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Abstract. In recent years, there has been much focus on developing
core cryptographic primitives based on lattice assumptions, driven by
the NIST call for post-quantum key encapsulation and digital signature
algorithms. However, more work must be conducted on efficient privacy-
preserving protocols with post-quantum security.
Electronic voting is one such privacy-preserving protocol whose adop-
tion is increasing across the democratic world. E-voting offers both a
fast and convenient alternative to postal voting whilst further ensur-
ing cryptographic privacy of votes and offering full verifiability of the
process. Owing to the sensitivity of voting and the infrastructure chal-
lenges it poses, it is important that post-quantum security be baked into
e-voting solutions early.
We present a post-quantum e-voting scheme based on the hardness of
the RLWE and NTRU lattice problems, providing concrete parameters
and an efficient implementation. Our design achieves a factor 5.3× reduc-
tion in ciphertext size, 2.5× reduction in total communication cost, and
2× reduction in total computation time compared to the state-of-the-
art lattice-based voting scheme by Aranha et al. (ACM CCS 2023). We
argue that the efficiency of this scheme makes it suitable for real-world
elections.
Our scheme makes use of non-ternary NTRU secrets to achieve optimal
parameters. In order to compute the security of our design, we extend the
ternary-NTRU work of Ducas and van Woerden (ASIACRYPT 2021) by
determining the concrete fatigue point (for general secrets) of NTRU to
be q = 0.0058 ·σ2 ·d 2.484 (above which parameters become overstretched)
for modulus q, ring dimension d, and secrets drawn from a Gaussian of
parameter σ. We consider this relation to be of independent interest and
demonstrate its significance by improving the efficiency of the (partially)
blind signature scheme by del Pino and Katsumata (CRYPTO 2022).

Keywords: Lattice Cryptography · Electronic Voting · NTRU

? Work done in part while visiting the Norwegian University of Science and Technology.

https://orcid.org/0000-0003-4037-5512
https://orcid.org/0000-0002-1296-2093
https://orcid.org/0000-0002-5455-0409


1 INTRODUCTION

With the advent of quantum computers, all public key primitives based on the
hardness of factoring or computing discrete logarithms will be deemed insecure.

To mitigate this, there has been an international effort to replace these prim-
itives with ones based on assumptions conjectured to be secure against quantum
adversaries. This process, led by the National Institute of Standards and Tech-
nology (NIST), has recently concluded with the selection of standards for key en-
capsulation and digital signature algorithms. Three of four standards [SAB+20,
LDK+20,PFH+20] are built from structured lattice assumptions; Ring Short In-
teger Solution (RSIS) [Ajt96], Ring Learning With Errors (RLWE) [Reg05], and
NTRU [HPS98], or the module versions of the two former assumptions. Despite
this standardization effort, there is still much work to be done in designing post-
quantum secure privacy-preserving primitives. In this work, we focus on one of
these; electronic voting (e-voting). More precisely, we consider internet voting
which allows for fully remote ballot casting via a voter’s device as opposed to
voting machines at a polling station, though our framework could in theory be
implemented in this setting also. Herein, ‘e-voting’ should be read as synonymous
with internet voting.

E-voting has become increasingly prevalent with the first experiments for
democratic elections beginning around the turn of the millennium. The first bind-
ing election to be carried out online was for the Arizona primary in 2000 [CBS00].
In 2005, Estonia offered internet voting nationally [Vin15] and in 2019, over 45%
of the votes cast in Estonian parliamentary elections were cast online. Switzer-
land used its Swiss Post voting system in the 2023 national elections for the first
time [Swi23] and continues to be one of the leaders in e-voting uptake. Ontario,
Canada increasingly offers online voting with 177 municipalities exclusively using
online voting in the 2018 municipal elections [AC19]. In Australia, over 650,000
online voters participated in the 2021 state election in New South Wales [New21]
and in the US, Microsoft’s ElectionGuard protocol was successfully used for the
2022 midterm elections in Franklin County, Idaho [Mic23].

E-voting has a number of attractive advantages over traditional voting meth-
ods. Analysis of Estonian local elections in 2017 showed the per-vote cost of
online ballots was a factor 2× to 10× cheaper than election-day paper ballots
at just 2.3 Euro with the most expensive paper ballot option used being 20.4
Euro [RK18]. Moreover, the 2023 Estonian parliamentary elections revealed that
the environmental impact (CO2 emissions) of paper ballots was 180 times higher
than that for online ballots and in many cases, its adoption has resulted in a
higher voter satisfaction and turnout rate [Sol01,SMPS16].

In addition to these benefits, e-voting offers the potential for a set of unique
features that enhance both the integrity and privacy of voting. The first is veri-
fiability; both individual and universal. Individual verifiability allows a voter to
check that their ballot was recorded correctly in the final count, whilst universal
verifiability allows anyone to check that parties involved in the ballot processing
carried out their tasks correctly. While this represents a great bolstering to the
integrity of the voting process, it can be executed whilst preserving the privacy
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of voters and their ballots. The second significant property enabled by e-voting is
the distribution of the ballot processing. A distributed decryption of the ballots
ensures that no single party can alter the election outcome. We emphasise that
using a distributed ballot opening process is also a necessary condition for voter
privacy. In the framework deployed by Swiss Post, a centralised decryption server
could choose to decrypt the set of shuffled ballots passed from the mix-net in
addition to decrypt the ones sent by voters to the mix-net (these ciphertexts are
public). Such behaviour would de-anonymise voters while the honest behaviour
of only a single decryption server in the distributed setting prevents such an
attack on voter privacy. Finally, we wish to highlight the inherent lack of pri-
vacy in postal voting. In the last national elections of the US and UK, postal
votes accounted for roughly a quarter [U.S16] and a fifth [Ele17] of all ballots
respectively. However, in both cases personal information must be included with
the ballot in order to identify the voter. Such a system clearly does not preserve
the privacy of voters, a weakness that is eliminated by e-voting.

Moreover, we emphasise the importance of long-term privacy of electronically
cast ballots. The increasing deployment of e-voting protocols currently outpaces
solutions providing post-quantum security. Evidenced by the rapid adoption of
the PQC NIST standards, the urgency to defend against a potential quantum
adversary is plain to see. It is thus essential that post-quantum security be
baked into the designs for e-voting from the outset. Post-quantum security is
thus central to the long-term privacy of voters.

From a desire to achieve these privacy enhancements has emerged the ‘mix-
and-decrypt’ paradigm. Here, multiple servers verifiably shuffle encrypted ballots
before they are decrypted in a distributed manner. This is commonly achieved by
combining a verifiable mix-net [Cha03] with a distributed public-key encryption
scheme. Many previous voting designs have used this structure and in 2019,
Switzerland (via its national postal service Swiss Post), deployed a national e-
voting infrastructure using this paradigm and the Bayer-Groth mix-net [BG12].

Despite much success in developing e-voting protocols, only a few are based
on post-quantum assumptions. The most notable works are the schemes by del
Pino et al. [dLNS17], Aranha et al. [ABG+21], Farzaliyev et al. [FWK21], and
Aranha et al. [ABGS23], the latter being the most efficient scheme based on
(Ring) SIS and (Ring) LWE. Of these schemes, only the last one satisfies the
golden mix-and-decrypt standard for general ballots. Even then, the communi-
cation cost of this scheme is around two orders of magnitude greater than the
one employed by Swiss Post, based on classical assumptions.

The inefficiency of the state-of-the-art scheme in [ABGS23] stems from the
need to decrypt ballots correctly being hindered by a few key features of their
design. Firstly, we note that in order to optimise the computational cost of
lattice-based protocols and to rely on reductions to worst-case problems, one
would like to use polynomial rings whose dimension is a power of two. This im-
poses the first constraint on parameters ( [ABGS23] uses ring dimension 4096).
Next, the mixing and distributed decryption stages both use homomorphic op-
erations on encrypted ballots. This has the effect of increasing the noise within
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each ciphertext. To accommodate this, one must use a ring with a larger mod-
ulus to ‘soak up’ this extra noise. This larger modulus itself increases the size
of objects in the scheme but further still, one might need to use a larger ring
dimension in turn to ensure that the underlying assumptions are still secure.
Finally, the distributed decryption process requires decryption servers to use so-
called ‘noise-drowning’ to ensure that decryption shares do not leak anything
about the server’s decryption key. Further, each decryption server must prove,
in zero-knowledge, that they have applied this noise drowning operation. So far,
proving knowledge of such a large element over lattices, can only be done us-
ing ‘approximate’ proofs where one can give only approximate guarantees about
the size of the noise-drowning term. The noise drowning hugely increases the
noise in ciphertexts, and the loose zero-knowledge proof further pushes up pa-
rameters if correct ballot decryption is to be ensured. Unfortunately, all three
of these features appear to be crucial in realising the coveted mix-and-decrypt
framework in a quantum-secure fashion; the power-of-two ring dimension allows
for a highly optimised implementation, the noise-growing homomorphic opera-
tions are fundamental to constructing their mix-net and distributed decryption
building blocks, and despite two decades of lattice-based distributed decryption
design, no efficient alternative to noise-drowning has been found.

Despite the large efficiency gap between classically secure schemes and the
work in [ABGS23], it is hard to see how significant efficiency improvements can
be found without a new approach.

In privacy-preserving protocols, zero-knowledge proofs (ZKPs) are deployed
to verify the honest actions of parties, and usually dominate the communica-
tion cost. Observation of the recent NIST PQC standards reveals that both the
RLWE and RSIS problems are used, however, there is a third long-standing
problem which appears in the Falcon digital signature [PFH+20]; NTRU. Cru-
cially, NTRU ciphertexts contain only a single ring element with three secret ele-
ments give rise to simpler ZKP relations when compared to their two-component
RLWE-based counterparts such as the BGV encryption scheme [BGV12], as used
in [ABGS23], which contains five secret elements. Thus, NTRU might appear to
be an attractive candidate problem from which to design a voting protocol.

However, whilst the hardness of the RLWE and RSIS problems are well un-
derstood, the picture for NTRU is less clear. Recall, the NTRU problem [HPS98].
Let Rq be a polynomial ring of dimension d and modulus q and sample poly-
nomials f and g with coefficients from some discrete Gaussian Dd

σ. Informally,
the NTRU problem is to recover f and g given h, where h = g/f ∈ Rq. In re-
cent years, it has been shown that NTRU is vulnerable to a unique attack when
defined for so-called ‘overstretched’ parameters [ABD16,CJL16a] i.e. when the
modulus q is very large compared to d. Whilst a line of recent works [KF17,Dv21]
has made progress in understanding the parameters for which this attack applies,
it is not clear how the size of the secrets f and g (parametrized by σ) influence
the feasibility of the attack. Thus, designs using large parameters as found in
privacy-preserving lattice constructions tend to use the RLWE and RSIS prob-
lems for which such behaviour is well understood.

