

Distribution Statement A. Approved for public release: distribution is unlimited.

TREBUCHET: Fully Homomorphic Encryption

Accelerator for Deep Computation

David Bruce Cousins, Yuriy Polyakov,

Ahmad Al Badawi

Duality Technologies

{dcousins, ypolyakov,

aalbadawi}@dualitytech.com

Matthew French, Andrew Schmidt, Ajey

Jacob, Benedict Reynwar, Kellie Canida,

Akhilesh Jaiswal, Clynn Mathew

USC, Information Sciences Institute

{mfrench, aschmidt, ajacob, breynwar,

kcanida, akjaiswal, cmathew}@isi.edu

Homer Gamil, Negar Neda, Deepraj Soni,

Michail Maniatakos, Brandon Reagen

New York University

{homer.g,nn2231, dss545,

michail.maniatakos, bjr5}@nyu.edu

Naifeng Zhang, Franz Franchetti

Carnegie Mellon University

{naifengz, franzf}@cmu.edu

Patrick Brinich, Jeremy Johnson

Drexel University

{pbrinich, jjohnson}@drexel.edu

Patrick Broderick, Mike Franusich

SpiralGen, Inc

{patrick.broderick,

mike.franusich}@spiralgen.com

Bo Zhang, Zeming Cheng,

Massoud Pedram

University of Southern California

{zhangb, chengz,

pedram}@usc.edu

Abstract— Secure computation is of critical importance to not

only the DoD, but across financial institutions, healthcare, and an-

ywhere personally identifiable information (PII) is accessed. Tra-

ditional security techniques require data to be decrypted before

performing any computation. When processed on untrusted sys-

tems the decrypted data is vulnerable to attacks to extract the sen-

sitive information. To address these vulnerabilities Fully Homo-

morphic Encryption (FHE) keeps the data encrypted during com-

putation and secures the results, even in these untrusted environ-

ments. However, FHE requires a significant amount of computa-

tion to perform equivalent unencrypted operations. To be useful,

FHE must significantly close the computation gap (within 10x) to

make encrypted processing practical.

To accomplish this ambitious goal the TREBUCHET project

is leading research and development in FHE processing hardware

to accelerate deep computations on encrypted data, as part of the

DARPA MTO Data Privacy for Virtual Environments (DPRIVE)

program. We accelerate the major secure standardized FHE

schemes (BGV, BFV, CKKS, FHEW, etc.) at >=128-bit security

while integrating with the open-source PALISADE and OpenFHE

libraries currently used in the DoD and in industry. We utilize a

novel tile-based chip design with highly parallel ALUs optimized

for vectorized 128b modulo arithmetic. The TREBUCHET copro-

cessor design provides a highly modular, flexible, and extensible

FHE accelerator for easy reconfiguration, deployment, integration

and application on other hardware form factors, such as System-

on-Chip or alternate chip areas.

I. INTRODUCTION

Current digital infrastructure facilitates secure communi-

cation over an insecure communication channel using modern

encryption schemes. However, the server needs to decrypt the

data before performing any computation, raising concerns

about data privacy and security. Fully homomorphic encryp-

tion (FHE) is a privacy-preserving computation technique that

addresses this problem by performing computation on en-

crypted data without the need to decrypt the input. Sensitive

data is encrypted at the source by its owner, sent to the cloud

for secure processing, and the encrypted result sent back to par-

ties approved to decrypt it. At no time is the sensitive data avail-

able for decryption by unauthorized parties.

FHE is currently used by organizations to analyze shared

sensitive data normally restricted by privacy laws. The over-

head incurred by FHE is tolerable in these cases because there

is no alternative path. However, there are three main barriers

to FHE that restrict its wider use. First, conversion of plaintext

to ciphertext increases the data size significantly (for example

4B to > 20KB for an integer). This makes data I/O transfer a

bottleneck. Second, FHE uses modular arithmetic with a large

modulus word size, which is not natively supported by most

off-the-shelf hardware, requiring several clock cycles to per-

form an operation. Third, FHE workloads require extreme

amounts of computation vs. their plaintext counterparts (often

several orders of magnitude more). These overheads result in

high latency, energy consumption, and memory overhead,

which limit the applicability of FHE applications.

