Adding more parallelism to the AEGIS authenticated
encryption algorithms

Frank Denis

Fastly Inc.
fde@QO0f.net

Abstract. While the round function of the AEGIS authenticated encryption algorithms is
highly parallelizable, their mode of operation is not.

We introduce two new modes to overcome that limitation: AEGIS-128X and AEGIS-256X,
that require minimal changes to existing implementations and retain the security properties of
AEGIS-128L and AEGIS-256.

1 Introduction

AEGIS [WP14] is a family of three authenticated encryption algorithms, originally designed to lever-
age the AES-NI instructions set introduced by Intel in 2010 [ADFT10]. These instructions perform
several compute intensive parts of the AES algorithm, significantly improving the performance of
software AES implementations while minimizing the risks of side channel attacks.

However, concurrent AES round instructions are required to fully utilize the AES pipelines. The
AEGIS round function was specifically designed with this in mind, and allows up to 8 AES blocks
to be updated concurrently. Its design made it the fastest candidate of the CAESAR competition on
Intel CPUs with hardware AES acceleration [ARAR16].

Nonetheless, the mode of operation is similar to a duplex: after its initialization, the state is
recursively updated. That effectively limits the parallelism of the construction to the parallelism of
the round function.

In [BLT15|, Bogdanov, Lauridsen, and Tischhauser made a similar observation regarding multiple
candidates of the CAESAR competition. They proposed a novel "comb scheduler" to process multiple
messages simultaneously.

The modes presented here also encrypt multiple messages simultaneously using the same cipher,
but assume that they are fragments of the same message, and share the same key, initialization vector
and length.

Given a parallelism degree v, an input message is split into v evenly distributed parts, that can be
encrypted concurrently. The resulting ciphertexts are then combined, as well as their authentication
tags.

The underlying encryption algorithms remain the existing AEGIS algorithms, with a minor addi-
tion to their initialization functions.

2 Operations, Variables and Functions

The operations, variables and functions used in this document are defined below.

mailto:fde@00f.net

2.1 Operations

|| : Size of x in bits

TPy : Bit-wise exclusive OR

Fi081, (S, mg, m1) : AEGIS-128L state update function

Fas6(S, m) : AEGIS-256 state update function

x|y : Concatenation of = and y

Pad(z,?) : Add trailing 0 bits to pad z to £ bits

Enciosr, (CTX, K, IV, A;, P;, |A|,|P|) : The AEGIS-128L encryption function with context
separation

Encese(CTX, K, IV, A;, P;,|Al,|P|) : The AEGIS-256 encryption function with context
separation

Enciasx[V](K, IV, A, P) : The AEGIS-128X]v] parallel encryption function

Encasex[V](K, IV, A, P) : The AEGIS-256X]v] parallel encryption function

Trunc(z,?) : Truncate z to the first ¢ bits

2.2 Variables and constants

: Associated data or {} if unspecified
: 128-bit associated data block

: A, padded to r - v bits

: 128-bit associated data block

: A fragment (Ii;‘ bits)

: 128-bit A fragment block

: Ciphertext

: C, padded to r - v bits

: A 128-bit ciphertext block

: C fragment (‘—Sl bits)

: 128-bit C' fragment block

: First half of the AEGIS constant (128 bits)
consty : Second half of the AEGIS constant (128 bits)
CTX : Context separator

Ki9g :128-bit encryption key (AEGIS-128, -128L)
Kos6 : 256-bit encryption key (AEGIS-256)

Kase,0 : First half of a 256-bit key

K561 : Second half of a 256-bit key

<. .

<
<.

QR

§ QA S
5 &l
st

P : Plaintext

P : P, padded to r - v bits
P, : 128-bit plaintext block
P : P fragment (lyﬂ bits)

P; : 128-bit P fragment block

IVi9s @ 128-bit initialization vector (AEGIS-128, -128L)
IVi56 @ 256-bit initialization vector (AEGIS-256)
1Vas56,0 : First half of a 256-bit initialization vector
IV556.1 : Second half of a 256-bit initialization vector

v : Parallelism degree (> 1)

T : Absorption rate (128 or 256 bits)
S : AEGIS state

S; : A 128-bit AEGIS state block

T : Authentication tag for C'

T; : Authentication tag for C;

3 Context separation

From an application perspective, new AEGIS variants should ideally share the same interface as
existing variants. Namely, they should accept a single message, optional associated data, a 128 or 256
bit key, and a 128 or 256 bit initialization vector.

