coefficients that A assigns to the discrete logarithms
of the elements in (C3,1, . . . , C3,n′+1). These are the most important coefficients because the above group
elements are the only ones depending on the challenge attribute vector yb. Recall that ∀w ∈ [n′+1], we have

C3,w = hỹb
w·r+s · Û−z

w = g
ỹb
w·rβ+sβ

1 · Û−z
w = g

rβỹb
w+sβ−zχ

1 ,

where χ ∈ {u1, . . . , un′ ,DL(T )}. We now proceed with the following claims.

Claim 1 The coefficients of all the terms (C3,1, . . . , C3,n′+1) that are not paired with some Ai must be equal
to zero.

Proof. Note that the only symbolic elements that A can access in G2, apart from ti (representing Ai) for any
i ∈ [L], are the following:

1. 1 (representing g2).
2. α+ βti (representing Bi), ∀i ∈ [L].

3.
tiu

′
0

γ
(representing W̃i,0), ∀i ∈ [L].

4.
{

tiuw,j
γ

}
j∈[0,L]\{i}
w∈[n′]

(representing Wi,j,w), ∀i ∈ [L].

5.
{

r̃citjun′,i
γ

}
j∈[L]\{i}
c∈[Qk]

(representing W
r̃ci
j,i,n′ from the product W̃ c

j,i in pkc), ∀i ∈ [L].

6. Any arbitrary linear combination amongst the above 5 items (and possibly with ti).

Observe that items 2, 3, 4 and 5 are all linearly independent. In particular, they do not cancel out internally
as well as with each other. E.g., for i, j ∈ [0, L], i ̸= j, (α+βti) cannot cancel out (α+βtj), or they also do

not cancel out with
tiu

′
0

γ
,
tiuw,j
γ

or
r̃citjun′,i

γ
. We will now establish that they cannot cancel even when A uses

the Mape oracle to form products with the terms available to A from G1. We focus particularly on the terms
representing C3,ws’ and C4. The other terms in G1 from crs, {pkc}c∈[Qk] and C2 ∈ c∗ follow from a simple
inspection. For any i ∈ [L], let us look at the coefficients of the symbolic representation for any C3,w (from
above) multiplied with anything available from the same for elements in G2. For convenience, we argue both
in the language of pairings and the equivalent symbolic setting in the following, switching between them as
and when required. In particular, we focus on the variable z, which is present only in the terms representing
C3,w and C4. Define ∆ = {u1, . . . , un′ ,DL(T)}. Below we look at all possible pairings and show that they have
linearly independent symbolic terms that cannot be cancelled out, so long as we forbid Ai in the pairing.

1. e(C3,w, g2): Here we have the unique terms zχ,∀χ ∈ ∆ (no α,β,γ, ti).
2. e(C3,w, Ai): Here we have the unique terms ztiχ,∀χ ∈ ∆ (no α,β,γ). Note that this is the one that we

are excluding, but we still have to consider it to make sure that it does not cancel out with the other
pairings of C3,w.

25



3. e(C3,w, Bi): Here we have the unique terms zαχ and ztiβχ,∀χ ∈ ∆ (no γ).

4. e(C3,w, W̃i,0): Here we have the unique terms ztiu
′
0χ/γ,∀χ ∈ ∆ (no α,β).

5. e(C3,w,Wi,j,w): Here we have the unique terms ztiuw,jχ/γ, ∀χ ∈ ∆ (no α,β).

6. e(C3,w,W
r̃ci
j,i,n′): Here we have the unique terms zr̃citjun′,iχ/γ,∀χ ∈ ∆ (no α,β).

7. e(C4, g2): Here we have the unique term zγ (no α,β, ti).
8. e(C4, Ai): Here we have the unique term zγti (no α,β).
9. e(C4, Bi): Here we have the unique terms zγα (no β) and zγβti (no α).

10. e(C4, W̃i,0): Here we have the unique term ztiu
′
0 (no α,β).

11. e(C4,Wi,j,w): Here we have the terms ztiuw,j (no α,β,γ). Note that this term includes terms from Item-

(2) above setting χ = uw =
∑L

k=0 uw,k. Hence, it is not a unique term. But we are anyway excluding Ai

from this inspection.

12. e(C4,W
r̃ci
j,i,n′): Here we have the unique terms zr̃citjun′,i (no α,β,γ).

By inspection, we see that these monomials are indeed unique across all possible pairings (except Ai) and
thus, are also linearly independent among each other. It is easy to see that the same holds true for the initial
terms in C3,w as well. In particular, observe that for any w ∈ [n′ + 1], C3,w is represented symbolically by
the general term (rβyw+sβ−zχ) for χ ∈ ∆. The presence of r in rβyw and β in sβ makes all their possible
combinations unique and linearly independent. Hence, no cross cancellations can occur if we forbid pairing
C3,w with Ai. Formally, define

Ψ =

{
1,

{
ti,α+ βti,

tiu
′
0

γ

}
i∈[L]

,

{
tiuw,j

γ

}
i∈[L],j∈[0,L]\{i}

w∈[n′]

,

{
r̃citjun′,i

γ

}
i∈[L],j∈[L]\{i}

c∈[Qk]

}
.

The above then implies that for any term ψ ∈ Zq-span(Ψ) \ Zq-span({t1, . . . , tL}):∑
w∈[n′+1]

ηw · (rβyw + sβ− zχ) ·ψ = ψ
∑

w∈[n′+1]

ηw · (rβyw + sβ− zχ) = 0.

To reiterate informally, we can consider the coefficients C3,w paired with anything (that is not Ai) individually
since (i) all the “anything” are linearly independent and all “anything” paired with C3,w do not cancel out.
We now show it must be the case that ηw = 0,∀w ∈ [n′+1]. Substituting the discrete logarithm of C3,w and
only looking at the terms involving z, we have:∑

w∈[n′+1]

ηw · DL
(
Û−z
w

)
= −z

∑
w∈[n′+1]

ηw · DL
(
Ûw
)
= 0.

We consider two cases:

– ηn′+1 = 0: Recall that for all w ∈ [n′] we have

DL
(
Ûw
)
= DL

 ∏
i∈[0,L]

g
uw,i
1

 = uw.

The variable uw is formed from the terms {uw,i}i∈[0,L] which are unit variables. Hence, the expression
above never evaluates to 0 symbolically, unless all of the coefficients (η1, . . . , ηn′) are 0. Thus in this case,
the coefficients must be all 0.

– ηn′+1 ̸= 0: Recall that

DL
(
Ûn′+1

)
= DL

 ∏
i∈[0,L]

Ti

 = DL(T) = DL(T0) +
∑
i∈[L]

DL(Ti).

26



Further, recall that there is at least one honest public-key in the above sum (namely T0). Hence, it
follows that DL(T0) = −u′0 is a unit variable. Note that the coefficient ηn′+1 is multiplied by [. . . ] · z · u′0.
The only other way to obtain the term z · DL(T0) is to pair C4 with W̃i,0 (this contains DL(T0) as part
of the user’s key). However, depending on what ψ ∈ Ψ is, we additionally have (or do not have) one of
the following coefficients:
• ψ = 1: Here we do not have ti.
• ψ = α+ βti: Here we have an extra β.
• ψ =

tiuw,j
γ

: Here we have an extra 1/γ.

• ψ =
r̃citjun′,i

γ
: Here we have the extra terms r̃ci, 1/γ.

Thus, ηn′+1 is multiplied with a variable that is not obtainable anywhere else. Hence, it must be the case
that ηn′+1 = 0. This establishes Claim 1.

Claim 2 The coefficients of all the terms (C3,1, . . . , C3,n′+1), when paired with Ai (for some i ∈ [L]), must
form a vector orthogonal to yb,∀b ∈ {0, 1}.

Proof. Recall that ∀w ∈ [n′+1], the symbolic discrete logarithm of C3,w is (rβyw+sβ−zχ) for χ ∈ ∆. After
mapping it to GT (for example, via pairing with Ai = gti2 for some i ∈ [L]), the variable r cancels out only
when ∑

w∈[n′+1]

rβti · yw · ηw = rβti
∑

w∈[n′+1]

ηw · yw = 0

where (η1 . . . , ηn′+1) denote the coefficients of the above terms. This must be the case as r is present in the
first summand of C3,ws’ and nowhere else. This establishes Claim 2.

Claim 3 The coefficients of all the terms (C3,1, . . . , C3,n′+1) when paired with Ai (for some i ∈ [L]) must
be of the form c · x̃i, for some non-zero constant c ∈ Z+

q , or all 0.

Proof. Observe that Claim 2 also shows that the only way for A to obtain some information is to use the
coefficients corresponding to a “valid” predicate xi for some i ∈ [L], (i.e., one which allows to decrypt the
ciphertext). We establish in this claim that such an xi is also registered.

On pairing C3,w with Ai for some i ∈ [L], symbolically, a successful zero-test looks like:∑
w∈[n′+1]

ηw · (rβyw + sβ− zχ) · ti = 0 (5)

In the above equation, we have χ = uw,∀w ∈ [n′] and for w = n′ + 1, we have χ = DL(T). The case where
ηw = 0,∀w ∈ [n′+1] is trivial. So we consider the case where there exists some w ∈ [n′+1] such that ηw ̸= 0.
Note that it suffices to consider each Ai(= gti2 ) separately, since each ti are unit variables, and in particular
they are linearly independent. We look at the last term in above equation again, namely:∑

w∈[n′+1]

−ηw · χ · ti · z.

For w ∈ [n′], within each χ = uw =
∑

k∈[0,L] uw,k, we isolate uw,i, since the terms {ztiuw,i}w∈[n′] are not
present anywhere else, nor obtainable via any pairing. However, this it not the case for the terms uw,j for
j ̸= i. So we can ignore them for clarity (though they are part of the sum). Similarly, for w = n′+1, we isolate
the term DL(Ti) from χ = DL(T) =

∑
k∈[L] DL(Tk). Equation (5) with Claim 2 then implies the following:∑

w∈[n′+1]

sβti · ηw −
∑

w∈[n′+1]

ztiχ · ηw = 0 (from Claim 2)

⇒
∑

w∈[n′]

ηw · zti · uw,i = −ηn′+1 · zti · DL(Ti) (since sβti and ztiχ are linearly independent)

⇒
∑

w∈[n′]

ηw · uw,i = ηn′+1 ·
∑

w∈[n′]

x̃w,iuw,i (since DL(Ti) = −
∑

w∈[n′]

x̃w,iuw,i)

⇒ (η1, . . . , ηn′) = ηn′+1︸ ︷︷ ︸
c

·x̃i (since {uw,i}w∈[n′] are linearly independent)

27



If c ̸= 0, this is already consistent with the claim. If c = 0, it must be that ηw = 0,∀w ∈ [n′], since uw,i are
linearly independent variables that do not cancel out. This establishes Claim 3.
Claims 1 to 3 together implies that the only non-trivial queries that A can issue are by using vectors in the
span of both “registered” and “valid” xi ∈ Zn+

q . Thus, switching y0 to y1 does not create any difference in
A’s view. Hence, H3 ≈ H4.

