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Abstract

Many to many data sharing in a cloud environment is crucial for numerous schemes. Sharing confidential information
in many to many pattern between different groups while preserving the privacy of confidential data and the anonymity
of participants is a challenging task. Thus we propose a novel data sharing scheme enabling many to many sharing of
encrypted data between different groups using cryptographic techniques such as traceable ring signatures and multiple
receiver key encapsulation, symmetric encryption. While our framework leaks no information about the data sender
or the potential receivers, it achieves traceability and likability for malicious users. We give a comprehensive security
analysis by showing our scheme is indistinguishable under user encapsulation keys and chosen plaintext attack secure
under decisional discrete logarithm assumption. We do the proof of concept implementation of our scheme, and the

experimental results show that the proposed scheme is applicable for decentralized data sharing.
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1. Introduction

Sharing information among different groups while
preserving confidentiality and privacy is a challenging
problem, especially in the case of traceability and linka-
bility checks were necessary. We may divide the meth-
ods that share data into three main categories; one-
to-one, one-to-many, and many-to-many. In one to
many pattern one of the users, usually the data owner,
shares the corresponding data with several number of
receivers. On the other hand, many-to-many pattern al-
lows multiple senders to establish an appropriate con-
sensus and relay information to multiple recipients. Due
to its wide range of usage areas, one-to-one and one-to-
many data sharing schemes have been studied for years,
and there are thousands of articles written on this sub-
ject, such as [1, 2, 3, 4]. Though there exist many up-
to-date studies [5, 6] enabling transmission of the data
in the same group in a many-to-many pattern, only a
few recent studies focused on many-to-many data shar-
ing among different groups.
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One common approach is integrating a group signa-
ture scheme [7] into the system to ensure data confiden-
tiality. Group members can perform the transmission
by signing the information of the relevant data using the
group signature assigned to them by an authority, some-
times a group manager, or a certificate center. In the
case that anonymity is required, leaked information is
limited to the signature of an unknown member of that
group. In most cases, however, the group manager has
the authority to reveal the signer’s identity when deemed
necessary. This means tough users can access the data
anonymously; only the group manager can trace it when
a dispute occurs. This approach results in giving exces-
sive power to the group manager, which we do not want
in such a decentralized consensus.

As an example of many-to-many data sharing, con-
sider a scenario of large data collection based on sur-
vey results. Different institutions carry out filling in
questionnaire forms and data processing. Members of
a group of people want to share a form containing con-
fidential information while hiding their identities from
some members of another group of people. Each person
is required to fill out the relevant questionnaire once in
order to conduct an accurate data analysis. If someone
tries to submit more than one form, they are trying to
forge the system by pretending to be someone else so
that their identity needs to be revealed. However, since



the people who share and the forms they share are com-
pletely confidential, such a restriction is a very challeng-
ing problem. This scenario gets more complicated when
we restrict the potential receivers to some members of
a defined group or ring of users. Another challenging
problem is malicious users need to be revoked from the
system so that dynamic user registration needs to be al-
lowed.

Another example is to ensure that employees in an
institution make a confidential complaint to a higher
authority, keeping their identities completely hidden.
Since the persons filing the complaint and the complaint
petitions are secret, the person should be prevented from
pretending to be another person in the same group and
filing the same complaint.

One trivial solution that comes to mind for such prob-
lems is to use an anonymous signature scheme [8], more
precisely, using a group signature with a group man-
ager and carrying out these operations by a trusted party.
However, we do not want to assign a manager or trusted
third party to achieve a fully decentralized system.

Besides the privacy concerns, while dealing with
large-scale data, it is necessary to consider the efficiency
problems that may arise in the overall system [9]. Shar-
ing large-scale data on the blockchain causes network
delays, inefficient bandwidth utilization, and an inabil-
ity to make controls promptly. Therefore, it is preferred
to share only the necessary information to access the
data and perform the relevant security checks on the
blockchain network.

