
SEC: Symmetric Encrypted Computation via Fast

Look-ups

Debadrita Talapatra
IIT Kharagpur, India

Nimish Mishra
IIT Kharagpur, India

Arnab Bag
IIT Kharagpur, India

Sikhar Patranabis
IBM Research, India

Debdeep Mukhopadhyay
IIT Kharagpur, India

July 26, 2024

Abstract

Encrypted computation allows a client to securely outsource the storage and pro-
cessing of sensitive private data to an untrusted third party cloud server. Fully homo-
morphic encryption (FHE) allows computing arbitrary functions over encrypted data,
but incurs huge overheads and does not practically scale to large databases. Whereas,
slightly weaker yet efficient constructions- Searchable Symmetric Encryption (SSE)-
support lookup-based evaluations of a restricted class of Boolean circuits over sym-
metrically encrypted data. In this paper, we investigate the use of SSE to efficiently
perform arbitrary Boolean circuit evaluations over symmetrically encrypted data via
look-ups.

To this end, in this work, we propose Symmetric Encrypted Computation (SEC):
the first practically efficient and provably secure lookup-based construction, analogous
to traditional FHE, that supports evaluation of arbitrary Boolean circuits over sym-
metrically encrypted data. SEC relies on purely symmetric-key cryptoprimitives and
achieves flexible performance versus leakage trade-offs. SEC extends and generalizes
the functional capabilities of SSE, while inheriting its data privacy guarantees and de-
sirable performance benefits. We provide a concrete construction of SEC and analyze
its security with respect to a rigorously defined and thoroughly analyzed leakage pro-
file. We also present a prototype implementation of SEC and experimentally validate
its practical efficiency. Our experiments show that SEC outperforms state-of-the-art
FHE schemes (such as Torus FHE) substantially, with around 1000× speed-up in basic
Boolean gate evaluations. We further showcase the scalability of SEC for functions
with multi-bit inputs via experiments performing encrypted evaluation of the entire
AES-128 circuit, as well as three max-pooling layers of AlexNet architecture. For both
sets of experiments, SEC outperforms state-of-the-art and accelerated FHE implemen-
tations by 1000× in terms of processing time, while incurring 250× lower storage.

1

Contents

1 Introduction 3

1.1 Our Contributions . 4

1.2 Technical Overview . 6

1.3 Related Work . 12

2 Preliminaries and Background 12

2.1 Conjunctive SSE: Syntax and Security Model 13

2.2 Adaptive Security of CSSE . 14

3 Symmetric Encrypted Computation 14

3.1 Syntax of SEC . 15

3.2 SEC Construction . 16

3.3 Proof of Correctness of SEC . 19

3.4 Practical Instantiation of SEC . 20

3.5 Complexity Analysis of SEC . 21

4 Security and Leakage Profile Analysis of SEC 22

4.1 Leakage Profile of SECOXT . 23

4.2 Analysis of Potential Leakages in SECOXT . 23

4.3 Proof of Theorem 1 . 24

4.4 LSEC and Reusability of Look-up Table . 27

4.5 Statistical Analysis of Leakage Due to Reusability 31

5 Experimental Results 32

6 Discussion 35

2

1 Introduction

Outsourced Storage. The substantial upswing in data production in today’s digitally-
driven world has motivated the concept of outsourcing data to third-party cloud servers for
storage. However, such outsourced storage solutions are often plagued by security incidents
that lead to disclosure of client data [22, 46, 48]. Without specific privacy mechanisms,
third-party cloud servers gain access to sensitive user data, thus leading to serious pri-
vacy concerns. This establishes the requirement of adopting secure and scalable privacy
mechanisms for protecting sensitive outsourced data from unauthorized access. A straight-
forward solution to this problem is to encrypt this data before offloading to the third-party
server, thereby ensuring data privacy and preventing disclosures. However, this leads to the
challenge of securely computing queries (or more generally, executing functions/programs)
directly on the encrypted data without decrypting it first.

“Secure Computation” on Outsourced Data. The question of privacy-preserving com-
putation on encrypted, outsourced data has been studied extensively in the cryptographic
literature. There exist elegant solutions such as Fully Homomorphic Encryption (FHE),
Functional Encryption (FE), and Multi-party computation (MPC), all of which vary in
terms of adversarial structure, communication models, and security guarantees. Classic
FHE [26, 12, 32] works in the single client, single (adversarial) server setting and supports
evaluating any (poly-sized) circuit directly over encrypted data, but the adversary does not
learn anything about the data without the knowledge of the secret decryption key. Tradi-
tional FE [10, 39] operates in a similar setting, but offers the capability of more fine-grained
query evaluation on encrypted data, while only leaking the output of the computation to
an adversarial server. While significant improvements have been made to FHE schemes
and implementations in recent years [11, 31, 30, 29, 28, 27, 3, 2, 19, 24, 36, 9, 1, 18, 20],
FHE and FE solutions remain computationally expensive and do not scale efficiently to
large datasets in practice. MPC operates in a different setting where the client “shares”
its data across multiple servers, with the guarantee that these servers learn nothing about
the client’s data apart from the output of the computation so long as the adversary does
not corrupt more than a threshold number of parties. Certain MPC protocols are based on
garbled circuits (GCs) [5, 34, 37], which allow hiding a circuit/program as long it is evalu-
ated on only a single input. There exist practically efficient implementations of MPC and
GCs [42, 6, 45, 44, 35], particularly in the setting where the adversary corrupts a minority
of the parties (the “honest majority” setting).

Encrypted Computation via Table Lookups. In this paper, we focus on applications
that adhere to the single server, single client setting of outsourced computation (unlike
MPC). In addition, we consider applications where the program/circuit being evaluated on
the encrypted data does not need to be private (unlike GCs). This is in line with most
traditional FHE applications, where the focus is to maintain the privacy of the inputs to
as well as the outputs from the function, against a (semi-honest1/corrupt2) server. In
this setting, we explore the possibility of replacing FHE-style evaluation of Boolean circuits

1We follow the traditional semi-honest server model considered in FHE/SSE literature, where the server
does not maliciously deviate from the protocol. Although standard techniques like zero-knowledge proofs
could enforce semi-honest server behavior, this is currently outside the scope of this work.

2Verifiable FHE [25] considers malicious servers, but all known constructions are inefficient in practice.

3

with an alternative, table look-up based approach of evaluating Boolean gates over encrypted
binary inputs. Concretely, we ask the following question:

Can we support arbitrary Boolean circuit evaluation over encrypted data via efficient table
look-ups?

We answer this question in the affirmative, in the case of symmetrically encrypted out-
sourced data. We leverage existing approaches for evaluating restricted class of Boolean
circuits over symmetrically encrypted structured databases (called Searchable Symmetric
Encryption or SSE [23, 17, 14]) and show, for the first time, how to elevate/exploit such
look-up based approaches to evaluate arbitrary Boolean circuits over encrypted Boolean in-
puts (with no additional structure whatsoever). We ensure reusability of the same look-up
table for multiple gate evaluations without compromising the privacy of data being com-
puted upon. Concretely, even though traditional SSE constructions incur certain non-trivial
leakages (captured by a well defined leakage profile), our construction ensures such leakages
do not reveal any information about the (encrypted) input/output bits to the adversarial
server. Therefore, by allowing for practically viable fine-grained trade-offs between leak-
age and efficiency, we design a novel framework for symmetric encrypted computation that
significantly outperforms its (symmetric-key) FHE-based counterparts in terms of computa-
tional efficiency and storage requirements. We validate the same via practical experiments.

1.1 Our Contributions

We introduce Symmetric Encrypted Computation (SEC) – a novel framework for practically
efficient evaluation of arbitrary Boolean functions over symmetrically encrypted data. The
technical centerpiece of SEC is a mapping of Boolean gate computations over encrypted
Boolean inputs to look-ups over encrypted tables. We then show how to realize such en-
crypted lookup computations by leveraging existing practically efficient SSE schemes that
support searching for conjunctive predicates over encrypted structured databases (several
such schemes exist in the SSE literature, e.g., [14, 40]). Since SEC replaces certain algebraic
operations that are inherent to any FHE scheme by table look-ups, it avoids many com-
putationally expensive operations that limit the scalability of existing FHE solutions (most
notably, bootstrapping). To the best of our knowledge, SEC is the first provably secure
framework capable of arbitrary function evaluation over encrypted data using fast and effi-
cient look-ups.

Overview of SEC. SEC relies on “encoding” Boolean functions as encrypted lookup tables
for the universal Boolean gate set {XOR, AND, OR}. Then for any arbitrary Boolean circuit,
SEC replaces explicit circuit computations with encrypted look-up operations by deploying
a fast and encrypted search operations over the encrypted tables. For this, we leverage, in
a black-box way, existing SSE techniques for fast conjunctive look-ups over such encrypted
lookup tables for the primitive operations (which we model as “encrypted search indices”
as in standard SSE scheme). As it turns out, this enables extremely fast circuit evaluation,
surpassing the performance of the most efficient symmetric-key FHE schemes by several
orders of magnitude.

4

We present two concrete instantiations of the above SEC framework based on two practi-
cally efficient conjunctive SSE constructions: Oblivious Cross Tags (OXT) [15] and Conj-
Filter [40]. The former is chosen since it is the first practically efficient conjunctive SSE
scheme to be proposed, while latter is chosen as it supports particularly fast searches based
upon purely symmetric-key cryptoprimitives. We call the resulting schemes SECOXT and
SECConjFilter, respectively.

Supporting Arbitrary Boolean Functions. A pivotal feature of SEC is its ability to
evaluate function compositions in a single round of communication between the client and
server (for one function evaluation). This allows decomposing any arbitrary function into
an expression comprising composition of trivial functionality (i.e. {XOR, AND, OR}), which
are then solved by issuing search queries to the underlying SSE scheme. Consequently, any
arbitrary function can be easily evaluated using SEC with optimal computation overhead
proportional to the circuit size. This is achieved by incurring a small amount of additional
storage server-side; while the communication cost for the client (amortized over several
circuit evaluations) is proportional to the function description length. Empirically, SEC’s
storage requirement for realistic circuits is much less than that of the bootstrapping key
in FHE schemes. Collectively all these features render SEC practically ideal for encrypted
outsourced computation frameworks.

Security Analysis. SEC relies on an efficient, adaptively secure conjunctive SSE scheme
for efficient encrypted lookup-based function evaluation. Thus, SEC inherits the adaptive
security properties of the underlying SSE construction. However, the inherent design of
SEC averts the direct extrapolation of several non-trivial leakages of the underlying SSE
scheme. This in turn enables SEC to guarantee privacy of the input bits given to a function
as well as the output of the function evaluation. We emphasize, that the same look-up
tables can be used for evaluation of multiple gates, while ensuring the adversary can infer
no correlation between two gates in the same circuit, or two isomorphic gates in different
circuits with same/different encrypted inputs. We present a detailed security and leakage
profile analysis of SECOXT following the security properties of the underlying conjunctive
SSE scheme OXT3. Also we elucidate the improvements in leakage due to our improvised
construction of the lookup tables in Section 4.

Performance And Scalability. We demonstrate the efficacy and scalability of SECOXT

and SECConjFilter by evaluating basic Boolean gates and cascaded gates as function compo-
sition. Section 5 gives a detailed analysis of our experimental evaluations. SEC decomposes
any arbitrary (> 2 input-bits) circuit into universal binary gates XOR, AND, OR (similar to
state-of-the-art FHE schemes) and reuses this storage across multiple computations of the
same gate, thus preventing exponential storage-blowup. We showcase scalability of SECOXT

and SECConjFilter for functions with multi-bit inputs by using it for encrypted evaluation
of the entire AES-128 circuit and three max-pooling layers of AlexNet architecture4. The
experimental results involving these intricate circuit evaluations using SEC is demonstrated
in Section 5. in Section 5. In Table 1 below, we show a practical use case of the AES SBox5,

3Analysis of SEC’s instantiations wrt. different conjunctive SSE constructions shall follow a similar
security analysis based on real/ideal world simulation paradigm, as shown for SECOXT.

4KSH17 Imagenet classification with deep convolutional neural networks.
5For fair evaluation, we use unparallelized version of the SBox [38], which involves 5 XORs per bit in the

output, thereby totaling 40 XORs for the entire byte.

5

wherein SEC outperforms various TFHE [20] backends by several orders of magnitude.

Table 1: Time taken (in seconds) and storage overhead (in MB) for evaluation of one byte
AES SBox by SECOXT and SECConjFilter against different TFHE backends. Both FMA and
AVX requires specialized execution units, and thus may not be executable on all hardware.

