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Abstract
Fully Homomorphic Encryption has known impressive improvements in

the last 15 years, going from a technology long thought to be impossible to an
existing family of encryption schemes able to solve a plethora of practical use
cases related to the privacy of sensitive information. Recent results mainly
focus on improving techniques within the traditionally defined framework of
GLWE-based schemes, but the recent CPU implementation improvements
are mainly incremental.; To keep improving this technology, one solution is
to modify the aforementioned framework, by using slightly different hardness
assumptions. In this paper, we identify two limitations with (T)FHE: (i)
there is no fine-grained control over the size of a GLWE secret key, which is
traditionally composed of k polynomials with N = 2α > 1 coefficients; (ii)
for security reasons one cannot use a noise variance smaller than a certain
σmin so, for all ciphertext modulus q ∈ N, there exists an integer nplateau such
that, with any secret key of size k · N ≥ nplateau, one cannot control their
level of security, resulting in unnecessary big security levels. To overcome
the aforementioned limitations, we introduce two new types of secret keys for
GLWE-based cryptosystems, that can be used separately or together. We
explain why these new secret keys are as secure as the traditional ones and
we detail all the improvements that they bring to existing FHE algorithms
alongside new algorithms especially efficient with these new keys. We provide
many comparisons with state-of-the-art TFHE techniques with traditional
secret keys, and some benchmarks showing computational speed-ups between
1.3 and 2.4 while keeping the same level of security and failure probability
(correctness). Furthermore, the size of the key switching and bootstrapping
keys is also reduced with this contribution by factors ranging from 1.5 to 2.7.
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1 Introduction

Fully homomorphic encryption (FHE) is a technology allowing to perform compu-
tations over encrypted data, which makes it a great solution for many practical use
cases aiming to protect the privacy of sensitive information. After the first solution
proposed in 2009 by Gentry [Gen09], the field has received a significant amount of
interest and has experienced a drastic improvement in the following decade. Gen-
try introduced a technique called bootstrapping, able to reduce the noise inside
ciphertexts. Indeed, ciphertexts contain noise for security reasons, and most of the
time, when an homomorphic operation is performed, the noise level grows. If not
controlled, too much noise will eventually compromise the message.

Nowadays, practical FHE schemes are all inspired by Gentry’s solution and
are based on the Learning With Errors (LWE) problem [Reg05], its Ring variants
(RLWE) [SSTX09, LPR10] and the General approach (GLWE also called Mod-
ule LWE) [LS15, BGV12]. One of these schemes is called TFHE [CGGI20], and
will be the focus of this paper. Most of the existing FHE schemes, for example
BGV [BGV12], BFV [Bra12, FV12], and CKKS [CKKS17], prefer to avoid using
bootstrapping and adopt a levelled approach. On the contrary, TFHE features a
particularly efficient bootstrapping which is used to reduce the noise and can homo-
morphically evaluate an univariate function represented as a look-up table (LUT)
on small messages. This operation is often referred to as functional bootstrapping
or programmable bootstrapping (PBS). For efficiency reasons, the bootstrapping is
paired with a keyswitch operation. In general, a keyswitch is an homomorphic op-
eration which transforms an encryption under the secret key s(1) to an encryption
of the same value under the secret key s(0). When the keyswitch is applied before
the PBS, it reduces the dimension of the secret key, and thus the dimension of the
input ciphertext for the PBS. A smaller secret key implies less operations during
the bootstrapping which results in a faster computational time and a better noise
reduction. Although it seems counterintuitive, performing a keyswitch (which is a
costly operation) followed by a PBS remains less expensive than performing a PBS
alone (as studied [BBB+22]). The cost and the correctness of these operations are
directly linked to the parameter sets, and changing one of them has a huge impact.

Even if the most recent results on FHE schemes show a huge improvement of this
technology, for the last few years the scientific improvements observed are mainly
incremental. Larger factors of improvement have been obtained for instance by
using dedicated hardware, but on CPU only small factors are observed. Even if
small, every little factor is extremely important, because a combination of small
factors can lead to a significant improvement. But the ideas start exhausting if we
only consider approaches that are traditionally for GLWE-based schemes. Thinking
outside of the box might be beneficial at this point, and some alternative ideas
need to be considered. An interesting approach in this direction is the new FHE
scheme proposed in the FINAL paper [BIP+22], which is very similar to TFHE. The
hardness of this scheme relies on a combination between LWE and NTRU [HPS98].
This solution is very efficient for very small precisions of messages (one or two bits),

3 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

but it becomes very inefficient compared to TFHE for larger precisions, due to the
security constraints imposed by the NTRU parameters.

An alternative approach, within the GLWE framework, would be to use slightly
different hardness assumptions. In this paper, we explore this direction.

TFHE’s Plateau TFHE, as many other RLWE based schemes, works with a
cyclotomic ring Rq,N = Zq [X] /

〈
XN + 1

〉
, with N a power of 2. In TFHE’s imple-

mentations, q is often chosen equal to 232 or 264, in order to be able to work with
32 or 64 bit integers, respectively, since they are native types in the majority of ma-
chines used nowadays. The polynomial size N strongly depends on the precision of
the messages that we want to bootstrap. N generally belongs in [29, 210, · · · , 216] for
1 to 10 bits of precision. Roughly, the rule is to double its size for every additional
bit of precision. The GLWE ciphertexts, which are a generalization of RLWE and
LWE ciphertexts, use secret keys that are composed of k polynomials in Rq,N . So
the size of the secret key is n = kN , which is the parameter that is used for the
security estimates. In order to keep the same security level when increasing n, we
can reduce the variance σ2 of the noise. But the value of q imposes a lower bound
on the variance, meaning that starting from a certain point - that we call plateau -
we can not reduce the variance anymore, otherwise we lose security. Notice that a
small increase of the value of n allows for a small decrease of the value of σ2. But
when working with polynomials, moving to a bigger power of 2 for N will lead to a
large increase of the size of the secret key, from kN to k ·2N , and so a large decrease
of σ2 when allowed. For the same security reason mentioned above, at some point
we reach a limit where we cannot reduce the variance σ2 of the noise anymore. The
consequence is that to avoid having no security at all, we end up with a security level
way higher than desired. In this paper, we explore a new type of secret key that
overcomes this existing limitation and improve the efficiency of most homomorphic
computations.

Our Contributions. In this paper, we explore a new type of secret key that
takes advantages of this plateau to improve the efficiency of most homomorphic
computations. As a consequence, we reduce the size of public keys and the cost
of some homomorphic algorithms. Furthermore, we present a theoretical analysis
which provides arguments to understand the security of our new types of secret
keys and allow us to pick secure parameters. We also provide benchmarks using
parameters secure against known attacks.

