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Abstract. Recently, with the increasing interest in Central Bank Digi-
tal Currency (CBDC), many countries have been working on researching
and developing digital currency. The most important reasons for this
interest are that CBDC eliminates the disadvantages of traditional cur-
rencies and provides a safer, faster, and more efficient payment system.
These benefits also come with challenges, such as safeguarding individu-
als’ privacy and ensuring regulatory mechanisms. While most researches
address the privacy conflict between users and regulatory agencies, they
miss an important detail. Important parts of a financial system are banks
and financial institutions. Some studies ignore the need for privacy and
include these institutions in the CBDC system, no system currently offers
a solution to the privacy conflict between banks, financial institutions,
and users. In this study, while we offer a solution to the privacy conflict
between the user and the regulatory agencies, we also provide a solution
to the privacy conflict between the user and the banks. Our solution,
KAIME ∗ has also a modular structure. The privacy of the sender and
receiver can be hidden if desired. Compared to previous related research,
security analysis and implementation of KAIME is substantially simpler
because simple and well-known cryptographic methods are used.

1 INTRODUCTION

Blockchain technology has gained popularity with the emergence of cryptocur-
rencies. Many people have started to adopt and use these cryptocurrencies. Mo-
tivated by the prevalence and success of blockchains, there is a race between
central banks for the development of Central Bank Digital Currency (CBDC).
CBDCs could be a revolution in terms of payment systems worldwide. Several
central banks, including the Swedish central bank [37] and the Bank of England
[8], have shown interest in developing their own digital currencies. The People’s
Bank of China [47] has already begun testing the digital yuan. Moreover, several
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central banks, in collaboration with the BIS, have described the key concepts and
characteristics of a CBDC. However, this revolution also brings problems, such
as protecting private life and harmonizing regulations. How digital currencies
can balance privacy and regulation is one of the focuses of recent research.

Many people are worried that introducing Central Bank Digital Currencies
(CBDCs) may result in the central bank having continuous access to transac-
tional data, making it a ”panopticon.” This concern is not unique to CBDCs and
has also been expressed regarding first-generation cryptocurrencies like Bitcoin
and Ethereum, which are only pseudonymous. To address this, privacy-enhanced
cryptocurrencies such as ZCash [38] and Monero [44] were developed to provide
a higher level of anonymity by hiding the value of transactions and making them
unlinkable. However, this anonymity could also attract those who wish to use
these systems for illegal activities, such as money laundering and financing ter-
rorism. As a result, privacy-preserving systems using such techniques may pose
challenges in regulatory compliance settings.

Related Work. Chaum introduced the initial framework for anonymous
electronic cash in his work [16], which emphasized protecting the sender’s anonymity
while revealing the recipient’s identity and the amount of money transferred.
With this system, a user can obtain a coin from a bank by creating a distinc-
tive serial number and obtaining a blind signature to keep the serial number
concealed from the bank. The user can then unblind the signature and use the
coin for payments. When a merchant receives payment, they can deposit the
coin at the bank, which will verify whether the serial number has been utilized
previously. If the serial number is already used, the payment is rejected; if not,
it is accepted. Camenisch et al. [14] introduced a method of electronic payment
based on tokens, where the bank can impose specific regulations such as payment
limits for individual users. Despite this, the privacy of those who send transac-
tions is maintained; however, the recipient’s identity and the payment amount
are revealed.

Cecchetti et al. introduced Solidus, a bank-intermediated system that pro-
vides transaction privacy and identity privacy [15]. In such systems, a small
number of institutions (banks) manage transactions on behalf of a large num-
ber of users. In Solidus, banks must be involved in transaction preparation. All
account and transfer information is stored encrypted on the blockchain, with up-
dating data in this encrypted form. Since transactions occur through the bank,
the bank can see the transaction contents without user permission. Additionally,
regulators can access suspicious content through the bank.

Kiraz et al. [29] presented the design that they support with account-based,
homomorphic encryption, similar to the payment protocol in the system we
recommend. With zero knowledge proofs, the accuracy of transactions is con-
firmed by validators. Transaction privacy is provided, but identity privacy is not
available in the system. Suspicious transactions can be accessed by a single reg-
ulator, with the balance encrypted with the regulator public key added to each
transaction. Istanbul Settlement and Custody Bank (Takasbank) has published
that they have developed a similar structure as a product on a permissioned
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Reference
UTxO or
Account Based

Sender
Privacy

Receiver
Privacy

Transaction
Privacy

Crytographic
Technique

[45] UTxO Yes Yes Yes
ZKP , ElGamal Enc.,
Ped. Com.

[4] UTxO Yes Yes Yes
VRF, ElGamal Enc.,
PS Sig., Ped. Com.

[26] UTxO Yes Yes Yes Commitment, ZKP

[46] Account Yes Yes Yes Commitment, ZKP

[43] UTxO Yes Yes Yes
MPC, Commitment,
ZKP

[28] Account Yes Yes Yes
MPC, ZKP,
PS Sig., Elgamal Enc.

[1] Account No No Yes
Elgamal Enc.
ZKP

KAIME Account Optional Optional Yes
Elgamal Enc., ZKP,
MPC, Anon. Set

Table 1. The first column shows whether the system is UTxO or account based. The
last column shows the cryptographic techniques used. The other columns show whether
the sender, receiver, and transaction details are hidden.

blockchain [1]. The project, called BiGA, enables the transfer of digital assets
in exchange for physical gold, thus making it possible to transfer value between
users in a private way.

Androulaki et al. presented a token management system that is both privacy-
preserving and auditable [4]. Their proposed system employs a UTxO (Unspent
Transaction Output) model in a permissioned blockchain. Their solution is tai-
lored for business-to-business scenarios and does not provide a comprehensive
approach to regulatory compliance.

Another related work PRCash is more relevant to our solution that addresses
the privacy conflict [45], presents a solution that utilizes ZKPs to enable efficient
implementation of a receiving limit for anonymous transactions within a specific
time interval or epoch. Additionally, the regulation mechanism of PRCash re-
quires linking multiple transactions within a time limit, which can potentially
compromise user privacy.

Wüst et al. introduced Platypus, a privacy-preserving and centralized pay-
ment system [46]. Platypus is not decentralized, which means it cannot continue
to function effectively in the event of a single point of failure.

Tomescu et al. proposed a decentralized payment system known as UTT,
which relies on a Byzantine fault-tolerant infrastructure [43]. Additionally, UTT
limits the amount of money that can be anonymously sent monthly.

Gross et al. proposed a modified version of Zerocash to create a ”privacy
pool” for CBDC [26]. This modified Zerocash protocol [38] can ensure the privacy
of CBDC transactions by hiding the identities of the transacting parties while
maintaining the integrity of the CBDC system. It utilizes proofs of inclusion in
a Merkle tree to verify transactions. This means the system uses a Merkle tree
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data structure to efficiently prove that a transaction is valid and that its inputs
have not been previously spent.

PEReDi [28] provides support for regulatory compliance, including Know
Your Customer (KYC), Anti-Money Laundering (AML), and Combating Fi-
nancing of Terrorism (CFT) requirements. In the PEReDi, a committee of sev-
eral authorities can revoke privacy or trace transactions from a specific user. The
committee does so by decrypting the ciphertext stored in the ledger. Both users
must be online for the transaction to occur on PEReDi.

The comparison of KAIME and related works is given in Table 1 and Table
2. Lee’s framework has been expanded [32], and new comparable features have
been added to the table.

