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Abstract. Fully Homomorphic Encryption (FHE) is a cryptographic method that
guarantees the privacy and security of user data during computation. FHE algorithms
can perform unlimited arithmetic computations directly on encrypted data without
decrypting it. Thus, even when processed by untrusted systems, confidential data is
never exposed. In this work, we develop new techniques for accelerated encrypted
execution and demonstrate the significant performance advantages of our approach.
Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI)
scheme, which is a current state-of-the-art method for evaluating arbitrary functions
in the encrypted domain. CGGI represents a computation as a graph of homomorphic
logic gates and each individual bit of the plaintext is transformed into a polynomial in
the encrypted domain. Arithmetic on such data becomes very expensive: operations
on bits become operations on entire polynomials. Therefore, evaluating even relatively
simple nonlinear functions with the CGGI cryptosystem, such as a sigmoid, can take
thousands of seconds on a single CPU thread. Using our novel framework for end-to-
end accelerated encrypted execution called ArctyrEX, developers with no knowledge
of complex FHE libraries can simply describe their computation as a C program that
is evaluated 18× faster on average relative to the GPU-accelerated Concrete library
for multiplication-intensive benchmarks.
Keywords: Fully homomorphic encryption, high performance computing, GPU accel-
eration, data privacy.

1 Introduction
Cloud computing allows users to forego the practice of maintaining costly data centers in
house, and provides both computation and storage capabilities on-demand. However, all
user data will necessarily reside on servers owned by the cloud service provider who could
view the uploaded data. Additionally, attackers are increasingly targeting cloud servers
because they contain sensitive data from multiple users [57] [6] [64]. FHE allows users to
encrypt data locally, outsource the ciphertexts to the cloud for oblivious and meaningful
computation, and receive the encrypted processed data for decryption. This can be used
for a wide variety of applications, such as privacy-preserving machine learning as a service
(MLaaS) [29] [23] [15] and facial recognition [65] [48].

FHE was realized in 2009 with the advent of the bootstrapping procedure which allows
unlimited computation on ciphertexts [30]. However, early FHE was plagued by both
high memory requirements and enormous computational overheads, which rendered it
infeasible for adoption. Since its inception, great strides have been made to reduce these
runtime costs: First, new homomorphic encryption schemes have been developed with
more efficient bootstrapping constructions, such as DM [27] and CGGI [18]. Additionally,
various algorithmic and software optimizations, such as HE-friendly number theoretic



1 int dot_product(int x[500], int y[500]) {

2 int product = 0;

3 for (int i = 0; i < 500; i++)

4 product = product + x[i] * y[i];

5 return product;

6 }

(a) Dot Product Code

1 void fc_layer(short x[256],

2 short w[7680],

3 short res[30]) {

4 for (int i = 0; i < 30; i++)

5 for (int j = 0; j < 256; j++)

6 res[i] = res[i] + x[j] * w[256 * i + j];

7 }

(b) Fully-Connected Layer Code

(c) Dot Product Performance (d) MNIST Classification Performance

Figure 1: Demonstration Applications: Using our approach, a dot product subroutine
runs ≈ 6× faster on a single A100 GPU and over 42× faster with an NVIDIA DGX A100
relative to an AMD EPYC 7742 baseline (with 256 threads), resulting in an end-to-end
application level speed up of 31× for our demonstration using MNIST classification.

transforms (NTT) [25], have yielded significant speedups in encrypted computation for
certain core operations. Additionally, utilization of the residue number system (RNS)
has been employed to enhance parallelism and avoid large integer arithmetic [39] [16] [7].
Lastly, CPU-based acceleration techniques were also adopted, including AVX and FMA
extensions [10]. However, the algorithmic level performance gains have begun to stagnate
and further speedups are coming mostly from hardware acceleration.

Numerous hardware platforms for FHE computation show promise, such as GPUs [26,
20], ASICs [56, 47], FPGAs [54], and even optical processors (OPUs) [67]. In this work,
we focus on GPUs, which have been thoroughly demonstrated to be well-suited to the
primitives underlying encrypted computation with FHE. Most encrypted operations expose
ample parallelism and are computationally intensive [45]; therefore, FHE applications
can leverage the high degrees of parallelism afforded by these devices. For instance, a
10 × 10 matrix multiplication in the encrypted domain using the CGGI cryptosystem in
gate bootstrapping mode [18] requires hundreds of millions of large polynomial arithmetic
operations and NTTs. Open-source nuFHE [50] and cuFHE [26] libraries expose an API
akin to an assembly language, requiring programmers to compose their algorithms as
Boolean circuits and their goal was to maximize the performance of individual homomorphic
operations, as opposed to end-to-end encrypted applications themselves.

In this work, we propose a framework called ArctyrEX (Accelerated Encrypted
eXecution) demonstrate that GPU-accelerated FHE can be used to greatly improve the
efficiency of realistic and representative FHE applications, such as neural network inference
and large linear algebra arithmetic. We also introduce automated scheduling techniques
that allow for strong scalability while evaluating encrypted algorithms with multiple GPUs.
Notably, most cryptographic details and all hardware acceleration functionalities are
handled automatically by ArctyrEX to minimize the burden on programmers. Our key
contributions can be summarized as follows:

• A custom algorithm to translate high-level code to GPU-friendly FHE programs that
reduces latency by up to 36%, while also reducing circuit size by up to 40% relative
to a standard synthesis flow;
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• A novel scheduling methodology that facilitates efficient computation across multiple
GPUs, which enables encrypted programs to run 18× faster for multiplication-
intensive benchmarks on 2 GPUs relative to the state-of-the-art Concrete library [19];

• A new CUDA-accelerated backend for the CGGI cryptosystem that prioritizes fast
evaluation of arbitrary algorithms and outperforms state-of-the-art multi-threaded
CPU and GPU implementations by more than an order of magnitude for many
studied linear algebra benchmarks.

Our proposed framework makes a variety of applications practical in FHE. As a case in
point, Figure 1 showcases the high-level input code and performance of both a dot product
of two large vectors as well as a fully-connected layer in machine learning applications.
The user of our system simply needs to describe their computation as a C++ program; no
knowledge of complex FHE libraries is required, except for the desired level of security. For
C++ code outlining a dot product of two encrypted vectors of length 500, our framework
automatically generates a highly efficient circuit consisting of 922308 gates with 128 levels
resulting in approximately one billion combined NTT and inverse NTT invocations.

2 Preliminaries
This section discusses different variants of homomorphic encryption and provides the
motivation for adopting fully homomorphic encryption for general-purpose computation.
Additionally, it provides theoretical details regarding the CGGI cryptosystem employed in
this work.

Homomorphic Encryption
All encryption schemes that exhibit homomorphic properties enable meaningful compu-
tation directly on ciphertext data without revealing the underlying plaintext. The two
variants of homomorphic encryption that support functionally complete sets of operations
include leveled homomorphic encryption (LHE) and FHE. In both cases, ciphertexts are
encoded as tuples of high-degree polynomials and adding or multiplying ciphertexts takes
the form of polynomial addition or multiplication. These polynomials typically range from
degree 210 to 217 and the coefficients are integers modulo q, which is a product of primes
and typically hundreds of bits in length. In the encrypted domain, addition increases the
ciphertext noise slightly, while multiplication is significantly more noisy. An unfortunate
consequence of this ciphertext noise (which is necessary for security) is that the noise
magnitude increases during each homomorphic arithmetic operation, and eventually the
noise will corrupt the underlying plaintext message and prevent successful decryption with
high probability. LHE can mitigate noise for a finite number of operations using a modulus
switching technique, with larger encryption parameters allowing higher noise tolerance.
However, larger parameters entail slower computation and higher memory consumption,
limiting scalability for very deep circuits.

FHE solves the scalability issues inherent to LHE and allows for unbounded, arbitrary
computation on encrypted data. First realized by Gentry in 2009 [30], bootstrapping
is a noise mitigation technique that can be applied an infinite number of times, unlike
modulus switching. In fact, any LHE scheme can be converted to an FHE scheme with
the inclusion of bootstrapping. Nevertheless, the bootstrapping procedure itself is costly
in terms of latency and remains a key bottleneck of all FHE constructions. Depending on
the cryptosystem and chosen parameters, bootstrapping can take anywhere from several
milliseconds [18] to minutes [31]. Therefore, the only way to achieve feasible FHE for
general-purpose computation is to accelerate and optimize the bootstrapping mechanism.
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Figure 2: Encrypted Logic Gate Evaluation: All standard two-input logic gates begin
with a series of linear operations between the input TLWE ciphertexts, followed by a
bootstrapping procedure (executed by the looped instructions), and lastly a keyswitching
operation. The steps in yellow represent operations associated with bootstrapping.