4



1.1 Our Contribution

We propose an electronic voting protocol in the mix-and-decrypt paradigm based
on the RLWE and NTRU lattice assumptions. We build each building block
from the ground up by presenting an NTRU-LWE-based verifiable distributed
decryption scheme and an NTRU-based verifiable mix-net. Moreover, via an in-
depth analysis of the NTRU problem, we give a concrete relation describing the
hardness of the NTRU problem for general secret sizes. We demonstrate the sig-
nificance of this relation in allowing optimal parameter selection for our scheme
and other NTRU-LWE-based works in which large parameters are necessary.
Finally, we give an efficient implementation demonstrating significant efficiency
gains over the state-of-the-art in both communication and computational cost.

Verifiable Mix-Net from NTRU. We present a verifiable mix-net for NTRU
ciphertexts comprising a series of shuffle servers that each apply a secret per-
mutation to the set of input ciphertexts. As long as one shuffle server is honest,
the set of input ciphertexts cannot be pair-wise matched to the set of output
ciphertexts. Our mix-net is simpler than the one in [ABGS23] owing to the single-
element NTRU ciphertexts which yield a cleaner protocol than two-element BGV
ciphertexts do. Furthermore, one proves knowledge of fewer secret objects when
applying ZKPs for verifiability.

Verifiable Distributed Decryption from NTRU. We present a distributed
decryption protocol based on a variant of the NTRUEncrypt scheme of Stein-
feld and Stehlé [SS11], proving its security using both the RLWE and NTRU
assumptions. This allows for for favourable parameters owing to a computation-
ally secure public NTRU key (vs. a statistically secure one in [SS11]). We then
apply an exact zero-knowledge proof (ZKP) in order to prove the well-formedness
of decryption shares. In particular, this proof proves knowledge of the large noise
drowning term needed to prevent leakage of the decryption key and does so in
an exact fashion. That is, our ZKP (which is a modification of the one by Bootle
et al. [BLNS21]) proves a tight bound on the size of the noise downing term. To
our knowledge, this is the first exact ZKP of a ‘large’ secret vector for lattice
relations and may be of independent interest. We note that while this makes the
proof of distributed decryption larger, it allows for a less restrictive correctness
condition, leading to better global parameters throughout the scheme, more than
making up for any additional communication cost incurred by this proof.

NTRU Security Analysis. We build upon the work of Ducas and van Woer-
den [Dv21], on NTRU hardness, to analyse the so-called ‘overstretched attack’
against NTRU when the norm of the secrets grows with respect to the dimension
and modulus. We stress that [Dv21] does give an asymptotic fatigue point for
general NTRU but only a concrete relation for ternary secrets. Employing the
scripts provided in [Dv21], our analysis shows that when we increase σ, then
q can be increased with the square of this increase before reaching the fatigue
point. Concretely, given σ and ring dimension d our experiments suggest a fa-
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tigue point q given by the following expression

q = 0.0058 · σ2 · d 2.484.

Note, by following a similar asymptotic analysis to that in [Dv21], we confirm
that the influence of σ on the fatigue point must indeed manifest only in the
leading constant and not in the exponent of d.

To demonstrate the importance of this quadratic relationship, we recompute
parameters for the recent blind signature by del Pino and Katsumata [dK22],
improving its efficiency compared to the original scheme, which uses ternary se-
crets. Most significantly, for this work, the fatigue relation’s quadratic nature
allows for parameters reaching the required security level without needing to in-
crease the ring dimension used in our voting protocol (which would significantly
impact performance).

A New Lattice-Based E-Voting Design from NTRU. Our main contri-
bution is the presentation of a new lattice-based e-voting protocol following the
standard mix-and-decrypt framework which also supports general ballots. Our
design combines our NTRU-based verifiable mix net and distributed decryption
schemes. Moreover, we call on our analysis of the NTRU problem to choose fine-
tuned concrete parameters. Crucially, when choosing the NTRU secret keys, we
can drop the ring dimension down to 2048 from 4096 and modulus down to
59 bits from 78 bits as used in [ABGS23] whilst maintaining a 128-bit security
level. This would not have been possible without the quadratic nature of the
fatigue relation. Furthermore, we provide an efficient C++-implementation of
our design.

Overall, we reduce the voting protocol’s communication by 2.5× and compu-
tation by 2× over [ABGS23], see Section 5 for more details. It is interesting to
note that, when compared to their classically-secure counterparts, post-quantum
secure replacements typically come with a 30× communication cost (e.g. ECDH
vs Kyber). Comparing our voting scheme to ElGamal-based schemes often used
in practice, we incur a cost of at most 20× in ciphertext size, suggesting that
our design may be approaching what can be optimally achieved.

Scheme Ciphertexts Shuffle Dist. Dec. Total

[ABGS23] [KB] 80 370 157 2188

Our [KB] 15 130 85 875

[ABGS23] [ms] 0.74 261 138 1182

Our [ms] 0.20 62 328 576

Table 1. Per vote comparison to [ABGS23] of ciphertexts, shuffle proofs, decryption
proofs, and overall with four servers. Shuffles are sequential, while decryption is parallel.

6



1.2 Related Works

Lattice-Based Electronic Voting. In [ABGS23], the authors provide a ver-
ifiable mix-net and verifiable distributed decryption protocol based on BGV,
showing for the first time that lattice-based electronic voting can be practical
for real-world systems. We build directly upon their framework and conduct a
more detailed comparison in Section 5. This work utilises the verifiable shuffle
of known commitment openings by [ABG+21]; a building block we adopt. del
Pino et al. [dLNS17] gives a practical scheme based on homomorphic counting,
but it does not scale well for systems with more complex ballots.

A shuffle by [CMM19] was implemented in [FWK21]; however, it is less ef-
ficient than [ABGS23]. More theoretical works include [HMS21a], [Str19], and
[CGGI16], but none of these are efficient enough to be considered for practical
deployment. Moreover, [CMM19,FWK21,HMS21b] do not consider the decryp-
tion of ballots, which would heavily impact the parameters of the protocols in
practice. Finally, [BHM20] gives a fast decryption mix-net, but it cannot achieve
universal verifiability and is thus unsuitable for real-world elections.

NTRU Cryptanalysis. The most relevant work analysing NTRU fatigue is
that of Ducas and Van Woerden [Dv21]. It is important to acknowledge that this
sits atop a line of work in recent years. The concurrent works [ABD16,CJL16b]
showed, for the first time, that NTRU security is more subtle than simply finding
a notably short vector in a lattice. These works exploit the specific algebraic
structure of the NTRU lattice to gain an advantage on standard lattice reduction
for so-called ‘overstretched’ parameter regimes.

This work was closely followed by Kirchner and Fouque [KF17], who showed
that improved attacks were, in fact, only due to the geometric existence of an
unusually dense sublattice of large dimension within the NTRU lattice. More-
over, their analysis concludes that q larger than d 2.783+o(1) already lies in the
overstretched range (for ternary secrets). This bound was improved upon by the
work of [Dv21] as discussed in Section 4.

2 PRELIMINARY

Here we detail the essential tools employed in our constructions. We recall stan-
dard lattice results and necessary cryptographic building blocks. We begin with
some notation.

Notation. For a set S and distribution (or algorithm) D, “← S[ρ]” and“←
D[ρ]” denote the processes of uniformly sampling from S with randomness ρ
and sampling from (or executing) D with randomness ρ, respectively. We denote
by Perm[i] the set of permutations of the integers {1, ..., i}. For column vectors
a and b, [a‖b] denotes the vertical concatenation. with an overload of notation,
for two strings s and r over some alphabet, s‖r denotes the concatenated string.
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2.1 Lattices

The Ring Z[x]/(xd + 1). Consider the rings R = Z[x]/φ and Rq = Zq[x]/φ,
where φ = (xd + 1) for d an integer power of 2 and q a prime. Elements in both
rings are polynomials of degree at most d−1, with those in the latter ring having
coefficients between −(q − 1)/2 and (q − 1)/2. We denote elements of Z and R
by lower-case letters, vectors in Rk by bold lower-case letters, and matrices in
R(k×`) by bold upper-case letters. For a positive real σ, let DZd,σ denote the
discrete Gaussian distribution over Zd. To make the notation simple, we denote
a ← Dσ to mean that the coefficient vector of a ∈ Rq is sampled from DZd,σ.
For a, b ∈ R, we have that ‖ab‖∞ ≤ ‖a‖1 · ‖b‖∞ and ‖ab‖∞ ≤ ‖a‖2 · ‖b‖2. Let Sν
denote the set of all elements a ∈ R such that the absolute norm is ‖a‖∞ ≤ ν.

We use the following standard results for Gaussian vectors:

Lemma 1 (Tail Bounds [MR04, Lyu12]). For any real t > 0 and t′ > 1,
we have

Pr[x← DZn,σ : ‖x‖∞ > tσ] < 2n · 2−
log e

2 ·t
2
,

Pr[x← DZn,σ : ‖x‖2 > t′σ
√
n] < 2n·(

log e
2 (1−t′2)+log t′).

Rejection Sampling. In lattice-based cryptography in general, and in our zero-
knowledge protocols in particular, we would like to output vectors z = y+v such
that z is independent of v, and hence, v is masked by the vector y. Here, y is
sampled according to a Gaussian distribution N k

σ with standard deviation σ and
we want the output vector z to be from the same distribution. The procedure is
shown in Figure 1.

Here, 1/M is the probability of success, and M is computed as

max N
k
σ (z)

N k
v,σ(z) ≤ exp

[
24σ‖v‖2 + ‖v‖2

2
2σ2

]
= M (1)

where we use the tail bound from Lemma 1, saying that |〈z,v〉| < 12σ‖v‖2 with
probability at least 1− 2−100. Hence, for σ = 11‖v‖2, we get M ≈ 3. This is the
standard way to choose parameters, see e.g. [BLS19]. However, if the procedure
is only done once for the vector v, we can decrease the parameters slightly, to
the cost of leaking only one bit of information about v from given z.

In [LNS21], Lyubashevsky et al. suggest to require that 〈z,v〉 ≥ 0, and hence,
we can set M = exp(‖v‖2/2σ2). Then, for σ = 0.675‖v‖2, we get M ≈ 3. In
Figure 1, we use the pre-determined bit b to denote if we only use v once or
not, with the effect of rejecting about half of the vectors before the sampling of
uniform value µ in the case b = 1 but allowing a smaller standard deviation.

