
Attribute-based Encryption for Circuits using
Compartmented Access Structures

Alexandru Ioniţă1,2[0000−0002−9876−6121]

1 Simion Stoilow Institute of Mathematics of the Romanian Academy,
Bucharest, Romania

2 Department of Computer Science,
Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania

alexandru.ionita@info.uaic.com

https://profs.info.uaic.ro/~alexandru.ionita

Abstract. Attribute-based encryption (ABE) is an asymmetric encryp-
tion method that allows expressive access granting mechanisms, with
high applicability in modern IT infrastructure, such as Cloud or IoT sys-
tems. [11,25] One open problem regarding ABE is using Boolean circuits
as access structures. While Boolean Formulae were supported since the
first ABE scheme proposed, there is still no efficient construction that
supports Boolean circuits.
We propose a new ABE scheme for a new access structure type, situated
between Boolean formulae and Boolean circuits in terms of expressive-
ness. This key point in our construction is the usage of CAS-nodes,
a structure modeling compartmented groups access structures. We also
show that our CAS-nodes can be used to improve the efficiency of ex-
isting ABE schemes for Boolean circuits. Our construction is secure in
the Selective Set Model under the bilinear Decisional Diffie-Hellman As-
sumption.

Keywords: Attribute-based Encryption · Boolean Circuits · Access Con-
trol · Bilinear Maps · Decisional Bilinear Diffie-Hellman.

1 Introduction

In our days, Cloud and IoT services are experiencing continuous growth, and a
large amount of data ends up being stored in such systems. Hence, the Cloud
service provider has access to sensitive data, such as personal documents or
confidential information. For example, suppose we need an online platform for
storing personal documents, medical records, and other sensitive data, such that
you should be able to download your data on-demand, at any time. We do not
wish the Cloud Service provider to have access to such information.

The natural approach to solving this problem is to encrypt all documents
containing sensitive information. However, we then face the problem of granting
access to these encrypted documents. Using conventional techniques, each user
should keep a decryption key for each encrypted document for which he has

https://profs.info.uaic.ro/~alexandru.ionita

2 A. Ionita

the right to decrypt. This approach is impractical, due to the large number of
decryption keys a user may have.

A modern solution for this problem could be Attribute-based encryption
(ABE). This allows us to grant content-based or role-based access over the en-
crypted data, depending on which flavor of ABE we are using - key-policy (KP-
ABE) or ciphertext-policy (CP-ABE).

Using a KP-ABE system, each user could have set up an instance of the
scheme, having a public key and a secret key. With the public key, any doctor
could encrypt the respective user’s medical data, such as test results or medical
examinations. Using the private key, the user is in full control of granting access
to its data. Not even the third party which provides the system infrastructure
will be able to decrypt these pieces of information, as it will not have access to
a user’s decryption keys.

Each user can control who has decryption privileges over his data using an
access policy defined over some attributes. Thus, we can identify 2 vital features
such a system should have:

– expressiveness: to have fine-grained access over the encrypted data, using an
expressive access policy

– efficiency: the running time and decryption key size of our scheme should be
as low as possible since our data should be accessible even from devices with
limited computational power.

Due to the expressiveness it provides, ABE is a subject of high interest in
network security. Many researchers are developing secure ABE systems with
many functionalities, such as outsourced decryption [17], access revocation [3], or
multi-authority ABE [8,27]. Recently, European Telecommunications Standards
Institute (ETSI) has published technical specifications for implementing ABE in
the cloud, IoT, and other Internet services (ETSI TS 103 458 [10])

One challenge is to construct ABE systems with more expressive access struc-
tures while maintaining the computational cost of the scheme in reasonable
parameters. Finding the best trade-off between these two properties has been
widely studied. There are efficient solutions for Boolean formulae access struc-
tures in ABE system [16], but for more complex ones, such as Boolean Circuits
[23,18] we only have inefficient solutions.

Our Contribution Starting from the secret sharing for compartmented access
structure (CAS) proposed in [13], we propose a new access structure - CAS-
circuit. We build an efficient KP-ABE system for this structure, with decryption
key linear in the access structure size. Since [24] showed that compartmented
access structures cannot be expressed via access trees, our new access struc-
ture offers more expressiveness than Boolean formulae. Our scheme is secure in
the Selective Set Model for ABE, under the decisional bilinear Diffie-Hellman
Assumption.

Moreover, using the CAS-nodes, we can improve the state-of-the-art solu-
tions in terms of ABE for Boolean circuits, namely, [23] for KP-ABE and [18] for

ABE for Circuits using Compartmented Access Structures 3

CP-ABE. The CAS-node can be used to re-write a Boolean circuit such that the
decryption key will be smaller and the decryption algorithm will run faster. This
brings us one step closer to solving the open problem of constructing efficient
ABE schemes for Boolean circuits from bilinear maps.

1.1 Related Work

The general idea of Attribute-based encryption was introduced in [21], and the
first ABE system was proposed one year later in [16]. In their system, the access
policy is represented as an access tree and it is associated with the key (hence
the name Key-Policy ABE). Their construction is efficient, the key size being
linear in the access policy size, and it is proven to be secure in the Selective Set
Model under the decisional bilinear Diffie-Hellman (DBDH) Assumption.

Later on, Bethencourt et al. in [6] proposed the first Ciphertext-Policy ABE
system. They used the same access structure as in [16], an access tree, but their
security was only proven in the generic group model. The first CP-ABE systems
proven to be secure under cryptographic assumptions in the standard model
were introduced a few years later in [15,26].