Lemma 4 (H4(λ) ≈ H5,1(λ)). H4(λ) and H5,1(λ) are statistically indistinguishable.

Proof. Both H4(λ) and H5,1(λ) are in SGM, and so Claims 1 to 3 still hold. However, note that A is admissible

and we are in the setting where m0 ̸= m1. Hence, A can only ask keys for predicates xi ∈ Zn+

q which are
invalid (i.e. they do not allow decrypting c∗). In this case, by Claims 1 to 3, we have that ηw = 0,∀w ∈ [n′+1].
Hence, we can safely ignore the ciphertext components {C3,w}w∈[n′+1]. The rest of the proof follows simply
from the fact that A cannot get enough information about the component C1 = m0 ·Zs = m0 ·e(g1, g2)αs. In
particular, H4(λ) and H5,1(λ) could be distinguished if A could gather information on e(g1, g2)

αs (possibly
using its oracles in SGM). From Table 2, note that no information about α (resp., s) is ever released in G1

(resp., G2). So the only avenue left to A is to infer information about gα2 (which can then be paired with
C1 = gs1 ∈ c∗). This is impossible as A only has access to DL(Bi) = α+βti ∈ G2, where no other components
allows it to learn anything about βti ∈ G2. Hence, H4(λ) ≈ H5,1(λ).

Lemma 5 (H5,1(λ) ≈ H5,2(λ) ≈ H5,3(λ)). H5,1(λ), H5,2(λ) and H5,3(λ) are statistically indistinguishable.

Proof. In H5,1(λ), Z
s has been replaced with a uniformly sampled U ∈ GT. Switching from m0 to m1 is thus

information-theoretically secure, i.e., H5,1(λ) ≈ H5,2(λ). Further, an analysis similar to Lemma 4 shows that
H5,2(λ) ≈ H5,3(λ).

Lemma 6 (H4(λ) ≈ H6(λ) or H5,3(λ) ≈ H6(λ)). H4(λ) ≈ H6(λ) are statistically indistinguishable (when
m0 = m1). Else, H5,3(λ) and H6(λ) are statistically indistinguishable.

Proof. The proof follows similar to Lemmas 1 and 2 (in the reverse order).

Final pairing-based RIPE scheme. By combining the slotted RIPE scheme of Construction 1 and the
“powers-of-two” transformation of Construction 3 (Appendix C), we obtain a secure registered IPE with an
extra O(logL) factor in its compactness and efficiency measures. Formally, we obtain the following corollary.

Corollary 1. In the GGM, there exists a secure and perfectly correct RIPE scheme with message space
M = GT and attribute space U = Zn+

q , satisfying the following properties:

– (n · L2 · poly(λ, logL), n · poly(λ, logL), n · poly(λ, logL))-compactness, and
– (L · poly(λ, logL), n · L2 · poly(λ, logL), O(logL), n · poly(λ, logL))-efficiency.

Recall that L stands for the maximum bound on the number of supported users (bounded case).

Proof. The corollary follows by combining Definition 6 with Theorems 3 to 6 and 11 to 13. ⊓⊔

7 Implementation and Benchmarks

We developed a Python prototype13 of our sRIPE scheme from Section 6 with the BLS12-381 elliptic curve
for pairings, which we implemented via the petrelic Python wrapper [LG22] around RELIC [AGM+20]. This
configuration allows each element in G1,G2,GT to be represented using 49, 97 and 384 bytes respectively.
We obtained the benchmarks below on a personal computer with an Intel Core i7-10700 3.8GHz CPU and
128GB of RAM running Ubuntu 22.04.1 LTS with kernel 5.15.0-58-generic. Exponentiations in G1 (resp.,
G2) and each pairing took 0.13 (resp., 0.18) milliseconds and 0.68 milliseconds on average on our machine.

13 https://anonymous.4open.science/r/slotted-ripe-DD12/

28

https://anonymous.4open.science/r/slotted-ripe-DD12/


Benchmarks. We provide benchmarks in Figure 2, showing |mpk|, |crs| as well as the execution times of
setup, aggregate, encrypt and decrypt in relation to parameters L and n. For encryption and decryption, we
executed the algorithms 100 times for each pair (L, n), and then computed the average runtime. The setup
and aggregate were run once for each unique pair of (L, n). We did not plot the sizes of the ciphertexts, but
these can be determined deterministically based on n as |c| = 580 + 49n bytes. The size of the helper secret
key for each user is |hsk| = 340+ 97n bytes. Note that the setup and aggregation time grows acutely with L
and n. Improving the efficiency of our sRIPE scheme is left open as a future work.

Fig. 2: Benchmarks for L ∈ {100, 200, · · · , 1000} and n ∈ {10, 20, · · · , 100}

Acknowledgments. The authors thank the anonymous reviewers for their helpful comments. The first
author was supported by the Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM). The second and the sixth author were partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU and
by Sapienza University under the project SPECTRA. The third author was partially supported by the
European Union (ERC AdG REWORC - 101054911), and by True Data 8 (Distributed Ledger & Multiparty
Computation) under the Hessen State Ministry for Higher Education, Research and the Arts within their
joint support of the National Research Center for Applied Cybersecurity ATHENE. The fourth author was
partially funded by the German Federal Ministry of Education and Research (BMBF) in the course of the
6GEM research hub under grant number 16KISK038 and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA – 390781972.

29



References

ABSV15. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adap-
tive security in functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer, Heidelberg, August 2015.

AGM+20. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is an Efficient LIbrary
for Cryptography. https://github.com/relic-toolkit/relic, 2020.

Agr19. Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods for bootstrap-
ping and instantiation. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 191–225. Springer, Heidelberg, May 2019.

AHY15. Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 575–601. Springer,
Heidelberg, November / December 2015.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional en-
cryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215
of LNCS, pages 308–326. Springer, Heidelberg, August 2015.

AJL+19. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguishability ob-
fuscation without multilinear maps: New paradigms via low degree weak pseudorandomness and security
amplification. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 284–332. Springer, Heidelberg, August 2019.

AKM+22. Shweta Agrawal, Fuyuki Kitagawa, Anuja Modi, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Bounded functional encryption for turing machines: Adaptive security from general assumptions. In
Theory of Cryptography: 20th International Conference, TCC 2022, Chicago, IL, USA, November 7–10,
2022, Proceedings, Part I, pages 618–647. Springer, 2022.

AMVY21. Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Functional encryption for
turing machines with dynamic bounded collusion from LWE. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 239–269, Virtual Event, August 2021. Springer,
Heidelberg.

AS17. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May
2017.

AV19. Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure functional encryption.
In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 174–198.
Springer, Heidelberg, December 2019.

AY20. Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 13–43.
Springer, Heidelberg, May 2020.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer, Heidelberg,
August 2017.

BDGM20. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homomorphic
encryption schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 79–109. Springer, Heidelberg, May 2020.

BDGM22. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are not
necessary for io: Circular-secure lwe suffices. In 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

BFF+19. Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov, and Benedikt Schmidt.
Automated analysis of cryptographic assumptions in generic group models. Journal of Cryptology,
32(2):324–360, April 2019.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE
and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

30

https://github.com/relic-toolkit/relic


BGI+12. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and
Ke Yang. On the (im) possibility of obfuscating programs. Journal of the ACM (JACM), 59(2):1–48,
2012.

Bit20. Nir Bitansky. Verifiable random functions from non-interactive witness-indistinguishable proofs. Journal
of Cryptology, 33(2):459–493, April 2020.

BS15. Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
306–324. Springer, Heidelberg, March 2015.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer Society Press, October
2015.

CDSG+20. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Dy-
namic decentralized functional encryption. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 747–775. Springer, Heidelberg, August 2020.

CES21. Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption. In
Maura B. Paterson, editor, 18th IMA International Conference on Cryptography and Coding, volume
13129 of LNCS, pages 129–157. Springer, Heidelberg, December 2021.

DKL+23. Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza
Rahimi. Efficient laconic cryptography from learning with errors. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology – EUROCRYPT 2023, pages 417–446, Cham, 2023. Springer Nature
Switzerland.

FFMV23. Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key and multi-input predi-
cate encryption from learning with errors. In Advances in Cryptology–EUROCRYPT 2023: 42nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France,
April 23-27, 2023, Proceedings, Part III, pages 573–604. Springer, 2023.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

GGHZ16. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without obfuscation.
In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 480–511.
Springer, Heidelberg, January 2016.

GHKW17. Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach to con-
structing and proving verifiable random functions. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part II, volume 10678 of LNCS, pages 537–566. Springer, Heidelberg, November 2017.

GHM+19. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar.
Registration-based encryption from standard assumptions. In Dongdai Lin and Kazue Sako, editors,
PKC 2019, Part II, volume 11443 of LNCS, pages 63–93. Springer, Heidelberg, April 2019.

GHMR18. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-
based encryption: Removing private-key generator from IBE. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718. Springer, Heidelberg, November 2018.

GJLS21. Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from simple-
to-state hard problems: New assumptions, new techniques, and simplification. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 97–126.
Springer, Heidelberg, October 2021.

GKMR22. Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient registration-
based encryption. Cryptology ePrint Archive, Paper 2022/1505, 2022.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 555–564. ACM Press, June 2013.

GLSW15. Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 151–170. IEEE Computer Society Press, October 2015.

GP21. Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749, 2021.

31



GPSZ17. Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the sub-exponential
barrier in obfustopia. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part III, volume 10212 of LNCS, pages 156–181. Springer, Heidelberg, April / May 2017.

GV20. Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 621–651.
Springer, Heidelberg, August 2020.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collu-
sions via multi-party computation. In Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 162–179. Springer, 2012.

HJO+16. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs. Adap-
tively secure garbled circuits from one-way functions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, August 2016.

HLWW22. Susan Hohenberger, George Lu, Brent Waters, and David J Wu. Registered attribute-based encryption.
Cryptology ePrint Archive, 2022.

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM, January 2015.

JLMS19. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-degree
expanding polynomials overa R to build iO. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May 2019.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 60–73, 2021.

JLS22. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over Fp, DLIN, and
PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume
13275 of LNCS, pages 670–699. Springer, Heidelberg, May / June 2022.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 146–162. Springer, Heidelberg, April 2008.