Scheme Time taken (in seconds) Storage (in MB)

TFHE-Nayuki AVX 14.85 24

TFHE-Nayuki Portable 22.862 24

TFHE-Spqlios AVX 4.21 24

TFHE-Spqlios FMA 2.57 24
SECConjFilter (This work) 0.1013 0.449

SECOXT (This work) 0.96 0.098

1.2 Technical Overview

Efficient “search” over Encrypted Lookup Tables. The first step towards construct-
ing SEC is to create efficient mechanisms for encrypted table lookups, for which we rely
upon Searchable Symmetric Encryption (SSE) schemes [43, 23, 17, 14]. The class of SSE
constructions offers a weaker yet efficient set of capabilities than FHE: SSE schemes al-
low fast and efficient searches over symmetrically encrypted data. Although traditionally,
SSE schemes have been used exclusively for searches, we however show that SSE data
structures are amenable to design modifications such that efficient searches can be used to
compute on encrypted data. To elaborate, any function computation can be modeled into
an equivalent Boolean circuit composed of Boolean variables and universal basic logic gate
set (XOR, AND, OR). Hence, 1○ creating encrypted lookup tables for these basic gates and 2○
using efficient search capabilities of SSE constructions over these tables, is equivalent to
computing these logic gates over encrypted inputs.

We exemplify the end-to-end evaluation of XOR (AND and OR follow suit) using SEC. As
aforementioned, the first step is to create a 1○ representative encrypted lookup table corre-
sponding to XOR(x, y), as in Table 2 (where x and y are plaintext input bits to XOR). Using
generic SSE notation, every plaintext bit (x or y) is mapped to alphanumeric strings (called
keywords hereafter). Concretely, for x = 1, the corresponding keyword used by the underly-
ing SSE scheme to search over Table 2 is w1. Likewise, x = 0 is mapped to the keyword w̄1.
A similar mapping follows from input bit y to keywords w2 or w̄2 depending on whether y
is 1 or 0 respectively. The output of the evaluation XOR(x, y) is encrypted and stored as doc-
uments by the underlying SSE scheme, indexed by identifiers doc id (Di) : i ∈ {0, 1, 2, 3}.
The second step is to use 2○ the efficient search capabilities of the underlying SSE scheme
over a conjunctive predicate of input keywords, to retrieve an output encrypted document.
This output document, upon decryption on client-side, gives a plaintext bit equal to the
actual plaintext evaluation of XOR(x, y). We note that an additional keyword KW 1 (here-
after mentioned as “special” term) is added to all documents in the encrypted lookup table.
However, it does not play an explicit role in computation (since it is not mapped to input
bits x or y). This allows reusing the same lookup table for computing the same/different
circuits more than once without revealing any correlation for the adversary to infer between
the computations. We elaborate on this subsequently.

6

Table 2: Contents of documents related to the functional evaluation of 2-bit XOR and map-
ping of document identifiers to their corresponding keywords. Here, Enck refers to any
generic symmetric encryption scheme with secret key k.

KW 1 x KW 2 y KW 3 XOR(x, y) doc id Doc. content

wd 0 w̄1 0 w̄2 0 D0 Enck(0)
wd 0 w̄1 1 w2 1 D1 Enck(1)
wd 1 w1 0 w̄2 1 D2 Enck(1)
wd 1 w1 1 w2 0 D3 Enck(0)

In order to map a conjunctive predicate of input keywords to an encrypted output document
(i.e. step 2○ aforementioned), Table 2 needs to be converted into a SSE specific data
structure (as shown in Table 3), which maps a given keyword to the doc ids which is related
to the keyword. The underlying SSE scheme then encrypts this mapping before offloading
the same to the server, thereby constituting the encrypted lookup table for XOR. Moreover,
in contrast to Table 2, we have added n “special” terms (for a circuit with n gates); this
allows reusability of Table 3 over evaluations of multiple circuits of size n6. Also note that
each special term is mapped to four documents, while the keywords participating in the
computation (w̄1, w̄2, w1 , w2) are mapped to two. Hence, we add dummy documents
({D′

0, . . . , D
′
7}; each comprising of unique random alphanumeric values) to ensure that the

frequency of all keywords remains same in the final encrypted database. This keeps the
adversarial server’s view during searches over Table 3 uniform wrt. all keywords. Finally,
we note that at no point in this entire process have we performed an explicit computation
of XOR gate (unlike as done in FHE). The entire computation is completed by searching over
encrypted lookup tables (search index) which is extremely fast and efficient.

Table 3: An inverted search index representation of the database (search index) for XOR

function.

Keywords doc id
w̄1 D0, D1, D

′
0, D

′
1

w1 D2, D3, D
′
2, D

′
3

w̄2 D0, D2, D
′
4, D

′
5

w2 D1, D3, D
′
6, D

′
7

w1
d D0, D1, D2, D3

w2
d D0, D1, D2, D3

...
...

wn
d D0, D1, D2, D3

Without loss of generality, assume XOR(1,1) is to be evaluated using SEC. Considering the
offloaded encrypted database in Table 3, SEC computes a conjunctive query by choosing
any7 “special” term (say w1

d), along with the correct keywords for plaintext input bits
x = 1 and y = 1. Concretely, SEC translates XOR(1,1) to a conjunctive query q =

6The lookup tables need only setup once (by the client), after which it is reused. This amortizes the
client’s communication overhead to function description length (over multiple circuit evaluations).

7The choice of the “special” term is dependent on the underlying SSE scheme: generally in OXT or
ConjFilter the “special” term is selected according to the least frequent keyword/conjunct in a given

7

(w1
d ∧ w1 ∧ w2). We now note the sequence of operations that are consequently executed

(assuming a black-box conjunctive SSE search), and draw parallels with conjunctive SSE
terminology:

1. Processing “special” Term: Use the first keyword in q (i.e. w1
d), generate an

address to index into the encrypted lookup table, and retrieve an encrypted list of
doc id mapped to w1

d. For consistency hereafter, we denote svalw,Dj as the retrieved
encrypted output from this phase for some arbitrary keyword w and document Dj .
In our example, this phase shall return the encrypted list [svalw1

d,D0
, svalw1

d,D1
,

svalw1
d,D2

, svalw1
d,D3

].

2. Processing “cross” Term. In this phase, some auxiliary information8 dependent on
the tuples (w1

d,w1) and (w1
d,w2) is used in conjunction with retrieved sval to create

a search token. For consistency, we denote Tokenw1
d,wi,Dj

to denote a search token
generated upon combination of svalw1

d,Dj
and auxiliary information dependent on

tuple (w1
d,wi). Upon being indexed into SSE specific data structures, Tokenw1

d,wi,Dj

returns a binary decision on whether keyword wi is present in document Dj .

3. Query Result. Any document identifier which is included in the output of step 1○,
and for which all search tokens generated in step 2○ give a positive binary result,
is included in the result of the query. Note that, for our example, only document
D3 contains the keywords w1

d, w1, and w2. Hence, the output of the query q =
(w1

d ∧ w1 ∧ w2), for this example, is svalw1
d,D3

. This result is returned back to the

client, which upon decryption obtains D3. It follows trivially that since D3 = Enck(0),
query q and associated search over the encrypted lookup table has effectively computed
XOR(1,1).

Functional Correctness. Concretely, we design the encrypted lookup table (search in-
dex) in a way such that for arbitrary encrypted input bits x and y, exactly one encrypted
document is returned, which upon decryption reveals a single bit b = XOR(x, y), (thereby
guaranteeing correctness).

“special” Terms and Reusability of Lookup Table for Multiple Evaluations. In
the previous sequence of operations, the server’s view (informally) consists of memory access
patterns wrt. svalwd,Dj

and Tokenwd,wi,Dj
; note that the “special” term is shared com-

monly between the two. Hence, for multiple evaluations of the same gate, should the client
choose a new “special” term, it obfuscates the access patterns of the 1○ index into the en-
crypted look-up table and 2○ retrieval of the respective encrypted documents. Thus even if
the client computes the same function, say XOR(x, y) twice on the same encrypted input, the
server (adversary) cannot infer any correlation between the two computations. This ensures
the reusability of the same encrypted look-up table for multiple circuit evaluations without
any significant information leakage to the semi-honest server. To achieve this, the client
maintains a O(1)-state that is used to permute the allotment of the n “special” terms to the

conjunctive query for efficiency purposes. In our instantiation of SECOXT and SECConjFilter, it is set to the
first keyword/conjunct (since the frequency of all keywords is the same).

8Abstracted in the underlying black-box SSE scheme used.

8

Table 4: Mapping between result of the inner function, to keywords used in querying the
outer function. For the sake of clarity, we demonstrate this mapping in plaintext. In
actuality, this table shall be encrypted before being offloaded.

Inner f(.) result Outer fn(.) input order Keywords for outer f(.) Mapped doc id for outer f(.)
D0 First input (corr. bit x = 0) w̄1 D0, D1

D3 First input (corr. bit x = 0) w̄3 D0, D1

D1 First input (corr. bit x = 1) w1 D2, D3

D2 First input (corr. bit x = 1) w3 D2, D3

D0 Second input (corr. bit y = 0) w̄2 D0, D2

D3 Second input (corr. bit y = 0) w̄4 D0, D2

D1 Second input (corr. bit y = 1) w2 D1, D3

D2 Second input (corr. bit y = 1) w4 D1, D3

different gates in a circuit. Reusability is then derived from such client-controlled “permuta-
tion” of assigning unique “special” term to isomorphic gates across multiple runs, ensuring
unique access-pattern across multiple gate evaluations. Concretely, the upper bound on

reusability is then the number of possible derangements, given by n! − Σn
i=0

(−1)i+1

i! (O(n!)
asymptotically). “special” terms are permuted using a Psuedo-Random Permutation primi-
tive (which requires client-side O(1) state). Note that since the same encrypted lookup table
is reused, the amortized communication cost across multiple circuit evaluations is propor-
tional to the function description length. Finally, the client does not require prior knowledge
of circuit composition to set the “special” terms. More details follow in Section 4.

Composable Function Evaluation. Note that so far, we have assumed that a SEC query
is constructed at the client-side. Extending this version of SEC to an n-depth circuit is non-
trivial because of the need for repeated involvement of the client. Concretely, for SEC to
evaluate compositions of form fk(fi(·, ·), fj(·, ·)) (where fi, fj , fk ∈ {XOR, AND, OR}), first
evaluate fi(·, ·), fj(·, ·), send the result to the client, who in turn constructs the query for
the outer function, and then execute the outer function query. However, this incurs extra
rounds of communication that scale linearly with the circuit size.

To circumvent this issue, we design SEC to perform query construction for the outer func-
tion on the (semi-honest) server itself. That is, instead of the need to decrypt the result
(i.e. svalwd,Dj) of the inner function to recover Dj , we use mechanisms to directly map
svalwd,Dj to construct relevant query used by the outer function. To do so, we extend
Table 2 to allow compositions of XOR (Table 4). The first major change is an increase in
the number of keywords to 8: there are four possible outcomes for the inner XOR evaluation
(denoted by plaintext document identifiers D0, D1, D2, D3), and each outcome can either
behave as the first input (corresponding to bit x) or the second input (corresponding to bit
y) for the outer function. For example, should the inner function output D0 (corresponding
to evaluation of XOR(0, 0); Table 2), then for the outer function, either x = 0 or y = 0
depending on specific wiring topology of the these gates. Therefore, according to Table 4,
either keyword w̄1 or w̄2 shall be involved in the outer function’s query. This mapping
hence allows query construction of the outer function evaluation on the server side itself.
We note that compositions of AND/OR, as well as intermixing of XOR/AND/OR follow suit.

Illustrative Example 1: Functional Composition. For this example, consider a
client who wishes to evaluate the circuit of Figure 1 using SEC without involving mul-

9

(a) Evaluation 1 (b) Evaluation 2

Figure 1: Evaluation of isomorphic circuits multiple times using the same lookup table

tiple communication rounds with the client. SEC uses the same lookup table as in Table 4,
that is encrypted and offloaded to the server once for evaluating all the gates at every
depth of the circuit. For ensuring a single communication round between the client and
server, the query construction for outer XOR needs to happen server-side. For now, we as-
sume ConstructQuery(wk

d , svalwl
d,Dj

, b) to abstract the following mapping: Given that
svalwl

d,Dj
is output by the inner function evaluation, ConstructQuery returns the search

tokens of the form Tokenwk
d ,wi,Dj

depending on the mapping in Table 4. Bit b denotes
whether svalwk

d ,Dj
is first or second input to the outer function. We defer details of the

exact operation of ConstructQuery to Section 3.2. We also note that since three evaluations
of XOR occur, we use a distinct “special” term for each. We now explain how the evaluation
proceeds.

