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The Brakerski-Gentry-Vaikuntanathan (BGV) scheme is a Fully Homomor-
phic Encryption (FHE) cryptosystem based on the Ring Learning With Error
(RLWE) problem. Ciphertexts in this scheme contain an error term that grows
with operations and causes decryption failure when it surpasses a certain thresh-
old. For this reason, the parameters of BGV need to be estimated carefully, with
a trade-off between security and error margin. The ciphertext space of BGV is
the ring Rq = Zq[x]/(Φm(x)), where usually the degree n of the cyclotomic poly-
nomial Φm(x) is chosen as a power of two for efficiency reasons. However, the
jump between two consecutive powers-of-two polynomials also causes a jump in
the security, resulting in parameters that are much bigger than what is needed.

In this work, we explore the non-power-of-two instantiations of BGV. Al-
though our theoretical research encompasses results applicable to any cyclotomic
ring, our main investigation is focused on the case of m = 2s · 3t, i.e., cyclotomic
polynomials with degree n = ϕ(m) = 2s · 3t−1. We provide a thorough analysis
of the noise growth in this new setting using the canonical norm and compare
our results with the power-of-two case, considering practical aspects like NTT
algorithms. We find that in many instances, the parameter estimation process
yields better results for the non-power-of-two setting.

1 Introduction

Fully Homomorphic Encryption (FHE) is a revolutionary field that enables com-
putations on encrypted data without the need for decryption. Namely, a set of
operations can be performed over ciphertexts such that these operations are re-
flected as additions and multiplications on the corresponding plaintexts. This
capability presents a powerful tool for privacy-preserving data processing, offer-
ing solutions for different applications such as machine learning, cloud services,
and secure computation outsourcing.

Several FHE schemes were proposed after Gentry’s breakthrough thesis [33].
Among all FHE schemes, the most practical, efficient and widely adopted are
BGV [13], BFV [12,31], TFHE [18,19] which improves the FHEW scheme [30],
and CKKS [17,16]. The reader interested in FHE and its applications will find
some introductory material in [50,1,15,49].

In this work, we focus on the Brakerski-Gentry-Vaikuntanathan (BGV) [13]
scheme. BGV can be instantiated using either the integers or cyclotomic rings,
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yielding a scheme based on Learning with Errors [56] (LWE) or its Ring variant
[46] (RLWE), respectively; the latter version is often preferred for efficiency
reasons.

Roughly speaking, the (decision version of) RLWE problems consist of dis-
tinguishing equations perturbed by small noise from uniformly random systems.
The issue arising from this construction is noise growth. Indeed, to guarantee a
correct decryption, the error added has to be small. Unfortunately, it increases
when homomorphic operations are computed, and to allow a larger number of
supported operations, we have to increase the ciphertext modulus. However, a
higher modulus also decreases the security level of the underlying scheme. On
the other hand, to increase the security level, we can adopt a higher polynomial
degree n at the cost of efficiency. This balancing process called parameter esti-
mation, is one of the main issues that need to be tackled in order to make FHE
practical. See [35,24,42,52,25] for more details on BGV parameter estimation
and [2,52,6,8,11,43] regarding frameworks for efficiently selecting parameters.

The ciphertext space of RLWE-based schemes is the ring
Rq = Zq[x]/(Φm(x)), where Φm(x) is the cyclotomic polynomial of degree
n = ϕ(m). In general, n is chosen as a power of two because Φm(x) = xn + 1
and the ring has a nice algebraic structure, exploitable in many ways. The main
example is polynomial multiplication, which is one of the main computational
bottlenecks in lattice based cryptography. To address this problem, fast algo-
rithms are necessary for efficient computation; when n is a power of two, we can
use the powerful radix-2 Number Theoretic Transform (NTT) [7] algorithm.

Powers-of-two are sparse, and this can turn out to be a problem: it can
happen that we are forced to choose non-optimal instantiations of BGV only
because we have to increase the degree n and the jump between two consecutive
powers-of-two is too big. Due to this significant gap, researchers have started
to explore the idea of studying non-power-of-two cyclotomic polynomials [4].
Promising results have been obtained by applying it to NTRU, as demonstrated
in [48].

Our contribution. In this work, we investigate non power-of-two BGV, meaning
we choose the cyclotomic index m to be different from a power-of-two, and
in particular, we consider m = 2s · 3t. The main change coming with this idea
is that now Φm(x) = xn − xn/2 + 1, where n = m/3, which influences many
different aspects of the BGV cryptosystem. The most important ones are 1)
the algorithms for the NTT; 2) how modular reductions affect the computation
of polynomial products and 3) how reductions modulo the quotient cyclotomic
polynomial Φm(x) impact the error bounds.

The first topic has been recently addressed in [48], showing how it is possi-
ble to find algorithms that are competitive with the radix-2 NTT also in this
framework, and in our work we explore the latter two aspects thorougly.

Regarding the second subject, we make a significant contribution by demon-
strating how to compute the full covariance matrix of the product of two random
polynomials modulo Φm(x) when m = 2s · 3t (Theorem 3). The proof is based
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on a particular factorization of the polynomial Φm(x), suggesting possible gen-
eralizations to scenarios where m is the product of other prime powers.

Concerning the third topic, we provide a comprehensive worst-case analysis
using the canonical norm to estimate the parameters. Specifically, we compute
noise bounds for all homomorphic operations and investigate how to effectively
combine different operations within the BGV scheme to perform complex com-
putations in specific homomorphic circuits. Moreover, using Ljapunov’s Central
Limit Theorem [9], we give a rigorous proof of the widely used fact that the
canonical embedding of a random polynomial yields vectors whose components
have distribution well approximated by a complex Gaussian (Theorem 2). This
result is independent from the factorization of m, hence it is valid for any cyclo-
tomic ring. We believe that the theorems and technical tools developed in this
paper hold the potential to be of independent interest for various other applica-
tions beyond the scope of this work, especially when we consider the amount of
attention drawn by lattice based cryptography in the context of post-quantum
standardization.

On the applied side, we compare our results with the power-of-two setting
and find that there are many scenarios where it is preferable to use non-power-
of-two BGV. In fact, our examples demonstrate that, while maintaining a similar
modulus size q and comparable performance in NTT algorithms, it is possible
to achieve a 25% reduction in the vector length n. This discovery represents a
significant advancement towards more feasible applications of BGV and suggests
that similar techniques can also be applied to other FHE constructions.

This work is structured as follows.

– In Section 2, we introduce the mathematical notions serving as foundations
to BGV and parameter estimation.

– In Section 3, we describe the BGV scheme; the relation between polynomial
products and the new algebraic structure is discussed in Section 3.3.

– In Section 4 we present our techniques for the parameter estimation, includ-
ing the tools for the non-power-of-two framework. In particular, we prove
our theoretical results (Theorems 2 and 3) which describe the underlying
mathematical structure of the rings we work into.

– In Section 5 and Section 6, we study the noise growth in each operation and
through the circuits formed by the operations.

– In Section 7, we present our results for non-power-of-two parameter estima-
tion, and draw comparisons with the power-of-two instantiations.

– Finally, in Section 8, we draw our conclusions and propose future research
directions.

2 Preliminaries

2.1 Notation

We begin by fixing some notation.
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– C and Q are the complex and rational fields respectively, Z is the ring of
integers, and for a ∈ Z>0 we let Za = Z/aZ, and [a] = {0, 1, . . . , a− 1}.

– Integer modular reductions modulo odd numbers q are symmetric with re-
spect to the origin: the notation [x]q refers to the representative of the class
of x that is contained in

[
−⌊ q2⌋, ⌊

q
2⌋
]
.

– For any ring R, R∗ denotes the units of R; for a, b ∈ N, Ra×b is the set of
a× b matrices with elements in R.

– Coordinate vectors with respect to some basis are indicated by bold letters:
e.g., a = (a0, . . . , an−1) where each ai lies in some ring, [a]q indicates the
vector ([a0]q, . . . , [an−1]q). ||a|| is shorthand for the infinity norm of a.

– Given a vector X = (X0, . . . , Xn−1) of random variables, E[X] =
(E[X0], . . . ,E[Xn−1]) is its expected value and Var(X) is the vector of vari-
ances; for a random vector Y, CovM(X,Y) = (Cov(Xi, Yi))i,j=1,...,n is their
covariance matrix.

– Given a distribution χ on some set S, s← χmeans sampling s ∈ S according
to χ, and this generalizes to vectors in a coefficient-wise fashion, where each
coefficient is sampled independently. χs and χe will refer to the secret and
error distributions for RLWE samples.

– ℜ(z) and ℑ(z) denote real and imaginary part of z ∈ C.
– Given an integer r we call Rr = R/(rR). We denote the plaintext and

ciphertext moduli with t and q, respectively. The plaintext space is Rt =
Zt[x]/(Φm(x)), while the ciphertext space is Rq = Zq[x]/(Φm(x)), where
Φm(x) is the cyclotomic polynomial (see Section 2.2). Moreover, we set t
and q coprime and q a chain of primes, such that

q = qL−1 =

L−1∏
j=0

pj ,

where pj ≡ 1 mod m [35]. The multiplicative depth M of the circuit de-
termines the number of primes L = M + 1. Thus, for any level ℓ, we have
qℓ =

∏ℓ
j=0 pj .

– ϕ(·) denotes Euler’s totient function.

2.2 Mathematical Background

Cyclotomic polynomials For m ∈ N, an mth root of unity in a field F is
any element ζ ∈ F such that ζm = 1; if ζk ̸= 1 for any k < m then ζ is called
primitive. The set of primitive mth roots of unity is {ζi : i ∈ Z∗

m}. Finally, the
mth cyclotomic polynomial Φm(x) is

Φm(x) =
∏
i∈Z∗

m

(x− ζi)

and it has degree n = ϕ(m). Let m =
∏l

i=1 p
αi
i be a natural number, where pi

are distinct primes. Then the radical rad(m) is the product of its prime factors,

namely, rad(m) =
∏l

i=1 pi.
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Lemma 1. [26] For any m ∈ N we have Φm(x) = Φrad(m)(x
m/ rad(m)).

This result implies that for m = 2s3t we have Φm(x) = xn − x
n
2 + 1, where

s, t ≥ 1 and n = m/3.
The following result describes how cyclotomic polynomials factorize over fi-

nite fields. This factorization is a crucial finding with significant implications for
polynomial multiplication algorithms.

Lemma 2. [45, Theorem 2.47] For any m ∈ N the polynomial Φm(x) has
ϕ(m)/d factors of same degree d over Fq, where d is the multiplicative order
of q modulo m.

The quotient ring Km = Q[x]/(Φm(x)) is the mth cyclotomic field. This exten-
sion has degree n = ϕ(m) over the rationals.

Lemma 3. [44, Chapter IV, Theorem 3] The ring of integers of Q(ζm) is R =
Z[ζm] = Z[x]/(Φm(x)).