1.1. Our Contributions

In order to solve the problem of sharing sensitive
data, which can be a form or questionnaire, in the many-
to-many pattern for different groups, such as different
institutes or organizations, we offer a novel data-sharing
scheme that outsources the encrypted data and shares
the encapsulation of the symmetric key together with a
signature on the blockchain network. The contributions
of our scheme are as follows:

e We introduce a data-sharing framework that
achieves data confidentiality and user anonymity
while preserving secure access control by data
owners on the shared data. First time in the lit-
erature, our framework suggests using traceable
ring signatures and key encapsulation mechanisms
to solve data privacy and access control in shar-
ing data in many-to-many pattern among different
groups without trusting a third party.

* We provide a detailed explanation of our proposed
scheme together with a comprehensive security

analysis. Moreover, we presented the complexity
analysis and comparisons with state-of-art.

* We provide the implementation of our scheme and
give the performance analysis. Results show that
the running time of our protocol increases loga-
rithmically in the size of the ring. For real-world
scenarios, our framework is applicable.

The remainder of the paper is organized as follows.
Section 2 provides a literature review of the subject and
gives an overview of some related works. In Section 3,
we give preliminaries to the subject and introduce the
subprotocols we used in our framework. Section 4 de-
scribes our proposed architecture. Section 4 gives the
corresponding security definitions and analyses the se-
curity, i.e., gives the proof of correctness and security.
In Section 5, we tabulate the complexity of our scheme
and give the performance analysis of our implementa-
tion with comparisons.

2. Related work

Many recent studies focus on the problem of secure
and scalable data sharing. While the vast majority of the
existing studies try to solve this problem in the cloud
environment [16, 2, 17, 18], some of them propose new
solutions with the distributed structure of the blockchain
[19, 10, 20]. This section will briefly explain some re-
cent studies related to our problem. The main drawback
of these studies is that none focused on the anonymous
transmission of encrypted information between differ-
ent groups.

In 2020, up to our knowledge, for the first time in
the literature, Huang et al. [10] proposed a data-sharing
scheme enabling many-to-many sharing among differ-
ent groups. They used a group signature to sign the
hash of the data to achieve traceability. In case of
misusage, the group manager has the authority to re-
veal the identity of the misbehaviored user. To pre-
vent the giving excessive power to group managers,
they adopted a blockchain working as a trusted third
party. Only the verification information are shared on
the active blockchain network. However, the informa-
tion to be transmitted in their scheme is not encrypted.
This scheme cannot solve our problem when it comes to
sending a large-scale document by protecting informa-
tion privacy. Thus we consider this study as a corner-
stone of our proposed system.

Agyekum et al. [11] presented pairing-based se-
cure [oT data sharing using identity-based proxy re-
encryption. They stored the IBE-based encrypted data



Table 1: Comparisons of known constructions

N ‘ Huang et al.[10] Agyekumetal.[11] Huetal.[12] Songetal.[13] Liuetal.[14] Xuetal[15] Our Scheme
Pattern MtM-dg (6]10) MtM-sg (6]10) OtO OotO MtM-dg
Anonymity Partial Partial X X X v v
Traceability/Linkability v timestamp v v v v v
Decentralization v v v v v v v
Conlfidentiality X IBE sensorkey PRE RSA hashing AES
Auditability group manager PRE v v data manager v ring signature

on the cloud to achieve data confidentiality and used
IBPRE to enable only legitimate users to access shared
data. Also, users have access control lists stored on the
blockchain to trace authorized users. In their frame-
work, each user assigns unique names to their data
which can be replicated and saved in-network caches.

In 2022, Hu et al. [12] introduced GSChain, a sen-
sor data sharing scheme in wireless sensor networks for
multiple data sharers adopting a consortium blockchain,
which will ensure auditability, high transaction rate, and
data integrity. They encrypt the data with a sensor
key and then define an asymmetric group key agree-
ment protocol to encrypt/decrypt the sensor key, which
will be shared on the blockchain together with en-
crypted data. Here the group key is updateable to enable
group changes. Trusting an administrator to create the
groups of data sharers is a method we avoid to provide
anonymity in our scheme.