Contributions. The paper presents the following contributions:

1. To the best of our knowledge, we propose a CBDC system that does not only
address the privacy conflict between the user and regulatory agencies but also
resolves the privacy conflict between the bank and the user by including all
stakeholders (users, banks, financial institutions, regulatory agencies, central
bank) for the first time. This system also supports regulatory mechanisms
such as KYC, AML, and CFT, which are critical requirements that should
be included in a CBDC system.

2. In KAIME, sender and receiver privacy can be added or removed as features
from the system depending on the requirements. This adds modularity to
our solution.

3. Since simple and known cryptographic algorithms are used, security analysis
and implementation of KAIME is much easier than other related works. In
addition, the zero-knowledge proofs can work without needing a trusted
party.

2 OVERVIEW

In this section, we present a summary of our solution. We begin by discussing our
motivation and our requirements. Next, we describe our system model and then
give the details of the cryptographic techniques we have employed to develop
our solution.

2.1 Motivation

In a report by the Swiss National Bank [17], ”mass surveillance” is specifically
identified as a potential risk associated with a CBDC. This underscores the
importance of ensuring strong privacy protections. Furthermore, a survey con-
ducted by the European Central Bank [7] revealed that privacy was considered
the most critical aspect of a CBDC.

While CBDCs are expected to provide a critical feature, such as privacy,
CBDCs must accommodate some regulatory requirements for financial stabil-
ity and government security. Regulatory requirements for CBDCs are the en-
forcement of anti-money-laundering (AML), know-your-customer (KYC), and

4



References
Regulation
Mechanism

Solution to Privacy
Conflict Between
User- Reg. Agen.

Solution to Privacy
Conflict Between
User- Fin. Ins.

For
CBDC?

[45] Balance Limit Yes No No

[4] Single Reg. Agency Yes No No

[26] Balance Limit Yes No Yes

[46] Balance Limit Yes No Yes

[43] Balance Limit Yes No Yes

[28]
More than One
Reg. Agency

Yes No Yes

[1] Single Reg. Agency Yes No No

KAIME
More than One
Reg. Agency

Yes Yes Yes

Table 2. The table compares the related work dealing with the privacy conflict and our
solution. The second column shows under what conditions and by whom the regulation
mechanism is executed. The third and fourth column show for which stakeholders a
solution to the privacy conflict is offered. The last column shows whether the papers
were written for CBDC purposes.

counter-financial-terrorism (CFT) [2]. On the other hand, this contradicts the
objective of enhancing payment privacy.

There is a suggestion that this conflict can be resolved by allowing anony-
mous payments up to a specific limit per unit time [6]. Previous works have
proposed this idea [45], [23], [46]. The idea does not meet the requirements.
Government officials may not mind evading a $100 tax, but when it comes to
a criminal or murderer, payment information is critical. Various suggestions for
solving this conflict are summarized in the related work section. These solutions
include various cryptographic techniques such as zero-knowledge proof, commit-
ment scheme, threshold cryptography, and blind signature. In [5], authors stated
that these solutions do not explicitly address the privacy conflict between stake-
holder groups (merchants, banks and payment providers, government). In the
article, Auer et al. mentioned not only the privacy conflict between the user and
the government but also the high level of conflict between other groups. They
have also divided the situations in which the user’s data should be accessed and
the stakeholder who wants to access it, layer by layer.

Based on the motivation to provide both the privacy of users and regulatory
requirements and the idea of bringing other stakeholders into the system, our first
aim is to design a system in which a person suspected by the regulatory agencies
can track all transactions retrospectively and provide this tracking by exceeding
the threshold number. Our second goal is to include banks and companies that
use financial data in the system and to solve the privacy conflict between them
and the user.

CBDC can be recorded in a distributed ledger using blockchain technology.
This technology is used to ensure that CBDCs are traded in a secure, transpar-
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ent, and reliable manner. Blockchain technology can help prevent fraudulent or
misleading transactions as transactions are recorded irreversibly. In addition to
such benefits, we use a permissioned blockchain to easily access the transaction
details of the stakeholders, except the users in the system, and to prevent a
single point of failure.

2.2 Balance Between Soft and Hard Privacy

Auer et al. divided the privacy methods in CBDC systems into three [5]. These
are hard privacy, soft privacy, and privacy with a balance between soft and hard.
The stakeholders in the system have been divided into shells according to the
monitoring status of the transactions and the request to review the transactions.

Hard privacy argues that all stakeholders in the system cannot see the trans-
actions and that only the person with the private key can see the plaintext,
that is, the user. Unfortunately, this will lead to the disappearance of regula-
tory mechanisms and is undesirable for CBDCs. On the other hand, soft privacy
addresses the ability of payment information to move freely between different
parties yet still protects it from external attacks through point-to-point encryp-
tion. While a system like this can be highly effective in terms of efficiency, its
privacy features will not differ from those of current payment networks. As a re-
sult, it may not meet the privacy needs of users who are particularly concerned
about protecting their information.

The innermost ring of stakeholders divided into rings is the banks. Auer et
al. argued that banks should see the transaction details in the balance between
soft and hard privacy. We disagree with this view, but we are developing a
solution where banks can see the transaction details if they receive approval
from the user. They also said that hard privacy techniques could be used for
other stakeholders. We use hard privacy techniques between regulatory agencies
and users in KAIME; we use a technique that converges to soft privacy, although
we cannot say precisely soft privacy between the bank and the user.

2.3 Security and Privacy Requirements

In this section, we define the privacy and security requirements that should be
in the system.

Transaction Integrity. It should not be possible for any person to transact
on behalf of someone else and change their balance. Following a successful trans-
action between two users, it is imperative to update the accounts of both parties
accurately, taking into account all relevant parameters. The transaction must
occur even if the receiving party is offline. The balance increases and decreases
on the sender, and receiver sides must be the same.

Regulatory Mechanism. Regulation mechanisms such as KYC, AML, and
CFT should be included in the system. Regulatory agencies should be able to
see the details of the process and review them retrospectively when needed. In
order for these mechanisms to be quickly processed, the sender should not be
stored encrypted in the ledger.
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Bank and Financial Institutions Tasks. The duties of these institutions
in traditional systems should also be provided in the solution. The user should
be able to share the details of the past transaction with the institution without
deceiving the institution. However, the institution cannot monitor past transac-
tions without user permission.

Non-repudiation. Once a sender has made a payment, he should not be
able to deny it later.

Transaction Privacy. When a transaction is given, the transaction value
should not be detected in cases other than auditing. In addition, the user balance
should be kept encrypted in the ledger, and the balance should not be detected.

Unlinkability. Given a transaction, the ownership of the assets used by the
current transaction should not be linked to past transactions. It should not be
possible to connect the receiver to another payment in the same system where
the sender or receiver is located.

2.4 Stakeholders & Roles

In this section, we describe the entities involved and their respective roles.

– Central Bank: The central bank issues the digital currency, which is ac-
countable for the monetary policy and has the authority over the monetary
supply at any point. However, the central bank has no control over the status
of all users’ accounts and lacks trust in privacy because of the possibility of
mass surveillance. This means it is unable to reveal the transferred values
linked to a certain transaction. For the role of the central bank, we refer to
[17].

– Users: As with any digital currency system, users of the system can take on
the role of either the sender or the recipient when participating in a trans-
action involving digital currency. Users have no choice against regulatory
agencies to protect the privacy of their past transactions. If the regulatory
agencies decide that the user is a potential criminal, they can abort the user’s
privacy with the help of threshold cryptography. In addition, users have the
ability to allow banks and financial institutions to review transactions.