Canonical embedding and norm The canonical embedding of a polynomial
a(x) ∈ Km is the vector σ(a(x)) = (a(ζi) : i ∈ Z∗

m). Ordering the roots
appropriately we have σ : Km → H, with

H = {(x1, . . . , xn) ∈ Rs1×C2s2 : xs1+i = xs1+s2+i for i = 1, . . . , s2} ⊂ Cn , (1)

where s1 is the number of real embeddings and s2 is the number of conjugate
pairs of embeddings of Km in C [46]. The canonical embedding is a ring homo-
morphism; by identifying the conjugate pairs, we have H ∼= Rs1+s2 . We recall
that the infinity norm of a polynomial a ∈ K is defined as ||a||∞ = max{|ai| :
0 ≤ i ≤ ϕ(m) − 1}. The canonical norm || · ||can is the pull-back of the in-
finity norm via the canonical embedding σ, namely ||a||can := ||σ(a)||∞. It is
sub-multiplicative: ∀ a, b ∈ K

||ab||can ≤ ||a||can||b||can . (2)

The following two results establish a connection between the infinity norm and
its canonical counterpart. For full proofs and a more extensive background, we
refer to [27].

Lemma 4. Let K be the mth cyclotomic field, R be its ring of integers, and σ
the canonical embedding of K. There exists is a constant cm such that for any
α ∈ R we have

||α||∞ ≤ cm||α||can.

The constant cm is called the ring’s expansion factor and enjoys the following
properties.

Lemma 5. Let m ≥ 2, then

1. for r = rad(m) we have cm ≤ cr;
2. if m is odd then c2m = cm;



6 Andrea Di Giusto and Chiara Marcolla

3. for m = p prime we have

cp =
2 sin(π/p)

p(1− cos(π/p))
.

A straightforward application of the properties above is that for m = 2s3t, we
can bound the value of cm with

c3 =
2 sin(π/3)

3(1− cos(π/3))
=

2√
3

(3)

from which we deduce the bound cm ≤ 1.1547.

Since we will focus on the canonical norm, we will omit the superscript from
the notation in most of the paper and write || · || to indicate || · ||can.

Probability theory We assume the reader is familiar with the basic properties
of expected value and covariance, including the complex case; a basic reference
including proofs for the following results is [40]. All distributions in this work are
centred, meaning they are symmetric around the origin. This implies the mean
µ of the distributions is always zero. We will use the following widely known
distributions:

– the uniform distribution T over the ternary set {±1, 0}, having variance
σ2
T = 2/3;

– for an odd q ∈ N, the uniform centered discrete distribution Uq over Zq with
variance is q2/12;

– The continuous Gaussian distribution on R with variance σ2, denoted as
Nr = N (0, σ2), and its discretized version DG(0, σ2) obtained by rounding
to the closest integer/rational number.

In our work, we use χs = T .
A multivariate normal vector is defined as an affine transformation of a stan-

dard normal vector, that is a vector of independent Gaussian random variables
with mean 0 and variance 1. We have the following equivalent definition.

Lemma 6. A random vector (X0, . . . , Xn−1) is Gaussian if and only if each
linear combination over R of its components is a Gaussian random variable.

Moreover, we have the following property.

Lemma 7. If the components of a Gaussian random vector (X0, . . . , Xn−1) are
uncorrelated, then they are also independent.

We also recall the statement of Lyapunov’s Central Limit Theorem, to justify

some theoretical results needed for our estimates. Let
d−→ denote convergence in

distribution.
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Theorem 1. (Lyapunov CLT) Let X0, X1, . . . , Xj , . . . be a sequence of indepen-
dent random variables each with mean µj and variance σ2

j both finite for each j,

and let s2n =
∑n−1

j=0 σ2
j . Assume the existence of a strictly positive real number δ

such that

lim
n→∞

1

s2+δ
n

n−1∑
j=0

E[|Xj − µj |2+δ] = 0. (4)

Then
1

sn

n−1∑
j=0

(Xj − µj)
d−→ N (0, 1).

Gaussian sampling In order to obtain secure RLWE cryptosystems, one key
aspect is the choice of a secure error distribution χe. The error polynomial e ∈ Rq

must have a spherical Gaussian distribution in the canonical embedding. While
for the power-of-two constructions, it is sufficient to use χe = DG(0, σ2) where
σ = 3.19 and each component is independent, things get more complicated when
m ̸= 2k due to the geometry of the canonical embedding. In [29] the authors
tackle this issue by showing an efficient way to sample error polynomials securely.
They first sample an error polynomial ē in the ring Zq[x]/(Θ(x)), where Θ(x) =
xm/2 + 1, and then reduce ē modulo Φm(x) to obtain an error polynomial e ∈
Rq. Each coefficient of the polynomial modulo Θ(x) is sampled independently
according to a Gaussian distribution of variance mσ2, where σ = 3.19. For every
m ̸= 2k we will denote this distribution by χe. By looking closely at the reduction
modulo Φm(x), we see that each coefficient of e is the sum of two independent
coefficients of ē; for this reason, its variance will be Ve = 2mσ2.

Lattices We assume the reader is familiar with the basic definitions concerning
lattices.
The BGV cryptosystem relies on the hardness of the LWE [56] and RLWE [46]
problems; we will focus on the latter version as it is more efficient. This problem
is based on the RLWE distribution, obtained as follows: sample uniformly at
random a ∈ Rq, then an RLWE sample is (a, a ·s+e) where s and e are sampled
from two distributions χs and χe. The search and decision versions of the RLWE
(S-RLWE and D-RLWE respectively) are then defined as follows:

Definition 1. (S-RLWE) Recover a fixed secret s from a given number of
RLWE samples with a non-negligible advantage.

Definition 2. (D-RLWE) For a fixed secret s, distinguish with non-negligible
advantage between a certain number of independent RLWE samples and inde-
pendent uniform samples.

Under certain assumptions, these problems are as hard as some well studied
lattice problems such as GAPSVP or SIVP [56,55], and it is widely believed
that quantum computers have no significant advantage over classical ones in
solving them [54].
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3 The BGV Scheme

In this section, we present the BGV scheme [13]. BGV functionalities can be
divided into two main categories: the basic encryption scheme, including key
generation, encryption and decryption, and the homomorphic operations.

3.1 Basic encryption scheme

The three basic algorithms of BGV are as follows:

– Key generation (KeyGen(λ)): sample s← χs, a← UqL and e← χe

in RqL, output the secret key sk = s and the public key
pk = (b, a) = [(−a · s+ te, a)]ql ;

– Encryption (Encpk(m)): given a plaintext m ∈ Rt and the public key
pk = (b, a), sample u ← χs, e0, e1 ← χe and output c = (c, l, ν) where
the ciphertext is

c = (c0, c1) = [(b · u+ te0 +m, a · u+ te1]qL , (5)

and l and ν are quantities related to noise management, whose role we explain
below. The triad c is called the extended ciphertext. It is worth noting that
the ciphertext c = (c0, c1) can be seen as the polynomial c0 + c1x ∈ Rql [x].

– Decryption (Decsk(c)): given the secret key sk and the ciphertext c = (c0, c1)
output

m = [[c0 + c1 · s]ql ]t .

The plaintext modulus t is chosen accordingly with the specific purpose of
the implementation of BGV (e.g., t = 64). The plaintext m ∈ Rt is treated as a
uniformly random polynomial with independent coefficients for the purposes of
our analysis.

The first part of the decryption can be seen as the polynomial evaluation of
c0 + c1x ∈ Rql [x] in the secret key s. For this reason, we will often write c(s)
in the place of c0 + c1 · s; this notation extends to triples of polynomials in an
obvious way, namely c(s) = c0 + c1 · s+ c2 · s2, where s2 stands for the repeated
product of s as a polynomial (see Section 3.2).
In the extended ciphertext, l is the current multiplicative level, while ν = [c(s)]ql
is the critical quantity. For a fresh ciphertext, we have

ν = m+ t(e · u+ e1 · s+ e0) = m+ tE , (6)

and this quantity increases through homomorphic operations [22]. The impor-
tance of ν lies in the fact that as long as its coefficients do not wrap around
modulo ql, the decryption is correct. For this reason, we need to study the
canonical norm of the critical quantity ||ν|| = ||ν||can (Section 2.2), called noise.

This work considers the Residue Number System (RNS) representation of
the ciphertext space. Since the modulus q = p0 . . . pL−1 is the product of distinct
primes, applying the Chinese Remainder Theorem, we get the isomorphism

Rq
∼= Rp0 × . . .×RpL−1

. (7)
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This representation allows the use of native data types for integers because the
pi can be chosen to fit into 32 or 64 bits. When using BGV with the RNS repre-
sentation, we need to change the modulus of the ring in use, switching from RA

to RB , where A = a0 · · · ak, B = b0 · · · bk′ are the two product decompositions
used for RNS. For this purpose, we need a Fast Base Extension (FBE) algorithm
[32]. Namely, if a ∈ Ra0

× . . .×Rak
, then

FBE(a, A,B) =

 k∑
j=0

[
a

(
A

aj

)−1
]
aj

A

aj


bi


i=0,...,k′

. (8)

3.2 Homomorphic operations

We introduce the three homomorphic ring operations (addition, multiplication
and constant multiplication) and two key subroutines (key and modulus switch-
ing).

– The addition Add(c, c′) is defined as

Add(c, c′) = (([c0 + c′0]ql , [c1 + c′1]ql), l, ν + ν′) = ([c+ c′]ql , l, νAdd). (9)

The critical quantity νAdd is ν + ν′ since we have

[(c+ c′)(s)]ql = [[c(s)]ql + [c′(s)]ql ]ql = [m+ tE +m′ + tE′]ql .

– The ciphertext multiplication Mul(c, c′) outputs

Mul(c, c′) = ((c0 · c′0 , c0 · c′1 + c1 · c′0 , c1 · c′1), l, ν · ν′)
= ((c′′0 , c

′′
1 , c

′′
2), l, νMul)

(10)

where c′′ = (c′′0 , c
′′
1 , c

′′
2) represents the coefficients vector of the product

among the two polynomials c(x) and c′(x) in Rql [x] (which has degree 2,
and hence nonzero 3 coefficients). This means that to recover the message
hidden in c′′, we would actually need to calculate

[ [c′′(s) = c′′0 + c′′1 · s+ c′′2 · s2]ql ]t.

However, instead of using this special decryption, we will use a relineariza-
tion procedure to convert the ciphertext c′′ = (c′′0 , c

′′
1 , c

′′
2) ∈ R3

ql
back to a

ciphertext c̄ = (c̄0, c̄1) ∈ R2
ql

(see Equation (15)). Since we have

[c′′(s)]ql = [c(s) · c′(s)]ql = [[c(s)]ql · [c′(s)]ql ]ql
= [(m+ tE)(m′ + tE′)]ql ,

the critical quantity for the Mul operation is νMul = νν′. We point out that
in this operation, the noise growth is multiplicative, which is the worst case
among basic operations.
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– The constant multiplication ConstMul(α, c) defined as

ConstMul(α, c) = ((α · c0 , α · c1), l, α · ν) = (α · c, l, νConstMul) , (11)

where α ∈ Rt. The critical quantity is correct because

[α · c(s)]ql = [α · [c(s)]ql ]ql = [α · (m+ tE)]ql .

The main novelty separating the BGV scheme from its predecessors is the
modulus switching. This operation allows sacrificing one or more of the primes
pi that compose the ciphertext moduli ql to obtain a noise reduction.

– Let c = (c, l, ν) be the extended ciphertext and let l′ = l − κ be a target
level, where κ is a positive integer. Then

ModSw(c, l′) =

(
c′ =

[
ql′

ql
(c+ δ)

]
ql′

, l′, νModSw

)
.