LG22. Wouter Lueks Laurent Girod. petrelic is a python wrapper around relic. https://github.com/spring-
epfl/petrelic, 2022.

Lin16. Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages
28–57. Springer, Heidelberg, May 2016.

MQR22. Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi. Lower bounds for the number of decryption
updates in registration-based encryption. Cryptology ePrint Archive, Report 2022/1285, 2022. https:

//eprint.iacr.org/2022/1285.
O’N10. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,

2010. https://eprint.iacr.org/2010/556.
OPWW15. Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere

statistically binding hashing and positional accumulators. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 121–145. Springer, Heidelberg, November / De-
cember 2015.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Heidelberg, August 1984.

SSW09. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 457–473. Springer, Heidelberg, March 2009.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

WW21. Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages
127–156. Springer, Heidelberg, October 2021.

32

https://github.com/spring-epfl/petrelic
https://github.com/spring-epfl/petrelic
https://eprint.iacr.org/2022/1285
https://eprint.iacr.org/2022/1285
https://eprint.iacr.org/2010/556


Appendices

A Registered Functional Encryption

We focus on RFE supporting a function space F of exponential size. An RFE scheme with message space
M and function space F = {fi :M→ Y} is composed of the following polynomial-time algorithms:

Setup(1λ, |F|): On input the security parameter 1λ, the size parameter |F| (in binary) of the function space
F , the randomized setup algorithm outputs a common reference string crs.

KGen(crs, α): On input the common reference string crs and a (possibly empty) state α, the randomized
key-generation algorithm outputs a public key pk and a secret key sk.

RegPK(crs, α, pk, f): On input the common reference string crs, a (possibly empty) state α, a public key pk,
and a function f ∈ F , the deterministic registration algorithm outputs a master public key mpk and a
new state α′.

Enc(mpk,m): On input the master public key mpk and a message m ∈ M, the randomized encryption
algorithm outputs a ciphertext c.

Update(crs, α, pk): On input the common reference string crs, a state α, and a public key pk, the deterministic
update algorithm outputs an helper decryption key hsk.

Dec(sk, hsk, c): On input a secret key sk, an helper decryption key hsk, and a ciphertext c, the deterministic
decryption algorithm outputs a message m ∈ Y ∪ {⊥, getUpdate}.

Correctness, compactness, and efficiency. An RFE scheme must be correct, i.e., an honest user, which
has registered its public key under a function f ∈ F , will be able to decrypt all future ciphertexts, obtaining
f(m). In addition, RFE must satisfy some efficiency requirements defined over the following aspects: (i) size of
crs, (ii) KGen’s running time, (iii) RegPK’s running time, (iv) size of mpk, (v) size of hsk, and (vi) maximum
number of updates that each user needs to receive during the lifetime of the system.14 Optimally, each of
these requirements should be bounded by poly(λ, logL), where L represents the number of users currently
registered in the system. Moreover, all the above properties (i.e., correctness and efficiency requirements)
must hold even in the presence of an adversary that register arbitrary (e.g., malformed) public keys.

Definition 5 ((Perfect) Correctness of RFE). We say an RFE scheme ΠRFE = (Setup,KGen,RegPK,
Enc,Update,Dec) with message spaceM and function space F is correct (resp. perfectly correct) if for every
unbounded adversary A making at most a polynomial number of queries, we have:

P
[
Gamecorr-rfeΠRFE,A(λ) = 1

]
≤ negl(λ)

(
resp. P

[
Gamecorr-rfeΠRFE,A(λ) = 1

]
= 0
)
,

where experiment Gamecorr-rfeΠRFE,A(λ) is defined as follows:

• Setup phase: The challenger computes crs←$ Setup(1λ, |F|) and initializes both the state α = ⊥ and the
initial master public key mpk0 = ⊥. Also, the challenger initializes three counters ctrreg = 0, ctrenc = 0,
ctr∗reg = ⊥ to keep track of the number of registration queries, the number of encryption queries, and
the index of the target key, respectively. Also, it sets out = 0 (this variable defines the output of the
experiment). Finally, the challenger sends crs to the adversary A.

• Query phase: The adversary A can submit the following queries to the challenger:
− Register non-target key query: A sends a public key pk and a function f ∈ F to the challenger

which proceeds as follows:
– It increments ctrreg = ctrreg + 1 and computes (mpkctrreg , α

′) = RegPK(crs, α, pk, f).
– Finally, it updates α = α′ and sends (ctrreg,mpkctrreg , α) to A.

14 Following previous work, we measure the running times of algorithms in the RAM model of computation. In such
a model, the running time of an algorithm can be sublinear in the size of its inputs.

33



− Register target key query: A sends a target function f∗ ∈ F to the challenger. If ctr∗reg ̸= ⊥ (i.e.,
the adversary has already submitted a target key query), the challenger returns ⊥. Otherwise, it
proceeds as follows:
– It increments ctrreg = ctrreg + 1, and computes (pk∗, sk∗)←$ KGen(crs, α) and (mpkctrreg , α

′) =

RegPK(crs, α, pk∗, f∗).
– It updates α = α′, ctr∗reg = ctrreg and computes hsk∗ = Update(crs, α, pk∗).
– Finally, the challenger sends (ctrreg,mpkctrreg , α, pk

∗, hsk∗, sk∗) to A.
− Encryption query: The adversary A chooses an index i of a public key such that ctr∗reg ≤ i ≤ ctrreg,

and a message mctrenc ∈ M. If ctr∗reg = ⊥, the challenger returns ⊥. Otherwise, the challenger sets
ctrenc = ctrenc + 1 and computes cctrenc ←$ Enc(mpki,mctrenc). Finally, it returns (ctrenc, cctrenc) to A.

− Decryption query: The adversary A selects an index j ∈ [ctrreg]. The challenger computes yj =
Dec(sk∗, hsk∗, cj). If yj = getUpdate, it updates the helper decryption key hsk∗ = Update(crs, α, pk∗)
and recompute yj = Dec(sk∗, hsk∗, cj). If yj ̸= f∗(mj), the challenger sets out = 1 (i.e., the adversary
manages to break correctness).

• End phase: After the adversary A has finished making queries, the challenger returns out as the output
of the experiment.

Definition 6 (Compactness and efficiency of RFE). We say an RFE scheme ΠRFE = (Setup,KGen,
RegPK,Enc,Update,Dec) with message spaceM and function space F is (tcrs, tmpk, thsk)-compact and (tKGen, tRegPK,
tnum, tUpdate)-efficient if for every unbounded adversary A making at most a polynomial number of queries,

the following conditions hold in each step of the execution of experiment Gamecorr-rfeΠRFE,A(λ):

(tcrs, tmpk, thsk)-compactness.
• tcrs-compact crs: The size of the common reference string is bounded by tcrs.
• tmpk-compact mpk: The size of the each master public key is bounded by tmpk.
• thsk-compact hsk: The size of the each helper decryption key is bounded by thsk.

(tKGen, tRegPK, tnum, tUpdate)-efficiency.
• tKGen-efficient KGen: The key-generation (worst-case) running time is bounded by tKGen.
• tRegPK-efficient RegPK: The registration (worst-case) running time is bounded by tRegPK.
• (tnum, tUpdate)-efficient Update: The challenger executes Update at most (worst-case) tnum times and

each invocation runs in time (worst-case) tUpdate.
The running times of the above algorithms are in the RAM model of computation.

Security. Security of RFE is intuitive: An adversary cannot distinguish between Enc(mpk,m0) and Enc(mpk,m1)
if it holds secret keys, registered to functions f1, . . . , fn, such that fi(m0) = f1(m1) for i ∈ [n]. This is for-
malized by an experiment in which the adversary can register honest users (whose secret keys are kept secret)
or register corrupted users (whose public keys can be arbitrarily and maliciously chosen by the adversary).

Definition 7 (Security of RFE). An RFE scheme ΠRFE = (Setup,KGen,RegPK,Enc,Update,Dec) with
message spaceM and function space F is secure if for every PPT valid adversary A, we have:∣∣∣∣∣P[GamerfeΠRFE,A(λ, 0) = 1

]
− P

[
GamerfeΠRFE,A(λ, 1) = 1

]∣∣∣∣∣ ≤ negl(λ),

where the experiment GamerfeΠRFE,A(λ, b) is defined as follows:

• Setup phase: The challenger computes crs←$ Setup(1λ, |F|) and initializes both the state α = ⊥ and the
master public key mpk = ⊥. Also, it initializes a counter ctr = 0 (for the number of honest registration
queries submitted by the adversary), a set of corrupted public keys C = ∅, and a dictionary D = ∅ (storing
the mapping between registered public keys and their corresponding functions). Finally, the challenger
sends crs to the adversary A.

• Query phase: The adversary A can submit the following queries:

34



− Register corrupted key query: A sends a public key pk and a function f ∈ F to the challenger
which proceeds as follows:
– It computes (mpk′, α′) = RegPK(crs, α, pk, f).
– It updates α = α′, mpk = mpk′, C = C ∪ {pk}, and D[pk] = D[pk] ∪ {f}.
– Finally, it returns (α,mpk) to A.

− Register honest key query: A sends a target function f ∈ F which proceeds as follows:
– It sets ctr = ctr + 1 and computes (pkctr, skctr)←$ KGen(crs, α).
– It registers the key (pkctr, f) by executing (mpk′, α′) = RegPK(crs, α, pkctr, f).
– It updates α = α′, mpk = mpk′, and D[pkctr] = D[pkctr] ∪ {f}.
– Finally, it returns (ctr, α,mpk, pkctr) to A.

− Corrupt honest key: A selects an index i ∈ [ctr]. The challenger updates C = C ∪{pki} and returns
ski to A where (pki, ski) is the i-th public and secret key generated during the i-th honest registration
query.

• Challenge phase: A chooses two messages (m∗
0,m

∗
1). The challenger returns c∗←$ Enc(mpk,m∗

b).
• Output phase: A returns a bit b′ which is also the output of the experiment.

An adversary A is considered valid if f(m∗
0) = f(m∗

1) for every f ∈ {f ∈ D[pk]|pk ∈ C} (i.e., for every
function, whose registered secret key is known by the adversary, we have the same output).

Remark 2 (Bounded vs. Unbounded number of users). The setup algorithm of RFE does not take as input
a bound on the maximum number of registered users, i.e., the crs will allow the KC to handle any number
of users. Our iO-based construction achieves this notion. Through the paper, we also consider the notion of
bounded RFE in which there is a bound on the number of registered users (this will apply to our pairing-
based RIPE construction). In the case of bounded RFE, we abuse notation and denote by L the a-priori
bounded number of users (recall that, in the case of unbounded RFE, L instead denotes the current number of
registered users). Here, the setup algorithm takes as input L in unary (i.e., Setup(1λ, 1L, |F|)). Analogously,
during the execution of the security experiment (Definition 7) for bounded RFE, the adversary can specify
the bound 1L and, in turn, submit at most L registration queries (the challenger will reply with ⊥ after L
queries are submitted).