Figure 1 - TREBUCHET Layered System Architecture

Trebuchet Accelerator Card

PCIe (Hard IP)

Interface Switch

ARM CPUs
(A53/R5)

DDR4
Controller

Data Management
Controller

D
D

R4
D

D
R4

D
D

R4

On-Chip RAM

Tr
eb

uc
he

t
In

te
rf

ac
e

To/From Host

PCIe Connector

North RPUs I/O

South RPUs I/o

W
e

st
 R

P
U

s
I/

O

E
a

st
 R

P
U

s
I/

O

Multi-Ported
Mesh Router

…

…

……

Channels

H-Crossbar

H-Crossbar

Channels

C
h

a
n

n
e

ls

C
h

a
n

n
e

ls

RPU Mesh Network Router

Trebuchet Accelerator

I/O Pads

I/
O

 P
ad

s

I/
O

 P
ad

s

I/O Pads

RPU

RPU

RPU

RPU

RPU

RPU

RPU

RPU

RPU

RPU

RPU RPU

RPU RPU
Clock
Debug
RAM

Clock
Debug
RAM

RPU

Mesh

Network

RPU

Mesh

Network

RPU

Mesh

Network

RPU

Mesh

Network

RPU

Mesh

Network

RPU

Mesh

Network

RPU

Mesh

Network

I/O

Mesh

IF

I/O

Mesh

IF

I/O

Mesh

IF

I/O

Mesh

IF

I/O

Mesh

IF

I/O

Mesh

IF

I/O

Mesh IF

I/O

Mesh

IF

I/O

Mesh

IF

I/O

Mesh IF

I/O

Mesh IF

I/O

Mesh IF

Trebuchet Accelerator FPGA

RISC-V CPU

Scalable
Very Long

Word
Multiplier

Instruction

Memory

Decode
Logic

Busy
Board

Load/Store

Queue

Shuffle

Queue

ALU Queue

Availability

Tracker

Submitter

Vector Data Memory

VDM Crossbar

HPLE HPLE HPLE HPLE HPLE HPLE HPLE HPLE

Shuffle Crossbar

Scalar Memory

Frontend

RISC-V SoC Vector Backend

Scalar Backend

High-Performance LAWS Engines

Load
Control

Store

Control

Shuffle

Control

ALU

Control

Modulus RF Scalar RF

Ring Processor Unit (Tile)

… Etc.

Network/

Graph

Analytics

Secure

Query

Ops

ML

Training

LR /CNN

OpenFHE Lattice Crypto Library
BGV BFV CKKS THFE/FHEW

OpenFHE User API

Hardware Abstraction Layer (HAL)

TREBUCHET Accelerator

So
ft

w
ar

e
La

ye
r

DPRIVE Accelerator API

Application Layer

HE.org
Standards

SPIRAL Optimized Kernels Map
Function Call-Trees to Microcode

C/C++ LAWS/dataflow intrinsics API

Other HW Accelerators
ASIC / GPU / FPGA

AVX / RiscV Vectors

Other HW APIs

Microcode Schedule/Load

HW desc.

Dataflow

Distribution Statement A. Approved for public release: distribution is unlimited.

Several advances in FHE technology have made operation

on conventional CPUs more practical, with most schemes sup-

porting encryption of complete vectors, amortizing encrypted

math across thousands of elements simultaneously. However,

the complexity required for this is large, requiring the use of

residue arithmetic to segment the problem into a set of parallel

operations, and the use of Number Theoretic Transforms (NTT)

to accelerate the convolution of polynomial coefficients during

their multiplication. The reader is referred to [1] for detailed

discussion of CPU based implementation of FHE operations.

II. TECHNICAL APPROACH

The fundamental design goal of TREBUCHET is to sup-

port 1) a wide array of complex and deep encrypted computing

applications, 2) the most important lattice based FHE schemes

with 3) a modular design that maps to a wide range of chip sizes

with 4) runtime performance orders of magnitude faster than

other solutions. We do this by providing basic design blocks

and a system stack architecture (Figure 1), that is highly adapt-

able and extensible. TREBUCHET provides mix-and-match

layers for applications, software components and hardware.

Adjacent layers interface using well-defined APIs to en-

capsulate interactions where our hardware and software inter-

act, allowing each layer to optimize for specific application,

scheme, and hardware objectives. We optimized our design

through extensive trade space studies between candidate Large

Arithmetic Word Size (LAWS) hardware cores, memory, and

data flow components. The Hardware layer consists of the

DPRIVE Accelerator ASIC (DA) on an FHE Processing Board

(FPB). The DA is composed of intrinsically modular compo-

nents easing validation and Formal Verification [2] by reducing

the combinatorial explosion of circuit state space. Our approach

includes research into novel architectures and their optimiza-

tions, on-chip memory systems, crypto data/key reuse/manage-

ment and optimizing chip I/O bandwidth. We increase perfor-

mance by maximizing data reuse, limiting communication

overhead, trading local vs. global memory and processing near

memory to address scheduling and tiling computation onto ar-

rays of LAWS processing elements.