Song et al. [13] focused on the traceability problem
of data sharing in the power material supply chain sys-
tems. Herewith, they proposed to use a single-hop uni-
directional proxy re-encryption scheme to ensure secu-
rity and privacy. Since anonymity was not their con-
cern, they used timestamps to trace data shared in the
blockchain network.

Yin et al. [20] adopted blockchain to data sharing
in Space-Ground Integrated Network implicitly for data
analysis applications for multiple service providers and
multiple users. They proposed a solution to coopera-
tive train a particular model, such as federated learning,
when different devices in different types of networks are
in the case. In order to eliminate the central aggrega-
tor, they conducted a blockchain, which simply acts as
a proxy. Model parameters are recorded in a distributed
ledger to prevent misusage, and a snapshot of the ledger
is public to all participants. Unlike our scheme, through
the nature of their underlying problem, anonymity and
traceability were not their concern.

Recently, Liu et al. [14] focused on sharing location
information in a privacy-preserving way. Thus, they
proposed a multi-layer location-sharing scheme, keep-
ing computational overhead and communication cost

constant while the data integrity verification process.
They give data owners the right to manage their data
to avoid the possibility of a single point of failure prob-
lem. In order to ensure dynamic data uploading, they
used RSA based accumulator scheme [21] and used
blockchain to eliminate the trust of centralized servers.
Roughly, upon receiving a request from a requester, the
data manager makes the identity checks and forwards
the request to the data owner. Appropriate virtual loca-
tion encrypted with the public key of the requester and a
piece of witness information sent to the manager. Here,
the manager manages the aggregation process and trans-
mits the data.

Xu et al. [15] proposed Healthchain to protect large-
scale IoT health data. Two blockchains are deployed
for fine-grained access control; Userchain allows users
to upload their data via IoT sensors, while the Docchain
allows doctors to share related diagnoses. They used a
content-addressable distributed file system to store the
data, and only the hash of the data was published on the
blockchain.

3. Preliminaries

Our data-sharing scheme comprises of 3 entities: ring
members, secure cloud, and blockchain network. These
entities can be identified as follows:

* Ring members are the data owners and the re-
ceivers. Note that members represent individuals
in the same or different institutions.

* Secure cloud is the place we store our encrypted
data. With using pre-defined algorithms, trace-
ability, and linkability checks are done. Also, all
shares in the blockchain are made from the cloud.

* Blockchain network is where the cloud shares the
related information to reach out to the stored. A
snapshot of the ledger is available to all users
whenever they want to access it.

For convenience, we first introduce the underlying cryp-
tographic sub-protocols and then explain the overall
scheme.



The traceable ring signature we used in our proposal
is proposed by Fujisaki and Suzuki [22]. Fujisaki and
Suzuki presented the idea of a traceable ring signature
to trace the signature if it is signed by the same user. In
the scheme, there is a tag value L for every signature, in-
cluding the ring members’ public keys and an issue that
stands for an election, survey, etc. The signer signs with
his/her secret key and tag L. There are three options for
the output of the trace function (Algorithm 4):

e Linked: If the signer uses the same tag to sign two
same messages.

* Revealing of signer’s public key: If the signer uses
the same tag to sign two different messages.

* Independent: If the signer uses different tags to
sign different messages.

The key encapsulation mechanism (KEM) we used in
our proposal is presented by Smart [23]. It is an efficient
key encapsulation mechanism between multiple parties
and so-called mKEM. Using mKEM-encapsulation (Al-
gorithm 2), the user can obtain a common key K and
encapsulated value C by taking public keys of receivers
as inputs and using this key K to encrypt a message. In
order to decrypt this message, receivers need to reach
the common key K. For this purpose, each receiver uses
the decapsulation algorithm (Algorithm 6) with inputs
C and his/her secret key.

In our scheme, G is a multiplicative group of order
g with generator g. H: {0,1}* — G, H' : {0,1}* = G
and H” : {0,1}* — Z, are hash functions. Notations are
given in Table 2.