The polynomial δ is a correction term computed as

δ = t[−t−1c]ql/ql′ = t[(t−1c0, t
−1c1)]ql/ql′ , (12)

and it is formulated (i) to affect the errors, since it is a multiple of t, and (ii)
to adjust the ciphertext to be divisible by ql/ql′ , indeed δ ≡ −c mod ql/ql′ .
In this way, it allows to descend in the moduli ladder from ql to ql′ . The
formal proof of why this procedure reduces the noise is in [13, Lemma 5]. If
we consider only one-step modulus switching, i.e., κ = 1 and l′ = l− 1, then
ql/ql′ = 1/pl and we have

[c′(s)]ql′ = c′(s)− kql′ =
c(s) + kql + δ(s)

pl
− kql′ =

c(s) + δ(s)

pl
.

Note that we actually decrypt to the plaintext p−1
l m mod t, but we can

multiply a plaintext by pl either before encryption or after decryption. This
issue does not exist for pl ≡ 1 mod t, but finding such pl can be difficult in
practice.
Hence, the critical quantity for modulus switching is

νModSw =
ν + δ(s)

pl
. (13)

The last procedure that we are going to analyze is the subroutine called
key switching. This procedure is used for (i) reducing the degree of a ciphertext
polynomial, usually the output of multiplication, or (ii) changing the key after
a ciphertext rotation.

Rotations are special ring automorphisms used to operate with packed plain-
texts and improve efficiency [36,34]. To rotate an encrypted vector, we apply a
permutation rot on the ciphertext as rot(c(x)) = rot(c0)+rot(c1) rot(x) Thus, af-
ter a rotation, the ciphertext can be decrypted computing rot(c(s)). This means
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that to recover the message hidden in rot(c(x)), we would actually need to cal-
culate the rotation of the secret key. Thus, we apply key switching to convert the
ciphertext term rot(c1) rot(s) to a polynomial cks0 + cks1 · s. In a similar way, for
multiplication, we convert the ciphertext term c′′2 ·s2 to a polynomial cks0 + cks1 ·s.
In the following, we will only analyze multiplication and more specifically, we
will output c′ = (c0 + cks0 , c1 + cks1 ) and denote the ciphertext term we want to
remove by c2. This also covers rotations as one only has to consider the term we
want to remove as c1 and an output of (c0 + cks0 , c

ks
1 ). Intuitively, the basic idea

of this method is to using the encryption of s′ (that can be s2 or rot(s)) under
s [49]. Namley, Encs(s

′) = (β,−α) = (−us + te + s′, u + te1) ≈ (s′ + αs,−α).
Thus, s′ ≈ β − αs and then for the multiplication we get that the extended
ciphertext c′′0 + c′′1s+ c′′2s

2 = c′′0 + c′′1s+ c′′2(β−αs) becomes a normal ciphertext
c̃0 + c̃1s encrypting the same plaintext. Similarly, for the rotation, we have that
rot(c0) + rot(c1) rot(s) = c̃0 + c̃1s. For this reason, we treat the noise coming
from rotations as if it was coming from key switching.

The key switching procedure can be divided into two parts: a key generation
(KeySwGen) that somehow encrypts s2 under s itself (notice the similarity be-
tween Equation (14) and Equation (5)) and the actual key switching operation
(KeySw).

– The key generation takes as input s and s2, samples a ← Uql and e ← χe

and outputs

KeySwGen(s, s2) = ks = (ks0, ks1) = [(−a · s+ te+ s2, a)]ql . (14)

– the key switching operation takes as input an extended ciphertext c =
(c, l, ν) = ((c0, c1, c2), l, ν) and the relative key switching key ks = (ks0, ks1),
computes

c′ = (c′0, c
′
1) = [(c0 + c2 · ks0, c1 + c2 · ks1)]ql

and outputs

KeySw(ks, c) = c′ = (c′, l, νKeySw) . (15)

The critical quantity after this operation is νKeySw = ν + tc2 · e. Unfortu-
nately, if we tried to compute ||νKeySw||, even after only one homomorphic oper-
ation has been performed, it becomes evident that the noise growth introduced
by the term tc2 · e in the critical quantity is too big, as c2 is pseudorandom.
Several variations of the KeySw procedure have been developed to effectively
address this issue, aiming to control the growth of noise introduced during com-
putations. We focus on the Hybrid variant presented in [35], called so because
it is a mix of the BV [14] and the GHS [35] variants. From the former we need
the following decompositions: let b ∈ N be a basis, then for k = ⌊logb ql⌋+1 and
any α ∈ Rql , if we define

Db(α) = ([α]b, [⌊α/b⌋]b, [⌊α/b2⌋]b, . . . , [⌊α/bk−1⌋]b)
Pb(α) = ([α]ql , [bα]ql , [b

2α]ql , . . . , [b
k−1α]ql) .
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Then for any α, β ∈ Rq we obtain ⟨Db(α), Pb(β)⟩ = α · β [42]. The GHS variant
instead limits the noise growth by performing the key switching with respect to
a bigger ciphertext modulus and then going back to the original ql via modulus
switching. A number C coprime with ql is chosen, and the key switching takes
place in RQl

where Ql = qlC. Then, the Hybrid key switching is performed as
follows: with the above notations, the key generation is given by

KeySwGenHybrid(s, s2) = ksHybrid = [(−a · s+ te+ CPb(s
2),a)]Ql

and the new ciphertext is computed in two steps: first, let

c′ = [(Cc0 + ⟨Db(c2), ks
Hybrid
0 ⟩, Cc1 + ⟨Db(c2), ks

Hybrid
1 ⟩)]Ql

;

and then set δ = t[−t−1c′]C and modulus switch back to ql:

c′′ =

[
c′ + δ

C

]
ql

Finally, the output of the Hybrid key switching is

KeySwHybrid(ksHybrid, c) = (c′′, l, νHybrid
ks ) (16)

with critical quantity given by putting together the BV and GHS ones: we set

νHybrid
KeySw = ν +

t⟨Db(c2), e⟩+ δ(s)

C
. (17)

The Hybrid key switching achieves better efficiency than the BV and better noise
management than GHS, and, for this reason, it is the preferred one when it comes
to implementations [37].

3.3 Impact of the algebraic structure on polynomial multiplication

The BGV cryptosystem can be implemented over any cyclotomic polynomial
ring Rq = Zq[x]/(Φm(x)). The issue arises, though, when one wants to multiply
two polynomials efficiently, which is the main computational bottleneck of FHE
and, more in general, of lattice-based cryptosystems. One of the most elegant
solutions to this problem is the Number Theoretic Transform (NTT), the dis-
crete counterpart of the Fast Fourier Transform. When the cyclotomic index m is
a power-of-two, the NTT can be implemented using the Cooley-Tukey/radix-2
butterfly operations [21], yielding an implementation-friendly and straightfor-
ward solution. The absence of similar methods in non-power-of-two settings has
remarkable consequences: for example, the library HElib implements a special
algorithm for non-power-of-two instantiations, mixing Bluestein’s algorithm [10]
with NTT [36]. This results in a heavy computational burden, and alternatives
are being explored that include hardware acceleration [28]. For cyclotomic rings
where the index has the formm = 2s3t, a new NTT algorithm has been proposed
in [48] that exploits the algebraic structure of the ring in a way that resembles
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very closely the radix-2 butterfly operations. We recap briefly this construction
to highlight its portability into our context, since the authors proposed it specif-
ically for m = 2304.

Let us consider the cyclotomic ring Rq with index m = 2s3t and q = 1
mod m. Then, given a sixth primitive root of unity ζ, we have the factorization

Φm(x) = xn − xn/2 + 1 = (xn/2 − ζ)(xn/2 − ζ5) .

Using the fact that ζ5 = ζ̄ = 1−ζ, the corresponding radix-6 butterfly operation
requires only 1 extra addition w.r.to the Cooley-Tukey, meaning an NTT layer
requires only n/2 extra additions (see Figure 1). As described in [48], after this

· ζ +/−

+

· ζ +

−

Fig. 1. Butterfly operation of [48] (left) vs Cooley-Tukey’s [21] (right); in red the extra
addition.

step we can proceed with s−1 Cooley-Tukey layers (extracting the square roots
of ζ and 1− ζ, and then the fourth roots and so on), obtaining 2s rings of degree
3t−1. These have the same cost as the corresponding power-of-two counterparts.
We will consider especially the case of t = 2, where at this point one can choose
whether to compute the product of 2s polynomials of degree less than 3 (as
done in [48]) or to use radix-3 NTT layer [7]. The latter option exploits the full
factorization of Φm(x) (see Lemma 2), giving a result that is more similar to
the DCRT representation used e.g. in HElib; it requires 2 multiplications and
11 additions per polynomial [7], and there are n/3 polynomials. To compare the
two algorithms, we keep track of the required additions and multiplications over
Zq (first part of Table 1). The cost of an NTT algorithm is given by the sum of
the costs of its layers:

– u− 1 radix-2 layers for m = 2u;

– 1 radix-6, s− 1 radix-2 and 1 radix-3 for the non-power-of-two.

A fair comparison then can be made by considering e.g. the two powers of
2 that are closest to a non-power-of-two instantiation: this amounts to choosing
u = s+2 and u = s+3, as then we have 2s+2 < 2s ·3 < 2s+3. By plugging these
values in the above equations, we get the results in the second part of Table 1. We
can see that the non-power-of-two incurs in an overhead in terms of additions,
as s+ 25/6 > s+ 1, s+ 2, while as far as multiplications go, its performance is
aligned with the power-of-two counterpart, as s+ 1 < s+ 4/3 < s+ 2. Because
multiplications over Zq are much more expensive than additions, this tells us
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m n = ϕ(m) additions multiplications

2u 2u−1 (u− 1)n (u− 1)n
2

2s · 32 2s · 3 3

2
n︸︷︷︸

radix-6

+ (s− 1)n︸ ︷︷ ︸
radix-2 layers

+
11

3
n︸︷︷︸

radix-3

n

2︸︷︷︸
radix-6

+ (s− 1)
n

2︸ ︷︷ ︸
radix-2 layers

+
2

3
n︸︷︷︸

radix-3

2s+2 (s+ 1)n (s+ 1)n
2

2s · 3 (s+ 25
6
)n (s+ 4

3
)n
2

2s+3 (s+ 2)n (s+ 2)n
2

Table 1. Comparisons between NTT algorithms.

that the non-power-of-two NTT algorithm has roughly the same computational
impact as its power-of-two counterpart.

We point out that this algorithm is only available when cyclotomic index m
has the specified non-power-of-two form, as it relies on the algebraic relations
between the roots of unity to build a fast radix-6 butterfly operation.

4 Theoretical results for noise estimation

Since the encryption process in BGV involves randomization and we need to
estimate the canonical norm of the ciphertexts, we focus on estimating the
canonical norm of random polynomials.

Remark 1. In this section, and especially in Theorem 2 and Theorem 3, by ran-
dom polynomial we always mean a polynomial whose coefficients are sampled
independently from some distribution. For a discussion of this assumption (also
in light of Theorem 3), see Section 4.4.

4.1 Advantages of the canonical norm for BGV: comparison with
other norms

Over the past few years, several methods to compute a bound for the error have
been proposed for power-of-two BGV, from the Euclidean [13] and infinity norms
[31,5,42] to the canonical norm (called worst-case analysis) [34,35,39,41,52,36].