– Financial Institutions and Banks: Banks are responsible for making
the user registration process. In the traditional banking system, banks also
have various responsibilities, such as giving a credit score to the user and
determining a credit card limit. In order to perform these functions, banks
need to learn the balance and past transactions of the user. They can perform
this operation cryptographically in line with the user’s consent. Likewise,
financial institutions need to access the user’s transaction details to fulfill
their duties in the traditional system. The user can share transaction details
with financial institutions upon request.

– Regulatory agencies: Our approach involves entrusting a group of au-
thorized institutions, which we call regulatory agencies, with the task of
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conducting different audit procedures required for ensuring regulatory com-
pliance. Regulatory agencies can access the data of the user’s transactions in
case of doubt by joint decision. They can translate the encrypted transaction
data into plaintext with the help of threshold cryptography and access the
transaction details.

Fig. 1. The System consists of commercial banks (or any financial institutions)that
are responsible for user registration and traditional bank tasks, the central bank that
is responsible for currency issue and monetary policy, and regulatory agencies that
are responsible for regulatory compliance. All entities are responsible for executing
the validity of transactions and the blockchain network. The direction of the arrows
and the numbers in the figure do not indicate a specific order. The purpose of the
arrows is to show the functions that take place between the entities. (1) represents
User Registration, (2) represents Currency Issue, (3) represents Payment, (4) represents
Abort Transaction Privacy, and (5) represents Abort Transaction Privacy for Bank.

2.5 High-level Overview

Each user within the system possesses a wallet that is used for storing their cur-
rent balance, the encryption private key of the user ske,u, the signature private
key of the user sks,u, and the public key of regulatory agencies pka. ske,u is used
to access the plaintext of the encrypted balance of the user in the ledger and
create zero-knowledge proofs, pka is used in threshold Elgamal encryption [21]
[35] for regulatory agencies.

User registration is done by banks. The currency issuance function is per-
formed by the central bank. The amount of v encrypted with the user’s public key
pke,u is added to the user’s encrypted balance in the ledger with homomorphic
encryption.

KAIME is built on an account-based system, similar to Zether [12]; the bal-
ances of the users are encrypted on the ledger. In the payment function, the
sender encrypts the amount v that he wants to send with the public key of the
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receiver and encrypts with his public key. Then, the sender proves that the en-
crypted balance in the ledger is more than the amount he wants to send while
performing the payment transaction. The sender also encrypts the amount v to
be sent with the public key of the regulatory agencies. He also provides proof
that the v values in the ciphertexts are the same similar to the currency is-
sue function. However, due to the requirement of verifying that three different
ciphertexts can be decrypted to the same value, he generates two proofs of equal-
ity. After checking the validity of the proofs, the balance of the sender’s account
decreases homomorphically (over the ciphertext), and the balance of the receiver
increases homomorphically. Finally, the ledger is updated.

In KAIME, other stakeholders, banks, and financial institutions can access
the user’s past transactions and balance by getting approval from the user. The
details are explained in Section 3. With past transaction details, banks benefit
from various usage areas such as credit scores.

Regulatory agencies can run the Abort Transaction Privacy function to de-
anonymize the user and examine past transactions. By exceeding the number of
thresholds t similar to [28], the user’s balance on the ledger can be accessed, and
his past transactions can be accessed.

3 PROTOCOLS

In this section, the protocols used in KAIME are specified. The algorithms used
in the protocols are described in Appendix.

3.1 System Initialization

In this protocol, the public keys of the central bank and banks are recorded on
the blockchain and the public key of the regulatory agencies is created. The pub-
lic keys pkc, pkb of the central bank and banks are recorded on the blockchain.
No specific algorithm for signing is specified in Chapter ??. For signature, a sig-
nature algorithm with elliptic curve-based EUF-CMA security (such as ECDSA,
EdDSA) can be used.

– Central Bank: The central bank runs KeyGen algorithm for signature and
gets output as

(pkc, skc) = (gskc , skc). (1)

– Commercial Banks: A commercial bank runs KeyGen algorithm for sig-
nature and gets output as

(pkb, skb) = (gskb , skb). (2)

– Regulatory Agencies: Each regulatory agencies runs the distributed key
generation algorithm with threshold parameters t for Homomorphic ElGamal
Encryption and gets output as

(pka, skai
) = (

n∏
i=1

gskai , skai
) for 1 ≤ i ≤ n. (3)
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3.2 User Registration

This protocol is required to create an account on the system for a user. A user
needs to generate two key pairs. One is for signature; the other is to keep the
balance in the ledger as encrypted and increase the received balances homomor-
phically encrypted balance.

User runs KeyGen algorithm for signature and gets output as

(pks,u, sks,u) = (gsks,u , sks,u). (4)

Then, the user runs KeyGen algorithm for Homomorphic ElGamal Encryption
and gets output as

(pke,u, ske,u) = (gske,u , ske,u). (5)

By verifying the KYC step, the user is registered to the system through the
bank. The Bank encrypts 0 using the user’s pke,u, runs Σ-E0 and signs this data
and sends it to the blockchain.

Bank runs encryption algorithm with pkE,U gets output as

ϕ = Enc(0, pke,u) = (gr, g0 · pkre,u). (6)

Then, the bank creates proof πE0 with running Σ-E0.

πE0 = Σ-E0(ϕ, r, pke,u) (7)

Lastly, signs datas and sends to blockchain.

σ = Sign(onboarding, pke,u, pks,u, ϕ, πE0; skb) (8)

Once the proof and signature are verified, the registration process is com-
pleted.

3.3 Currency Issue

Only the central bank can use user registration protocol and it is required to
issue currency. The central bank encrypts the value v, which it wants to issue,
with the public key of the user and the public key of the regulatory agencies.

ϕu = Enc(v, pku) = (gr, gv · pkru) (9)

ϕr = Enc(v, pka) = (gr, gv · pkra) (10)

Then, the central bank creates proof π-EE1 that the values in these two
ciphertexts are the same.

πEE1 = Σ-EE1(pke,u, pka, r) (11)

Then, the central bank signs the datas.

σ = Sign(issue, pke,u, ϕu, ϕr, πEE1; skc) (12)

Lastly, sends these to the ledger. The ledger is updated by checking the
validity of the proofs and signature. The issued amount is added to the user’s
encrypted balance.
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3.4 Payment

To start the payment process, the sender must first have the receiver’s public
key and the public key between the receiver and the bank. Assume User1 is
sender and User2 is receiver. (In this section, to avoid notation complexity, the
ElGamal Encryption public key of the users is shown as pke,u = pku.)

Then User1 accesses his old encrypted balance from the ledger and decrypts
it.

ϕo := (gro , gb · pkro1 ) (13)

b := Dec(ϕo, sk1) (14)

User1 creates new ciphertext with same b to track the random value for
creating range proof.

ϕn := Enc(b, pk1) = (grn , gb · pkrn1 ) (15)

User1 encrypts the value v it wants to transfer with its own public key pk1,
User2’s public key pk2 and the regulator agencies’ public key pka.

ϕ1 := Enc(v, pk1) = (gr, gv · pkr1) (16)

ϕ2 := Enc(v, pk2) = (gr, gv · pkr2) (17)

ϕa := Enc(v, pka) = (gr, gv · pkra) (18)

User1 then runs two Σ-EE1. This proofs show that the plaintexts of 3 ci-
phertexts are equal to each other.