In detail, we propose two new types of secret keys that we describe separately
but can be used together. We call these two new distributions partial secret keys and
shared randomness secret keys. The first kind, the partial secret keys, consists in
allowing a GLWE secret key, traditionally containing kN random elements (sampled
from a distribution 𝒟), to contain only ϕ random elements and set the rest to zeros.
Intuitively, it allows using a smaller key of size ϕ while keeping a larger N , and
the underlying security of the GLWE assumption is now relying on the parameter
ϕ instead of the dimension N .
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The second kind, the shared randomness secret keys, consists in reusing the
randomness from a bigger key (for example the input key of the keyswitch algorithm)
inside a smaller key (its output), instead of generating it independently as done
traditionally. For instance, we can consider two integers 1 < n0 < n1 and a secret
key s(1) ∈ Zn1

q generated in the traditional manner (either sampled from an uniform
binary/ternary, or a small Gaussian). Let us write it as a concatenation of two
vectors: s(1) = r(0)||r(1). We can now build a smaller secret keys out of s(1) such
that the smaller one will be included in the bigger one, in its first coefficients:
s(0) = r(0) ∈ Zn0

q and s(1) = r(0)||r(1) ∈ Zn1
q . The question is then to study if the

link between the two keys will impact the security.
Our two contributions reduce the size of the secret key, and then has a huge

impact in the size of public keys, including key-switching keys and bootstrapping
keys. It also has an impact on the operations on which these keys are used, i.e.,
keyswitching and bootstrapping. Key-switching keys and bootstrapping keys are in
practice encryptions of the elements of the secret key, and they are used inside some
linear combinations: roughly speaking, if a part of the key is set to zero or duplicated,
this part is not used inside the linear combination, with the direct consequence of
improving the overall operation in terms of computational cost and noise growth.

Practical Speed-up from our Contributions. One way to use TFHE in prac-
tice is to consider a graph of homomorphic operations over ciphertexts composed for
example of key switchings, programmable bootstrapping (PBS) or linear combina-
tion of ciphertexts. This recipe was indeed used in the gate bootstrapping [CGGI20]
technique to homomorphically evaluate any Boolean circuit, but it can also be used
for message precision bigger than a single bit [CJP21]. As explained in [BBB+22],
an efficient way to optimize parameters for this use-case is to consider the smallest
sequence of FHE operators, composed for example of a ciphertext linear combina-
tion followed by a keyswitch and followed by a PBS. This sequence (introduced in
[CJP21]), has been formalized as the notion of CJP Atomic Pattern (denoted CJP
in what follows) in [BBB+22]). This optimization strategy consider both the cost
and the noise growth for all the homomorphic operators involved in the sequence at
once to infer efficient parameters. This means that if one improves an operator by
reducing its noise growth and/or reducing its cost, the overall cost of the sequence
will be decreased. As explained above, in this paper we improve both the cost and
the noise growth of the keyswitch operator and we also improve the noise growth
of the PBS, resulting in a big improvement in terms of cost and size of the needed
public material. These results are confirmed by practical experiments, showing a
speed up between 1.3 and 2.4 times, while keeping the same level of security and
failure probability. Furthermore, the use of these new key types allows to reduce the
size of the public material (i.e., key switching and bootstrapping keys) by a factor
between 1.5 and 2.7. We share benchmarks comparing the running time needed with
and without the new secret keys. Our simulations are done with the optimization
tool proposed in [BBB+22] and show that the use of these new secret keys improve
the state of the art for all message precisions.
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Related Works. To the best of our knowledge, there are no mentions of such
GLWE secret keys or something similar in the prior art. The closest work we
can mention is by Lee and Yoon [LY23] where the server can publicly transform
a bootstrapping key encrypted under a traditional secret key to an extended version
encrypted under a secret key containing zeros between each secret coefficients. This
extended bootstrapping key allows the authors to bootstrap messages with bigger
precision, but it does not improve the noise growth. All this contribution only
involves traditional GLWE secret keys for encryption. In some of the proofs, we use
the morphism introduced in [LNPS21, LY23].

Concurrent Works. Lee et al. [LMSS23] introduced new types of secret keys.
They call it block binary keys, which are different from our contribution but concur-
rently exploit the advantage of having nested secret keys, re-using their randomness,
as we also introduce in this paper as shared randomness secret keys.

Paper Organization. In Section 2, we recall some mathematical definition along
with FHE notations and security notions. In Section 3, we introduce and study the
security of partial GLWE secret keys as well as all the FHE algorithms that benefit
from them either in terms of noise growth or in terms of cost. Section 4 follows the
same pattern, but it is dedicated to shared randomness secret keys. In Section 5,
we detail how to take advantage of combining both partial and shared randomness
secret keys, and along with some applications. In Section 6, we focus on the gains
of using these techniques by comparing them to the state of the art. Finally, in
Section 7, we conclude and introduce potential future work.

2 Preliminaries

In this section we clarify the notations we will use in this paper and introduce the
notions needed to understand our contributions.

Notations. Let q be a positive integer and N be a power of 2. In this paper we
mostly work with the rings Zq (which refers to Z/qZ) and Rq,N = Zq [X] /

〈
XN + 1

〉
.

For error distributions, we note χ for a generic distribution and 𝒩σ2 for a Gaus-
sian distribution with a mean set to zero and a standard deviation set to σ. We
note by 𝒰(S) a uniform distribution in the generic set S and by 𝒟 (S) a generic
probability distribution in the generic set S. We use the symbol || for vector con-
catenation. Upper cases (e.g. M,A, S,B,E) designate polynomials and lower cases
(e.g., m, a, s, b, e) scalars. We use bold characters to note vectors of polynomials
(e.g., A,S) and vectors of coefficients (e.g. a, s). When we write Var (S) (resp.
E (S)), we refer to the variance (resp. the expectation) of 𝒟 (either a uniform
binary distribution, uniform ternary distribution, Gaussian distribution or small
uniform distribution). When 𝒟 is a uniform binary distribution, Var (S) = 1/4 and
E (S) = 1/2.
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Definition 1 (General Learning With Errors (GLWE) Decision Problem)
Let S = (S0, · · · , Sk−1) ∈ Rk

q,N be a secret, where Si =
∑N−1

j=0 si,jX
j is sampled from

a given distribution 𝒟(Rq,N) for all 0 ≤ i < k, and let χ be an error distribution.

We define (A, B =
∑k

i=0 Ai ·Si+E) ∈ Rk+1
q,N to be a sample from the general learning

with errors (GLWEN,k,χ) distribution, such that A = (A0, . . . , Ak−1) ←↩ 𝒰(Rq,N)
k,

meaning that all the coefficients of Ai are sampled uniformly from Zq, and the error
(noise) polynomial E ∈ Rq,N is such that all the coefficients are sampled from χ.

The decisional GLWEN,k,χ problem [LS15, BGV12] consists in distinguishing
m independent samples from 𝒰(Rq,N)

k+1 from the same amount of samples from
GLWEN,k,χ, where S ∈ Rk

q,N follows a given distribution 𝒟.