ABE and Boolean Circuits Garg et al. [12] proposed the first ABE system
with access structures represented by Boolean circuits. They have shown that
the sharing technique used for Boolean formulae does not work for Boolean
circuits, and proposed a new ABE scheme, based on multi-linear maps. Later,
[9] proposed a more efficient system, which relies on a simple form of multi-linear
maps, called chained multi-linear maps. Since at the moment there is no secure
cryptographic construction for any type of multi-linear maps [2,28], these two
systems presented above have no practical applicability.

Ţiplea-Dragan [23] proposed the first ABE system for Boolean circuits that
relies solely on bilinear maps, which proves to be secure under the bilinear De-
cisional Diffie-Hellman (BDDH) Assumption. They make use of special fan-out
gates (FO-gates) in their Boolean circuit representation, and for each such gate
they attach a group element to the decryption key. Hu-Gao [18] refined their re-
sult and proposed a similar system, which removes this element associated to the
FO-gates. [19] creates a similar system for KP-ABE, by expanding the circuit,
resulting in a Boolean access tree, equivalent to the initial circuit. However, all
three systems presented above have exponential key size and decryption time in
the worst-case scenario.

More progress regarding Boolean circuits ABE schemes was made in the
system recently proposed in [20], which offers efficient solutions for NC1 circuits
for both CP and KP ABE systems from bilinear maps. Their system is proven
to be secure under the k-Lin Assumption.

In [7] is proposed a solution for ABE for general circuits using bilinear maps.
However, this solution’s correctness is questionable, due to the secret sharing
technique they provide for NAND gates. More precisely, an output wire of such
a gate will be divided into a1 and a2 such that a = −a1 − a2. a1 and a2 are

4 A. Ionita

forwarded to the children nodes of the gate. However, we note that in this case,
the reconstruction is possible only if both values from the children are available.
This leads to an incorrect construction of the scheme.

Secure ABE schemes for Boolean circuits [14,1] were proposed from Learning
With Errors (LWE) assumption. Although LWE offers a strong security guaran-
tee, encryption schemes based on this assumption are often impractical due to
the great computing power that they require [22].

2 Preliminaries

Bilinear maps [16] Given G1 and GT two multiplicative cyclic groups of prime
order p, a map e : G1 ×G1 → GT is called bilinear if it satisfies:

– e(xa, yb) = e(x, y)ab, for any x, y ∈ G1 and a, b ∈ Zp;
– gT = e(g, g) is a generator of GT , for any generator g of G1.

G1 is called a bilinear group if the operation in G1 and e are both efficiently
computable.

Decisional Bilinear Diffie-Hellman Assumption Let a, b, c, z ∈ Zp chosen
randomly, and g a generator of G1.

The decisional BDH Assumption [21] is that no polynomial-time algorithm
B can distinguish between (A = ga, B = gb, C = gc, e(g, g)abc) and (A = ga, B =
gb, C = gc, e(g, g)z) with a non-negligible advantage.

The advantage of B is:

|Pr[B(A,B,C, e(g, g)abc)]− Pr[B(A,B,C, e(g, g)z)]|

where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z ∈ Zp, and the random bits consumed by B.

Access Structures [4] Let p1, . . . , pn be a set of parties. A collection A ⊆
2{p1,...,pn} is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An ac-
cess structure is a monotone collection A ⊆ 2{p1,...,pn} of non-empty subsets
of {p1, . . . , pn}. Sets in A are called authorized, and sets not in A are called
unauthorized.

Boolean formulae and Boolean circuits A Boolean circuit is a directed
acyclic graph over a set of input wires, concluding to a single output wire, with
internal nodes representing logical gates of type AND, OR, or NOT . These
gates may have fan-out greater than 1. A monotone Boolean circuit is a circuit
without negation gates. A Boolean formula is a Boolean circuit where each node
is limited to a fan-out of 1.

ABE for Circuits using Compartmented Access Structures 5

KP-ABE Model A Key-Policy Attribute-based encryption scheme, as first
described in [16], consists of four algorithms:

setup(λ) A randomized algorithm that takes as input the implicit security pa-
rameter λ and returns the public and secret keys (MPK and MSK).

encrypt(m,A,MPK) A probabilistic algorithm that encrypts a message m
under a set of attributes A with the public key MPK, and outputs the
ciphertext E.

keygen(C,MPK,MSK) This algorithm receives an access structure C, public
and master keys MPK and MSK, and outputs corresponding decryption
keys DK.

decrypt(E,DK,MPK) Given the ciphertext E and the decryption keys DK,
the algorithm decrypts the ciphertext and outputs the original message.

Selective-Set Model for KP-ABE [16]

Init The adversary declares the set of attributes A, that he wishes to be chal-
lenged upon.

Setup The challenger runs the Setup algorithm of ABE and gives the public
parameters to the adversary.

Phase 1 The adversary is allowed to issue queries for private keys for many
access structures Aj , where A /∈ Aj for all j.

Challenge The adversary submits two equal length messages M0 and M1. The
challenger flips a random coin b, and encrypts Mb with A. The ciphertext is
passed to the adversary.

Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b. The advantage of an adversary A

in this game is defined as Pr[b′ = b]− 1
2 .

Notations and abbreviations

Notation Meaning
Γ A node in an access structure

attr(Γ) attribute corresponding to node Γ
Ini(Γ) value of i-th input wire of gate Γ
Out(Γ) value of the output wire of gate Γ

3 Our Construction

While access trees offer a decent level of expressiveness, it has been proven in
[24] that they cannot represent compartmented or multi-level access structures.
One way of achieving a more refined access control would be by using Boolean
circuits instead of access trees. Unfortunately, at the moment there is no efficient
and secure construction of ABE systems for them. We can divide the existing
schemes into three categories, based on the cryptographic primitives which they
are using, and show for each case why it cannot be used in practice:

6 A. Ionita

– ABE for Boolean circuits from LWE [14]: although secure, current LWE-
based ABE systems have large public keys, which makes them unpractical.