The Application Layer consists of C++ implementations

of user applications implemented with the OpenFHE1 API. The

Software Layer consists of three distinct subsystems to pro-

vide high-performance instantiations of all major lattice FHE

schemes over a wide array of parameter settings, including all

accepted standard security settings [3]. The top layer is the

OpenFHE [1] library, which implements all the standard secure

FHE schemes in a modular architecture of ring arithmetic re-

quired for all major lattice-based encryption schemes. The next

lower layer is the SPIRAL NTTX system, which maps high

level sequences of OpenFHE lattice crypto function calls into

automatically generated software microcode functions (ker-

nels) to program the DA. Finally, a microcode compiler gener-

ates firmware instructions for LAWS control sequences.

1 OpenFHE is the successor to the PALISADE library. It shares

basic similarities but is engineered to support easier hardware integra-

tion using a Hardware Abstraction Layer (HAL). OpenFHE and

PALISADE are referred to interchangeably in this document.

The TREBUCHET DA Architecture, Figure 2, takes a

data-driven approach. A modular parallel, vectorized architec-

ture is used to achieve the highest performance, flexibility, and

verification objectives. Ring Processing Units (RPU) are on-

chip tiles, that contain multiple ALU lanes for vectorized pro-

cessing of modulo math with shared vector-data SRAM to

buffer ciphertext(s) and keys. Tiles also facilitate memory man-

agement by scheduling data to be near computational elements.

RPUs are replicated throughout the device, enabling software

to minimize data movement and exploit data level parallelism.

This architecture provides scalability in the native bit width

supported, the number of multipliers and size memory available

per tile, and the number of tiles available per chip, enabling sys-

tem wide optimizations.

III. HARDWARE LAYER

The Ring Processing Unit (RPU) is designed for general

ring processing with high performance by taking advantage of

regularity and data parallelism. The RPU utilizes explicitly

managed hardware to elide the high costs and complexity of

caches, dynamic scheduling logic, and prediction, and task the

compiler with scheduling and data movement at compile time.

Figure 2 shows an overview of the RPU. Based on the data par-

allel nature of FHE workloads, parallel vector architectures are

highly amenable for meeting the performance needs. We devel-

oped an efficient RPU Instruction Set Architecture (ISA) to mi-

crocode lattice crypto functions in the RPU. The ISA was co-

designed with NTTX and the RPU hardware to address the

needs of ring processing while being programmable, as algo-

rithms are still rapidly evolving and to support continued soft-

ware improvements post fabrication. It has a vector length of

512 elements to maximize work per instruction while providing

Figure 2 – TREBUCHET Hardware/Software Co-Design Tool

flow and Hardware Architecture Overview

Distribution Statement A. Approved for public release: distribution is unlimited.

flexibility to the programmer, as the minimum size ring is typ-

ically one to two thousand elements. The ISA includes access

to a large, local scratchpad to (double) buffer vector data, mul-

tiple vector registers, instructions for register-to-register shuf-

fling of data and native support for large word modular arith-

metic. The ISA was designed with simplicity in mind and has

only 17 instructions to minimize front-end overheads.

A. Frontend

All RPU programs are stored in local instruction memory.

When a task is to be executed, a controlling RISC-V core issues

a start command to the frontend with an instruction memory

pointer to the first instruction of the kernel. To mitigate

frontend overheads, in order logic and light-weight dependence

tracking is utilized. The frontend fetches and decodes instruc-

tions in order. Data hazards are checked using a busy board,

which is used to describe our light-weight score boarding tech-

nique. The busy board is a bit array that tracks all vector regis-

ters being used by all inflight instructions. No renaming is sup-

ported, and whenever a decoded instruction’s register is busy,

the entire frontend stalls. The design prioritizes efficiency, the

area overheads are negligible, and is highly sensitive to instruc-

tion scheduling, which is addressed with the use of SPIRAL.

Once instructions clear all data hazards, they are dis-

patched to one of three decoupled queues: (1) Load/store

Queue, (2) Compute Queue, and (3) Shuffle Queue. Once an

instruction is in the queue, it can run in parallel with any other

instruction as there are no dependencies. The parallel execution

via the decoupled pipelines is key to achieving high perfor-

mance as it masks much of the data movement time.