In general, the secret key distribution 𝒟(Rq,N) is such that the polynomial co-
efficients are usually either sampled from a uniform binary distribution, a uniform
ternary distribution or a Gaussian distribution ([BJRLW23, ACPS09]). Starting
from the GLWE problem, we can define GLWE ciphertexts.

Definition 2 (GLWE Ciphertexts) A GLWE ciphertext of a plaintext M ∈ Rq,N

under the secret key S ∈ Rk
q,N is defined as follows:

CT =

(
A, B =

k−1∑
i=0

Ai · Si +M + E

)
∈ GLWES(M) ⊆ Rk+1

q,N

such that A = (A0, . . . , Ak−1) ←↩ 𝒰(Rq,N)
k and E ∈ Rq,N is such that all its

coefficients are sampled from a gaussian distribution 𝒩σ2.

Remark 1 (LWE and RLWE) We recall that, when N = 1, the GLWE prob-
lem (resp. ciphertext) becomes the LWE problem (resp. ciphertext): GLWE1,k,χ =
LWEn=k,χ. In this case we consider the parameter n = k to be the size of the LWE
secret key and we denote the ciphertext, the message and the secret with a lower
case: ct ∈ LWEs(m). When k = 1, the GLWE problem (resp. ciphertext) becomes
the RLWE problem (resp. ciphertext): GLWEN,1,χ = RLWEN,χ. In this case, since
we are still working with polynomials, we keep upper cases for ciphertexts, messages
and secret key: CT ∈ RLWES(M).

Definition 3 (Flattened Representation of a GLWE Secret Key) A

GLWE secret key S =
(
S0 =

∑N−1
j=0 s0,jX

j, · · · , Sk−1 =
∑N−1

j=0 sk−1,jX
j
)
∈ Rk

q,N

can be flattened into an LWE secret key s̄ = (s̄0, · · · , s̄kN−1) ∈ ZkN in the following
manner: s̄iN+j := si,j, for 0 ≤ i < k and 0 ≤ j < N .

In TFHE, apart from LWE, RLWE and GLWE ciphertexts, there are two
additional constructions that are used, that are called GLev [CLOT21] and
GGSW [GSW13]. A GLev ciphertext is a collection of GLWE ciphertexts, while
a GGSW is a collection of GLev ciphertexts. In the same way as GLWE can be spe-
cialized as LWE and as RLWE ciphertext, GLev and GGSW can be specialized as
Lev and GSW respectively, and as RLev and RGSW. We give the general definition
below.

7 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

Definition 4 (GLev Ciphertexts [CLOT21]) Given a decomposition base β ∈
N∗ and a decomposition level ℓ ∈ N∗, a GLev ciphertext of a plaintext M ∈ Rq,N

under a GLWE secret key S ∈ Rk
q,N is defined as follows:

CT = (CT0, . . . ,CTℓ−1) ∈ GLEV
(β,ℓ)
S (M) ⊆ R

ℓ×(k+1)
q,N

such that CTj ∈ GLWES

(
q

βj+1
M

)
⊆ Rk+1

q,N for 0 ≤ j < ℓ.

Definition 5 (GGSW Ciphertexts [GSW13, CLOT21]) Given a decomposi-
tion base β ∈ N∗ and a decomposition level ℓ ∈ N∗, a GGSW ciphertext of a plain-
text M ∈ Rq,N under a GLWE secret key S ∈ Rk

q,N (with Sk = −1) is defined as
follows:

CT =
(
CT0, . . . ,CTk

)
∈ GGSW

(β,ℓ)
S (M) ⊆ R

(k+1)×ℓ×(k+1)
q,N

such that CTi ∈ GLEV
(β,ℓ)
S (−Si ·M) ⊆ R

ℓ×(k+1)
q,N for 0 ≤ i ≤ k.

Programmable Bootstrapping (PBS). We call Programmable Bootstrap-
ping [CGGI20, CJL+20, CJP21], or PBS, any FHE operator that enables to reset
the noise in a ciphertext to a fixed level (when certain conditions are fulfilled) and
to evaluate, at the same time, a lookup-table homomorphically on the encrypted
message. Such an operator takes as input an LWE ciphertext encrypting a message
m, a bootstrapping key BSK (i.e., a list of GGSW ciphertexts encrypting the ele-
ments of the secret key used to encrypt the message m), an encryption of a lookup
table L, and outputs an LWE ciphertext with a fixed level of noise encrypting the
message L[m] with a probability 1− pfail.

Remark 2 (FFT Error) Polynomial multiplications in the PBS are performed
with an FFT. While very efficient, this introduces a noise due to the casting of the
bootstrapping key (64-bit integers) into floating points (double with 53-bits mantissa)
and the accumulation of the error along the computation in the Fourier domain. We
use the corrective formula from [BBB+22] to model this noise which is added to the
one from the external product.

FftErrork,N,β,ℓ = 2ω1 · ℓ · β2 ·N2 · (k + 1)

with ω1 ≈ 22 − 2.6, the GLWE dimension k, the polynomial size N and the
decomposition parameters (β, ℓ).

Attacks on LWE. We quickly recall some known attacks against LWE which
are important to consider in the selection of secure parameters. These attacks are
the ones used in the lattice estimator [APS15]. This tool is used 1 to find out the
smallest noise variance σ2 guarantying the desired level of security λ.

1https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves
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The first well known kind of attacks is the so called LWE primal attacks. This
attack was first formulated in [ADPS16] and improved in in [AGVW17, DSDGR20,
PV21]. It consists in using lattice reduction to solve an instance of uSVP (unique
Shortest Vector Problem) generated from LWE samples. The most common way
to perform this reduction is to use the BKZ algorithm [SE94] to reduce a lattice
basis by using an SVP (Shortest Vector Problem) oracle. So, based on this attack,
the security of an LWE instance is based on the cost of lattice reduction for solving
uSVP. In the paper [ADPS16], the authors propose to analyze the hardness of RLWE
as an LWE problem. All the research on this attack tend to find the best cost of
solving uSVP in order to find the closest model of security for LWE and by extension
for RLWE.

The second type of attack is the LWE dual attacks. This attack is explained
in [MR09] and upgraded with the dual hybrid attacks in [Alb17]. It consists in
solving an instance of the SIS (Short Integer Solution) problem in the dual lattice
of the lattice formed by LWE samples. As for the first type of attacks, the security
of an LWE instance is based on the cost of solving the problem SIS.

The third well known kind of attacks is the coded-BKW attacks, which are based
on the algorithm BKW (Blum, Kalai and Wasserman [BKW03]). This attack is
explained in [GJS15, KF15]. The BKW algorithm is a recursive dimension reduction
for LWE instances. In [GJS15], the authors make use of these attacks against RLWE.
To do that, the RLWE problem is seen as a sub problem of LWE.