However, AEGIS is meant to be used in a nonce-respecting scenario [VV18]. Clearly, reusing the
same key and IV to encrypt different parts of a message would violate that contract.

In order to avoid universal forgery and decryption attacks, we augment the AEGIS initialization
functions with a context to provide domain separation. That is, for two different values CT Xy #
CTX,, Enc.[|(CTXy,) and Enc.[|(CTXy,-) act as two different functions of {K, IV, A, M}.

A context is made of two bytes: a byte that provides separation between parallel instances, and
another byte representing the parallelism degree.

The context acts as a mask applied to specific words of the AEGIS states during initialization.

3.1 Augmenting AEGIS-128L for context separation
AEGIS-128L defines the initial state S as a vector of eight AES blocks {Sg, S1,...S7} set to:

Block| Initial value
So | K128 @ IVigg

S1 consty
Sy consty
S3 consty

Sy | K128 @ IVi2g
S5 K128 D COTLStO
S | K128 @ consty
S7 K128 D consto

From this state, the original AEGIS-128L initialization function performs 10 updates as described
in algorithm

Algorithm 1 Contextless AEGIS-128L initialization

function INITIALIZE(K, IV)
S+ {Ki2s ® IVigs, consty, consto, consti, Ki2s ® IVias, K128 ® consto, K128 ® const1, K12s ® consto}
1+ 0
while ¢ < 10 do
S < TF1281(S, IVi28, K128)
14141
end while
end function

We augment this function to accept a context parameter C'T'X. Before each update, the context is
added to the blocks at indices 3 and 7 of the state, as described in algorithm

When CTX = 0*, the resulting state is exactly the same as AEGIS-128L, as originally specified,
without a context.

Algorithm 2 AEGIS-128L initialization with context

function INITIALIZE(CTX, K, IV)
S + {Ki28 ® Vs, const1, consto, consti, Ki2s ® [Vias, K128 ® consto, K128 ® const1, K12s @ consto}
10
while 7 < 10 do
S3 < S3 & Pad(CTX, 128)
S7 <+ 57 @ Pad(CTX,128)
S« F125. (S, IVi2s, K123)
it 1+1
end while
end function

3.2 Augmenting AEGIS-256 for context separation

AEGIS-256 accepts a 256-bit key Kos¢ made of two AES blocks {Kas56,0, Ka56,1}, as well as 256-bit
initialization vector IVa56 made of two AES blocks {IVas56.0,1Vas6,1}-

The initial state S is a vector of six AES blocks {Sp, S1,...S55} set to:

Block| Initial value
So | Kas6,0 ® IVase,0
S1 | Kase,1 @ IVase 1
So constg
S3 consty
Sy | Kase,0 @ consty
S K256711 @ consty

From this state, the original AEGIS-256 initialization function performs 16 updates as described
in algorithm

Algorithm 3 Contextless AEGIS-256 initialization

function INITIALIZE(K, IV)
S+ {Ka256,0 D IVase,0, Kose,1 ® IVase,1, consto, const1, Kose,o @ consti, Kase,1 ® consto}
1< 0
while ¢ < 4 do

S < Fa56(S, K256,0)
S+ Fa56 (S, K256,1)
S Fas6(S, IVase6,0)
S < Fas56(S, IVase,1)
14— 1+1
end while
end function

We augment this function to accept a context parameter C'T'X. Before each update, the context
is added to the blocks at indices 3 and 5 of the state, as described in algorithm

When CTX = 0*, the resulting state is exactly the same as AEGIS-256, as originally specified,
without a context.

Algorithm 4 AEGIS-256 initialization with context

function INITIALIZE(CTX, K, IV)
S <+ {Kas6,0 ® IVas6,0, K2s6,1 ® IVase,1, consto, const1, Kase,o @ consty, Kase,1 @ consto}
i+ 0
while 7 < 4 do

S3 <+ S3 @ Pad(CTX, 128)
S5 < S5 D Pad(CTX, 128)
S < Fa56(S, K256,0)
S3 <+ S3 @ Pad(CTX, 128)
S5 + S5 ® Pad(CTX,128)
S < Fas6(S, K256,1)
S3 <+ S3 @ Pad(CTX, 128)
S5 <+ S5 @ Pa,d(CT,X7 128)
S < Fas56(S, IVase,0)
S3 <+ S3 @ Pad(CTX, 128)
S5 + S5 @ Pa,d(CT,X7 128)
S < Fas6(S, IVase,1)
11+ 1
end while
end function

3.3 Explicit lengths for finalization

The finalization functions of AEGIS-128L. and AEGIS-256 absorb the lengths of the associated data
and message before performing seven state updates (algorithms 5| and @

The Enciagr, and Encasg functions defined here expect |A| and |P).