The NTRU Problem. We give the historical presentation of the NTRU prob-
lem as it is more convenient for our analysis in Section 4. We note that some
works refer to this problem as the ‘search/decisional short polynomial ratio’
problem. Furthermore, one can consider the so-called ‘module’ NTRU problem
[CPS+20], which considers the ratio of matrices of polynomials F and G. Our
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Rej(z,v, b,M, σ)

1. if b = 1 and 〈z,v〉 < 0, return 1
2. µ $← [0, 1)
3. if µ > 1

M
· exp

[
−2〈z,v〉+‖v‖2

2
2σ2

]
, return 1

4. return 1

Fig. 1. Rejection Sampling.

analysis and applications can naturally be extended to the module setting, so for
ease of presentation, we use the basic (polynomial) NTRU formulation [HPS98].

Definition 1 (Search/Decision NTRU). Let q > 2 be a prime, d be the
ring dimension, and DσNTRU be a distribution over Rq. Sampling (f, g)← D2

σNTRU
with rejection if f is not invertible in Rq, define h = g/f ∈ Rq. The search-
NTRUq,d,σNTRU problem is, given h, to recover any rotation (Xif,Xig) of the pair
(f, g). The decision-NTRUq,d,σNTRU problem is, given h, to decide if h is computed
as h = g/f for (f, g)← D2

σNTRU
or if h is sampled uniformly from Rq.

The RLWE and RSIS Problems. We define the standard lattice-hardness
problems over rings [Ajt96,Reg05,LPR10].

Definition 2 (Ring Learning with Errors). Let q > 2 be a prime, d be the
ring dimension, DσRLWE be a distribution over Rq, and A a PPT algorithm that
makes at most Q oracle queries. Then the advantage of A in solving the ring
learning with errors RLWEd,q,Q,σRLWE problem is defined as

AdvRLWE
d,q,Q,σRLWE

(A) =
∣∣Pr[AORLWE(1λ)→ 1]− Pr[AO$(1λ)→ 1]

∣∣ ,
where oracles ORLWE and O$ are defined as

- ORLWE : Samples a← Rq, (s1, s2)← D2
σRLWE

, and then output (a, as1 + s2);
- O$ : Samples (a, b)← Rq ×Rq, and then output (a, b).

Definition 3 (Ring Short Integer Solutions). Let q > 2 be a prime, d be
the ring dimension, ‖ · ‖ a norm, and β ∈ R+ a positive integer. The RSISd,q,β
problem is, given a uniformly random a ∈ Rq, find s1, s2 ∈ Rq such that as1 +
s2 = 0 ∈ Rq and ‖s1, s2‖ ≤ β.

2.2 Building Blocks

NTRU Encryption. In this work, we will use the provably secure variant of
the NTRU cryptosystem first presented by Steinfeld and Stehlé in [SS11]. This
scheme relies on the hardness of both the RLWE and NTRU assumptions. Note
we make two minor modifications to ensure perfectly correct decryption: (1) en-
cryption randomness is sampled from a bounded distribution, and (2) the secret
keys f and g are rejected unless their `2 norm is below a given bound. When
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sampled accordingly, this limitation has only a negligible effect on the comple-
tion probability of the key generation algorithm and the entropy of resulting keys.

Setup. Let p � q be primes and d a power of two which define the rings Rp
and Rq. Messages lie in Rp. Let σNTRU ∈ R and DσNTRU a discrete Gaussian
distribution over R with standard deviation σNTRU, t ∈ (1, 2] and ν ∈ N. Let
the setup parameters be sp = (d, p, q, σNTRU, t, ν). The encryption scheme is
described in Figure 2.

Key Generation KeyGenNTRU(sp). Given input sp =
(d, p, q, σNTRU, t, ν):

1. f, g ← DσNTRU ; if f /∈ R×q or f 6≡ 1 ∈ Rp, resample.
2. If ‖f‖2, ‖g‖2 > t ·

√
d · σNTRU, restart.

3. Return sk = f , pk = h := g/f ∈ Rq.

Encryption EncNTRU(m, pk). Given message m ∈ Rp and public key pk = h:

1. Sample encryption randomness s, e← Sν .
2. Return ciphertext c = p · (hs+ e) +m ∈ Rq.

Decryption DecNTRU(c, sk). Given ciphertext c and key sk = f :

1. Return message m = (f · c mod q) mod p.

Fig. 2. Adapted NTRUEncrypt [SS11].

Lemma 2 (NTRUEncrypt Security). Let p·d·t·σNTRU(2ν+1/2) < bq/2c. Then
the encryption scheme in Figure 2 is (perfectly) correct. Moreover, assuming the
hardness of the NTRUq,d,σNTRU and RLWEd,q,Q,χ problems, the scheme is IND-CPA
secure.

The BDLOP Commitment Scheme. Here we recall the BDLOP commit-
ment scheme from [BDL+18]. For simplicity, we present the scheme instantiated
over rings instead of modules, committing to only one ring element at a time:

Setup(1λ) : On input a security parameter λ, samples uniformly random a1, a2, a3
from Rq and outputs the public commitment key pkC defined as:

pkC =
[
a1 0
a2 1

]
=
[
1 a1 a2 0
0 1 a3 1

]
.

Com(pkC , x) : On input a public commitment key pkC and an element x in
Rq, samples a vector r ∈ R3

q such that ‖r‖∞ ≤ BCom, and computes the
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commitment as:

com =
[
c1
c2

]
=
[
1 a1 a2 0
0 1 a3 1

]
r1
r2
r3
x

 = [[x]].

It outputs the commitment com and the opening d = (x, r, 1).
Open(pkC , com, d) : On input a public commitment key pkC, the commitment

com and the opening d = (x, r,f) where f ∈ C̄. It verifies:

f · com ?=
[
1 a1 a2 0
0 1 a3 1

]
r1
r2
r3
f · x

 ,
and ∀i ∈ [3] : ‖ri‖2

?
≤ 4 · σCom

√
d. It outputs 1 if the relations hold and 0

otherwise.

The BDLOP commitment scheme is hiding if the RLWE problem is hard
for vectors of `∞ norm BCom over a lattice of dimension 2 · d. Furthermore, the
scheme is binding if the RSIS problem is hard for vectors of `2 norm 16σCom

√
κd

over a lattice of dimension 2 · d [BDL+18].

Amortized Proofs of Boundedness. To prove boundedness on the large noise
drowning terms Ei in our voting scheme, we define ΠBnd to be a slightly adapted
version of the ΠSmall protocol used to prove boundedness of very small values
(see Section 3.4 for full details). The main idea of ΠBnd is that we use bit-
decomposition of the integers Eij to produce a long vector with small entries.
This allows for the application ΠSmall to prove an exact bound on Ei.

The previous work by Aranha et al. [ABGS23] used the amortised relaxed
proofs by Baum et al. [BBC+18] to get smaller proof sizes of the cost of slightly
increasing the overall parameters of the voting scheme because of the slack in-
herent in the proof system. In practice this leads to a slightly larger modulus
q but have no impact on the ring dimension d. However, in our setting, we get
better parameters in practice for the whole scheme when giving exact proofs of
boundedness, even though the proofs themselves are larger. The exact relation
for the proof system, with batch size `′ and secret vectors bounded in the `∞
norm by BDrown, is:

RBnd :=
{

(x,w)
∣∣∣∣x := (pkC , {comi}i∈[`′]) ∧ w := ({di = (ui, ri, fi)}i∈[`′]) :
∀i ∈ [`′] : ‖ui‖∞ ≤ BDrown ∧ Open(pkC , comi, di)

}
.

Since ΠSmall is a proof system that scales with the number of possible values
of the secret vectors, we use bit decomposition techniques to limit a blow-up
in terms of running time, memory usage and proof size, to the cost of proving
knowledge of longer secret vectors.
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Any integer E between 0 and q can be represented in base b as E = [b0 b1 ... bζ ]◦
[1 b ... bζ ] for unique coefficients bi between 0 and b − 1 and ζ = dlogb qe − 1
where ◦ is the dot product. This can be naturally extended to vectors, matrices
and modules, particularly for our commitment matrix A. Since the commitment
randomness is already short, we only need to decompose the last element in the
secret vector, and we can do so in the following way (note that we abuse nota-
tion, where after (∗) the elements before | are in Rq and the elements after are
in Zq, but any element in Rq can be represented in Zdq):

Aijsij =
[
1 a1,1 a1,2 |0
0 1 a2,2 |1

] [
rEij
Eij

]

(∗)=
[
1 a1,1 a1,2 |0 . . . 0
0 1 a2,2 |1 . . . bζ

]
rEij
E0ij
...

Eζij

 = Āij s̄ij .

Here, the ring element Eij is decomposed, and elements E0ij , . . . , Eζij have in-
teger values between 0 and b− 1. We note that these statements are equivalent
to prove, and that the length of Āij is d(k + ζ + 1) over Zq instead of d(k + 2).

Finally, we use the ΠSmall protocol to prove ternary secret values as above
but with a tweak: the public matrix input to the protocol is Āij instead of Aij ,
and we change the coefficient values that we are checking for in the proof. For
the first d · k values we are checking for (0, 1,−1) coefficients but for the next
d(ζ + 1) values we are checking for (0, 1, 2) coefficients instead (this is a small
tweak of line 3 in [ABGS23, Figure 5] that does not impact the performance of
the protocol in any way, these values are initially arbitrary to the proof system).
Since the other secret parts are ternary, we have that ζ = dlog3 BDrowne − 1.

We refer the reader to Section 3.4, where the actively-secure scheme is pre-
sented, for definitions of the remaining zero-knowledge proofs used in our con-
struction.

3 THE VOTING SCHEME

A cryptographic voting scheme is usually defined in terms of the algorithms
for the tasks of election setup, casting ballots, and counting cast ballots. To
accurately model the counting process, we need algorithms for shuffling and
distributed decryption. To make such a scheme verifiable (actively secure), we
additionally need a mechanism by which to verify that the encryption, shuffling,
and decryption algorithms are computed honestly. In this section, we present an
NTRU-based voting protocol in the well-established ‘mix-and-decrypt’ paradigm,
comprising new verifiable distributed decryption and mix-net protocols.

3.1 Voting Overview

Setup Phase. A trusted party runs the key generation algorithm for the PKE
scheme with distributed decryption. In this work, we will assume a trusted key
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generation and leave the design of a distributed key generation algorithm for
NTRU to future work, as this is common for voting schemes. The generated
public parameters sp are given to every participant, while the decryption key
shares dkj are distributed amongst the decryption servers.

Casting Phase. Each voter instructs their voting device to cast their chosen
ballot. The device encrypts the ballot under the public key pk to create a cipher-
text c, and it computes a ballot proof. The standard way to do this is to use a
verifiable encryption scheme such as the one presented in [LNP22], proving that
the submitted ciphertext contains a genuine ballot in zero-knowledge.

Counting Phase. This is divided into three sequential processes. First, en-
crypted ballots are passed through a series of shuffle servers.