Attacks on RLWE/GLWE. In the last decade, some attacks (for exem-
ple [CDW17, PMHS19, BRL20, BLNRL23]) tried to take advantage of the structure
of RLWE and GLWE to solve the id-SVP (ideal-Shortest Vector Problem). How-
ever, none of these attacks is as efficient as the LWE attacks presented before.
Thus, to efficiently break GLWE, one actually uses LWE attacks: the security of
GLWE ∈ Rk+1

N,q is then estimated as the LWE ∈ ZkN+1
q one.

Other Attacks. Some other attacks are not based on a reduction to a classical
problem but on the leakage of some fraction of the coordinates of the NTT transform
of the RLWE secret. It is the case of the article [DSGKS18] which proposes a more
direct attack against RLWE under this leakage assumption.

3 Partial GLWE Secret Key

As presented in the introduction, the partial GLWE secret key is composed of two
parts, the first one contains secret random elements (sampled from a distribution 𝒟)
and the second part is filled with zeros at known positions. As a simple example, we
can define the following partial GLWE secret key: S = (S0, S1) ∈ R2

q,N with S0 =∑N−1
j=0 s0,jX

j and S1 =
∑N/2−1

j=0 s1,jX
j where s0,0, · · · , s0,N−1 and s1,0, · · · , s1,N

2
−1 are

sampled from 𝒟, and the other coefficients are publicly known to be set to zero. We
recall the two limitations of TFHE (already mentioned in Section 1):
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New Secret Keys for Enhanced Performance in (T)FHE

1. There is no fine-grained control over the size of a GLWE secret key, it is of
the form kN with N a power of two;

2. When one increases n (or kN), a plateau in terms of noise variance is reached.
Concretely, nplateau is the first value of this plateau i.e., for larger value of n, the
minimal standard deviation of the noise is constant. We evaluated its value to
be 2443 for 128 bits of security and q = 264 by using the formula for the noise
oracle of [BBB+22].

Thanks to these new types of secret keys, these limitations are overcome. These
new keys are beneficial to the noise growth during some operations (for instance,
the external product) over RLWE and GLWE ciphertexts. As the bootstrapping is
a chain of external products, partial secret keys will also be beneficial to its noise
growth. After the sample extract, we can discard the mask elements associated
with the positions of the zeros ending up with smaller LWE dimension than with a
traditional secret key. This smaller LWE dimension will likely improve the cost of
the next key switch.

In this section, we first formally define the notion of partial secret key, and
then study the hardness of the underlying problem. Finally, we list the different
advantages and improvements which they offer.

Definition 6 (GLWE Partial Secret Key) A Partial GLWE secret key is a vec-
tor S[ϕ] ∈ Rk

q,N associated with its filling amount ϕ such that 0 ≤ ϕ ≤ kN . This key
will have ϕ random coefficients sampled from a distribution 𝒟 and kN − ϕ known
zeros. Both the locations of the random elements and the zeros are public. By con-
vention, the coefficients start at coefficient s0,0, then s0,1 and so on. When the first
polynomial is entirely filled, the second polynomial starts with s1,0 and so on, until
ϕ coefficients are determined, up to sk−1,N−1.

We now define the flattened representation.

Definition 7 (Flattened Representation of a Partial GLWE Secret Key)

A partial GLWE secret key S[ϕ] =
(
S0 =

∑N−1
j=0 s0,jX

j, · · · , Sk−1 =
∑N−1

j=0 sk−1,jX
j
)
∈

Rk
q,N (Definition 6) can be viewed as a flattened LWE secret key s̄ = (s̄0, · · · , s̄ϕ−1) ∈

Zϕ in the following manner: s̄iN+j := si,j, for 0 ≤ j < N and 0 ≤ i < k with
iN + j < ϕ. This flattened representation contains only ϕ unknown coefficients.

Before checking the security in detail, this type of keys seem to be a secure solution,
taking into account the plateau limitation (Limitation 2).

3.1 Hardness of Partial GLWE

The GLWE partial secret key problem S[ϕ] ∈ Rk
q,N from Definition 6, seems to be

at least as hard as a GLWE problem in a ring of dimension ϕ. First, we present the
GLWE alternate partial secret key, a key where the secret elements are separated
by 2ν − 1 known zeros. We prove the security of a such secret key distribution by
proving that the GLWE problem in Rk+1

q,N/2ν is equivalent to the GLWE problem in

Rk+1
q,N instantiated with alternate partial GLWE secret keys.
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Definition 8 (Alternate Partial GLWE Secret Key) An alternate partial
GLWE (P-GLWEN,k,χ) secret, is a GLWE secret where the key alternates between
one unknown element and 2ν − 1 known elements. This key has of N

2ν
random

coefficients sampled from a distribution 𝒟 and N − N
2ν

known zero coefficients. As
for the partial GLWE secret key (Definition 6), both the locations of the random
elements and the known zeros are public. The binary version of partial secret keys
in Rq,N is defined by S =

∑N/2ν−1
k=0 sk ·Xk·2ν , with si ←↩ 𝒰({0, 1}).

The Theorem 1 shows that the alternate partial GLWE problem (Def. 8) on the ring
Rq,N is at least as hard as the GLWE problem on the ring Rq,N/2ν .

Theorem 1 (Hardness of P-GLWE) For any ν ∈ Z, the P-GLWEN,k,χ sample in
Rk+1

q,N is as least as hard as 2ν GLWEN/2ν ,k,χ samples in Rk+1
q,N/2ν .

Proof 1 (Theorem 1) The idea of this proof is to pack 2ν GLWEN/2ν ,k,χ sam-
ples in one P-GLWEN,k,χ sample. To do so, we differentiate the 2ν samples from
GLWEN/2ν ,k,χ in Rk+1

N/2ν ,q, by noting them GLWEw
S(X) with w ∈ J0, 2νJ. Observe that

all of them are encrypted under the same secret key S = (S0, . . . , Sk−1) ∈ Rk
q,N/2ν ,

with Si =
∑N/2ν−1

j=0 si,jX
j, with i ∈ J0, kJ.

Each one of the k polynomials composing the GLWEw
S(X) sample is noted with an

exponent w: Aw
i =

∑N/2ν−1
j=0 awi,jX

j, with i ∈ J0, kJ. Starting from these 2ν samples,
we define a new sample from P-GLWEN,k,χ. First, for each sample GLWEw

S(X) ∈
Rk+1

q,N/2ν , we need to evaluate each polynomial in Xν:

Rq,N/2ν −→ Rq,N ,

Aw
i (X) =

N/2ν−1∑
j=0

awi,j ·Xj 7−→ Aw
i (X

2ν ) =

N/2ν−1∑
j=0

awi,j ·Xj·2ν .