The CGGI Cryptosystem

Both the DM [27] and CGGI cryptosystems [18] possess bootstrapping routines that can be
evaluated in up to tens of milliseconds on a CPU using modern open-source implementations
such as Concrete [19] and OpenFHE [3], which is faster than other FHE cryptosystems.
Also, while other schemes encrypt vectors of integers and floating point numbers, CGGI
and DM are typically used to encrypt individual bits into a single ciphertext. Due to this
encoding, the core encrypted operations take the form of Boolean gates, which are more
flexible in terms of general computation than arithmetic operations over integers (e.g.,
encrypted comparisons are easily implemented using encrypted bits).

As discussed, to support unlimited computation depths, the FHE scheme must peri-
odically invoke a bootstrapping operation to reset the amount of noise in the ciphertext.
In the case of CGGI, which evaluates Boolean gates, bootstrapping must be performed
every gate. As a result, evaluating a single homomorphic gate requires on the order of
2,000 polynomial multiplications [18], which are typically accomplished using the Discrete
Fourier Transform (DFT). While this is an efficient algorithm for a single polynomial
multiplication, even a small application could require billions of DFTs. For example, the
computation graph for a single inner product of two vectors comprising 16 encrypted 16-bit
numbers contains nearly 25,000 encrypted logic gates. Evaluating this circuit results in
over 75 million invocations of the DFT. DM [27] was the first cryptosystem to introduce
a functional bootstrap that refreshes noise while simultaneously evaluating a non-linear
operation on the encrypted bits. In fact, this bootstrap is a necessary component of the
computation for logic gates such as NAND.

CGGI improves upon this construction and generalizes it for all logic gates, including
an encrypted MUX that is capable of obliviously choosing between two encrypted bits
dependent on the underlying value of an encrypted selector bit. For all gates except
the inverter, which is noiseless and linear, the bootstrapping operation comprises the
majority of the gate’s latency [41]. In turn, the core bottleneck of bootstrapping is the
numerous polynomial multiplications between encrypted secret key components and input
ciphertexts. Most FHE libraries perform these high-degree polynomial multiplications
as element-wise multiplications in the DFT domain, which is asymptotically faster than
textbook polynomial multiplication [14] [24]. Both the number theoretic transform (NTT)
and fast fourier transform (FFT) can facilitate the forward and inverse domain conversions
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for these purposes. However, the NTT is typically preferred over the FFT as it operates
directly over integers. Moreover, FFT requires additional type conversions between integers
and floating point numbers as FHE ciphertexts contain integer coefficients. As a result,
FFT introduces small computation errors due to its reliance on floating point arithmetic.

The CGGI cryptosystem employs different types of ciphertexts, each with different
characteristics. The first type, known as TLWE ciphertexts, serve as the inputs and
outputs of each homomorphic gate evaluation from a user perspective. TLWE ciphertexts
are the smallest type that CGGI uses; at 128 bits of security, they consist of a single
630-degree polynomial with 32-bit coefficients and an extra 32-bit scalar term. However,
these ciphertexts can not be used for nonlinear encrypted operations and are incapable of
being used to evaluate a standard encrypted logic gate function (with the trivial NOT gate
being the sole exception). Instead, these ciphertexts need to be transformed to TRLWE
ciphertexts (i.e., Ring-LWE over the torus) that are larger in size. Typically, TRLWE
ciphertexts are composed of a tuple of 1024-degree polynomials with 32-bit coefficients.
The third type is TGSW ciphertexts, which are the largest and can conceptually be viewed
as an array of TRLWE ciphertexts. The bootstrapping key, which is an encryption of the
secret key, is composed of this type of ciphertexts. Importantly, TGSW ciphertexts can be
multiplied directly with TRLWE ciphertexts, which is a necessary step of all bootstrapped
gate evaluations. Figure 2 gives a high-level overview of the operations involved in a
homomorphic NAND gate. All bootstrapped gates are evaluated in a similar way and only
differ in the preliminary linear operations (i.e., the top green box in the figure).

Notably, certain classes of encrypted operations used for general purpose computation
are well-suited for CGGI with binary ciphertexts, but are non-trivial using other cryp-
tosystems that adopt multi-bit encodings. For instance, comparison operations, bitwise
manipulations like shifting, and nonlinear functions such as the ReLU activation function
in machine learning applications, can be computed directly without the need of costly
polynomial approximations [11] [40]. Additionally, the requirement of executing hundreds
of DFT transforms per bootstrap is particularly well-suited to GPUs due to the parallel
nature of FFT and NTT. For these reasons, the CGGI cryptosystem is a good candidate
for achieving accelerated general purpose computation on GPUs. CGGI can also support
multi-bit encodings and employ a special programmable bootstrapping mechanism that
evaluates univariate functions. However, only low precision is achievable with realistic
parameters [21] and therefore this approach is better suited for specific applications rather
than for arbitrary computation. Using a radix or CRT decomposition approach, which
breaks up larger bit-width messages into chunks, univariate functions with larger precision
inputs can be evaluated. However, we note that this approach scales poorly with increasing
word size and generating larger LUTs is incredibly expensive [38]. As such, we strictly
consider CGGI in gate bootstrapping mode with binary ciphertexts in this work specifically
for this reason but note that the methodology proposed is readily extensible to support
this scenario.

Threat Model
ArctyrEX generates code and provides an execution environment for a third-party cloud
server to perform computations on encrypted data. We assume an honest-but-curious
computing party, where the server can be trusted to do the expected computation but is
incentivized to eavesdrop the sensitive user inputs. The server is aware of the underlying
size and type of the data being manipulated (for example, integer, string, or class), as well
as the evaluated algorithm. If the length of the data needs to be protected for a given
application, we assume this is enforced on the client-side by introducing fixed input lengths.
Our existing backend is based on the CGGI scheme [18] which reduces its security on the
(R)LWE hard lattice problems.

Further, we assume that the cryptographic keys are generated by the client and the
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(a) System Diagram

(b) Process Diagram

Figure 3: System Overview: Our proposed system is composed of three distinct layers
that work together to realize an end-to-end framework for scalable encrypted computation.
The frontend converts high-level programs to a logic circuit tuned for FHE. In turn, this
logic circuit is parsed by the middle layer, which executes a coordination algorithm that
partitions each level of the circuit into shares and assigns them to multiple GPUs. The
back-end enables outsourcing computationally expensive FHE operations in each share to
the GPUs.

secret key is not disclosed to another party. The evaluation key material, composed of
the bootstrapping key and keyswitching key, required for encrypted logic gate evaluation,
is uploaded to the cloud server. Notably, these keys are solely for facilitating encrypted
operations and do not allow the cloud server to decrypt any input, intermediate, or output
data.

Lastly, all benchmarks used to evaluate ArctyrEX assume that the client owns the
input data, which is sensitive and therefore encrypted before uploading to the cloud server.
For the neural network inference program, we analyze two variants that differ depending
on which party owns the network weights. In one scenario, the client provides both the
weights and the data to be classified as encrypted inputs. In the other case, the cloud
owns the model weights and the client only provides the data to be classified. Additionally,
ArctyrEX does not exhibit functional privacy and the cloud server has knowledge of the
algorithm being executed.

3 System Design for Accelerated Encrypted Execution
ArctyrEX is an end-to-end framework that allows users to seamlessly convert high-
level programs written in C++ to a sequence of GPU-friendly FHE Boolean operations
leveraging the CGGI cryptosystem. An overview of the system and a process diagram
illustrating the flow of data are depicted in Figure 3, illustrating the capabilities of the
frontend, runtime schedule coordination, and backend operations as well as how these
subsystems communicate and work together. The figure also shows the process of how
a user’s input program is converted to a multi-bit representation (i.e., Verilog code that
operates over bit arrays) and then to an encrypted Boolean circuit and finally executed by
a multi-GPU system. Our proposed frontend tackles challenges associated with leveraging
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CGGI from a user perspective, such as adapting to the Boolean circuit model. In this
section, we identify desirable circuit characteristics for efficient execution on GPUs and
describe key aspects of synthesis to convert input programs to FHE code for outsourced
computation.

