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Abstract. Lattice-based homomorphic encryption (HE) schemes are based on the noisy encryption
technique, where plaintexts are masked with some random noise for security. Recent advanced
HE schemes rely on a decomposition technique to manage the growth of noise, which involves a
conversion of a ciphertext entry into a short vector followed by multiplication with an evaluation
key. Prior to this work, the decomposition procedure turns out to be the most time-consuming
part, as it requires discrete Fourier transforms (DFTs) over the base ring for efficient polynomial
arithmetic. In this paper, an expensive decomposition operation over a large modulus is replaced
with relatively cheap operations over a ring of integers with a small bound. Notably, the cost of DFTs
is reduced from quadratic to linear with the level of a ciphertext without any extra noise growth.
We demonstrate the implication of our approach by applying it to the key-switching procedure.
Our experiments show that the new key-switching method achieves a speedup of 1.2–2.3 or 2.1–3.3
times over the previous method, when the dimension of a base ring is 215 or 216, respectively.
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1 Introduction

Homomorphic Encryption (HE) is a cryptosystem that allows us to compute on encrypted data without
decrypting them. Since Gentry’s pioneering work [17], a number of HE schemes have been proposed based
on lattice cryptography. In particular, the current best-performing HE schemes rely on the hardness of
the Learning with Errors (LWE) problem or its ring variant (RLWE) [28, 29], which enables practically
usable implementations using algebraic properties.

In (R)LWE-based HE schemes, a small noise is introduced when generating a public key or encrypting
a plaintext to ensure security. This noise grows with homomorphic computation, so ciphertexts natively
contain some errors which should be kept small enough for correct decryption. To reduce the noise growth
derived from nonlinear HE operations, recent advanced HE schemes such as BGV [4], B/FV [3, 16],
GSW [19], FHEW/TFHE [14, 12] and CKKS [9] commonly use a decomposition technique that transforms
a ciphertext component into a vector of small entries before multiplying it to a public (evaluation) key.
Such a combined operation of decomposition and multiplication (which will be referred to as the external
product in this paper) has been a core building block of HE constructions.

Gentry et al. [18] proposed several optimization techniques, many of which are still used extensively
in HE implementations. For example, they introduced polynomial representation methods based on a
Residue Number System (RNS) to support efficient polynomial arithmetic over a multi-precision modulus.
Since then, Bajard et al. [1] and the subsequent studies [8, 20] presented “full RNS” based constructions
of B/FV and CKKS where all computations including gadget decomposition can be performed in an
RNS representation. It enables a significant enhancement in performance, and most state-of-the-art HE
libraries adopt RNS-friendly HE algorithms for efficiency.
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More recently, much progress has been made towards improving the efficiency of bootstrapping
technique [7, 5, 26, 2, 27] and investigating HE-compatible approximations of non-polynomial func-
tions [10, 11]. But unfortunately, there has been no remarkable theoretical advance in fundamental HE
algorithms in the past few years. Instead, recent studies and projects such as the Data Protection in
Virtual Environments (DPRIVE) program [13] are aiming at optimizing implementations, for example,
parallelization using GPU [23] and hardware accelerator [30, 31, 25].

Our Contribution. Let R = Z[X]/(XN + 1) be a ring of integers for a power-of-two integer N and
RQ = ZQ[X]/(XN+1) be its residue ring modulo an integer Q. The external product is a dyadic operation
that takes as its input a polynomial a ∈ RQ and a vector u = (ui)0≤i<d ∈ Rd

Q.3 More precisely, it first
transforms the input a into its gadget decomposition, say (bi)0≤i<d, which is a vector of small elements of
R such that a =

∑

i bi · gi (mod Q) where (gi)0≤i<d is a fixed gadget basis over RQ. And then, it returns
the linear combination

∑

i bi · ui ∈ RQ of ui’s with coefficients bi.
Our motivation stems from the observation that the previous external product method involves a pre-

processing procedure before multiplications between elements of R and RQ. To be specific, the elements
bi’s are first converted to integers modulo Q (denoted [bi]Q), so that the products bi · ui = [bi]Q · ui

can be performed using modular multiplications over the modulus Q. As a result, the performance of
the external product mainly depends on the conversion process bi 7→ [bi]Q, which is followed by discrete
Fourier transforms (DFTs) over the ring RQ for efficient polynomial arithmetic. Note that these operations
are performed over the multi-precision modulus Q, so the complexity of the external product is mainly
dependent on the precision.

In this paper, we present a new method to compute the external product more efficiently. A dis-
tinguishing feature of our approach is that u = (ui)0≤i<d is represented in a decomposed form, say
(vi,j)0≤i,j<d, when it is given as an input to our algorithm. That is, we have ui =

∑

j vi,j · g̃j (mod Q)
where (g̃j)0≤j<d is another fixed gadget basis over RQ. We observe that the external product between a
and u can be expressed as a linear combination of the gadget basis:

∑

0≤j<d





∑

0≤i<d

bi · vi,j



 · g̃j .

Hence, our algorithm mainly aims to compute
∑

i bi · vi,j ∈ R for all j, which only requires arithmetic
operations between small elements of R without any modular reduction. We also point out that

∑

i bi ·vi,j
has an upper bound determined by the gadget decomposition and it is significantly smaller than the
modulus Q. Therefore, this process can be implemented using DFTs on the element bi over the polynomial
ring with small coefficients rather than RQ, and therefore the cost of DFTs is independent of the modulus
Q. Notably, it is reduced from O(ℓ2) to O(ℓ), where ℓ denotes the level of the input polynomial. As a
result, the new external product method shows a significant speedup over the previous method.

Our algorithm has a wide range of applications since the external product is widely used in homo-
morphic operations such as the key-switching technique. For example, the external product between a
ciphertext entry and an evaluation key (a gadget encryption of an old key under a new key) can be used
to generate a new ciphertext that encrypts (approximately) the same plaintext under the new key. On
the other hand, it is worth noting that the proposed method is to compute the same formula in a different
way from the previous method, so it does not bring any extra noise growth during the computation. Fur-
thermore, our method offers another advantage in flexibility such that it is compatible with commonly
used HE techniques such as hoisting [21] and lazy key-switching [24].

Finally, we implement our external product algorithm and demonstrate its effectiveness through con-
crete performance. Our experimental results show that the key-switching method based on the new
external product method achieves a speedup of 1.2–2.3 and 2.1–3.3 times over the previous method when
the dimension of a base ring is 215 and 216, respectively. For example, with the ring dimension N = 216,
the previous key-switching and our key-switching take about 2.7 seconds and 0.8 seconds, respectively.