π1
EE1 = Σ-EE1(pk1, pk2, r) (19)

π2
EE1 = Σ-EE1(pk2, pka, r) (20)

User1 also adds two range proofs to prevent the possibility of creating value
out of thin air and to verify that there are sufficient funds in his account.

π1
bullet = Bulletproof(ϕ1, r) (21)

π2
bullet = Bulletproof(ϕn − ϕ1, r

n − r) (22)

User1 runs Σ-EE2.

πEE2 = Σ-EE2(ϕo, ϕn, sk1) (23)

Finally, User1 signs the datas.

σ = Sign(payment, pk1, pk2, ϕn, ϕ1, ϕ2, ϕa, π
1
EE1,

π2
EE1, π

1
bullet, π

2
bullet, πEE2; sks,1)

(24)

Lastly, sends these to the ledger. The ledger is updated by checking the
validity of the proofs and signature. The issued amount is subtracted to the
User1’s encrypted balance and the amount is added to the User2’s encrypted
balance.
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3.5 Abort Transaction Privacy

Users use the public key of the regulators pkE,R when performing the transfer
protocol and the central bank currency issue protocol.

Regulatory agencies apply the abort transaction protocol on the transaction
or balance related to their shared ElGamal Encryption keys to see the content of
transactions they consider suspicious. However, for this to happen, a sufficient
number of regulatory agencies must reach a consensus.

3.6 Abort Transaction Privacy for Bank or Financial Institutions

When the user wants to receive service from the bank or institution, the institu-
tion that will provide the service needs the details of the user’s past transactions.
The user can give the encryption private key to the bank in order to present the
contents of the encrypted transactions on the ledger to the bank, but in such a
scenario, the bank will have the ability to see the future transactions of the user.

Firstly, a bank or financial institution creates a one-time ElGamal Encryption
public key for this function and sends it to the user.

(pk′b, sk
′
b) = (gsk

′
b , sk′b). (25)

The user encrypts the balance and values of all previous k transactions with
the public key.

ϕ′
i = Enc(vi, pk

′
b) = (gri , gvi · pk

′ri
b ) for 1 ≤ i ≤ k (26)

After this step, the user creates Σ-EE2 for all past encrypted transactions ϕi

and the encrypted texts it creates with the one-time public key and sends it to
the bank. The reason for creating this proof is to prevent the user from cheating
the bank.

πEE2i = Σ-EE2(ϕ′
i, ϕi, ske,u) for 1 ≤ i ≤ k (27)

After the bank has verified the proofs, it can access the user’s transaction
values and balance.

4 ANONYMITY

In this section, we will give an anonymous version of the KAIME. This version
not only hides the transferred amount but also hides the sender and receiver.
However, it comes at the expense of additional costs. The complexity of the
zero-knowledge proofs required for transfer will increase linearly , but with the
method [20] proposes, the complexity will increase logarithmically. The process’
complexity can be diminished using this method. A similar solution was used in
Zether [12].

Since we do not recommend hiding the sender and recipient so that the
regulatory mechanism can work better, we will only introduce it as an overview.
An anonymous transaction allows a sender who desires to send a value v to a
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Algorithm Prover (ms) Verifier (ms) # of uses in a TX

Σ-EE1 (ed25519) 0.130 0.243 2
Σ-EE2 (ed25519) 0.201 0.156 1
Range Proof (ed25519) 32.209 18.072 2
Σ-E0 (ed25519) 0.121 0.252 -
ElGamal Encryption (ed25519) 0.147 - 3
Σ-EE1 (P256) 1.216 2.309 2
Σ-EE2 (P256) 1.989 1.503 1
Range Proof (P256) 292.965 121.516 2
Σ-E0 (P256) 0.672 1.749 -
ElGamal Encryption (P256) 1.083 - 3

Table 3. Performance Evaluation

receiver with a public key pkr, to hide both the identity of the receiver among a
larger set of users with public keys {pk1, pk2, .....pkn}, as well as the transferred
value v. The sender sends 3n ciphertexts, and all of them encrypt 0 except
three. Only three ciphertexts represent the real transaction; the rest are fake
transactions. Since the sent values in the fake transaction are 0, the balance
of the sender and the users in the anonymity set does not change. By using
ring signatures, both the sender, the receiver, and the transaction details can be
hidden.

5 IMPLEMENTATION

In the scope of this study, we have implemented cryptographic algorithms de-
scribed in Appendix using the Go programming language. To evaluate the per-
formance of these implementations, we provide the corresponding test results
in Table 3. Furthermore, the open-source tests and implementations of these
algorithms can be accessed via GitHub‡.

In Table 3. The ”Algorithm” column specifies the cryptographic operation
being measured, while the ”Prover” and ”Verifier” columns show the time it takes
for the prover and verifier to complete the operation in milliseconds. Additionally,
the ”Number of uses in a TX” column indicates how many times each operation
is utilized within a transaction. Since zero proof is not used in the transaction,
it is shown with ”-” in the column. The outcome produced by an i7-1165g7
@2.80GHZ computer with 16GB RAM.

6 SECURITY ANALYSIS

Before giving security analyses, we make some assumptions.

– The entities engage in communication through secure channels.

‡https://github.com/midmotor/kaime cbdc proof test
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– All cryptographic operations are implemented as described in previous sec-
tions.

– Entities store their secret keys securely.
– Regulatory agencies do not want to see the transaction details arbitrarily.
– Regulatory agencies run the abort privacy transaction protocol only for peo-

ple and transactions they think are suspicious.

6.1 Transaction Authentication

After zero knowledge proofs are created in the system, all data must be signed.

Claim. An adversary cannot create valid transaction if he has not have the
related secret key.
Sketch of Proof. An adversary cannot generate a valid signature, since digital
signature algorithm we use is EUF- CMA.

6.2 Transaction Integrity

In the system, the balances of the sender and receiver increase and decrease
homomorphically. It must be guaranteed that the balance increases and decreases
by the same amount.

Claim. The user cannot send transactions value more than the balance he has.
”
Sketch of Proof. The claim’s proof is covered by the soundness feature of the
Bulletproof. Suppose the attacker wanted to send more than his balance and
prepared the encrypted text in this way. In that case, the transaction will not
be valid during the transaction verification since Bulletproof does not verify.

6.3 Balance Adequacy

Since the system operates on encrypted balances, balance adequacy cannot be
checked with simple if conditions.

Claim. The user cannot send transactions value more than the balance he has.
Sketch of Proof. The claim’s proof is covered by the soundness feature of the
Bulletproof. Suppose the attacker wanted to send more than his balance and
prepared the encrypted text in this way. In that case, the transaction will not
be valid during the transaction verification since Bulletproof does not verify.

6.4 Negative Transaction Value

Since the transaction takes place encrypted, negative value control cannot be
made.

Claim. The user cannot create a negative transaction value.
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Sketch of Proof. The claim’s proof is covered by the soundness feature of the
Bulletproof. Suppose the adversary wanted to create negative value and prepared
the encrypted text in this way. In that case, the transaction will not be valid
during the transaction verification since Bulletproof does not verify.