The most promising lines of research are those developing new techniques to
replace the canonical norm worst-case analysis. Several recent papers propose
alternative approaches like average-case analysis, where the coefficients of the
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polynomial error are treated as random variables. This approach was first em-
ployed in the TFHE scheme [18], and then has been studied for the CKKS [23],
the BGV [53], and the BFV [8] schemes.

Interest in this method grew due to a recognized discrepancy between the es-
timates based on worst-case technique and experimental data, as highlighted in
[24]. The introduction of the average-case approach, as seen in [8,25], offers a po-
tential resolution to these disparities, indeed, with this method, it is possible to
compute a tight probabilistic upper bound by considering the Gaussian distribu-
tion of the error coefficients, their mean, and variance. This topic is fascinating,
and any progress makes FHE easier to deploy in real-life applications.

However, this approach is limited to cases where the ciphertexts are com-
puted independently and it holds accurately for TFHE [19,20] and BFV [8]. The
differences among the FHE schemes are as follows. In TFHE, as pointed out in
[24], gate bootstrapping enables the implementation of elementary operations
on a linear combination of ciphertexts. Therefore, due to its linearity, the noise
in TFHE ciphertexts can be modelled as subgaussian, allowing for a straightfor-
ward analysis of the variances. On the other hand, in BGV, BFV, and CKKS,
the noise grows non-linearly during multiplication, which makes the error anal-
ysis more intricate. While the authors of [8] provide accurate bounds for BFV,
in the case of the BGV [53] and the CKKS [23] schemes, the heuristics tend
to underestimate noise growth in many scenarios. This issue arises due to the
assumption of independence of the noise coefficients, which leads to imprecise
bounds [23,53,8].

In light of this, we want to emphasize that applying the infinity [42] or
canonical norm [39,22,24], results in looser but safer bounds. The main dif-
ference regarding the bounds between these two norms is that if we consider
two polynomials a, b ∈ R, the infinity norm of their product is bounded by
||ab||∞ ≤ δR||a||∞||b||∞, where δR is the expansion factor depending on R. In
contrast, as proven in [46], the canonical norm does not have this expansion for
multiplication, achieving tighter bounds and offering an improvement over the
infinity norm. Moreover, the canonical embedding provides a better and more
precise method for managing the geometry of cyclotomic rings (for more details,
see [46,47]).

For these reasons, in our study, we use the canonical norm, which provides
the most precise and correct bound according to the current state-of-the-art for
the BGV scheme. This approach also enables us to make more accurate and
clear comparisons between the power-of-two and non-power-of-two cases.

4.2 Canonical norm of random polynomials

The main result in this section is Theorem 2, stating a probabilistic bound on
the canonical norm of a random polynomial that depends on the variance of its
coefficients. Previous works stated similar bounds (e.g. [24,39]) without proof,
and we provide a comprehensive one.
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Theorem 2. Let a(x) =
∑n

i=0 aix
i ∈ R be a random polynomial whose coeffi-

cients are zero-mean, identically distributed with finite variance Va. Furthermore
assume there is some δ > 0 and a constant γ1 ∈ R>0 such that for any j

E[|aj |2+δ] < γ1. (18)

Then for any primitive mth root of unity ζ = cos(α) + i sin(α) ∈ C, the distribu-
tion of a(ζ) is well approximated by centered Gaussian distribution with variance
nVa.

Proof. Note that by the independence of the coefficients of a(x), we have

E[a(ζ)] =
∑
j

E[aj ]ζ
j = 0 and Var(a(ζ)) = E[a(ζ)a(ζ)]

Since the product of a root of unity and its conjugate is 1, then

Var(a(ζ)) =

n−1∑
j1,j2=0

E[aj1aj2ζ
j1ζj2 ] =

n−1∑
j1,j2=0

Cov(aj1 , aj2)ζ
j1ζj2 = nVa.

We show that a(ζ) has a Gaussian distribution. To prove that, we consider
a(ζ) as a random vector Z = (X,Y ) = (ℜ(a(ζ)),ℑ(a(ζ))) over C ∼= R2 and, by
Lemma 6, we prove that it is a Gaussian vector. The trigonometric expressions
of X and Y are

X = ℜ(a(ζ)) =
n−1∑
j=0

aj cos(αj) and Y = ℑ(a(ζ)) =
n−1∑
j=0

aj sin(αj)

and for any given η, ρ ∈ R we have

ηX + ρY = η

n−1∑
j=0

aj cos(αj) + ρ

n−1∑
j=0

aj sin(αj) =

n−1∑
j=0

(η cos(αj) + ρ sin(αj))aj .

We can approximate the distribution of ηX + ρY using Lyapunov’s CLT (The-
orem 1), treating the coefficients η cos(αj) + ρ sin(αj) as constants and hence
applying the theorem to the random variables Wj = (η cos(αj) + ρ sin(αj))aj ,
which have mean 0 and variance

Var(Wj) = (η cos(αj) + ρ sin(αj))
2
Var(aj)

This implies

s2n =

n−1∑
j=0

Var(Wj) =

n−1∑
j=0

(η cos(αj) + ρ sin(αj))
2
Va

and this quantity can be bounded from below by considering that the equation

η cos(x) + ρ sin(x) = 0
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has at most two solutions in [0, 2π] for any η, ρ. This tells us that the set
J = {j ∈ [n] : η cos(αj) + ρ sin(αj) = 0} has cardinality at most two. Then for
all j ∈ [n] \ J we have (η cos(αj) + ρ sin(αj))2 > 0, implying that there exists
γ2 ∈ R>0 such that

γ2 < (η cos(αj) + ρ sin(αj))2

for these values of j. Since we have η cos(αj) + ρ sin(αj) = 0 for any j ∈ J , we
get the bound s2n > (n − 2)γ2Va. Let δ > 0 be such that E[|aj |2+δ] < γ1, then
for each j we can bound |(η cos(αj)+ρ sin(αj))|2+δ < γ3 for some γ3 ∈ R>0 and
get

n−1∑
i=0

E[|(η cos(αj) + ρ sin(αj))aj |2+δ] =

n−1∑
i=0

|(η cos(αj) + ρ sin(αj))|2+δ E[|aj |2+δ]

< nγ1γ3.

Now we are ready to check that Lyapunov’s condition (Equation (4)) holds: we
have

1

s2+δ
n

n−1∑
i=0

E[|(η cos(αj) + ρ sin(αj))aj |2+δ] ≤ nγ1γ3

((γ2(n− 2))
1
2 )2+δ

= O
(

1

nδ/2

)
and hence

lim
n→∞

1

s2+δ
n

n−1∑
i=0

E[|(η cos(αj) + ρ sin(αj))aj |2+δ] = 0.

Then by Lyapunov’s CLT, the distribution of ηX+ρY is very well approximated
by a Gaussian ∀ η, ρ ∈ R. But then it follows from Lemma 6 that the distribu-
tion of (X,Y ) is well approximated by a Gaussian random vector, meaning the
random vector Z is approximately Gaussian.

If we take a random polynomial a ∈ Rq, the condition in Equation (18) is easily
satisfied since the distributions of the coefficients are bounded. Then we can
apply Theorem 2 to get the following result.

Corollary 1. Let a ∈ Rq be a random polynomial with coefficient variance Va

and ζ be a primitive mth root of unity, then the distribution of a(ζ) is well
approximated by a centred Gaussian distribution with variance nVa.

We can use this result to derive a bound on ||a||can in the following way.
Given a complex centred Gaussian random variable Z = (X,Y ) with variance
VZ , we have that |Z| follows a Hoyt distribution [38]. As a consequence, for any

B ∈ R>0 we have |Z| > B with probability erf(−B/
√
2VZ) ≈ 1 − eB

2/2V 2
Z . In

our case then Z = a(z), VZ = nVa; let B = D
√
VZ for some integer D, then we

get

P (|a(z)| ≥ D
√
VZ) ≈ e−D2/2 .
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This immediately translates into a bound on the canonical norm of a: by defini-
tion ||a||can = max |a(ζ)| with ζ ranging among primitive mth roots of unity. It
follows that the inequality

||a||can < D
√
nVa (19)

holds with probability (1− e−D2/2)n ≈ 1− ne−D2/2, meaning it fails with neg-
ligible probability. In our work, we use D = 6.

4.3 Variance of random polynomials

Since we can estimate the canonical norm of a random polynomial using its vari-
ance, we study the behaviour of the variance with respect to ring operations. For
the sum of random polynomials and the multiplication for a constant in Zq, the
results do not differ from the power-of-two case (e.g. see [24,52]) and are widely
known.
What changes in our new case is the coefficient variance of the product of two ran-
dom polynomials c(x) = a(x)b(x). In the power-of-two case, in [39], it is shown
that Vc = nVaVb, where n is the degree of the ringRq. Finding a similar result for
the case where the cyclotomic index is m = 2s3t is not trivial because the reduc-
tion modulo Φm(x) is more complex. In fact for m = 2s we have Φm(x) = xn+1,
while m = 2s3t implies Φm(x) = xn − xn/2 + 1 (where in both cases n = ϕ(m)),
and this affects the computations. In [48, Section 3.2], the authors give a bound
on the variance by making some considerations on the behaviour of the product,
finding

Vc ≤
3

2
nVaVb . (20)

We show an alternative way to obtain the same bound, with the difference that
we compute the full covariance matrix of the vector of coefficients of the product
c(x). This is a generalization of the result in [48], as we compute all the variances
exactly and not only an upper bound, giving deep insight on random polyno-
mials’ behaviour. These computations only concern the reduction modulo the
cyclotomic polynomial, not the one modulo q; hence, we consider the product of
two random polynomials in R instead of Rq. The formal way to compute such
a product is in two steps: let

a(x) =

n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i ∈ Z[x]/(Φm(x)) = R .

First we consider a and b as if they were in Z[x], and multiply them to obtain

g(x) =

2n−1∑
i=0

glx
l = a(x)b(x) ∈ Z[x] .
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After this, we compute c(x) by reducing g(x) modulo Φm(x). General formulas
for the coefficients of c can be computed, yielding

ck =


gk − gn+k − gn+n/2+k k = 0, . . . , n/2− 2

gk − gn+k k = n/2− 1

gk + gn/2+k k = n/2, . . . , n− 1

which expands to

ck =



k∑
j=0

ajbk−j −
n−1∑

j=k+1

ajbn+k−j −
n−1∑

j=n
2 +1+k

ajbn+n
2 +k−j k = 0, . . . , n

2 − 2

k∑
j=0

ajbk−j −
n−1∑

j=k+1

ajbn+k−j k = n
2 − 1

k∑
j=0

ajbk−j −
n−1∑

j=k−n
2 +1

ajbn
2 +k−j k = n

2 , . . . , n− 1

.

These equations lack the same regularity observed in their power-of-two coun-
terparts: we need three distinct cases, whereas in [39], one formula is sufficient
to express all the coefficients. For this reason, straightforward substitution does
not enable us to compute Cov(ci, cj), so we need the following theorem.