– ABE for Boolean circuits from multi-linear maps [12,9]: multi-linear maps
are very powerful primitives, however, there is still no secure cryptographic
solution for implementing them. [2,28]

– ABE for Boolean circuits from bilinear maps: For some Boolean circuits,
the current approaches could lead to an exponential expansion of keys or
ciphertexts.

The constructions from bilinear maps are the most promising ones at the
moment. In order to develop more expressive ABE schemes which can be used
in practice, we focus on optimizing existing schemes for Boolean circuits from
bilinear maps.

One of the reasons for the great success of Goyal’s et al. ABE scheme [16] is
that their access tree policy could support more than just Boolean formulae with
AND and OR nodes: their construction uses the more expressive threshold nodes
(t out of n). Similarly, we propose extending these access structures by adding
a new node type: a compartmented access structure - node (further referred to
as CAS−node).

However, to be able to create even more expressive schemes, we provide con-
struction for secret sharing through a general circuit, by adding sharing tech-
niques for FO-gates. These are special gates introduced in [23], which multiply
the output of a node in order to represent Boolean circuits more easily. More
details on the efficiency and the improvements added by this new construction
can be found in Section 4.

3.1 Compartmented Nodes

A CAS-node Γ will be a special node having 1 output wire (values associated
to this wire are stored in Out(Γ)) and nΓ input wires. These wires are di-
vided into k disjoint compartments, compartment i having ni nodes, respecting
nΓ = n1 + n2 + . . . nk. The i-th compartment input wires are denoted with:
Ini.1(Γ), Ini.2(Γ), . . . Ini.ni(Γ). Each compartment i will have a threshold ti as-
sociated to it: ti ≤ ni, and the CAS-gate will also have a general threshold t,
such that t1 + t2 . . . tk ≤ t ≤ nΓ .

A CAS-node Γ is satisfied if and only if:

– each compartment is satisfied (the number of the satisfied input wires in the
compartment i exceeds or equals the threshold value ti)

– the general threshold value is satisfied: The sum of all satisfied input wires
of the gate is greater or equal to the general threshold t

Since Ghodosi et al. [13] proposed an ideal secret sharing scheme for Com-
partmented Groups, we can apply a slightly modified technique to our CAS-
node. Thus, the share CAS(y) procedure receives a value from Zp at the out-
put wire - Out(Γ), and assigns a single value to each input wire Ini.j(Γ), while
ensuring that the reconstruction of the initial value is possible if and only if the
CAS policy is satisfied.

ABE for Circuits using Compartmented Access Structures 7

y

AND

OR OR 3/5

1.1

〈y11 , y
2
1〉

1.2

〈y12 , y
2
2〉

2.1

〈y13 , y
2
3〉

2.2

〈y14 , y
2
4〉

2.3

〈y15 , y
2
5〉

y

CAS - node
t = 4, n = 5
t1 = 1, n1 = 2
t2 = 2, n2 = 3

P=gp

1.1

〈y11〉

1.2

〈y12〉

2.1

〈y21〉

2.2

〈y22〉

2.3

〈y23〉

q1(1) q1(2) q2(1) q2(2) q2(3)

Fig. 1. Replacing a sub-circuit with an equivalent CAS-node. Shares obtained in [23]
sharing compared to our scheme

share CAS(Γ, y):

1. Let T = t−
k∑
i=1

ti.

2. For each compartment, choose randomly the partial secret yi and a public
parameter pΓ from Zp such that y1 + y2 + . . . yk + pΓ = y.

3. Then, for each compartment i = 1, . . . , k: select randomly and uniformly
ti − 1 values ai.1, ..., ai.ti−1 from Zp corresponding to each compartment i,
i = 1, ..., k.

4. Choose randomly and uniformly T values β1, . . . βT in Zp.
5. Determine a sequence of k polynomials, qi(x) = yi+ai.1x+. . .+ai.ti−1x

ti−1+
β1x

ti + . . .+ βTx
ti+T−1 for every level i.

6. Assign the shares for each input node: Ini.j = qi(j), and publish P (Γ) = gpΓ

as the gate’s public parameter.

Similar to most ABE schemes, in the reconstruction phase, the secret must be
reconstructed using elements from GT . For each value α associated to some wire
at the sharing phase, we will have a corresponding value gαsT attached to the same
wire during the reconstruction phase. We further present how the reconstruction
should be done:

recon CAS(Γ, P (Γ) = gpΓ , S = gs, 〈e(g, g)qi(j)s, ..., 〉):

During the reconstruction phase in out ABE system, for each satisfied input
wire i.j of the CAS-node Γ , we will have some value e(g, g)qi(j)s, which

8 A. Ionita

represents the result of an equation of form:

e(g, g)yis · e(g, g)ai.1js · . . . · e(g, g)ai.ti−1j
ti−1s·

e(g, g)β1j
tis · . . . · e(g, g)βT j

T+ti−1s = e(g, g)qi(j)s

which is equivalent with

e(g, g)s(yi+ai.1j+ai.2j
2+...+ai.ti−1j

ti−1+β1j
ti+...+βT j

T+ti−1) = e(g, g)qi(j)s

We need to select from each compartment `i wires, namely ji.1, ji.2, . . . ji.`i ,

such that `1 ≥ t1, `2 ≥ t2, . . . `k ≥ tk and
∑k
i=1 `i = t.