This is required because in the parallel variants of AEGIS, individual encryption functions process
distinct fragments of A and P simultaneously. However, in the finalization phase of AEGIS-128X[v]
and AEGIS-256X[v], these functions use the same values | A| and | P| instead of the individual fragment
lengths.

Algorithm 5 The AEGIS-128L finalization function
function FiNaLize(|Al, |P|, |T)
T <« Pad(|A],128)||Pad(|P|, 128)
140
while i < 7 do
F128L (S, T, T)
14— 1+1
end while
if |T| = 256 then
return (So © S1 S S2 & 53)||(©S1 B S5 & S6 ® S7)
else
return So ® S1 ® S2 ® S3 D 5S4 D S5 B Se
end if
end function

Algorithm 6 The AEGIS-256 finalization function

function FiNnaLize(|A|, |P|, |T)|)
T < Pad(|A|,128)||Pad(|P|,128)
1< 0
while ¢ < 7 do
Fas6(S, T)
i+ i+1
end while
if |T'| = 256 then
return (So ® Sy D Sz)”(@Sg @D Ss P 55)
else
return So @ S1 DS D S3D S+ D S5
end if
end function

4 The AEGIS-128X[r| and AEGIS-256X[v] modes

AEGIS absorbs the associated data and message with a rate r» with » = 256 for AEGIS-128L and
r = 128 for AEGIS-128 and AEGIS-256.
We define two new modes: AEGIS-128X[v] and AEGIS-256X[v], that absorb r - v bits per state
update, spread over v concurrent instances of the AEGIS-128L or AEGIS-256 encryption functions.
The associated data A and plaintext P are split into interleaved blocks with a stride of r - v bits
as they arrive. The last blocks are padded as necessary.

We first pad A and P by adding trailing zero bits until they match the stride length:

f:l = Pad(A,r-v)
P = Pad(P,r - v)

A is split into 128-bit blocks {Ag, Ay, ... /1,,;, e

These blocks are interleaved to produce v 1ndependent L bit messages {Ag, A1,... A, _1}.

Ao = Ag||A|| Az, || Asy || ..
Ay = A Ay ||Asy ||A3u+1 [
Ay = As||Ay i) Aoy s Aspa]| -

Z1171 = AV71||AV+(nu—1) ||A2u+(u—1) HA31/+(1/—1) || s

Similarly, P is split into v independent |Vﬂ bit messages {Pg, P1,... P,_1}.

4.1 AEGIS-128X

AEGIS-128X[v] first encrypts and authenticates the plaintext and associated data fragments inde-
pendently, producing v ciphertexts {Cy,C1,...C,_1} and authentication tags {To,T1,...Tp—1}.

{Co,To} ETLClgsL(CTX%O”(V* 1) K IV Ao,M0,|A| |P|)
{Cl,Tl} EnclggL(CTX<—1||(V—1) K IV Al,M1,|A| |P|)
{OQ,TQ} Enclsz(OTX%ﬂl(l/—l) K IV AQ,M2,|A| |P|)

{CV 1, v— 1}—En0128L<CTX<—U—1||(U—1) KIVA,, 1, v— 1,|A| |P|)

{60, Cq,.. .61,,1} are deinterleaved to produce the final ciphertext:

¢ =
CoollCrollC20ll - 1€ w—1)0ll
CoallCrallConll- - NCw—1)1ll
CO,QHOLQHCZQH L. ||C(V_1)72|| L

C = Trunc(C,|P))

Finally, the AEGIS-128X[v]| authentication tag is the bit-wise exclusive OR of the AEGIS-128L
authentication tags:

T=TyT:%... T,

Note that when v = 1, the context doesn’t have any bits set. AEGIS-128L and AEGIS-128X[1] are
thus equivalent.

4.2 AEGIS-256X

AEGIS-256X[v] uses the exact same interleaving technique as AEGIS-128X[v] in order to process r-v
bits per state update.

The only difference being that fragments are encrypted and authenticated using the AEGIS-256
encryption function instead of the AEGIS-128L one.