Remark 3 (On the security of RFE without post-challenge queries). Definition 7 does not allow the adversary
to submit queries after the challenge phase. For the case of RABE, Hohenberger et al. [HLWW22] showed
that security without post-challenge queries implies security with post-challenge queries. Intuitively, this
is because the deterministic RegPK and Update algorithms are publicly computable (they do not require
knowledge of any secret) and their behavior can be simulated by the adversary. The exact same result holds
for RFE. This follows by using the same technique of [HLWW22, Remark 4.5 and Lemma 4.10] except that
the validity of the RABE adversary (i.e., f(x) = 0 where f is the policy and x are the attributes) is replaced
with the validity of the RFE adversary (i.e., f(m0) = f(m1)). An identical argument applies to slotted RFE
(Definition 11). We refer the reader to [HLWW22, Remark 4.5 and Lemma 4.10] for more details.

A.1 Slotted Registered Functional Encryption

We now formalize the notion of slotted RFE (for function spaces F of exponential size) generalizing from
the slotted RIPE defined in Section 5.1. Formally, a slotted RFE with message spaceM and function space
F = {fi :M→ Y} consists of the following polynomial-time algorithms:

Setup(1λ, 1L, |F|): On input the security parameter 1λ, the slot parameter 1L, and the size |F| (in binary)
of the function space F , the randomized setup algorithm outputs a common reference string crs.

KGen(crs, i): On input the common reference string crs and a slot index i ∈ [L], the randomized key gener-
ation outputs a public and secret key pair (pki, ski).

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L], and a public key pki, the
algorithm outputs a bit b ∈ {0, 1} deterministically.

35



Aggr(crs, ((pki, fi))i∈[L]): On input the common reference string crs and L pairs (pk1, f1), . . . , (pkL, fL) each
composed of a public key pki and its corresponding function fi ∈ F , the deterministic aggregation
algorithm outputs a master public key mpk and L helper decryption keys hsk1, . . . , hskL.

Enc(mpk,m): On input the master public key mpk and a message m ∈ M, the randomized encryption
algorithm outputs a ciphertext c.

Dec(sk, hsk, c): On input a secret key sk, a helper decryption key hsk, and a ciphertext c, decryption deter-
ministically outputs a message m ∈ Y ∪ {⊥}.

Definition 8 (Completeness of slotted RFE). A slotted RFE scheme ΠsRFE = (Setup,KGen, IsValid,
Aggr,Enc,Dec) with message space M and function space F is complete if, ∀λ ∈ N, ∀L ∈ N, and ∀i ∈ [L],
we have:

P
[
IsValid(crs, i, pki) = 1

∣∣∣crs←$ Setup(1λ, 1L, |F|), (pki, ski)←$ KGen(crs, i)
]
= 1

Definition 9 (Perfect Correctness of slotted RFE). A slotted RFE scheme ΠsRFE = (Setup,KGen,
IsValid,Aggr,Enc,Dec) with message space M and function space F is perfectly correct if, ∀λ ∈ N, ∀L ∈ N,
∀i ∈ [L], ∀crs output by Setup(1λ, 1L, |F|), ∀(pki, ski) output by KGen(crs, i), for all collection of public key
{pkj}j∈[L]\{i} such that IsValid(crs, j, pkj) = 1, ∀m ∈M, ∀f1, . . . , fL ∈ F , we have:

P
[
Dec(ski, hski, c) = fi(m)

∣∣∣∣ (msk, (hski)i∈[L]) = Aggr(crs, ((pkj , fj))j∈[L]),
c←$ Enc(mpk,m)

]
= 1

Definition 10 (Compactness and Efficiency of slotted RFE). We say a slotted RFE scheme ΠsRFE =
(Setup,KGen, IsValid,Aggr,Enc,Dec) with message spaceM and function space F is (tcrs, tmpk, thsk)-compact
and (tKGen, tIsValid, tAggr)-efficient if the following conditions hold:

(tcrs, tmpk, thsk)-compactness. This is identical to that of Definition 6.
(tKGen, tIsValid, tAggr)-efficiency.
• tKGen-efficient KGen: This is identical to that of Definition 6.
• tIsValid-efficient IsValid: The validation (worst-case) running time is bounded by tIsValid.
• tAggr-efficient Aggr: The aggregation (worst-case) running time is bounded by tAggr.
The (worst-case) running times of the above algorithms are measured in the RAM model of computation.

Definition 11 (Security of slotted RFE). A slotted RFE scheme ΠsRFE = (Setup,KGen, IsValid,Aggr,
Enc,Dec) with message spaceM and function space F is secure if for every PPT valid adversary A, we have:∣∣∣∣∣P[Gameslot-rfeΠsRFE,A(λ, 0) = 1

]
− P

[
Gameslot-rfeΠsRFE,A(λ, 1) = 1

]∣∣∣∣∣ ≤ negl(λ),

where the experiment Gameslot-rfeΠsRFE,A(λ, b) is defined in the following way:

• Setup phase: The adversary A sends a slot parameter 1L to the challenger. The challenger initializes a
counter ctr = 0, a dictionary D = ∅, and a set of corrupted slot indexes C = ∅. Finally, it sends crs to A
where crs←$ Setup(1λ, 1L, |F|).

• Query phase: The adversary A can submit queries to the following oracles:

− Honest key-generation query: A sends i ∈ [L]. The challenger computes ctr = ctr+1, (pkctr, skctr)←$

KGen(crs, i), and sets D[ctr] = (i, pkctr, skctr). Finally, it returns (ctr, pkctr) to A.
− Corruption query: A sends j ∈ [ctr]. The challenger returns sk′ where (i′, pk′, sk′) = D[j]. Let QCorr

be the set of corruption queries submitted by the adversary.

• Challenge phase: A sends the challenge ((c∗i , f
∗
i , pk

∗
i )i∈[L],m

∗
0,m

∗
1) where c∗i ∈ [ctr] ∪ {⊥}.15 Then, for

every i ∈ [L], it proceeds as follows:

15 If c∗i ̸= ⊥, then pki refers to a public key generated by the challenger. On the other hand, if c∗i = ⊥, then pki is an
arbitrary public key chosen by A.

36



− If c∗i ∈ [ctr], the challenger retrieves (i′, pk′, sk′) = D[c∗i ]. If i
′ = i, it sets pki = pk′. In addition, if

c∗i ∈ QCorr, the challenger updates C = C ∪ {i}. Otherwise, if i′ ̸= i, the challenger aborts.
− If c∗i = ⊥, the challenger checks the validity of pk∗i . If IsValid(crs, i, pk

∗
i ) = 0, it aborts; otherwise

(i.e., IsValid(crs, i, pk∗i ) = 1), the challenger sets pki = pk∗i and updates C = C ∪ {i}.
Finally, the challenger sends c∗←$ Enc(mpk,m∗

b) to the adversary where (mpk, hsk1, . . . , hskL) = Aggr(crs,
(pk1, f

∗
1 ), . . . , (pkL, f

∗
L)).

16

• Output phase: The adversary A outputs b′ ∈ {0, 1} which is also the output of the experiment.

An adversary A is considered valid if f∗
i (m

∗
0) = f∗

i (m
∗
1) for every i ∈ C.

B Slotted RFE from Indistinguishability Obfuscation

Here, we build slotted RFE for arbitrary (exponentially large) function spaces. The construction leverages
iO, SSB hash functions, and PRGs.

B.1 Indistinguishability Obfuscation

Let C = {Cλ}λ∈N be an ensemble of circuits. An indistinguishability obfuscator (iO) [BGI+12] is a PPT
algorithm Obf that, on input the security parameter 1λ and a circuit C ∈ Cλ, it outputs an obfuscation
Obf(1λ, C) of C. An iO obfuscator Obf must (i) preserve the functionality of the original circuit C (cor-
rectness), and (ii) produce obfuscations of “small” size (polynomial slowdown), i.e., polynomial in the size
|C| of the original circuit C. As for security, iO guarantees that, for every pair of functionally-equivalent
circuits C0, C1 ∈ Cλ (i.e., ∀x ∈ {0, 1}∗, C0(x) = C1(x)), the obfuscations Obf(1λ, C0) and Obf(1λ, C1) are
computational indistinguishable.

We recall the formal definition below.

Definition 12 (Indistinguishability obfuscation). Let C = {Cλ}λ∈N an ensemble of circuits. A PPT
algorithm Obf is an iO obfuscator if the following conditions hold:

Correctness. ∀λ ∈ N, ∀C ∈ Cλ, ∀x ∈ {0, 1}∗, we have C ′(x) = C(x) where C ′←$ Obf(1λ, C).
Polynomial slowdown. There exists a polynomial p(·) such that for every C ∈ Cλ, we have |Obf(1λ, C)| ≤

p(|C|).
Indistinguishability. For every pair of functionally-equivalent circuits C0, C1 ∈ Cλ, for every PPT adver-

sary D, we have that∣∣P[D(1λ,Obf(1λ, C0)) = 1
]
− P

[
D(1λ,Obf(1λ, C1)) = 1

]∣∣ ≤ negl(λ).

B.2 Somewhere Statistically Binding Hash Functions

A somewhere statistically binding (SSB) hash function [HW15, OPWW15] (supporting local openings) with
block length ℓblk = ℓblk(λ), output length ℓout = ℓout(λ), and opening length ℓopen = ℓopen(λ), is composed of
the following polynomial-time algorithms:

Setup(1λ, 1ℓblk , N, i): On input the security parameter 1λ, a block size 1ℓblk , a message length N ≤ 2λ, and
an index i ∈ [N ], the randomized setup algorithm outputs a key hk. Here, we assume that N and i are
encoded in binary, i.e., the size of both N and i ∈ [N ] are bounded by O(log(N)).

Hash(hk, (xi)i∈[N ]): On input a key hk and an input (xi)i∈[N ] (where xi ∈ {0, 1}ℓblk), the deterministic hash

algorithm outputs an hash h ∈ {0, 1}ℓout .
Open(hk, (xi)i∈[N ], i): On input a key hk, an input (xi)i∈[N ] (where xi ∈ {0, 1}ℓblk), and an index i ∈ [N ], the

deterministic open algorithm outputs an opening πi ∈ {0, 1}ℓopen .
16 Note that the challenger does not send the master public key mpk and the helper decryption keys hsk1, . . . , hskL

to the adversary A since Aggr is deterministic, i.e., A can compute both mpk and hsk1, . . . , hskL by itself.