Optimal FHE Circuit Characteristics

1 void full_gemm(short x[100], short y[100], short res[100]) {

2 for (int i = 0; i < 10; i++) {

3 for (int j = 0; j < 10; j++) {

4 res[10*i + j] = 0;

5 for (int k = 0; k < 10; k++) {

6 res[10*i + j] = res[10*i + j] + x[i*10 + k] * y[k*10 + j];

7 } } } }

1 int lr_inference(int data[4], int weights[4], int bias) {

2 int product = 0;

3 for (int i = 0; i < 4; i++)

4 product = product + data[i] * weights[i];

5 product = product + bias;

6 // Sigmoid: scaled Maclaurin Series to stay in integer domain

7 // s(x) = 40320 + 20160*x - 1680*x^3 + 168*x^5 - 17*x^7

8 int temp = 40320;

9 int squared = product * product;

10 temp += 20160 * product;

11 temp -= squared * product * 1680;

12 squared *= squared;

13 temp += squared * product * 168;

14 squared *= product * product;

15 product = temp - squared * 17;

16 // Client post-processes score by dividing by 80640

17 return product;

18 }

Figure 4: C++ functions for General Matrix to Matrix Multiplication (GEMM), or matrix
multiplication, and Logistic Regression (LR) Inference.

Figure 5: Circuit-level parallelism: Visualizing the circuit topology (i.e., the width of
the circuit at all points) of GEMM versus LR inference shows that GEMM is ideal for
parallel evaluation, while LR is less suitable.

One of the challenges for achieving efficient encrypted computation with the CGGI
cryptosystem involves exploiting circuit-level parallelism at the logic gate level. Essentially,
any number of gates with resolved dependencies (e.g., all input wires have been loaded with
encrypted ciphertexts) can be executed in parallel as they are entirely independent. For
CPU-based systems with a limited number of cores, this parallelism is sufficient to effectively
saturate the available CPUs without any significant optimizations at the logic synthesis or
application level. However, high-performance computing systems that leverage hundreds
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of CPU cores or incorporate GPUs require much higher degrees of circuit-level parallelism
to achieve high efficiency. For these systems, the characteristics of the underlying Boolean
circuit become much more important, therefore avoiding sub-optimal configurations is
a critical concern. For example, using the functions in Figure 4, we present the width
of each circuit level for a 10 × 10 matrix multiplication as well as a logistic regression
(LR) inference in Figure 5. The matrix multiplication benchmark represents ideal circuit
characteristics for parallel execution as the majority of levels are very wide (the largest
being nearly 200,000 gates in width), and the critical path is relatively short. On the other
hand, LR inference has over 500 levels (resulting in a much longer critical path) and the
width of each level is considerably shorter than those in the matrix multiplication circuit.
Another type of circuit configuration ill-suited for systems that can exploit high degrees
of parallelism is circuits that adopt cascading. Cascaded circuits consist of duplicated
subcircuits chained together in a sequential way. These circuits typically have a long
critical path and each level of the circuit is narrow, limiting the number of gates that can
be evaluated in parallel at any given time.

Likewise, not all encrypted gates have the same execution time. For instance, NOT gates
are significantly faster than other gates because they do not require any bootstrapping,
while MUX gates are approximately twice as expensive as standard gates (like AND and OR

gates). Efficient FHE circuit generation should take into account these differences in gate
efficiency.

Strategies for Developing HLS-Compliant Programs
In terms of input programs, a strict requirement is that it must be synthesizable in order
to generate a Boolean circuit that can be evaluated with FHE. Essentially, no dynamic
memory constructs can be used as all data sizes need to be known at compile time to
generate a fixed hardware circuit. Another constraint imposed by XLS is that standard
C++ standard library (STL) functions and constructs can not be employed. As a case
in point, the sqrt function defined by the math.h STL header can not be used directly.
Instead, the square root operation can be implemented as a series of shifts and subtractions
[35].

1 int partial_mm(int x[10], int y[10]) {

2 int res = 0;

3 for (int i = 0; i < 10; i++) {

4 res = res + x[i] * y[i];

5 }

6 return res;

7 }

Figure 6: Partial Matrix Multiplication HLS Kernel

Additionally, the way that an algorithm is expressed can have an impact on the HLS
procedures that map the program to a Boolean netlist. For complex algorithms that
contain several thousand loop iterations, the synthesis toolchain itself may be unable to
successfully generate a circuit due to strict constraints on loop unrolling. In this case,
we note that manually unrolling a number of iterations can solve the problem to bypass
such constraints. However, for very large loops, this technique is quite cumbersome for
developers as the loop body becomes large and redundant, while the time required for HLS
and logic synthesis increases. We observe that we can overcome this challenge by splitting
an algorithm into multiple HLS functions and invoking them one after the other in the
encrypted application. Figure 6 demonstrates this strategy; the kernel implements the
inner loop of a 10 × 10 matrix multiplication and can be invoked multiple times to evaluate
the full procedure. The downside of this approach is that an additional setup cost is
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incurred regarding circuit preprocessing and memory allocation, but we observe that a vast
majority of the overall evaluation time is spent evaluating the circuit homomorphically.

Synthesizing FHE-friendly Circuits
The conversion process from a C++ program to an equivalent FHE algorithm can be
completed in two distinct steps borrowed from modern hardware design paradigms: high-
level synthesis (HLS) followed by logic or register transfer level (RTL) synthesis. While
any HLS tool can be used for this purpose, we employ the Google XLS framework [34],
which is a fast and efficient open-source HLS engine that can be used to rapidly generate
synthesizable Verilog code. This Verilog code serves as an intermediate representation and
describes the circuit functionality, which is then transformed by a logic synthesis tool to
generate the actual Boolean netlist.

We utilize the open-source Yosys Open Synthesis Suite to facilitate this process and
perform crucial circuit-level optimizations [63]. However, all existing logic synthesis tools,
including Yosys, are tailored specifically for physical hardware development and optimize
for several constraints that are not relevant to virtual FHE circuits (such as minimizing
area or reducing clock cycle latency). The most relevant factors for optimal FHE circuit
generation are minimizing the critical path delay, which is luckily a goal shared with actual
hardware development, and prioritizing gates that run efficiently in the encrypted domain.
Similarly to techniques introduced by the Google Transpiler [35], we can configure the
logic synthesis tool to choose FHE-friendly gates by encoding the relative costs of each
gate type as a function of area. For instance, we assign the multiplexer gate to be twice as
big as the standard two-input gates to reflect the fact that the latency of the MUX is twice
as slow as a standard gate.

Where prior work has adopted generic synthesis scripts for generating netlists for FHE
evaluation [35, 37], our synthesis flow: (1) reduces the time required to generate the netlist
relative to the Yosys generic synthesis script, and (2) results in more efficient circuits for
FHE. The core optimizations that we utilize with Yosys include functional and word-size
reduction, removing redundant logic, and omitting unreachable branches in decision trees.
Compared to the baseline Google XLS logic optimizations, we observe a reduction of about
40% in the overall size of the circuit for a dot product of two vectors with length 500.
However, we note that the Google XLS logic optimizer is more lightweight and can process
the encrypted circuit about twice as fast. We emphasize that this process is a one-time
cost; after the circuit is processed, it can be executed using an arbitrary number of inputs.

4 Novel Scheduling Algorithm for Scalable Evaluation
The ArctyrEX runtime library implements our proposed scheduler that allows homo-
morphic applications to utilize multiple computing resources with high scalability.
Strategies for Evaluating FHE Circuits
After the Boolean netlist has been generated by the frontend compiler, and before encrypted
computation can be carried out, we need to translate each gate to the encrypted domain.
This process involves traversing the circuit, which is represented as a directed-acyclic graph
(DAG), and mapping each node to the equivalent CGGI gate function. All wires become
ciphertext data, the inputs are loaded with encryptions provided by the client, while the
outputs are communicated back to the client for decryption after circuit evaluation.

The intuitive approach for providing the computing party with an executable FHE
circuit is to simply generate code that invokes the encrypted gate functions using the
underlying backend directly one after the other. This approach works well for small
programs where performance is not critical, but is ill-suited for non-trivial programs. For
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complex programs, the generated FHE code can grow to millions of lines in length, as each
logic gate in the circuit would require 2-3 lines of code on average.