B. RPU Backend

The RPU backend provides the high-performance struc-

tures needed for effective ring processing. The major compo-

nents include three decoupled pipelines for compute via High

Performance LAW engines (HPLEs), register-register data

shuffling, and Vector Data Memory (VDM). It also includes a

scalar memory to house the constants needed by HE.

1) High Performance LAW Engine (HPLE): The HPLE is

the computational unit in the RPU. Each has a LAWS engine

and is partition of the Vector Register File (VRF), or a VRF

slice. The LAWS Engine contains a modular multiplier, a

modular adder, a modular subtractor, and two comparator units.

NTT/iNTT is a key kernel in Ring-LWE, and the HPLEs

support native butterfly computation via a butterfly instruction.

Each CI command interacts with VRF slice and LAWS En-

gine to perform three tasks: read data from the VRF slice to the

LAWS engine, start the computation in LAWS Engine, and

store the output to the VRF slice. Here we use 128b to meet the

needs of HE precision. The RPU allocates multiple HPLEs as

lanes in classic vector designs.

In each HPLE, the LAWS Engine is connected to the VRF

slice. VRF slice is a part of the VRF that is divided among

HPLEs. According to our RPU ISA, VRF has 64 vector regis-

ters with 512 elements. Each slice has 64 × 512/
(𝑛𝑢𝑚_𝐻𝑃𝐿𝐸𝑠) elements. If we store each register of VRF in

different memory, it requires small and efficient memory. To

increase area efficiency, we stack four registers in one memory.

The four registers in one memory cannot be accessed simulta-

neously, and SPIRAL handles special scheduling and data

placement in the VRF. Hence, a VRF slice has 16 single-port

memory with (512 × 4)/(𝑛𝑢𝑚_𝐻𝑃𝐿𝐸𝑠)words. A VRF slice

interacts with HPLEs, VBAR, and SBAR. To support these par-

allel connections, each VRF slice has ten ports; five ports (three

read ports and two write ports) for HPLEs, three ports (two read

ports and one write port) for SBAR, and two ports (one read

port and one write port) for VBAR. For computation, each VRF

slice sends the data from input registers to corresponding

HPLEs. HPLEs performs the computation. Once HPLE outputs

the result, VRF slice stores it back to output registers.

2) Shuffle Crossbar (SBAR): The SBAR transfers the

data across VRF registers, facilitating efficient implementa-

tions of complex access patterns to maximize NTT efficiency

by allowing register-register data shuffle. With the SBAR, vec-

tors can be broken up in the VRF, saving round trips through

the VDM to restructure data in ISA referenced vectors. The

SBAR supports all four modes of shuffle transfer.

3) Vector Data Memory (VDM): We instantiate an RPU

with a 4MiB Vector Data Memory (VDM). Here we find 4MiB

is sufficient capacity to double buffer off-chip data loading with

the execution of a kernel. The VDM can be up to 32MiB if more

space is needed and can be banked to increase bandwidth. The

large word size and capacity of the VDM necessitates the use

of large SRAM macros that tend to run at low frequency and

are currently the bottleneck in a single clock domain design.

4) Vector Crossbar (VBAR): The VBAR transfers the

data between VDM and VRF slice of HPLEs. It supports four

modes of data transfer. When an HPLE reads or write data from

different VDM banks, VBAR transfers the data in parallel. In

practice, we find striding data across banks resolves nearly all

bank collisions. We designed a parameterized VBAR to support

any number of banks and HPLEs.

5) Scalar Backend: A Scalar Data Memory (SDM) and

Scalar Register File (SRF) are included to handle the many con-

stants needed in RLWE processing. The SDM is 32KB and uses

128b words, which it loads into the SRF. The SRF sends values

to HPLEs when the RPU executes scalar instruction. To add

flexibility of operations, a Modulus Register File (MRF) is part

of the backend. The MRF enables modulus changing at the in-

struction granularity, enabling processing different sets of data

simultaneously. SRF and MRF data is directly transferred to

HPLEs. To add flexibility of programming, we include an Ad-

dress Register File (ARF) for indirect memory access.