3 Here we assume for simplicity that two inputs have the same modulus, but a more general case will be discussed
later.
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2 Preliminaries

Notations. Let N be a power of two and Q be an integer. We denote by K = Q[X]/(XN + 1) the
(2N)-th cyclotomic field, R = Z[X]/(XN + 1) the ring of integers of K, and RQ = ZQ[X]/(XN + 1) the
residue ring of R modulo Q. We identify an element a =

∑

0≤i<N ai · X
i ∈ RQ with the vector of its

coefficients (a0, . . . , aN−1) ∈ ZN
Q . We use Z∩ (−Q/2, Q/2] as a representative of ZQ for an integer q, and

denote by [a]Q the reduction of an integer a modulo Q. For a ∈ R, we define ‖a‖∞ as the ℓ∞-norm of its
coefficient vector.

For a real number r, ⌊r⌉ denotes the nearest integer to r, rounding upwards in case of a tie. For a
finite set S, we use x ← S to denote the sampling x according to the uniform distribution over S. For
σ > 0, we denote by Dσ a distribution over R sampling N coefficients independently from the discrete
Gaussian distribution of variance σ2.

2.1 Ring Learning with Errors

Let χ be a distribution over R and σ > 0 a real. The ring learning with errors (RLWE) assumption
with respect to the parameter (N,Q, χ, σ) is that given polynomially many samples of either (a, b) or
(a, as+ e), where a, b← RQ, s← χ, e← Dσ, it is computationally hard to distinguish which is the case.
The lattice-based HE schemes such as B/FV [3, 16] and CKKS [9] rely on the security on the RLWE
assumption.

2.2 Gadget Decomposition and External Product

We give an overview of ‘gadget toolkit’ that is commonly used in lattice-based HE cryptosystems for
noise reduction.

Definition 1 (Gadget Decomposition). For a modulus Q, a function h : RQ → Rd is called a gadget
decomposition if there exists a fixed vector g = (g0, g1, . . . , gd−1) ∈ Rd

Q and a real B > 0 such that the
following holds for any a ∈ RQ and its decomposition b = (b0, b1, . . . , bd−1)← h(a):

∑

0≤i<d

bi · gi = a (mod Q) and ‖b‖∞ ≤ B.

We call g a gadget vector and B > 0 a bound of h.

Definition 2 (External Product). Let Q̃ = P ·Q. The external product is a binary operation ⊡ : RQ×
Rd

Q̃
→ RQ defined as follows: for a ∈ RQ and u = (u0, . . . , ud−1) ∈ Rd

Q̃
, compute b = (b0, . . . , bd−1) ←

h(a) and c̃ =
∑

0≤i<d bi · ui (mod Q̃), and return c =
⌊

1
P
· c̃
⌉

(mod Q).

By a slight abuse of notation, we write a ⊡ U = (a ⊡ u0, a ⊡ u1) ∈ R2
Q for any a ∈ RQ and

U = [u0|u1] ∈ Rd×2

Q̃
.

2.3 Homomorphic Encryption and Key-switching

Homomorphic encryption is a cryptosystem that allows computation over encrypted data without de-
crypting them. We provide a description of the CKKS scheme [9] as an instantiation to explain how
gadget decomposition and external product techniques are used in HE systems.

• CKKS.Setup(1λ): For given a security paramter λ, choose an RLWE dimension N , a ciphertext modulus
Q, a special modulus P , a key distribution χ, and an error parameter σ > 0. Output the public parameter
pp = (N,Q,P, χ, σ). We write Q̃ = P ·Q.

• CKKS.KeyGen(pp): Given a public parameter pp, generate a secret key, a public key, a relinearization
key, and an automorphism key as follows.
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– Sample s← χ and return the secret key sk← s.

– Sample p1 ← RQ̃ and ep ← Dσ, and return the public key pk ← p = (p0, p1) ∈ R2
Q̃

where p0 =

−p1s+ ep (mod Q̃).

– Sample r1 ← Rd

Q̃
and er ← Dd

σ. Generate the relinearization key as rlk← R = [r0|r1] ∈ Rd×2

Q̃
where

r0 = −s · r1 + Ps2 · g + er (mod Q̃).

– For an automorphism φ over K, sample t1 ← Rd

Q̃
and et ← Dd

σ. Generate the automorphism key as

atk← T = [t0|t1] ∈ Rd×2

Q̃
where t0 = −s · t1 + Pφ(s) · g + et (mod Q̃).

• CKKS.Enc(pk;µ): Given a public key pk = p and a plaintext µ ∈ R4, output a ciphertext ct =
⌊

1
P
· (v · p+ e)

⌉

+ (µ, 0) (mod Q) where v ← χ and e← D2
σ.

• CKKS.Dec(s; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q and a secret key s ∈ R, output the plaintext

µ = c0 + s · c1 (mod Q).

• CKKS.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ R2
Q, output the ciphertext ctadd = ct+ ct′ ∈ R2

Q.

• CKKS.Mult(rlk; ct, ct′): Given two ciphertexts ct = (c0, c1), ct′ = (c′0, c
′
1) ∈ R2

Q and a relinearization

key rlk = R, let d0 = c0c
′
0 (mod Q), d1 = (c0c

′
1 + c′0c1) (mod Q), and d2 = c1c

′
1 (mod Q). Output a

ciphertext ctmul = (d0, d1) + d2 ⊡R ∈ R2
Q.

• CKKS.Auto(atk, φ; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q, an automorphism key atk = U, and an

automorphism φ on R, output a ciphertext ctaut = (φ(c0), 0) + φ(c1)⊡U ∈ R2
Q.

A gadget encryption of a plaintext µ ∈ R under a secret key s is defined as U = [u0|u1] ∈ Rd×2

Q̃

where u1 ← Rd

Q̃
, e ← Dd

σ, and u0 = −s · u1 + Pµ · g + e (mod Q̃). For example, the relinearization

and automorphism keys are gadget encryptions of s2 and φ(s). The external product can be used for
multiplication of an arbitrary element in RQ and a gadget encryption: for any a ∈ RQ and a gadget
encryption U = [u0|u1] of a plaintext µ ∈ R under a secret s, their external product (c0, c1) ← a ⊡ U

satisfies that

c0 + c1 · s ≈ a⊡ (u0 + s · u1) ≈ a⊡ (Pµ · g) = a · µ (mod Q).