Table 2: Notations

Notation | Definition

q prime number
g generator of G
N (1,...,n)

.l S | pick arandom value * from the set S
KDF key derivation function
(ski, pk;) | the key pair of i’th user
pky | {pki,pks...,pkn}

M message (data)
L tag, i.e., (issue || pkn)
fip file id
Tour output of traceability check algorithm

4. Proposed scheme

The overall workflow of our data sharing scheme is
demonstrated in Figure 1. Every user picks a random

value sk over IF, as a secret key and computes his public
key pk = g* by using Algorithm 1. (sk;, pk;) is the key
pair of i’th user.

5) traceability/linkability
check
linked or Independent

6) shares:
(L, f1p, 0, C, Tout)

4)sends (E,C,L,0)

7) correspondence
check from L

8) finds data from fip
9) verification of &

10) decapsulation of C

1)(K,C) + KEM
2) E + Enc(K; M)

3) using tag L generates g
signature o B:;’:t'ngk'" 11) Dec(K; E) = M
O 4}
0 & 90 0o L 90
o 6 & . 6 0
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n
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-~ 0 Ro g -
O

Figure 1: Overall workflow of proposed architecture

Algorithm 1 Key Generation

Input: g G
sk &
2 pk=g¥*
3: return (sk, pk)

Suppose one of the members of a ring, say R, wants

to share secret information with some members of the
other ring, say R., where * € {1,2,...,n}.

1. The i’th user of the ring, say user A, calls Al-

gorithm 2 to encapsulate the keys of multiple re-
ceivers. This algorithm takes the public keys of
t — 1 receivers and the public key of user A as in-
put for our case. The results of the algorithm are
encapsulated key K and the value C. K is the com-
mon key for symmetric encryption, and receivers
can use the value C for computing the common
key.

2. Using symmetric encryption key K, the data

owner encrypts the corresponding data M as E =
Enc(K;M).

3. For our case, tag L is important because it simply

covers the relation of the secret data and receivers.
For example, if the encrypted form is related to a



Al

gorithm 2 Encapsulation

Input: {pki,...,pk}

R A A R o e

ke G

r=H(k)

co=g"

fori=1tor do
ci=k-pk!

end for

K < KDF (k)

C < (co,C1y-.-,¢1)

return (K,C)

breast cancer issue set as this information. The tag
is set as L = (cancer || pky), where N = (1,...,n),
and pky is the list of public keys of Ry, i.e, ring
including the data sender. After that, user A gen-
erates ring signature ¢ on (L,E) via Algorithm 3.

Al

gorithm 3 Signature generation

Input: (E,pky,L)

1

._.
=4

_ = m = s e
NN R Ry

—_
o0

. h=H(L), o; = I
. Ag=H'(L,E) and A; = (0;/A¢)"/"
: for j=1tondo
if j # i then
Oj :A()A{ ceG
end if
end for
: Wi(iZq’ai:gwi’bi:hwi €G
: for j=1tondo
if j # i then
2,¢; & 2,
aj = g'ipk;’
bj=hicy €G
end if
: end for
- c=H"(L,Ag,A1,ay,by)
: ci=c—)Y c¢j mod g,z =w;—cisk; modgq
Jj#i
: return 6 = (A1, cy,zy) on (L,E)

4. User A sends the data file F = (E,C,L,0) to the

secure cloud server.

5. The file F is temporarily stored by the server as it

arrives. Before storing it permanently, a traceabil-
ity check is done between the received pair (E, o)
and every pair (E’,0’) that has been stored before
with the same tag L. The output of the traceability

check (Algorithm 4) can be pk; (revealing of user’s
public key), linked, or independent.

Algorithm 4 Traceability check

Input: (E,0) and (E',0")

1:

Parse L as L = (cancer || pky).