So, for each sample GLWEw
S(X) in Rk+1

q,N/2ν , we obtain a new sample G̃LWE
w

S(X2ν )

in Rk+1
q,N/2. We notice that for each polynomial, each coefficient is separated from the

other by 2ν − 1 zeros. Following the previous definition of P-GLWE (Definition 8),
the secret key is in the desired shape. But the Aw

i (X
2ν ) polynomials are not uniform

anymore, only the coefficients of degree multiple of 2ν are. So we can’t already define

G̃LWE
w

S(X2ν ) as a sample of P-GLWEN,k,χ. For each G̃LWE
w

S(X2ν ) we now rotate all
the Aw

i and the Bw polynomials by Xw: We now sum all of them together to obtain
the expected sample from P-GLWEN,k,χ ∈ ℛk+1

q,N :

2ν−1∑
w=0

(
Aw

0 (X
2ν )Xw, . . . , Aw

k−1(X
2ν )Xw, Bw(X2ν )Xw

)
= (A0, . . . , Ak−1, B) ∈ P-GLWEN,k,χ
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with:

Si =

N/2ν−1∑
j=0

si,j ·Xj·2ν =
N−1∑
j=0

s̃i,j ·Xj for i ∈ J0, kJ

Ai =
2ν−1∑
w=0

Aw
i (X

2ν )Xw =
2ν−1∑
w=0

N/2ν−1∑
j=0

awi,jX
j·2ν+w =

N−1∑
j=0

ãi,jX
j for i ∈ J0, kJ

B =
2ν−1∑
w=0

Bw(X2ν )Xw =
2ν−1∑
w=0

N/2ν−1∑
j=0

bwj X
j·2ν+w =

N−1∑
j=0

b̃jX
j

Lets focus on how bwj evolve all along the reduction:

bwj =
k−1∑
i=0

 j∑
τ=0

awi,τ · si,j−τ −
N/2ν−1∑
τ=j+1

awi,τ · si,N+j−τ

+ ewj

=
k−1∑
i=0

(
j2ν+w∑
τ=0

ãi,τ · s̃i,j2ν+w−τ −
N−1∑

τ=j2ν+w+1

ãi,τ · s̃i,2ν(N+j)+w−τ

)
+ ẽj2ν+w = b̃j2ν+w

Each coefficient is correctly decrypted and each b̃j2ν+w is equal to bwj . Moreover,
the polynomials Ai of the new P-GLWEN,k,χ sample follows the same distribution
as the polynomials Aw

i , we can make the same remark for the polynomial B. To
conclude, we have packed several GLWEN/2ν ,k,χ ciphertext in one P-GLWEN,k,χ ci-
phertext by increasing the dimension of this new ciphertext without changing the
noise distribution χ.

Remark 3 (Security of Partial Secret Key) The reduction presented in Theo-
rem 1 proves that the partial alternate secret keys (Definition 8) problem in Rk

q,N is
at least as hard as a GLWE problem in Rk

q,N/2ν , i.e., when ϕ = N/2ν. So adding

zeros at specific places in the secret key and increasing the dimension from N/2ν to
N allows keeping the same security level. We assume this result is generalizable to
any ϕ < N .

Now, if we take two GLWE samples such that the first one is encrypted under an
alternate partial key (Definition 8) and the second one is encrypted under a secret
partial key (Definition 6) which have the same amount of unknown coefficients, this
two samples should be indistinguishable.

We recall that in LWE samples, the security depends on the dimension and the
noise (increasing one could allow to reduce the other one). Intuitively, the security
of GLWE samples, encrypted under a partial key with ϕ random elements, is linked
to the relation of ϕ and the noise σ (instead of N and σ). A bigger ϕ will lead to
a smaller noise σ. To sum up, to guarantee a given level of security for GLWE
samples encrypted under a partial secret key with ϕ random elements, we use the
noise parameter given for LWE samples of dimension n = ϕ with the same level of
security.
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Impact of Partial Key on the Noise Distribution. Regarding the security of
the partial secret key and the different attacks presented in Section 2, we can use
the lattice estimator to find out the smallest noise variance σ2 for an LWE ∈ Zϕ+1

q

guarantying the desired level of security λ. By using this same σ2 for GLWE ∈ Rk+1
q,N

with partial secret key S[ϕ] we obtain the same level of security λ. For instance, for
RLWE in the ring R1 = Rq=264,N=1024 (resp. R2 = Rq=264,N=2048) with traditional
uniform binary secret key S1 ∈ R1 (resp. S2 ∈ R2), we use a standard deviation
σ1 = 239.6 (resp. σ2 = 212.6) which gives a security λ1 = 128.2 (resp. λ2 = 128.0 )
according to the lattice estimator. For our partial keys with the ring R2, we now
can mix the two previous contexts and keep the standard deviation of the smaller
ring R1. Indeed, with the ring R2 = Rq=264,N=2048 and a partial uniform binary
secret key RLWE S ∈ R2 with only 1024 secret coefficients, we will use a standard
deviation σ1 = 239.6 (from ring R1) and this will offer at least 128 bits of security as
well.

3.2 Advantages and applications of Partial GLWE Secret
Keys

Partial GLWE secret keys enable to reduce the computational cost and/or the noise
growth for some algorithms. For a given failure probability and security level, the
parameter sets obtained after optimization will lead to better timings for the func-
tionality (more details in Section 6). Moreover, partial GLWE secret keys can be
used to design a new and more efficient LWE-to-LWE key switching that is FFT-
based (Algorithm 1). The idea is an adaptation of [CDKS20] but now exploits the
use of partial GLWE secret keys. First we cast the input LWE ciphertext into a
GLWE ciphertext (Algorithm 3) so we can apply a GLWE-to-GLWE key switching
to go to a partial GLWE secret key. This leverages the speed-up coming from the
FFT. Finally, we compute a sample extraction (Algorithm 2). In Algorithm 1, two

variants are described: a first one relying on the GLWE-to-GLWE key switching

and a second one relying on the secret product GLWE-to-GLWE key switching . In
what follows, we describe all advantages of using partial secret keys by describing
each step of the Algorithm 1, which is studied more in details in Section 3.2.5.

3.2.1 Advantage with Sample Extraction

A sample extraction is the method to transform one coefficient of a GLWE ciphertext
into an LWE ciphertext. The complete algorithm is described in 2, and can trivially
be adapted in the context of partial GLWE secret keys. They are generalizations of
the same algorithm used for “traditional” secret keys. Indeed, a traditional secret
key is captured when ϕ = k ×N .