Our key observation is that it is more efficient to avoid code generation entirely and
incorporate a scheduler that traverses the DAG and distributes each gate to additional
workers that exclusively run the corresponding FHE logic gate function. In this approach,
gates that are ready to be evaluated can be distributed across a set of workers to exploit the
circuit-level parallelism inherent in all applications. We remark that a similar methodology
is employed by the Google FHE transpiler [35] and is referred to as interpreter mode.
However, their strategy of distributing gates one at a time is not feasible when the
workers constitute GPUs. Previous GPU-centric CGGI implementations as well as our
proposed implementation (described in Section 5) can execute one homomorphic logic
gate per streaming multiprocessor (SM) concurrently. In the case of an NVIDIA A100
GPU, 108 homomorphic logic gates are the least number required to achieve 100% device
utilization at any given time. Thus, only one SM could be engaged if gates are assigned
one at a time, resulting in extremely inefficient evaluation. Further, interpreter mode
creates new ciphertext objects and allocates more memory as needed throughout circuit
evaluation. While this technique is suitable for CPU workers, it therefore creates a
prohibitive bottleneck on GPUs as memory allocation and ciphertext transfers between
the host and the device are costly.

Algorithm 1: Runtime Library Circuit Preprocessing
Input: circuit, numWorkers
Output: levels

1 levels = new Queue[circuit.depth()]
2 readyQueue = new Queue
3 pending = new HashMap < Gate, int >
4 step = 1
5 maxGates = 0
6 for gate in circuit do
7 pending[gate] = gate.numOperands
8 if gate.numOperands == 0 then
9 readyQueue.append(gate)

10 levels[0].append(gate)
11 while readyQueue is not empty do
12 if readyQueue.size() > maxGates then
13 maxGates = readyQueue.size()
14 nextReadyQueue = new Queue
15 while readyQueue is not empty do
16 Gate n = readyQueue.front()
17 readyQueue.pop() for gate in n.operands do
18 pending[gate] = pending[gate] − 1
19 if pending[gate] == 0 then
20 nextReadyQueue.append(gate)
21 while nextReadyQueue is not empty do
22 Gate n = nextReadyQueue.front()
23 nextReadyQueue.pop()
24 readyQueue.append(n)
25 levels[step].append(n)
26 step = step + 1
27 maxMemory = maxGates ∗ 2 ∗ sizeof(Ctxt)
28 Allocate maxMemory bytes
29 return
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ArctyrEX Runtime Library
We propose a novel methodology for efficient evaluation of encrypted circuits on both CPU
and GPU devices. The host thread parses the intermediate representation (IR) generated
by the frontend, and generates a set of nodes stored using XLS data structures [34]. Each
node contains an opcode, which defines the operation performed by the circuit gate, and
its input operands, which are pointers to other XLS nodes.

The IR thus defines a sequence of gates which can be processed sequentially to generate
a valid execution of the circuit. In order to introduce parallelism, we transform this
ordered set of XLS nodes into a vector of circuit gates. In addition to logic gates, we also
create gates which compute encrypted constant values and augment the frontend IR with
gates which copy an input ciphertext into another one. These copies are used to integrate
the retrieval of encrypted results as part of the circuit itself instead of having to extract
individual ciphertexts after waiting for circuit termination.

To execute the circuit in parallel, we first dispatch all gates into waves. Each wave must
be processed in-order, but all entries of a wave can be processed concurrently. Algorithm 1
shows the topological sort algorithm that we use to build the list of waves.

For each entry of the vector of gates, we compute its successors (gates depending on
it), and count its predecessors (gates on which it depends). To assign gates to different
waves, we create a FIFO of ready gates, which are gates with no remaining dependencies.
We start by adding all gates with no input dependencies into this FIFO. Until the FIFO is
empty, we remove the first entry n from the FIFO, and do the following:

• Assign n to the first wave if there are no input dependencies, or compute the max
index of the wave of all predecessors, and add n to the next wave. All predecessors
have an index or n would not be in the ready FIFO.

• We decrement the predecessor count of all successors of n. Any of these successors
reaching a null predecessor count are put in the ready FIFO.

This algorithm terminates even if the circuit is not connected. As the IR can be
processed sequentially one node after the other, there cannot be cycles in the circuit and
all gates will be given an index. Since nodes are assigned to waves with indexes that
are strictly greater than their predecessors, all entries in a wave are independent and
can be processed concurrently, as long as the waves are processed in order. We thus
automatically derived a parallel execution from the IR, based on the fact that the IR
was a valid sequential execution and used node operands to compute dependencies. This
algorithm has a linear complexity because each node is taken exactly once from the FIFO,
and we decrement counters as many times as there are wires in the circuit. Partitioning
the circuit into such waves provides concurrency which can be exploited to efficiently use
a single GPU device. For multiple processing units, we dispatch waves over the different
devices. A simple solution to dispatch a wave with N gates over K devices that consists
of splitting it into roughly N/K gates per device, is illustrated in Figure 7.

Let us consider a wave with 43875 gates, composed of 2125 AND gates, 25000 OR gates
and 16750 NOT gates. On two devices we could have 1356, 10465 and 769 gates of type AND,
OR and NOT for device 0; and have 769, 14535 and 6633 gates of these types on device 1.
This represents a total of 21938 gates on device 0, and 21937 on device 1, but we measured
that device 0 and 1 respectively need 2.21 ms and 2.87 ms to process their portion of the
wave. This 30% load imbalance is explained by the fact that AND and OR gates take the
same time to process (about 0.19 us per gate), while it also takes 0.19 us to process 1024
NOT gates, which are non-bootstrapped. Equally dividing the gates between devices is
therefore not a satisfactory approach, and only results in a 1.7x speedup with two devices.

We could consider the disparities between the different types of gates to evenly divide
the load between the different devices based on performance models, but it would require an
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Figure 7: Mapping gates to devices: Gates are dispatched in independent waves, which
are split across different processing units. In this example, we extract 5 waves which are
spread over 3 GPUs that receive a similar workload.

extra training phase per gate type. This may be tedious and not reliable when combining
multiple gates with different compute or memory bandwidth intensity. In practice, the
number of gates is usually large enough that a simpler but effective solution is to assign
the same number of identical gates on all processing units. In our previous example, this
results in putting 1064 and 1063 AND gates respectively on devices 0 and 1, and putting
12500 OR gates and 8375 NOT gates on both devices 0 and 1. We then measure 2.54 ms of
work on both devices, with a negligible difference of less than 0.2 us, which corresponds to
a perfect balancing.

For each wave, ArctyrEX implements this strategy using a hash-table which associates
a vector to each of the opcodes encountered in the wave. Each entry of the wave is then
appended to the list which corresponds to its opcode. Considering that there are only 8
types of standard logic gates currently supported, and that this number would not grow
significantly, appending an entry roughly has a constant complexity. This phase therefore
also has an overall linear complexity. In Section 5 we will show that building such vectors
of identical gates makes it straightforward to implement batched kernels which obtain
much higher performance.

In this Section, we have shown how ArctyrEX converts the frontend IR into a
well-balanced parallel workload. Provided CPUs with sufficient processing power, nothing
prevents us from assigning them parts of the waves too. This could be done using
performance models based on per-gate performance models, or more simply based on the
respective peak performance of the different types of processing units. Our methodology is
therefore suitable to address hybrid systems combining CPUs and GPUs.

5 A fully asynchronous cryptographic backend

In the previous Section, we described the circuit as a sequence of waves subdivided into
smaller sets of homogeneous gates to obtain an efficient load balancing over the processing
units. This Section details our native CUDA implementation of CGGI, and explains
how we execute this workload as efficiently as possible thanks to a fully asynchronous
implementation. We will now refer to these sets of concurrent homogeneous gates as
batched gates.
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Memory and Communication Considerations
Since we have covered how gates are batched for distribution to different processing units,
we now describe how we can access data across the entire system. NVIDIA GPUs have
a distinct memory hierarchy that differs in key ways from traditional CPUs. Inside a
streaming multiprocessor (SM), there is a fast on-chip piece of memory partitioned between
an L2 cache, and a resource called shared memory. These on-chip memories are much
faster than global memory as they are part of the SM itself. In fact, shared memory
latency is roughly 100x lower than un-cached global memory latency, provided efficient
memory access patterns. Shared memory is allocated per thread block, so all threads in
the block have access to the same shared memory. In the case of the A100 GPU, the
combined capacity of on-chip memory per SM is 192 kB. Global memory is the largest
memory (40 or 80 GB for the A100) and resides off-chip, making it the slowest aside from
accessing memory on the host [51].

Bootstrapping keys have a relatively large size, more than 100 MB for 128-bits of
security. They cannot fit into GPU L2 caches, but are used for the majority of encrypted
gate evaluations. Because of this, we replicate them in the global memory of all devices so
that each can access the evaluation keys directly. We note that these keys are constant,
and can be accessed concurrently within a device.