C. Implementation

The Trebuchet design requires rapid Design Space Explo-

ration (DSE) to evaluate the optimal selection of topologies and

components as circuit-level optimizations for FHE are discov-

ered. To facilitate this, we developed the Fulcrum platform,

Figure 3, to rapidly explore and implement different architec-

tures. Fulcrum consists of three core features: Architecture

Modeling, Accelerator Generation, and Physical Design. The

Architecture Modeling provides a DSE interface to allow de-

signers to rapidly select and explore FHE design parameters

Distribution Statement A. Approved for public release: distribution is unlimited.

specified by the cryptography and algorithms team. The Accel-

erator Generator interface enables different system architec-

tures to be assembled based on processing, memory allocation,

and interconnection parameters. The Physical Design stage

takes the design through the standard ASIC tool flow, where

further DSE over modern ASIC EDA tool optimizations and

different physical constraints (clock rates, layout etc.) can be

explored. Fulcrum was used to assess ~1,000 multiplier, inter-

connect and memory designs that were collected during Phase

1 to generate Pareto Optimal architectures.

Fulcrum was used to generate and test all low-level com-

ponents, as well as fully integrated RPU tiles with fast simula-

tion test benches in Python leveraging CocoTB and full hard-

ware emulation on a Palladium system with complex kernels

and test vectors. The Fulcrum EDA tool flow is highly modular

and given different implementation constraints (i.e. SWAP) can

generate different designs including FPGA implementations.

D. Component Optimizations

In moving from traditional 32- and 64-bit data word archi-

tectures to 128-bit words, critical innovations were required in

the modulo multipliers and on-chip data movement structures

(crossbars) to address exponential area scaling. We explored

over 390 modulo ALU designs, Figure 4, with the selected ALU

being a pipelined Barrett modulo multiplier that leveraged op-

timizations which eliminated a half-size multiplication during

computation of the quotient and reduced the cost of calculating

the product by only calculating the on the least significant N

bits [4]. These optimizations enabled sub-quadratic complexity

growth of the multiplier. For crossbar optimizations, we depop-

ulated unused configurations and hierarchical multiplexers, al-

lowing use to achieve an 11.5x area savings, and a design that

is 128 to 8,192 times faster than conventional bus based designs

used in FHE accelerators.

IV. SOFTWARE LAYER

Several popular, high quality, open-source libraries exist

for implementing systems based on FHE. SEAL from Mi-

crosoft Research [5], HELib from IBM research [6],

PALISADE [7] and its successor OpenFHE[1] developed by

multiple authors including those on this paper from Duality

Technologies. We chose PALISADE for our initial work, mov-

ing to OpenFHE upon its release. OpenFHE supports all the

mentioned schemes, is implemented in C++ and is heavily op-

timized for vector operations, using residue arithmetic to reduce

large bitsize arithmetic into smaller conventional machine

words, including 128-bit arithmetic support. The OpenFHE li-

brary follows the Homomorphic Encryption Standard by meet-

ing proper bit-security thresholds, given via (semi-)automated

parameters that can be set by the user to control what security

and performance they prefer to target.

We extended SPIRAL [8] to support NTT and batch NTTs.

Mirroring the structure of FFTW and FFTX, the NTTX pack-

age offers FFTW-style C/C++ API in line with FFTXstyle code

generation, powered by SPIRAL in the backend. Illustrated by

Figure 5, NTTX API leverages SPIRAL’s capability of delayed

execution and just-in-time code generation to implement an in-

spector/executor paradigm for OpenFHE.

To support general radix NTTs, large vector instructions

and simple parallelism in SPIRAL, we added both the

KornLambiotte FFT algorithm [8] and the Pease FFT algorithm

[10] as breakdown rules to SPIRAL. Using SPIRAL’s Operator

Language (OL), NTTs of size rk are represented as

𝑁𝑇𝑇𝑟𝑘 = 𝑅𝑟
𝑟𝑘

(∏ 𝐿
𝑟𝑘−1
𝑟𝑘

𝑘−1

𝑖=0

𝐷𝑖
𝑟𝑘

(𝑁𝑇𝑇𝑟⨂𝐼𝑟𝑘−1))

To execute the generated NTT code, NTTX allows various

data types for long vectors, provides different schemes of reg-

ister allocation (e.g., greedy, naive round robin), and has the

infrastructure for verification (e.g., functional simulator) and

low-level optimizations (e.g., instruction scheduler).
// SPIRAL generated NTT Code for TILE vector architecture
#include <tile.h> void

_ntt1024x512_b1() {

enter(OP_DEFAULT); _vload_512x128i(REG_V60, REG_A1, 0);
_vload_512x128i(REG_V20, REG_A1, 8192);

_vbroadcast_512x128i(REG_V19, REG_A3, 1, 1);

_vimulmod_512x128i(REG_V59, REG_V20, REG_V19, REG_M1);
_vaddmod_512x128i(REG_V58, REG_V60, REG_V59, REG_M1);

_vsubmod_512x128i(REG_V57, REG_V60, REG_V59, REG_M1);

_vunpacklo_512x128i(REG_V56, REG_V58, REG_V57); ...
_vstores_512x128i(REG_A2, 16, REG_V21, 2); leave(OP_DEFAULT);

}
Listing 1: SPIRAL-generated radix-2 1,024-point NTT code using

shuffle instructions.