Theorem 3. Let m = 2i3j for i, j ∈ N>0 and R = Z[x]/Φm(x) where
Φm(x) = xn − xn/2 + 1 is the mth cyclotomic polynomial (n = ϕ(m)). Let
c(x) = a(x)b(x) be the product of two random polynomials in R with coefficient
variances Va and Vb respectively, and let c = (c0, . . . , cn−1) be the vector of
coefficients of c(x). Then the covariance matrix of c is formed by four diagonal
blocks of size n/2:

CovM(c) =

(
Diag(α0, . . . , αn/2−1) Diag(β0, . . . , βn/2−1)
Diag(β0, . . . , βn/2−1) Diag(αn/2, . . . , αn−1)

)
where

αk =

{(
3
2n− (k + 1)

)
VaVb if 0 ≤ k < n/2

3
2nVaVb if n/2 ≤ k < n

βk = (k + 1− n)VaVb 0 ≤ k < n/2 .

Notice how the bound in Equation (20) follows immediately from the theorem:
the variances of the coefficients are the values αi in the matrix above.

Proof. The fundamental tool in this proof is the radix-6 NTT isomorphism (Sec-
tion 3.3)

Ψ : R → Z[x]/(xn/2 − ζ)× Z[x]/(xn/2 − ζ5) = Rℓ ×Rr

where ζ = 1/2 +
√
3/2i is a complex primitive 6th root of unity. The idea is to

consider the images a(x), b(x) via this isomorphism and perform the multiplica-
tion in the factor rings where it is easier to keep track of the correlations.
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Since Z does not contain a sixth primitive root of unity, we have to embed
Z[x] identically into the polynomial ring Z[ζ][x]. By doing so, we obtain a CRT
isomorphism represented by:

Ψ : Z[ζ][x]/(xn − xn/2 + 1)→ Z[ζ][x]/(xn/2 − ζ)× Z[ζ][x]/(xn/2 − ζ5),

whose restriction to Z yields exactly the desired isomorphism. In practice, this
transformation is given by reductions modulo the quotienting polynomials of
the factor rings, and it can be computed on 2 coefficients simultaneously using
a radix-6 butterfly operation (Section 3.3). Using this isomorphism, we com-
pute c(x) = a(x)b(x) ∈ R as c(x) = Ψ−1(Ψ(a(x))Ψ(b(x))). The advantage of
multiplying in Rℓ and Rr is that their quotienting polynomial is of the form
xα + constant, which makes the modular reduction again similar to the power-
of-two case. In other words, using the radix-6 split takes care of the repetition of
coefficients introduced by the reduction modulo xn−xn/2 +1 mentioned above.
We proceed now by examining each of the three steps in more detail: the direct
isomorphism Ψ , the product in Rℓ and Rr (which are essentially the same) and
finally, the inverse isomorphism Ψ−1.
Recall that ζ satisfies ζ̄ = ζ5 = 1 − ζ and ζ2 − ζ + 1 = 0; furthermore for any
z ∈ C we have zz̄ = |z|2 where | · | is the complex modulus.

1. The isomorphism Ψ . Let a(x) ∈ R, then Ψ(a) = (aℓ(x), ar(x)) where

aℓi = ai + ζai+n/2 and ari = ai + ζ5ai+n/2 = ai + (1− ζ)ai+n/2

for any i = 0, . . . , n/2−1. Since ζ(1−ζ) = 1 and since all coefficients of a(x) ∈ R
are uncorrelated, with mean 0 and variance Va, we have

E[aℓi ] = E[ari ] = 0

Var(aℓi) = Var(ari ) = E[(ai + ζai+n/2)(ai + ζai+n/2)]

= E[a2i + ζaiai+n/2 + (1− ζ)aiai+n/2 + ζ(1− ζ)a2i+n/2]

= E[a2i ] + E[aiai+n/2] + E[a2i+n/2] = 2Va . (21)

Moreover, each coefficient of a is used to construct exactly one coefficient of aℓ

and one of ar. Then, by the independence of the ais, it follows that for any i ̸= j
we have that each of aℓi and ari is independent of both aℓj and arj . Namely, for

all i ̸= j, Cov(aℓi , a
ℓ
j) = Cov(aℓi , a

r
j) = Cov(ari , a

r
j) = 0 and the only nonzero

covariances are given by

Cov(aℓi , a
r
i ) = E[(ai + ζai+n/2)(ai + (1− ζ)ai+n/2)]

= E[(ai + ζai+n/2)
2] = (1 + ζ2)Va = ζVa .

(22)

Obviously, the same formulas hold for b(x) with Vb in place of Va.
2. Product in Rℓ and Rr. Consider the two left images aℓ(x) and bℓ(x) in

Rl. We compute the coefficients of cℓ(x) = aℓ(x)bℓ(x) by first calculating the
product as if we were working in Z[x] and then reducing modulo xn/2 − ζ. Let
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Vaℓ and Vbℓ be the coefficient variances of the two factors. We have

gℓ(x) =

n−2∑
l=0

gℓlx
l = aℓ(x)bℓ(x) ∈ Z[x] with gℓl =

∑
i+j=l

aℓib
ℓ
j .

It is clear that all the gℓl are uncorrelated and have mean 0, and cℓk = gℓk+ζgℓk+n/2.

Again no gℓl is repeated in any two distinct cℓks, implying

Cov(cℓk1
, cℓk2

) =

{
E[(gℓk + ζgℓk+n/2)(g

ℓ
k + ζ̄gℓk+n/2)] =

n
2VaℓVbℓ if k1 = k2

0 otherwise
.

The same reasoning holds for Rr: we have

gr(x) =

n−2∑
l=0

grl x
l = ar(x)br(x) ∈ Z[x] with grl =

∑
i+j=l

ari b
r
j .

Since for any i = 0, . . . , n/2− 1 we have crk = grk + (1− ζ)grk+n/2, we get also for
the right side

Cov(crk1
, crk2

) =

{
n
2VarVbr if k1 = k2

0 otherwise
.

Regarding the cross-side covariance Cov(cℓk1
, crk2

), its computation reduces by

linearity to many terms of the form Cov(aℓi1b
ℓ
j1
, ari2b

r
j2
). As before, we have

Cov(aℓi1b
ℓ
j1 , a

r
i2b

r
j2) ̸= 0 ⇐⇒ i1 = i2 and j1 = j2.

Since no product aℓib
ℓ
j (ari b

r
j) is repeated in two different gℓl (grl ), and no gℓl (grl )

is repeated in any two distinct cℓk (crk), the condition above can be realized only
when k1 = k2, meaning that we also have

Cov(cℓk1
, crk2

)

{
̸= 0 if k1 = k2

= 0 otherwise
.

Furthermore for k = 0, . . . , n/2− 1 we have

Cov(cℓk, c
r
k) = Cov(gℓk + ζgℓk+n/2, g

r
k + (1− ζ)grk+n/2)

= Cov(gℓk, g
r
k) + ζ(1− ζ) Cov(gℓk+n/2, g

r
k+n/2)

= (k + 1)Cov(aℓi , a
r
i ) Cov(b

ℓ
i , b

r
i ) + ζ2

(n
2
− (k + 1)

)
Cov(aℓi , a

r
i ) Cov(b

ℓ
i , b

r
i ) .

Thus, we can substitute Equations (21) and (22) obtaining

Val = Var = Var(ali) = Var(ari ) = 2Va

Vbl = Vbr = Var(bli) = Var(bri ) = 2Vb

Cov(aℓi , a
r
i ) = ζVa and Cov(bℓi , b

r
i ) = ζVb.
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Hence
Var(clk) = Var(crk) =

n

2
· 2Va · 2Vb = 2nVaVb (23)

and

Cov(clk, c
r
k) = (k + 1)ζVaζVb + ζ2(

n

2
− (k + 1))ζVaζVb

= (ζ2 + ζ)(k + 1)VaVb − ζ
n

2
VaVb . (24)

3. The isomorphism Ψ−1. The inverse NTT butterfly operation in [48] is
given by the following matrix-vector product: for any k = 0, . . . , n/2− 1(

ck
ck+n/2

)
=

1

(1− 2ζ)

(
1− ζ −ζ
−1 1

)(
cℓk
crk

)
Note that, for any k̄1, k̄2 = 0, . . . , n−1, the computation of Cov(ck̄1

, ck̄2
) reduces

by linearity to calculate a linear combination of the terms Cov(cℓk1
, crk2

) where

kj =

{
k̄j if j < n

2

k̄j − n
2 if j ≥ n

2

for any j = 1, 2. As seen previously, Cov(cℓk1
, crk2

) ̸= 0 if and only if k1 = k2, and

this implies either k̄1 = k̄2 or k̄1 = k̄2 ± n
2 ; hence

Cov(ck̄1
, ck̄2

) ̸= 0⇒ k̄1 = k̄2 or k̄1 = k̄2 ±
n

2
.

Regarding the exact formulas for the nonzero terms in CovM(c), we have differ-
ent cases according to k. Notice that

1

1− 2ζ

(
1

1− 2ζ

)
=

1

|1− 2ζ|2
= 1/3

moreover, for any z ∈ C we have z + z = 2ℜ(z), and by the properties of
covariance Cov(X,Y ) = Cov(Y,X).

For 0 ≤ k < n/2 we have

Var(ck) = Var

(
(1− ζ)clk − ζcrk

1− 2ζ

)
=

1

3
(Var(clk) + Var(crk)− 2ℜ((1− ζ)2 Cov(clk, c

r
k))).

Substituting Equations (21) and (22), we get

Var(ck) =
1

3

(
4nVaVb − 2ℜ

(
(1− ζ)2[(ζ2 + ζ)(k + 1)VaVb − ζ

n

2
VaVb]

))
=

(
3

2
n− (k + 1)

)
VaVb .

For k ≥ n/2, instead, the behaviour of the variance is constant:

Var(ck) = Var

(
−clk + crk
1− 2ζ

)
=

1

3
(Var(clk) + Var(crk)− 2ℜ(Cov(clk, crk))) .
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Since ζ2 + ζ =
√
3i has the real part equal to 0 and thanks to Equations (21)

and (22), we have:

Var(ck) =
1

3

(
4nVaVb − 2ℜ

(
(ζ2 + ζ)(k + 1)VaVb − ζ

n

2
VaVb

))
=

=
1

3

(
4nVaVb +

n

2
VaVb

)
=

3

2
nVaVb .

Finally, regarding the nonzero covariances for 0 ≤ k < n/2 we find

Cov(ck, ck+n/2) = Cov

(
(1− ζ)clk − ζcrk

1− 2ζ
,
−clk + crk
1− 2ζ

)
=

=
1

3

(
−(1− ζ)Var(clk)− ζ Var(crk) + 2ℜ((1− ζ) Cov(clk, c

r
k))
)

and substituting Equations (23) and (24) we get

Cov(ck, ck+n/2) =
1

3
(−(1− ζ)2nVaVb − ζ2nVaVb+

+ 2ℜ
(
(1− ζ)[(ζ2 + ζ)(k + 1)VaVb − ζ

n

2
VaVb]

)
=

1

3
(−3nVaVb + 3(k + 1)VaVb) = (k + 1− n)VaVb

and this concludes the proof.

The following result is the analogue of Theorem 3 for the power-of-two case;
the proof is much simpler and does not require the use of NTT butterflies. The
results are consistent with the bound on the variance of a random product in
[39, Section 2.8].

Theorem 4. Let m = 2i for i ∈ N>0 and R = Z[x]/Φm(x) where
Φm(x) = xn + 1 is the mth cyclotomic polynomial (n = ϕ(m)). Let
c(x) = a(x)b(x) be the product of two random polynomials in R and let
c = (c0, . . . , cn−1) be the vector of coefficients of c(x). Then the covariance
matrix of c is diagonal, and in particular CovM(c) = Diag(nVaVb).