Ciphertexts are processed during circuit evaluation, and may be used simultaneously
on different devices, or accessed from the host. We thus store them in pinned host memory,
which is memory allocated with cudaMallocHost()). Ciphertexts are then cached into
shared memory which is much faster and is located close to the GPU SMs. These kernels
indeed have an extremely high arithmetic intensity and the PCI-e bandwidth consumption
is limited, and the large amount of concurrency overlaps transfers with computation. This
was verified experimentally by profiling a kernel that processes 1024 gates using the ncu

tool. We observed that it only consumed 19.96 MB/s of “system memory” bandwidth,
which is orders of magnitude lower than the available PCI-e bandwidth. Using pinned host
memory to load the input ciphertexts is thus efficient enough, in spite of its simplicity.

A similar strategy is to use managed memory (also called unified memory, and allocated
using cudaMallocManaged). Contrary to pinned memory where devices access host memory
directly through the PCI-e bus, managed memory is kept coherent across the entire
machine by the means of paging mechanisms. When a page fault occurs, the CUDA
driver automatically fetches a valid copy of the page where the fault occurred. Subsequent
accesses to the same page will occur at the speed of the memory embedded on the device,
until the page is evicted from the device.

Both managed memory and pinned host memory incur a significant overhead per
allocation, so that we do not allocate all ciphertexts individually, but group these thanks
to pooled memory allocators. This pooling mechanism may introduce false sharing issues,
but effectively amortizes allocation overhead, which remains noticeable with pinned host
memory, but is several orders of magnitude lower than the time required to evaluate the
circuit. Memory pages allocated with managed memory and modified concurrently by
multiple devices may bounce from one device to another, and have a severe impact on
performance.

In practice, we observe similar performance for an encrypted dot product over 8 GPUs
with both strategies. With pinned memory, circuit evaluation takes 14.8 s, compared to
15.1 s with managed memory. Allocating 1 GB of pinned host memory however takes
0.4 s, but is negligible with managed memory. Due to the expected page faults when using
managed memory on multiple devices, we observe some slightly imperfect parallelism, while
it is flawless with pinned memory. ArctyrEX therefore allows user to store ciphertexts
either in host pinned or managed memory, for example depending on the amount of system
memory which can limit the availability of pinned memory. All experiments presented in
the rest of this paper use pinned host memory.
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Coordinating Multiple Devices
A strawman approach to assign tasks to multiple workers involves having a single producer
thread and a set of worker/consumer threads. When using multiple GPUs, each worker
thread consumes an assigned batch from the producer and outsources the computation
to a dedicated GPU. This approach is simple to implement, but requires numerous
synchronizations between CPU threads, which negatively impacts scalability by introducing
idle periods on the GPUs when CPU threads fail to provide them computation.

Algorithm 2: ArctyrEX Dispatch Algorithm
Input: levels, numWorkers

1 nsteps = batched_waves.size()
2 for wave in batched_waves do
3 for batch_id in wave.size() do
4 // Dispatch GPU batches across GPUs
5 dev_id = batch_id % numWorkers;
6 process_batch(batches[batch_id], dev_id);
7 need_sync = (step == nsteps − 1);
8 fence_on_devices(need_sync);

Conversely, a more intuitive method involves utilizing a single host thread that will
submit work asynchronously to different devices. On each device, we create a pool of
CUDA streams, so that we can submit multiple concurrent CUDA kernels on this device.
The execution of a single wave therefore consists of taking each individual batched kernel
from the wave, selecting a CUDA stream on the device on which our scheduling algorithm
assigned the batched kernel (e.g., with a round-robin strategy), and submit the kernel
in this CUDA stream. Since waves must be executed in-order, we need to ensure that
the execution of a wave does not start until the previous wave has been fully processed.
A simple approach would consist of submitting all kernels in a wave on all devices, and
then having the host thread wait for the completion of all work on all devices. Waiting for
computation to complete from the host however introduces some inefficiency, as devices
become idle during the synchronization phase, until the next phase has been submitted.
Any potential load imbalance or jitter on a device may also reflect on other devices which
could wait longer than expected to get more work. Instead of blocking devices, we have
therefore implemented a non-blocking synchronization fence primitive which ensures that
the work in a CUDA stream cannot start running until all work submitted previously in
all other streams has been done. These fences are implemented by the means of CUDA
events which are asynchronously inserted in the CUDA streams. After inserting an event
in each stream, we insert a non blocking CUDA operation which synchronizes one of our
CUDA streams with all of these events. We then insert another event in that stream,
and make sure all other streams wait for that event. Event insertions and dependency
declarations between an event and a stream can be performed asynchronously, ahead of
time, and therefore do not require the host thread to block during the execution. These
event-based synchronizations are implemented using hardware features, which is much
more efficient that having the host thread block the entire device. This ensures that
successive waves can be executed in order, without ever blocking the submission flow of
asynchronous operations, until the very end of the circuit evaluation.

With this distribution methodology (Algorithm 2), we observe a speedup of approxi-
mately 12% over the strawman approach for an encrypted dot product benchmark executed
on an NVIDIA DGX A100. This may appear to be a moderate improvement, but more
than 99% of the circuit evaluation is spent executing CUDA kernels. Therefore, we have
a close to optimal scheduling strategy over multiple devices, which is essential for the
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scalability of ArctyrEX according to Amdhal’s law. This also indicates that the latency
of result retrieval and synchronizations are almost completely hidden.

Batched Kernels

Due to the relatively small size of TFHE ciphertexts (compared to other FHE schemes),
it is possible to process many FHE gate operations at the same time on GPUs over a
large number of ciphertexts. Prior works have either launched a separate kernel for every
gate evaluation [26] or allow for “vectorized” gates (such as performing a bitwise NAND
between two 32-bit ciphertext arrays) [50]. Conversely, we observe that a better approach
for general computation is to leverage a kernel capable of executing arbitrary numbers of
gates of any supported type. The ArctyrEX backend utilizes a single kernel for each
batch of gates that launches with N thread-blocks of 512 threads each, where N indicates
the number of gates. This approach is more performant compared to the cuFHE library
that initiates host-to-device and device-to-host transfers for each logic gate. This allows
each worker in the runtime environment to launch one kernel for each batch received from
the coordinator, avoiding additional kernel launch overheads. Additionally, this technique
also allows the GPU to determine the best utilization strategy for the SMs, instead of
relying on users to distribute gates on a per SM basis. Grouping gates into homogeneous
gates saves memory bandwidth as we only copy the opcode value once per batched kernel,
and the generated code is more regular and requires less registers, increasing the occupancy
of our CUDA kernels [52].

Designing batched CUDA kernels which do not require blocking the submitting host
thread is also challenging. These kernels indeed need to access buffers with the description
of the work to perform, such as the location of the input ciphertexts. We therefore adopt
a strategy which consists of assigning such a buffer to each CUDA stream of our pool, and
fills them asynchronously from the host using a host callback. As a result, our asynchronous
batched kernels consist of 1) selecting a CUDA stream on the target device, 2) submitting
a host callback that will update the buffer associated to this stream, and 3) launching
a CUDA kernel in this stream which will process the batch described using this buffer.
Assigning each CUDA stream a unique buffer requires a limited memory footprint, and
ensures there is no concurrent buffer update. This also avoids the use of relatively expensive
asynchronous allocations around all asynchronous kernels.

NTT Implementation Details
The performance of CGGI bootstrapping is largely determined by the DFT used to
perform polynomial multiplication. Both nuFHE [50] and cuFHE [26] use the NTT for
this operation, and employ the same strategy in terms of NTT parameters. We opt to
use these parameters as well, since they provide multiple key optimizations that reduce
the NTT latency. First, we utilize the modulus Q = 264 − 232 + 1, which simplifies
modular reduction and supports NTTs up to size 232. Lastly, we use the primitive element
g = 12037493425763644479 that allows most multiplications in the NTT algorithm to
become bitshifts modulo Q.