37



Verify(hk, h, i, xi, πi): On input a key hk, an hash h ∈ {0, 1}ℓout , an index i ∈ [N ], an input xi ∈ {0, 1}ℓblk ,
and an opening πi ∈ {0, 1}ℓopen , the deterministic algorithm outputs a decision bit b ∈ {0, 1}.

Correctness of SSB says that honest openings always verify. As for security, SSB guarantees index hiding and
somewhere statistically binding. The former guarantees that an adversary cannot distinguish whether hk is
generated (on setup) under an index i0 ∈ [N ] or index i1 ∈ [N ]. On the other hand, the latter guarantees that,
whenever hk is generated w.r.t. an index i ∈ [N ] (i.e., dk←$ Setup(1λ, 1ℓblk , N, i)), the i-th slot is statistically
binding, i.e., it does not exists h ∈ {0, 1}ℓout and (x, π), (x′, π′) ∈ {0, 1}ℓblk × {0, 1}ℓopen such that x ̸= x′ and
Verify(hk, h, i, x, π) = Verify(hk, h, i, x′, π′) = 1.

Definition 13 (Correctness). A SSB scheme ΠSSB = (Setup,Hash,Open,Verify) is correct if, ∀λ ∈ N,
∀ℓblk = ℓblk(λ), ∀ integers N ≤ 2λ, ∀i∗, i ∈ [N ], and ∀(xi)i∈[N ] ∈ {0, 1}ℓblk·N , we have:

P

Verify(hk, h, i, xi, πi) = 1

∣∣∣∣∣hk←
$ Setup(1λ, 1ℓblk , N, i∗),

h = Hash(hk, (xi)i∈[N ]),
πi = Open(hk, (xi)i∈[N ], i)

 = 1.

Definition 14 (Index Hiding). A SSB scheme ΠSSB = (Setup,Hash,Open,Verify) satisfies index hiding
if for every PPT adversary D, for every ℓblk = ℓblk(λ), for every integer N ∈ N, for every indexes i0, i1 ∈ [N ],
we have: ∣∣∣∣P[D(1λ,Setup(1λ, 1ℓblk , N, i0)) = 1

]
− P

[
D(1λ,Setup(1λ, 1ℓblk , N, i1)) = 1

]∣∣∣∣ ≤ negl(λ).

Definition 15 (Somewhere Statistically Binding). A SSB scheme ΠSSB = (Setup,Hash,Open,Verify)
is somewhere statistically binding if, for every ℓblk = ℓblk(λ), for every N ≤ 2λ, for every i ∈ [N ], we have:

P


̸ ∃(h, x, x′, π, π′) ∈ {0, 1}ℓout+2ℓblk+2ℓopen

s.t. x ̸= x′ and
Verify(hk, h, i, x, π) = 1 and
Verify(hk, h, i, x′, π′) = 1

∣∣∣∣∣hk←$ Setup(1λ, 1ℓblk , N, i)

 ≥ 1− negl(λ).

In addition to the above properties, we focus on succinct and efficient SSB schemes which can be built from
different assumptions such as DDH, ϕ-Hiding, DCR, and LWE [HW15, OPWW15].

Definition 16 (Succinctness and efficiency of SBB). A SSB scheme ΠSSB = (Setup,Hash,Open,Verify)
is succinct and efficient if

Succinctness. The output length ℓout, the opening length ℓopen, and the size of hk (output by Setup(1λ, 1ℓblk , N, i)
are bounded by poly(λ, ℓblk, logN).

Efficiency. The running times of Setup, Hash, and Open are bounded by poly(λ, ℓblk, logN), N ·poly(λ, ℓblk),
and poly(λ, ℓblk, logN), respectively.

B.3 Pseudorandom Generators

Let ℓin = ℓin(λ), ℓout = ℓout(λ), and G : {0, 1}ℓin → {0, 1}ℓout be two polynomials (in the security parame-
ters) such that ℓin(λ) < ℓout(λ) and an efficiently computable function G, respectively. We say that G is a
pseudorandom generator (PRG) if G(s) and y←$ {0, 1}ℓout are computationally indistinguishable whenever
s←$ {0, 1}ℓin .

Definition 17 (Pseudorandomness). A PRG G : {0, 1}ℓin → {0, 1}ℓout is secure if for every PPT adver-
sary D we have that ∣∣P[D(1λ,G(s)) = 1

]
− P

[
D(1λ, y) = 1

]∣∣ ≤ negl(λ),

where s←$ {0, 1}ℓin and y←$ {0, 1}ℓout .

38



B.4 Construction

Construction 2 Let F = {fi :M→ Y} be a function space of exponential size. Without loss of generality,
we assume that any function fi ∈ F can be described (in binary) using O(log(|F|)) bits. Also, consider the
following ingredients:

– A length-doubling PRG G : {0, 1}λ → {0, 1}2λ (Appendix B.3).
– A SSB scheme ΠSSB = (SSB.Setup,SSB.Hash,SSB.Open,SSB.Verify) (Appendix B.2).
– An iO obfuscator Obf (Appendix B.1).

We build a slotted RFE scheme ΠsRFE = (Setup,KGen, IsValid,Aggr,Enc,Dec) with message space M =
{0, 1}∗ and function space F = {fi :M→ Y} as follows:

Setup(1λ, 1L, |F|): On input the security parameter 1λ, the slot parameter 1L, and the size |F| (in binary) of
the function space F , the randomized setup algorithm sets ℓblk = 2λ+O(log(|F|)) and samples an hash
key hk←$ SSB.Setup(1λ, 1ℓblk , L, 1). It outputs crs = hk.

KGen(crs, i): On input the common reference string crs = hk, the randomized key generation algorithm
samples a random seed s←$ {0, 1}λ. It outputs the public key pk = G(s) and the secret key sk = s.

IsValid(crs, i, pki): On input the common reference string crs = hk, an index i ∈ [L], and a public key pk, the
deterministic validation algorithm outputs 1 if pk ∈ {0, 1}2λ.

Aggr(crs, ((pki, fi))i∈[L]): On input the common reference string crs = hk, and L pairs (pk1, f1), . . . , (pkL, fL)

each composed of a public key pki ∈ {0, 1}2λ and a function fi ∈ F (recall that fi can represented using a
binary string of size O(log(|F|))), the deterministic aggregation algorithm sets mpk = (hk, h) where h =
SSB.Hash(hk, ((pki, fi))i∈[L]). Then, for each user i ∈ [L], it computes the helper decryption key hski =
(i, pki, fi, πi) where πi = SSB.Open(hk, ((pkj , fj))j∈[L], i). Finally, it outputs mpk and hsk1, . . . , hskL.

Enc(mpk,m): On input the master public key mpk = (hk, h) and a message m ∈M, the randomized encryp-
tion algorithm outputs c = C ′←$ Obf(1λ, Chk,h,m) where the circuit Chk,h,m is defined in the following
way:

Chk,h,m(i, pki, fi, πi, ski)

If SSB.Verify(hk, h, i, (pki, fi), πi) = 1 ∧ pki = G(ski) then: return fi(m)

Else: return ⊥

Circuit Chk,h,m is padded to match the size γ = max{Chk,h,m, Chk,h,m,m′,0, . . . , Chk,h,m,m′,L} where Chk,h,m,m′,j

is defined in the proof of Theorem 10.
Dec(sk, hsk, c): On input the secret key sk, the helper decryption key hsk = (i, pki, fi, πi), and a ciphertext

c = C ′, the deterministic decryption algorithm outputs C ′(i, pki, fi, πi, s).

We start with proving that Construction 2 is complete, correct, and efficient.

Theorem 7 (Completeness of Construction 2). Let G, ΠSSB, Obf as above. The slotted RFE scheme
ΠsRFE from Construction 2 is complete (Definition 8).

Proof. Completeness follows by observing that IsValid(crs, i, pki) = 1 whenever |pki| = 2λ (the output size of
the PRG G). ⊓⊔

Theorem 8 (Perfect correctness of Construction 2). Let G, ΠSSB, Obf as above. If ΠSSB is perfectly
correct (Definition 13), and Obf is correct (Definition 12), then the slotted RFE scheme ΠsRFE from Con-
struction 2 is correct (Definition 9).

Proof. Correctness follows by by the correctness of the underlying ΠSSB and Obf schemes. ⊓⊔

Theorem 9 (Compactness and efficiency of Construction 2). Let G, ΠSSB, Obf as above. If ΠSSB is
succinct and efficient (Definition 16), then the slotted RFE scheme ΠsRFE from Construction 2 is

39



– (poly(λ, logL, log |F|), poly(λ, logL, log |F|), poly(λ, logL, log |F|))-compact;
– (poly(λ), poly(λ), L · poly(λ, logL, log |F|))-efficient (Definition 10).

Proof. We demonstrate each property individually.

• poly(λ, logL, log |F|)-compact crs: The common reference string crs is composed of hk←$ SSB.Setup(1λ,
1ℓblk , L, 1). Hence, the property holds by leveraging the succinctness of ΠSSB, i.e., the size of crs is bounded
by poly(λ, ℓblk, logL) where ℓblk = 2λ+O(log |F|).

• poly(λ, logL, log |F|)-compact mpk: The master public keys mpk are composed of mpk = (hk, h) where
k←$ SSB.Setup(1λ, 1ℓblk , L, 1) and h = SSB.Hash(hk, ((pki, fi))i∈[L]). Hence, the property holds by lever-
aging the succinctness of ΠSSB, i.e., the size of mpk is bounded by poly(λ, ℓblk, logL) where ℓblk =
2λ+O(log(|F|)).

• poly(λ, logL, log |F|)-compact hsk: The helper decryption keys hski are composed of hski = (i, pki, fi, πi)
where πi = SSB.Open(hk, ((pkj , fj))j∈[L], i) and pki ∈ {0, 1}2λ. By leveraging the compactness of SSB we
have |πi| ≤ poly(λ, ℓblk, logL) where ℓblk = 2λ + O(log |F|). Moreover, by definition we have |pki| = 2λ,
|fi| ≤ O(log |F|), and |i| ≤ O(logL). Hence, the size of hsk is bounded by poly(λ, logL, log(|F|))

• poly(λ)-efficient KGen: The key generation algorithm KGen performs a single PRG evaluation. Hence,
the running time of KGen is bounded by poly(λ).

• poly(λ)-efficient IsValid: The validation algorithm simply checks if |pki| ≤ 2λ. Hence, IsValid running time
is polynomial in the security parameter.