We generated forward and inverse vectorized radix-2

NTTs with sizes from 1,024 to 65,536 and verified their cor-

Figure 3 Fulcrum FHE DSE EDA Tool Flow

FHE Parameter
Selection

Design
RTL

(NYU/USC)

Hardware Architecture Modeling

System/Design
Emulation

Component/Design
Simulation

Validation and Verification

ASIC
Evaluation

FULCRUM: Architecture Modeling

Architecture Generation (ArchGen) Physical Implementation

Std.
Cell Library

Constraints,
Scripts

FULCRUM: Accelerator Generation FULCRUM: Physical Design

IP
Database

Component/Design
Verification

Component/Architecture
Model Evaluation

DA
Architecture

Model

Component Model Assessment

Microarchitectural Design Space
Exploration

Pareto Frontier and Model Generation

Module / Tile / Device Specification

Connectivity & Memory
Parameterization

Platform Generation

Synthesis, Place and Route

Scan Chain, Clock Tree, etc

Design Rule Checks and GDSII

Figure 4 Trebuchet LAWS ALU Design Space

Larger,
Faster

Smaller,
Slower

Scalable
Designs

Fixed Bitwidth
Designs

Distribution Statement A. Approved for public release: distribution is unlimited.

rectness with OpenFHE generated data. Listing 1 shows the ra-

dix-2 1,024-point NTT code generated by SPIRAL. To address

the interoperation of NTTX to the RPU hardware, we translate

NTTX calls into our RPU ISA discussed above – this is

straightforward as there is usually a one-to-one correspondence

between the two (as they were co-designed with each other in

mind).

V. RESULTS

The goals of the project are to maximize the processing

within the largest available footprint allowable without waivers

on a GF12LP Multi-project Wafer (MPW), or 150mm2. The

first phase of this project documented in this paper focused on

development of the LAWS computations and the ring pro-

cessing unit. The second phase of this project, which is cur-

rently underway, scales the design to the full device, integrates

I/O and other peripherals, and fabricates the full device. There-

fore, for the results in this paper, we characterize the perfor-

mance of the RPU using AFRL’s Palladium emulation system,

and project full device performance based on different device

level topologies, memory, and I/O interfaces.

We emulated a single RPU on Palladium, with an ALU

Size of 113K gates, a Lane size of 137K gates and a total RPU

Size of 11.83M gates. The ALU operations include 128-bit Sca-

lar and Vector operations across Addition, Subtraction, Com-

parisons, Modular Multiplications. For kernel operations these

were evaluated across an increasing kernel size of 1024, 16K,

and finally 64K points for Switch Modulus, Fast Basis Exten-

sion, and RingMul, RingAdd, NTT (all verified in the same

run). The resulting Palladium trace verifies the number of clock

cycles needed to execute the kernel.

A. Application Mapping Considerations

We developed an approach to characterize the workload

for a Logistic Regression (LR) training application. We used an

LR algorithm [9] that was friendly to our BGV Fixed Point

Packed Encoding [10] and implemented it in the PALISADE

library to verify correct operation. To estimate runtime perfor-

mance, we accumulated basic vector operation counts, devel-

oping a model of the required software operations and their as-

sociated complexity numbers in the form of accumulated rin-

gAdd, ringMult and NTT/iNTT counts. We modeled functional

bootstrapping for a sigmoid approximation, sign() determina-

tion and rescaling of the two vectors that are updated in the lo-

gistic regression training loop.

We selected parameters for the BGV implementation that

provided sufficient accuracy for the logistic regression training,

resulting in a ring size of 216. These parameters allow us to pack

64 SIMD slots per ciphertext. The parameters were chosen such

that we have 7bits of fractional precision and a maximum data

range of 127bits. We scaled our input data so that no overflows

occur during the Logistic Regression training.

Our Logistic Regression Training required the input Ci-

phertexts (CT) to have a multiplicative depth of 2, or three tow-

ers (each tower is based on a LAWS residue of a large modulus,

also called a “ring”), except during bootstrapping where they

are expanded to ~30 towers.