The ξ1 shuffle servers S1, ...,Sξ1 consecutively run the shuffle algorithm of the
set of encrypted ballots {c(k−1)

i }, passing the shuffled and re-encrypted ballots
{c(k)
i } to the next shuffle server. They also generate a shuffle proof which anyone

can verify. We may refer to this whole shuffle process as the mix-net.
Each of the ξ2 decryption servers Dj receives the output of each shuffle server

and verifies the corresponding shuffle proofs. Only after verifying each proof
does a decryption server begin decryption. Dj then computes a set of partial
decryption shares {dsij}, one for each of the ciphertexts. Finally, it creates a
proof of decryption to guarantee that it computed its shares correctly. Each
decryption server passes its shares to the combining algorithm Comb.

The Comb algorithm performs the task of recovering the ballots. Having re-
ceived all decryption shares from decryption servers, the Comb algorithm verifies
the decryption proofs. If all decryption proofs are verified, it recovers the ballots
by combining the decryption shares.

A schematic of these processes, in the malicious setting, is shown in Figure 3.
This figure is adapted from [ABGS23] and shows the voting protocol beginning
with input of a set of encrypted ballots and finishing with a set of ballots in
plaintext. We note that some works consider an auditor whose role is to verify
the processes at each step by checking the proofs provided. This is somewhat of
a stylistic design choice. For the purposes of this paper, it is useful to think of
the proofs as providing verifiability of each phase by any third party and by the
component servers before carrying out their roles.

3.2 Passively Secure Scheme

Here we present our passively secure voting scheme. Whilst our ultimate goal
is to give a verifiable (actively secure) voting scheme, we first isolate the core,
passively secure skeleton for clarity of presentation. We begin by defining the
algorithms and syntax of this construction.

Definition 4 (Passively Secure Voting Scheme). Let τ be the number of
voters, ξ1 the number of shuffle servers, and ξ2 the number of decryption servers.

13



S1 S2 . . . Sξ1

{c(0)
i } {c(1)

i } {c(2)
i }

πS1 πS2 πSξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)
i }

{c(ξ1)
i }

{c(ξ1)
i }

({dsi,1}, πD1 )

({dsi,j}, πDj )

({dsi,ξ2}, πDξ2
)

Fig. 3. The voting protocol with verifiable mix-net and distributed decryption, adapted
from [ABGS23, Figure 1].

A passively secure cryptographic voting scheme ΠPVote consists of five algorithms
(KeyGen,Cast,Shuffle,DDec,Comb).

KeyGen(sp)→ (pk, sk, {dkj}j∈[ξ2]) : On input setup parameters sp, it returns a
public encryption key pk, a secret key sk and a set of ξ2 secret decryption
key shares {dkj}j∈[ξ2].

Cast(pk, v)→ c : On input a public key pk and vote v it returns an encrypted
ballot c.

Shuffle({ci}i∈[τ ])→ {ĉi}i∈[τ ] : On input a set of encrypted ballots {ci}i∈[τ ] it re-
turns a set of encrypted ballots {ĉi}i∈[τ ].

DDecj({ci}i∈τ , dkj)→ {dsi,j} : On input a set of encrypted ballots {ci}i∈[τ ] and
a decryption key dkj, it returns a set of decryption shares dsj = {dsi,j}i∈[τ ].

Comb({ci}i∈[τ ], {dsj}j∈[ξ2])→ {v}i∈[τ ] : On input a set of encrypted ballots {ci}i∈[τ ]
and a set of decryption shares {dsj}j∈[ξ2], it outputs a set of votes {v}i∈[τ ].

We instantiate the algorithms, present our passively secure voting scheme and
give an overview in Figure 4.

Setup. Let p� q be primes and d a power of two which define the rings Rp and
Rq. Votes lie in Rp. Let σNTRU, BDec, BDrown ∈ R+, t ∈ (1, 2], and ν, τ, ξ1, ξ2 ∈ N.
Let sp = (d, p, q, σNTRU, t, ν, τ, ξ1, ξ2).

3.3 Actively secure scheme

We present our actively secure (verifiable) voting scheme. This can be seen as
a natural extension of the passive protocol ΠPVote by adding verifiability to the
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KeyGen(sp). On input system parameters sp:

1. (sk = f, pk = h)← KeyGenNTRU(d, p, q, σNTRU, t).
2. For j ∈ [ξ2 − 1], dkj ← U(Rq) and set dkξ2 = sk−

∑ξ2−1
j=1 dkj mod q.

3. Return (pk, sk) and key shares {dkj}j∈[ξ2].

Cast(pk, v). On input the public key pk and a vote v ∈ Rp:

1. Compute c = EncNTRU(pk, v).
2. Return encrypted ballot c.

Shuffle({ci}i∈[τ ]). On input encrypted ballots {ci}i∈[τ ]:

1. For each i ∈ [τ ], compute c′i = EncNTRU(pk, 0).
2. For each i ∈ [τ ], compute ĉi = ci + c′i mod q.
3. Sample a random permutation π ← Perm[τ ].
4. Return re-encrypted ballots {ĉπ(i)}i∈[τ ].

DDecj({ci}i∈τ , dkj). On input a set of encrypted ballots {c}i∈τ and a decryption key
share dkj :

1. For each i ∈ [τ ], sample Eij ← SBDrown and compute share dsij = dkj · ci + p · Eij
mod q.

2. Return the set of decryption shares dsj = {dsij}i∈[τ ].

Comb({ci}i∈[τ ], {dsj}j∈[ξ2]). On input encrypted ballots {ci}i∈[τ ] and decryption
shares {dsj = {dsij}i∈[τ ]}j∈[ξ2]:

1. For each i ∈ [τ ], vi =
(∑

j∈[ξ2] dsij mod q
)

mod p.
2. Return the set of votes {vi}i∈[τ ].

Fig. 4. The passively-secure voting scheme ΠPVote.

shuffle and distributed decryption processes. This is done by applying the zero-
knowledge proofs of Section 3.4 so that the outputs of ShuffleA and DDecA, now
include a proof of shuffle πS and a proof of decryption πD respectively.

Now, any third party can verify that the processes of shuffling and distributed
decryption were carried out correctly without compromising the privacy or in-
tegrity of the voting system. As usual, we assume a trusted dealer for key gener-
ation and leave the construction of an NTRU-based distributed key generation
for other applications to future work.

This construction implicitly defines a verifiable mix-net with distributed de-
cryption from NTRU. We consider these of independent interest and give an
overview as stand-alone protocols.

Verifiable Shuffle. Our aim here is, given a set of input ciphertexts, to gen-
erate a new set of ciphertexts that decrypts to the same set of plaintexts. Cru-
cially, input-output ciphertext correspondence must be obscured. Additionally,
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we would like any third party to verify that this process has been performed
correctly without compromising the privacy of the mix.

For this, we apply the proof of [ABG+21], which allows one to prove a shuf-
fle of openings of the lattice commitments in Section 2.2. We denote this proof
system ΠShuf. Since NTRU ciphertexts only contain a single element, we can
import their scheme without modification where the committed messages are
ciphertexts. We also employ the ΠSmall proof systems described in Section 3.4
to prove that the new ciphertext noise is sufficiently bounded. At a high level,
our verifiable shuffle of NTRU ciphertexts c1, ..., cτ re-randomises the input ci-
phertexts and then permutes their order where the permutation is only known
to the shuffle server:

1. The shuffle server creates encryptions c′1, ..., c′τ of 0 and commits to these as
[[c′i]] for each i ∈ [τ ]. Run the ΠSmall protocol to prove that each committed
ciphertext is honestly computed.

2. Adding the original ciphertexts ci to these commitments homomorphically
yields commitments [[ĉi]] to ciphertexts with the same plaintext as in c1, ..., cτ ,
now with fresh randomness.

3. The server now reveals the openings ĉi in a randomly permuted order and
runs the ΠShuf protocol to prove that these are indeed a permutation of the
correct openings of the commitments.

We note that verification of the shuffle proof should be done before any ballot
decryption begins. This can be seen as a first step of the DDec algorithm or as
part of a global verification process carried out by an auditor. For simplicity of
presentation and since this is covered in [ABGS23], we omit this from the full
protocol.

Verifiable Distributed Decryption. Our aim here is, given a set of input
ciphertexts, to generate a set of decryption shares so that we can extract the
encrypted plaintexts when all the shares are combined. Furthermore, each de-
cryptor must prove that they decrypted their decryption share correctly using
their secret key share. Therefore, in the active setting, the public key additionally
contains a commitment [[dkj ]] to each secret key share dkj , and each decryptor
holds an opening to exactly one of the commitments. The verifiable distributed
decryption protocol works as follows:

1. For each i ∈ [τ ], the decryptor samples a noise value Eij ← SBDrown , computes
a decryption share dsij = dkj · ci + p ·Eij and commits to the noise as [[Eij ]].

2. For each i ∈ [τ ], it uses the ΠLin protocol to prove that the linear decryption
equation above is computed honestly with respect to [[dkj ]] and [[Eij ]].

3. For each i ∈ [τ ], it uses the ΠBnd protocol to prove that [[Eij ]] is an honestly
created commitment and the committed value is bounded by BDrown.

We wish to emphasise the importance of our ΠBnd proof system. ΠBnd is a mod-
ification of the ZKP by Bootle et. al in [BLNS21]). Crucially, it proves a tight
bound on the size of the noise downing term Eij . To our knowledge, this is the
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first exact ZKP of a ‘large’ secret vector for lattice relations and may be of in-
dependent interest. Though a more costly proof, proving an exact bound on Eij
will lead to more efficient global parameters in Section 5.

Setup. Let p � q be primes and d a power of two which define the rings Rp
and Rq. Votes lie in Rp. Let σNTRU, BDec, BDrown, BCom,
BSmall ∈ R+, t ∈ (1, 2], and ν, τ, l, ξ1, ξ2 ∈ N. Let sp =
(d, p, q, σNTRU, t, ν, τ, l, ξ1, ξ2, BDec, BDrown, BCom).

KeyGenA(sp). On input system parameters sp:

1. Run
(
(pk, sk), {dkj}j∈[ξ2]

)
← KeyGen(sp).

2. For j ∈ [ξ2], compute the commitments and openings ([[dkj ]], rdkj )← Com(dkj).
3. Return pkA = (pk, [[dk1]], ..., [[dkξ2 ]]), skA = sk, and key shares
{dkA,j =

(
dkj , rdkj

)
}j∈[ξ2].