{Co,To} En6256(CTX(—O||(V—1) K IV Ao,Mo,‘A| |P|)
{Cl,Tl} En6256(CTX(—1||(V—1) K IV A17M1,‘A| |P|)
{CQ,TQ} En0256(CTXe2||(1/71) K IV A27M2,‘A| |P|)

{C,, 1, v— 1} En6256(CTX<—I/—1||(V—].) KIV A,/ 1, v— 1,‘A| |P|)

{Cy,C1,...C,_1} are deinterleaved to produce the AEGIS-256X[v] ciphertext:

é =
CoollCrollCop0ll - IC -1l
CoallCrallConll- - € w—1)ll
Co2l|C12IC22]l - - IC w1 2]l - - -

C = Trunc(C,|P)|)

Finally, the AEGIS-256X[v] authentication tag is the bit-wise exclusive OR of the AEGIS-256
authentication tags:

T=TyT:1®... T,

Note that AEGIS-256 and AEGIS-256X[1] are equivalent.

5 Rationale

The AEGIS security claims have the following requirements:

— Each key should be generated uniformly at random.

— Each key and IV pair should not be used to protect more than one message; and each key and
IV pair should not be used with two different tag sizes.

— If verification fails, the decrypted plaintext and the wrong authentication tag should not be given
as output.

AEGIS-128X[v] and AEGIS-256X[v] have the same requirements.

In the finalization step, the same total sizes are aborbed by all the instances of the encryption
function. This ensures that the parallel variants of AEGIS can only be used within the same limits as
the non-parallel variants. It also improves randomness, as any change to the input lengths will affect
every authentication tag T;, regardless of the rate.

The design of the parallel modes implies that instantiations with different degrees of parallelism are
incompatible. ¥ must be set by applications or included in protocol negotiation.

We could have removed the v hyperparameter, and increased the parallelism as the input length
grows instead. However, a generic function to compute v cannot be optimal, and the benefits of
parallelism could be lost with short inputs.

A constant degree greatly simplifies the design, makes the constructions very efficient even for
short inputs, and let applications make the best choice for the hardware they run on.

We'd like to emphasize that AEGIS-128X[v] and AEGIS-256[v] are not new algorithms. They are
modes, built on top of AEGIS-128L and AEGIS-256. designed to preserve the same security guarantees
and requirements. Keys must be generated uniformly at random, key and IV pairs must not be reused,
and for both variants the success rate of a forgery attack remains 271,

We did not include a parallel variant of AEGIS-128, as opposed to AEGIS-128L. AEGIS-128 trades
performance for a smaller state size. But given that performance is the main justification for AEGIS-
128X, AEGIS-128L feels like a more natural choice.

5.1 Implications of the AEGIS-128L context addition

Enciogx [V](K, IV, A, P) can be seen as v evaluations of AEGIS-128L, on v independent messages of
the same length.

One way to satisfy the AEGIS-128L contract while reusing the key is to use distinct initialization
vectors for each of the message fragments.

The parallelism degree v, and thus the bounds of CT X, are limited by the hardware, and guaranteed
to be small.

We could limit the AEGIS-128X[v] IV size to 128 — loga(v) bits (instead of 128 for AEGIS-
128L), encoding the instance identifier in the remaining bits to create the I'V used by the underlying
AEGIS-128L function. That would be effectively AEGIS-128L, evaluated with independent messages,
and distinct (K, I'V') pairs. However, from an application perspective, a 128 —logs(v) bit initialization
vector would be unusual, at odds with AEGIS-128L, and would still be insufficient to add domain
separation between instantiations of different degrees of parallelism.

Ideally, we’d like AEGIS-128L to internally support 128 + 2 - loga(Vimas)-bit initialization vectors:
AEGIS-128X[v] applications would use 128 bit initialization vectors, but the context could still be
encoded to separate the parallel AEGIS-128L instances. To put it differently, we need to introduce a
context with the same differential properties as the initialization vector.

In the proposed tweak to the initialization function, the context is added to the constants in blocks
3 and 7 of the AEGIS-128L initial state. The purpose of the constants (simply derived from the
Fibonacci sequence) is to resist attacks exploiting the symmetry of the AES round function and of
the overall AEGIS state.