• (L · poly(λ, logL, log |F|))-efficient Aggr: The aggregation algorithm Aggr executes SSB.Hash once. More-
over, it executes L times (one for each aggregated public key) the SBB opening algorithm SSB.Open.
Hence, by leveraging the efficiency of SSB (i.e., running times of SSB.Hash and SSB.Open are bounded
by L · poly(λ, ℓblk) and poly(λ, ℓblk, logL)), we have that the running time of Aggr is bounded by L ·
poly(λ, logL, log |F|) where ℓblk = 2λ+O(log |F|).

⊓⊔

Theorem 10 (Security). Let G, ΠSSB, Obf as above. If G is secure (Definition 17), ΠSSB is index hiding
(Definition 14) and somewhere statistically binding (Definition 15), and Obf is secure (Definition 12), then
the slotted RFE scheme Π from Construction 2 is secure (Definition 11).

Proof. Consider the following hybrid experiments:

Hb
−1(λ): This is exactly the experiment Gameslot-rfeΠsRFE,A(λ, b) where the challenge bit is b.

Hb
0(λ): Same as Hb

−1 except that the challenge ciphertext is computed as c = C ′←$ Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,j

)
where j = 0, m∗

0 and m∗
1 are the challenge messages output by the adversary, and the circuit Chk,h,m,m′,j

is defined as follows:

Chk,h,m,m′,j(i, pki, fi, πi, ski)

If SSB.Verify(hk, h, i, (pki, fi), πi) = 1 ∧ pki = G(ski) then:

If i > j then: return fi(m)

Else: return fi(m
′
)

Else: return ⊥

The circuit Chk,h,m,m′,j is padded to match the size γ defined as γ = max{Chk,h,m, Chk,h,m,m′,0, . . . , Chk,h,m,m′,L}
where Chk,h,m is defined in Construction 2.

Hb
i (λ): Same as Hb

i−1 except that the challenge ciphertext is computed as c = C ′←$ Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,j

)

where j = i (instead of j = i− 1).
Hb

L+1(λ): Same as Hb
L except that the challenge ciphertext is computed as c = C ′←$ Obf(1λ, Chk,h,m∗

1−b
)

where the circuit Chk,h,m is defined as in Construction 2. Observe that this is exactly the experiment
H1−b

−1 (λ).

Also, consider the following intermediate hybrid experiment that will help us demonstrating the computa-
tional indistinguishability of Hb

i and Hb
i+1:

40



H̃b
i (λ): Same as Hb

i except that the challenger computes hk←$ SSB.Setup(1λ, 1ℓblk , L, i + 1) (instead of
hk←$ SSB.Setup(1λ, 1ℓblk , L, 1)).

We now prove the following lemmas.

Lemma 7. Hb
−1(λ) ≈c H

b
0(λ), for b ∈ {0, 1}.

Proof. The lemma follows by simply observing that Chk,h,m∗
b ,j

and Chk,h,m∗
b ,m

∗
1−b,j

are functionally-equivalent
when j = 0. Hence, the lemma follows by the security of the iO obfuscator Obf.

Lemma 8. Hb
i (λ) ≈c H̃

b
i (λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L].

Proof. Suppose that exists a PPT adversary A with a non-negligible advantage in distinguishing between
Hb

i (λ) and H̃b
i (λ). We construct an adversary A′ that breaks the index hiding property of ΠSSB. A

′ is defined
as follows:

1. Receive the number of slots 1L by A.
2. Send the parameters ℓblk = 2λ + log(|F|), N = L, and the challenge indexes (i0 = 1, i1 = i + 1) to

the challenger. The challenger will play the index hiding experiment with respect to ℓblk, N and indexes
(i0, i1).

3. Receive hk∗ from the challenger and send crs = hk∗ to A.
4. Play the rest of the experiment as defined in Hb

i (λ).
5. Return the output of A.

Let d be the challenge bit sampled by the challenger. If d = 0, A′ correctly simulates Hb
i (λ) since hk∗ is

generated as SSB.Setup(1λ, 1ℓblk , L, 1). On the other hand, if d = 1, A′ simulates H̃b
i (λ) since hk

∗ is generated
as SSB.Setup(1λ, 1ℓblk , L, i + 1). Thus, A′ has the same non-negligible advantage of A. This concludes the
proof.

Lemma 9. H̃b
i (λ) ≈c H̃

b
i+1(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. Fix i ∈ {0} ∪ [L− 1]. Let NonCorrupti be an event that occurs when the following two conditions
hold:

1. c∗i+1 ∈ [ctr] (see Definition 11). This implies that the (i+1)-th public key pk∗i+1 (chosen by the adversary
during the challenge phase) has been generated by the challenger on the (c∗i+1)-th key-generation query
submitted by the adversary.

2. c∗i+1 ̸∈ QCorr where QCorr is the set of corruption queries submitted by the adversary to the corruption
oracle during the query phase.

Observe that

P
[
H̃b

i (λ) = 1
]
= P

[
H̃b

i (λ) = 1 ∧NonCorrupti

]
+ P

[
H̃b

i (λ) = 1 ∧NonCorrupti

]
,

P
[
H̃b

i+1(λ) = 1
]
= P

[
H̃b

i+1(λ) = 1 ∧NonCorrupti

]
+ P

[
H̃b

i+1(λ) = 1 ∧NonCorrupti

]
.

Hence, it suffices to prove that the following two equations hold:∣∣∣P[H̃b
i (λ) = 1 ∧NonCorrupti

]
− P

[
H̃b

i+1(λ) = 1 ∧NonCorrupti

]∣∣∣ ≤ negl(λ), and (6)∣∣∣P[H̃b
i (λ) = 1 ∧NonCorrupti

]
− P

[
H̃b

i+1(λ) = 1 ∧NonCorrupti

]∣∣∣ ≤ negl(λ). (7)

Indeed, H̃b
i (λ) ≈c H̃b

i+1(λ) would then follow by the triangular inequality and the combination of Equa-
tions (6) and (7).

Claim 4 (Equation (6)) If NonCorrupti occurs then H̃b
i (λ) ≈c H̃b

i+1(λ), for b ∈ {0, 1} and i ∈ {0} ∪
[L− 1].

41



Proof. This claim implies that Equation (6) holds. The proof relies on the fact that NonCorrupti occurs,
i.e., the (i+ 1)-th slot is not corrupted.

Consider the following intermediate hybrid experiments:

H̃b
1,i(λ): Same as H̃b

i (λ) except that the challenger samples k←$ [K] where K = K(λ) is a bound on the
number of key generation queries submitted by the adversary during the query phase. Let pkk be the
public key returned by the challenger as the answer of the k-th key generation query (if there is one).
The challenger aborts if either of the following condition hold:

1. The challenge (i+1)-th tuple (c∗i+1, f
∗
i+1, pk

∗
i+1) (chosen by the adversary during the challenge phase)

satisfies c∗i+1 ̸= k.
2. k ∈ QCorr where QCorr is the set of corruption queries submitted by the adversary during the query

phase.

Otherwise, the challenger proceeds as in H̃b
i (λ).

H̃b
2,i(λ): Same as H̃b

1,i(λ) except that pkk is sampled at random from {0, 1}2λ.
H̃b

3,i(λ): Same as H̃b
2,i(λ) except that the challenge ciphertext is computed as c = C ′←$ Obf(1λ, Chk,h,m∗

b ,m
∗
1−b,j

)
where j = i+ 1.

H̃b
4,i(λ): Same as H̃b

3,i(λ) except that pkk is computed as pkk = G(s) where s←$ {0, 1}λ.
H̃b

5,i(λ): Same as H̃b
4,i(λ) except that for the following differences:

If i+ 2 ≤ L: The challenger computes hk←$ SSB.Setup(1λ, 1ℓblk , L, i+2) (instead of hk←$ SSB.Setup(1λ, 1ℓblk ,
L, i+ 1)).

If i+ 2 > L: H̃b
5,i(λ) is identical to H̃b

4,i(λ).

Subclaim 1 For b ∈ {0, 1} and i ∈ {0} ∪ [L− 1], we have that

P
[
H̃b

i (λ) = 1 ∧NonCorrupti

]
= K · P

[
H̃b

1,i(λ) = 1
]
.

Proof. H̃b
i,1(λ) and H̃b

i (λ) are identical except for the aborting condition of H̃b
1,i(λ). If H̃

b
1,i(λ) outputs 1 (i.e.,

the challenger does not abort during the execution of H̃b
1,i(λ)), then it must be that H̃b

i (λ) = 1, ci+1 = k,
and k ̸∈ QCorr. In other words, the event NonCorrupti must occur. As a consequence,

P
[
H̃b

1,i(λ) = 1
]
= P

[
H̃b

i (λ) = 1 ∧NonCorrupti ∧ k = c∗i+1

]
= P

[
k = ci+1

∣∣ H̃b
i (λ) = 1 ∧NonCorrupti

]
· P
[
H̃b

i (λ) = 1 ∧NonCorrupti

]
= 1/K · P

[
H̃b

i (λ) = 1 ∧NonCorrupti

]
,

In the latter equality we used the fact that c∗i+1 ∈ [ctr] ⊆ [K] and the challenger (in H̃b
i (λ)) samples k

randomly in [K].

Subclaim 2 H̃b
1,i(λ) ≈c H̃

b
2,i(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. Suppose there exists a PPT adversary A with a non-negligible advantage in distinguishing between
H̃b

1,i(λ) and H̃b
2,i(λ). We construct an adversary A′ that breaks the security of the PRG G. A′ is defined as

follows:

1. Receive y from the challenger.
2. Sample k←$ [K] and play the rest of the experiment as defined in H̃b

i,1(λ) except that, on k-th key-

generation query, set pkk = y. Moreover, if A submits k to the corruption oracle, A′ aborts as in H̃b
1,i(λ)

and H̃b
2,i(λ).

3. Return the output of A.

42



Note that both H̃b
1,i(λ) and H̃b

2,i(λ) output 0 (i.e., abort condition) if the adversary A submits a corruption

query on index k. This means that A′ does not need to know the seed s←$ {0, 1}λ (i.e., the secret key
associated to the k-th public key) sampled by the challenger during our reduction. Having said that, if

y = G(s), A′ perfectly simulates H̃b
1,i(λ). On the other hand, if y←$ {0, 1}2λ, A perfectly simulates H̃b

2,i(λ).
This concludes the proof.

Subclaim 3 H̃b
2,i(λ) ≈c H̃

b
3,i(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. The only difference between H̃b
2,i(λ) and H̃b

3,i(λ) the challenge ciphertext is computed as Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,i

)

and Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,i+1). We show that, with overwhelming probability over the choice of hk and pkk,

these two circuits are functionally-equivalent. Let x = (ix, pkx, fx, πx, skx) be an input for the above circuits.
Then, the following conditions hold:

Case ix ̸= i+ 1: Both circuits Chk,h,m∗
b ,m

∗
1−b,i

and Chk,h,m∗
b ,m

∗
1−b,i+1 have identical input/output behavior.