6.5 Regulation Mechanism

Given that our solution incorporates regulatory mechanisms, it becomes imper-
ative for us to examine the correctness of these mechanisms. Therefore, we give
the following claim:

Claim. It is impossible for any user to generate a transaction violating the
regulatory mechanism.
Sketch of Proof. The claim’s proof is covered by the soundness feature of Σ-EE1.
Suppose the adversary does not encrypt the transaction values using the public
key of regulatory agencies. In that case, the transaction will not be valid during
the transaction verification since Σ-EE1 does not verify.

6.6 Privacy Against Regulatory Agencies

Although our solution empowers regulatory agencies to monitor transactions, it
requires some restrictions, as mentioned in the previous sections.

Claim. A single regulatory agency could not see the transaction contents and
user balance.
Sketch of Proof. Our solution’s use of threshold encryption confirms this claim.
Since the private keys that will convert the encrypted texts into plaintext are
shared, a single regulatory agency cannot see the content of the plaintexts cor-
rectly.

6.7 Privacy Against Banks

If the user permits the bank, the bank can see the transaction details. However,
the bank should not be able to see the circumstance of the transactions without
obtaining permission to ensure privacy between the user and the bank.

Claim. A bank could not see the transaction contents and user balance without
obtaining approval from the user.
Sketch of Proof. The user’s transactions are encrypted on the ledger. Even if
the bank can access these encrypted texts, the bank cannot see the plaintext
because the ElGamal encryption is CPA-secure.

6.8 Banks and Users Relationship

In the system, banks sometimes need the user’s past transactions to perform
their functions. In such a case, the user should not deceive the bank.
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Claim. When the bank requests the user’s past transactions, the user cannot
change the detail of a transaction he has made.
Sketch of Proof. The claim’s proof is covered by the soundness feature of Σ-EE1.
Suppose the adversary does not encrypt the transaction values with one time
public key of the bank. In that case, the transaction will not be valid during the
transaction verification since Σ-EE1 does not verify.

7 CONLUSIONS

This study showed that cryptographic protocols, as in related works, are an
effective tool for providing privacy and regulation to CBDCs at the same time.
In addition, our study also addressed the privacy between the user and the banks
and showed that cryptographic protocols protect this privacy. It also enabled
banks to fulfill their tasks. Future work may focus on further refining these
protocols and better protection of privacy and regulation of CBDCs.

Sigma protocols are used instead of zkSNARKs for zero knowledge proofs in
the system. Performance results show that processing times in discrete logarithm-
based proofs took milliseconds with Σ-Protocols. As future work, these proofs
can be implemented with zkSNARKs and their performance times can be com-
pared. Also, the system can be implemented on a permissioned blockchain that
supports smart contracts. Transaction per Second (TPS) will give more detailed
results about the performance of the system.

Additionally, the system does not include the offline payment function re-
quired for digital currencies to replace cash in the real world. Offline function-
ality can be added to the system by combining it with offline payment methods
in the literature.
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APPENDIX

Σ-Protocols

Σ-Protocols, are cryptographic techniques that allow a prover to convince a
verifier that they possess knowledge of a value x satisfying a specific relation,
all without showing any additional information about x [25]. Σ-Protocols find
utility in the development of various cryptographic applications, credential pro-
tocols, e-voting protocols and group/ring signatures. In the proposed system,
they were used to ensure privacy. One commonly known example of Σ-Protocols
is Schnorr’s protocol [39], designed for demonstrating knowledge of a discrete
logarithm. The concept of Σ-Protocols generalizes not only Schnorr’s protocol
but also the identification protocols of Guillou-Quisquater [27] and Okamoto
[34], along with numerous other protocols known in the literature.

More formally, consider a binary relation R = (v;w) ⊆ V ×W , where v ∈ V
represents the shared input for both the prover and the verifier, and w ∈ W
represents a witness, serving as the prover’s private input. The language L =
{v ∈ V : ∃w ∈W (v; w) ∈ R} is defined as the set of inputs v in V for which
there exists a witness w in W such that (v; w) ∈ R [40].

These proof systems possess three essential properties. First, completeness is
that if the verifier and prover follow the protocol correctly, the verifier will accept
the proof. Second, for any x and a pair of accepting conversations on input x
represented as (a, c, z) and (a, c′, z′) with e ̸= e′ there exists an efficient method
to compute w such that (x,w) ∈ R. This is called the special soundness. Third,
special honest-verifier zero knowledge (SHVZK) asserts that expressed through
the existence of a specialized simulator known as the SHVZK simulator. Given a
statement x and a challenge c, the simulator outputs (a, z) in a manner such that
(a, c, z) forms an accepting 3-message transcript for x and is indistinguishable
from a transcript produced by an honest prover when the challenge is c. Its
definition is given below.

Prover P Verifier V
((v, w) ∈ R) (v ∈ V )

a← α(v, w, uP )
announcement a−−−−−−−−−−−−→

c ∈R C
challenge c←−−−−−−−−−−−

r ← ρ(v, w, c, uP )
response r−−−−−−−−−−−→

Φ(v, a, c, r)?
Accept the conversation (a, c, r) if the condition Φ(v, a, c, r) is satisfied.

Fig. 2. Σ-Protocol for R.
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Definition 1. A Σ-Protocol for a relation R is a communication protocol in-
volving a prover P and a verifier V , outlined in Figure 2, and adhering to the
following three principles:

– Completeness: If both the prover P and verifier V adhere to the protocol,
V always accepts.

– Special Soundness: There exists an efficient probabilistic polynomial time
algorithm E (extractor) that, given any verifier output v and two accepting
conversations (a; c; r) and (a; c; r) where c ̸= c, can compute a witness w
such that (v; w) ∈ R.

– Special Honest-Verifier Zero-Knowledgeness: There exists an efficient
algorithm S (simulator) that, given any verifier output v in the language
L and any challenge c, generates conversations (a; c; r) with the same
probability distribution as conversations between an honest prover P and
verifier V for the given input v and challenge c.

Why Σ-Protocols was Chosen (zkSNARKs vs Σ-Protocols)

Non Interactive Zero Knowledge (NIZK) proofs can be divided into two main cat-
egories: zk-SNARKs and Σ-Protocols with Fiat-Shamir. Both approaches have
different efficiency characteristics, advantages and disadvantages. However, each
has different characteristics in terms of factors such as computational cost, se-
curity level and overall complexity. This variety allows users to choose one that
suits their specific application needs.

Zk-SNARKs can be theoretically applied to prove algebraic expressions, for
example they can represent the circuit via Quadratic Arithmetic Programs (QAPs)
[24]. However, the circuit for calculating a single exponential number in a group
G usually consists of thousands of gates. QAP-based zk-SNARKs increase the
computational cost of the prover linearly with the size of the circuit and re-
quire the creation of a reliable common reference sequence. For this reason, zk-
SNARKs are generally considered inefficient when it comes to proving algebraic
expressions. On the other hand, Sigma protocols can be used to represent dis-
crete logarithm information with a fixed number of exponents and can therefore
be more efficient. Since there are discrete logarithm statements in the system,
Σ-Protocols were used in the proofs because they are much more advantageous.