Given its low hamming weight, adding a context cannot turn const; into a weak constant nor
significantly reduce the difference betwen consty and const;. Consequently, the addition of a context
is unlikely to alter the AEGIS-128L security guarantees. Also note that v (hence the derived contexts)
is expected to be an application-defined or protocol-defined hyperparameter, that an adversary cannot
have control of.

AEGIS-128L requires that (K, IV) pairs are never reused with different messages. AEGIS-128X[v]
doesn’t remove this requirement. However, the inclusion of (v — 1) in the context allows (K, I'V) pairs
to be safely reused with AEGIS-128X instantiations of distinct parallelism degrees.

Differential attacks could be a concern with the same (K, IV) pair used in different contexts. But
in AEGIS-128L, there are 80 AES round functions (10 update steps) in the initialization function.
In [STSI23|, Shiraya at al. showed that the initialization phase of AEGIS-128L is secure against
differential attacks after 3 update steps.

Furthermore, in order to prevent the difference in the state being eliminated completely in the mid-
dle of the initialization, the context difference is repeatedly injected into the state. This is consistent
with how 128-bit initialization vectors are absorbed in AEGIS-128L.

The addition of a short context is thus unlikely to invalidate any of the current AEGIS-128L
security claims.

The above security claims require a key and IV pair not to be used with different tag sizes. The
AEGIS-128X[v] construction guarantees that internal AEGIS-128L evaluations will always share the
same tag size.

Note that the addition of a context to the AEGIS-128L initialization function could also be used to
create a different initial state for different tag sizes, effectively increasing misuse resistance.
We do not encourage implementations to expose the context parameter in their public APIs.
However, it can be used for constructions based on the standard AEGIS AEADs that extend beyond
the ones proposed in this paper.

5.2 Implications of the AEGIS-256 context addition

The same observations apply to AEGIS-256X[v] and its Encessx[v] encryption function.
AEGIS-256 has a large initialization vector (256 bits). Exposing a shorter IV to applications while
leveraging the remaining space for context separation would be reasonable. That would still allow
applications to use random nonces with a negligible collision probability.
However, the large initialization vector has practical benefits, such as the ability to include a
protocol-specific context with no overhead. In order to retain the same convenience as AEGIS-256
and for consistency with AEGIS-128X, our own context is added in a similar fashion.

In the AEGIS-256 initialization function, there are 96 round functions (16 update steps). According
to the MILP-based evaluation from [STSI23|, AEGIS-256 is secure against differential attacks after
6 update steps.

6 Implementation notes

Implementing AEGIS-128X[v] and AEGIS-256X[v] only requires trivial modifications to existing
AEGIS-128L and AEGIS-256 implementations.

They apply the exact same operations as AEGIS-128L and AEGIS-256, to vectors of v AES blocks
instead of single blocks.

For example, with 256-bit registers, two AEGIS-128L states S and S’ can be stored as:

{507 S(/)}’, {Slv Si}’ {525 Sé}’v s {577 5/7}’

This perfectly matches the AEGIS-128X[2] interleaved representation. In addition to the forward
AES permutation, updating an AEGIS state only requires the bit-wise OR and AND operations.
Even with wide registers, such operations are very efficient on any CPU with vector instructions.

On CPUs that don’t implement vectorized versions of the AES permutation, AEGIS-128X[v] and
AEGIS-256X[v] can be implemented in different ways:

— by emulating AES vector instructions. This is the easiest option, keeping the code close to
hardware-accelerated versions.

— by evaluating {Ag, A1, As,... A,_1} and {Cy,C1,Csy,...C,_1} sequentially, with a periodic syn-
chronization, for example after every memory page. This reduces cache-locality but also register
pressure.

7 Performance evaluation

We implemented AEGIS-128X[v]| and AEGIS-256X[v] using the Zig programming language. The code
[Den23| is nearly identical to the reference implementations from the AEGIS specification [DSL23],
with the AesBlock type extended to 2 AES blocks.

On Intel, AMD and ARM CPUs with vector registers but without AES vector instructions,
AEGIS-128L and AEGIS-256 have better or comparable performance.

And unsurprinsingly, on CPUS without vector registers, AEGIS-128L, and AEGIS-256 are consis-
tently faster than their parallel counterparts.

However, on CPUs with the VAES instruction set such as an Intel Raptor Lake processor (table
1) or an AMD EPYC CPU (table 2} plot [7), AEGIS-128X[2] is almost twice as fast as AEGIS-128L
with medium to large inputs.