6 Experimental Evaluation
We employ a series of benchmarks representing realistic computational workloads with
FHE to demonstrate the efficacy of ArctyrEX, encompassing areas such as privacy-
preserving machine learning, linear algebra applications, and cryptographic benchmarks.
All experiments were run on an NVIDIA DGX A100, which consists of 8 A100 GPUs and
a dual-socket AMD EPYC 7742 CPU with 64 cores each (a total of 128-cores running 256

15



threads with simultaneous multithreading). We believe that this high-performance CPU
comprises a fair baseline to our CUDA-accelerated framework running on up to 8 A100
GPUs as it constitutes a commonly used datacenter CPU for high-performance applications.
Additionally, we compare each benchmark against the state-of-the-art Concrete library,
which also incorporates GPU acceleration capabilities for the CGGI cryptosystem. When
comparing directly against Concrete, we utilize 2 A100 GPUs for both the ArctyrEX and
Concrete backends. Unless otherwise indicated, all benchmarks were run with parameters
corresponding to 128 bits of security based on the BKZ-beta classical cost model provided
by the state-of-the-art LWE estimator framework [4]. Specifically, for TRLWE ciphertexts
used in bootstrapping, we utilize a ring dimension of 1024 and for TLWE ciphertexts we
utilize a dimension of 630. These are the same TRLWE/TLWE parameters employed by
the TFHE library [18] for their parameter set corresponding to 128 bits of security.

Figure 8: Logistic Regression Inference: We employ 32-bit words for the small
approximation (i.e., evaluating four terms of the Maclaurin series) and a 64-bit wordsize for
the large approximation that evaluates six terms of the Maclaurin series to avoid overflow.
We observe a better scaling trend for the higher accuracy LR because it exhibits wider
levels.

Figure 9: Neural Network Inference: The encrypted weight variant represents the
scenario where the computing party does not own the model, unlike the variant with
plaintext weights. We observe a roughly 2× speedup when plaintext weights are used.

WIDER LEVELS

NARROW LEVELS

Figure 10: Topology of Machine Learning Benchmarks: For LR inference, the large
variant uses a more accurate sigmoid approximation. It is much deeper due to a larger
word size and more polynomial terms evaluated. The neural network plaintext weight
variant exhibits a shorter critical path and is composed of much fewer gates overall.
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Encrypted Linear Algebra Benchmarks
Motivated by image processing and machine learning, we benchmark ArctyrEX using
three tensor multiplication algorithms on 16-bit encrypted data: a dot product of two
vectors (length 500), a matrix-vector multiplication (125-size vector and 125 × 4 matrix),
and a matrix multiplication (10 × 10 matrices). Our detailed analysis is presented in
Appendix A.

In summary, ArctyrEX on one A100 GPU runs 6.1× faster than on a 256-thread
CPU, and 8 A100s run 42.5× faster, following a linear speedup with more GPUs. Vector
addition is 4× faster on 8 GPUs. Concrete can perform vector addition about 35.5× faster
than ArctyrEX, due to its ability to pack multi-bit values in a single ciphertext and its
natively support for addition. Conversely, ArctyrEX is 29.3× faster than Concrete for
vector dot product. For matrix-vector product, ArctyrEX is 11.6× faster than Concrete
and 14× faster for 10 × 10 matrix multiplication.

Encrypted Machine Learning Applications
One of the most widely explored use-cases for FHE is privacy-preserving machine learning
as a service. We consider two distinct scenarios: one where the model is owned by the
cloud server and another where the client or a third party owns the ML model. For the
former, the network parameters are kept in plaintext form and can benefit from faster
plaintext-ciphertext operations. Conversely, when the cloud doesn’t own the model, the
network parameters are encrypted as well as the classification inputs. The majority of
existing works demonstrating ML inference with FHE adopt the first scenario as it is
generally much more efficient [29, 12, 23].

Our analysis considers two important machine learning procedures for encrypted
classification in the form of logistic regression (LR) inference and neural network (NN)
inference. Logistic regression is a popular algorithm geared for binary classification and
consists of a fully-connected layer (a matrix-vector product between trained weights and
input data) as well as a non-linear sigmoid activation function. For this benchmark, we
perform binary classification for datasets with four attributes, such as the Iris dataset
[28]. The key bottleneck in encrypted LR inference is approximating the sigmoid function
( 1

1+e−x ), since it is not possible to evaluate it directly. Therefore, we employ a polynomial
approximation by evaluating terms of the Maclaurin series. In general, when approximating
nonlinear activation functions, there is a trade-off between accuracy and computational
complexity. We show this trade-off with ArctyrEX through the use of an approximation
that evaluates the first four terms, and one that evaluates the first six. Figure 8 shows
diminishing returns when increasing the number of GPUs due to the large critical path
and relatively thin circuit levels of the benchmark in Figure 10. Using 8 GPUs with the
more accurate sigmoid approximation still outperforms the CPU implementation with
256 threads by 24.4×. Concrete is approximately 4× faster than ArctyrEX for the less
accurate approximation, owing to its high efficiency for multiplications with constants
and additions. However, Concrete is unable to support the larger bit-width required for
the more accurate approximation. On the other hand, ArctyrEX supports arbitrary
precision and bit-widths.

Neural networks constitute a more complex benchmark than logistic regression, which
can be viewed as a small single layer neural network. These ML architectures consist
of a series of linear (i.e., fully-connected and convolutional layers) and non-linear layers
(i.e., activation functions). We employ the same network architecture used by FHE-DiNN
[12] for our evaluations. The network consists of two fully-connected layers with a sign
activation function to classify the MNIST dataset of handwritten digits. While fully-
connected layers are well-suited to HE cryptosystems that natively support addition and
multiplication primitives, the sign activation function is very well-suited for CGGI, as the
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Table 1: AES-128 Decryption: ArctyrEX performs competitively with state-of-the-art
application-specific frameworks for transciphering with AES. We do not consider key-
scheduling as prior works have opted to omit this step in favor of sending encryptions of
the pre-generated round keys. All frameworks use parameter sets corresponding to 128 bits
of security, with the exception of Gentry et al. [32] which is configured for approximately
123 bits of security.

Framework Scheme Hand-Tuned Time (s)
ArctyrEX (1xA100) CGGI No 45
ArctyrEX (2xA100) CGGI No 30
Google Transpiler [35] CGGI No 243

HELM [36] CGGI No 86
Concrete (2xA100) [19] CGGI No 9211
Stracovsky et al. [58] CGGI Yes 252

Trama et al. [59] CGGI Yes 28
Wang et al. [61] CGGI Yes 28
Fregata [62] CGGI Yes 9

Gentry et al. [32] BGV Yes 1050
Aharoni et al. (GCM) [2] CKKS Yes 417
Aharoni et al. (CTR) [2] CKKS Yes 99

encrypted sign bit can be extracted for free since each individual ciphertext encodes one
bit of information. We consider two variants of this network that differ in whether or not
the network parameters are encrypted and both achieve an accuracy of 96% for MNIST
classification. The execution times across both configurations are depicted in Figure 9 while
Figure 10 presents the characteristics of these workloads. As expected, the variant where
the cloud server does not own the proprietary network (i.e., using encrypted weights) has
approximately 2× higher latency because of the increased number of ciphertext-ciphertext
operations. Relative to Concrete, we observe that ArctyrEX is two orders of magnitude
slower for the variant with plaintext weights. This is primarily attributed to the low cost of
constant multiplications with Concrete. On the other hand, ArctyrEX is approximately
17× faster for the variant with encrypted weights. We remark that both FHE-DiNN and
REDsec [29] achieve lower overall latencies for high-accuracy MNIST classification with
plaintext weights (1.7 seconds and 3.6 seconds respectively), but utilize techniques only
applicable to neural network inference. For instance, both approaches utilize a modified
bootstrapping technique to evaluate the sign activation function across multi-bit encodings.
Other works aim to maximize inference throughput with other FHE schemes that allow
for batching and SIMD-style computation. CryptoNets [33] and Faster CryptoNets [23]
utilize BFV to classify MNIST in 39 and 250 seconds respectively. However, both can
classify thousands of independent inputs simultaneously.

We emphasize that the inclusion of these two ML benchmarks aims to showcase the AI
capabilities with CGGI. Other AI-based demonstrations using alternative FHE schemes,
such as CKKS [43, 42, 44, 8, 68, 66, 53], are listed in Appendix C.