CastA(pkA, v). On input a public key pkA and a vote v in Rp, retrieving pk from pkA:

1. Return c← Cast(pk, v).

ShuffleA({ci}i∈[τ ]). On input a set of encrypted ballots {ci}i∈[τ ] :

1. For i ∈ [τ ], compute c′i ← EncNTRU(pk, 0) using encryption randomness (s′i, e′i).
2. For i ∈ [τ ], commit to c′i as com′i := [[c′i]]← Com(pkC, c

′
i) where rc′

i
is the

commitment randomness used. Then denoting

AM =
[

1 a1,1 a1,2 0 0
0 1 a2,2 ph p

]
,

and sc′
i

= [rc′
i
, s′i, e

′
i]T compute πSmalli ← ΠSmall for matrix AM, input vector sc′

i
,

targets com′i, and bound BSmall. Set πSmall := {πSmalli}i∈[τ ].
3. For i ∈ [τ ], compute ĉi = ci + c′i. Sample π ← Perm([τ ]), and compute

πShuf ← ΠShuf with input commitments {[[ĉi]]}i∈[τ ], randomness {rc′
i
}i∈[τ ],

ciphertexts {ĉi}i∈τ ], and permuted ciphertexts {ĉπ(i)}i∈[τ ].
4. Return

(
{ĉπ(i)}i∈[τ ], πS

)
, where πS =

(
{com′i}i∈[τ ], πSmall,πShuf

)
.

Fig. 5. ΠAVote key generation, casting, and shuffle.

3.4 Zero-Knowledge Proofs

We present the proof systems needed in the actively secure voting protocol. We
wish to highlight, in particular, the way in which we adapt the amortized proof
of boundedness ΠBnd as compared to previous works [ABGS23]. The crucial
observation here is that whilst we get slightly larger proofs there, the exact
guarantees provided by the proof allow for better parameters to be chosen for
the overall voting scheme. This leads to a net reduction in communication cost.
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DDecA,j({ci}i∈[τ ], dkA,j). On input a set of ciphertexts {ci}i∈[τ ] and decryption key
share dkA,j =

(
dkj , rdkj

)
:

1. For i ∈ [τ ], sample Eij ← SBDrown , and compute dsij = dkj · ci + p · Eij .
2. For i ∈ [τ ], compute

(
[[Eij ]], rEij

)
← Com(Eij , pkC) and use the ΠLin protocol to

compute a proof πLinij for the linear relation dsij = dkj · ci + p · Eij .
3. Apply the amortized proof ΠBnd from Section 3.4, to create a proof πBnd that, for

all i ∈ [τ ], ‖Eij‖∞ ≤ BDrown and ‖rEij‖∞ ≤ BCom.
4. Return dsj :=

(
{dsij}i∈[τ ], πD

)
, where πD =

(
{[[Eij ]]}i∈[τ ], {πLinij}i∈[τ ], πBnd

)
.

CombA({ci}i∈[τ ], {dsj}j∈[ξ2]). On input encrypted ballots {ci}i∈[τ ] and decryption
shares {dsj}j∈[ξ2]:

1. Parse dsj as
(
{dsij}i∈[τ ], πDj

)
, and verify the proofs πLinij and πBnd,ij , returning ⊥

if either fails to verify.
2. Compute

vi = (
∑
j∈[ξ2]

dsij mod q) mod p.

3. Return the set of votes {vi}i∈[τ ].

Fig. 6. ΠAVote distributed decryption and combining.

Challenge Set. Let κ be such that
(
d
κ

)
· 2κ > 2λ and define Cκ = {c ∈

Rq | ‖c‖∞ = 1 ∧ ‖c‖1 = κ} and C̄κ = {c− c′ | c, c′ ∈ Cκ ∧ c 6= c′}.

Proof of Linearity. In Step 2 of DDec, we prove well-formedness of the linear
decryption share. The protocol ΠLin produces a proof that a committed value v
is a multiple of another committed value u with respect to a public scalar g. In
our setting, we will prove [[Eij − p−1dsij ] = −p−1ci[[dkj ]].

The exact relation for the proof system is:

RLin :=

(x,w)

∣∣∣∣∣∣
x := (pkC , comu, comv, g) ∧

w := (du = (u, ru, fu), dv = (v, rv, fv)) :
u = g · v ∧ Open(pkC , comu, du) ∧ Open(pkC , comv, dv)

 .

The proof of linearity πLin is computed as follows [BDL+18]:

1. Sample vectors yu and yv of length k over Rq according toDσLin and compute
wu = a1 · yu and wv = a1 · yv and t = g · a2 · yu − a2 · yv.

2. Hash (wu,wv, t) to c in Cκ, and compute zu = yu + c · ru, zv = yv + c · rv.
3. Rejection sample with respect to (yu, zu), and (yv, zv). If it outputs 1 then

output πLin = (c, zu, zv) and otherwise restart by sampling new (yu,yv).

The verifier checks if ‖zu, zv‖2 ≤ 2σLin
√
k · d and if the hash of (a1 · zu − c ·

cu,1,a1 · zv − c · cv,1, g · a2 · zu − a2 · zv + cv,2 + g · cu,2) equals c. It outputs 1 if
all checks verify, and otherwise it outputs 0.

Using the improved rejection sampling techniques from [LNS21], we set σLin =
BCom · κ

√
d. The size of πLin is 2kd log2(4σLin) bits.
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Proof of Shuffle. In Step 3 of the shuffle, we use ΠShuf to prove that a set of
committed values is a permutation of public values.

In our context, the committed values will be the ĉi values. These can be
constructed by the verifier from the ci and the [[c′i]]. The public values are the
ĉi. The proof then convinces the verifier that output ciphertexts are a genuine
permutation of the set of re-randomized input ciphertexts. The exact relation
for the proof system is:

RShuf :=
{

(x,w)
∣∣∣∣ x := ({(comi, ūi)}i∈[τ ]) ∧ w := ({di = (ui, ri, fi)}i∈[τ ], ρ) :
ρ ∈ Perm[τ ] ∧ ∀i ∈ [τ ] : ui = ūρ(i) ∧ Open(pkC , comi, di)

}
.

The proof of shuffle πShuf is computed as follows [ABG+21, Section 4]:

1. Hash the statement to get a uniform value and then shift all commitments
and messages to u′i and ū′i (the commitments are additionally homomorphic).

2. For all i ∈ [τ − 1], sample random values θi and commit to random linear
combinations of the form [[Di]] = [[θi−1 · u′i + θi · ū′i]] (where θ0 = θτ = 0).

3. Hash the commitments to get a uniform challenge β. Then for all i ∈ [τ ]
compute si so that it solves the linear system with respect to β.

4. For all i ∈ [τ ], compute proofs of linearity for the commitment equations of
the form [[Di]] = si−1[[u′i]] + si · ū′i (where s0 = β and sτ = (−1)τβ).

The verifier accepts if all proofs of linearity are valid. This proof πShuf con-
sists of one ring element, one commitment and one proof of linearity per shuf-
fled element. Using the proof of linearity πLin from above, the size of πShuf is
τd(2k log2(4σLin) + 3 log2 q) bits.

Amortized Proof of Shortness. In Step 2 of the shuffle, we use ΠSmall to
prove that we have committed to well-formed encryptions of zero. The protocol
ΠSmall produces a proof that a batch of equations Asi = ti for i ∈ [`] is satisfied
for a set of secret vectors si with `∞ norm bounded by ν. The exact relation for
the proof system is:

RSmall :=
{

(x,w)
∣∣∣∣ x := (pkC , {comi}i∈[`]) ∧ w := ({di = (ui, ri, fi)}i∈[`]) :

∀i ∈ [`] : ‖ui‖∞ ≤ ν ∧ Open(pkC , comi, di)

}
.

The proof of shortness πSmall is quite involved, combining error-correcting codes,
Merkle trees, Lagrange interpolation and proximity testing, and we refer to
[ABGS23] for details. The proof size, for batch size ` of ternary secret vectors,
is given in [ABGS23, Equation (1)] as

(3vd+ (3`+ 2)η) log2 q + 2λη(1 + log2 γ) bits,

using an [γ, µ, ι] Reed-Solomon Code with code-length γ, message length µ and
minimal distance ι where µ = d(k + 2) + η ≤ γ < q for encoding randomness of
length η. λ is the security parameter. The soundness of the proof is given as

2 ·max
{

2
(

µ′

γ − η

)η
,

1
q − `

+
(

1− µ′ − µ
6γ

)η
, 2 ·

(
1− 2(µ′ − µ)

3γ

)η
,

18`
q − `

}
,

19



for a choice of message length µ′ such that µ ≤ µ′ ≤ γ < q.

Amortized Proofs of Boundedness. In Step 3 of DDec, we use ΠBnd to prove
boundedness on noise drowning terms Eij . The main idea is that we use a bit-
decomposition Ei to produce a long vector with small entries, which allows for
the application ΠSmall to prove an exact bound on E. We define ΠBnd to be an
adapted version of the ΠSmall protocol, see Section 2.2 for details.

3.5 Security Analysis

Shuffle Protocol. We analyse the security of the verifiable shuffle protocol
implicitly defined by the tuple of algorithms ΠAShuf := (KeyGenA,CastA,ShuffleA,
DecNTRU). We say that ΠAShuf is secure if it satisfies the properties of shuffle
completeness, shuffle soundness, and shuffle simulatability. We refer the reader
to Appendix A for formal definitions of these notions.

Lemma 3 (ΠAShuf Security). Suppose ΠSmall and ΠShuf are complete, knowl-
edge sound, and HVZK, and that Com is hiding. Furthermore, suppose that
NTRUEncrypt is IND-CPA secure and let the total noise, BMix, added to ci-
phertexts in the shuffle be such that BDec + BMix ≤ bq/2c. Then the verifiable
shuffle ΠAShuf is secure.

We sketch the proof. Since ΠSmall and ΠShuf are complete, the protocol will
finish and the shuffle will verify correctly. Since BMix +BDec ≤ bq/2c, decryption
will be correct. Thus, ΠAShuf is complete.

Now assume we have an adversary Adv breaking the knowledge soundness
of the shuffle. That is, given a set of input ciphertexts, Adv can produce a new
set of ciphertexts and a shuffle proof which verifies but the new ciphertexts do
not decrypt to the original plaintexts. Without loss of generality, assume that
ciphertext ĉi decrypts incorrectly. By the knowledge soundness of πSmall , one can
extract commitment randomness sc′

i
= [rc′i, s′i, e′i]T such that AMsc′

i
= t′i. By

knowledge soundness of πShuf , it is easy to check that one can extract a second
vector s̃c′

i
= [r̃c′i, s̃′i, ẽ′i]T satisfying AMs̃c′

i
= t′i. Then incorrect decryption of ĉi

corresponds to either s̃′i 6= s′i or ẽ′i 6= e′i. In either case, we break the binding
property of the BDLOP commitment scheme.

Finally, we can argue the shuffle simulatability in the standard way. We con-
struct a simulator that, given a set of input ciphertexts and output ciphertexts
from an honest shuffle, simulates the proofs πSmall and πShuf using the HVZK
property of those systems and replaces the commitments to ciphertexts with
commitments to zero. Simulatability then follows from the hiding property of
the commitments and IND-CPA security of NTRUEncrypt .