With short inputs, the overhead of the parallel versions is small (plot . AEGIS-128X]2] is faster
than AEGIS-128L as soon as the input size reaches 256 bytes, and AEGIS-256X[2] beats AEGIS-256
for inputs of size 128 or more.

Algorithm |Throughput
AEGIS-128X[2]| 318 Gbps
AEGIS-128L | 190 Gbps
AES128-GCM | 81 Gbps

Table 1. Intel Core i9-13900K benchmark numbers (16 KB messages, single core)

The benchmarked AES128-GCM implementation is the one from OpenSSL 3.1.0, while the AEGIS
implementations are the reference Zig code of the AEGIS specification, as well as our modified version
to support the 128X and 256X variants.

10

Algorithm |Throughput
AEGIS-128X[2]| 239 Gbps
AEGIS-128L | 118 Gbps
AES128-GCM | 37 Gbps

Table 2. AMD EPYC 7543 benchmark numbers (16 KB messages, single core)

AMD EPYC 7543 benchmark (single core)

300 -

— AEGIS-128L AEGIS-128X — AEGIS-256 AEGIS-256X — AES128-GCM

225

150

Throughput (Gbps)

T

75

64 832 1600 2368 3136 3904 4672 5440 6208 6976 7744 8512 9280 10048 10816 11584 12352 13120 13888 14656 15424 16192
Block size (bytes)

AMD EPYC 7543 benchmark (single core, short inputs)

100

— AEGIS-128L AEGIS-128X — AEGIS-256 AEGIS-256X — AES128-GCM

75

Throughput (Mbps)
o
3

25

64 128 192 256 320 384 448 512
Block size (bytes)

0

The AMD Zen4 family of CPUs features the AVX-512 instruction set, as well as 4-way AES
instructions.

11

As OpenSSL 3.1.1 includes an AES-GCM implementation specifically optimized for these CPUs,
we also benchmarked AEGIS on an AMD Ryzen 7 7700 CPU. The results are summarized in tables
and @

Algorithm |Throughput
AEGIS-128X[4]| 348 Gbps
AEGIS-128X]2]| 310 Gbps

AEGIS-128L 152 Gbps
AES128-GCM | 94 Gbps
Table 3. AMD Ryzen 7 7700 benchmark numbers - 128 bit security (16 KB messages, single core)

Algorithm |Throughput
AEGIS-256X[4]| 277 Gbps
AEGIS-256X[2]| 184 Gbps

AEGIS-256 93 Gbps
AES256-GCM | 81 Gbps
Table 4. AMD Ryzen 7 7700 benchmark numbers - 256 bit security (16 KB messages, single core)

We observe that even generic, non-parallel variants of AEGIS outperform the fastest known im-
plementations of AES-GCM on that hardware.

And the 2-way variants of AEGIS immediately double the throughput.

The performance gains of the 4-way variants over the 2-way variants appear to be less significant.
However, especially with AEGIS-128X4, we may be limited by other factors, such as the memory
bandwidth.

Independent measurements reported a more significant gap between the 2X and 4X variants on
Intel Xeon CPUs.

8 Conclusion

We propose two additions to the AEGIS family of authenticated encryption algorithms: AEGIS-
128X[v] and AEGIS-256[v].

They take advantage of new vector instructions to compute multiple instances of AEGIS-128L
and AEGIS-256 in parallel. In order to do so, inputs are simply split into v pieces that can be
processed independently, in a way that directly matches how CPU instructions load, store and use
vector registers.

As aresult, they are very similar to the non-parallel variant, share the same security guarantees, yet
significantly improve the performance of these ciphers on CPUs supporting these vector instructions.

References

ADFT10. K. D. Akdemir, M. G. Dixon, W. K. Feghali, P. G. Fay, V. Gopal, J. Guilford, E. Ozturk, G. Wol-
rich, and R. Zohar. Breakthrough AES Performance with Intel ® AES New Instructions. 2010.

ARARI16. Ankele, Ralph, Ankele, and Robin. Software Benchmarking of the 2"¢ round CAESAR Candidates.
Cryptology ePrint Archive, Report 2016/740, 2016. https://eprint.iacr.org/2016/740.

BLT15. A. Bogdanov, M. M. Lauridsen, and E. Tischhauser. Comb to Pipeline: Fast Software Encryption
Revisited. In FSE 2015, LNCS 9054, pages 150-171. Springer, Heidelberg, March 2015.