Noise and Cost of Sample Extraction A sample extraction, whether it in-
cludes a partial secret key or not, does not add any noise to the plaintext. The cost
of the sample extraction is also roughly the same and it is negligible.
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Algorithm 1: ctout ← FftLweKeySwitch SecretProductFftLweKeySwitch (ctin,KSK)

Context:



S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

Q =
∑N−1

i=0 QiX
i ∈ Rq,N Q = Q0 = 1

CTi,j ∈ GLWE
S

[ϕout]
out

(
q
βj ·Q · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

CTkin,j ∈ GLWE
S

[ϕout]
out

(
q
βj ·Q

)
, for 0 ≤ j ≤ ℓ− 1

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

ctin ∈ LWEsin (p) ⊆ Znin+1
q , with p ∈ Zq

KSK = {Ki = (CTi,0, · · · ,CTi,ℓ−1)} 0 ≤ i ≤ kin 0 ≤ i < kin

Output: ctout ∈ LWEsout (Q0 · p) ⊆ Znout+1
q

/* Inverse of a constant sample extraction (Algorithm 3) */

1 Set CT = (A0, · · · , Akin−1, B)← ConstantSampleExtraction−1 (ctin, kin, N) ∈ Rkin+1
q,N

/* Updating B for Public or Secret key switch */

2 Set CT′ := (0, · · · , 0, B) ∈ Rkout+1
q,N Set CT′ :=

〈
Kkin ,Decomp(β,ℓ) (B)

〉
3 for i ∈ J0; kin − 1K do

/* Decompose the mask */

4 Update CT′ = CT′ −
〈
Ki,Dec(β,ℓ) (Ai)

〉
/* Constant sample extraction (Algorithm 2) */

5 Set ctout ← ConstantSampleExtract
(
CT′) ∈ Znout+1

q

6 return ctout

Inverse Constant Sample Extraction An LWE ciphertext of size n + 1 can
trivially be cast into a GLWE ciphertext of size k + 1 and with polynomials of size
N . For completeness, the process is detailed in Alg. 3.

We obviously need n ≤ kN . If n = kN , the output is a GLWE ciphertext under
a traditional secret key, otherwise it is a GLWE ciphertext under a partial GLWE
secret key. Note that the constant term of the output GLWE plaintext is exactly
the plaintext of the input LWE ciphertext, however the rest of the coefficients of
the output GLWE ciphertext are filled with uniformly random values. We have the
property that for all p ∈ Zq, for all s ∈ Zn

q , for all ct ∈ LWEs (p) ⊆ Zn+1
q and for all

(k,N) ∈ N2 s.t. n ≤ kN :

ct = ConstantSampleExtract
(
ConstantSampleExtract−1 (ct, k,N)

)
.
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Algorithm 2: ctout ← ConstantSampleExtract(CTin)

Context:



S[ϕ] ∈ Rk
q,N : a partial secret key (Definition 6)

(k − 1)N + 1 ≤ ϕ ≤ kN : filling amount of the partial secret key

s̄ ∈ Zϕ : the flattened version of S[ϕ] (Definition 7)

P :=
∑N−1

i=0 piX
i ∈ Rq,N

CTin =
(∑N−1

i=0 a0,iX
i, · · · ,

∑N−1
i=0 ak−1,iX

i,
∑N−1

i=0 biX
i
)
∈ Rk+1

q,N

Input: CTin ∈ GLWES[ϕ] (P ) : a GLWE encryption of the plaintext P

Output: ctout ∈ LWEs̄ (p0) : an LWE encryption of the plaintext p0

1 for i ∈ J0;ϕ− 1K do

2 set α :=
⌊

i
N

⌋
, β := (N − i) mod N and γ := 1− (β == 0)

3 set aout,i := (−1)γ · aα,β

4 return ctout := (aout,0, · · · , aout,ϕ−1, b0) ∈ Zϕ+1
q

3.2.2 Advantage with GLWE Key Switch

A GLWE-to-GLWE key switching with N ̸= 1, as described in Lines 1 and 2 of Alg. 1
takes as input a GLWE ciphertext CTin ∈ Rkin+1

q,N encrypting the plaintext P ∈ Rq,N

under the secret key S[ϕin] ∈ Rkin
q,N , and outputs CTout ∈ Rkout+1

q,N encrypting the

plaintext P + EKS ∈ Rq,N under the secret key S[ϕout] ∈ Rkout
q,N . The noise EKS added

during this procedure, is composed of a rounding error plus a linear combination of
the noise from the key switching key ciphertexts. The larger ϕin, the more significant
the rounding error.

Theorem 2 (Noise of GLWE Key Switch) After performing a key switching

( Alg. 1 ) taking as input a GLWE ciphertext CTin ∈ Rkin+1
q,N under the secret key

S
[ϕin]
in ∈ Rkin

q,N and a key switching key with noise variance σ2
KSK, and outputting a

GLWE ciphertext CTout ∈ Rkout+1
q,N under the secret key S

[ϕout]
out ∈ Rkout

q,N . Let β and
ℓ be a decomposition base and level respectively. The variance of the noise of each
coefficient of the output can be estimated by

Var (CTout) = σ2
in + ϕin

(
q2 − β2ℓ

12β2ℓ

)(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var
(
S

[ϕin]
in

)
+ ℓkinNσ2

ksk

β2 + 2

12
.

The proof of Th. 2 is a classical noise analysis of the result of the operation. Note
that when ϕin = kin ·N we end up with the same formula given in [CLOT21].

Remark 4 (Cost of a GLWE Key Switch) We recall that the cost of a GLWE-
to-GLWE key switching, which remains the same whether it involves partial secret
keys or not, is

𝒞 (FftLweKeySwitch) = kinℓ ·𝒞 (FFTN) + (kout + 1) ·𝒞 (iFFTN)

+Nkinℓ · (kout + 1) ·𝒞 (×C) +N · (kinℓ− 1) · (kout + 1) ·𝒞 (+C)
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Algorithm 3: CTout ← ConstantSampleExtract−1(ctin, k,N)

Context:



s ∈ Zn
q : the input LWE secret key

S[n] ∈ Rk
q,N : a partial secret key (Definition 6)

such that its flattened version is s (Definition 7)

R :=
∑N−1

i=1 ri ·Xi ∈ Rq,N , where ri are uniformly random

ctin = (a0, · · · , an−1, b) ∈ Zn+1
q

p ∈ Zq

Input:


ctin ∈ LWEs (p) : an LWE encryption of the plaintext p

k ∈ N : the output GLWE dimension

N ∈ N : the output polynomial size

Output: CTout ∈ GLWES[n] (p0 +R) : a GLWE encryption

/* put the b part in a polynomial */

1 set B′ := b ∈ Rq,N

/* put the rest in polynomials */

2 for i ∈ J0; k ·NK do

3 set α :=
⌊

i
N

⌋
, β := (N − i) mod N and γ := 1− (β == 0)

4 if i ≤ ϕ− 1 then
5 set a′α,β := (−1)γ · ai
6 else
7 set a′α,β := 0

8 return CTout :=
(
A′

0 :=
∑N−1

j=0 a′0,jX
j , · · · , A′

k−1 :=
∑N−1

j=0 a′k−1,jX
j , B′

)
∈ Rk+1

q,N

where +C and ×C represent a double-complex addition and multiplication (in the
FFT domain) respectively, and FFTN (resp. iFFTN) the Fast Fourier Transform
(resp. inverse FFT).