2: for all i do

32 Ag=H'(L,E), 0; = A¢A}

4: end for

5: for all i do '

6:  Ay,=H'(L,E'), o] =AA}

7: end for

8: for all i do

9:  if 0; = o/ then

10: Store pk; in T List

11:  end if

12: end for

13: if TList = {pk;} then

14:  return pk;

15: end if

16: if T List = pky then

17:  return “linked”

18: end if

19: if 1 <#T List < n then

20:  return “indep”

21: end if
If the output is /inked where the input is (E, o) and
any pair (E’, 0’), the server removes the request. If
the algorithm returns pk; for the input: (E, o) and
any pair (E’,0’) or "indep” for every input, i.e.,
(E, o) and each pair (E’, ¢"), then the server stores
the file F' permanently.

6. If the returned value indicates independence, then
it is a valid request. Thus the server stores the file
in its permanent location. Then cloud generates a
transaction including (L, fip,0,C, Tpy).

7. Users from other rings can learn whether the ap-
pended transaction is relevant to them from the is-
sue part of the tag L, with a simple ledger check.
For instance, considering an institute collecting
data of breast cancer from user forms, expecting
user forms, from the bcancer tag, may understand
that this transaction is related to them.

8. Therefore, user from other ring R,, say B, reads the
file F located at fip shared in the same transaction.
After that B has (L, fip,0,C, Tou)-

9. User B verifies signature by using Algorithm 5



with the values o, E, L. If the signature o is valid,
then user continuous with next step.

Algorithm 5 Signature verification

Input: ¢ = (Ay,cn,zn), Pk, E, L
1: Parse L as (cancer || pky)

2: for all i do

3:  check g,A1 € G, ¢,z € Zyg, pki € G
4: end for

5: h=H(L),Ay=H'(L,E)

6: for all i do

7. O; :A()A'i eG

8  a;=giipk;

9:  b;=h% O'I-Ci

10: end for

11: ifH”(L,A(),A],aN,bN) = Zci modq then
12:  return ”Valid signaturei’EN

13: end if

10. To be able to decrypt the ciphertext E, authorized
users need to have access to the secret symmetric
key by key decapsulation. The key decapsulation
algorithm (Algorithm 6) takes C and sk, i.e., secret
key of user B, as inputs and outputs encapsulated
key K where x € {1,...,t}.

Algorithm 6 Decapsulation

Input: (C,sky)

1: Parse C as (co,c1,-..,¢)
k=c/c
r=H(k)
If ¢p # g", return L and halt
K < KDF (k)

return K

AN

11. Since only the authorized users by the sender can
only get the symmetric key K, only they can de-
crypt the ciphertext. User B receives the hidden
message as Dec(K;E) = M using the key K.

5. Security analysis

In this section, we first define the security features
that our framework achieves. Then as a subsection, give
the thread model by defining a security game for secu-
rity analysis. In the last subsection, we prove the se-
curity of our scheme by applying the formal security
game.

5.1. Security Requirements

We will discuss the security features that need to be
obtained in our proposed scheme.

* Confidentiality: Public keys of the potential re-
ceivers are encapsulation using Algorithm 2. Re-
sulted K is used as a symmetric key to encrypt data
M to achieve confidentiality. Since we restricted
accessibility to K to achieve confidentiality, no ma-
licious user will ever be able to access the encap-
sulated symmetric key.

* Integrity: Since the encrypted data is stored on a
cloud server using a symmetric key and then signed
via traceable ring signature, the data owner could
decrypt it using the corresponding secret encryp-
tion key to check integrity at any time.

* Anonymity: Our proposed scheme satisfies user
anonymity, i.e., it is difficult to reveal the identity
of the data sharers and the receivers from used sub-
protocols.

» Traceability: Since we used a traceable ring sig-
nature as a sub-protocol, public keys of the mis-
behaviored users are released and published on the
blockchain network.

* Authentication: Through the key encapsulation
mechanism we used as a sub-protocol, users are
required to prove their identity as a prerequisite to
being allowed access to resources in an informa-
tion system. So that the authentication is achieved.

5.2. Security Model

The definition of underlying hard problem of our
scheme in this paper is discrete logarithm assumption
(DLA) given below.