We determined that the total number of bootstrap opera-

tions per logistic regression iteration loop is 32 for sigmoid

(compare operation), 16 for rescaling the input to sigmoid + one

for sign() and two for rescaling the weight vector (b or beta)

and the residual vector (res) for use in the next iteration, for a

total of 33 sign/compare bootstraps and 18 rescaling bootstraps

for a total of 51 functional bootstraps per training epoch. Boot-

strapping is very compute intensive and composed primarily of

Keyswitching and modulus switching operations. We derived

approximate runtime estimates based on modeling the number

of these two functions for each of the forms of functional boot-

strapping required and converting those to base ring operations.

B. Chip I/O Modeling

Trebuchet’s I/O bandwidth can scale to available re-

sources, and considers Low Voltage Differential Signaling

(LVDS) at Single Data Rate (SDR) and Double Data Rate

(DDR) for between 62.5 GB/s and 250 GB/s bandwidth to the

chip. We have done backend layout of RPU tiles and have

budgets for the total chip area estimate using 14 tiles and I/O

controllers. We also consider HBM and HBM2 memory inter-

faces, which can provide 288 GB/s, and 460.8 GB/s respec-

tively. We developed a model to account for the extra time re-

quired for data to load/unload from the chip depending on the

interface technology. Our internal tile mesh interconnect is ca-

pable of scaling to any of the above data rates so it will not limit

the data rate to an RPU.

The current RPU configuration has 4 MB of Vector Data

Memory, which is enough storage for four 64k * 128-bit towers.

There is enough storage in an RPU to buffer two vectors while

operating on the main data and twiddle memory during NTT

operation. We use this in our scheduling to hide the data loading

for NTTs, thus our NTT timing is unaffected by data motion.

Additional overhead to load data into the chip depends on

the application and involves complex analysis. We instead use

a conservative simple data model with some operations throt-

tled by chip I/O data rate. We determined that during Encrypted

ciphertext multiplication, RPU memory would not be sufficient

to hold all data vectors for a single tower, requiring a reload of

some vector data on-chip, stalling our ALUs while a new oper-

and is loaded. Thus, we derated the timing of *all* ring multiply

operations to the time it takes to load or store one vector of

Figure 5 OpenFHE and SPIRAL NTTX Interaction

Distribution Statement A. Approved for public release: distribution is unlimited.

tower data for the various I/O interfaces. This should be taken

as a conservative worst-case number.

C. Performance Results

Our current best values from Palladium emulation of 64k

point RA and RM are RA = RM = 1.73 uSec. Execution time

for NTT is a bit more complex. We have two versions of the

RPU that currently have different NTT execution times. The

two candidate RPU Tile configurations, RPU version 1 with

one vector register per data memory unit and RPM Version 2

with four vector registers per memory unit. The former is bigger

and easier for SPIRAL to schedule, the latter is smaller and

more difficult to schedule. Our fully functional and Palladium

validated 64k NTT running on RPU Tile 1 will run in 18.3k

clock cycles or 9.15 uSec. We also have a version of NTT cur-

rently running at 24.6k clock cycles or 12.3 uSec. RPU Model

1 can fit 10 tiles on a chip, while Model 2 can fit 14 on a chip.

We believe that with additional improvements in the NTT with

SPIRAL in phase 2 we should be able to schedule the NTT to

reach an ideal limit of 16k clock cycles or 8 uSec running on

the smaller RPU Tile Model 2.

Table 1 shows the resulting run times for the three RPU

configurations, across the four data models (ideal, LVDS DDR

2k pins, single HBM2 and two HBM2) allocating the computa-

tional load evenly across all RPUs. The number of RPU tiles is

reduced by one in the dual HBM2 case to make room on the

chip. We show the three Level 0 operations as well as the timing

for single sign and rescale functional bootstraps. We also show

a derating factor as a % slow-down for a given I/O model rela-

tive to the ideal model. It is part of our phase 2 tasking to better

balance the compute and I/O.

One key take away is that when analyzed with a full appli-

cation load, the RPU Model 2 performs better than the RPU

Model 1, because while it is slower for NTT, it is smaller and

there are more tiles of the former than the latter. So overall

runtime is better for the second model.

It is important to compare the latency of these operations

vs a single CPU running PALISADE with 128bit arithmetic2.

Table 2 shows the speedup with one RPU, a full chiplet of 14

RPU tiles, and a transition ready configuration of four chiplets

on a multi-chip module.