The key-switching procedure is a major use-case of the external product. For given a ciphertext
component a which is decryptable by a secret s′, we can perform the external product with a gadget
encryption U of s′ under s (which is often referred as a key-switching key from s′ to s) to transform
it into an RLWE ciphertext under s while preserving the underlying plaintext. In other words, the
resulting ciphertext (c0, c1)← a⊡U satisfies that c0+ c1 ·s ≈ a ·s′ (mod Q). For example, homomorphic
multiplication and automorphism algorithms of CKKS involve the key-switching procedures from s2 and
φ(s) to s, respectively.

2.4 Polynomial Representations

The Residue Number System (RNS) enables representing a large integer as a tuple of small integers. Let
Q = q0 · · · qℓ−1 where qk’s are pairwise coprime integers. Then, we get an isomorphism RQ → Rq0 × · · ·×
Rqℓ−1

, a 7→ ([a]q0 , . . . , [a]qℓ−1
) from the Chinese remainder theorem. The image ([a]q0 , . . . , [a]qℓ−1

) of an
element a ∈ RQ is called the RNS representation of a. The main advantage of the RNS representation is
that one can instantiate RQ with smaller rings Rqk ’s. There have been several studies [1, 8, 20] to exploit
the RNS representation for optimization of HE schemes by avoiding multi-precision arithmetic of a base
ring.

4 The original CKKS scheme enables to encode a vector of complex numbers to a plaintext in R. For the sake of
brevity, we assume that an input of the encryption function is given as a plaintext polynomial.



Accelerating HE Operations from Key Decomposition Technique 5

We also define a discrete Fourier transformation over Zqk , called Number Theoretic Transform (NTT),
for efficient polynomial arithmetic over Rqk . Suppose that qk is a prime integer such that qk = 1
(mod 2N). Then, there exists a primitive (2N)-th root of unity ξk modulo qk. It is easy to show that

a(X) 7→
(

a(ξik)
)

i∈Z
×

2N

is an isomorphism from Rqk to ZN
qk

. We call
(

a(ξik)
)

i∈Z
×

2N

the NTT representation of a ∈ Rqk . More

generally, when Q is a product of distinct primes q0, . . . , qℓ−1 such that qk = 1 (mod 2N), we can combine
NTTs over different moduli qk to convert the RNS representation of a ∈ RQ between its coefficient and
NTT forms. We will say that a ciphertext is in the coefficient (or NTT) form if its components are
represented in the coefficient (or NTT, respectively) form.

3 A New External Product Method

Let h : RQ → Rd be a gadget decomposition corresponding to a gadget vector g ∈ Rd
Q. Recall that an

external product of a ∈ RQ and u = (ui)0≤i<d ∈ Rd

Q̃
involves the computation of the gadget decom-

position b = (bi)0≤i<d of a, followed by the linear combination of u0, . . . , ud−1 ∈ RQ̃ with coefficients
b0, . . . , bd−1 ∈ R. Note that this operation is well-defined since RQ̃ is an R-module.

In previous studies [8, 20], the linear combination
∑

i bi · ui is obtained by converting b ∈ Rd into
[b]Q̃ ∈ Rd

Q̃
and computing the inner product between [b]Q̃ and u over RQ̃. The first step is particularly

expensive since each conversion bi 7→ [bi]Q̃ involves NTT operations modulo the prime factors of Q̃.

In this section, we present a new approach to perform the external product operation more efficiently.
In a nutshell, our approach employs gadget decomposition to represent the entries ui as small elements
in the ring of integers R. It enables us to express the external product using low-precision arithmetic over
R. As a result, we can achieve performance improvements since the NTT operations over RQ̃ are replaced
with DFTs over R where the precision is determined by the (small) bounds of gadget decompositions
rather than the (large) modulus Q̃.

3.1 Main Idea

Intuitively, the gadget decomposition can be understood as an operation to represent an arbitrary element
of a residue ring as a linear combination of a fixed basis with small coefficients. Meanwhile, the external
product involves a linear combination of arbitrary elements ui ∈ RQ̃ with small coefficients bi ∈ R. The
main observation is that, if ui’s are given as linear combinations with small coefficients, say vi,j , then
∑

i bi · ui can be also expressed as a linear combination of the same basis where its coefficients can be
obtained from vi,j and bi.

Specifically, we introduce another gadget decomposition g̃ = (g̃0, . . . , g̃d̃−1) ∈ Rd̃

Q̃
over RQ̃ with a

gadget vector h̃ : RQ̃ → Rd̃. For given u = (ui)0≤i<d ∈ Rd

Q̃
, we decompose its entries via h̃ and get

h̃(ui) = (vi,0, . . . , vi,d̃−1) ∈ Rd̃ for 0 ≤ i < d. We write V := [vi,j ]0≤i<d,0≤j<d̃ and denote its j-th column

vector by vj for 0 ≤ j < d̃. Then, V = [v0| . . . |vd̃−1] ∈ Rd×d̃ can be viewed as gadget decomposition

of u satisfying u =
∑

0≤j<d̃ vj · g̃j (mod Q̃). We note that u is usually a public material (such as a
key-switching key generated by the key owner) in HE construction, so its gadget decomposition V can
be pre-computed and reused during homomorphic evaluation.

Suppose that we are given a ∈ RQ and wish to compute the external product a⊡ u. Then, given the
decomposition b = (bi)0≤i<d ← h(a), the linear combination

∑

i bi ·ui can be expressed using the gadget
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decomposition V of u as follows:

∑

0≤i<d

bi · ui =
[

b0 . . . bd−1

]

·







u0

...
ud−1







=
[

b0 . . . bd−1

]

·







v0,0 . . . v0,d̃−1
...

. . .
...

vd−1,0 . . . vd−1,d̃−1






·







g̃0
...

g̃d̃−1







= (b⊤ ·V) · g̃ =
∑

0≤j<d̃

〈b,vj〉 · g̃j (mod Q̃). (1)

Note that b and v0, . . . ,vd̃−1 are vectors in Rd, so the inner products 〈b,vj〉 are defined over the ring

R. As a result,
∑

i bi · ui is a linear combination of g̃0, . . . , g̃d̃−1 with coefficients 〈b,v0〉 , . . . ,
〈

b,vd̃−1

〉

.

Finally, we need to carry out multiplications between 〈b,vj〉 and g̃j over RQ̃ for 0 ≤ j < d̃ to complete

the computation. Fortunately, this step can be very cheap when the gadget decomposition h̃ is chosen
properly (which will be explained later in the next section). We also point out that the proposed method
is purely an algorithmic optimization technique which outputs exactly the same result as before, thereby
bringing no extra noise growth.

3.2 Representation and Arithmetic of Integral Polynomials

As discussed above, our external product method involves arithmetic operations over the ring R. Hence,
it is necessary to estimate an upper bound of a given computational task to guarantee the correctness
and efficiency of its implementation.