Definition 1. Discrete Logarithm Assumption (DLA):
Let G be a cyclic group of prime order p with generator
g. The Discrete Logarithm Assumption states that for
any efficient algorithm <, the probability of </ com-
puting x given'y = g* is negligible, denoted as DLA;:

DLA, < Prler (y) = x|y = ¢] < negl(A),

where A is the security parameter.

The security is based on the indistinguishability
against secret encapsulated symmetric key and chosen-
plaintext attack (CPA), IND-CPA. To this aim, we de-
fine a security game, which has 4 stages. The game is
run between the challenger ¢ and the adversary 7.



1. Setup phase: Challenger runs the algorithm related
to set up and obtains the public parameters pp, and
gives pp to the adversary. Also, chooses a random
coin ¢ € {0, 1}, and keeps c secret.

2. Find phase: The adversary makes the following
queries. Note that .27 is not authorized to choose
random integers in a way that enabling trivial de-
capsulation of the m or trivial signature verifica-
tion.

Encapsulation query Q... = (pky,m,i) &
chooses an identity index i of a target receiver and
a message m from message space. Sends these val-
ues to . Upon receiving values, € retrieves the
corresponding pk;. Runs the Algorithm 2, com-
putes (K,C), and returns C. Otherwise, forces &/
to choose a random coin é + {0,1}.

As the result of find phase </ selects a pky and
mo,ntj.

3. Challenge phase: € computes the following query
and submits it to the 7.

Challenge query for encapsulation Upon receiv-
ing the (choice, pki=,mp,m ) from o7, € computes
the following query:

Och = (pky,m.,i*) € checks that:

- if pky ¢ pkn, € selects randomly generated
values (K*,C*), and returns C*.

- if pk;= € pky, calls Algorithm 2 for m, com-
putes (K*,C*), and returns C*.

- otherwise, forces <7 to output a random coin
¢« {0,1}. If ¢ = 0, computes (K*,C*),and
returns C*, otherwise selects randomly gen-
erated values as (K*,C*), and returns C*.

4. Guess phase: The adversary repeats the Encap-
sulation query. At the end of this phase, </ pro-
vides ¢*. &/ wins the game in the case of ¢* = c.
Suppose Qene and Q5. queries in find and guess
phases. We define the adversary’s advantage as

Advi, . (A) =|Pb[c =c*] —1/2|. We say that the

scheme is IND-CPA secure if Advgamer < negl(A)
for all ppt algorithms ..

5.3. Security Proof

Theorem 1. The proposed system is IND-CPA secure
in the random oracle model under the DLog assump-
tion.

public
parameters pp

Queries Output
> -Encapsulation
Y9 C -Challenge T

-Decapsulation

Figure 2: IND-CPA security diagram

Proof. In Figure 2, we depicted the interaction be-
tween the adversary and the challenger. <7 is consid-
ered as p.p.t algorithm with non-negligible advantage €
in e/NP—CPA_ o7 is engaged to define another algorithm
% having a non-negligible advantage in solving DLA.
We show the interaction between 7 and ¢ as follows.

The random oracle G < H,H : {0,1}* is simulated
by ¥ as follows: When an encapsulation query is re-
ceived, a random number U <— Z;; is selected, and a ran-
dom coin flipped v — 1, with probability 2. Other-
wise, v — 0, r setted as g, otherwise setted as (g*)“.
Note that resulted r has random distribution. % con-
tinues to simulate the random oracle H/, H' returning
random elements in G and Z,, respectively.

1. Setup phase: < is given pp = (G,H ,H' ,g,g*) by
% . Chooses a random coin ¢ € {0, 1}, and keeps it
secret.

2. Find phase: </ sends the encapsulation query
Oene = (pkn,m,i). After receiving Qene, € eval-
uates pk;, calls Algorithm 2 and computes (K,C),
and sends the corresponding C. Later, <7 sends the
query Qgion = (E, pky, L) for a pre-determined tag
L. As the result of Qygn, € returns o.

3. Challenge phase: </ outputs pk;,mg,m;, where
the public key pk;« corresponds to which user is not
trivial. % selects ¢ <— (0,1). Then encapsulation
(K*,C*) = (KEM, (cj)), where K is the symmetric
key used to encrypt m,, is sent to 7.