Proof of Encryption Equality-1 (Σ-EE1)

Proof of Encryption Equality-1 (Σ-EE1) proves that the plaintexts of homo-
morphic ElGamal encryption encrypted with two different public keys pk1 and
pk2 are equal to each other. ϕ1 = (ϕ1,L, ϕ1,R) represents the value encrypted
with pk1, ϕ2 = (ϕ2,L, ϕ2,R) represents the value encrypted with pk2. In ElGa-
mal encryption, Kurosawa demonstrated that employing identical random val-
ues for encrypting data across multiple ciphertexts is feasible [31]. This concept
is integrated into our solution to optimize the efficiency of Σ-EE1. Therefore,
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ϕ1,L = ϕ2,L. The sender uses 2 different Σ-EE1 for three different ciphertexts
when preparing the transaction. It shows that the plaintexts of the encrypted
ciphertexts with the public keys of the receiver, sender and regulatory agencies
are equal to each other. In this way, the same amount that is deducted from the
sender’s balance increases in the receiver’s balance, and regulatory agencies are
provided with access to the transaction content in case of doubt.

Prover Verifier
u ∈R Zn

a1 ←− gu

a2 ←− (pk1/pk2)
u

a1, a2−−−−−−−−−−−→
c ∈R Zq

c←−−−−−−−−−−
z ←−n u+ c.r

z−−−−−−−−−−→
gz

?
= a1.ϕ

c
1,L

(pk1/pk2)
z ?
= a2.(ϕ1,R/ϕ2,R)

c

Fig. 3. Proof of Encryption Equality-1 (Σ-EE1)

Proposition 1. The protocol depicted in Figure 3 is a Σ-Protocol designed for
the relation:

{(g, pk1, pk2, ϕ1,L, ϕ1,R, ϕ2,R; v, r) : ϕ1,L = gr ∧ ϕ1,R = gv·pkr1 ∧ ϕ2,R = gv·pkr2}

Proof. Completeness evidently holds, as

gz = gu+c.r = gu.gc.r = gu.(gr)c = a1.ϕ
c
1,L (28)

and

(pk1/pk2)
z = (pk1/pk2)

u+c.r = (pk1/pk2)
u.((pk1/pk2)

r)c = a2.(ϕ1,R/ϕ2,R)
c

(29)
For special soundness, we assume that there are two accepting conversations

(a1, a2, c, z) and (a1, a2, c
′, z′) with c ̸= c′. Then we have:

gz = a1.ϕ
c
1,L, gz

′
= a1.ϕ

c′

1,L

⇒ gz−z′
= ϕc−c′

1,L

⇔ ϕ1,L = g
z−z′
c−c′

Therefore, the witness r holding ϕ1,L = gr is obtained as r = (z−z′)/(c− c′)
. Similarly,
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(pk1/pk2)
z = a2.(ϕ1,R/ϕ2,R)

c, (pk1/pk2)
z′

= a2.(ϕ1,R/ϕ2,R)
c′

⇒ (pk1/pk2)
z−z′

= (ϕ1,R/ϕ2,R)
c−c′

⇔ (ϕ1,R/ϕ2,R) = (pk1/pk2)
z−z′
c−c′

Lastly, in order to demonstrate the property of special honest-verifier zero-
knowledgeness, it is essential to compare the distributions of conversations with
an honest verifier (following the protocol and utilizing the witness x as input)
with the simulated conversations that deviate from the protocol, using only the
common inputs.

{(a; c; z) : u ∈R Zn; a1 ← gu; a2 ←− (pk1/pk2)
u; z ←n u+ cr} ,{

(a; c; z) : z ∈R Zn; a1 ← gz.ϕ−c
1,L; a2 ← (pk1/pk2)

z.(ϕ1,R/ϕ2,R)
−c

}
,

with given challenge c. The distributions are the same, and each conversation
occurs with a probability of precisely 1/n2. Since the protocol is special honest-
verifier zero-knowledgeness, it is also honest-verifier zero-knowledgeness □

Proof of 0 Encryption (Σ-E0)

Proof of 0 Encryption (Σ-E0) proves that the plaintext corresponding to the
ciphertext is equal to 0. This is used by user’s commercial bank to create the
person’s address in the ledger after the KYC step completed.

Prover Verifier
u ∈R Zn

a1 ←− gu

a2 ←− pku

a1, a2−−−−−−−−−−−→
c ∈R Zq

c←−−−−−−−−−−
z ←−n u+ c.r

z−−−−−−−−−−→
gz

?
= a1.ϕ

c
L

pkz ?
= a2.ϕ

c
R

Fig. 4. Proof of 0 Encryption (Σ-E0)

Proposition 2. The protocol depicted in Figure 4 is a Σ-Protocol designed for
the relation:

{(g, pk, ϕL, ϕR; r) : ϕL = gr ∧ ϕR = g0 · pkr}
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Proof. Completeness evidently holds, as

gz = gu+c.r = gu.gc.r = gu.(gr)c = a1.ϕ
c
L (30)

and
pkz = pku+c.r = pku.pkc.r = pku.(pkr)c = a2.ϕ

c
R (31)

For special soundness, we assume that there are two accepting conversations
(a1, a2, c, z) and (a1, a2, c

′, z′) with c ̸= c′. Then we have:

gz = a1.ϕ
c
L, gz

′
= a1.ϕ

c′

L

⇒ gz−z′
= ϕc−c′

L

⇔ ϕL = g
z−z′
c−c′

Therefore, the witness r holding ϕL = gr is obtained as r = (z − z′)/(c− c′)
. Similarly,

pkz = a2.ϕ
c
R, pkz

′
= a2.ϕ

c′

R

⇒ pkz−z′
= ϕc−c′

R

⇔ ϕR = pk
z−z′
c−c′

Lastly, in order to demonstrate the property of special honest-verifier zero-
knowledgeness, it is essential to compare the distributions of conversations with
an honest verifier (following the protocol and utilizing the witness x as input)
with the simulated conversations that deviate from the protocol, using only the
common inputs.

{(a; c; z) : u ∈R Zn; a1 ← gu; a2 ←− pku; z ←n u+ cr} ,{
(a; c; z) : z ∈R Zn; a1 ← gz.ϕ−c

L ; a2 ← pkz.ϕ−c
R

}
,

with given challenge c. The distributions are the same, and each conversation
occurs with a probability of precisely 1/n2. □

Proof of Encryption-2 (Σ-EE2)

When the sender wants to create a transaction, the sender must have the random
value r of the ciphertext in the ledger. But unfortunately this is not possible as
other transactions occur that change the user’s state. For this reason, before
sending a transaction, the user must retrieve the ciphertext from the ledger and
create a new ciphertext by updating the random value. While doing this, it must
show that it encrypts the same plaintext. For this reason, the system requires
Σ-EE2. ϕ = (ϕL, ϕR) represents new ciphertext, ϕ′ = (ϕ′

L, ϕ′
R) represents old

ciphertext.