Let B and B̃ be upper bounds of two gadget decompositions h and h̃, respectively. In the new external
product method, the inner products 〈b,vj〉 are computed over the ring R, and these are bounded by

‖〈b,vj〉‖∞ ≤ dN · ‖b‖∞ · ‖vj‖∞ ≤ dN ·BB̃.

On the other hand, an element of R can be represented as the vector of its coefficients in ZN , but we
use the DFT algorithm and its inverse over R to convert the coefficient vector into the DFT form and vice
versa for efficient arithmetic operations. More specifically, we instantiate the polynomial ring R as RB′

for some integer B′ > 2dN ·BB̃ so that the reduction modulo B′ does not occur during the computation
of 〈b,vj〉 ∈ R over RB′ . In our implementation, we set B′ = p0p1 . . . pr′−1 as a product of distinct
word-size primes such that pj = 1 (mod 2N) for a possibly minimal integer r′, and use the isomorphism
RB′
∼=

∏

0≤j<r′ Rpj
to represent the elements in RB′ in the RNS form with moduli p0, . . . , pr′−1. Then, the

DFT over RB′ can be efficiently implemented via small NTTs over Rp0
, . . . , Rpr′−1

. Since B′ ≈ 2dN ·BB̃ is

significantly smaller than Q̃, the unit complexity of the DFT algorithm over RB′ in our external product
method is much cheaper than that of the previous NTT operations over RQ̃. A more detailed performance
analysis will be provided in the next section.

4 Application to Key Switching

The external product operation is widely used in HE-based constructions such as the GSW scheme [19]
and multi-key HE scheme [6]. In particular, as noted in Sec. 2.3, the key-switching operation in HE cryp-
tosystems is a major application of the external product operation. More specifically, the key switching
mechanism is extensively used in nonlinear homomorphic operations such as multiplication or automor-
phism; however, it is the main bottleneck affecting the performance of such homomorphic operations. For
instance, the key-switching spends 86-93% of its time performing homomorphic multiplication (the de-
tailed timing results will be provided later in Sec. 5.2). Therefore, improving the key-switching operation
can lead to a substantial efficiency enhancement of HE schemes.
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In the following, we will focus on the key-switching operation based on our new external product
method. We first introduce a practical gadget decomposition that is compatible with the proposed key-
switching method and explain how it can lead to performance improvements. We also provide a complexity
analysis of the previous and our key-switching methods. We will count the number of unit NTT operations
and unit Hadamard operations where NTT operation on Rq and Hadamard product on ZN

q are set as
unit NTT operation and unit Hadamard product for a word-sized prime integer q, respectively.

4.1 RNS-based Gadget Decomposition

Since Gentry et al. [18] presented an RNS-based representation of polynomials, it has been extensively
used in HE implementations to optimize arithmetic operations of a base polynomial ring. Moreover, recent
studies [1, 8, 20, 22] showed that it enables to construct HE schemes in a full-RNS manner where all
computations are performed in RNS representation without any high-precision arithmetic. We provide a
brief overview of RNS-friendly gadget decomposition methods presented in [22].

Throughout this section, let Q = q0 · · · qℓ−1 for a set of distinct word-sized primes B = {q0, . . . , qℓ−1}.
We partition this RNS base B into Bj = {qk : k ∈ Ij} for 0 ≤ j < d where Ij ⊆ I = {0, 1, . . . , ℓ − 1}
denotes the j-th index set. Note that the digits Dj =

∏

k∈Ij
qk are pairwise coprime integers such that

Q = D0 . . . Dd−1. We call |Ij | the length of a digit Dj .
We define the RNS-based digit decomposition h : RQ → Rd as a 7→ b = (b0, . . . , bd−1) for bj = [a]Dj

.

We also write D̂j = Q/Dj for 0 ≤ j < d and let g = (g0, . . . , gd−1) ∈ Rd
Q for gj = [D̂−1

j ]Dj
· D̂j . Then,

it is easy to show that h is a gadget decomposition corresponding to g with a bound ‖b‖∞ ≤ B =
1
2 max0≤j<d{Dj} from the property that gj = 1 (mod Dj) and gj = 0 (mod Dj′) for j′ 6= j.

The digit decomposition can be computed in an RNS representation using the base conversion algo-
rithm [1, 20], which can extend the RNS basis of a polynomial. Let q̂k = Dj/qk and q∗k = [q̂−1

k ]q̂k for
0 ≤ j < d and k ∈ Ij . Suppose that we are given the RNS representation (ak = [a]qk)0≤k<ℓ of an element
a ∈ RQ. Then, we get a =

∑

k∈Ij
[ak · q

∗
k]qk · q̂k (mod Dj) and obtain the following equations over R:

bj =
∑

k∈Ij

[ak · q
∗
k]qk · q̂k −Dj · zj , (2)

where

zj =
⌊ 1

Dj

·
(

∑

k∈Ij

[ak · q
∗
k]qk · q̂k

)⌉

=

⌊

∑

k∈Ij

[ak · q
∗
k]qk

qk

⌉

. (3)

Based on these formulae, we can represent the digit decomposition in a full-RNS manner as follows.
Suppose that we are given ak = [a]qk for k ∈ Ij and wish to compute bj = [a]Dj

modulo Q′ for 0 ≤ j < d.
Then, for each prime factor q′ of Q′, we have

bj =
(

∑

k∈Ij

[ak · q
∗
k]qk · [q̂k]q′

)

− [Dj ]q′ · zj (mod q′), (4)

where the constants such as [q̂k]q′ and [Dj ]q′ are pre-computable independently from the input a. Hence,
the RNS representation of bj with respect to the modulus Q′ is obtained by computing Eq. (4) for all
prime factors q′ of Q′.

4.2 Previous Key-switching Method

We first review the concrete details of the previous key-switching method. We denote by Q = q0 · · · qℓ−1

and P = qℓ · · · qℓ̃−1 the ciphertext modulus and special modulus, respectively, for distinct word-sized

primes q0, . . . , qℓ̃−1, and let Q̃ = P · Q = q0 · · · qℓ̃−1. We choose a partition of the RNS base B =

{q0, . . . , qℓ−1} and set digits Dj as in Sec. 4.1 so that the digit decomposition h : RQ → Rd over RQ is
defined as h : a 7→ b = (b0, . . . , bd−1) for bj = [a]Dj

. We denote by rj = |Ij | the length of a digit Dj . We
assume that all computations are performed in RNS representation even if not mentioned explicitly.
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Previous key-switching operation

Input: A polynomial a ∈ RQ and a key-switching key U = [u0|u1] ∈ Rd×2

Q̃
.