To compute, SEC constructs a query q1 = (w1
d ∧ w1 ∧ w̄2) for fXOR(1, 0), resulting in

svalw1
d,D1

. Likewise, SEC constructs a query q2 = (w2
d ∧ w̄1 ∧ w̄2) for fXOR(0, 0), re-

sulting in svalw2
d,D0

. Note that the result of fXOR(1, 0) drives the first input of outer

XOR. Thus, SEC invokes ConstructQuery(w3
d,svalw1

d,D1
, 1) to obtain Tokenw3

d,w1,D2
and

Tokenw3
d,w1,D3

(corresponding to row entry 3 in Table 4). Likewise, since fXOR(0, 0) drives

the second input of outer XOR, SEC invokes ConstructQuery(w3
d,svalw2

d,D0
, 0) to obtain

Tokenw3
d,w̄2,D0

and Tokenw3
d,w̄2,D2

(corresponding to row 5 in Table 4). Overall, for the

outer XOR, the constructed query is q3 = (w3
d ∧ w1 ∧ w̄2). It is straightforward to see

that the result of the functional composition, by design of Table 4 shall be svalw3
d,D2

. The
server sends this final result to the client. Upon decryption, the client obtains the output
plaintext bit 1, which is the correct evaluation of the example. From the adversarial server’s
perspective, since the “special” term changes across all gate evaluations, the corresponding
access patterns are different for all gates, preventing any correlation across evaluations.

Illustrative Example 2: Reusability and Leakage. We consider a slightly more com-
plex evaluation in this example, where we assume that the client wishes to evaluate the
circuit twice. Assume that for Evaluation 1, SEC constructs a query similar to the previous
example. For Evaluation 2, the client assigns a different permutation of “special” terms
and SEC constructs corresponding query as: q1 = (w3

d ∧ w1 ∧ w̄2) for fXOR(1, 0), result-
ing in svalw3

d,D1
. Likewise, a query q2 is constructed as (w1

d ∧ w̄1 ∧ w̄2) for fXOR(0, 0),

resulting in svalw1
d,D0

. As the result of fXOR(1, 0) drives the first input of outer XOR, SEC in-

vokes ConstructQuery(w2
d,svalw3

d,D1
, 1) to obtain Tokenw2

d,w1,D2
and Tokenw2

d,w1,D3
(cor-

10

responding to row entry 3 in Table 4). Likewise, since fXOR(0, 0) drives the second input
of outer XOR, SEC invokes ConstructQuery(w2

d,svalw1
d,D0

, 0) to obtain Tokenw2
d,w̄2,D0

and

Tokenw2
d,w̄2,D2

(corresponding to row 5 in Table 4). Overall, for the outer XOR, the con-

structed query is q3 = (w2
d ∧ w1 ∧ w̄2), and the final result is svalw2

d,D2
. Since the

“special” terms do not contribute in the actual computation, even in different permutations
of “special” terms, the result of the final evaluation will be the same (this ensures functional
correctness).

From the server’s perspective (in Figure 1), for gate 1, the server observes access patterns
related to { svalw1

d,D1
} in Evaluation 1 and { svalw3

d,D1
} in Evaluation 2. Similarly,

for gate 2, access patterns observed are { svalw2
d,D0

} in Evaluation 1 and { svalw1
d,D0

}
in Evaluation 2. Likewise, for gate 3, the server observes access patterns for { Tokenw3

d,w1,D2
,

Tokenw3
d,w1,D3

, Tokenw3
d,w̄2,D0

, Tokenw3
d,w̄2,D2

, svalw3
d,D2
} in Evaluation 1 and { Tokenw2

d,w1,D2
,

Tokenw2
d,w1,D3

, Tokenw2
d,w̄2,D0

, Tokenw2
d,w̄2,D2

, svalw2
d,D2
} in Evaluation 2. Briefly, through

client-controlled permutation, assignment of “special” terms to non-isomorphic gates9 pre-
vents the server from correlating between two (similar/different) circuit evaluations, thereby
making the reusability of the same lookup table for multiple evaluations secure, in terms of
data privacy.

Note. It is important to note that, for ease of exposition we exemplified the working mech-
anism of SEC for computing a circuit with XOR gates only. An exactly similar execution
methodology can be used for evaluating any arbitrary circuit with any combination of gates,
f ∈ {XOR, AND, OR}, since both sval and Token are function agnostic.

Communication Complexity and Security in Reusability. We stress that the same
look-up tables can be used for evaluation of multiple circuits. We do this through client-
controlled permutation of the pool of “special” terms available in SEC’s encrypted look-up
tables. Like in the aforementioned example, the client assigns a permutation of “special”
terms w1

d,w
2
d,w

3
d to the three gates respectively for Evaluation 1. For Evaluation 2, how-

ever, the client chooses a new permutation: w3
d,w

1
d,w

2
d. This ensures reusability of SEC’s

look-up tables across different circuits, while ensuring 1○ no two gates in the same circuit
share a “special” term, and 2○ two isomorphic gates in different circuits also do not share
corresponding “special” terms, thereby preventing the server from inferring any correlation
between two computations. Hence, the client’s amortized communication overhead is pro-
portional to the function description length (i.e. for a circuit evaluation with n gates). Post
the one-time setup, the client uses derangements of {w1

d,w
2
d, ...,w

n
d} to evaluate subsequent

circuit (assuming there are n gates in the circuit). Asympotically, the number of derange-

ments (because of the need to avoid isomorphic gate assignments) is
{
n!−Σn

i=0
(−1)i+1

i!

}
=

O(n!). We elaborately discuss and analyze the leakage profile of SEC in Section 4.

9If in Evaluation 2, the client had assigned w2
d to gate 2, then this assignment is isomorphic to that in

Evaluation 1. Consequently, the server’s leakage profile for gate 2 is { svalw2
d
,D0

} for both evaluations,

hence leaking that both evaluations have the same type of gate. Note that, however, neither the gate
description (i.e. whether it is AND/OR/XOR) nor the exact plaintext bit in { svalw2

d
,D0

} is leaked, since this

information is encrypted, thereby still protecting data privacy.

11

1.3 Related Work

Garbled Circuits. Garbled circuits [5, 34, 37] typically provide privacy for the input
data and entire circuit that is being computed. However, such constructions have the
disadvantage of not being reusable. As such, there have been attempts to construct reusable
Garbled Circuits [34], but the underlying primitive used is Functional Encryption (using
FHE as a black box) which is computationally intensive. SEC differs from GCs in the sense
that it guarantees input/output privacy, but not circuit privacy.

Fully Homomorphic Encryption (FHE). In practice, computing over encrypted out-
sourced databases has used sophisticated and highly structured but typically expensive
primitives, such as Fully Homomorphic Encryption (FHE)
[26, 30, 29, 28, 32, 3, 2, 19] which views generic computations as either arithmetic or Boolean
circuits, and provides an all-or-nothing flavor of security. FHE has recently gained traction
in the cryptographic literature for privacy-preserving computation with rich functionalities
along with the ideal notion of privacy. However, as each primitive function evaluation is re-
alized by explicit circuit evaluation followed by an expensive bootstrapping operation. FHE
has prohibitively high computation costs and storage overheads. In this work, we find a so-
lution to bypassing explicit circuit evaluation and realizing any generic function by efficient
encrypted look-up operations.

Searchable Symmetric Encryption (SSE). SSE schemes [43, 23, 17, 14] provision users
with search capabilities over symmetrically encrypted data. There exist today efficient SSE
schemes that support conjunctive (and more general Boolean) queries [14, 13, 41]. An
ideal SSE construction using Oblivious RAM (ORAM) promises oblivious memory access
patterns (and hence no leakage) but is hard to actualize in hardware, is closed-source, and
has not been tested against scaled databases [16]. Modern SSE schemes thus trade-off
security for efficiency. These schemes allow the server to learn “some” information during
query execution, detailed by their leakage profile. While SSE schemes are extremely fast
and highly scalable with arbitrarily large real-world datasets, their restricted functionality
(to only search) renders them inapt for practical deployment in an encrypted computation
framework. In this work, we leverage the efficient look-up capabilities of SSE while extending
the limited functionality of existing SSE schemes to supporting encrypted computations of
arbitrary Boolean functions.

2 Preliminaries and Background

We present preliminary concepts and background in this section. Table 5 lists basic notations
used in this paper. Any other notation used is defined in-place within the context of the
main text.

12

Table 5: Summary of notations

Notations Meaning

λ security parameter
id/doc id document identifier

w a keyword
W dictionary of keywords W = {w1, . . . ,wN}
DB database (idj ,wi)

N |DB(w)|
i=1 j=1 ∈ DB

DB(w) all documents containing w
n max. number of keywords per conjunctive query.

x
$←− χ uniformly sampling x from χ

x = A x is output of a deterministic algorithm
x← A′ x is output of a randomized algorithm

2.1 Conjunctive SSE: Syntax and Security Model

A Conjunctive Searchable Symmetric Encryption scheme (CSSE) provisions the client with
conjunctive search capability (i.e. search Boolean queries of the form w1 ∧w2 ∧ . . . ∧wn)
over an encrypted database. A CSSE scheme can be formally defined as an ensemble of four
polynomial-time algorithms {KeyGen, Encrypt, GenToken, Search} 10 such that:

• KeyGen(λ) is a probabilistic algorithm that takes the security parameter λ as input. The
output of this algorithm is the client’s secret key sk.
• Encrypt(sk,DB) is a probabilistic algorithm that takes as input the client secret key sk
and plain database DB. The output is encrypted database EDB.
• GenToken(sk, q = w1∧ . . .∧wn) is a deterministic algorithm executed by the client that
takes as input secret key sk and a conjunctive query q = w1 ∧ . . . ∧wn. It generates search
tokens (stq) corresponding to the conjunctive query q as the output.
• Search(EDB, stq) is a deterministic algorithm executed by the server that takes as
input EDB and the search token stq corresponding to a conjunctive query q. It returns the
encrypted document identifiers DB(stq) corresponding to the conjunction q = w1∧ . . .∧wn

as output.

Correctness. A CSSE scheme is said to be correct if for an EDB generated from a
DB using Encrypt, for a search token stq generated by GenToken from any conjunctive
Boolean query q formed over the keywords wi in W, the Search routine returns a set of
ids as result which is the same as DB(q) with high probability.

Security. The security of a CSSE scheme is parameterized by a leakage function L, which
encapsulates the information that can be learnt (potentially by an adversary) from the
encrypted database and query transcripts. Formally, the security notion says that the
server’s view during an adaptive attack (where the server selects the database and queries)
can be simulated given only the output of L.

Let CSSE = {KeyGen, Encrypt, GenToken, Search} be a CSSE scheme, and let

10Our syntax for a conjunctive SSE is different from the syntax of traditional conjunctive SSE scheme
{Setup,GenToken,Search}, but the underlying functionality is exactly similar

13

L be a stateful algorithm. For algorithms A (denoting the adversary) and SIM (denoting
a simulator), we define the experiments (algorithms) RealCSSE

A (λ) and IdealCSSE
A,SIM(λ), as

in Algorithm 1 and Algorithm 2, respectively (see Section 2.2). We say that CSSE is L-
semantically-secure against adaptive attacks if for all adversaries A there exists an algorithm
SIM such that

| Pr[Real
CSSE
A (λ) = 1]− Pr[IdealCSSE

A,SIM(λ) = 1] |≤ negl(λ).

In these experiments, the leakage function for CSSE is expressed as

LCSSE = (LEncrypt
CSSE ,LGenToken

CSSE ,LSearch
CSSE),

where LEncrypt
CSSE encapsulates the leakage to an adversarial server during the Encrypt phase,

LGenToken
CSSE encapsulates the leakage to an adversarial server during the GenToken phase,

and LSearch
CSSE encapsulates the leakage to an adversarial server during each execution of the

Search protocol.

2.2 Adaptive Security of CSSE

We present the Real and Ideal experiments for the security analysis of a conjunctive SSE
scheme CSSE in this Section. In these experiments, the leakage function for CSSE is
expressed as

LCSSE = (LEncrypt
CSSE ,LGenToken

CSSE ,LSearch
CSSE),

where LEncrypt
CSSE encapsulates the leakage to an adversarial server during the Encrypt phase,

LGenToken
CSSE encapsulates the leakage to an adversarial server during the GenToken phase,

and LSearch
CSSE encapsulates the leakage to an adversarial server during each execution of the

Search protocol.