4.4 Independence of the coefficients

In order to use the bound given in Equation (19) on a product of random poly-

nomials c(x) =
∑n−1

i=0 cix
i = a(x)b(x) ∈ Rq, we need the coefficients ci to be in-

dependent. This is also needed to some extent to use Theorem 3 iteratively to
bound the variance of the coefficients, although some dependence could be al-
lowed in that case. As we have seen in previous section, expressing the coefficient
of a product in R or Rq starting from the factors requires quite complex for-
mulas, determined by the reduction modulo Φm(x). If we try to formally check
the independence of the coefficients of the product in R, we obtain a negative
result (Theorem 3). For the power of two case we have linear independence [39],
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but one can easily infer that there is a higher degree relation by looking at the
second moments. BGV anyway is based on using polynomial with coefficients
Zq, hence we wonder what is the effect of working in Rq on the dependence
relations between the coefficients. As in the power-of-two case, we wish that the
reduction modulo q wipes out the dependence relations, as formally stated in
the following conjecture.

Conjecture 1. Let a(x) and b(x) be random polynomials in Rq, then the coeffi-

cients of c(x) =
∑n−1

i=0 cix
i = a(x)b(x) are statistically independent.

Such a conjecture is reasonable to make, because the reduction modulo q is hard
to predict probabilistically. To support this idea, we performed chi-squared in-
dependence test using the Python module stats. We sampled large amounts of
products of random polynomials, stored the coefficients in a contingency table
and performed the chi-squared test stats.chi2 contingency. The implementation
of such test is straightforward, but due to computational constraints we could
only test for small sets of parameters. This is mainly due to the fact that the size
of the set of samples has to grow with the parameters to maintain statistical sig-
nificance. Anyway the algebraic structure of Rq does not change when scaling up
n and q, and we believe these tests are a good indicator of the general behaviour.
The formulas determining the cis only depend on the nonzero coefficients of the
cyclotomic polynomial Φm(x) in use, which in turn are determined essentially
by the radical of m (see Lemma 1). We set the statistical significance threshold
at 5%, a common choice when performing the chi-squared test. The interested
reader can find below the results for two of the biggest instances we could test.
For a fixed cyclotomic index we tested different prime moduli q: in the tables
below, ‘sample size’ is the number of random products that was generated in a
test instance, ‘rejections’ is the average number of times the independence hy-
pothesis was rejected and ‘rejections %’ is the rate of rejections over the number
of tests. We point out that the couples of coefficients that get rejected are not
always the same in different test instances, meaning the rejections are generated
by the nature of the test itself and not by a cause related to our hypothesis. By
the very nature of the test itself, 5% of all instances should be rejected; anyway
sometimes we observed a higher percentage (e.g. greater than 6%). As we found
out, this depends on the modulus q and the sample size: the bigger q gets with
respect to n, the bigger samples we need to have a statistically significant result.
In fact we can see how increasing the sample size brings the percentage of rejec-
tions closer to 5%, therefore failing to reject the independence hypothesis. We
stress the fact that the more complex of these tests already require several min-
utes on a dedicated server, meaning that testing on realistic BGV rings would
require a huge amount of computational power and time.

5 Noise estimates for homomorphic operations

In this section, we develop the noise bounds for the operations described in
Section 3 with the aid of the results in Section 4. The main properties we use
are the following.
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q number of samples sample size rejections (avg.) rejections %

433 5 5000 67.8 6.2%
433 5 10000 51.8 4.8%

1009 5 15000 70.8 6.5%
1009 5 20000 58.8 5.4%

Table 2. Test 3: m = 2432 = 144, n = 48.

q number of samples sample size rejections (avg.) rejections %

433 5 5000 154 6.2%
433 5 10000 134.4 5.4%

1297 5 20000 173 6.9%
1297 5 30000 145.8 5.8%

Table 3. Test 4: m = 2333 = 216, n = 72.

– Lemma 4 and Equation (3) to bound the noise with the canonical norm of
the critical quantity. We get

||ν|| < cm||ν||can with cm = 2/
√
3 .

– Equation (19) to bound the canonical norm of ν with the variance of its
coefficients. We have

||ν||can ≤ 6
√
nVν , and so ||ν|| < 2√

3
6
√

nVν = 4
√

3nVν

with probability 1− ne−36.

– The properties of the coefficients variance of random polynomials, including
Theorem 3. For two independent random polynomials a and b in Rq and a
scalar γ ∈ Zq

Va+b = Va + Vb, Vγa = γ2Va, Vab ≤
3

2
nVaVb .

This approach is also referred to as a worst-case canonical embedding analysis
in the literature. A similar work for the power-of-two case is [52].

5.1 Encryption and ring operations

After the encryption, the critical quantity ν is given by Equation (6). Recalling
that all errors have the same distribution with variance Ve, and u comes from
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the same distribution of the secret key s,

||ν||can ≤ 4
√
3nVm+t(e·u+e1·s+e0)

≤ 4

√
3n

(
t2

12
+ t2

(
3

2
nVeVu +

3

2
nVe1Vs + Ve0

))

≤ 4t

√
3n

(
1

12
+ 3nVeVs + Ve

)
= Bclean . (25)

By this computation, we set Bclean as our bound for the noise in a fresh ciphertext.
To estimate νAdd (Equation (9)), we use the triangular inequality for the

canonical norm: we have

||νAdd||can = ||ν + ν′||can ≤ ||ν||can + ||ν′||can (26)

and this actually applies to any sum of polynomials.
Regarding polynomial multiplication (Equation (10)), we have νMul = νν′,

and we proceed using the sub-multiplicativity of the canonical norm (Equa-
tion (2)); we immediately obtain

||νMul||can ≤ ||ν||can||ν′||can (27)

which is used to estimate the noise.
Finally, for ConstMul (Equation (11)), the critical quantity is again a polyno-

mial product νConstMul = αν. Note that the two factors are independent, as α can
be seen as a uniformly random polynomial in Rt. Thus, we can split the variance

Vαν using Equation (20). Moreover, we have Vα = t2

12 and ||ν||can ≈ 6
√
nVν . So

||νConstMul||can ≤ 6
√

nVαν ≤ 6

√
n
3

2
nVαVν

≤
√

3

2
n
t2

12
6
√

nVν = t

√
1

8
n ||ν||can . (28)

This is an improvement on previous bounds (e.g. [51]), which used again the
sub-multiplicativity of the canonical norm. It is worth noting that Equation (28)
provides a generic bound. Thus, if we have a fixed constant α ∈ N, it is more
convenient to use a modified version of the bound in Equation (9), namely α||ν||,
since αc is sum of α times the ciphertext c.

5.2 Modulus switching

After the one-step modulus switching, the critical quantity is given by Equa-
tion (13) as νModSw = ν + δ(s)/pl, where δ(s) is as in Equation (12). By using
the triangular inequality, we get

||νModSw||can ≤
||ν||can + ||δ(s)||can

pl
.
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Hence, we have to estimate the canonical norm of δ(s). The two polynomials δ0
and δ1 can be seen as random polynomials with coefficients in Ztpl

, as they are
computed from ciphertexts c0 and c1 via modular reduction. Thus,

||δ(s)||can ≤ 6
√
nVδ0+δ1·s = 6

√
n

(
Vδ0 +

3

2
nVδ1Vs

)
≤ pl6t

√
n

(
1

12
+

1

8
nVs

)
.

Namely,

||νModSw||can ≤
||ν||can

pl
+ Bscale where Bscale = 6t

√
n

(
1

12
+

1

8
nVs

)
. (29)

Notice that the term Bscale is independent of pl.
In the general case of k-step modulus switching, we have to consider the RNS

representation. If l is the starting level and l′ = l−k the arrival level, then using
Equation (8) we have

δ = tFBE(−t−1c,
ql
ql′

, ql′)

which implies the coefficient of the polynomials δ0 and δ1 have variance

Vδi = t2
k

12

q2l
q2l′

.

As a consequence of this, we have ||νModSw||can ≤ ql′
ql
||ν||can +

√
kBscale .

Key switching Performing computations similar to those in [52], it is pos-
sible to find the following bounds for the noise in the BV and GHS variants.
Specifically,

||νBVKeySw||can ≤ ||ν + ⟨Db(c2), e⟩||can

≤ ||ν||can + b
√

(⌊logb ql⌋+ 1)BKeySw where BKeySw = 6tn

√
Ve

8

||νGHSKeySw||can ≤
∣∣∣∣∣∣∣∣ν +

tc2 · e+ δ(s)

C

∣∣∣∣∣∣∣∣can ≤ ||ν||can +
ql
C

BKeySw +Bscale .

Instead, for the Hybrid variant, by Equation (17) we have

||νHybrid
KeySw ||

can ≤
∣∣∣∣∣∣∣∣ν +

t⟨Db(c2), e⟩+ δ(s)

C

∣∣∣∣∣∣∣∣can
≤ ||ν||can +

b
√
logb ql

C
BKeySw +Bscale . (30)

The RNS representation affects both the BV and the GHS key switching
variants, and hence also the Hybrid one. In the BV variant, we substitute the
decomposition with respect to a basis b with the one given by the CRT split in
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Equation (7). This results in each element of D(α) having coefficients of the size
of the various pi composing the modulus ql in use. Consequently, we have

||νBV−RNS
KeySw ||can ≤ ||ν||can +

√
L+ 1max(pi)Bks

Regarding the GHS variant, we have to factor in the effect of the base extension
algorithm, which is used two times: once to extend c2 from ql to Ql, the other
to extend δ0 + δ1 · s from C to Ql.

||νGHS−RNS
KeySw ||can ≤ ||ν||can +

√
L+ 1

ql
C

BKeySw +
√
kBscale .

Finally, by putting together these two analyses, we can find a bound for the noise
after the Hybrid key switching: we have to account for the fact that the RNS
is used to split the ciphertext in modulus h chunks q̃0,. . . ,q̃h−1. This affects the
second summand in the GHS estimate, as we have to account for the BV-style
decomposition of c2: we have

||t⟨D(c2), e⟩||can ≤
√
hmax

i∈[h]
(q̃i)BKeySw

and so

||νHybrid−RNS
KeySw ||can ≤ ||ν||can +

√
l + 1

C

√
hmax

i∈[h]
(q̃i)BKeySw +

√
kBscale

≤ ||ν||can +
√
h(L+ 1)

maxi∈[h](q̃i)

C
BKeySw +

√
kBscale . (31)

6 Analyzing Error in a Homomorphic Circuit

In this section, we study how to combine the different operations of the BGV
scheme to perform complex computations. We need to model circuits involv-
ing homomorphic sums and products while controlling the noise growth using
the modulus switching technique. Our approach performed modulus switching
immediately after each polynomial product, thereby effectively mitigating the
noise increase caused by the multiplication operation (Equation (27)). However,
an exception arises at the final multiplicative layer, where no relinearization or
modulus switching is performed. Instead, it is more convenient to decrypt the
three-word ciphertext directly. Furthermore, the noise after encryption (Equa-
tion (25)) is already significant. Hence, a modulus switching is performed right
after Enc.