Case ix = i+ 1 ∧ (pkx, fx) ̸= (pk∗i+1, f
∗
i+1): In both H̃b

2,i(λ) and H̃b
3,i(λ), hk and h are generated as hk←$

SSB.Setup(1λ, 1ℓblk , L, i+1) and h = SSB.Hash(hk, ((pk∗1, f
∗
1 ), . . . , (pk

∗
L, f

∗
L))). This means that, with over-

whelming probability over the choice of hk, the SSB’s instantiation (with respect to hk) is statistically
binding (Definition 15) on position i + 1. As a consequence, with overwhelming probability, there does
not exist a (pkx, fx, πx) such that (pkx, fx) ̸= (pk∗i+1, f

∗
i+1) and SSB.Ver(hk, h, i + 1, (pkx, fx), πx) = 1.

This implies that, with overwhelming probability, both circuits output ⊥.
Case ix = i+ 1 ∧ (pkx, fx) = (pk∗i+1, f

∗
i+1): Assume that H̃b

2,i(λ) and H̃b
3,i(λ) do not abort. This implies

that pkx = pk∗i+1 = pkk is sampled at random from {0, 1}2λ where pkk is the public key sampled in the
k-th key-generation query. Since G is a length-doubling PRG, the following probability hold:

P
[
∃sk ∈ {0, 1}λ,G(sk) = pkk

∣∣ pkk←$ {0, 1}2λ
]
≤ 2λ/22λ = 2−λ.

This implies that, with overwhelming probability over the choice of pkk, both circuits output ⊥.

By combining the above cases, we conclude that the circuits Chk,h,m∗
b ,m

∗
1−b,i

and Chk,h,m∗
b ,m

∗
1−b,i+1 are

functionally-equivalent with overwhelming probability over the choice of hk and pkk. Hence, the claim follows
by the security of the iO obfuscator Obf.

Subclaim 4 H̃b
3,i(λ) ≈c H̃

b
4,i(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. The claim follows by using an identical argument to that of Subclaim 2.

Subclaim 5 H̃b
4,i(λ) ≈c H̃

b
5,i(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. By definition, H̃b
4,L−1(λ) and H̃b

5,L−1(λ) are identical, for i = L− 1. On the other hand, for i < L− 1,
the claim follows by the index hiding property of SSB and the proof is identical to that of Lemma 8.

Subclaim 6 For b ∈ {0, 1} and i ∈ {0} ∪ [L− 1], we have that

P
[
H̃b

i+1(λ) = 1 ∧NonCorrupti

]
= K · P

[
H̃b

5,i(λ) = 1
]
.

Proof. The claim follows by using an identical argument to that of Subclaim 1.
By combining Subclaims 2 to 4 we have that H̃b

1,i(λ) ≈c H̃b
5,i(λ). Moreover, by leveraging Subclaims 1

and 6 we conclude that:

P
[
H̃b

i (λ) = 1 ∧NonCorrupti

]
= K · P

[
H̃b

1,i(λ) = 1
]
≤ K ·

(
P
[
H̃b

5,i(λ) = 1
]
+ negl(λ)

)
, and

P
[
H̃b

i+1(λ) = 1 ∧NonCorrupti

]
= K · P

[
H̃b

5,i(λ) = 1
]
.

By taking into account that K ∈ poly, the above equations imply that H̃b
i (λ) ≈c H̃b

i+1(λ) whenever
NonCorrupti occurs (Equation (6)). This concludes the proof of Claim 4.

43



Claim 5 (Equation (7)) If NonCorrupti occurs then H̃b
i (λ) ≈c H̃b

i+1(λ), for b ∈ {0, 1} and i ∈ {0} ∪
[L− 1].

Proof.
This claim implies that Equation (7) holds. The proof relies on the fact that NonCorrupti occurs, i.e.,

the (i+ 1)-th slot is corrupted. Hence, the adversary must be valid, i.e., f∗
i+1(m

∗
0) = f∗

i+1(m
∗
1).

Consider the following intermediate hybrid experiments:

H̃b
6,i(λ): Same as H̃b

i (λ) except that the challenge ciphertext is computed as c = C ′←$ Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,j

)
where j = i+ 1.

H̃b
7,i(λ): Same as H̃b

6,i(λ) except for the following differences:

If i+ 2 ≤ L: The challenger computes hk←$ SSB.Setup(1λ, 1ℓblk , L, i+2) (instead of hk←$ SSB.Setup(1λ, 1ℓblk ,
L, i+ 1)).

If i+ 2 > L: H̃b
7,i(λ) is identical to H̃b

6,i(λ).

Note that, in both cases, H̃b
7,i(λ) is exactly the experiment H̃b

i+1(λ).

Subclaim 7 If NonCorrupti occurs then H̃b
i (λ) ≈c H̃

b
6,i(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. The only difference between H̃b
i (λ) and H̃b

6,i(λ) is that the challenge ciphertext is computed as

Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,i

) and Obf(1λ, Chk,h,m∗
b ,m

∗
1−b,i+1), respectively. We show that, with overwhelming prob-

ability over the choice of hk, these two circuits are functionally-equivalent. Let x = (ix, pkx, fx, πx, skx) be
an input for the above circuits. Then, the following conditions hold:

Case ix ̸= i+ 1: Both circuits Chk,h,m∗
b ,m

∗
1−b,i

and Chk,h,m∗
b ,m

∗
1−b,i+1 have identical input/output behavior.

Case ix = i+ 1 ∧ (pkx, fx) ̸= (pk∗i+1, f
∗
i+1): In both H̃b

i (λ) and H̃b
i+1, hk is generated as hk←$ SSB.Setup(1λ,

1ℓblk , L, i+1). Hence, with overwhelming probability over the choice of hk, the SSB’s scheme is somewhere
statistically binding (Definition 15) on position i + 1, i.e., there does not exist a (pkx, fx, πx) such that
(pkx, fx) ̸= (pk∗i+1, f

∗
i+1) and SSB.Ver(hk, h, i+1, (pkx, fx), πx) = 1. This implies that, with overwhelming

probability, both circuits output ⊥.
Case x = i+ 1 ∧ (pkx, fx) = (pk∗i+1, f

∗
i+1): We consider the following cases.

1. If SSB.Ver(hk, h, i+ 1, (pkx, fx), πx) = 0 ∨ G(skx) ̸= pkx, both circuits output ⊥.
2. Otherwise (i.e., SSB.Ver(hk, h, i+1, (pkx, fx), πx) = 1∧G(skx) = pkx), Chk,h,m∗

b ,m
∗
1−b,i

and Chk,h,m∗
b ,m

∗
1−b,i+1

output fx(m
∗
0) and fx(m

∗
1), respectively. Since NonCorrupti occurs, the adversary must be valid

(with respect to the (i+1)-th slot). Hence, the circuits return the same output f∗
i+1(m

∗
0) = fx(m

∗
0) =

fx(m
∗
1) = f∗

i+1(m
∗
1).

By combining the above cases, we conclude that, with overwhelming probability over the choice of hk,
Chk,h,m∗

b ,m
∗
1−b,i

and Chk,h,m∗
b ,m

∗
1−b,i+1 are functionally-equivalent. Hence, Subclaim 7 follows by the security

of the iO obfuscator Obf.

Subclaim 8 H̃b
6,i(λ) ≈c H̃

b
7,i(λ), for b ∈ {0, 1} and i ∈ {0} ∪ [L− 1].

Proof. By definition, H̃b
6,L−1(λ) and H̃b

7,L−1(λ) are identical, for i = L−1,. On the other hand, for i < L−1,
the claim follows by the index hiding property of SSB and the proof is identical to that of Lemma 8.

Claim 5 follows by combining Subclaims 7 and 8.
Finally, by combining Claim 4 and Claim 5, Equations (6) and (7), and the triangular inequality, we

conclude that Lemma 9 holds.

Lemma 10. Hb
L(λ) ≈c H

b
L+1(λ), for b ∈ {0, 1}.

Proof. The lemma follows by using an identical argument to that of Lemma 7.
By combining Lemmas 7 to 10 and the fact that Hb

L+1(λ) ≡ H1−b
−1 (λ), we conclude that Construction 2 is

secure.

44



Final iO-based RFE scheme. By combining the slotted RFE scheme of Construction 2 and the (“power-
of-two”) transformation of Construction 3 (Appendix C), we obtain the following corollary.

Corollary 2. Under (succinct and efficient) SSB hash functions and iO, there exists a secure and perfectly
correct RFE scheme supporting any class of functions F = {fi :M→ Y} of size |F| = 2poly(λ) and satisfying
the following properties:

– (poly(λ), poly(λ), poly(λ))-compactness;
– (poly(λ), L · poly(λ), O(logL), poly(λ))-efficiency.

Recall that L stands for current number of registered users (unbounded case).

Proof. The corollary follows by leveraging Definition 16, Theorems 7 to 13 and by setting the maximum
number of users/slots 2ℓ of Construction 3 and Theorem 12 to 2λ. ⊓⊔

C From slotted RFE to RFE

In this section, we show a construction that transform a slotted RFE to (standard) RFE. The construction
is identical to that proposed by Hohenberger et al. [HLWW22] (for the RABE case). For self-containment,
we recall the construction below.

Construction 3 Let ΠsRFE = (sRFE.Setup, sRFE.KGen, sRFE.IsValid, sRFE.Aggr, sRFE.Enc, sRFE.Dec) be a
slotted RFE scheme with message spaceM and function space F = {fi :M→ Y}. We build a RFE scheme
ΠRFE = (Setup,KGen,RegPK,Enc,Update,Dec) with message spaceM and function space F as follows. The
construction makes use of the following conventions:

– Without loss of generality, we assume that the number of users is a power of two L = 2ℓ for ℓ ∈ poly(λ).
– The construction uses ℓ+1 independent instantiations of ΠsRFE. The k-th slotted RFE handles 2k−1 slots

where k ∈ [ℓ+ 1].
– The state α (managed by the KC) is composed of the following elements:
• A counter ctr that tracks the current number of registered users.
• A dictionary D1 that maps (k, i) ∈ [ℓ+1]× [2k−1] into pairs (pk, f), i.e., it stores the public key and
the corresponding function associated to the i-th slot of the k-th slotted RFE scheme (observe that
the k-th slotted RFE scheme supports 2k−1 slots).
• A dictionary D2 that maps (k, i) ∈ [ℓ+1]× [L] into an helper decryption key hskk,i, i.e., it stores the
helper decryption key hskk,i of the i-th slot of the k-th slotted RFE scheme.
• The current master public key mpk = (ctr,mpk1, . . . ,mpkℓ+1).