4. Guess phase: </ sends encapsulation queries same
as the find phase. &7 outputs its guess ¢* € (0,1).

Note that in this game, it is infeasible for . to distin-
guish simulation because </ cannot recognize the ran-
domly generated C*), and a result of that cannot dis-
tinguish the K*. Therefore, the only chance of % is to
choose a random coin ¢*. At the end of this game .o/
outputs a guess coin ¢*. By definition, the probability
of the &7 to win the game is:



Adviyp cpa(A) = |Pble=c"—1/2]|=¢, (1)

if m, is correctly encrypted using symmetric key k, and
(K*,C*) is a correctly formed encapsulation of k. Con-
sequently, o7’s probability to select a ¢* such that ¢ = ¢*
is negligible.

6. Complexity analysis

The complexity of our proposed data sharing scheme
is based on modular exponentiations, and the scheme
does not contain any expensive pairing operations. So,
we count the number of modular exponentiations in the
encapsulation (Encap), signature generation (SignGen),
traceability check (Trace), signature verification (Sign-
Ver), and decapsulation (Decap) algorithms. Since the
encryption method that can be used may vary according
to the preference of security needs, the costs of symmet-
ric encryption and decryption are neglected.

Table 3: The cost of algorithms in our proposed scheme and their
average time in CPU seconds (for 32 ring size)

Algorithm Cost CPU time
Encap (t+ )t,+1y 0.350
SignGen | (5n— D)t +1tu + 1ty +tyn 1.008
Trace (2n)t. + (2n)ty 0.370
SignVer (Sn)te+ty + 1ty + 1y 0,989
Decap to+1ty

Let ¢, be the cost of modular exponentiation, tg,
ty, tyr be the cost of hash functions H : {0,1}* — G,
H :{0,1}* = G, H" : {0,1}* — Z,, respectively, and
finally #;, be the total cost of all hash functions. 7 is the
number of parties in the ring of the signer, and ¢ is the
number of parties with whom the signer is willing to
share the data. Table 3 shows the cost of algorithms in
our proposed scheme and for 32 ring size their average
time in CPU seconds. From Table 3, we can say that
there is a positive correlation between costs and CPU
times of algorithms. We have tabulated the comparison
of two closely related studies in Table 4.

Table 4: Complexity comparisons of known constructions

Our Scheme Huangetal.  Agyekum et al.
SignGen +
Engc + Encap (5n+1)t, + 2ty + by + by 121, + 1, te +1G +1, + 215
Trace (2n)t.+ (2n)ty to
SignVer +
Dec + Decap (5n+ 1)t + 2ty +tyr +tyn 11t +ty, 3t + 2

In the scheme of Huang et al. [10], the cost of sig-
nature generation, signature verification, and tracing are
12t, +tp,, 11t +ty,, and ¢, respectively where ty, is

the cost of the hash function H; : {0,1}* — Z,. In their
scheme, the user generates the signature, group man-
ager verifies the signature and traces the user. In the
proposed scheme, users generate and verify the signa-
ture, and the server traces the user. Compared to our
scheme, SignGen, SignVer, and Trace algorithms need
more modular exponentiation. On the other hand, we
eliminated the trusted third party like the manager by
using the traceable ring signature, and we added a key
encapsulation mechanism to send data encrypted with
multiple parties. Therefore we need few modular expo-
nentiations and hash operations. Also, the cost of our
scheme bears a resemblance to Huang et al. for small n.

On the other hand, in the framework presented by
Agyekum et al. [11], for fg, t, are the costs of group
operation, pairing operation, the complexities of the en-
cryption, re-encryption, decryption-1 and decryption-2
are t, +16, tp, tG, and 2t¢ respectively. The data owner’s
and proxy server’s signatures are checked for authen-
ticity checks. Since they have not specified the signa-
ture method to be used, we denote the cost of the re-
lated signature as t;. Note that traceability checks can
be conducted partially by checking timestamped block.
Thus, in Table 4, the cost of it is not included. In
this scheme, they preferred to use proxy re-encryption
method to share data which is different than our ap-
proach. Note that while our scheme enables a many-to-
many data sharing pattern among different groups, this
one allows one-to-one data sharing.