Step 1 (Decomposition): Generate the RNS representation of b = (b0, . . . , bd−1) ← h(a) modulo
Q̃. Each [bj ]Q̃ can be computed using Eq. (4) for all prime factors q0, . . . , qℓ̃−1 of Q̃.

Step 2 (Inner product): Compute c̃0 = 〈b,u0〉 (mod Q̃) and c̃1 = 〈b,u1〉 (mod Q̃)
Step 3 (Mod reduction): Compute c′0 =

⌊

1
P
c̃0
⌉

(mod Q) and c′1 =
⌊

1
P
c̃1
⌉

(mod Q).
Output: An RLWE ciphertext (c′0, c

′
1) ∈ R2

Q.

The previous key-switching procedure consists of three steps – gadget decomposition, inner product,
and modulus reduction. The first step aims to compute the gadget decomposition h(a), but more precisely,
its RNS representation over the modulus Q̃ = q0 · · · qℓ̃−1. Suppose that a ∈ RQ is given in the coefficient
form. Then, we compute bj = [a]Dj

using Equations (3) and (4) for all prime factors q′ = q0, q1, . . . , qℓ̃−1,
and transform it into the NTT form over RQ̃ for an efficient multiplication in the next step. In the second

step, we perform two inner products c̃i = 〈b,ui〉 (mod Q̃) for i = 0, 1. We assume that the key-switching
key U = [u0|u1] ∈ Rd×2

Q̃
is given in the NTT form over RQ̃ for efficiency. Then, each inner product

between b and ui is simply written as N inner products over Zd

Q̃
∼=

∏

0≤k<ℓ̃ Z
d
qk

since both are given in

their NTT forms. At the end of this step, c̃0 and c̃1 are converted into the coefficient form for the next
step. Finally, we perform the modulus reduction operation to scale the ciphertexts back down to Q, i.e.,
compute c′i = ⌊c̃i/P ⌉ = (c̃i− [c̃i]P )/P for i = 0, 1. This step involves a base conversion to obtain the RNS
representation of [c̃i]P modulo Q.

Complexity analysis. For the sake of brevity, we assume that all the digit lengths rj are the same and
denoted by r, so we get ℓ = dr. We first count the number of unit NTT operations in the previous key-
switching operation. In the first step, we convert the decomposed element [bj ]Q̃ to NTT representation

for 0 ≤ j < d. This procedure requires dℓ̃ unit NTT operations since the NTT operation over RQ̃ requires

ℓ̃ unit NTT operations and we repeat this operation for each j. In the second step, it requires 2ℓ̃ unit
NTT operations after performing inner products as the inverse NTT operation over RQ̃ takes ℓ̃ unit NTT
operations and we repeat this operation for each c̃i to get its coefficient form. Therefore, the previous
key-switching takes total (d+ 2)ℓ̃ unit NTT operations.

We now count the number of unit Hadamard products. In the first step, the base conversion of
bj = [a]Dj

to the modulus Q̃ requires rj(ℓ̃− rj) = r(ℓ̃− r) ≤ rℓ unit Hadamard products, and we repeat
this procedure for each 0 ≤ j < d. Thus, the required number of unit Hadamard products in Step 1 is
bounded by drℓ = ℓ2. On the other hand, when r = 1, each Dj is a single prime number, and so the first

step does not require any Hadamard products. In the second step, it takes 2dℓ̃ unit Hadamard products
since the Hadamard product over RQ̃ requires ℓ̃ unit Hadamard products and each inner product of

c̃i = 〈b,ui〉 (mod Q̃) takes d Hadamard products over RQ̃. To sum up, in the case of r = 1, the total

number of unit Hadamard products required for the previous key-switching operation is 2dℓ̃; otherwise,
it is ℓ2 + 2dℓ̃.

We note that the gadget decomposition procedure is dominant in the cost of unit NTT operations.
The computational cost of unit Hadamard products at the first step is roughly equivalent to the second
step except for the case of r = 1. As a result, as noted in Sec. 3, the gadget decomposition step turns out
to be the most time-consuming part of the previous key-switching operation.

4.3 Our Key-switching Method

We now present our new approach based on the new external product operation. Our key-switching
procedure is based on a digit decomposition over RQ̃. For the RNS base B̃ = {q0, . . . , qℓ̃−1} of the

modulus Q̃, we choose a partition Ĩ0, . . . , Ĩd̃−1 of {0, 1, . . . , ℓ̃ − 1} and digits D̃j =
∏

k∈Ĩj
qk. Then, we

can define an RNS-friendly gadget decomposition h̃ : RQ̃ → Rd̃ as h̃(u) = (v0, . . . , vd̃−1) for vj = [u]D̃j
,
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and its corresponding gadget vector is g̃ = (g̃0, . . . , g̃ℓ̃−1) ∈ Rd̃

Q̃
such that g̃j = 1 (mod D̃j) and g̃j = 0

(mod D̃j′) for j′ 6= j. We generate a key-switching key U = [u0|u1] ∈ Rd×2

Q̃
using the gadget encryption

algorithm, and publish the decompositions of u0 and u1 with respect to h̃.
Similar to the previous method, our key-switching method consists of three steps. In the first step,

the coefficient form of a ∈ RQ is given as an input. Then we compute the gadget decomposition b = h(a)
and transform it into the DFT form over the ring R. As discussed in Sec. 3.2, since we instantiate R as
RB′ in our implementation, it suffices to transform the decomposition into the NTT form over RB′ . We
remark that our method enjoys better performance than the previous approach since the decomposition is
computed over RB′ rather than RQ̃. Therefore, the complexity of this step mainly depends on the upper

bounds of the gadget decompositions h and h̃, which are significantly smaller than the modulus Q̃. In
the second step, we compute c̃0 = 〈b,u0〉 (mod Q̃) and c̃1 = 〈b,u1〉 (mod Q̃) following the procedure
below. First, we perform the inner products c̃0,j = 〈b,v0,j〉 and c̃1,j = 〈b,v1,j〉 for 0 ≤ j < d̃, and convert
them back to the coefficient form. Here, we can assume that V0 and V1 are given in the NTT form over
RB′ , so these inner products can be computed efficiently over the NTT space of RB′ . Finally, it holds
that

c̃i = 〈b,ui〉 =
∑

0≤j<d̃

〈b,vi,j〉 · g̃j =
∑

0≤j<d̃

c̃i,j · g̃j (mod Q̃)

from Eq. (1), which implies that c̃i = c̃i,j (mod D̃j) for all 0 ≤ j < d̃. Therefore, we have c̃i = c̃i,j
(mod qk) for all 0 ≤ j < d̃ and k ∈ Ĩj from the property of digit decomposition, and the RNS representa-

tion of c̃i modulo Q̃ is obtained as ([c̃i,j ]qk)0≤j<d̃,k∈Ĩj
∈
∏

0≤k<ℓ̃ Rqk . The last step of our key-switching

is the modulus reduction process, which is identical to that of the previous method.