Algorithm 1 Experiment RealCSSE
A (λ)

1: function RealCSSE
A (λ)

2: N ← A(λ)
3: (sk, s0,EDB0)← CSSE.Encrypt(λ,N)
4: for k ← 1 to Q do
5: Let qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (sk,EDBk,DB(qk))←

CSSE.Search(sk, sk−1, qk;EDBk−1)
7: Let τk denote the view of the adversary after

the kth query
8: b← A(λ,EDBQ, τ1, . . . , τQ)
9: return b

3 Symmetric Encrypted Computation

We introduce the concept of Symmetric Encrypted Computation (SEC) as an efficient
framework for fast outsourced privacy-preserved Boolean circuit evaluation in the symmetric-
key setting. SEC supports arbitrary circuit depth via encrypted look-up and a single round

14

Algorithm 2 Experiment IdealCSSE
A,SIM(λ,Q,L)

1: function IdealCSSE
A,SIM(λ,Q,L)

2: Parse the leakage function L as:
L =

(
LEncrypt

CSSE ,LSearch
CSSE

)
.

3: (sSIM,EDB0)← SIMSetup(LEncrypt(λ,N))
4: for k ← 1 to Q do
5: Let qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (sSIM,EDBk, τk)← SIMSearch

(sSIM,LSearch
CSSE (qk);EDBk−1)

7: Let τk denote the view of the adversary after
the kth query

8: b← A(λ,EDBQ, τ1, . . . , τQ)
9: return b

of communication with the remote server. We start by presenting the high-level syntax of
SEC in this section before delving into the elaborate technical details of the construction
subsequently.

3.1 Syntax of SEC

We briefly explain a general syntax of our proposed primitive here. It uses a static con-
junctive SSE construction CSSE as a black-box. We assume a single (honest) client and
a (semi-honest) server in SEC. SEC is abstracted as a tuple of four polynomial-time algo-
rithms {KeyGen, Encrypt, Evaluate, Decrypt}, as defined below:

• KeyGen(λ): A probabilistic algorithm executed by the client that takes as input the
security parameter λ. It outputs a client secret key sk and a public parameter pp.

• Encrypt(sk, x1, . . . , xp): A probabilistic algorithm executed by the client. It takes the
client’s secret key sk and a p-bit input {x1, . . . , xp}. The output is a ciphertext c =
{c1, . . . , cp}.

• Evaluate(fdesc, c1, . . . , cp, pp): A deterministic algorithm executed by the server that
takes as input a description of a circuit fdesc that is to be evaluated, the encrypted input bits
c = {c1, . . . , cp} and the public parameter pp. The server returns the encrypted evaluation
of the circuit eval to the client.

• Decrypt(sk, eval): A determinisitic algorithm executed by the client with its secret-key
sk and an encrypted evaluation eval as input, which outputs the decrypted result.

Correctness. SEC is said to be functionally correct if for security parameter λ, and for
the following sequence of operations:

15

sk, pp ← SEC.KeyGen(λ)

{c1, . . . , cp} ← SEC.Encrypt(sk, x1, . . . , xp)

eval = SEC.Evaluate(fdesc, c1, . . . , cp, pp)

result = SEC.Decrypt(sk, eval),

The following holds with certainty:

Pr[result = fdesc(x1, . . . , xp)] = 1,

Security. SEC guarantees privacy of inputs to a function and output of the evaluation by
encrypting them using an IND-CPA secure symmetric-key encryption. Formally, SEC is
said to be adaptively secure with respect to a leakage function LSEC = {LKeyGen

SEC ,LEncrypt
SEC }

if for any PPT adversary A that encrypts a p-bit input x1, . . . , xp, there exists a PPT
simulator SIM = {SIMKeyGen,SIMEncrypt} such that the following holds:

∣∣Pr
[
Real

SEC
A (λ) = 1

]
− Pr

[
Ideal

SEC
A,SIM(λ,L) = 1

]∣∣ ≤ negl(λ),

where the “real” experiment RealSECA and the “ideal” experiment IdealSECA are as described
in Algorithm 3 and Algorithm 4, LKeyGen

SEC captures the leakage from SEC.KeyGen, and
LEncrypt
SEC captures the leakage from SEC.Encrypt.

Algorithm 3 Experiment RealSECA (λ)

1: function RealSECA (λ)
2: (sk, pp)← KeyGen(λ)
3: for k ← 1 to y ▷ y = poly(λ)

do
4: Let x1, . . . ,xp ← A(λ, pp, τ1, . . . , τk−1)
5: Let c1, . . . , cp ← SEC.Encrypt(sk, x1, . . . , xp)
6: Let f(c1, . . . , cp)← SEC.Evaluate(fdesc,
7: pp, c1, . . . , cp)

(τk denote A’s view after the kth evaluation)
8: b← A(λ, pp, fdesc, τ1, . . . , τy)
9: return b

3.2 SEC Construction

The fundamental goal of SEC is to compute arbitrary depth Boolean circuits using en-
crypted lookup tables while ensuring data-privacy, in a single round of communication be-
tween the client and server. The three universal Boolean function set supported by SEC are
f = {fXOR, fAND, fOR}. SEC uses black-box conjunctive SSE constructions to compute by per-
forming searches over encrypted lookup tables on encrypted inputs. We refer the reader to
Section 1.2 for an overview of SEC, and proceed with the construction here.

16

Algorithm 4 Experiment IdealSECA,SIM(λ,L)

1: function IdealSECA,SIM(λ,L)
2: Parse the leakage function L as:

L =
(
LKeyGen

SEC ,LEncrypt
SEC ,LEvaluate

SEC

)
.

3: (sSIM, pp)← SIMKeyGen(LKeyGen(λ))
4: for k ← 1 to y ▷ y = poly(λ)

do
5: Let x1, . . . , xp ← A(λ, pp, τ1, . . . , τk−1)
6: Let (sSIM, c1, . . . , cp)← SIMEncrypt(sSIM,

LEncrypt
SEC (x1, . . . , xp); pp)

7: Let f(c1, . . . , cp)← SIMEvaluate(sSIM,
LEvaluate

SEC (fdesc, pp, c1, . . . , cp))

(τk denote A’s view after the kth evaluation)
8: b← A(λ, pp, fdescτ1, . . . , τq)
9: return b

SEC.KeyGen. Algorithm 5 summarizes SEC.KeyGen. It is executed by the client and is
responsible for creating the client secret key sk and a public parameter pp. pp constitutes 1○
encrypted lookup tables (i.e. encrypted search indexes) for {fXOR, fAND, fOR} and 2○ encrypted
search tokens st (i.e. the token set). pp is then offloaded to the server.

Concretely, first, a helper function GenDB generates DB, which essentially comprises the
plaintext mappings between keywords and encrypted documents (Table 2 and Table 4). DB
is then encrypted into SSE specific data structures using CSSE.Encrypt to generate the
encrypted search index or EDB11. Following the discussion established in Section 1.2, EDB
contains data structures relevant 1○ to process “special” terms (i.e. set of svalw,Dj

against
each keyword w), as well as 2○ to process “cross” terms (i.e. data structures to return a
binary decision on whether (wk

d∧wi) is present inDj , upon being queried by search tokens of
form Tokenwk

d ,wi,Dj
). Thereafter, the specific search tokens st are generated. We recall from

SEC’s general overview from Section 1.2 that search tokens of form Tokenwk
d ,wi,Dj

are used
to index into SSE specific data structures, and a binary decision is returned as to whether
both wk

d and wi are present in Dj . We also recall that security considerations require wk
d

to be refreshed for every lookup. The size of TokenSet is henceforth O(n), assuming a set
of n distinct “special” terms {w1

d,w
2
d, ...,w

n
d} for a circuit with n gates12.

Moreover, recall from Section 1.2 the need of ConstructQuery that maps the output of
one SEC evaluation to obtain search tokens for the next query (outer function evalua-
tion). SEC hence additionally generates a lookup table that returns a binary decision
on whether svalwk

d ,Dj
and Tokenwk′

d ,wi,Dj
is a valid mapping based on query parameters.

ConstructQuery is thus realised as an efficient membership test (and implemented using
Bloom Filters), thereby ensuring space O(n2) bits and O(1) lookup. Concretely, any “spe-
cial” term wk

d (used in svalwk
d ,Dj

) can be used to obtain search tokens belonging to any

other “special” term wk′

d (used in Tokenwk′
d ,wi,Dj

).

11Refer to Section 2.1 for conjunctive SSE syntax and security model.
12The analysis subsumes O(1) number of keywords for input combinations (i.e. w1 and w2), as well as

O(1) number of documents (Dj : j ∈ {0, 1, 2, 3})

17

We emphasize that by trading off storage, SEC achieves the capability of randomizing the
order of “special” terms {w1

d,w
2
d, ...,w

n
d} across different executions of circuits, thereby

achieving reusability. Finally, all the encrypted look-up tables are then offloaded to the
server. Note that KeyGen is a one-time routine, executed only once at the beginning.

Algorithm 5 SEC.KeyGen

Input: Security parameter λ
Output: Client’s secret key sk and a public parameter pp
1: function SEC.KeyGen(λ)
2: Samples a uniformly random key sk for an IND-CPA Symmetric-key Encryption scheme:

Πsym = (KeyGen,Encryptsk,Decsk)
3: DB← GenDB(λ)
4: EDB← CSSE.Encrypt(sk,DB)
5: for all conjunctive query q of keywords in DB do
6: {stq} = CSSE.GenToken(sk, q)
7: TokenSet = TokenSet ∪ {stq}
8: return sk, pp = {EDB ∪ TokenSet}

SEC.Encrypt. This routine is executed on the client’s end and is responsible for encrypting
and offloading the actual data. As shown in Algorithm 6, the client uses its secret key sk
to encrypt plaintext bits x1, . . . , xp using an IND-CPA secure symmetric-key encryption
scheme (Πsym = (KeyGen,Encryptsk,Decryptsk)), and returns a ciphertext c1, . . . , cp.

Algorithm 6 SEC.Encrypt

Input: sk, x1, . . . , xp

Output: c1, . . . , cp
1: function SEC.Encrypt(sk, x1, . . . , xp)
2: Encrypt input bits {x1, . . . , xp} using an IND-CPA secure symmetric-key encryption scheme

Enc with client secret-key sk
3: {c1, . . . , cp} ← Encsk(x1, . . . , xp)
4: return {c1, . . . , cp}

SEC.Evaluate. SEC.Evaluate is executed by the server and is mainly responsible for
computing a circuit (whose description is provided by the client) on encrypted inputs. This
is summarized in Algorithm 7. We assume the client wishes to compute an arbitrary Boolean
circuit:
fcir depth(fcir depth−1(xcir depth−1, ycir depth−1), . . ., f1(x1, y1)), where
fj ∈ {fXOR, fAND, fOR} and (xj , yj) are inputs to the j-th function fj (where 1 ≤ j ≤ cir width;
cir width being the maximal width of the circuit) at depth i (for 1 ≤ i ≤ cir depth; cir depth
being the depth of the entire circuit). The server runs the SEC.Evaluate algorithm that
takes as input a circuit description fdesc, encrypted inputs c1, . . . , cp, and the public pa-
rameter pp (already offloaded to the server at the end of SEC.KeyGen). It parses pp as
{EDB, TokenSet} and then uses the encrypted inputs c1, . . . , cp to retrieve the correspond-
ing search tokens (stqf) for all j functions at depth 1 of the circuit. Next, for each of the
j-th function at depth i (1 ≤ i ≤ cir depth), it invokes the CSSE.Search algorithm using
a specific search token and the EDB as input. The output obtained (i.e. evalj,i) is in turn
used to retrieve the search tokens for the functions at depth (i+ 1) of the circuit by calling
ConstructQuery(evalj,i). It is to be noted that evalj,i encapsulates (w

k
d , svalwl

d,Dj
, b) and

18

Algorithm 7 SEC.Evaluate

Input: fdesc, c1, . . . , cp, pp
Output: eval

1: function SEC.Evaluate(fdesc, c1, . . . , cp, pp)
2: Parse pp = {EDB,TokenSet}
3: Retrieve search tokens stqf from TokenSet using c1, . . . , cp ▷ ConstructQuery(TokenSet, c1, . . . , cn)
4: for i= 1 to cir depth-1 do ▷ cir depth is depth of the circuit fdesc
5: evalj,i = CSSE.Search(EDB, stqf) ▷ for a circuit of width j at depth i, run j instances

of CSSE.Search in parallel
6: Retrieve search tokens stqf ← ConstructQuery(evalj,i)
7: eval = CSSE.Search(EDB, stqf)
8: return eval to the client at the end of the protocol

retrieves the search token stqf (which is of the form Tokenwk
d ,wi,Dj

). Bit b is used to de-
termine whether to use the retrieved search token as the first or second input to the outer
function. Again CSSE.Search is called with the new search token query and EDB as
the input. This process continues till the last level of the circuit. Note, that each call to
CSSE.Search can be made parallelly for all j functions at a certain depth of the circuit,
since all functions at depth/level i are pairwise independent wrt. required inputs. The final
encrypted evaluation eval returned by the last level of the circuit contains the encrypted bit
corresponding to the actual output of the entire circuit evaluation. eval is returned to the
client as the final encrypted output of the circuit fdesc.