AES-128 Decryption
At first glance, it seems odd to compute an encryption algorithm homomorphically when the
data is already encrypted. However, this enables an exciting strategy called transciphering
that dramatically reduces the communication overhead associated with FHE [5, 22]. Instead
of sending large HE ciphertexts to the cloud, the client can send encryptions generated with
a traditional block or stream ciphers that result in little to no data expansion. Then, the
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cloud can homomorphically decrypt the received symmetric ciphertext by evaluating the
corresponding decryption algorithm of the chosen cipher using an homomorphic encryption
of the symmetric key. For the CGGI cryptosystem at 128 bits of security, this strategy
can decrease the communication overhead associated with the client sending encrypted
inputs by a factor of 20000×.1

Our analysis employs the Advanced Encryption Standard (AES) cipher, which is a
ubiquitous block cipher. AES is well-suited to evaluate CGGI cryptosystems because
each round is primarily composed of bitwise operations. In terms of design considerations,
we implement the SubBytes step as a sequence of lookups instead of computing the
S-boxes on the fly; we note that computing the Galois Field arithmetic, and computing
the multiplicative inverse, is more expensive than performing a lookup that maps an
encrypted input byte to one of 256 precomputed entries. Notably, only the decryption
circuit is needed to perform transciphering as this operation converts AES ciphertexts to
HE ciphertexts.

Table 2: AES-128 Throughput: While AES decryption does not exhibit enough parallelism
to saturate more than two A100 GPUs, we can use the remaining GPUs to decrypt more
blocks in parallel. Our approach is beneficial for downstream applications that employ
TFHE.

Framework Blocks Scheme
Throughput
(blocks/s)

ArctyrEX (1xA100) 1 CGGI 0.02
ArctyrEX (2xA100) 1 CGGI 0.03
ArctyrEX (4xA100) 2 CGGI 0.07
ArctyrEX (8xA100) 4 CGGI 0.13

Gentry et al. [32] 180 BGV 0.17
Aharoni et al. (GCM) [2] 32768 CKKS 78.6
Aharoni et al. (CTR) [2] 32768 CKKS 331

Table 1 depicts the latency of ArctyrEX for decrypting one block homomorphically
with AES-128 for one and two A100 GPUs. Additionally, Table 2 shows the throughput
achieved with up to 8 A100s. We note that the decryption circuit is not wide enough to yield
any additional benefits for more than two A100 GPUs. ArctyrEX exhibits significantly
lower latency relative to the original implementation of AES with FHE [32], which utilizes
the BGV cryptosystem (albeit on a Lenovo X230 laptop with an Intel i5 processor).
Additionally, ArctyrEX outperforms several works based on CGGI [36, 35, 58, 19]. Both
Trama et al. [59] and Wang et al. [61] are marginally faster, but both are application-
specific and employ optimization techniques unique to AES evaluation. Fregata [62] is
also application-specific and can evaluate the AES decryption circuit homomorphically
in approximately 9 seconds on a multi-core CPU. Notably, Fregata employs a bespoke
packing strategy which may not be amenable to downstream operations. On the other
hand, the ArctyrEX AES evaluation yields 128 output ciphertexts per block, which
is compatible with all downstream gates. Finally, Aharoni et al. [2] implement GPU-
accelerated AES-GCM and AES-CTR decryption with the CKKS cryptosystem on an
A100 GPU and achieve high throughput due to the ability to batch tens of thousands of
blocks simultaneously. We note that the problem of transciphering with authenticated
encryption (e.g., GCM mode), which constitutes a different decryption algorithm, is an
interesting and orthogonal direction relative to our approach and those employed by the
other works. Nevertheless, ArctyrEX achieves lower latency for a small number of blocks.

1For the default LWE dimension of 630 with 32-bit polynomial coefficients, each plaintext bit expands
to (630 + 1) · 32 bits when encrypted [18, 19].
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Security and Latency Tradeoffs
All experiments presented previously utilized a security level of 128 bits; however, at the
cost of lower security, one can decrease the polynomial degree and therefore the ciphertext
size. This results in faster HE operations and reduces the overhead of bootstrapping.
For a security level of 110 bits, we utilize an LWE dimension of 512 with a noise rate
of 2−15. Overall, we find that the 128-bit parameter set results in a latency increase of
approximately 1.3× for all GPU configurations for LR inference.

7 Related Works
Prior works can be divided into two categories: FHE compilers for general-purpose
computation and GPU frameworks that reduce the latency or improve throughput of
homomorphic operations. The former category targets the usability issue inherent in FHE
and explores automatic application-level optimizations to facilitate efficient execution for
the target backend. The ArctyrEX frontend and middle-layer address these challenges
as well, and can be directly compared prior works in this line of research. The latter
category includes works that focus on FHE acceleration using both software and hardware
techniques at the primitive level, and are also comparable to our proposed backend.

FHE Compilers
The Cingulata framework (formerly Armadillo [13]) allows users to map C++ code into a
sequence of AND and XOR gates. Cingulata works with binary FHE contexts using the TFHE
library (which implements CGGI) and a custom BFV implementation as its backends.
Compared to ArctyrEX, Cingulata only supports single-core CPU execution for CGGI.
The BFV mode is parallelized on CPUs, but does not support bootstrapping and hence
cannot be used for arbitrary general-purpose computation.

E3 is a C++ library that introduces encrypted data types for leveraging FHE in general
applications [17]. It supports a variety of backends, including TFHE, Microsoft SEAL,
and HElib, encompassing all major FHE schemes. Unlike ArctyrEX, E3 uses a direct
mapping to hardcoded FHE functional units and does not offer an optimizing compiler. It
also does not support any GPU-friendly cryptographic backends and no parallelization is
included.

Google’s FHE Transpiler [35] and Romeo [37] leverage logic synthesis and optimizations
to generate FHE programs for general computation. However, both works employ generic
synthesis scripts that include optimizations not relevant to encrypted computation. The
FHE Transpiler targets TFHE and the OpenFHE implementations of the CGGI cryp-
tosystem as backends, and can evaluate multiple gates in parallel using interpreter mode.
However, it does not support GPUs and its parallelization strategy is not suited for them,
yielding very low device utilization. Likewise, Romeo targets TFHE and generates an
FHE program instead of interpreting it. This approach, however, does not scale for large
programs or HPC systems as described in Section 4. Conversely, ArctyrEX offers a
novel dispatch strategy and multigate kernels that can efficiently compute batches of any
set of gates.

FHE Acceleration Frameworks
The cuFHE [26] and nuFHE [50] libraries incorporate GPU acceleration of the CGGI cryp-
tosystem. The former is a proof-of-concept library that implements logic gate evaluations
on a single NVIDIA GPU. However, cuFHE is not configurable (i.e., only supports 80 bits
of security), has non-optimal data transfers and requires frequent high-cost synchronization
between GPU and CPU. Each cuFHE gate evaluation requires all ciphertext inputs be
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Table 3: Comparisons with existing backends for 32-bit arithmetic operations (taken
from Morshed et al. [46]). Most backends are configured for 80 bits of security, while
ArctyrEX and Narisada et al. [49] configured for 128 bits of security. All backends run
on a single GPU besides the CPU-based TFHE that runs on a single thread. For the GPU
frameworks, a technology scaling factor was introduced for fair comparisons (defined as
the number of SMs in our A100 GPU divided by the number of SMs of the target GPU).

Library Add (s) Mult (s)
ArctyrEX 1.70 2.83

Narisada et al. [49] 0.10 2.22
FHE Transpiler [35] 6.53 13.56
Morshed et al. [46] 1.47 25.13

TFHE [18] 7.04 489.93
nuFHE [50] 3.08 137.78
cuFHE [26] 1.50 97.5

REDcuFHE [29] 1.55 99.21

copied from the host to the device, and each output is copied back from the device to the
host. This approach is impractical for realistic circuit evaluation, as it yields millions of
large ciphertext transfers between the CPU and GPU. Lastly, not all cuFHE computations
are outsourced to the GPU and the CPU needs to perform certain operations (such as
evaluating the homomorphic NOT gate). Unfortunately, this defeats the benefits gained from
asynchronous CUDA kernel launches and the CPU execution must block when it reaches a
NOT gate until the GPU has finished evaluating all prior gates, instead of continuing to do
more meaningful work. Similarly, nuFHE specializes in vectorized gates; for instance, it
can evaluate a bitwise AND operation across 64-bit operands. However, this approach is
very restrictive in terms of circuit evaluations as typically a circuit level is not composed
of one type of gate.

REDcuFHE [29] enhances cuFHE to add multi-bit plaintext support and multi-GPU
support. However, it still suffers from the same synchronization issues as cuFHE, and puts
the burden of scheduling and handling communication between multiple GPUs on the
programmer. ArctyrEX, on the other hand, handles all scheduling and communication
procedures automatically.