VI. CONCLUSIONS

Our results for the first phase of the DPRIVE project focused

on the computational aspects of a modular and flexible design

of a tiled FHE coprocessor, demonstrating large speedups

(35,500x) over conventional CPU approaches. The next phase

will focus on the impact of data marshalling and chip I/O band-

width for the overall design under the offered load of larger ML

applications such as Convolutional Neural Networks. In addi-

tion, we will focus on using the CKKS approximate number

scheme, which provides more efficient ciphertext packing and

greatly reduces the number of bootstrap operations.

VII. REFERENCES

[1] A. Al Badawi et al., “OpenFHE: Open-Source Fully Homomorphic

Encryption Library”, https://eprint.iacr.org/2022/915

[2] I. Blumenfeld et al., “Model Validation via Formalized High Level

Synthesis”, Formal Methods in Computer-Aided Design 22

https://fmcad.org/FMCAD22
[3] N. Zhang et al., “Towards Full-Stack Acceleration for Fully

Homomorphic Encryption”, IEEE HPEC 2022 .

[4] B. Zhang, Z. Cheng, and M. Pedram, “A High-Performance Low-Power
Barrett Modular Multiplier for Cryptosystems,” in 2021 IEEE/ACM

International Symposium on Low Power Electronics and Design

(ISLPED), 2021, pp. 1–6.
[5] “Microsoft SEAL (release 4.0).” https://github.com/Microsoft/SEAL,

Mar. 2022. Microsoft Research, Redmond, WA.

[6] S. Halevi, “Helib (version 2.1.0),” 2021.

[7] P. team, “PALISADE Lattice Cryptography Library (release 1.11.6),”
2022.

[8] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Puschel, J. C. Hoe, and J. M. Moura, “Spiral: Extreme¨

performance portability,” Proceedings of the IEEE, vol. 106, no. 11, pp.

1935–1968, 2018.
[9] D. G. Korn and J. J. Lambiotte, “Computing the fast fourier transform on

a vector computer,” Mathematics of computation, vol. 33, no. 147, pp.

977–992, 1979.
[10] Chen, H., Gilad-Bachrach, R., Han, K. et al. Logistic regression over

encrypted data from fully homomorphic encryption. BMC Med Genomics

11 (Suppl 4), 81 (2018).
[11] S. Arita and S. Nakasato, “Fully Homomorphic Encryption for Point

Numbers,” Cryptology ePrint Archive, Paper 2016/402, 2016

2 Using the PALISADE benchmark bin/benchmark/poly-128-

benchmark-64k set for a single core on a Dell Precision-3630-Tower:

4700 MHz CPU. CPU Caches: L1 Data 32 KiB, L1 Instruction 32

KiB, L2 Unified 256 KiB, L3 Unified 12288 KiB.

Table 1-Timing summary for one Logistic Regression Training

Iteration in seconds.

Ring
Processing
Unit (Tile)
Configuration

I/
O

 d
at

a

m
o

d
e

l

Lo
g

R
e

g

it
e

ra
ti

o
n

ti
m

e
 n

o
 B

S

%
D

e
ra

te

fr
o

m
 id

e
al

d
at

a
m

o
d

e
l

Lo
g

R
e

g

it
e

ra
ti

o
n

ti
m

e
 w

/B
S

%
D

e
ra

te

fr
o

m
 id

e
al

d
at

a
m

o
d

e
l

RPU Model 1

Ideal

0.110 3.650
RPU Model 2 0.091 2.912
RPU Phase2 0.074 2.495

RPU Model 1

LVDS2k

0.153 39% 5.370 47%

RPU Model 2 0.122 34% 4.141 42%

RPU Phase2 0.105 42% 3.724 49%

RPU Model 1
1xHBM

2

0.125 14% 4.233 16%

RPU Model 2 0.102 12% 3.329 14%

RPU Phase2 0.084 14% 2.912 17%

RPU Model 1
2xHBM

2

0.122 11% 4.055 11%

RPU Model 2 0.098 8% 3.136 8%

RPU Phase2 0.080 8% 2.687 8%

Table 2 - Comparison of core kernel latency vs. single CPU run-

ning PALISADE 128-bit software

Kernel CPU
latency (us)

RPU latency
(us)

Single RPU
Speedup

Single chiplet
Speedup
(14 RPU tiles)

Quad Chiplet
Speedup
(4 chiplets)

ringAdd 333 1.73 192x 2694x 10779x

ringMult 1,240 1.73 716x 10034x 40138x

NTT 7,807 12.3 634x 8886x 35544x

https://eprint.iacr.org/2022/915
https://fmcad.org/FMCAD22
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