On initialization, the initial state is set to α = ⊥ which is parsed as α = (ctr,D1,D2,mpk) where ctr = 0,
D1 = ∅, D2 = ∅, and mpk = (0,⊥, . . . ,⊥).

Setup(1λ, 1L, |F|): On input the security parameter 1λ, a bound (represented in unary) on the number of
users 1L, and the size |F| (in binary) of the function space F , the randomized setup algorithm computes
crsi←$ sRFE.Setup(1λ, 1L, |F|) for i ∈ [ℓ+ 1], and outputs crs = (crs1, . . . , crsℓ+1).

KGen(crs, α): On input the common reference string crs = (crs1, . . . , crsℓ+1) and a state α = (ctr,D1,D2,mpk),
the randomized key-generation algorithm runs (pkk, skk)←$ sRFE.KGen(crsk, ik) for each k ∈ [ℓ+1] where
ik = (ctr mod 2k−1)+1 ∈ [2k−1] is the slot index corresponding to the k-th slotted RFE scheme. Finally,
it outputs the public key pk = (ctr, pk1, . . . , pkℓ+1) and the secret key sk = (ctr, sk1, . . . , skℓ+1).

RegPK(crs, α, pk, f): On input the common reference string crs = (crs1, . . . , crsℓ+1), a state α = (ctrα,D1,D2,
mpk = (ctrα,mpk1, . . . ,mpkℓ+1)), a public key pk = (ctrpk, pk1, . . . , pkℓ+1), and a function f ∈ F , the
deterministic registration algorithm proceeds as follows:
1. For each k ∈ [ℓ + 1], let ik = (ctrα mod 2k−1) + 1 ∈ [2k−1] be the slot index corresponding to the

k-th slotted RFE.
2. For each k ∈ [ℓ+ 1], if (sRFE.IsValid(crsk, ik, pkk) = 0 ∨ ctrpk ̸= ctrα) then the registration algorithm

halts and returns the state α and master public key mpk (i.e., registration failed).

45



3. Otherwise, for each k ∈ [ℓ+1], the registration algorithm sets D1[k, ik] = (pk, f). Moreover, proceeds
as follows:
– If ik = 2k−1 (i.e., the k-th slotted RFE scheme is full) executes the following steps:
(a) Compute (mpk′k, hsk

′
k,1, . . . , hsk

′
k,2k−1) = sRFE.Aggr(crsk,D1[k, 1], . . . ,D1[k, 2

k−1]), i.e., it ag-
gregates all the public keys associated to the k-th slotted RFE scheme.

(b) Set D2[ctrα + 1− 2k−1 + i, k] = hsk′k,i for every i ∈ [2k−1].

– If ik ̸= 2k−1, it sets mpk′k = mpkk (the k-th master public key of the k-th slotted RFE is
unchanged).

Finally, it returns the new master public key mpk′ = (ctrα + 1,mpk′1, . . . ,mpk′ℓ+1) and the new state
α′ = (ctrα + 1,D1,D2,mpk′).

Enc(mpk,m): On input the master public key mpk = (ctr,mpk1, . . . ,mpkℓ+1) and a message m ∈ M, the
randomized encryption algorithm proceeds as follows:
1. For every k ∈ [ℓ+ 1] such that mpkk ̸= ⊥, it computes ck←$ sRFE.Enc(mpkk,m).
2. For every k ∈ [ℓ+ 1] such that mpkk = ⊥, it sets ck = ⊥.
Finally, it outputs c = (ctr, c1, . . . , cℓ+1).

Update(crs, α, pk): On input the common reference string crs = (crs1, . . . , crsℓ+1), the state α = (ctrα,D1,D2,mpk),
and a public key pk = (ctrpk, pk1, . . . , pkℓ+1), the deterministic update algorithm returns ⊥ if ctrpk ≥ ctrα.
Otherwise, it returns hsk = (hsk1, . . . , hskℓ+1) where hskk = D2[ctrpk + 1, k] for every k ∈ [ℓ+ 1].

Dec(sk, hsk,m): On input a secret key sk = (ctrsk, sk1, . . . , skℓ+1), an helper description key hsk = (hsk1, . . . , hskℓ+1),
and a ciphertext c = (ctrc, c1, . . . , cℓ+1), the deterministic decryption algorithm returns ⊥ if ctrc ≤ ctrsk.
Otherwise, it computes the largest k ∈ [ℓ + 1] such that the k-th bit of ctrc and ctrsk differ (here, we
assume that bits are 1-indexed starting from the least significant bit). If hskk = ⊥, then the decryption
algorithm returns getUpdate. Otherwise, it returns y = sRFE.Dec(skk, hskk, ck).

Correctness, efficiency, and security of Construction 3 follow by using an identical argument to that of [HLWW22].

Theorem 11 (Perfect correctness of Construction 3). Let ΠsRFE as above. If ΠsRFE is complete
(Definition 8) and perfectly correct (Definition 9), then ΠRFE from Construction 3 is perfectly correct (Defi-
nition 5).

Proof. The theorem follows by using an identical argument to that of [HLWW22, Theorem 6.2]. ⊓⊔

Theorem 12 (Compactness and efficiency of Construction 3). Let ΠsRFE as above where F is
the class of functions supported by ΠsRFE. and tcrs = tcrs(λ, L, |F|), tmpk = tmpk(λ, L, |F|), thsk = thsk(λ, L,
|F|), tKGen = tKGen(λ, L, |F|), tIsValid = tIsValid(λ, L, |F|), tAggr = tAggr(λ, L, |F|) be polynomials in the security
parameter, L, and |F|. If ΠsRFE is (tcrs, tmpk, thsk)-compact and (tKGen, tIsValid, tAggr)-efficient (Definition 10),
then ΠRFE from Construction 3 is

– (O(tcrs · logL), O(tmpk · logL), O(thsk · logL))-compact, and

– (O(tKGen · logL), O(tIsValid · logL+ tAggr + thsk · L̃), O(log L̃), O(thsk · logL))-efficient (Definition 6),

where L = 2ℓ is the maximum number of supported users (see Construction 3) and L̃ ≤ L is the current
number of registered users at the time of execution.

Proof. Let L = 2ℓ (as in Construction 3). We demonstrate each property individually:

• O(tcrs · logL)-compact crs: The common reference string (of Construction 3) is composed of ℓ+1 common
reference strings (each of size tcrs) of the underlying slotted RFE scheme. See also [HLWW22, Theorem
6.5].

• O(tmpk · logL)-compact mpk: Each master public key (generated by Construction 3) is composed of a
counter ctr (of size |ctr| ≤ ℓ) and ℓ + 1 master public keys (each of size tmpk) of the underlying slotted
RFE scheme. See also [HLWW22, Theorem 6.5].

• O(thsk · logL)-compact hsk: Similarly, each helper decryption key (generated by Construction 3) is com-
posed of ℓ + 1 helper decryption keys (each of size thsk) of the underlying slotted RFE scheme. See
also [HLWW22, Theorem 6.5 and 6.6].

46



• O(tKGen · logL)-efficient KGen: The key-generation (of Construction 3) executes ℓ + 1 times the key-
generation algorithm of the underlying slotted RFE. Hence, its running time is bounded by O(tKGen ·logL)
where tKGen is the running time of the slotted RFE key-generation algorithm.

• O(tIsValid · logL+ tAggr + L̃ · thsk)-efficient RegPK: The (worst-case) running time of RegPK can be derived

by estimating the running time for registering the a generic L̃ = 2k-th user (for k ∈ [ℓ + 1]). In such
a case, the running time of RegPK is composed of ℓ + 1 executions of IsValid and a single execution of
Aggr whose (individual) running times are bounded by tIsValid and tAggr, respectively. In addition, the

newly generated L̃ = 2k helper decryption keys (output by Aggr) are stored into the dictionary D2 (this

takes time linear in 2k = L̃ in the RAM model of computation) and each helper decryption key (of the
underlying slotted RFE) is of size thsk. Hence, the final (worst-case) running time of the registration

algorithm is O(tIsValid · logL+ tAggr + thsk · L̃) in the RAM model of computation.

• (O(log L̃), O(thsk · logL))-efficient Update: The challenger executes Update at most O(log L̃) (for a generic

number L̃ = 2k of current registered users) because of the following reasons: (i) each helper decryption
key hsk is composes of ℓ + 1 helper decryption keys (hsk1, . . . , hskℓ+1) of the underlying slotted RFE
scheme, (ii) Update is invoked (by an user) only when one of the the ℓ + 1 helper decryption keys hski
is ⊥, and (iii) after the execution of Update, hski is no longer ⊥.
Regarding the running time, Update simply compares two (ℓ+1)-bits counters and looks up for the ℓ+1
helper decryption keys stored in the dictionary D2. Moreover, by definition, each helper decryption key
of slotted RFE is of size thsk. We conclude that Update runs in time O(thsk · logL) in the RAM model of
computation.
See also [HLWW22, Theorem 6.6].

⊓⊔

Theorem 13 (Security of Construction 3). Let ΠsRFE as above. If ΠsRFE is secure (Definition 11), then
ΠRFE from Construction 3 is secure (Definition 7).

Proof. The theorem follows by using an identical argument to that of [HLWW22, Theorem 6.7] except that
we make use of the validity of the adversary with respect to the RFE experiment (instead of the validity for
the RABE case). ⊓⊔

Remark 4. As noted by [HLWW22], if the running time of Setup and the sizes of crs, mpk, and hsk (of the
underlying slotted RFE) are all poly-logarithmic in the number of users, the resulting RFE scheme (output
by Construction 3) supports an arbitrary number of users. This is because the resulting RFE will have
the same poly-logarithmic efficiency/compactness and, in turn, this allows us to set L = 2λ to support an
arbitrary polynomial number of users. Note that our iO-based slotted RFE scheme satisfy this requirements
(see Theorem 9).

47


	Registered (Inner-Product) Functional Encryption
	Introduction
	Our Contributions

	Technical Overview
	(Bounded Users) Slotted RIPE from Pairings
	(Unbounded Users) Slotted RFE from iO
	On Function Privacy in (Slotted) RFE

	Related Work
	Organization
	Preliminaries
	Slotted Registered Inner-Product Encryption

	Slotted Registered IPE from Prime-Order Pairings
	Implementation and Benchmarks
	Registered Functional Encryption
	Slotted Registered Functional Encryption

	Slotted RFE from Indistinguishability Obfuscation
	Indistinguishability Obfuscation
	Somewhere Statistically Binding Hash Functions
	Pseudorandom Generators
	Construction

	From slotted RFE to RFE