Our key-switching operation

Input: A polynomial a ∈ RQ and two decompositions Vi = [vi,0|vi,1| . . . |vi,d̃−1] of ui for i = 0, 1,

with respect to h̃ for a key-switching key U = [u0|u1] ∈ Rd×2

Q̃
.

Step 1 (Decomposition): Compute the gadget decomposition b = (b0, . . . , bd−1) ← h(a) over R
using (2) and (3).
Step 2 (Inner product): Compute c̃0,j ← 〈b,v0,j〉 and c̃1,j ← 〈b,v1,j〉 over R for 0 ≤ j < d̃.
Compute the elements c̃0 and c̃1 of RQ̃ such that c̃0 = c̃0,j (mod Dj) and c̃1 = c̃1,j (mod Dj) for

0 ≤ j < d̃.
Step 3 (Mod reduction): Compute c′0 =

⌊

1
P
c̃0
⌉

(mod Q) and c′1 =
⌊

1
P
c̃1
⌉

(mod Q).
Output: An RLWE ciphertext (c′0, c

′
1) ∈ R2

Q.

Complexity analysis. We denote by r̃j = |Ĩj | the length of a digit D̃j , and assume that all the digit

lengths r̃j are the same and denoted by r̃, so we get ℓ̃ = d̃r̃. We first count the number of unit NTT
operations in our key-switching operation. As noted in Sec. 3.2, we assume that B′ is a product of r′

distinct word-sized primes. The NTT operation over RB′ requires r′ unit NTT operations and we repeat
this operation for each entry of b to get its NTT representation, so this step requires dr′ unit NTT
operations. In the second step, it requires 2d̃r′ unit NTT operations after performing inner products
since we perform the inverse NTT operation over RB′ on c̃0,j and c̃1,j to get their coefficient forms.

Hence, the total number of unit NTT operations is (d+ 2d̃)r′.
We now count the number of unit Hadamard products. In the first step, the base conversion of

bj = [a]Dj
to the modulus B′ requires rjr

′ = rr′ unit Hadamard products, and we repeat this procedure
for each 0 ≤ j < d. Thus, this step requires drr′ = ℓr′ unit Hadamard products. On the other hand,
when r = 1, it does not require any Hadamard products. In the second step, the Hadamard product
over RB′ requires r′ unit Hadamard products and each inner product of c̃i,j = 〈b,vi,j〉 (mod B′) takes d

Hadamard products over RB′ . We compute c̃i,j for i = 0, 1 and 0 ≤ j < d̃, so it takes 2dd̃r′ unit Hadamard
products in total. At the end of the second step, the base conversion of [c̃i,j ]B′ to the modulus qk requires
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r′ unit Hadamard products for each 0 ≤ i < 2, 0 ≤ j < d̃, 0 ≤ k ≤ Ĩj . It follows from the assumption of

digit lengths of Ĩj that this procedure requires 2d̃r̃r′ = 2ℓ̃r′ to get the RNS representation of c̃i modulo Q̃.

To sum up, in the case of r = 1, the total number of unit Hadamard products is (2dd̃+ 2ℓ̃)r′; otherwise,
it is (ℓ+ 2dd̃+ 2ℓ̃)r′.

We note that the computational cost of unit NTT operations at the first step is roughly equivalent
to the second step. On the other hand, the second inner product step is dominant in the cost of unit
Hadamard products since only this step is asymptotically quadratic in the level ℓ.

4.4 Complexity Comparison

We now provide an in-depth complexity comparison between previous and our key-switching methods.
We analyze the computational complexity of two methods and then compare their space complexity.

Time complexity. Table 1 summarizes the computational complexity of the previous and new key-
switching methods in terms of number of unit operations.

Method NTT
Hadamard Product

r = 1 r > 1

Previous dℓ̃+ 2ℓ̃ 2dℓ̃ ℓ2 + 2dℓ̃

Ours dr′ + 2d̃r′ 2(dd̃+ ℓ̃)r′ ℓr′ + 2(dd̃+ ℓ̃)r′

Table 1: Computational complexity comparison of the previous and our key-switching methods. Here,
NTT and Hadamard Product indicate the corresponding unit operations. (d: the dimension of the gadget
vector over RQ, d̃: the dimension of the gadget vector over RQ̃, ℓ: the level of the modulus Q, ℓ̃: the

number of distinct word-sized primes for the modulus Q̃ = PQ, r′: the number of distinct word-sized
primes for the coefficient bound B′)

As mentioned earlier, expensive NTT operations over RQ̃ at the first decomposition step in the

previous method are replaced by relatively cheaper NTT operations over RB′ in our method (from dℓ̃
to dr′ unit NTT operations). In other words, in the gadget decomposition step, a (large) value of ℓ̃ in
the previous method is reduced to a small value of r′ in our method, and therefore the computational
complexity of unit NTT operation in this step is reduced by a factor of ℓ̃/r′. On the other hand, inverse
NTT operations on the inner product results c̃i ∈ RQ̃ in the previous method are roughly equivalent to

inverse NTT operations on the inner products c̃i,j in RB′ in our method (2ℓ̃ = 2d̃r̃ vs. 2d̃r′ unit NTT
operations).

We now consider the cost of unit Hadamard products. The base conversion of an input to the large
modulus Q̃ in the previous method requires about ℓ2 unit Hadamard products, and this term increases
significantly for a large level ℓ compared to those of the first and third steps in our method (ℓ2 vs.
ℓr′ + ℓ̃r′). In the second step, the computational cost of the previous method is roughly equivalent to the
new key-switching method (2dℓ̃ vs. 2dd̃r′). As a result, the number of unit Hadamard products in our
method can be substantially reduced from the previous method as the value of ℓ increases.

To provide further intuition, we rephrase the complexity analysis in an asymptotic manner. By con-
sidering r, r̃, r′ ∈ O(1), we deduce d, d̃ ∈ O(ℓ). Then, both unit NTT operations and Hadamard products
in the previous key-switching have an asymptotic complexity of O(ℓ2). Meanwhile, the asymptotic com-
plexity of unit NTT operations in our algorithm is reduced to O(ℓ). Therefore, our algorithm reduces the
number of NTT operations by a factor of O(ℓ) compared to the previous one, while the cost of Hadamard
products keeps the same asymptotic computational complexity.