Algorithm 8 SEC.Decrypt

Input: sk, eval
Output: result

1: function SEC.Decrypt(sk, eval)
2: result = Deck(eval)
3: return result

SEC.Decrypt. The client runs the SEC.Decrypt algorithm to decrypt the encrypted
evaluation eval. The decrypted value result is equal to the evaluation of the circuit fdesc on
(x1, . . . , xp).

3.3 Proof of Correctness of SEC

The proof of correctness for SEC follows from the correctness of CSSE. The correctness
of CSSE ensures that a conjunctive query q = w1 ∧ . . . ∧ wn over an encrypted database
satisfies the following relations (we refer to Section 2.1 for generic conjunctive SSE syntax):

sk ← CSSE.KeyGen(λ)

EDB ←− CSSE.Encrypt(sk,DB)

stq = CSSE.GenToken(sk, q)

DB(w1) ∩ . . . ∩ DB(wn) = CSSE.Search(EDB, stq)

Proof. By deploying CSSE as a black-box, SEC generates the encrypted search index

19

EDB specific to the function set f = {fXOR, fAND, fOR} supported by the scheme. The
encrypted search index EDB consists of keywords corresponding to encrypted input bits
and documents that encapsulate the encrypted output of the function evaluation. It also
invokes the CSSE.GenToken algorithm that generates search tokens corresponding to the
keywords (that maps to encrypted input bits of a function). The search tokens are stored in
a TokenSet and then pp = {EDB∪ TokenSet} is offloaded to the server. For evaluating a
function f(x, y), the function description fdesc (which is essentially a single binary function in
this case) and encrypted inputs {c1, c2} (corresponding to plaintext bits x and y respectively)
are sent to the server. The server retrieves the search tokens from TokenSet and invokes
CSSE.Search protocol with the search token query stqf and EDB as input. It retrieves
a document from EDB that consists of the encrypted output of the computation, (denoted
as eval) and sends it to the client. The client decrypts eval locally using the SEC.Decrypt
function and obtains the output bit result which is equal to f(x, y). Correctness is hence
a combination of correctness of CSSE, along with SEC specific mappings (Table 3 and
Table 4) that ensure exactly one document being returned by CSSE.Search, which is the
correct result of respective gate evaluation.

Following the functionally correct evaluation of a single binary gate f(·, ·) over encrypted
inputs, the correct encrypted evaluation eval returned by SEC.Evaluate for any arbitrary
circuit fdesc over encrypted inputs {c1, . . . , cp} can be asserted transitively. This is because
fdesc is essentially viewable as a collection of several binary gates f(·, ·) which are func-
tionally correct as established above, and thereby ensures that the output eval returned by
SEC.Evaluate on fdesc on decryption is equal to fdesc(x1, . . . , xp) for any circuit fdesc and
unencrypted input set {x1, . . . , xp}. Thereby, we conclude that for a functionally correct
and exact conjunctive SSE scheme CSSE, a set of functions f = {fXOR, fAND, fOR}, and en-
crypted values {c1, . . . , cp} of input {x1, . . . , xp}, SEC is functionally correct, since for the
following sequence of operations:

sk, pp ← SEC.KeyGen(λ)

{c1, . . . , cp} ← SEC.Encrypt(sk, x1, . . . , xp)

eval = SEC.Evaluate(fdesc, c1, . . . , cp, pp)

result = SEC.Decrypt(sk, eval)

result is the decrypted output of the evaluation of a circuit as specified by fdesc on encrypted
inputs c1, . . . , cp, such that result = fdesc(x1, . . . , xp) (where, x1, . . . , xp is the unencrypted
input), i.e.,

Pr[result = fdesc(x1, . . . , xp)] = 1,

3.4 Practical Instantiation of SEC

Our generic privacy-preserving computation framework SEC can be practically implemented
by deploying any conjunctive SSE scheme as a black-box. In this work, we provide concrete

20

constructions of SEC using two conjunctive SSE schemes:

SECOXT. We analyze a concrete instantiation of SEC based on the OXT protocol [14],
abbreviated SECOXT. Our analysis fundamentally covers the complexity of SECOXT in
terms of performance and storage overhead, and a formal security analysis based on a well-
defined leakage profile. We provide a detailed complexity analysis of SECOXT based on
our experimental results in Section 5. The leakage profile and security proof of SECOXT is
elaborated in Section 4.3.

SECConjFilter. We also demonstrate the scalability and complexity overhead of a second
instantiation of SEC by deploying a purely symmetric-key based (plausibly quantum-safe)
conjunctive SSE, ConjFilter [40]. We provide performance and storage overhead analysis
of SECConjFilter in Section 5.

3.5 Complexity Analysis of SEC

Storage Overhead. The storage requirement of SEC depends upon the number of func-
tions it supports along with the number of search tokens (input combinations) for every
function. The final DB is collectively composed of three sub-databases (search indices)
DB = {DBAND,DBOR,DBXOR} encrypted and offloaded to the server. As discussed in Sec-
tion 1.2 and Section 3.2, each function-specific sub-database contains exactly eight key-
words13, which are mapped to exactly two documents (out of four possible documents). The
bulk of storage overhead comes from the set of n distinct “special” terms {w1

d,w
2
d, ...,w

n
d}

(for a circuit with n binary gates), for which SSE specific data structures occupy O(n)
space. Some constant number of dummy documents are also added to maintain a uniform
frequency of each keyword in the final encrypted database. Concretely, there are exactly
eight keywords for one binary function, four documents (including dummy documents) per
keyword, and n “special” terms. Total storage for three gates can be calculated as -

Total Storage = {[(8+ n)× 4]× 3} · b bytes = O(n)

where b is a constant.

Computation and Communication Overhead. The evaluation time of SEC for com-
puting arbitrary depth Boolean circuit over encrypted data scales linearly with the search
time complexity of the underlying CSSE scheme times some constant which depends upon
the depth of the circuit. The crux of SEC is to bypass the explicit circuit evaluation as done
in state-of-the-art encrypted computation schemes like FHE and leverage the extremely ef-
ficient encrypted search capability of a CSSE scheme to evaluate functions on encrypted
inputs. Detail Analysis is given in Section 5.

By constructing the mapping for all pairwise combinations in {w1
d,w

2
d, ...,w

n
d}, multiple

circuits can be executed securely without the need to refresh SEC’s data structures. This is
achieved by ensuring 1○ no two gates in the same circuit share a “special” term, and 2○ two
isomorphic gates in different circuits also do not share corresponding “special” terms. Hence,
the client’s amortized communication overhead is proportional to the function description

13We consider this as O(1) overhead in our analysis.

21

length (we assume a circuit evaluation with n gates). Post the one-time setup, the client
uses derangements of {w1

d,w
2
d, ...,w

n
d} to evaluate subsequent circuits. Asympotically, the

number of derangements (because of the need to avoid isomorphic gate assignments) is{
n!− Σn

i=0
(−1)i+1

i!

}
= O(n!).

4 Security and Leakage Profile Analysis of SEC

We analyze the security of SEC in this section. We follow a semi-honest adversarial setting
for our security analysis where the remote server is assumed to be honest-but-curious. That
implies the untrusted server follows the algorithmic specification exactly, but can also ob-
serve and record additional information for analysis. Using a simulation-based approach, we
establish formally that a probabilistic polynomial-time (PPT) simulator can simulate the
view of the adversarial server in an indistinguishable manner given only the leakage profile
of SEC. In this framework, a PPT adversary is required to distinguish between the real
world (where the adversary interacts with a real execution of SEC) and the ideal world
(where the adversary interacts with a simulator that only has access to the leakage pro-
file for SEC, described below). We assert this framework to be provably secure when no
PPT adversary can distinguish between the two scenarios with a significant advantage over
random guessing.

SEC inherits security properties and leakage profile from the underlying CSSE construction.
We note that CSSE is an adaptively secure conjunctive SSE scheme that is secure against
a semi-honest adversary A. The leakage of CSSE is characterized by the leakage function
LCSSE which is an ensemble of the leakage functions for Encrypt, GenToken and Search
individually, expressed in the following way.

LCSSE = {LEncrypt
CSSE ,LGenToken

CSSE ,LSearch
CSSE },

Given the above CSSE leakage functions, security of SEC can be analyzed using SEC leak-
age function LSEC in the same adaptive semi-honest adversarial model. LSEC is composed
of two separate leakage functions for KeyGen and Encrypt (as expressed below), that
capture the leakage from SEC.KeyGen and SEC,Encrypt execution respectively.

LSEC = {LKeyGen
SEC ,LEncrypt

SEC ,LEvaluate
SEC },

Security of SECOXT. We provide the security analysis of SECOXT, which follows from the
security notions of generic SEC and underlying OXT protocol.14.

Theorem 1 Given that OXT is an adaptively secure SSE scheme with respect to the leakage
function LOXT = {LEncrypt

OXT , LGenToken
OXT , LSearch

OXT } against a polynomially-bounded adaptive
adversary, SECOXT is also an adaptively secure encrypted computation framework with re-
spect to the leakage function LSECOXT

= {LKeyGen
SECOXT

,LEncrypt
SECOXT

,LEvaluate
SECOXT

}, where the SECOXT

14Analysis for SECConjFilter follows suit, since the leakage profile of SEC is agnostic of the CSSE used.

22

instantiation encrypts an input x1, . . . , xp using an IND-CPA secure symmetric-key encryp-
tion scheme to obtain corresponding encrypted bits c1, . . . , cp over which a (publicly known)
function f is evaluated, where f ∈ {fXOR, fAND, fOR}.

Proof 1 We give an extensive security analysis of SECOXT through formal proof of Theo-
rem 1 in Section 4.3.

4.1 Leakage Profile of SECOXT

We formally explain the leakage profile for the specific instantiation of SEC based on the
OXT scheme, namely SECOXT.

The significance of each component of the leakage function in SECOXT is comparable to
that of OXT. We define each leakage component as follows.

• N =
∑d

i=1 |Wi| - the total number of appearances of keywords in documents. The pa-
rameter N signifies an upper bound which is equivalent to the total size of EDB. Leaking
such a bound is unavoidable and is considered a trivial leakage in the literature of SSE.

• SP - size pattern of the queries i.e., the number of documents matching the sterm in each
query. Formally, SP ∈ [d]n and SP[i] = |DB(sterm[i])|. It leaks the number of documents
satisfying the sterm in a query. In SEC this is always constant (equal to 2), since each
keyword (encrypted input bit) maps to exactly four documents (encrypted output of function
evaluated on the particular encrypted input) in EDB.

• RP - result pattern of the queries or the indices of documents matching the entire con-
junction. Formally, RP is vector of size n with RP[i] = DB(sterm[i])∩DB(xterm[i]) for each
i = 1, . . . , n where xterm refers to all the other keywords in the conjunctive query other than
the sterm. It is the final output of the search query and is not considered a real leakage in
the context of SSE. This is always a single document in SEC.

4.2 Analysis of Potential Leakages in SECOXT

The database (search index) generation process and algorithmic design of SECOXT, renders
certain non-trivial information leakage insignificant or redundant, which is otherwise consid-
ered crucial by the underlying OXT scheme and could lead to potential correlation inference
by the server between two encrypted function computation. Due to the uniform keyword
frequency and selection of random “special” term for each query by the client, SECOXT

restricts certain non-trivial leakages like size-pattern, result-pattern, equality-pattern, condi-
tional intersection pattern leakages that analyze the frequency pattern of the “special” terms
and “cross” terms in OXT over multiple conjunctive queries. This makes OXT vulnerable
to certain state-of-the-art leakage-abuse attacks [47, 8].

• Size Pattern Leakage (SP). It leaks the number of documents satisfying the “special” term
in a query. In SECOXT since every keyword (input bit) maps to exactly four documents

23

(encapsulating encrypted output bits), this leakage reveals no significant information.