Following these ideas, the number L of primes pi needed to compose the
ciphertext modulus is determined: if M is the multiplicative depth of the homo-
morphic circuit we want to evaluate, then L = M + 1.

Another thing to take into account when modelling a circuit is ciphertext
rotations: these operations are useful from a practical standpoint, as they make
key management easier. We do not go into detail regarding these procedures;
we only mention them because, after each rotation, it is necessary to perform a
key-switching step.
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6.1 Building blocks

This work studies Model 1 [52, Section 3]: we assume to be working with η
independent-computed ciphertexts c1, . . . , cη in parallel and

1. perform on each ciphertext, a constant multiplication αi: cIi =
ConstMul(αi, ci);

2. followed by τ rotations: cIIi = rotτ (. . . rot1(c
I
i)).

3. Finally, we sum all the results of the previous steps:

cIII = Add(cIIη ,Add(c
II
η−1,Add(. . . ,Add(. . . ,Add(c

II
2 , c

II
1 )))))

The resulting ciphertext is used as input to one multiplication Mul(cIII , c̃III).
We now compute a bound Bblock for the output noise of one such blocks.

We analyze the noise growth by assuming that each of the η input ciphertexts
ci = (ci, l, νi) has noise ||νi||can < B. Then, by Equation (28), after the step 1.,

||νIi ||can ≤ εB where ε = t
√
n/8.

For any rotation, we have to perform an Hybrid key switching. These introduce
an additive growth in the error, and using the computations in Section 5.2, we
get that the noise in cIIi is bounded by

||νIIi ||can ≤ εB+τv where v =
γ0
C

BKeySw +γ1 Bscale .

The values of γ0 and γ1 are given by either Equation (30) or Equation (31) if
we are using the RNS representation. Namely, we have

(γ0, γ1) =

{
(b
√

logb ql, 1) (Hybrid)

(
√
h(L+ 1)maxi∈[h](q̃i),

√
k) (Hybrid−RNS)

. (32)

The next step in the block is the sum of the η ciphertexts cIIi ; by Equation (26),

||νIIIi ||can < η||νIIi ||can < η(εB+τv) .

Finally, two ciphertexts computed as cIII are multiplied together in a building
block. Then Equation (27) implies

Bblock = η2 (εB+τv)
2

(33)

6.2 Moduli size

In this section, we analyze the size of the different moduli p0, . . . , pL−1 depending
on their role in the scheme. All the middle moduli pi, for i = L − 2, . . . , 1, are
associated with a building block like the one analyzed in the previous section.
The idea is to move down the moduli ladder from qL−1 = pL−1 · · · p0 to q0 = p0,
keeping in mind the function each prime modulus has.
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– The top modulus does not have to support any homomorphic operations, as
after encryption, we immediately use ModSw to reduce the noise Bclean down
to the base noise B. This implies pL−1 can be smaller than the other pis.

– The middle moduli pi, i = L− 2, . . . , 1 are used to reduce the noise back to
B after the corresponding building block has been performed.

– The bottom modulus needs to support decryption without counting on mod-
ulus switching to reduce the noise. This means we can still perform some
homomorphic operations, but p0 needs to be large enough to contain the
corresponding noise growth.

We now analyze in detail each of the three different categories above.

Middle moduli The noise growth in a building block of the circuit is given
by Equation (33). After the homomorphic product of ciphertexts concludes the
block, we perform two more operations: a key switching to relinearize the product
result and a modulus switching to reduce the noise. In the Hybrid variant, it
is possible to merge these two because in KeySwHybrid (Equation (16)), it is
already included a modulus switching: instead of switching down from Ql to ql,
we can go directly to ql−1. This decreases the noise by a multiplicative factor of
ql−1/Ql = 1/Cpl, and thanks to Equations (30) and (31) the condition on B is

η2 (εB+τv)
2

pl
+

γ0
Cpl

BKeySw +γ1 Bscale < B . (34)

where γi are as in (32). Expanding the square in this inequality, we get

η2 (εB+τv)
2

pl
=

η2ε2

pl
B2 +

2η2ετ

pl
v B+

η2τ2

pl
v2.

Following [35], to isolate the terms in B we let

Rl =
η2τ2

pl
v2 +

γ0
Cpl

BKeySw +γ1 Bscale

for each multiplicative level l = 1, . . . , L − 2. This quantity increases with l,
hence by bounding RL−2, we bound all the other Rls; moreover, we want this
term to be as close as possible to Bscale (notice that for sure Rl > γ1 Bscale). We
can modify C to achieve this goal: letting

C > Kγ0
BKeySw

Bscale
(35)

for some large K ∈ N, e.g. K = 100, Equation (34) becomes the following
inequality in B:

η2ε2

pl
B2 +

(
2η2τεγ1

pl
Bscale−1

)
B+

η2τ2γ2
1

pl
Bscale

2 +γ1 Bscale < 0 .
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Taking B as a variable, we get a quadratic expression, and we need its discrimi-
nant ∆ to be positive. This implies

∆ =

(
2η2τεγ1

pl
Bscale−1

)2

− 4
η2ε2

pl

(
η2τ2γ2

1

pl
Bscale

2 +γ1 Bscale

)
= 1− 4η2εγ1(τ + ε)Bscale

pl
≥ 0

which results in an estimate for the prime moduli:

p1 ≈ . . . ≈ pL−2 ≈ 4η2εγ1(τ + ε)Bscale . (36)

Setting pl as Equation (36), for each l, we have the ∆ = 0. Thus, we recover B

B ≈ −

(
2η2τεγ1

pl
Bscale−1

)
2η2ε2

pl

=
pl

2η2ε2
− τγ1

ε
Bscale

≈ 4η2εγ1(τ + ε)Bscale

2η2ε2
− τγ1

ε
Bscale ≈ γ1

(τ
ε
+ 2
)
Bscale . (37)

To conclude our estimates, we bound the constant C in the key switching by
looking at the explicit values of γ0 in Equation (35). For l = 1, . . . , L − 2 we

have b
√
logb ql ≤ b

√
logb qL−2 and

√
h(L+ 1)maxi∈[h](q̃i) ≤ Kp

L/h
L−2

√
h(L− 1),

implying that

C ≥


Kb
√
logb qL−2

BKeySw

Bscale
(Hybrid)

Kp
L/h
L−2

√
h(L− 1)

BKeySw

Bscale
(Hybrid−RNS)

(38)

where K ≈ 100. According to [52], this is the smallest lower bound for C, and
it is for this reason that the Hybrid key switching is preferred to the other two
variants.

Top modulus After encryption, the noise is bounded by Bclean. We want the
noise after ModSw to be smaller than a threshold B. Following Equation (29)
the inequality determining the top modulus pL−1 is Bclean/pL−1 + Bscale < B and
using the approximation in Equation (37) we get

pL−1 >
Bclean

(( τϵ + 2)γ1 − 1)Bscale
.

Bottom modulus At this level, the decryption condition is applied directly to
the noise bound for the building block (Equation (33)), resulting in the bound

p0 = q0 > 2cmη2 (εB+τv)
2
. Since the constant C is quite large, we have

v = γ0
BKeySw

C
+ γ1 Bscale ≈ γ1 Bscale .
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Moreover, thanks to Equation (37), we have

εB+τv ≈ εγ1

(τ
ε
+ 2
)
Bscale +τγ1 Bscale = 2γ1(τ + ε)Bscale .

Finally, we get the following condition on p0:

p0 > 2cmη2(2(τγ1 + 1)Bscale)
2 = 8cmη2γ2

1(τ + ε)2 Bscale
2 .

6.3 Parameters specification

We briefly recall the conditions of the parameters.

– m = 2i3j is the cyclotomic index. It comes with an expansion factor cm =
2/
√
3 and n = ϕ(m) = m/3.

– ql =
∏l

i=0 pi are the ciphertext moduli, for l = 0, . . . , L−1; we need pi =m 1
to have efficient NTT, and the pi need to be word-sized primes ([36]), mean-
ing they need to fit the native data length of the machine we are using
(usually 32 or 64 bits) to exploit the RNS representation fully.

– h is the number of blocks for the RNS decomposition in the Hybrid key
switching, and we take h = 3.

– C is the auxiliary modulus for the key switching. For the RNS variant, we
need C =

∏k
j=1 Cj and Cj =m 1 again for NTT related reasons. The size of

C is determined using Equation (38).
– Ve = 2mσ2, where σ = 3.19, and Vs = 2/3 are the variances of the errors

and of the secret key.
– τ is the number or rotations, η is the number of summands in each block.
– ε = t

√
n/8 is a constant due to the multiplication by the ConstMul step in

the circuit; if we wish to suppress this step, it is sufficient to set ε = 1.

In Table 4 and Table 5, we summarize all the results coming from previous
sections.

Bclean Bscale BKeySw B

4t

√
3n

(
1

12
+ 3nVeVs + Ve

)
6t

√
n

(
1

12
+

1

8
nVs

)
6tn

√
Ve

8
γ1

(τ
ε
+ 2

)
Bscale

Table 4. Intermediate noise bounds

7 Our Results

As displayed in Section 3.3, the algebraic structure of a cyclotomic ring with
index m = 2s3t can be exploited to deploy multiplication algorithms with per-
formance comparable to the power-of-two case. Nonetheless, as seen in Sections 4
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τ p0 pl (l = 1, . . . , L− 2) pL−1

0 8cmη2ε2 Bscale
2 4η2ε2γ1 Bscale

BKeySw

(2γ1 − 1)Bscale

̸= 0 8cmη2γ2
1(τ + ε)2 Bscale

2 4η2εγ1(τ + ε)Bscale
Bclean

B−Bscale

Table 5. Sizes of the prime moduli

to 6 there are some major modifications that we need to take into account when
performing noise estimation. In the following, we compare the results of the pa-
rameter estimation process with their power-of-two counterparts. The estimates
for this setting are based on the formulas in [52] and follow the same blueprint of
Section 6; this way, we obtain comparable results between the two frameworks.
To draw comparisons, we fix a security threshold λ (e.g. λ = 128) and look for
the smallest possible parameters supporting a certain circuit with security λ.
The security of our constructions is evaluated using the Lattice Estimator by
Albrecht et al. [3]. In Tables 6 to 9, we report both the sizes of the ciphertext
modulus q and the modulus qC used in the Hybrid key switching (Section 3).
Although most of BGV works modulo q, the security needs to be assessed with
respect to qC as part of the key switching is public.

To build circuits, we fix the parameters of a building block (Section 6.1)
and then increase the number of multiplications M. Obviously, the security
decreases as M grows, meaning that at some point, we will slip below the
security threshold. When this happens, it is necessary to raise the cyclotomic
index, giving us the margin to show our improvements with respect to the
power-of-two case. We call the instances for which we improve the estimates
corner cases.