Putting all such equations together from all input wires, we obtain the equa-
tion system:
g
s(y1+a1.1j1.1+a1.2j

2
1.1+...+a1.t1−1j

t1−1
1.1 +β1j

t1
1.1+...+βT j

T+t1−1
1.1)

T = e(g, g)q1(j1.1)s

. . .

g
s(y1+a1.1j1.`1+a1.2j

2
1.`1

+...+a1.t1−1j
t1−1

1.`1
+β1j

t1
1.`1

+...+βT j
T+t1−1

1.`1
)

T = e(g, g)q1(j1.`1)s

...
g
s(yk+ak.1jk.1+ak.2j

2
k.1+...+ak.tk−1j

tk−1+β1j
tk
k.1+...+βT j

T+tk−1

k.1)

T = e(g, g)qk(jk.1)s

. . .

g
s(ykak.1jk.`k+ak.2j

2
k.`k

+...+ak.tk−1j
tk−1+β1j

tk
k.`k

+...+βT j
T+tk−1

k.`k
)

T = e(g, g)qk(jk.`k)s

Note that in this system the values yi, ai.j and βi are unknown, but we do
know all j indices. We have a system of t equations with t unknowns. There-
fore, we can compute the partial secrets gy1sT , . . . gyksT . Using these partial
secrets, and the gate’s public parameter P (Γ) we can compute

gysT = e(gs, P (Γ)) · gy1sT · . . . · gyksT = g
s(pΓ+y1+y2+...yk)
T .

We can simply observe that the system can be solved if and only if the
CAS-node is satisfied.

Sharing and Reconstruction Example. For a better understanding, we provide an
example of how these procedures work in Figure 1. First, construct the partial
secrets y1 and y2 and p such that y = y1 + y2 + p, and then the polynomials:

q1(x) = y1 + β1x

q2(x) = y2 + a2.1x+ β1x
2.

Since T = t − t1 − t2 = 1, we require a single value β1 common across
all compartments. Then, each terminal node will receive an evaluation of the
polynomial of his compartment. (Node 1.1 will receive q1(1), 2.3 will receive
q2(3), etc..)

ABE for Circuits using Compartmented Access Structures 9

If at the reconstruction phase we will receive at least one element from each
compartment, with a total of at least three elements, we will be able to recon-
struct the corresponding values from GT of the partial secrets y1 and y2, namely
gy1sT and gy2sT , and then compute the corresponding value in GT for the secret y:
gysT = gy1sT gy2sT gpΓ sT .

Note that using the CAS-node, we will obtain one share for each input node.
For comparison, using the first approach from [24] (a regular Boolean circuit)
will result in two shares for each input node.

3.2 Access structure based on CAS-nodes

We can use our newly defined CAS-node to construct expressive access struc-
tures with efficient secret sharing. We extend the access structure proposed in
[16], namely the access tree, to CAS-nodes, resulting in an access structure that
we call a CAS-circuit.

Definition 1. A CAS-circuit is a tree with CAS-nodes.

Since threshold gate t/n can be modeled by a CAS-node (by setting the
threshold for each compartment to 0, and the general threshold to t), then we
can model a Boolean formulae access structure through a CAS-circuit. Although
it has visually the form of a tree, we have named our access structure a circuit,
because Ţiplea et al. proved in [24] that CAS cannot be represented as Boolean
formulae, but as Boolean circuits. Therefore, we have that:

Proposition 1. The class of access structures represented by CAS-circuits is a
proper extension of the ones represented by Boolean formulae

Our construction is very efficient for CAS-circuits, producing only one de-
cryption key element in G1 for each attribute and one element in G1 for each
access structure internal node. Therefore, we can say that our decryption key
has linear size in the access structure size.

3.3 Full construction

We provide a full construction of our scheme for CAS-circuits. For a better un-
derstanding, we have separated the secret sharing part from our ABE construc-
tion, by defining two special procedures: share CAS circuit and recon CAS circuit.
They share and reconstruct a secret through a CAS-circuit access structure. The
sharing procedure starts with a single value y assigned to the CAS-circuit’s out-
put wire and assigns values to all leaf nodes (corresponding to attributes). The
reconstruction procedure starts with values in GT at the bottom of the CAS-
circuit in order to reconstruct the value e(g, g)ys required for decryption. We will
denote with Ini(Γ)/Out(Γ) the values associated with the i-th input/output
wire of gate Γ . Note that if a gate Γ2 is the i-th children of another gate Γ1,
then Ini(Γ2) = Out(Γ1).

We start by describing the sharing and reconstruction procedure, and then
our full construction of the KP-ABE scheme.

10 A. Ionita

share CAS circuit(y, C):
1. Initially, all gates of C are unmarked;
2. Assign y to the output wire of the circuit: Out(C) = y
3. Choose an unmarked CAS-gate Γ with all input wires defined, and run
〈α, P (Γ)〉 = share CAS(Out(Γ)). This returns a collection of values α,
where α(x.y) represents the value of the x-th input node from the y-th
compartment. Thus, we set Inx.y(Γ) = α(x.y). P (Γ) is the public parameter
which is associated with this gate.

4. Repeat step 3 until all gates are marked.
5. Return S(Ψ) = Out(Ψ) for all terminal nodes Ψ and the public parameters
P of CAS-gates.

recon CAS circuit(C, V, P)

1. Initially, all gates of C are unmarked;
2. Out(Ψ) = VΨ), for all leaf (starting) nodes Ψ . Mark these nodes.
3. Choose an unmarked gate Γ with all input wires defined. We consider that
Γ has k input wires, and we do the following: Mark Γ and set Out(Γ) =
recon CAS(Γ, P, gs, In(Γ)).