Consequently, our key-switching method provides a considerable speedup over the previous method
for an evaluation of large-depth circuits. We note that it is a common practice in HE cryptosystems
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to use a sufficiently large value of ℓ, for example in the usage of bootstrapping. In particular, since
NTT operations are relatively expensive than Hadamard products and the cost of NTT operations is
reduced from quadratic to linear complexity in ℓ, it enables us to achieve a comparably better asymptotic
complexity of the key-switching operation.

Space complexity. In terms of space complexity, the key-switching key in the previous key-switching
operation is viewed as a (d × 2) matrix over RQ̃, so the bit-size of a key-switching key is 2d ·N log Q̃ ≈

2dd̃ · N log B̃. Meanwhile, the key-switching key in our new variant consists of two d × d̃ matrices over
R. As noted in Sec. 4.3, it can be given in the NTT form over RB′ for efficient computation. Then
the bit length of the key-switching key is 2dd̃ · N logB′, yielding an expansion factor of logB′/log B̃ ≈
log(2dN · BB̃)/log B̃ = 1 + log(2dNB)/log B̃. Alternatively, we can first generate a key-switching key
as in the previous method. And then we decompose the key and convert it into an NTT representation
before multiplying it by a ciphertext. As a result, we can speed up the key-switching operation while
keeping the size of the switching key the same.

5 Implementation and Performance

We present the concrete parameters for the key-switching operation based on the new external prod-
uct method. Then, we provide experimental results that demonstrate the effectiveness of our new key-
switching method. Our source code is based on the CKKS scheme and the implementation is built on top
of the Lattigo library [15] that supports the CKKS scheme in a full-RNS manner and with the RNS-based
digit decomposition in [22]. The source code is available at https://github.com/SNUCP/fast-ksw. All
experiments were performed with a single thread on a machine with Intel(R) Xeon(R) Platinum 8268 at
2.90GHz CPU and 192GB RAM running Ubuntu 20.04.3 LTS.

5.1 Parameter Setting

As noted in Sec. 3.2, the coefficient bound B′ is a product of r′ distinct ν-bit primes that satisfies the
inequality B′ > 2dN ·BB̃ where B = 1

2 max0≤j<d{Dj} and B̃ = 1
2 max0≤j<d̃{D̃j}. Namely, it suffices to

set r′ as

r′ ≥

⌈

log(2dN ·BB̃)

ν

⌉

. (5)

In our implementation, the key distribution χ samples each coefficient from {0,±1} with probability
0.25 for each of −1 and 1 and probability 0.5 for 0. The error distribution is the discrete Gaussian Dσ

with σ = 3.2. We used two ring dimension parameters N = 215 and N = 216, which are commonly used
for an evaluation of a circuit with a sufficiently large depth (e.g., bootstrapping operation). For each of
these values of N , we derived an upper bound on the parameter Q̃ to achieve a 128-bit security level.
For the modulus Q̃ = q0 · · · qℓ̃−1, we set all the primes qi to be roughly the same size. We set the primes

pj to be ν ≥ 59.9 bits as an upper bound for these primes is set to 260 in the Lattigo library. Table 2

summarizes upper bounds on the modulus Q̃ and the level ℓ̃, along with approximate sizes for the primes
qi and pj .

N
⌈

log Q̃
⌉

ℓ̃ ⌈log qi⌉ ⌈log pj⌉

215 880 ≤ 24
36 60

216 1761 ≤ 48

Table 2: Parameters used in our experiments
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5.2 Experimental Results

We present experimental results of key-switching methods from our experiments. Tables 3 and 4 show
the running time (in second) for the previous key-switching operation (“Prev”) and the new key-switching
operation (“Ours”). To be precise, we measured the time of the key switching operation taken to perform
homomorphic multiplication of ciphertexts. We did this for various values of ℓ̃ and r while using the
parameters in Table 2. We processed the parameter r between 1 and 4 since the default digit length of
the gadget decomposition is set as 3 or 4 in the Lattigo library. In each table, the third column gives
the level of an input ciphertext by ℓ = ℓ̃ − r. Furthermore, as discussed in Sec. 4.3, our key-switching
method relies on the parameters r, r̃, and r′. For each r and r̃, we chose the value of r′ by Eq. (5). The
last column gives a speedup of the fastest new key-switching operation among experiments with various
parameters of r̃ and r′ over the previous method.

We now consider the new key-switching method. Given fixed values of N , ℓ̃, and r, if taking a large
value of r̃, then a large value of r′ is chosen by Eq. (5), whereas a small value of d̃ is taken by the fact
of d̃ ≈ ℓ̃/r̃. So, the first term dr′ in the cost of unit NTT operations increases with the parameter r̃.
However, because of the decreasing term r′/r̃ with r̃, the second term 2d̃r′(≈ 2ℓ̃r′/r̃) in the cost decreases
as r̃ increases. Moreover, the dominant term in the cost of unit Hadamard products is 2dd̃r′ ≈ 2dℓ̃r′/r̃,
which also decreases with r̃. Therefore, we get an optimal computational complexity when all of these
terms are balanced (e.g., 4 ≤ r̃ ≤ 7).

The previous key-switching operation is faster for a small value of ℓ̃ and a large value of r (due to a
small value of d ≈ ℓ/r), which closely aligns with theoretical complexity analysis in Table 1. In Figure 1,
the same tendency can be observed in our key-switching operation. Here, the running time is taken as
the fastest result among experiments over various r̃ and r′ for each ℓ̃ and r. Compared to ours, given a
fixed value of N , there is much variation in the running time of the previous key-switching operation as
ℓ̃ increases due to the quadratic and linear dependence of the number of NTTs on ℓ̃ in the previous and
our methods. Also, the running time of the previous method depends heavily on the value of r than ours.

Given fixed values of N and ℓ̃, we get a further speedup of the new key-switching method over
the previous method when a small value of r is used. This is because NTT operations are more costly
than Hadamard products and the complexity of unit NTT operations for the gadget decomposition in our
method is reduced by a factor of ℓ̃/r′ compared to the previous method. As the optimal value of r′ increases
with r, the factor of ℓ̃/r′ decreases with r. For example, we get a speedup of 3.3 if logN = 16, ℓ̃ = 48, r = 1,
and a speedup of 2.2 if logN = 16, ℓ̃ = 48, r = 4. On the other hand, the factor of ℓ̃/r′ increases with ℓ̃.
Consequently, our experiments indicate that the speedups for smaller r and larger ℓ are more significant
and dramatic.