• Result Pattern Leakage (RP). It is the final output of the search query i.e. indices of
documents matching the entire conjunction. By the design of SECOXT the result of a
conjunctive query (binary function evaluation) is always a single document (single encrypted
output bit) and hence this does not reveal any significant information to the server.

• Equality pattern (EP). It indicates which queries have the equal “special” terms. This
occurs due to the optimization technique devised in OXT in order to ensure sub-linear search
complexity by filtering out the least frequent term (sterm) during the search. In SECOXT,
since the frequency of all keywords is the same, the client chooses a different “special” term
from a pool of dummy keywords (wk

d : k ∈ {1, . . . , n}) for different queries (gate evaluation).
Hence, the adversary will not be able to infer any correlation for multiple gate evaluation
over multiple (repeated/non-repeated) inputs.

• Conditional Intersection Pattern Leakage (IP). It is a subtle leakage in OXT that occurs
when two distinct queries have a common “cross” term but a different “special” term and
there exists a document that satisfies both the “special” terms. In such a scenario the set of
document indices matching both “special” terms is leaked (if no document matching both
“special” terms exists then nothing is leaked). In SECOXT this leakage will not reveal any
significant information about the underlying input bits to a function or the output of a
function evaluation, since all the input/output bits are encrypted using an IND-CPA secure
symmetric-key encryption scheme. The server cannot even correlate between the matched
documents of the “special” terms because for every query a unique “special” term is chosen
by the client.

All these leakages except N (total size of EDB) are essentially encapsulated by LSearch
OXT ,

and hence are leaked by the SEC.Evaluate algorithm (encapsulated by LEvaluate
SECOXT

). As ex-
plained above none of these leakages have a significant impact on the data privacy guarantees
of SEC.

4.3 Proof of Theorem 1

The security analysis of SECOXT (proof of Theorem 1) stems from the provable security
guarantee of OXT. We first outline the leakage sources of OXT, with respect to which OXT
is simulation secure. Subsequently, we show that adaptive semantic security of OXT implies
adaptive security guarantees of SECOXT.

We resort to the same simulation-based security analysis approach for SECOXT as of OXT.
We show that SECOXT is secure against an adaptive semi-honest adversary A, which has ac-
cess to leakages from LSECOXT

. We build a simulator SIM = {SIMKeyGen, SIMEncrypt,SIMEvaluate}
for SECOXT where the simulator emulates SECOXT execution just from the knowledge of
public information and leakage LSECOXT

.

Leakage Cover. We briefly describe why each of the individual leakage components
(LSECOXT

= {LKeyGen
SECOXT

,LEncrypt
SECOXT

,LEvaluate
SECOXT

}) are necessary for a simulator to produce cor-
rect results. To simulate SECOXT correctly each of the leakage components are critically

24

analyzed and their significance is justified. N or the total number of appearances of keywords
in the database gives the size of the EDB, which is encapsulated by the public parameter
pp along with the size of search token set |TokenSet|.

Simulating SECOXT KeyGen and Encrypt. In OXT the EDB comprises of two data
structures EDB = {TSet,XSet}. The main crux of our adaptive security proof is that
the simulator for SECOXT initializes the XSet and TokenSet to consist entirely of uni-
formly random elements from a discrete log hard group initially (while relying on the
DDH assumption for indistinguishability of the real and simulated XSet and TokenSet
entries). Additionally, the simulator for SECOXT can directly invoke the simulator for
the adaptively secure TSet to simulate the TSet entries at Encrypt. Overall SIM =
{SIMKeyGen,SIMEncrypt,SIMEvaluate} takes as input the leakage components as defined
by LKeyGen

SECOXT
. N and |TokenSet| is essentially learned from the public parameter pp, hence,

LKeyGen
SECOXT

= ⊥, LEncrypt
SECOXT

that reveals the length n of the ciphertext c1, . . . , cn, and LEvaluate
SECOXT

reveals {SP, RP, EP, CIP}. Using the leakages and the public parameter the SIM then
produces the ciphertext c1, . . . , cn which is indistinguishable from the encrypted output
returned by the original SEC.Encrypt algorithm on an input x1, . . . , xn.

Simulating SECOXT.KeyGen. We observe that, SECOXT.KeyGen comprises of the
GenDB, OXT.Encrypt (CSSE.Encrypt), OXT.GenToken (CSSE.GenToken) (this
phase is encapsulated in the OXT.Search protocol in [14], and is entirely executed by
the client). Without loss of generality, we extract the search token generation phase
(OXT.GenToken) and store all possible search tokens in TokenSet during SECOXT.KeyGen.
A number of values generated by pseudo-random functions (PRF) and group operations, are
inserted into TSet using TSet.Setup [14] and XSet respectively during OXT.Encrypt. Note
that, GenDB routine creates the plain look-up table for the supported primitive operations,
and it is executed on the client side. Hence, the adversarial server learns no information
from the GenDB execution itself and thus the leakage from GenDB can be expressed as
null.

LGenDB =⊥,

Thus, the simulator SIMKeyGen can exactly simulate GenDB execution straightforwardly.

Subsequently, the OXT.Encrypt is invoked with the plain DB generated by GenDB. Since
the OXT.Encrypt algorithm is executed in a black-box way, the leakage from SECOXT.KeyGen
is same as the OXT.Encrypt executed over DB. Also, OXT.GenToken phase is invoked
on all possible queries q of keywords (alphanumeric translations of encrypted input bits) in
DB. This algorithm is also used a black-box and is entirely executed by the client. Thus,
the leakage can be expressed as below.

LKeyGen
SECOXT

= {LEncrypt
OXT (DB),LGenToken

OXT (q)},

Finally, the TSet Setup execution does not leak additional information apart from already
known public information (the size of the database |W| = N is known). The leakage for
this part can be expressed as below.

LKeyGen,TSet
SECOXT

= N =⊥ as this is a public information

25

SIMKeyGen can run the TSet simulator (as discussed in the original paper [15]). Combined
all, the simulator for KeyGen (SIMKeyGen) simulates SECOXT.KeyGen with access to
following the leakage.

LKeyGen
SECOXT

={LGenDB,LKeyGen
SECOXT

,LKeyGen,TSet
SECOXT

},

Simulating SECOXT.Encrypt. For simulating SECOXT.Encrypt the simulator SIMEncrypt

observes LEncrypt
SECOXT

which is equal to the length of the ciphertext c1, . . . , cn.

LEncrypt
SECOXT

= |c1, . . . , cn|,

The SECOXT.Encrypt algorithm invokes an IND-CPA secure symmetric-key encryption
scheme which is used to encrypt an input bit x1, . . . , xn. The SIMEncrypt produces a
ciphertext c1, . . . , cn corresponding to the input only with the information from LEncrypt

SECOXT

and its state (sSIM). The ciphertext thus produced by SIMEncrypt is indistinguishable from
the ciphertext produced by SECOXT.Encrypt in the real scheme.

Simulating SECOXT.Evaluate. The Evaluate function takes as input encrypted bits
c1, . . . , cn and retrieves search tokens from the TokenSet using the encrypted input bits (as
input to the ConstructQuery subroutine). It then invokes the CSSE.Search function using
the search tokens and gets an encrypted bit as output. This process is repeated for all
gates at every depth of the circuit being evaluated. The ConstructQuery subroutine leaks
essentially no information to the server. This is because the input bits are encrypted using
an IND-CPA symmetric-key encryption algorithm and the search tokens to be searched are
dependent on the “special” term for that particular function/query (which can be selected at
random by the client and the number of possible permutation of “special terms” for a circuit
with n gates is upper bounded by O(n!)) and also the function to be evaluated. Therefore,
the search pattern in the TokenSet for any repeated input bits cannot be correlated by the
server. This proves that -

LConstructQuery =⊥,

The leakage LEvaluate
SECOXT

is therefore exactly similar to LSearch
OXT . Hence, we can write the

following.
LEvaluate
SECOXT

= {LSearch
OXT (EDB, stq)},

By the simulation security guarantee of OXT, SECOXT is secure against these leakages. We
show that the leakages from OXT.Search phase do not have any detrimental effect on the
encrypted function evaluations in SEC.

Let a client evaluate a circuit of the form f3(f2(x1,x2), f1(x3,x4)). The client sends the
encrypted input bits to SEC.Evaluate. A two-input function evaluation is translated
to a three-keyword conjunctive query, where the first keyword is a “special” term (chosen
randomly by the client), the second keyword corresponds to the first input bit, and the
third keyword to the second input bit. The client maintains a state of record of all “special
terms” used. For a circuit with n gates, the client chooses n “special” terms, which can be
permuted and selected in n! different ways (upper bounded by O(n!)). The client sends a
set of “special” terms to be used at each gate in a circuit. Since the “special terms” are

26

used to fetch the records from memory, permuting “special terms” for consecutive (same)
gate evaluation ensures no repetition of the same “special” term hence, the same memory
location is not accessed twice.

Case-I: If the same circuit is evaluated twice, the “special” terms are permuted (which is
upper bounded by O(n!)). Hence the server cannot distinguish between two identical gate
evaluations.

Case-II: The search tokens generated corresponding to encrypted input bits are a function
of the “special” term and the function being evaluated. Thus, for each gate, the search
tokens depend on “special” terms (n! possible combinations). This ensures that an adversary
cannot distinguish between two isomorphic gate evaluation.

This proves that the leakages incurred by the underlying CSSE.Search algorithm does
not compromise the security of SEC.Evaluate. The output of SEC.Evaluate is indis-
tinguishable from random by the security guarantees of an IND-CPA secure symmteric-key
encryption scheme. Since, OXT is proven simulation secure it follows from the simulation
security guarantee that A no additional advantage over the real experiment. This implies
the Real experiment of SEC (Algorithm 3) is indistinguishable from the Ideal experiment
(Algorithm 4), and proves Theorem 1.

4.4 LSEC and Reusability of Look-up Table

The design rationale of SEC guarantees privacy of the input bits to a function and the
output bit returned after function evaluation. SEC leverages the encrypted search capability
of an efficient CSSE scheme to perform encrypted computation. It might seem that the
inherent leakages of a typical CSSE should therefore directly affect the leakage profile of
SEC. However, pre-processing and configuring the encrypted search index (as done in SEC)
prevents direct extrapolation of the leakages of the underlying CSSE in SEC. We discuss
this in detail below.

Details on LCSSE. The most generic notion of SSE with optimal guarantees on security is
achievable through Oblivious RAM [33], which allows evaluation of search queries without
leaking anything to the server15. However, such ideal security guarantees come at immense
computational/communication overheads. Hence, most modern SSE constructions trade-off
security for efficiency by allowing calculated, acceptable leakages. Some usual leakages:

• sval Access Pattern: Two queries having the same “special” term can be correlated
by the server by the same set of svalw,Dj

returned. We emphasize that the server
learns not the plaintext alphanumeric value of w, but rather the fact that two queries
share the same “special” term.

• “Cross” term Access Pattern: Two queries having a common document matched
to their “special” term and the same cross term tuples (for example, (wk

d ,wi)) are
leaked since the same Tokenwk

d ,wi,Dj
is generated for both queries. As before, the

15As with state-of-the-art FHE and SSE constructions, we assume semi-honest server. That is, the server
acts as a passive adversary which does not deviate from the protocol.

27

server can not learn the underlying plaintext alphanumeric value of wi; it can simply
correlate same cross-terms across two queries.

• Query Result Pattern: Two queries having the same result (i.e. svalw,Dj
) can be

correlated by the server.

Unlinking “Computation” from Generic SSE Leakages. To the best of our knowl-
edge, state-of-the-art SSE constructions tolerate such correlations made by the semi-honest
server. However, when we use the search capabilities of SSE to compute, leaking these corre-
lations essentially allows a server to learn: 1○ when inputs of two different gates evaluations
are same, and 2○ when the output of two different gates is same. We stress that while
the exact plaintext input/output bit can not be leaked (thereby not violating data privacy
guaranteed by the IND-CPA symmetric-key encryption scheme used to encrypt the data);
still, such correlations between different computations are undesirable non-trivial leakages.

As such, we focus not on plugging these leakages, but rather on unlinking the computation
from such leakages. In other words, we allow the server to learn these leakages; but embed
no critical information in such leakages. To do so, we first observe the aforementioned
leakages: the “special” term is present in all leakage functions, be it whether the leakage
occurs through svalw,Dj or through Tokenwk

d ,wi,Dj
. Hence, in our construction, we do

not embed any computation-related information in the “special” term. From Table 2 it is
observed that the actual bits participating in computing XOR are independent of the choice of
wk

d . This design choice allows SEC to change the “special” term across multiple
queries. The server still learns the aforementioned leakages; however, no useful correlations
as to the underlying computation are revealed.