4. Repeat step 3 until all gates are marked.
5. return the value from the output wire of the circuit: Out(C).

KP-ABE for CAS-circuits scheme :

setup(λ) This algorithm receives a security parameter λ, which is used to choose
two multiplicative groups G1 and GT of prime order p, g a generator of G1,
and a bilinear map e : G1 × G1 → GT . The set of attributes is defined by
U = {1, 2 . . . n}.
Then choose random y ∈ Zp, and generate random ti ∈ Zp, and sets the
public key as:

MPK = 〈p,G1, GT , e, g, n, Y = e(g, g)y, Ti = gti〉

and the master key:

MSK = 〈y, (ti, 1 ≤ i ≤ n)〉

encrypt(m,A,PK) The encryption algorithm receives a message m, and en-
crypts it under the set of attributes A ⊆ U , with the public key mpk. Gen-
erate a random element s ∈ Zp, and se the ciphertext as:

E = 〈A,E′ = mY s, T si = gtis, gs〉

keygen(MPK, C) The key generation algorithm shares the y component of the
MSK through the circuit using the sharing procedure:

S, P = share CAS circuit(y, C).

Then, for every i ∈ U , output the decryption key as:

DK = 〈DΨ = gSΨ/ti , P 〉, where Ψ is a leaf node

ABE for Circuits using Compartmented Access Structures 11

decrypt(E,DK) This algorithm receives a valid ciphertext and a decryption
key, and returns the original message. For all leaf nodes Ψ , and considering
i = attr(ψ), compute:

VΨ =

{
e(T si , DΨ) = e(gtis, gSi/ti) = e(g, g)Sis, if i ∈ A
⊥ otherwise

R = recon CAS circuit(C, V, P)

Then compute the message as:

m = E′/R = m · e(g, g)ys/e(g, g)ys

4 Efficiency and Improvements

4.1 CAS-nodes in other ABE systems

Our CAS-node could be easily combined with other access structures from other
KP-ABE schemes. For example, alongside AND and OR nodes, [23] or [19] can
be modified to support also CAS-nodes, by simply adding to the scheme the
secret sharing and reconstruction procedures provided in our construction.

Similarly, our construction could be applied also to CP-ABE schemes such
as [6] or [18] to increase expressiveness or efficiency. We show in the following
sections how this node can improve the efficiency of such systems.

4.2 Comparison with other ABE systems

We provide comparisons of our system with existing KP-ABE systems. The
relevant schemes are Goyal et al.’s [16], Tiplea-Dragan [23] and Hu-Gao [19].
Regarding the scheme proposed by Goyal et al. [16], we have only compared
our system with the access trees version. Their construction for Monotone Span
Programs could offer a solution of similar efficiency. However, we do not know
how to efficiently convert a CAS-circuit to a Monotone Span Program. Using the
construction provided in [5], which transforms any Linear secret sharing scheme
to a Monotone Span Program, we obtain an impractically large matrix, with p
columns, where p represents the order of our group Zp.

Besides our basic construction for CAS-circuits, we also added to the com-
parison an altered version of our scheme, referred to as “Ours-2”, as we said that
we are able to do in Section 4.1. This scheme supports, besides CAS-nodes, also
threshold (from [16]) and FO gates (as in [18] or [23]).

The Ciphertext size and the setup/encryption algorithms are the same in all
these schemes. The decryption time in all these schemes is proportional to the
decryption key size. Therefore, we will only analyze the key size in these systems.

In our comparison, we have considered that the access structure contains n
input nodes, r fan-out gates, j input wires at each fan-out gate, and a total

12 A. Ionita

number of q internal gates. The concrete analysis can be seen in Table 4.2. The
basic version of our system (Referred to as “Ours-1”) can only support CAS-
circuits. However, it is the most efficient scheme available at the moment for such
access structures. With “Ours-2” we prove that our node is useful in providing
efficient secret sharing for CAS-circuit without losing expressiveness or efficiency
compared to existing KP-ABE schemes.

Although “Ours-2” does not have better results in the worst-case scenario
than the other schemes, we show in Section 4.3 that CAS-gates actually can
improve the existing ABE schemes for Boolean circuits in some cases.

Table 1. Worst case decryption key size

ABE system Bolean Formulae CAS-circuit General Boolean circuits

Goyal et al. [16] (using Access trees) n Unsupported Unsupported
Tiplea-Dragan [23] n nj + n + jr nj + n + jr

Hu-Gao [19] n n + jr n + jr

Ours-1 (CAS-circuit) n + q n + q Unsupported
Ours-2 (general circuit) n n + q n + jr

4.3 CAS-nodes in Boolean circuits

While generating decryption keys, one would probably construct a Boolean cir-
cuit according to its requirements. Given such an already defined circuit, we
explain how it could be optimized using CAS-nodes.

Many sub-circuits can be expressed as CAS-nodes, although at first sight
they do not comply to the typical CAS structure. The only requirements that
we have for a sub-circuit to be represented as a CAS-node are:
– An AND node Γ0 at the top of the sub-circuit
– Γ1 and Γ2 two children of Γ0 (Γ0 may also have other children besides them)
– The set of children of Γ1 is a proper subset of children of Γ2.

Such circuits can be expressed as CAS-nodes by creating a virtual compart-
ment of threshold 0 which will contain all children of Γ2 which are not children
of Γ1. This can be seen as a CAS-node with two compartments: the virtual one
and the one consisting of children of Γ1.