3.2.3 Advantage with Secret Product GLWE Key Switch

A GLWE-to-GLWE key switch also computing a product with a secret polynomial
as described in Lines 1 and 2 of Alg. 1 follows the exact same definition than above,
except that the output ciphertext encrypts Q ·P +EKS where Q ∈ Rq,N is the secret
polynomial hidden in the key switching key. The added noise EKS also depends on
the input secret key S[ϕin] and its filling amount ϕin. Indeed, this term is the product
between the rounding term (dependent on ϕin) and the polynomial Q.

Theorem 3 (Noise of Secret-Product GLWE Key Switch) After perform-
ing a Secret-Product key switching (Algorithm 1), taking as input a GLWE

ciphertext CTin ∈ Rkin+1
q,N under the secret key S

[ϕin]
in ∈ Rkin

q,N and a key switching key
with noise variance σ2

KSK encrypting a secret message M2, and outputting a GLWE

ciphertext CTout ∈ Rkout+1
q,N under the secret key S

[ϕout]
out ∈ Rkout

q,N , the noise variance of
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each coefficient of the output can be estimated by

Var (CTout) = ℓ(kin + 1)Nσ2
KSK

β2 + 2

12

+ ||M2||22 ·
(
σ2
in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var
(
S

[ϕin]
in

))
.

The proof is detailed in the extended version of the paper.

3.2.4 Advantage with External Product

A GLWE external product is a special case of a secret-product GLWE-to-GLWE
key switch where the input secret key and the output secret key are the same. It
is pretty easy to compute the noise this procedure will add. The cost to compute a
GLWE external product whether it includes a partial secret key or not, is the same.

Theorem 4 (Noise of GLWE External Product) The external product algo-

rithm is the same as the algorithm of secret-product GLWE key switch ( Alg. 1 ).

The only difference is that the external product uses the same key S[ϕ] ∈ Rk
q,N as

input and as output, and the key switching key is now seen as a GGSW ciphertext
of message M2 encrypted with noise variance σ2

2. For each coefficient of the output
CTout, the noise variance can be estimated by

Var (CTout) = ℓ(k + 1)Nσ2
2

β2 + 2

12

+ ||M2||22 ·
(
σ2
in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕ

(
Var
(
S[ϕ]

)
+ E2

(
S[ϕ]

)))
+

ϕ

4
Var
(
S[ϕ]

))
.

Proof 2 (Theorem 4) This proof is the same than the proof of Theorem 3 with

k = kin = kout and S[ϕ] = S
[ϕin]
in = S

[ϕout]
out . □

Noise Advantage with TFHE’s PBS. Using a partial GLWE secret key to
encrypt a bootstrapping key for TFHE’s programmable bootstrapping enables two
convenient features: first to have a smaller output LWE ciphertext with less than
k ·N+1 coefficients, and second to reduce the noise growth in each external product.
External product is the main operation used in the CMuxes of the blind rotation), as
explained above. The direct consequence of having smaller output ciphertexts is the
fact that we can perform smaller LWE-to-LWE key switchings before the next PBS.
Furthermore, when k ·N is large enough to reach the noise plateau (as explained in
Limitation 2), partial secret keys enable to avoid adding unnecessary noise to the
bootstrapping.

3.2.5 LWE-to-LWE Key Switch

Finally, we study the complete algorithm to compute and LWE-to-LWE keyswitch.
We assume using the GLWE-to-GLWE key switch, but the formulae can easily be
adapted to the private product one.
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Theorem 5 (Noise & Cost of FFT-Based LWE Key Switch) We consider
the new LWE-to-LWE key switch as described in Algorithm 1. Its cost is the
same as the cost of a GLWE-to-GLWE key switch as introduced in Remark 4 i.e.,
𝒞 (FftLweKeySwitch) = 𝒞 (GlweKeySwitch).

The output noise can be expressed from the noise formula of the GLWE-to-GLWE
key switch (Theorem 2). To sum up, the output noise is:

Var (FftLweKeySwitch) = FftErrorkmax,N,β,ℓ + Var (GlweKeySwitch)

with ϕin = nin, ϕout = nout, kmax = max (kin, kout) and FftErrorkmax,N,β,ℓ being the
error added by the FFT conversions.

Proof 3 (Theorem 5) Expressing the cost is quite straight forward, since we can
neglect the complexity of the sample extraction and its inverse. The estimation of the
variance of the error is immediate as well. We use the corrective formula introduced
in Remark 2 to estimate an upper bound on the FFT error. Indeed, it is easy to
see that the FFT-based LWE key switch with kin and kout is a special case of an
external product with kmax = max (kin, kout) where some of the ciphertexts composing
the GGSW are trivial encryptions of 0 or 1 (no noise, all mask elements set to zero
and the plaintext put in the b/B part).

Practical Improvement. The use of partial secret keys brings a practical signif-
icant improvement to homomorphic computations. Table 1 presents a comparison
of our techniques and the state of the art [CJP21]. More details on the experiments
are reported in Section 6.1.

4 Shared Randomness Secret Keys

To use FHE schemes, one needs to generate several secret keys of different sizes.
Our main observation is that instead of sampling those keys independently, we can
generate a list of α nested GLWE keys with the same level of security λ.

As a simple example we consider three integers 1 < n0 < n1 < n2 and a secret key
s(2) = r(0)||r(1)||r(2) ∈ Zn2

q generated in the traditional manner. We can now build

two smaller secret keys out of s(2) such that for all pair of keys, the smaller one will
be included in the bigger one, in its first coefficients: s(0) = r(0) ∈ Zn0

q and s(1) =

r(0)||r(1) ∈ Zn1
q . With this new secret keys, the cost and the noise of a keyswitch

between s(1) and s(0) will no longer depend on n0 and n1 but on n1 − n0 and n0. If
we want to keyswitch from s(0) to s(1), the key switch will come for free: it will add
no noise and will have no cost. Note that each of those secret keys use a different
variance for the noise added during encryption: the smaller the secret key, the bigger
the variance, so they can all guarantee the same level of security λ.

In this section, we first define the shared randomness secret key. We then study
the impact of these keys on the security of the underlying LWE problems. Finally,
we list the different advantages and improvements which they offer.
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s(0) : r0 · · · rn0−1

s(1) : r0 · · · rn0−1 rn0 · · ·rn1−1

s(2) : r0 · · · rn0−1 rn0 · · ·rn1−1 rn1 · · ·rn2−1

free

free

n1 − n0 elements

n2 − n1 elements

shrinking key switch
enlarging key switch

Figure 1: Illustration of simplified key switch procedures between three shared ran-
domness LWE secret keys.