Example. Re-consider the same problem of computing XOR(1,1) through SEC, but now
the computations happen twice. As such, two queries q1 = (w1

d ∧ w1 ∧ w2) and q2 =
(w2

d ∧ w1 ∧ w2) are issued by a black-box conjunctive SSE scheme. We enumerate the
leakages visible across these queries:

• sval Access Pattern Leakage: q1 leaks [svalw1
d,Dj

: j ∈ {0, 1, 2, 3}]. Likewise, q2
leaks [svalw2

d,Dj
: j ∈ {0, 1, 2, 3}]

• “Cross” term Access Pattern Leakage: q1 leaks accesses made by Tokenwd1
,w1,Dj

and by Tokenw1
d,w2,Dj

. Likewise, q2 leaks accesses make by Tokenw2
d,w1,Dj

and by

Tokenwd1
,w2,Dj

. In all cases, j ∈ {0, 1, 2, 3}.

• Query Result Pattern Leakage: q1 leaks svalw1
d,D3

, while q2 leaks svalw2
d,D3

to
the server.

Hence, even though the same gate with same inputs is being evaluated, by unlinking the
“special” term from the actual computation, the view of the server is different in both cases.
LSEC still contains these leakages (as with LCSSE), but the server can still not correlate
multiple evaluations of the same gate.

Concrete Realization of LOXT. We now discuss how LSEC extends to a concrete in-
stantiation using OXT. We first recall that SEC ensures data privacy by supporting func-
tion evaluation over symmetrically encrypted (IND-CPA secure symmetric-key encryption)

28

data (input bits) and returning the encrypted output after evaluation. In addition, it also
prevents the server (adversary) to correlate or infer any statistical information about the
input/output bits by observing the leakage profile of SEC. To extend LSEC to a concrete
instantiation using OXT, we begin with the question:

For SECOXT, what aspects of LOXT allow correlation of two different queries pertaining to
the same inputs?

The answer is by observing the access pattern leakage. In our instantiation of SECOXT, every
input to a function is mapped to a keyword, and a function evaluation’s encrypted output
is encapsulated in a document. Also there exist some “dummy” keywords (equal to the
number of gates in a circuit) and some “dummy” documents which are meticulously added
to segregate any correlation between multiple gate evaluation from the leakages incurred by
the underlying SSE scheme (OXT). Each keyword-document pair for a particular function
is stored in a memory location pointed to by an address that is generated by a pseudo-
random function. An adversary can correlate the (encrypted) input bits being evaluated over
multiple queries/function evaluations, by observing the pattern of the memory locations that
are being accessed for different queries/function evaluations. For the same input combination
and same function, the server will access the same memory location to fetch the document
that stores the encrypted output of the function evaluation. A straightforward mitigation
of access-pattern leakage in a SSE scheme is non-trivial and to the best of our knowledge,
has not been explored in the literature. We provide a potential solution in SECOXT such
that an adversary cannot infer the access pattern over multiple searches, and hence any
statistical analysis of the encrypted input bits.

Reusability of Lookup Table. The unique selection of “special” terms by a client for each
gate evaluation guarantees resistance of SECOXT to any statistical analyses of input bits by
restricting the adversary’s advantage of reverse-engineering inputs to negligible. This design
choice also ensures that the same function invocation across different input sets has a non-
identical access pattern. Concretely, for an adversary to correlate the encrypted input bits in
two same function evaluations of the form fi(x, y) (where, x, y are all encrypted), it requires
correlating the “special” term used for each query (evaluation). Let in this case the client
chooses two different “special” terms for each gate evaluation, the corresponding conjunctive
query translates to - qfi = w1

d ∧wx ∧wy for first evaluation and qf ′
i
= w2

d ∧wx ∧wy for
second evaluation (where, wx,wy are keywords that map to the corresponding input bits).
By the design of OXT the access pattern leakage is dependent on the “special” term because
the memory location of the documents corresponding to the “special” term is accessed and
only those documents are fetched during a conjunctive search. In the example above the
probability of an “special” term being repeated is upper bounded by O(n!) (n is the number
of gates in a circuit) because the client chooses unique “special” terms for every query
(function evaluation). This is unlike the original OXT scheme where the “special” term is
determined based on the least frequent keyword in the query and hence for the example above
it would be the same for both functions. Since the frequency of all keywords in SECOXT

is equal, we can leverage the unique selection of a “special” term thereby preventing an
adversary from potentially guessing the encrypted input bits to a function by observing the
memory access pattern. We re-iterate that both queries qfi and qf ′

i
to the encrypted lookup

table evaluate the same function fi(x, y), hence the output of both evaluations will be equal.

29

However, because of refreshing the “special” term across two queries, the adversarial view
of the server is unique for both queries. Thus, using the same look-up table that is encrypted
and offloaded to the server once during CSSE.Setup phase,SEC can evaluate any arbitrary
Boolean circuit multiple times. This is guaranteed both in a single circuit across multiple
gate evaluation as well as across multiple circuit evaluation. Hence, even though the generic
SSE leakages still occur, nothing significant to the underlying computation is compromised.

Theorem 2 (Reusability of Lookup Table) Given that SECOXT encrypts an input x1, . . . , xp

using an IND-CPA secure symmetric-key encryption scheme to obtain corresponding en-
crypted bits c1, . . . , cp that is used as an input to a (publicly known) function f , and all
information leaked from the underlying CSSE.Search (OXT.Search) phase is encapsu-
lated by LSearch

OXT , SECOXT ensures reusability of the same look-up table for multiple (simi-
lar/different) gate evaluations without leaking any extra information than that encapsulated
by LSECOXT

, while guaranteeing input and output data privacy from semantic security guar-
antees of an IND-CPA secure encryption scheme.

Proof 2 We prove Theorem 2 via a sequence of games between a challenger and an ad-
versary, where the first game (G0) is identical to the real experiment RealSECA and the
final game (Simulator) is identical to the simulation experiment IdealSECSIM,A. We establish
formally that the view of the adversary A in each pair of consecutive experiments is compu-
tationally indistinguishable. For ease of exposition, we consider the client computes a binary
function f on encrypted input bits {c1, c2}.

Game G0. This game is identical to RealSECA , where the challenger generates transcripts for
the encrypted input bits {c1, c2} by invoking SEC.Encrypt and transcripts for the output
f(c1, c2) by invoking SEC.Evaluate.

Pr[G0 = 1] ≤ Pr[RealSECA (λ) = 1]− negl(λ),

Game G1. This game is identical to G0 except for the fact that the challenger changes the
encrypted input of function f to {c3, c4}. The evaluation of the function is done by invoking
SEC.Evaluate in the same way as done in G0, i.e. lookup is performed on the same
encrypted lookup table. The adversary cannot distinguish between G0 and G1 due to the use
of different “special” terms for both queries.

f(c1, c2)
translated−−−−−−−→ OXT.Search(EDB, {w1

d ∧w1 ∧w2})

f(c3, c4)
translated−−−−−−−→ OXT.Search(EDB, {w2

d ∧w3 ∧w4})

where, {w1
d,w

2
d} are randomly chosen “special” terms, and {w1, . . . ,w4} are translated

keywords from input bits {c1, . . . , c4}. We say that by IND-CPA security guarantees the
output of both G0 and G1 are indistinguishable from random.

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ negl(λ),

30

Game G2. This game is identical to G1 except for the fact that the function being evaluated
is changed to f ′ by the challenger. Since the search tokens generated depend on the “special”
term and the function being evaluated, and since for every function evaluation the “special”
term is chosen randomly by the client, for every function (same/different) evaluation the
search tokens generated are different. The adversary can therefore not distinguish between
two isomorphic gate evaluations.

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ negl(λ),

Simulator. The simulator SIM generates similar transcripts for SEC.Evaluate using the
leakages from LSECOXT

and this experiment is similar to IdealSECSIM,A. How the transcripts
are generated from each leakage component is discussed in detail above. We state here, that
the SIM generates the transcripts from the corresponding leakages correctly, and the output
of IdealSECSIM,A is indistinguishable from G2.

4.5 Statistical Analysis of Leakage Due to Reusability

We demonstrated a proof of computational indistinguishability (from an adversarial perspec-
tive) that establishes the secure reusability of SEC’s lookup tables in Section 4.3. In this
section, we provide statistical analysis of the leakage from SEC’s lookup tables to validate
the same. For this, we closely follow the non-interference security notion well established in
several side-channel analysis paradigms [4, 21].

Abstractly, the non-interference property ensures no sensitive information flow to the output
of a system, given the system’s inputs. In context of SEC, non-interference between inputs
to SEC.Evaluate and LEvaluate

SEC (i.e. the observable leakage) translates directly to the
server’s inability to infer (with statistical significance) anything about the inputs purely
from LEvaluate

SEC . Concretely, non-interference can be defined as [4, 21]:

Definition 1 (Non-Interference) For a probabilistic program P, consider the set of secret
(“high”) inputs as H, the set of public (“low”) inputs as L, and the output as L. Then, P is
said to be non-interfering if and only if the mutual information I(L; H | L) = 0.

In other words, this information-theoretic definition captures the mutual information (or the
mutual dependence) of L and H (or the critical, secret input to P), given knowledge of non-
secret L. P is considered to be non-interfering if variations in H do not (statistically) affect L
(given knowledge of L). This is captured by the mutual information (conditioned on L) being
0. However, estimating conditional mutual information in an information-theoretic setting
is a difficult problem in general. Thus, a slightly “relaxed” definition for non-interference
can be used instead [21]:

Definition 2 (“Relaxed” Non-Interference) For a probabilistic program P, consider the
set of secret (“high”) inputs as H, the set of public (“low”) inputs as L, and the output as
L. Then, P is said to be non-interfering if the marginal distribution of L is independent of
the distribution of H.

31

Concretely, from the point of view of reusability in SEC (as in Section 4.3), the random
choice of “special” terms by the client leads to a computationally indistinguishable view
of the server for repeated evaluations. From the perspective of non-interference definitions
established, given a query executed in SEC.Evaluate, the “high” inputs H correspond to
the actual tokens that map inputs to the function being evaluated, while the “low” input is
the “special” term (that does not participate in actual functional evaluation). Evidently, L
is then essentially the leakage observed from SEC’s evaluate phase (i.e. LEvaluate

SEC).

To establish statistical independence between H and L, we rely on Welch’s t-test (that is
naturally applied when two populations have unequal variances). In our experiments, we
allow the server to learn memory access patterns wrt. the aforementioned leakage profile of
SEC.Evaluate. The null hypothesis (for a two-tailed test) then tests whether the popula-
tion means for two evaluations of SEC (while reusing SEC’s data structures) are indistin-
guishable. We initialize the “special” terms during SEC.KeyGen as usual, and the client
controls the permutations of the same over the execution of 1 million queries (i.e. a circuit
consisting of 1 million gates). Our α value (i.e. the probability of incorrectly rejecting the
null hypothesis when it is instead true) is 1%. Empirically, we observe a t-statistic of−1.7321
and a p-value of 0.0832. We hence conclude that there is not sufficient evidence to reject
the null hypothesis. In other words, statistically, the server’s view (given SEC.Evaluate’s
leakage profile) of reusable executions in SEC is statistically indistinguishable from the
execution of a randomly sampled circuit of the same size (for client-controlled permuta-
tion of “special” terms). This statistically establishes non-interference of H in the leakage
LEvaluate
SEC .

5 Experimental Results

In this section, we report on a prototype implementation of SECOXT and compare it with a
prototype implementation of the TFHE library [20], which implements an efficient and fast
gate-by-gate bootstrapping [19].

Implementation Details. Our prototype implementations are developed in C++ and we
use Redis as the database backend. More specifically, we realize all PRF operations using
AES-256 in counter mode, BLAKE3 hash function for computing all hash operations, and
all group operations over the elliptic curve Curve25519 [7].

Platform. For our experiments, we used a single node with 64-bit Intel Xeon Silver 4214R
v4 3.27GHz processors, running Ubuntu 20.04.4 LTS, with 128GB RAM and 1TB SSD hard
disk.

Evaluation Of Storage Overhead. As discussed in Section 3.5, the storage required for
SEC scales with the number of keyword-document pairs and the number of search tokens
for a particular function. In our implementations, the server storage required for SECOXT to
store TSet16 and XSet17 and the TokenSet is around 43 KB while that for SECConjFilter is 26
KB. We thus note that SEC is highly optimized and scalable with significantly fewer storage

16OXT specific data structure to store inverted index for the “special” term.
17OXT specific data structure to check presence of “cross” terms in respective document identifiers.