For such a sub-circuit, the total number of shares are reduced by: |Out(Γ2)|−
|Out(Γ1)+1|. Note that if this sub-circuit occurs somewhere at the top of a large
circuit, this reduction in the number of shares propagates all over the circuit.

We provide such an example of a sub-circuit that can be modeled as a CAS-
node in Figure 2. We can consider the children of the OR-node (Γ1) as the first
compartment. Node Z does not have a compartment associated, therefore we
will consider it to be in a virtual compartment with threshold 0.

For the sub-circuit in Figure 2 (a) the best approach used until now in ABE
system for secret sharing over Boolean circuit access policy would result in a

ABE for Circuits using Compartmented Access Structures 13

y

ANDΓ0

ORΓ1 2/3Γ2

X

〈α1
1, α

2
1〉

Y

〈α1
2, α

2
2〉

Z

〈α3〉

(a) Secret sharing using [23]

y

ANDΓ0

1/2Γ1 0/1 2/3 Γ2

X

〈α1
1, α

2
1〉

Y

〈α1
2, α

2
2〉

Z

〈α3〉

(b) Transformation to CAS

y

ANDΓ ′0

CAS - node
t = 2, n = 3
t1 = 1, n1 = 2
t2 = 0, n2 = 1P=gp

X

〈α1〉

Y

〈α2〉

Z

〈α3〉

(c) Our CAS-node

Fig. 2. Replacing a sub-circuit with an equivalent CAS-node. Shares obtained in [23]
sharing compared to our scheme

total of 5 shares at the bottom (using the scheme proposed by [23]), while our
approach reduces the number of shares to 3.

We observe that sub-circuits which can be expressed as CAS-nodes (as the
one Figure 2(a)) are quite common and may occur often in some larger circuits.

Experimental results. Because we could not estimate the benefit of using
CAS-nodes in general Boolean circuits, we have tested how much these nodes
could reduce the decryption key size in practice. Thus, we have generated various
random Boolean circuits with different parameters and then replaced as many
sub-circuits as we were able to, with CAS-nodes.

While analyzing a Boolean circuit in order to replace sub-circuits with CAS-
nodes, we can observe that some sub-circuits may overlap. Therefore, we must
choose only some (non-overlapping) circuits to be replaced. However, the prob-
lem of optimally choosing which sub-circuits to use in such cases seems difficult.
In our implementation, we have chosen randomly the sub-circuits that will be
replaced with CAS-nodes.

Our results can be seen in Table 4.3. The first four columns represent param-
eters of generated access structure: Number of nodes, number of edges, number
of leaf nodes and the height of the Boolean circuit. The last column (denoted
with “% Optimized”) represents how much the total number of the shares has
been reduced. More exactly, it represents p from the formula S1 · (1− p

100) = S2,
where S1 denotes the number of share obtained with regular secret sharing,
and S2 represents the number of shares obtained after various sub-circuits being
replaced with CAS-nodes.

14 A. Ionita

Table 2. Key size

Nodes Edges Leaf nodes Height % Optimized

60 160 12 8 12.3%

50 100 12 7 10.24%
50 150 12 10 5.57%

70 200 12 10 21.20%
70 150 12 10 17.26%

5 Security

We provide the full construction of a KP-ABE system using our share and
recon procedures. We stress that these procedures could also be used in CP-
ABE systems, such as [6] or [18], to create more efficient CP-ABE systems for
Boolean circuits.

Theorem 1. Our scheme is secure in the selective model under the decisional
bilinear Diffie-Hellman assumption.

Proof. In our security demonstration we will make use of some special proce-
dures, which we will describe beforehand: PolySat CAS, PolyUnSat CAS and
fake share CAS. Due to space limitations, we describe these procedures in de-
tail in the Appendix.

Suppose that there exists a polynomial-time adversary A that has an advan-
tage ε for our scheme in the Selective-Set model. We build a simulator B that
can play the decisional BDH with advantage ε/2, as follows:

Let G1 and GT be two groups, g a generator of G1 and e an efficient bilinear
map, and the tuples (A = ga, B = gb, C = gc, Z1 = gabc) and (A = ga, B =
gb, C = gc, Z0 = gz). The challanger flips a coin p ∈ 0, 1 and chosses Zp. The
adversary has to guess Zp between Z0 and Z1.

Init The simulator B runs the algorithm A, which chooses the set of attributes
A for encryption.

Setup B simulates Setup algorithm of ABE and sets Y = e(A,B) = e(g, g)ab.
Then, it generates random ri and sets

Ti =

{
gri , if i ∈ A
(gb)ri , otherwise

Then, it outputs the public parameters as:

〈p,G1, GT , e, g, n, Y, Ti〉

ABE for Circuits using Compartmented Access Structures 15

Phase 1 The adversary A is allowed to issue queries for private keys for many
access structures Cj ,such that Cj(A) = 0 for all j. B will use in this scope a
procedure called fake share, which will simulate theese queries for A.