7. Performance analysis

We have implemented our data-sharing protocol in
Python using the cryptographic features of SageMath.
The group has been defined over the curve secp256k1.
AES256 CBC mode with a random initialization vector
of size 16-byte is used for encryption. We implemented
SHA?256 for our hash functions and obtained the results
on the curve or field. The codes are available as open-
source on GitHub'.

We tested the implementation for 256 signers and
ring sizes 8,16,32,64, and 128, and gathered the profil-
ing and bench results for all the single operations, block
generation, and signature generation. Tests are run on
macOS Ventura 13.4 working on an Apple M1 Pro ma-
chine with 16 GB of RAM. The following figures pro-
vide the time spent (minimum, average, and maximum)
in CPU seconds for the single operations and overall
flows for the ring size 23,...,27.

ISee, https://github.com/curiecrypt/many2many_
decentralized_anonymous_data_sharing.git.



Figure 3 gives the overall running time of block gen-
eration where it implements signature file generation,
traceability check, and block generation (if the num-
ber of transactions is enough to generate a block.).
The overall running time to verify a signature that cov-
ers finding the related signatures from the blockchain,
signature verification, decapsulation, and decryption is
given in Figure 4.
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Figure 3: Total time spent in CPU seconds for block generation (sig-
nature file generation, traceability check, and block generation).
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Figure 4: Total time spent in CPU seconds for verification (finding the
related signatures from the blockchain, signature verification, decap-
sulation, and decryption).

The time spent in CPU seconds for traceability check,
signature file generation, collecting related signatures
for verification, and verification of a signature (includ-
ing decapsulation and decryption) are given in Fig-
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ures 5, 6, 7, and 8, respectively.
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Figure 5: Time spent in CPU seconds for traceability check.
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Figure 6: Time spent in CPU seconds for signature generation.

The figures show that the running time of our protocol
increases logarithmically in the size of the ring.

Note that Figure 5 states traceability check and Figure
6 sign file generation; the summation of these graphics
needs to be equal to the results of Figure 3, which states
block generation. For the system with ring size 32, the
time value equals approximately 1 CPU clock cycle so
that the results are consistent.

On the other hand, the clock size summation of Fig-
ure 7, i.e., collecting related signatures, and Figure 8,
i.e., verifying a signature, need to be equal to values of
Figure 4 for consistency. These graphs are also consis-
tent.



0.01
"
=
1
b 0004891
H
E 0.003381
o
2
01713
0001238426 UOPIS62254 gopis7aesy
0.001 Q000533 0001288
0.00079
0.000634
0.0001
8 16 32 64 128
—e—AVG MIN —a—MAX X: ring size

Figure 7: Time spent in CPU seconds for collecting related signatures
for verification.
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Figure 8: Time spent in CPU seconds for verification of a signature.

Furthermore, in an efficient system, approximate run-
ning times of block generation and signature verifica-
tions are desired to be similar. Our results show that our
system achieves this properly. Note that our implemen-
tation is proof of concept work, and further optimiza-
tions are possible.

8. Conclusion

We designed a blockchain-based many-to-many data
sharing scheme that is anonymous and traceable. Our
framework enables sharing of data from members of
one ring to the selected members of another ring. We
deployed a blockchain structure to eliminate the need
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for a group manager as a trusted party. We explained
sub-protocols used in the scheme, i.e., traceable ring
signature, and key encapsulation mechanism. Secu-
rity features of our proposed scheme, which are con-
fidentiality, integrity, anonymity, traceability, and au-
thentication are stated and we proved that our scheme
achieves IND-CPA security. We represented the com-
plexity cost of our scheme, compared our scheme with
similar works, and implemented our scheme in Python
using SageMath, which is shared as open source. Time
spents of algorithms are given in CPU seconds for the
ring size 8. 16, 32, 64, and 128.
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