32

requirements than state-of-the-art FHE schemes. Table 6 offers a quantifiable comparison.

Table 6: Storage Overhead comparison (in MB) of SEC with existing FHE schemes in
literature. Storage overhead of FHE scheme typically indicates the bootstrapping key size
whereas for SECOXT and SECConjFilter it implies the size of the encrypted search index
stored at the cloud server.

Scheme Storage Overhead (in MB)

Gentry et. al[31] 3700

Gentry et. al[27] 2300

Halevi et. al.[36] 1600

Ducas et. al[24] 1000

Chillotti et. al.[19] 24

SECConjFilter (This work) 0.449

SECOXT (This work) 0.098

Evaluation of Computation time. The evaluation time of SECOXT for computing arbi-
trary depth Boolean circuit over encrypted data scales linearly with the search time com-
plexity of OXT times some constant which depends upon the depth of the circuit. The
time required to retrieve the documents corresponding to a conjunctive query scales with
the least frequent keyword in the query in OXT. Since the database (search index) in SEC
is extremely small, the time taken by OXT.Search is significantly less. Hence, the aver-
age time required by SECOXT is around 10 milliseconds for one binary function evaluation
which is remarkably fast. On a similar note SECConjFilter scales with the search complexity
of ConjFilter, which is dependent on the least frequent conjunct in the query. Notably
SECConjFilter exhibits even faster performance with an average evaluation time of 40 mi-
croseconds for one binary function evaluation. Our experimental results validate that SEC
is highly efficient and extremely fast while evaluating arbitrary Boolean functions over en-
crypted data. Figure 3 compares the execution time of SECOXT and SECConjFilter with
different TFHE backends for varying depth of circuits.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 101 201 301 401 501 601 701 801 901

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Experiments

TFHE-Nayuki AVX TFHE-Nayuki portable TFHE-Spqlios AVX

TFHE-Spqlios FMA SECOXT SECConjFilter

Figure 2: Time taken (in seconds) for 1000 invocations of SECOXT and SECConjFilter

against different TFHE backends.

Comparison With FHE. We compare SECOXT and SECConjFilter with different varia-
tions of TFHE in Figure 2. One variation is Nayuki portable (non-AVX) and AVX builds,
which implement very efficient versions of Fast Fourier Transform. Another back-end family
is spqlios AVX and spqlios FMA back-ends, which are efficient assembly implementations
of ring operations. It is observed from Figure 2 that SECOXT is 103× and six to seven

33

0

5

10

15

20

1 11 21 31 41
T

im
e
 (

)i
n

 s
e
c
o

n
d

s
)

Depth

TFHE-Nayuki AVX TFHE-Nayuki portable TFHE-Spqlios AVX

TFHE-Spqlios FMA SECOXT SECConjFilter

Figure 3: Time taken (in seconds) for different circuit depths of SECOXT and
SECConjFilter against different TFHE backends.

Table 7: Time taken (in minutes) and Storage overhead (in MB) for evaluation of AES-128
circuit and Maxpool function (AlexNet) by SECOXT and SECConjFilter against different

TFHE backends.

Scheme Time (in minutes) Storage (in MB)
AES-128 Maxpool function

TFHE-Nayuki Portable 336.03 2920.52 24

TFHE-Nayuki AVX 179.02 1441.18 24

TFHE-Spqlios AVX 57.37 523.62 24

TFHE-Spqlios FMA 41.87 349.30 24

SECConjFilter (This work) 1.02 6.18 0.449

SECOXT (This work) 6.57 48.17 0.098

times faster; SECConjFilter is 106× and 103× faster than the portable TFHE backend and
the fastest (non-portable) TFHE backend Spqlios AVX, respectively. Figure 3 compares the
increase in execution time with an increase in the depth of the circuit. Both instantiations
of SEC outperforms the fastest TFHE backend using Spqlios AVX optimization for function
evaluation of arbitrary depth.

We showcase SEC’s scalability for functions with multi-bit inputs by using it for encrypted
evaluation of (i) the entire AES-128 circuit (with XOR/AND/NOT-gate count of 25124/6800/1692)
and (ii) three max-pooling layers of AlexNet architecture18 (a circuit with OR-gate count of
289060). This requires no extra storage (since we still only require storage for three extra
gates), and the performance figures (as well as a comparison with Torus-FHE) are described
in Table 7. For both circuits, a (non-parallelized) implementation of SECOXT outperforms a
(non-parallelized) implementation of Torus-FHE by six to seven orders of magnitude, while
a (non-parallelized) implementation of SECConjFilter shows an improvement of 103× in
computation time (we expect the relative comparison to remaining unchanged with paral-
lelization and additional hardware/software-level optimizations). SECOXT requires around
250× less storage while SECConjFilter requires 50× times less storage, which are remarkably
less. These results clearly showcase the efficiency and scalability of SEC for circuits with
multi-bit inputs.

18KSH17 Imagenet classification with deep convolutional neural networks

34

6 Discussion

We conclude with a brief discussion comparing SEC with traditional FHE. The core tech-
nical difference between SEC and FHE is as follows: SEC models each Boolean gate as
a truth table, and leverages encrypted look-ups for evaluating this truth table on an en-
crypted input, while FHE models each Boolean gate as an algebraic operation over some
appropriate algebraically structured mathematical object (e.g., polynomial rings [27, 11, 32]
or the Torus [19, 20]), and exploits the algebraic structure underlying each encrypted input
to evaluate the gate. This offers an efficiency vs functionality tradeoff. As demonstrated
empirically, SEC outperforms traditional FHE schemes significantly, both in terms of com-
putation time and storage requirements, when operating over symmetrically encrypted data.
On the other hand, the algebraic structure underlying FHE allows it to operate over publicly
encrypted data, and we leave it as an interesting open question to extend the lookup-based
approach underlying SEC to computing over publicly encrypted data.

We note, however, that in many practical applications (e.g., querying over outsourced en-
crypted databases), it suffices to support evaluation of arbitrary Boolean circuits over sym-
metrically encrypted data, since the data owner is also the primary entity querying the
(encrypted) data after outsourcing it to an untrusted server for storage and processing. In-
deed, this setting motivates the entire literature on SSE [43, 23, 17, 14], albeit for restricted
classes of functions. To the best of our knowledge, our work is the first to establish the
possibility of supporting arbitrary Boolean circuit evaluation efficiently over encrypted data
using purely symmetric-key encryption techniques on top of lookup-based gate evaluation.
Indeed, as demonstrated by our theoretical analysis and practical evaluation, the usage of
purely symmetric-key primitives is what enables the highly desirable efficiency and compact-
ness guarantees of SEC, allowing it to scale over extremely large symmetrically encrypted
datasets while outperforming FHE.

References

[1] Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., et al.: Openfhe: Open-source fully homomorphic
encryption library. In: WAHC (2022)

[2] Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Ad-
vances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2013. Proceedings, Part I (2013)

[3] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Ad-
vances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 17-21, 2014, Proceedings, Part I 34 (2014)

[4] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.: Verified
proofs of higher-order masking. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 457–485. Springer (2015)

35

[5] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: the ACM
Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA
(2012)

[6] Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Security,
Proceedings, Part II (2017)

[7] Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Public Key Cryp-
tography - PKC. Lecture Notes in Computer Science (2006)

[8] Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: 27th
Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA (2020)

[9] Boemer, F., Kim, S., Seifu, G., DM de Souza, F., Gopal, V.: Intel hexl: accelerating
homomorphic encryption with intel avx512-ifma52. In: WAHC (2021)

[10] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011,
Providence, RI, USA, March 28-30, 2011. Proceedings 8 (2011)

[11] Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in lwe-based homomorphic
encryption. In: Public-Key Cryptography–PKC 2013 (2013)

[12] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (stan-
dard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011 (2011)

[13] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation. In: NDSS 2014 (2014)

[14] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for boolean queries. In: CRYPTO (2013)

[15] Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for boolean queries. In: CRYPTO 2013
(2013)

[16] Chang, Z., Xie, D., Li, F.: Oblivious ram: A dissection and experimental evaluation.
Proceedings of the VLDB Endowment (2016)

[17] Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: ASI-
ACRYPT 2010 (2010)

[18] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: ASIACRYPT 2017 (2017)

[19] Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT 2016 (2016)

36

[20] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: Fast fully homomorphic
encryption library (2019)

[21] Clark, D., Hunt, S., Malacaria, P.: Quantified interference: Information theory and
information flow. In: Workshop on Issues in the Theory of Security (WITS’04) (2004)

[22] Clearinghouse., P.R.: Chronology of data breaches. https://privacyrights.org/

data-breaches (2024)

[23] Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: ACM CCS (2006)

[24] Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less than
a second. In: EUROCRYPT 2015 (2015)

[25] El-Yahyaoui, A., Kettani, M.D.E.E.: A verifiable fully homomorphic encryption scheme
for cloud computing security. CoRR (2018)

[26] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the
forty-first annual ACM symposium on Theory of computing (2009)

[27] Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme.
In: EUROCRYPT 2011 (2011)

[28] Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in bgv-style homomor-
phic encryption. In: SCN (2012)

[29] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic en-
cryption. In: PKC 2012 (2012)

[30] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog over-
head. In: Eurocrypt (2012)

[31] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
CRYPTO 2012 (2012)

[32] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in Cryptol-
ogy - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I (2013)

[33] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM) (1996)

[34] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Symposium on Theory of Com-
puting Conference, STOC’13, Palo Alto, CA, USA. ACM (2013)

[35] Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS: efficient and
scalable MPC in the honest majority setting. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, Proceedings, Part II (2021)

37

https://privacyrights.org/data-breaches
https://privacyrights.org/data-breaches

[36] Halevi, S., Shoup, V.: Design and implementation of helib: a homomorphic encryption
library. Cryptology ePrint Archive (2020)

[37] Kamara, S., Wei, L.: Garbled circuits via structured encryption. In: Financial Cryp-
tography and Data Security - FC 2013 Workshops, USEC and WAHC 2013, Okinawa,
Japan (2013)

[38] Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the rijndael s-box. In: Topics in Cryptology–
CT-RSA 2005 (2005)

[39] Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations
from the decisional linear assumption. In: Annual cryptology conference (2010)

[40] Patel, S., Persiano, G., Seo, J.Y., Yeo, K.: Efficient boolean search over encrypted data
with reduced leakage. In: ASIACRYPT 2021 (2021)

[41] Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive search-
able symmetric encryption. In: NDSS 2021 (2021)

[42] Smart, N.P.: Practical and efficient fhe-based MPC. In: Quaglia, E.A. (ed.) Cryptog-
raphy and Coding - 19th IMA International Conference, IMACC 2023, London, UK,
Proceedings (2023)

[43] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceeding 2000 IEEE symposium on security and privacy. S&P 2000 (2000)

[44] Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. In: CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, 2020 (2020)

[45] Yang, Q., Peng, G., Gasti, P., Balagani, K.S., Li, Y., Zhou, G.: MEG: memory and
energy efficient garbled circuit evaluation on smartphones. IEEE Trans. Inf. Forensics
Secur. (2019)

[46] Yuan, B., Jia, Y., Xing, L., Zhao, D., Wang, X., Zou, D., Jin, H., Zhang, Y.: Shattered
chain of trust: Understanding security risks in cross-cloud iot access delegation. In:
USENIX Security Symposium (2020)

[47] Zhang, Y., Katz, J., Papamanthou, C.: Queries are belong to us: The power of file-
injection attacks on searchable encryption (2016)

[48] Zhou, W., Jia, Y., Yao, Y., Zhu, L., Guan, L., Mao, Y., Liu, P., Zhang, Y.: Discovering
and understanding the security hazards in the interactions between iot devices, mobile
apps, and clouds on smart home platforms. In: 28th USENIX Security Symposium
(2019)

38

	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries and Background
	Conjunctive SSE: Syntax and Security Model
	Adaptive Security of CSSE

	Symmetric Encrypted Computation
	Syntax of SEC
	SEC Construction
	Proof of Correctness of SEC
	Practical Instantiation of SEC
	Complexity Analysis of SEC

	Security and Leakage Profile Analysis of SEC
	Leakage Profile of SECOXT
	Analysis of Potential Leakages in SECOXT
	Proof of Theorem 1
	LSEC and Reusability of Look-up Table
	Statistical Analysis of Leakage Due to Reusability

	Experimental Results
	Discussion