Narisada et al. [49] introduce a methodology that relies on a redundant representation
encoding of ciphertexts to accelerate large bit-width arithmetic operations for CGGI
through GPU acceleration. As shown in Table 3, this work outperforms ArctyrEX
for 32-bit addition and multiplication, but the number of implemented primitives are
limited and bitwise operations are not supported. Additionally, the authors only provide
evaluations for primitives and do not perform experiments with encrypted applications.

Lastly, Morshed et al. [46] present a GPU implementation of CGGI that leverages
the NVIDIA cuFFT library and incorporates a set of handwritten circuits such as vector
addition and matrix multiplication. Table 3 demonstrates that ArctyrEX outperforms
[46] by a factor of about 1.5× for a small 32-bit addition and 16× for 32-bit multiplication
(which is a significantly larger circuit). Additionally, ArctyrEX evaluates a vector
addition with 32 elements of 32-bit integers 4.1× faster and a 16 × 16 matrix multiplication
of 32-bit elements 10.6× faster. We also emphasize that all frameworks in Table 3, aside
from ArctyrEX and the Google FHE Transpiler, require developers to write their own
circuits by hand, as opposed to automatically generating them. As such, we only evaluate
32-bit arithmetic operations across all libraries.

A final class includes custom ASICs and FPGA implementations of FHE to act as
a co-processor to speed up the underlying FHE arithmetic operations. However, many
of these designs only support limited parameter sets [47, 60, 54, 55] and usually target
other cryptosystems that enable approximate computing [56, 1] or computation with
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modular integers [47]. On the other hand, ArctyrEX can support arbitrary parameters
and implements the CGGI cryptosystem, which is more suitable for general-purpose
computation.

8 Conclusion and Future Work
ArctyrEX is an end-to-end framework for encrypted computation that leverages GPU
acceleration and incorporates novel strategies for executing FHE algorithms efficiently. For
workloads such as neural network inference, we observe a linear speedup with increasing
GPUs due to the inherent circuit-level parallelism, our proposed dispatch paradigm, and
the high degree of primitive-level parallelism exploited by our CUDA-accelerated CGGI
backend. Likewise, our evaluation using the AES-128 decryption benchmark shows that
ArctyrEX can achieve faster runtimes compared to other contemporary frameworks
based on CGGI, such as Concrete and the Goggle Transpiler. Even though hand-tuned
frameworks (e.g., [59, 61, 62]) can achieve faster performance on specific benchmarks, our
methodology is general-purpose with support for high-level C++ programs. As a result,
our approach provides a more comprehensive solution: for example, while individual 32-bit
arithmetic operations are not faster compared to [49], ArctyrEX offers more capabilities
to end users, such as bitwise and comparison operations.

In future work, we plan to expand our frontend to support schemes beyond CGGI,
as different schemes are better suited to different styles of computation. For instance,
computing multiplications with large word sizes in CGGI is inefficient because the under-
lying circuit will be very large. Other schemes, like CKKS and BGV, support encrypting
multi-bit values directly and can accomplish this multiplication in one primitive operation.
Moreover, these schemes can achieve high throughput by operating on vectors of encrypted
values. Indeed, the ArctyrEX frontend can be adapted for this use-case; after the
HLS procedure, we are left with a high-level Verilog program that employs multi-bit
operations (such as additions, multiplications, and multi-bit multiplexers). In the current
implementation with CGGI, this Verilog is converted directly to a Boolean circuit through
logic synthesis.
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A Basic Linear Algebra Subroutines
The Basic Linear Algebra Subroutines are FHE benchmarks that form core components
of algorithms in a wide variety of fields, such as image processing and machine learning.
We focus on three distinct tensor multiplication algorithms on 16-bit encrypted data: a
dot product of two vectors of length 500, a matrix-vector multiplication between a vector
of length 125 and a 125 × 4 matrix, and a matrix multiplication between two 10 × 10
matrices. Additionally, we include a vector addition between two vectors of length 500;
this benchmark was executed with a larger wordsize than the previous ones to increase
its computational complexity. We compare a 256-thread CPU execution of these tensor
algorithms with our approach running on up to 8 GPUs.

In Figure 11 and Figure 12, the dark-green bars show running time, and the light green
bars plot the speedup of GPU vs. CPU. One A100 is 6.1× faster than the CPU reference
running on the 256-threaded CPU execution model, and 8 A100s are 42.5× faster. We
show the latency of these circuits for an increasing number of A100 GPUs and the speedup
for all GPU configurations versus a CPU configuration with 256 threads. Our analysis
shows a linear speedup with more GPUs, as our design exploits the ample circuit-level
parallelism in both synthesis and runtime phases.

Figure 11: Vector Algebra Benchmarks: All dot products are performed with 16-bit
encrypted elements and the vector addition is performed with 32-bit elements. The speedup
bars are relative to the CPU implementation with 256 threads. |v| indicates the vector
length.

Figure 12: Matrix Algebra Benchmarks: All products use 16-bit encrypted elements.
The speedup bars are relative to the CPU implementation with 256 threads. |v| indicates
the vector length and M refers to the dimensions of the matrices.

Figure 13 shows the linear algebra topologies; vector addition is more performant
as the critical path is 2× shorter and the levels remain wide. This is reflected in the
execution times in Figure 11, where the vector addition runs nearly 4× faster on 8 GPUs.
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Figure 13: Topology of Linear Algebra Benchmarks: Vector addition is better suited
for circuit for encrypted evaluation as it exhibits wide levels and a short critical path. The
matrix-vector product and matrix multiplication benchmarks exhibit ample parallelism,
with matrix multiplication being consistently twice as wide for most levels.

Additionally, we observe that Concrete can perform an identical vector addition in less
than a second, with an overall latency reduction of 35.5× relative to ArctyrEX. We
remark that this is primarily due to Concrete’s ability to encode multi-bit values in a
single ciphertext and natively supports addition as a primitive operation. On the other
hand, ArctyrEX needs to utilize a Boolean adder to perform the equivalent operations.
However, for the multiplication-intensive vector dot product, ArctyrEX is 29.3× faster
than Concrete, which needs to perform costly programmable bootstraps to evaluate multi-
bit multiplication. Both matrix benchmarks have very wide levels and are well-suited for
evaluation on multi-GPU systems. For a matrix-vector product, ArctyrEX is 11.6×
faster than Concrete and 14× faster for the 10 × 10 matrix multiplication.

B Transciphering Benchmarks
In line with the AES decryption circuit benchmark presented in Section 6, other ciphers
can be utilized to accomplish transciphering and thus reduce the overall communication
overhead between client and server. We explore two alternative constructions in the form
of the Simon and Speck sister ciphers developed by the US National Security Agency [9].
Both are Fiestel ciphers, but Simon targets efficient hardware performance while Speck
was designed with software in mind.

Table 4: Amortized decryption latency for Speck and Simon
Configuration Speck Round (s) Simon Round (s)

256xCPU 3.61 1.18
1xA100 0.59 0.21
2xA100 0.48 0.12

Table 4 presents the cost per round to evaluate Simon and Speck per 128-bit block
size. Overall, Simon is more efficient than Speck because it uses strictly bitwise operations,
whereas Speck has a 64-bit subtraction in each round that corresponds to a large Boolean
circuit. This is expected as Simon was specifically designed for hardware deployment and
therefore synthesizes to a smaller Boolean circuit.

C AI-Based Demonstrations with FHE
Many recent studies aim to address the challenges of privacy-preserving neural networks
and transformer inference using different FHE schemes. For the former, both HyPHEN [43]
and NeuJeans [42] (built on CKKS) can perform ImageNet classification with ResNet-
18 in less than 15 seconds on an A100 GPU. On the other hand, Kim and Guyot [44]
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evaluate CIFAR-100 inference with CKKS in 255 seconds with a single CPU thread.
Baruch et al. [8] propose training strategies tuned for FHE evaluation and perform ResNet-
18 inference in just under 7.5 minutes with an A100 GPU. Homomorphic transformer
inference is a growing research area as a result of the popularity of services such as
ChatGPT. Zimerman et al. [68] achieved secure inference over 128 tokens for a BERT-like
transformer architecture in approximately 211 seconds with an A100 and AMD EPYC
7763 CPU. NEXUS [66] (CKKS-based) can evaluate BERT-base over 128 tokens in 37
seconds on 4 A100 GPUs and the deeper Llama-3-8B over 8 tokens in nearly 52 seconds.
Lastly, BOLT [53] evaluates BERT-base in 91 seconds with the BFV cryptosystem in a
leveled context with 2 c6i.16xlarge AWS instances.
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