Distributed Decryption Protocol. We now analyse the security of the PKE
with distributed decryption implicitly defined by the tuple of algorithmsΠADDec :=
(KeyGenA,CastA,DecNTRU,DDecA,,
CombA). We say that ΠADDec is secure if it satisfies the properties of IND-CPA
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security, threshold correctness, threshold verifiability, and distributed decryption
simulatability. For completeness, we give the full definitions of these notions in
Appendix B. Since many of these properties rely on building blocks used in pre-
vious works, we provide a proof sketch here and refer the reader to [ABGS23]
for the full arguments. We will however make parameter constraints explicit to
aid in the performance analysis of Section 5.

Lemma 4 (ΠADDec Security). Let BDrown = 2sec(BDec/pξ2) < bq/2c. Suppose
that ΠLin and ΠBnd are complete, knowledge sound, and HVZK, and NTRUEncrypt
is IND-CPA secure. Then the verifiable, distributed decryption protocol ΠADDec
is secure.

We sketch the proof. IND-CPA security of ΠADDec follows trivially from the
IND-CPA security of the underlying NTRU encryption scheme and the HVZK
property of the proofs ΠLin and ΠBnd.

Examining the threshold correctness, define the predicate PskA(·) so that
PskA(c) = 1 if and only if ‖skA · c‖∞ < BDec. Then given a set of adversarially
generated ciphertexts {c}i∈[τ ] satisfying PskA(ci) = 1 for all i ∈ [τ ], we have
that

∥∥∥∑j∈[ξ2] dsij
∥∥∥
∞
< q/2 and so the Comb algorithm will return the correct

decryption of ci. The completeness of ΠLin and ΠBnd ensure that the arguments
will be accepted, thus, ΠADDec is threshold correct.

For threshold verifiability we also consider only ciphertexts such that PskA(c) =
1. Note that if Comb accepts a ciphertext for which decryption is incorrect then,
for some j, no relation dsij = dkj · ci + pEij holds for an Eij of norm at most
BDrown. This implies either an adversary against the soundness of ΠLin or of
ΠBnd.

Finally, we describe a simulator for our distributed decryption. Firstly, let
us replace commitments to Eij with commitments to zero. This change is in-
distinguishable from the hiding property of the BDLOP commitment scheme.
Next, one can simulate the proofs πLinij and πBnd, otherwise a distinguisher breaks
the HVZK of the respective proof systems. Lastly, the simulatability of the dsij
follows from the choice of sec which is chosen so that dsij is statistically indis-
tinguishable from uniform.

4 NTRU HARDNESS

Before setting out to choose concrete parameters for the implementation of our
new voting scheme, it became clear that we needed to better understand the
hardness of the NTRU problem. This section contains that in-depth analysis
which informs our parameter choices in Section 5.

Research on the security of the NTRU problem has revealed a significant
improvement in the performance of lattice reduction algorithms when applied to
NTRU lattices for so-called overstretched parameters. More precisely, analysis
carried out over a series of works [ABD16,KF17,LW20] shows this weakening of
NTRU occurs when the modulus q is very large compared to the ring dimension d
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and when secrets are small. Naturally, these works seek to determine the turning
point at which q becomes large enough for such attacks to apply. We refer to
this as the fatigue point.

4.1 Extending the NTRU Analysis

Until recently, only an asymptotic result was known about the position of the
fatigue point, determined by Kirchner and Fouque as q = d 2.783+o(1) [KF17].
Ducas-van Woerden Analysis. In their recent paper [Dv21], Ducas and van-
Woerden improve on the asymptotic result of Kirchner and Fouque, narrowing
down the fatigue point for ternary secrets to q = d 2.484+o(1). Building on this
result, the authors perform an average-case analysis (rather than a worst-case
bound) based on the volume of the relevant lattices and sublattices to arrive at
a concrete prediction of the fatigue point. They identify two lattice reduction
events that distinguish standard regimes from their overstretched counterparts
to facilitate their analysis.

– Secret Key Recovery (SKR): The event in which a vector as short as the
secret key is inserted into the lattice basis.

– Dense Sublattice Discover (DSD): The event in which a vector of the dense
sublattice is inserted into the basis.

A DSD event has been shown to shortly precede SKR by a cascading of further
DSD events or enabling decryption of fresh ciphertexts.

Through careful observation of the occurrence of these events, Ducas and
van Woerden use their predictive model to determine the concrete fatigue point
of NTRU with ternary secrets to be q = 0.004 · d 2.484 for d > 100. One can
use the scripts provided3 in their work to estimate the concrete hardness of
NTRU. We also affirm their predictive model by running real experiments on
low-dimensional instances to confirm this relation.

Beyond Ternary Secrets. The reader may have noticed that the discussion
of the fatigue point, thus far, only focuses on the modulus and dimension of the
ring. Recalling Definition 1 reminds us that f and g need not always be ternary.
Indeed, many NTRU-based constructions use secrets with non-ternary coeffi-
cients. Let us consider f and g generated according to a Gaussian distribution
Dσ of standard deviation σ. For convenience, the analysis of [Dv21] models the
ternary secret case by sampling f, g ← Dσ with σ2 = 2/3. Varying σ can model
any secret key size, and thus we will herein consider that f and g are always
sampled according to some Gaussian Dσ. The natural question arises:

Does the choice of (secret size) σ influence the fatigue point, and if so,
what is its impact?

3 See github.com/WvanWoerden/NTRUFatigue for their code.
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To get some intuition on this, we recall the work of Steinfeld and Stehlé [SS11]
in which the authors show how selecting σ sufficiently large gives rise to a public
key h = g/f that is statistically indistinguishable from uniform when f and g are
sampled from Dσ. Moreover, they show that using such parameters allows one
to remove the NTRU assumption from a proof of the NTRU cryptosystem. The
σ needed for statistical security depends on the size of q and d. This suggests
that fixing q and d and increasing σ makes the NTRU problem harder.

This observation goes some way to answering the first part of our question
since it is clear that, for a sufficiently large σ, both SKR and DSD become
ineffective.

Whilst using statistically uniform public keys provides peace of mind, this
practice comes with significant efficiency losses. In addition to much larger key
sizes, conditions for a cryptosystem’s correctness can become much more con-
straining. Note that for correct decryption of the NTRUEncrypt cryptosystem
defined in Figure 2, one needs the relation ‖p(gs+ fe) + fm‖∞ < q/2 to hold.
Clearly, using larger secrets f and g thus leads to less favourable parameters by
pushing up the modulus q.

We, therefore, have a balancing act that needs to be performed when set-
ting NTRU parameters; to keep parameters small whilst avoiding the attacks
affecting overstretched regimes. Fortunately, the script provided in [Dv21] also
allows for NTRU hardness estimations using any choice of σ though no analysis
is performed in their work outside the ternary case. Nevertheless, their estima-
tor provides a tool, much like the LWE estimator of Albrecht et al. [APS15], to
analyse the concrete hardness of any given NTRU parameter set.

A More General Fatigue Relation. In our analysis, we are interested in
answering the second part of the above question. In particular, we would like to
know by how much an increase in NTRU secret size affects the position of the
fatigue point for a given ring dimension.

A simple calculation, following the analysis of [Dv21], Section 3.2, confirms
that the asymptotic relation q = d 2.484+o(1) holds regardless of the value of σ.
This suggests that if the value of σ plays a role in the concrete, average case
relation, it manifests in the leading constant. We can thus infer that, for some
function ψ and constant c, the fatigue point is given by

q = c · ψ(σ) · d 2.484.

In order to determine the nature of ψ, we consider a range of σ ∈ [2, 22, . . . , 220].
For each σ, we perform a loglog-linear regression on the estimated fatigue points
overall prime ring dimensions 199, . . . , 499. This mimics the calculations of [Dv21]
used in the ternary case. For a full explanation of why this is a sensible range to
examine, we refer the reader to Section 5.5 of that work.

Next, we consider the predicted fatigue points as a geometric series. This
reveals the predicted average-case fatigue point to be

q = 0.0058 · σ2 · d 2.484. (2)
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The precision of this relation across all σ considered is very high. Whilst we
could extend this part of our analysis to larger σ, it is highly unlikely that, for
cryptographic applications, one would need to take σ higher than 220. We note
also that, setting σ2 = 2/3, we recover the fatigue point determined for the
ternary case [Dv21].

This gives a definitive answer to our question about the impact of σ on
the fatigue point. To give more gravity to this prediction, we also run a series
of experiments for computable ring dimensions to validate this estimate. The
results are displayed in Figure 7.

We also give a second figure (Figure 8) in which we plot q/σ2 along the ver-
tical axis. This reveals the accuracy of the preceding constant by revealing how
closely bunched the estimations and experiments are when normalised across
varying σ. As was observed by Ducas and Woerden in the ternary case, the esti-
mator is slightly pessimistic, predicting a fatigue point roughly 15% lower than
the one suggested by real experiments. They give potential explanations for this
discrepancy, pointing to the slope parameter used in the estimator, which is not
well calibrated for such small block sizes. In practice, though, this small error
only translates to a difference of 2-3 in the block size needed to run BKZ and
thus hardly affects the predicted security. Importantly, our experiments show
that this error remains constant even at larger moduli.

The Significance of σ2. Having determined the impact of σ on the concrete
fatigue point for NTRU, we reflect on the structure of Equation (2). As an
illustrating example, let us return to the decryption correctness constraint for the
NTRU cryptosystem. This can be written as σ · F(p, d, ν) < q for some function
F . Suppose for a given parameter set (d, q, σ), this constraint is satisfied, but
the corresponding NTRU instance does not provide adequate security. Let us
then increase q by a constant factor δ, say. According to the constraint, this
gives room for an increase in σ to δ · σ. Then Equation (2) tells us that the new
fatigue point for the set (d, δ · q, δ · σ) increases by a factor of δ2. The important
observation here is that, while increasing q in the first move might weaken the
NTRU instance, the same increase permitted for σ actually gives rise to a net
increase in the hardness of the instance. In summary, Equation (2) tells us that
it is possible to ‘win’ this cat-and-mouse game for NTRU that so often arises
when setting lattice parameters.
We now consider how our analysis might be applied to existing works to refine
parameter choices.

4.2 Implications for Existing Work

While the authors of [Dv21] note that parameters used in the NTRU-based NIST
finalists are still secure to the degrees claimed, many works in the literature use
different sets, some of which may fall foul of the dense sublattice attack, and
thus, one needs to use the techniques described in the previous section to set
parameters.
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Fig. 7. Experimental fatigue point values for a range of σ, calculated using BKZ with 8
tours on matrix NTRU instances. The straight-colored lines show the estimated values
using the (modified) estimator from [Dv21].