Micro-benchmarks. To identify the improvements from the impact of the new key-switching method,
we present micro-benchmarks for the individual procedures. Figure 2 shows the result with the parameters
N = 216 and ℓ̃ = 48. We do this for various values of r defining the digit length of the gadget decomposition
over RQ. As discussed in Sec. 4.4, the gadget decomposition procedure including the base conversion and
NTT operations is the most time-consuming part of the previous key-switching operation. In particular,
the cost of NTT operations is dominant in the previous method; the key-switching spends 47–73% of
its time performing NTT operations. In contrast, our key-switching procedure spends about 26–27% of
its time performing NTT operations and the cost of inner products is dominant in the execution of the
procedure. Notably, the NTT computation of our algorithm is around 4–9 times faster than that of the
previous algorithm.

Application to homomorphic operations. As mentioned in Sec. 4, key-switching operation is a main
bottleneck of homomorphic operations such as multiplication and automorphism. Table 5 shows the
performance of multiplication and automorphism with the existing and our key-switching methods. We
observe that the previous key-switching method accounts for about 86–93% and 90–95% of the execution
times for multiplication and automorphism, respectively. By applying our new key-switching method, we
get a speedup of up to 3 times for multiplication and automorphism.
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logN ℓ̃ (ℓ, r) Prev Ours Speedup

15

16

(15, 1)

r̃ - 1 2 3 4 5 6

r′ - 2 3 3 4 4 5 1.7

Time 0.143 0.116 0.101 0.084 0.086 0.087 0.092

(14, 2)

r̃ - 2 3 4 5 6 7

r′ - 3 4 4 5 6 6 1.5

Time 0.096 0.074 0.078 0.062 0.075 0.076 0.076

(13, 3)

r̃ - 2 3 4 5 6 7

r′ - 4 4 5 6 6 7 1.2

Time 0.077 0.083 0.070 0.066 0.077 0.067 0.076

20

(19, 1)

r̃ - 1 2 3 4 5 6

r′ - 2 3 3 4 4 5 1.9

Time 0.216 0.162 0.139 0.112 0.118 0.115 0.129

(18, 2)

r̃ - 2 3 4 5 6 7

r′ - 3 4 4 5 6 6 1.7

Time 0.145 0.102 0.103 0.085 0.092 0.107 0.093

(17, 3)

r̃ - 2 3 4 5 6 7

r′ - 4 4 5 6 6 7 1.3

Time 0.113 0.109 0.088 0.087 0.089 0.088 0.089

24

(23, 1)

r̃ - 1 2 3 4 5 6

r′ - 2 3 3 4 4 5 2.3

Time 0.317 0.214 0.183 0.140 0.152 0.142 0.151

(22, 2)

r̃ - 2 3 4 5 6 7

r′ - 3 4 4 5 6 6 1.9

Time 0.204 0.128 0.128 0.110 0.118 0.124 0.125

(21, 3)

r̃ - 2 3 4 5 6 7

r′ - 4 4 5 6 6 7 1.5

Time 0.151 0.137 0.106 0.112 0.114 0.101 0.115

Table 3: Experimental results of the previous and our key-switching operations. The evaluation is exam-
ined on the full RNS variant of CKKS scheme with the ring dimension N = 215.

6 Conclusion and Future Work

In this paper, we presented a new external product algorithm based on key decomposition technique. Prior
to this work, a decomposed ciphertext is converted into the NTT form over a multi-precision modulus and
then multiplied with a public evaluation key. We explore another way by refactoring the computation and
exploiting the smallness of the gadget decomposition; therefore, we can significantly reduce the number
of NTT operation. In our experiment, the key-switching operation based on the new external product
method is up to 3 times faster than the previous key-switching operation over typical parameters.

One direction to explore is to take into account hardware implementation, for example, in a GPU
environment. According to the recent study by Jung et al. [23], GPU can be used to accelerate the key-
switching operation by optimizing the inner product procedure. A significant reduction in NTT operations
in our method is a promising possibility that we believe will get a substantial performance improvement
when combined with the existing GPU-based optimization techniques.
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logN ℓ̃ (ℓ, r) Prev Ours Speedup

16

32

(31, 1)

r̃ - 1 2 3 4 5 6

r′ - 2 3 3 4 4 5 2.6

Time 1.181 0.744 0.605 0.455 0.476 0.451 0.499

(30, 2)

r̃ - 2 3 4 5 6 7

r′ - 3 4 4 5 6 6 2.4

Time 0.854 0.414 0.427 0.352 0.399 0.408 0.388

(29, 3)

r̃ - 2 3 4 5 6 7

r′ - 4 4 5 6 6 7 2.0

Time 0.655 0.466 0.341 0.335 0.364 0.350 0.372

(28, 4)

r̃ - 2 3 4 5 6 7

r′ - 4 5 6 6 7 7 1.6

Time 0.486 0.403 0.357 0.343 0.319 0.318 0.301

40

(39, 1)

r̃ - 1 2 3 4 5 6

r′ - 2 3 3 4 4 5 3.0

Time 1.841 1.098 0.905 0.682 0.711 0.604 0.690

(38, 2)

r̃ - 2 3 4 5 6 7

r′ - 3 4 4 5 6 6 2.7

Time 1.378 0.621 0.623 0.508 0.531 0.574 0.532

(37, 3)

r̃ - 2 3 4 5 6 7

r′ - 4 4 5 6 6 7 2.2

Time 1.038 0.659 0.521 0.506 0.519 0.479 0.507

(36, 4)

r̃ - 2 3 4 5 6 7

r′ - 4 5 6 6 7 7 2.1

Time 0.929 0.581 0.554 0.514 0.456 0.481 0.438

48

(47, 1)

r̃ - 1 2 3 4 5 6

r′ - 2 3 3 4 4 5 3.3

Time 2.688 1.532 1.234 0.876 0.938 0.818 0.880

(46, 2)

r̃ - 2 3 4 5 6 7

r′ - 3 4 4 5 6 6 3.0

Time 1.980 0.823 0.791 0.655 0.702 0.727 0.670

(45, 3)

r̃ - 2 3 4 5 6 7

r′ - 4 4 5 6 6 7 2.5

Time 1.438 0.834 0.629 0.630 0.657 0.585 0.617

(44, 4)

r̃ - 2 3 4 5 6 7

r′ - 4 5 6 6 7 7 2.2

Time 1.191 0.738 0.670 0.650 0.589 0.592 0.550

Table 4: Experimental results of the previous and our key-switching operations. The evaluation is exam-
ined on the full RNS variant of CKKS scheme with the ring dimension N = 216.
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