Proposition 3. The protocol depicted in Figure 5 is a Σ-Protocol designed for
the relation:

{(g, pk, ϕ, ϕ′; r, v, x) : ϕR = gv · pkr ∧ ϕ′
R = gv · pkr

′
}
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Prover Verifier
u ∈R Zn

a1 ←− gu

a2 ←− (ϕL/ϕ
′
L)

u

a1, a2−−−−−−−−−−−→
c ∈R Zq

c←−−−−−−−−−−
z ←−n u+ c.x

z−−−−−−−−−−→
gz

?
= a1.pk

c

(ϕL/ϕL′)z
?
= a2.(ϕR/ϕ

′
R)

c

Fig. 5. Proof of Encryption-2 (Σ-EE2)

Proof. Completeness evidently holds, as

gz = gu+c.x = gu.gc.x = gu.(gx)c = a1.pk
c (32)

and

(ϕL/ϕ
′
L)

z = g(r−r′).z = g(r−r′).u.g(r−r′).c.x = a2.pk
(r−r′)c = a2.(ϕR/ϕ

′
R) (33)

For special soundness, we assume that there are two accepting conversations
(a1, a2, c, z) and (a1, a2, c

′, z′) with c ̸= c′. Then we have:

gz = a1.pk
c, gz

′
= a1.pk

c′

⇒ gz−z′
= pkc−c′

⇔ pk = g
z−z′
c−c′

Therefore, the witness x holding pk = gx is obtained as x = (z − z′)/(c− c′)
. Similarly,

(ϕL/ϕL′)z
?
= a2.(ϕR/ϕ

′
R)

c, (ϕL/ϕL′)z
′ ?
= a2.(ϕR/ϕ

′
R)

c′

⇒ (ϕL/ϕL′)z−z′
= (ϕR/ϕ

′
R)

c−c′

⇔ ϕR/ϕ
′
R = (ϕL/ϕL′)

z−z′
c−c′

Lastly, in order to demonstrate the property of special honest-verifier zero-
knowledgeness, it is essential to compare the distributions of conversations with
an honest verifier (following the protocol and utilizing the witness x as input)
with the simulated conversations that deviate from the protocol, using only the
common inputs.

{(a; c; z) : u ∈R Zn; a1 ← gu; a2 ←− (ϕL/ϕ
′
L)

u; z ←n u+ cx} ,{
(a; c; z) : z ∈R Zn; a1 ← gz.pk−c; a2 ← (ϕL/ϕL′)z.(ϕR/ϕ

′
R)

−c
}
,
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with given challenge c. The distributions are the same, and each conversation
occurs with a probability of precisely 1/n2. □

Bulletproof

In cases where transaction privacy is required, users must prove that the amount
of money entering the transaction is greater than the amount leaving. In simpler
terms, the sender must prove that the balance he has is more than the amount
he wants to send. In a classic payment system, this can be achieved with a simple
condition check. However, range proofs are needed in a payment system where
transaction amounts and balances are wanted to be kept confidential.

For instance, in Monero [3], ring signatures like Borromean Ring Signatures
[33] were initially employed to prove that the processed value is positive and
within a certain range. Although these methods provided the desired level of
privacy, the drawback was the large size of the associated proofs.

The most significant advancement in this regard is the Bulletproof protocol
designed by Bünz et al. [13], which introduces a much more efficient approach
in terms of proof size and verification time. Bulletproofs are non-interactive and
composable inner-product range proof protocols that enable provers to demon-
strate that multiple processed values are within a given range with a succinct
combined proof. Essentially, Bulletproofs build upon the inner-product argu-
ments (IPA) introduced by Bootle et al. [11]. Bünz et al. [13] improved this design
by halving the size of the underlying vector needed for commitment through a
log2 n recursive transformation from an n-dimensional vector to a 1-dimensional
vector. This significantly reduced the complexity of the original IPA. Addition-
ally, in the Bulletproof protocol, the absence of a need to establish a trusted
system at the outset distinguishes it from zero-knowledge proof methods like
zk-SNARK [10], emphasizing its importance in terms of decentralization.

The Bulletproof protocol, initially adopted in Monero, has recently been
succeeded by the Bulletproof+ [18] protocol following a network update. Bullet-
proof+ employs a zero-knowledge weighted inner-product argument (zk-WIP)
instead of IPA to generate range proofs in a shorter size compared to the short
proof sizes achieved by the Bulletproof protocol. When comparing the time taken
for the generation and verification of ZKPs in Bulletproof+ to those in the Bullet-
proof protocol, similar results are obtained. Similarly, the Bulletproof+ protocol
allows for the proof of multiple values being within the specified range with a
succinct combined proof.

In the system proposed in the thesis, Bulletproof is used in two different ways
in a transaction. Its primary purpose is to show that the user has sufficient funds
for the transaction. The other one shows that the encrypted value is between 0
and 232 − 1.

Formally, consider v ∈ Zp. Additionally, let V be an element in a group
G, representing a Pedersen commitment to the value v using the randomness
parameter γ. The objective of the proof system is to convince the verifier that
v lies within the range of integers from 0 to 2n − 1. In simpler terms, the proof
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system aims to establish the following relation:

{(g, h ∈ G, V, n; v, γ ∈ Zp) : V = hγgv ∧ v ∈ [0, 2n − 1]} (34)

Bulletproof are drawn in Figure 6, 7 and 8 . Giving the notation here would
be good for the traceability of the protocol. Bold fonts represent a vector. Let
⟨a,b⟩ =

∑n
i=1 ai·bi denotes the inner product. For a vector g = (g1, . . . , gn) ∈ Gn

and a ∈ Zn
p , C = ga =

∏n
i=1 g

ai
i ∈ G.

Prover Verifier
aL ∈ {0, 1}n s.t. ⟨aL,2

n⟩ = v

aR ←− aL − 1n ∈ Zn
p

α ∈R Zp

A←− hαgaLhaR ∈ G

sL, sR ∈R Zn
p

ρ ∈R Zp

S ←− hρgsLhsR ∈ G
A, S−−−−−−−−−−→

y, z ∈R Z∗
p

y, z←−−−−−−−−−

Fig. 6. Bulletproof Part1

After completing the steps in Figure 6, with this setup Prover creates two
vector polynomials l(X), r(X) in Zn

p [X] and quadratic polynomial t(X) ∈ Zp[X].

l(X) = (aL − z · 1n) + sL ·X ∈ Zn
p [X]

r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n ∈ Zn
p [X]

t(X) = ⟨l(X), r(X)⟩ = t0 + t1 ·X + t2 ·X2 ∈ Zp[X]

Proposition 4. The range proof depicted in Figure 6, 7 and 8 has perfect com-
pleteness, perfect honest verifier zero-knowledge and computational witness ex-
tended emulation.

Proof. It is shown in Appendix C of [13].

Fiat-Shamir Technique

Fiat-Shamir is a technique used to make an interac- tive protocol non-interactive
[9] This technique uses an algorithm that generates a result using a hash function
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Prover Verifier
τ1, τ2 ∈R Zp

Ti ←− gtihτi ∈ G, i = {1, 2}
T1, T2−−−−−−−−−−−→

x ∈R Z∗
p

x←−−−−−−−−−−
l←− aL − z · 1n + sl · x ∈ Zn

p

r←− yn ◦ (aR + z · 1n + sR · x) + z2 · 2n ∈ Zn
p

t̂←− ⟨l, r⟩ ∈ Zp

τx ←− τ2 · x2 + τ1 · x+ z2 · γ ∈ Zp

µ←− α+ ρ · x ∈ Zp

τx, µ, t̂, l, r−−−−−−−−−−−−−−→

Fig. 7. Bulletproof Part2

Prover Verifier

h′
i ←− h

(y−i+1)
i ∈ G, ∀i ∈ [1, n]

gt̂hτx ?
= V z2 · gδ(y,z) · T x

1 · T x2

2

P ←− A · Sx · g−z · (h′)
z·yn+z2·2n

∈ G

P
?
= hµ · gl · (h′)

r

t̂
?
= ⟨l, r⟩ ∈ Zp

result←−−−−−−−−−

Fig. 8. Bulletproof Part3

instead of a traditional protocol where two parties (prover and verifier) share
information and interact with each other. The Fiat-Shamir technique eliminates
interactivity in the proofs described in this section. How to use the Fiat- Shamir
Technique in proofs is not shown for simplicity.