We examine an existing primitive in which the parameters fall short of pro-
viding claimed security levels. However, as suggested by Equation (2), we can
carefully re-select parameters so that a small increase in the secrets yields the
security bump-up needed.

Blind Signatures [dK22]. del Pino and Katsumata present a lattice-based
(partially) blind signature using trapdoor sampling. In the (round optimal) con-
struction given, a user passes the message to be signed in a blind way so that
the signer does not learn the message they sign. This is done by committing to
the message and then proving the well-formedness of this commitment. We will
call this the first flow. The signer then creates an output passed back to the user
(second flow). Finally, the user computes a signature for its original message
using this response message from the signer.

In the first flow, Pino and Katsumata employ the NTRU-based linear ho-
momorphic commitment scheme (LinHC) of [Kat21] to ensure the soundness
and overall QROM security of the well-formedness proof. One must, therefore,
choose parameters so that the relevant NTRU instance is hard. The choice of
d = 2048, q = 266, and ternary NTRU secrets is informed by the constraint
requiring straight-line extractability of the proof system. However, as we have
observed, such large moduli run the risk of taking a parameter set into over-
stretched territory. Moreover, these values give rise to only 63 bits of security
when run through the estimator of [Dv21] rather than 128.

To rectify this situation, there are two common strategies; either one can
increase the ring dimension used throughout the scheme or use sufficiently large
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Fig. 8. Experimental values for q/σ2 illustrate that the fatigue point, when adjusted
for σ, is modeled by q/σ2 = 0.0058 · d 2.484.

NTRU secrets that the corresponding public key is statistically indistinguishable
from uniform.

Doubling the ring dimension in [dK22] from 2048 to 4096 (to retain the
implementation benefits of a power-of-two dimension) and computing the other
parameters accordingly, 128 bits of security is reached at the cost of doubling the
sign-request flow (69.2MB), doubling the returned ‘pre-signature’, and doubling
the user’s final signature size to 200 KB.

The alternative method, using a statistically uniform public commitment key
turns out to be impossible whilst satisfying all parameter constraints simultane-
ously.

We now exhibit the benefits of the relation Equation (2), as revealed by our
analysis, when applied to the problem of setting NTRU parameters. with the
same ring dimension d = 2048, we increase σNTRU (secret size). This has the
effect of pushing up the modulus needed to facilitate the straight-line extraction
condition. The reader might observe that increasing q reduces the hardness of
the problem again. However, Equation (2) reveals that it is possible to ‘win’
this cat-and-mouse game since the fatigue point increases quadratically with the
size of the secrets. We thus propose the following parameters to ensure 128 bit
security is reached:

q ≈ 274, p ≈ 241, σNTRU = 13,

where p is the prime used to commit to the witness in the LinHC protocol. For-
tunately, this change only has a small effect on the total communication cost. In
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the first flow, the user signing query increases from 34 MB to 35.4 MB, and the
sizes of the user’s pre-signature and final signature output are unchanged. This
significantly improves the sizes that arise from changing the ring dimension and
avoids doubling the final signature.

Summary. Simply increasing the size of the NTRU secrets may be all that is
needed to ensure the correct security threshold is reached. In other settings, this
also pushes up the modulus over which a scheme is defined, as in the examples
above. However, the scheme may also rely on other hardness assumptions, such
as RLWE, as in our voting scheme, defined over the same ring. Now, the RLWE
problem may no longer be hard for the adjusted parameters and one may need to
increase the ring dimension to find parameters for which both problems are hard.
This can make what was an efficient scheme into one that cannot be deployed
in practice.

Clearly, such balancing acts must be approached with a good understanding
of the hardness of NTRU instances. We aim to further demonstrate the advan-
tages of this approach when setting concrete parameters for our voting scheme
in Section 5 where our fine-grained analysis allows us to bring down the overall
communication cost dramatically.

5 PERFORMANCE

5.1 Setting Parameters

We begin by collecting all parameters of the scheme and noting any constraints
applying to them in Table 6.

Next, we closely examine the constraint needed for the correct (perfect) de-
cryption of votes as performed by the Comb algorithm. This turns out to be the
most influential constraint on the overall efficiency of the scheme. In particular,
this constraint informs our choice of the global ring dimension d and modulus q,
which most directly affect the communication sizes.

Decryption Correctness. After passing through the mix-net of ξ1 shuffle
servers, a ciphertext is of the form

c = p(h
∑
k∈[ξ1]

sk +
∑
k∈[ξ1]

ek) +m,

where the encryption randomness terms sk and ek are sampled from Sν . Next,
this ciphertext is passed to a decryption server, which computes a decryption
share of the form dsj = fj · c + pEj . Then the Comb algorithm, on collecting
{dsj}j∈[ξ2], outputs

v′ = (
∑
j∈[ξ2]

dsj mod q) mod p.
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Parameter Explanation Value

λ Computational security parameter 128

d Ring dimension 2048

q Ciphertext and commitment modulus ≈ 259

sec Statistical security parameter 40

p Plaintext modulus 2

t KeyGenNTRU rejection parameter 1.058

ν Infinity norm of encryption randomness 1

ξ1, ξ2 Number of shuffle and decryption servers 4

BCom Infinity norm of commitment randomness 1

BDec Noise in ciphertext 262144

BDrown Infinity norm of noise drowning term Eij ≈ 255

σNTRU Standard deviation for encryption secret key 7.12

η Reed-Solomon encoding randomness length 325

`Small Proof batch size in ΠSmall 9830

`Bnd Proof batch size in ΠBnd 12288

µSmall Reed-Solomon message length in ΠSmall 10565

µBnd Reed-Solomon message length in ΠBnd 8517

µ′Small Reed-Solomon message dimension in ΠSmall 23988

µ′Bnd Reed-Solomon message dimension in ΠBnd 181550

γSmall Reed-Solomon code length in ΠSmall 26616

γBnd Reed-Solomon code length in ΠBnd 198668

Table 2. Sample parameter set.

In order for the result of this process to yield the original ballot cast, we require
the infinity norm of the sum here to be bounded by bq/2c. It follows that a
sufficient constraint for this correct decryption is:

p · d · t · σNTRU · (2ξ1 · ν + 1/2)(1 + 2sec) < bq/2c, (3)

where t is the rejection parameter in KeyGenNTRU.

Computational Security. Having chosen parameters satisfying the constraints
of Table 6, we must ensure that the underpinning lattice problems are sufficiently
hard for these parameters.
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For RLWE we follow standard convention by using the estimator [APS15].
This estimates the cost of BKZ conservatively by focusing only on the cost of
a single uSVP oracle call, a core operation in BKZ. The number of such calls
required has been estimated to be 8d for a lattice dimension d, and we follow
this estimate.

To determine the NTRU problem’s hardness, we use the analysis of Sec-
tion 4. Having settled on a ring dimension d and modulus q giving sufficient
hardness of the RLWE problem, we use (3) to determine the maximum standard
deviation permissible for generating the NTRU secrets (f, g). Finally, follow-
ing the procedure described in Section 4, one can calculate the estimated of
NTRU. Again, we employ the conservative formula 0.292β + 16.4 + log2(8d)
used in [DTGW17,SPL+17,BIP+22] to compute bit-security from blocksize β.

In order to ensure the binding property of the BDLOP commitment schemes
we use, the RSIS problem must be hard. We use the relation due to Micciancio
and Regev [MR09], which states that LLL will recover a short vector a vector
of 2-norm 2(2

√
d log2 q log2 δ). δ is the root Hermite factor and δ < 1.0045 gives

rise to at least 128 bits of security. Owing to the horizontally long nature of
the commitment matrix used, the hardness of the corresponding RSIS instance
easily meets this threshold.

5.2 Sample Parameters and Total Size

Table 2 gives a sample set of parameters generated by following the process
described in the previous section. In Table 3, we present the total sizes of objects
in our voting scheme and compare them with those of [ABGS23]. We denote the
output of each shuffle node by πSi , including ciphertexts, commitments, proofs
of shortness, and shuffle proofs. Similarly, we denote the total output of each
decryption node as πDj , consisting of decryption shares, commitments, proofs of
linearity and boundedness.

Our scheme achieves a reduction in ciphertext size by over a factor of five.
Moreover, the reduction in commitment sizes and constituent proofs leads to
shuffle server outputs of 130 KB per vote, which are three times smaller, and
decryption server outputs of 85 KB per vote, which are half of those in [ABGS23].
Overall this represents a 2.5× efficiency gain over [ABGS23] as summarized in
Table 1.

Scheme ci [[Rq]] πShuf πLin πSmall πBnd

[ABGS23] [KB] 80 80/120 150 35 20 2

Our [KB] 15 30 63 18 22 22

Table 3. Ciphertext, commitment, and proof sizes per voter. Note that the two sizes in
[ABGS23] reflect commitments to noise-drowning terms and ciphertexts, respectively.
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5.3 Benchmarks

We adapt the proof-of-concept implementation by [ABGS23] to fit our scheme
since the framework is the same. Our benchmarks were collected on an Intel Kaby
Lake Core i7-7700 CPU machine with 64 GB of RAM running single-threaded
at 3.6 GHz, with Turbo Boost disabled to reduce measurement variability. This
is a similar machine as in [ABGS23]. Our code is available at https://github.
com/carrosa/ntru_voting_impl.

Scheme Com Open Enc Dec DDec

[ABGS23] [ms] 0.45 2.76 0.74 0.64 1.56

Our [ms] 0.17 0.80 0.20 0.21 0.45

Table 4. Ciphertext and commitment timings. Numbers were obtained averaging over
104 executions measured using the cycle counter available on the platform.

We compare the timings in Table 4 and Table 5. Analysing our experiments, each
shuffle server takes (0.20+0.17+17.5+44.2) = 62 ms and each decryption server
takes (0.17+0.45+16.9+310.5) = 328 ms. Given four servers, where shuffles are
performed sequentially and decryption is performed in parallel, the total time is
576 ms, making our scheme twice as fast as [ABGS23] as summarized in Table 1.

Scheme πLin πShuf πSmall πBnd

[ABGS23] [ms] (43.4 + 6.4) (44.9 + 7.9) (214.4 + 10.0) (92.7 + 23.9)

Our [ms] (16.9 + 2.0) (17.5 + 2.1) (44.2 + 4.0) (310.5 + 4.3)

Table 5. Proving and verification times, obtained by computing the average of 100
executions with τ = 1000.

We finally note that the proofs of linearity in the shuffle and the batched proofs
of shortness and boundedness during shuffles and decryption can be computed
in parallel, and that powerful servers dedicated to an election with Turbo Boost
enabled would most likely outperform our numbers by at least an order of mag-
nitude.