Den23. F. Denis. AEGIS-128X and AEGIS-256X implementations. GitHub, 2023. https://github.com/
jedisctl/aegis-128x.

DSL23. F. Denis, F. E. R. Scotoni, and S. Lucas. The AEGIS family of authenticated encryption algo-
rithms. Internet-Draft draft-irtf-cfrg-aegis-aead-02, Internet Engineering Task Force, 2023. Work
in Progress.

https://eprint.iacr.org/2016/740
https://github.com/jedisct1/aegis-128x
https://github.com/jedisct1/aegis-128x

12

STSI23. T. Shiraya, N. Takeuchi, K. Sakamoto, and T. Isobe. MILP-based security evaluation for
AEGIS/Tiaoxin-346 /Rocca. IET Information Security, 2023.

VV18. S. Vaudenay and D. Vizar. Can Caesar Beat Galois? - Robustness of CAESAR Candidates Against
Nonce Reusing and High Data Complexity Attacks. In ACNS 18, LNCS 10892, pages 476-494.
Springer, Heidelberg, July 2018.

WP14. H. Wu and B. Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. In SAC 2013, LNCS

8282, pages 185-201. Springer, Heidelberg, August 2014.

A Test vectors

Test vectors (in hexadecimal format) of AEGIS-128X[v] and AEGIS-256X[v] are given below.

A.1 AEGIS-128X]2]

Key: 000102030405060708090a0b0c0d0e0f
IV: 101112131415161718191alblcldlelf
AD: (empty)

Plaintext: (empty)

Ciphertext: (empty)

128—bit tag: 63117dchb7756e402819a82el3ecal8379
Key : 000102030405060708090 a0b0c0d0e0f
IVv: 101112131415161718191alblcldlelf
AD: 0102030401020304

Plaintext : 050607080506070805060708
Ciphertext: 5696554c009a7e¢9¢63182687

128—bit tag: 151892319d2bab51bb9ab47301a03de3a

A.2 AEGIS-256X]2]

Key: 000102030405060708090a0b0c0d0e0f
101112131415161718191alblcldlelf

IV: 101112131415161718191alblcldlelf
202122232425262728292a2b2c2d2e2f

AD: (empty)

Plaintext : (empty)

Ciphertext: (empty)

128—bit tag: 62cdbab084c83dacdb945bb446f049c8

Key: 000102030405060708090a0b0c0d0e0f
101112131415161718191alblcldlelf

IV: 101112131415161718191alblcldlelf
202122232425262728292a2b2c2d2e2f

AD: 0102030401020304

Plaintext : 050607080506070805060708

Ciphertext: 73110d21a920608fd77b580f

128—Dbit tag:

d2f65e8c45387fb2637d7f3fbbbf2a03

13

A.3 AEGIS-128X[4]

Key:

IV:

AD:
Plaintext :
Ciphertext :
256—bit tag:

Key:

IV:

AD:
Plaintext :
Ciphertext:
256—bit tag:

000102030405060708090a0b0c0d0e0f

101112131415161718191alblcldlelf

(empty)

(empty)

(empty)

a4b25437f4be93cfa856a2f27¢4416b4
2cac79fd4698f2cdbe6af25673e10a68

000102030405060708090a0b0c0d0e0f
101112131415161718191alblcldlelf
0102030401020304
050607080506070805060708
€935108a63f746939¢36¢07c¢
7281a7ca8ff6f6ba8bfb85608db3141f
£f13d3c408b154736bcaab5f436282b92

A.4 AEGIS-256X[4]

Key:
Iv:

AD:
Plaintext :
Ciphertext:
256—bit tag:

AD:
Plaintext :
Ciphertext:
256—bit tag:

000102030405060708090a0b0c0d0e0f
101112131415161718191alblcldlelf
101112131415161718191alblcldlelf
202122232425262728292a2b2c2d2e2f
(empty)
(empty)
(empty)
6093ala8aab20ec635dclca71745b01b
5becd4fc444c9ffbebd710d4a34d20eaf

000102030405060708090a0b0c0d0e0f
101112131415161718191alblcldlelf
101112131415161718191alblcldlelf
202122232425262728292a2b2c2d2e2f
0102030401020304

050607080506070805060708
bec109547f8316d598b3b7d9
4adf0672fd2a5068296bde8d5{83049f

2eed8c5731a64cd69102912e£f092d7bf

	Adding more parallelism to the AEGIS authenticated encryption algorithms