Example 1. We consider a simple circuit where the building block has no con-
stant multiplication, no rotations (τ = 0), two summands for each block (η = 2),
and plaintext modulus t = 64. We will refer to this construction again; thus, we
name it Circuit 1. We run the computation form = 213 andm = 214, meaning we
work with lattices of dimension n = 212 = 4096 and n = 213 = 8192, respectively.
The sizes of the ciphertext modulus and the security parameter are reported in
Table 6. Now, assume we want to achieve 128 bits of security on a circuit with
3 multiplications. If we look at our power-of-two parameters, we can see that
for n = 212 this cannot be done, as for M = 3 we have λ < 128 (the red cells
in Table 6). Considering the power-of-two rings, the only option we have at this
point is to jump to n = 213 where a solution with λ = 209 is available (the
green cells in Table 6). Moreover, for this n, it is also possible to use the circuits
with M = 4, 5 (the blue cells in Table 6) and decrypt after the desired number
of multiplications since they also feature λ ≥ 128. Anyway, this approach is
suboptimal, since it requires significantly larger ciphertext moduli (log q). The
main issue with all three constructions is that increasing the dimension does not
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M 1 2 3 4 5 6 7 8 9 10

n = 212
log q 46 68 91 115 138 161 185 209 232 256
log qC 70 100 131 163 194 225 257 288 320 341

λ 203 137 103 83 70 61 54 48 45 45

n = 213
log q 48 71 96 119 144 168 193 208 240 267
log qC 72 104 137 169 202 235 268 301 334 367

λ 436 286 209 165 136 116 101 90 81 75

Table 6. Power-of-two estimates for Circuit 1.

come for free. Indeed, n is also the degree of the quotient polynomial in the ring
Rq where the cryptosystem lives. Hence, we are doubling the length of all the
vectors involved by moving from n = 212 to n = 213. This affects the quantity of
memory involved as well as the computational time required for the scheme to
work. If, instead, we consider the case of n = 211 · 3 = 6144, using the formulas
in Section 6, we get Table 7.

M 1 2 3 4 5 6 7 8 9 10

n = 211 · 3
log q 66 77 102 127 153 176 200 224 249 274
log qC 91 112 144 177 211 242 275 307 340 374

λ 265 205 153 121 100 87 77 69 63 58

Table 7. Non power-of-two estimates

Similarly to the case of n′ = 213, these estimates tell us that it is possible to
support the circuit with three multiplications (the green cells in Table 7), only
this time we have λ = 153 instead of 209. This happens because the dimension
of the lattice n is smaller, as 211 · 3 = 6144 < 213 = 8192. Hence, Circuit 1 with
M = 3 is our first corner case.

Our performance comparison is essentially a systematic extension of what
is just seen in Example 1 to different circuits. We focus on rings with cyclo-
tomic index m = 2s · 32, meaning the quotienting polynomial is of the form
Φm(x) = x2s·3 − x2s−1·3 + 1, for essentially two reasons. The first is that in this
setting, we can always deploy the NTT algorithm described in Section 3.3, and
hence, we can be competitive with the power-of-two setting in terms of com-
putational costs. The second reason is that the degree of the polynomial (and
hence the dimension of the lattice used for the security assessment) is exactly
halfway through two consecutive powers of two, which is a reasonable starting
point to look for corner cases. In fact for any s we have 2s+1 < 2s · 3 < 2s+2

and 2s · 3− 2s+1 = 2s+2 − 2s · 3 = 2s, meaning we can expect the security of
the construction with n = 2s · 3 to be halfway between the two neighbouring
power-of-two constructions.
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7.1 Circuit 1

We conclude the work started in Example 1 with a full comparison for Circuit
1: we recall this is a basic construction, with only an addition in each building
block. We merge and extend Table 6 and Table 7 in Table 8, and get an extensive
study involving all multiplicative levels from 1 to 10. For each value of M, we
highlight in green the instances optimal with respect to the security threshold
λ = 128. It can be seen how for M = 3, 6, 7, 8, the optimal estimate is achieved
by a non-power-of-two construction; hence, we have 4 corner cases.

M 1 2 3 4 5 6 7 8 9 10

n = 211
log q 43 65 87 109 131 154 176 199 222 245
log qC 67 96 126 156 185 216 246 276 307 338

λ 161 104 78 63 53 45 44 44 44 44

n = 210 · 3
log q 55 76 99 122 145 168 192 216 239 253
log qC 78 108 139 170 201 232 264 296 327 349

λ 146 101 77 64 54 46 45 45 45 45

n = 212
log q 46 68 91 115 138 161 185 209 232 256
log qC 70 100 131 163 194 225 257 288 320 341

λ 203 137 103 83 70 61 54 48 45 45

n = 211 · 3
log q 66 77 102 127 153 176 200 224 249 274
log qC 91 112 144 177 211 242 275 307 340 374

λ 265 205 153 121 100 87 77 69 63 58

n = 213
log q 48 71 96 119 144 168 193 208 240 267
log qC 72 104 137 169 202 235 268 301 334 367

λ 436 286 209 165 136 116 101 90 81 75

n = 212 · 3
log q 59 83 108 133 158 183 209 235 260 286
log qC 85 117 151 185 218 252 287 321 355 389

λ 652 436 318 249 205 173 149 132 119 108

n = 214
log q 49 74 99 124 150 175 201 227 235 278
log qC 76 108 142 176 210 244 279 314 330 382

λ 925 618 449 350 285 240 206 180 171 145

Table 8. Study of the estimates for Circuit 1.

7.2 Circuit 2

As a second example, we consider a more complex circuit: we allow for constant
multiplication, followed by eight rotations (τ = 8). We also increase the number
of sums from one to eight with respect to Circuit 1 (η = 9) while we leave the
plaintext modulus unchanged (t = 64). We obtain the estimates in Table 9.
Again, for each value of M, we highlight in green the optimal instances with
respect to the security threshold λ = 128. This time, we find 7 corner cases.
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M 1 2 3 4 5 6 7 8 9 10

n = 212
log q 80 136 193 250 307 364 421 479 536 594
log qC 127 202 278 354 431 507 583 660 737 814

λ 107 68 51 46 45 45 45 45 45 45

n = 211 · 3
log q 82 131 182 232 283 334 384 435 487 538
log qC 124 191 259 326 394 462 529 597 667 735

λ 182 111 81 65 55 47 46 46 46 46

n = 213
log q 83 141 200 259 318 377 436 496 555 615
log qC 131 209 288 367 446 525 604 684 762 842

λ 220 131 95 75 63 54 47 46 46 46

n = 212 · 3
log q 86 137 190 242 295 348 401 454 507 560
log qC 130 204 269 339 410 481 552 622 693 764

λ 383 222 161 124 102 87 76 68 62 57

n = 214
log q 86 146 207 268 329 390 451 513 575 636
log qC 135 216 298 379 461 542 624 707 789 870

λ 476 276 191 147 119 101 88 78 71 65

n = 213 · 3
log q 89 142 197 251 306 361 416 471 526 581
log qC 134 206 279 352 425 499 572 645 719 793

λ 838 493 341 259 208 173 149 131 117 105

n = 215
log q 89 151 214 277 340 403 467 530 594 657
log qC 140 223 307 392 476 560 645 730 815 899

λ 1080 601 413 310 248 206 176 153 136 123

n = 214 · 3
log q 91 147 203 260 316 371 427 490 548 605
log qC 137 213 288 364 439 513 588 671 748 824

λ 1850 1079 747 562 449 372 317 271 239 214

Table 9. Study of the estimates for Circuit 2.

8 Conclusions and Future Work

8.1 Conclusions

With this work, we showed how it can be more convenient to implement the BGV
scheme over non-power-of-two cyclotomic rings in order to get better parameters
for specific instantiations. In the process, we established many useful results.

Although it is a widely used fact, we could not find in the literature a satis-
fying proof for Theorem 2. Therefore, ours is the first formal demonstration of
such a statement. The bounds on the variance of the product rings were essen-
tially already established in [39] and [48] for the cases m = 2s and m = 2s3t,
respectively. However, we could not find any general results regarding the co-
variance matrices. While this matter is straightforward for the power-of-two case
(see [39]), the same cannot be said for the case where the cyclotomic index is
m = 2s3t. We think Theorem 3 is a very interesting result because it shows how
to compute the full covariance matrix in this case. Moreover, its proof is easily
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generalized to other cyclotomic rings, since it relies on CRT and probability the-
ory. This result sheds some light on some properties that seem to characterize
RLWE with respect to LWE: it makes no sense to perform a similar analysis in
the LWE context because the algebraic structure is too simple, and the analogue
of polynomial product is just multiplication in Zq.

Another topic we explored is the techniques used for noise estimation. We
showed how to compute the worst-case canonical norm estimates in our non-
power-of-two setting and obtained an improvement over state-of-the-art methods
for constant multiplication (Equation (28)). The results of the estimations them-
selves are quite promising: in Section 7, we examine various sets of parameters
and show a number of instances where it is recommendable to choose a non-
power-of-two construction to achieve certain circuit and security targets (corner
cases). This is mainly connected with the availability of efficient NTT algorithms,
which are non-trivial to develop. However, at least for the case m = 2s · 32, we
could find some solid ground for our idea to grow, yielding some concrete pro-
posals for alternatives to power-of-two BGV. We point out that all the corner
cases we find in Section 7 show a significant improvement with respect to the
power-of-two they outperform. More precisely, the size of the modulus q is simi-
lar, and the NTT algorithms have comparable performance, but we have vectors
whose length n is 25% shorter. This affects the quantity of memory needed to
run the cryptosystem, and also makes it more agile. Indeed, the complexity of
all the operations, including polynomial products that are the main bottleneck,
depends on the degree of the cyclotomic ring Rq. Hence reducing this degree
affects the running time of all the algorithms, simply because we are using a
smaller instantiation of BGV. From a computational standpoint, this enriches
the landscape of possible solutions for somebody implementing FHE.

8.2 Future work

Although we showed how it is possible to obtain better parameters for BGV
by also considering cyclotomic rings with index m = 2s · 3t, if we look at the
comparison tables in Section 7, we can see how there still are some big jumps in
our estimates. For example, if we consider Table 9, we can see that to achieve 5
multiplications with λ = 128 we need to jump from n = 214 to n = 213 · 3, with
λ increasing to 208 bits. This is again an overkill for an instantiation of BGV,
meaning that if we could find a cyclotomic ring of degree 214 < n < 213 · 3 with
efficient NTT then maybe we would also achieve more optimal parameters. A
good direction for further work could be explored in cases where m = 2s ·3t with
t > 2.

Another idea could be extending the estimates to cyclotomic rings with
m ̸= 2s or 2s3t; this would also involve generalizing Theorem 3 to new cases. The
proof of Theorem 3 relies essentially on the Chinese Remainder Theorem and
probability theory, and it seems that it can be extended to other quotient rings.
This looks like a promising topic of self-standing interest in theoretical cryp-
tography, also connected to understanding the extra layer of algebraic structure
introduced by considering RLWE instead of LWE.
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Another interesting line of research are the practical consequences of the
existence of corner cases: as showed by [48], the interest for alternatives to power-
of-two cyclotomic rings is growing in the lattice-based community. We showed
that corner cases exist: the practical implications of this should be explored by
optimizing and tailoring implementations to the new settings.
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Finding and evaluating parameters for BGV. In International Conference on Cryp-
tology in Africa – AFRICACRYPT 2023, pages 370–394. Springer, 2023.

53. Sean Murphy and Rachel Player. A central limit approach for ring-LWE noise
analysis. IACR Communications in Cryptology, 1(2), 2024.

54. Chris Peikert. A decade of lattice cryptography. Foundations and trends in theo-
retical computer science, 10(4):283–424, 2016.

55. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness
of ring-LWE for any ring and modulus. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 461–473, 2017.

56. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):1–40, 2009.


	Breaking the power-of-two barrier: noise estimation for BGV in NTT-friendly rings