5.4 Future Improvements

We provide some directions for interesting future work:
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1. Return codes. To extend our scheme and ensure voter verifiability, we need
to add return codes to our scheme. This can be done by extending the work
of [HS22] from BGV to NTRU. This also includes verifiable encryption.

2. Improved noise analysis. Our results can possibly be improved using tech-
niques in [AKSY22,BS23,CSS+22]. We use 40 bits of statistical noise drown-
ing to protect the secret key in the distributed decryption protocol. This can
possibly be improved if we choose parameters based on how many cipher-
texts we will decrypt or change noise drowning techniques to Gaussian and
compute the Rényi divergence to estimate the leakage.

3. Improved parameters in other schemes. Our extended NTRU analysis might
lead to more efficient FHE parameters in [BIP+22] and [Klu22] using the
same methodology that led to a more efficient instantiation of NTRUEncrypt .
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A Security of Verifiable Mixing

First, we define completeness, soundness and simulatability for a mixing protocol
ΠMix executed by a prover Prover, with respect to a generic encryption scheme
E = (KeyGen,Enc,Dec) [ABGS23].

Definition 5 (Mixing Completeness). We say that the mixing protocol ΠMix
is complete if for honest PPT parties Prover and Verifier that follows the pro-
tocol then Prover on input a set of honestly generated ciphertexts will output a
new set of ciphertexts together with a proof such that Verifier accepts the proof
and the output ciphertexts decrypt to the same set of messages as the input ci-
phertexts. Hence, we want that for all (pp, pk, sk) ← KeyGen(1κ), {ci}i∈[τ ] ←
Enc(pk, {mi}i∈[τ ]), and ({ĉi}i∈[τ ], π)← Prover(pp, pk, {ci}i∈[τ ]), we have

Pr
[

{mi}i∈[τ ] = Dec(sk, {ĉi}i∈[τ ]
1← Verifier(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ], π)

]
≤ 1− ε(λ),

where the probability is taken over KeyGen, Enc and Prover.

Definition 6 (Mixing Soundness). We say that the mixing protocol ΠMix is
sound if a dishonest PPT adversary Adv that can behave arbitrarily on input
a set of honestly generated ciphertexts will not be able to output a new set of
ciphertexts together with a proof such that an honest Verifier accepts the proof
but the output ciphertexts decrypt to a different set of messages than the input
ciphertexts. Hence, we want that for all (pp, pk, sk) ← KeyGen(1κ), {ci}i∈[τ ] ←
Enc(pk, {mi}i∈[τ ]), and ({ĉi}i∈[τ ], π)← Adv(pp, pk, {ci}i∈[τ ]), we have

Pr
[

{mi}i∈[τ ] 6= Dec(sk, {ĉi}i∈[τ ]
1← Verifier(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ], π)

]
≤ ε(λ),

where the probability is taken over KeyGen, Enc and Adv.

Definition 7 (Mixing Simulatability). We say that the mixing protocol ΠMix
is simulatable if a PPT adversary A that on input a set of honestly generated
ciphertexts can not distinguish between a real execution of the mixing protocol
with accepting output and a protocol execution from a PPT simulator S (given
a set honestly mixed output ciphertexts) producing a simulated mixing proof.
Hence, we want that∣∣∣∣∣∣∣∣∣∣

Pr

b = b′ :

(pp, pk, sk)← KeyGen(1κ); b $← {0, 1}
{ci}i∈[τ ] ← Enc(pk, {mi}i∈[τ ])

({ĉi}i∈[τ ], π
(0))← Prover(pp, pk, {ci}i∈[τ ])

(π(1))← S(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ])
b′ ← Adv(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ], π

(b))

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ ε(λ),

where the probability is taken over KeyGen, Enc, Prover, S and Adv.
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B Security of Distributed Decryption

Here we define the syntax and security properties for a PKE with distributed
decryption [ABGS23].

Definition 8 (PKE with Distributed Decryption). A PKE scheme with
distributed decryption consists of five algorithms: key generation (KeyGen), en-
cryption (Enc), decryption (Dec), distributed decryption (DDec), and combine
(Comb), where

KeyGen. On input security parameter 1λ and number of key-shares ξ2, outputs
public parameters pp, a public key pk, a secret key sk, and key-shares {skj},

Enc. On input pk and messages {mi}, outputs ciphertexts {ci},
Dec. On input sk and ciphertexts {ci}, outputs messages {mi},
DDec. On input a secret key share skj∗ and ciphertexts {ci}, outputs decryption

shares {dsi,j∗},
Comb. On input ciphertexts {ci} and decryption shares {dsi,j}, outputs either

messages {mi} or ⊥,

and pp are implicit inputs to Enc, Dec, DDec and Comb.

Definition 9 (Chosen Plaintext Security). We say that the public key en-
cryption scheme is secure against chosen plaintext attacks if an adversary Adv,
after choosing two messages m0 and m1 and receiving an encryption c of ei-
ther m0 or m1 (chosen at random), cannot distinguish which message c is an
encryption of. Hence, we want that∣∣∣∣∣∣∣∣Pr

b = b′ :

(pp, pk, sk)← KeyGen(1κ)
(m0,m1, st)← Adv(pp, pk)
b

$← {0, 1}, c← Enc(pk,mb)
b′ ← Adv(c, st)

− 1
2

∣∣∣∣∣∣∣∣ ≤ ε(λ),

where the probability is taken over KeyGen and Enc.

Definition 10 (Threshold Correctness). We say that the public key dis-
tributed encryption scheme is threshold correct with respect to Psk(·) if the fol-
lowing probability equals 1:

Pr

Comb({ci}i∈[τ ], {dsi,j}j∈[ξ2]
i∈[τ ] )

=
Dec(sk, {ci}i∈[τ ])

:

(pp, pk, sk, {skj}j∈[ξ2])← KeyGen(1λ, ξ2)
{c1, . . . , cτ} ← A(pp, pk)

∀i ∈ [τ ] : Psk(ci) = 1,∀j ∈ [ξ2] :
{dsi,j}i∈[τ ] ← DDec(skj , {ci}i∈[τ ])

 ,
where the probability is taken over KeyGen and DDec.

Definition 11 (Threshold Verifiability). A PKE scheme with distributed de-
cryption is threshold verifiable with respect to Psk(·) if an adversary A corrupting
J ⊆ [ξ2] secret key shares {skj}j∈J cannot convince Comb to accept maliciously
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created decryption shares {dsi,j}i∈[τ ],j∈J . More concretely, the following proba-
bility is bounded by a negligible ε(λ):

Pr


Dec(sk, {ci}i∈[τ ])

6=
Comb({ci}i∈[τ ], {dsi,j}j∈[ξ2]

i∈[τ ] )
6=
⊥

:

(pp, pk, sk, {skj}j∈[ξ2])← KeyGen(1λ, ξ2)
({c1, . . . , cτ})← A(pp, pk, {skj}j∈J)
∀i ∈ [τ ] : Psk(ci) = 1,∀j 6∈ J :
{dsi,j}i∈[τ ] ← DDec(skj , {ci}i∈[τ ])
{dsi,j}i∈[τ ],j∈J ← A({dsi,j}i∈[τ ],j 6∈J)

 ,

where the probability is taken over KeyGen and DDec.

Definition 12 (Distributed Decryption Simulatability). A PKE scheme
with distributed decryption is simulatable with respect to Psk(·) if an adversary A
corrupting J ( [ξ2] secret key shares {skj}j∈J cannot distinguish the transcript
of the decryption protocol from a simulation by a simulator Sim which only gets
{skj}j∈J as well as correct decryptions as input. More concretely, the following
probability is bounded by a negligible ε(sec):∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b = b′ :

(pp, pk, sk, {sk}j∈[ξ2])← KeyGen(1λ, ξ2)
({c1, . . . , cτ})← A(pp, pk, {skj}j∈J)

∀i ∈ [τ ] : Psk(ci) = 1
{ds0

i,j} ← DDec({skj}j∈[ξ2], {ci}i∈[τ ])
{ds1

i,j} ← Sim(pp, {skj}j∈J , {ci,Dec(sk, ci)}i∈[τ ])
b

$← {0, 1}, b′ ← A({dsbi,j}i∈[τ ],j∈[ξ2])

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the probability is taken over KeyGen,DDec,Sim.

C Parameter Constraints

Here we give the describe the parameters used in our electronic voting scheme.
Table 6 lists these and makes explicit any constraints that apply to them. These
constrains inform the choice of concrete values computed in Section 5.2.
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Parameter Explanation Constraints

λ Computational security parameter ≥ 128

sec Statistical security parameter ≥ 40

d Ring dimension of Rp and Rq d a power of two

p Plaintext modulus p a small prime

q Ciphertext and commitment modulus Prime q = 1 mod 2d s.t. ‖
∑

j∈ξ2
dsj‖∞ ≤ bq/2c

t KeyGenNTRU rejection parameter Set for rej. prob. < 1/1000 (Lemma 1)

k Length of binding vector in BDLOP commitment k > 2

C Challenge space for linear ZK proofs of commitments C =
{
c ∈ Rq | ‖c‖∞ = 1, ‖c‖1 = κ

}
κ Maximum `1-norm of elements in C 2κ ·

(
d
κ

)
> 2λ

ξ1, ξ2 Number of shuffle and decryption-servers At least two servers

BCom Bound on the commitment noise So that SIS is hard

BDec Noise in ciphertext BDec = p · d · t · σNTRU · (2ξ1 · ν + 1/2)

BDrown Infinity norm of noise drowning term Eij BDrown = 2sec(BDec/pξ2)

σNTRU Standard deviation for encryption secret key So that NTRU is hard

ν Bound on encryption randomness So that LWE is hard

σCom Standard deviation in ZK proofs of linear relations Chosen to be σCom = κ ·BCom ·
√
kd

τ Total number of messages/number of voters For soundness we need (τ δ + 1)/|Rq| < 2−λ

η Reed-Solomon encoding randomness length Make soundness ≥ 2−λ in ΠSmall and ΠBnd

`Small Proof batch size in ΠSmall Same secret length as in [ABGS23]

`Bnd Proof batch size in ΠBnd Same secret length as in [ABGS23]

µSmall Reed-Solomon message length in ΠSmall µSmall = (k + 2) · d+ η

µBnd Reed-Solomon message length in ΠBnd µBnd = (k + 1) · d+ η

µ′Small Reed-Solomon message dimension in ΠSmall µSmall ≤ µ′Small ≤ γ < q

µ′Bnd Reed-Solomon message dimension in ΠSmall µBnd ≤ µ′Bnd ≤ γ < q

γSmall Reed-Solomon code length in ΠBnd µSmall ≤ µ′Small ≤ γ < q

γBnd Reed-Solomon code length in ΠBnd µBnd ≤ µ′Bnd ≤ γ < q

Table 6. System parameters and constraints.
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