Distributed Key Generation

Threshold cryptography involves the implementation of techniques to distribute
fundamental cryptographic schemes among multiple parties[19]. In this approach,
the ownership or control of cryptographic keys is shared among a specified
threshold of participants. Instead of relying on a single entity for key man-
agement, threshold cryptography enhances security by requiring collaboration
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and consensus among a designated subset of parties to perform cryptographic
operations or access sensitive information. This distribution of cryptographic
functions reduces the risk associated with a single point of failure, offering a
more robust and resilient security framework.

In various scenarios, relying on a single entity for access to valuable assets is
often deemed undesirable. For instance, accessing a personal safe within a bank
may necessitate the use of two keys: one retained by the safe’s owner and an-
other held by a bank employee. Similarly, in numerous cryptographic systems,
restricting the possession of a secret key to a single entity is considered undesir-
able. Instead, the ownership or knowledge of a secret key should be distributed
among multiple parties. This approach enhances security and mitigates risks
associated with sole ownership, reflecting a principle of shared responsibility in
safeguarding sensitive information.

In the proposed system to ensure compliance, a group of authorized institu-
tions, named “regulatory agencies”, are responsible for conducting audit proce-
dures and other related tasks. They are able to access user data only by joint
decision, through the use of threshold encryption. During the setup phase, reg-
ulatory agencies come together to create a private key for ElGamal Encryption.
Before giving the definition of Pedersen Distributed Key Generation used [36],
the definition of secret sharing are given [41].

Secret sharing schemes serve as the foundation for threshold cryptography.
The concept involves dividing a secret into multiple shares in a way that allows
the reconstruction of the original secret only when a predetermined number of
shares are combined. If an inadequate number of shares is available, it becomes
computationally infeasible to reconstruct the secret or any meaningful portion
of it. This approach ensures that the security of the secret relies on a collabo-
rative effort, with no single party possessing enough information to compromise
the confidentiality of the original secret. The strength of the security lies in
the threshold requirement for share reconstruction, providing a robust defense
against unauthorized access.

Definition 2. A secret sharing scheme involving a dealer D and participants
(P1, ..., Pn) typically encompasses two essential protocols.

– Distribution: The dealer D divides a secret s, ensuring that every partici-
pant Pi receives a share si, 1 ≤ i ≤ n.

– Reconstruction: s is recovered by combining shares sii , i ∈ Q, of any
qualified set Q ⊆ P1, ..., Pn.

Secret sharing involves a dealer distributing a secret among participants, re-
quiring collaboration for reconstruction, while distributed key generation (DKG)
enables participants to jointly generate a cryptographic key without the need for
a trusted party or dealer. The same distributed key generation used in FROST
[30]. is used in the system. The steps of DKG are as follows.

1. Every participant Pi (regulatory agencies in our cases) chooses t random

value and uses them as coefficients of polynomial fi(x) =
∑t−1

j=0 aijx
j .
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2. Each Pi calculates a proof of knowledge for the constant term in the poly-
nomial.

3. Each Pi computes a commitment Ci =
〈
αi0, . . . , αi(t−1)

〉
, where αij = gaij

and broadcasts Ci and the proof.
4. Each Pi, after receiving Cℓ and the proof, verifies the proof.
5. Each Pi securely sends to other participants a secret (ℓ, fi(ℓ)).

6. Each Pi verifies their shares by calculating: gfℓ(i)
?
=

∏t−1
k=0 α

ik

ℓk mod q, after
that calculates private sharing key by computing ski =

∑n
ℓ=1 fℓ(i)

7. The group public key is computed

pk =
∏

αj0

Homomorphic Threshold ElGamal Encryption

Threshold encryption is a type of encryption scheme that typically allows a group
of users to collaboratively decrypt a message. In this system, a shared private
key is often divided, and the pieces of this key can come together to decrypt the
message when a specific threshold is reached.

Threshold encryption is useful for enhancing security and ensuring reliability.
For instance, in situations requiring the participation of a group of individuals
for a critical operation or data access, the shared private key pieces held by these
individuals may need to come together. However, if a single individual cannot
reach the threshold, they alone will be insufficient to decrypt the message. A
variant of Elgamal Encryption [22], Homomorphic Threshold ElGamal Encryp-
tion, is used in the proposed system. During the setup phase, regulatory agencies
create the public key with distributed key generation and share it in the system.
Then the sender encrypts the value he wants to send with this public key. If a
suspicious transaction is detected, regulatory agencies can decrypt by consensus
and see the value.

Definition 3. A (t, n)−threshold encryption is a scheme involving participants
(P1, ..., Pn) encompasses three essential protocols.

– Distributed Key Generation: A protocol involving participants (P1, ..., Pn)
to create a public key pk. In this process, each party Pi receives a private share
xi (related to the private key x corresponding to pk) and a public verification
key hi. The protocol’s execution depends on parameter t.

– Encryption: A protocol that, given a plaintext message m and a public key
pk, produces a ciphertext C for m under the public key pk.

– Threshold Decryption: A protocol involving a group of t+1 parties (P1, ..., Pt+1)
which, given a ciphertext C and individual inputs of private shares (x1, ..., xt+1),
along with public keys (pk1, ..., pkt+1), jointly produces the plaintext message
m.

Homomorphic encryption is a cryptographic technique that enables certain
computations to be performed on encrypted data, producing an encrypted result.

30



Upon decryption, the outcome matches the result obtained from performing the
same operations on the original, unencrypted data. This can be shown in a
more abstract way as follows: (E(x) and E(y) represent encryption of x and y
respectively.)

E(x+ y) = E(x)E(y) (35)

The difficulty of solving the discrete logarithm problem is ensuring the secu-
rity of the Homomorphic Elgamal Encryption scheme. The encryption includes
the following three algorithms:

1. KeyGen. Private key x is randomly selected x
$←− Z∗

p and public key pk = gx

is calculated. (In the system, the KeyGen phase has been replaced with
Distributed Key Generation.)

2. Encryption. To encrypt the v value, a random r is selected r
$←− Z∗

p and c
is calculated.

(ϕL, ϕR) = (gr, gv · pkr) (36)

3. Decryption. To decrypt the ciphertext, ϕR/ϕ
sk
L is calculated.

gv = ϕR/ϕ
sk
L (37)

Then, the value v is found with brute force. Here, a smarter solution can be
used with the Baby-step giant-step algorithm[42].

In the system, balances are kept encrypted in the ledger. When any trans-
action is sent, this balance is reduced before the plaintext is revealed. On the
reciver’s side, the receiver’s balance increases homomorphically. Let’s say the
sender’s balance is b. This balance is ϕ = (gr, gb · pkr) in the ledger. When
it wants to send the value v to another user, it prepares the ciphertext ϕ′ =
(gr

′
, gv · pkr′). Assuming the transaction is verified, the new ciphertext is as

follows:
ϕ′′ = (gr−r′ , gb−v · pkr−r′) (38)

Threshold Decryption

The following steps are followed to decrypt a text encrypted with a public key
created with DKG.∏

j ̸=i
−xj

xi−xj
is the Lagrange coefficient. We represent it with λi. Suppose the

ElGamal private key sk is distributed to n parties. That is,

sk =
∑

skiλi (39)

To decrypt a ciphertext, i-party publishes ϕski

L , and the proof is generated in
order to demonstrate the honest contribution of the party. gv is calculated after
summing the values from the parties.

gb = ϕR/
∏

ϕskiλi

L (40)

b is found by applying brute force to gb.
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