The definition of fake share(ga, C) is the following:

1. Initially, all gates of C are unmarked;
2. Assign ga to the output wire of the circuit: Out(C) = ga

3. Choose an unmarked gate Γ with all output wires defined, and then run
the fake share CAS algorithm to obtain the values for child nodes and the
public values associated to the gate: In(Γ), P (Γ) = fake share CAS(Γ)

4. Repeat step 3 until all gates are marked.
5. Return 〈S, PP 〉, where S(attr(Ψ)) = Out(Ψ) for all terminal nodes Ψ .

B will run S, PP → fake share(ga, C) and compute:

D(i) =

{
(gb)S(i)/ri if i ∈ A, i = attr(Ψ)

S(i)1/ri , otherwise

Then forward to A:
DK = 〈D,PP 〉

From A’s point of view, the shares look as if they were shared using the
normal sharing procedure. By using the reconstruct procedure with an approved
set of attributes, the recon procedure will return e(g, g)abc if applied to V (i, j) =
e(g, g)S(i,j)bc for i ∈ A.

Challenge A selects two equal length messages m0 and m1. The challenger B
flips a random coin b, and encrypts mb under the set of attributes A and by
using Zp, p ∈ {0, 1}.

E = 〈A, Y = mb · Zp, Cri = gric = T ci 〉

If p = 0, then Zp = e(g, g)abc and E is a valid encryption for mb. Otherwise,
Y is a random element from GT .

Phase 2 Phase 1 is repeated.

Guess The adversary A outputs a guess b′ of b. If b′ = b, then B outputs p = 0.
Otherwise, it outputs p′ = 1

The advantage of B is:

Adv(B) = Pr[p′ = p]−1

2
= Pr[p′ = p|p = 0]·Pr[p = 0]+Pr[p′ = p|p = 1]·Pr[p = 1]−1

2

Both Pr[p = 0] = 1
2 and Pr[p = 1] = 1

2
Next, we analyze the two cases:

– If p = 0, then A sees a valid encryption of the ciphertext, thus its advantage
is Pr[p′ = p|p = 0] = 1

2 + ε.

16 A. Ionita

– If p = 1, then the ciphertext offers no information to A about the original
message, thus in this case Pr[p′ = p|p = 1] = 1

2 .

Putting all toghether we obtain:

Adv(B) = Pr[p′ = p|p = 0] · Pr[p = 0] + Pr[p′ = p|p = 1] · Pr[p = 1]− 1

2
=

=
1

2

(
1

2
+

1

2
+ ε

)
− 1

2
=

=
1

2
ε

5.1 CAS-node Public Parameter

Note that the public parameter of the CAS-nodes does not provide additional
security in any way. However, it is needed in our security proof. We believe that
this parameter is not necessary, but we do not know how to prove the security
of our scheme without it.

6 Conclusions

The CAS-node adds a significant improvement to ABE systems for Boolean
circuits from bilinear maps, extending the class of practically efficient access
structures to a new sub-class of Boolean circuits, the CAS-circuit. Previous
constructions of ABE schemes ([16,23]), when adapted to CAS-circuits, are con-
siderably less efficient than our version. This new access structure proves to be
a proper extension of the Boolean formulae, lowering the gap between efficient
ABE schemes with limited expressiveness (such as [16]) and the expressive ones
with high computational demands (such as [18,23]). Our construction is secure in
the Selective Set Model under the bilinear decisional Diffie-Hellman Assumption.

Also, as we can see in our practical analysis, the CAS-node can be used to
optimize pre-defined circuits, by offering a more efficient secret sharing method.
This could be only a first step towards constructing more expressive and efficient
ABE systems. Finding other structures with efficient secret sharing techniques
may further enlarge the class of practically efficient access structures. A new
possible direction could be in finding such access structures and constructing
ABE systems for them. This could, in the end, could lead us to an efficient ABE
construction for Boolean circuits.

References

1. Agrawal, S., Yamada, S.: Cp-abe for circuits (and more) in the symmetric key
setting. In: Theory of Cryptography Conference. pp. 117–148. Springer (2020)

2. Albrecht, M., Davidson, A.: Are graded encoding scheme broken yet (2017)

ABE for Circuits using Compartmented Access Structures 17

3. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: IMA international conference on cryptography and coding.
pp. 278–300. Springer (2009)

4. Beimel, A.: Secret-sharing schemes: a survey. In: International conference on coding
and cryptology. pp. 11–46. Springer (2011)

5. Beimel, A., et al.: Secure schemes for secret sharing and key distribution (1996)
6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: 2007 IEEE symposium on security and privacy (SP’07). pp. 321–334.
IEEE (2007)

7. Bolocan, D.: Key-policy attribute-based encryption scheme for general cir-
cuits. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-
MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCI-
ENCE 21(1), 11–19 (2020)

8. Chase, M.: Multi-authority attribute based encryption. In: Theory of Cryptography
Conference. pp. 515–534. Springer (2007)

9. Drăgan, C.C., Ţiplea, F.L.: Key-policy attribute-based encryption for general
boolean circuits from secret sharing and multi-linear maps. In: International Con-
ference on Cryptography and Information Security in the Balkans. pp. 112–133.
Springer (2015)

10. ETSI: Cyber; application of attribute based encryption (abe)
for pii and personal data protection on iot devices, wlan,
cloud and mobile services - high level requirements (2018),
https://www.etsi.org/deliver/etsi ts/103400 103499/103458/01.01.01 60/ts
103458v010101p.pdf

11. Ezhilarasi, T., Sudheer Kumar, N., Latchoumi, T., Balayesu, N.: A secure data
sharing using idss cp-abe in cloud storage. In: Advances in Industrial Automation
and Smart Manufacturing, pp. 1073–1085. Springer (2021)

12. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Annual Cryptology Conference. pp. 479–499.
Springer (2013)

13. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and com-
partmented groups. In: Australasian Conference on Information Security and Pri-
vacy. pp. 367–378. Springer (1998)

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. Journal of the ACM (JACM) 62(6), 1–33 (2015)

15. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: International Colloquium on Automata, Languages, and Pro-
gramming. pp. 579–591. Springer (2008)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM confer-
ence on Computer and communications security. pp. 89–98 (2006)

17. Green, M., Hohenberger, S., Waters, B., et al.: Outsourcing the decryption of abe
ciphertexts. In: USENIX security symposium. vol. 2011 (2011)

18. Hu, P., Gao, H.: Ciphertext-policy attribute-based encryption for general circuits
from bilinear maps. Wuhan University Journal of Natural Sciences 22(2), 171–177
(2017)

19. Hu, P., Gao, H.: A key-policy attribute-based encryption scheme for general circuit
from bilinear maps. IJ Network Security 19(5), 704–710 (2017)

20. Kowalczyk, L., Wee, H.: Compact adaptively secure abe for nc1 from k-lin. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 3–33. Springer (2019)

18 A. Ionita

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 457–
473. Springer (2005)

22. Steinfeld, R., Sakzad, A., Zhao, R.K.: Practical mp-lwe-based encryption balancing
security-risk vs. efficiency. Cryptology ePrint Archive, Report 2019/1179 (2019),
https://eprint.iacr.org/2019/1179

23. Ţiplea, F.L., Drăgan, C.C.: Key-policy attribute-based encryption for boolean cir-
cuits from bilinear maps. In: International Conference on Cryptography and Infor-
mation Security in the Balkans. pp. 175–193. Springer (2014)

24. Tiplea, F.L., Ionita, A., Nica, A.: Practically efficient attribute-based encryption
for compartmented access structures. In: Samarati, P., di Vimercati, S.D.C., Obai-
dat, M.S., Ben-Othman, J. (eds.) Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications, ICETE 2020 - Volume 2:
SECRYPT, Lieusaint, Paris, France, July 8-10, 2020. pp. 201–212. ScitePress
(2020). https://doi.org/10.5220/0009887202010212, https://doi.org/10.5220/

0009887202010212

25. Touati, L., Challal, Y.: Collaborative kp-abe for cloud-based internet of things
applications. In: 2016 IEEE International Conference on Communications (ICC).
pp. 1–7. IEEE (2016)

26. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: International Workshop on Public Key Cryp-
tography. pp. 53–70. Springer (2011)

27. Zhong, H., Zhu, W., Xu, Y., Cui, J.: Multi-authority attribute-based encryption
access control scheme with policy hidden for cloud storage. Soft Computing 22(1),
243–251 (2018)

28. T, iplea, F.L.: Multi-linear maps in cryptography. In: Conference on Mathematical
Foundations of Informatics. pp. 241–258 (2018)

Appendix

Procedures used in security demonstration:

PolySat CAS(y1, ti, ki, β) receives as input a value yi ∈ Zp and integers ti and
ki representing threshold and number of component of some compartment in a
CAS-node. β = β1, . . . βT represent the additional values, common in all com-
partments to be used as polynomial coefficients. Knowing y, we simply construct
a polynomial q′ of grade ti − 1 by randomly choosing its coefficients with yi as
free term. Then construct the polynomial q(x) = q′(x) + β1x

ti + . . .+ βti+T−1T .
For every satisfied child j set q(j) as the value associated to that wire, and

for every unsatisfied wire j set the value gq(j).

PolyUnSat CAS(yi, ti, ki, β
′): We stress that this function will receive the

β coefficients in G1: β′ = 〈gβ1 , gβ2 , . . . gβT 〉
– Let ` be the number of satisfied input wires, and the wires: j1, j2, ..., j`, ` < ti
– Choose randomly xj1 , xj2 , ...xj` and assign them to the satisfied input wires
– Choose randomly `′ = ti − ` − 1 more values xj`+1

. . . xti−1 to completely
define the polynomial q, such that q(i) = xi.

https://eprint.iacr.org/2019/1179
https://doi.org/10.5220/0009887202010212
https://doi.org/10.5220/0009887202010212
https://doi.org/10.5220/0009887202010212

ABE for Circuits using Compartmented Access Structures 19

– Then, the coefficients ai of this polynomial can be computed in G1:

gyi · gai.1j · . . . · gai.ti−1j
ti−1

· gβ1j
ti · . . . · gβT j

T+ti−1

= gq(j)

– Evaluate this polynomial in some points to obtain the rest of the values.
Since β′ contains values from G1 we can only compute the G1 value of the
evaluation of q in some point, but this is enough, since these values will be
passed anyway to unsatisfied wires.

fake share CAS(Γ):
We consider that Γ is a CAS-gate with k compartments with general thresh-

old t, and each one of the compartments has ki elements and threshold ti, where
i ∈ 1, k:

– Set T = t− t1− t2− . . .− tk the difference between the general and the sum
of partial thresholds.

– if the gate Γ is satisfied, then simply return share CAS(Out(Γ)). (the secret
sharing technique used in our scheme).

– if the gate Γ is not satisfied, then Out(Γ) = gy is a value from G1.
Generate y1, y2, . . . yk and compute P (Γ) from G1 such that:

P (Γ) · g
∑k
j=1 yj = Out(Γ).

Then randomly generate parameters β1, . . . βT from Zp, and for each com-
partment i choose values for its input wires Ini.j(Γ), j ∈ 1, n1, by using
PolySat CAS, or PolyUnsat CAS, depending if the respective comparte-
ment is satisfied or not. We say that a compartment i is satisfied if its
number of satisfied input wires is strictly greater than the threshold of the
compartment.

– Return In(Γ) and public gate parameter P (Γ).

	Attribute-based Encryption for Circuits using Compartmented Access Structures