Definition 9 (GLWE Shared Randomness Secret Keys) Two GLWE secret
keys S ∈ Rk

q,N and S′ ∈ Rk′

q,N ′, with kN ≤ k′N ′, are said to share randomness if
we have that for all 0 ≤ i < kN, s̄i = s̄′i, where s̄i and s̄′i respectively come from
the flattened view (Definition 3) of S and S′. We note by S ≺ S′ this relationship
between secret keys.

4.1 Hardness of Shared Randomness Secret Keys

Let us consider different samples of GLWE with shared randomness. By taking
independently the samples under the same secret key, all the samples are secure and
have the same level of security. We now study the level of security of several samples
of GLWE considered together with shared secret keys.
First, we present the decisional LWE problem with shared randomness and prove
that, under certain conditions, this problem can be reduced to a LWE problem. Next
we show that the new operations offered by the shared randomness secret key can
not impact the security. Indeed, with this new secret keys using shared randomness,
it becomes possible to combine two ciphertexts encrypted under different secret keys.

Definition 10 (Shared Randomness Secret Key Decisional Problem)
Let n1 > n0. Given a secret key s(0) ∈ Zn0

q following a given dis-
tribution 𝒟, a secret r ∈ Zn1−n0

q following the same distribution 𝒟,
and two errors distribution χ0 and χ1, we define the LWE with shared
randomness secret samples – and we note sh-LWEn0,χ0,n1,χ1 – the pairs(
(a0, b0 =

〈
a0, s

(0)
〉
+ e0), (a1, b1 =

〈
a1, s

(1)
〉
+ e1)

)
∈ Zn0+1

q × Zn1+1
q , where

s(1) = s(0)||r, a0 ←↩ 𝒰(Zq)
n0, a1 ←↩ 𝒰(Zq)

n1, e0 ←↩ χ0 and e1 ←↩ χ1.
The decision sh-LWEn0,χ0,n1,χ1 problem consist of distinguishing m independent

samples from 𝒰(Zn0+1
q × Zn1+1

q ) from m independent samples ((a0, b0), (a1, b1)) ∈
LWEn0,χ0 ×LWEn1,χ1 ⊆ Zn0+1

q × Zn1+1
q as defined above.

Theorem 6 (Hardness of sh-LWE) If we have three random distributions χ0, χ1

and χ′ such that, if we sample e1 ←↩ χ1 and e′ ←↩ χ′, e1 + e′ follows the distribution
χ0. Then sh-LWEn0,χ0,n1,χ1 with m samples is at least as hard than LWEn0,χ1 with
2m samples.

Remark 5 (Error Distribution χ) In GLWE-based FHE schemes, χ usually fol-
lows a discrete normal distribution. The condition for Theorem 6 is then always
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verified. In the following, the goal is to use a noise variance σ0 for χ0 and a noise
variance σ1 for χ1 such that n0 < n1 and σ0 > σ1.

Proof 4 (Theorem 6) We define an instance of LWEn0,χ1 where the samples are
encrypted under a secret key s(0) ∈ Zn0

q which follows a given distribution 𝒟, and
where for the given distribution χ1 it exists a distribution χ′ such that, for any
e1 ←↩ χ1 and for any e′ ←↩ χ′, we have that e1 + e′ follows a distribution χ0.

We now prove that solving the problem sh-LWEn0,χ0,n1,χ1 is at least as hard than
solving the problem LWEn0,χ1. To do so, we consider an oracle that can solve the de-
cision sh-LWEn0,χ0,n1,χ1 problem and show that a such oracle can solve the decisional
LWEn0,χ1 instance.

Observe that, starting from an LWEn0,χ1 sample, we can easily create either an
LWEn0,χ0 sample or an LWEn1,χ1 sample. To create an LWEn0,χ0 sample (a0, b0 =〈
a0, s

(0)
〉
+ e0) ∈ Zn0+1

q , with e0 coming from a distribution χ0, from an LWEn0,χ1

sample (a1, b1 =
〈
a1, s

(0)
〉
+ e1) ∈ Zn0+1

q , with e1 coming from a distribution χ1, we
only need to take a0 = a1 and modify the noise. Following the above condition, it is
sufficient to sample e′ ←↩ χ′ and then take b0 = b1 + e′, to make the noise in b0 be
equal to e1 + e′. This now follows the distribution χ0.

To create an LWEn1,χ1 sample (a1, b1 =
〈
a1, s

(1)
〉
+e1) ∈ Zn1+1

q from a LWEn0,χ1

sample (a0, b0 =
〈
a0, s

(0)
〉
+ e1) ∈ Zn0+1

q , we start by generating an random key

r ∈ Zn1−n0
q , which follows the same distribution 𝒟 than s(0), as well as a new vector

a′ ∈ 𝒰(Zn1−n0
q ). Then, we take a1 = a0||a′ and b1 = b0 + ⟨a′, r′⟩, which give us an

LWEn1,χ1 sample as expected.
Following what just described, we observe that given 2m LWEn0,χ1 samples, we

can generate m LWEn0,χ0 samples and m LWEn1,χ1 samples. Now we can provide
all the valid samples of LWEn0,χ0 ×LWEn1,χ1 to the oracle. Otherwise, when the
decisional LWEn0,χ1 problem send uniform samples in Zn0

q , the two transformations
proposed before also return uniform samples in Zn0

q or in Zn1
q . As the oracle can solve

the decision sh-LWEn0,χ0,n1,χ1 problem, we can solve the decision LWEn0,χ1 problem.

Remark 6 (Security with more than two shared Keys) The Proof 4, can
easily be adapted to more than only two shared keys.

Operations Under Shared Randomness Any known homomorphic operation
(that we know) that makes two or more ciphertexts interact (encrypted under the
same key or different keys) will have as a result a ciphertext with a level of security
at least as high as the input with the lowest security level. In light of the common
existing attacks, the level of security of a set of GLWE samples encrypted under
shared randomness secret keys is then lower bounded by the level of security of the
GLWE having the smallest level of security.

As for the partial secret keys, this new type of keys may lead to new unknown
attacks and the level of security could be impacted. But at the current state of the
art, no attacks seem to have an impact on shared randomness secret key. However, if
one of the key sets is compromised, the other key sets will be impacted consequently.
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4.2 Advantages of Shared Randomness Secret Keys

Using shared randomness secret keys enable to speed up homomorphic computations
and reduce the amount of noise added by these operations. This is particularly useful
for LWE-to-LWE key switch procedures.

4.2.1 Advantages with LWE-to-LWE Key Switch

Shared randomness secret keys enable to key switch more efficiently and add less
noise during the procedure. Figure 1 illustrates key switching processes between
three LWE shared randomness secret keys. A key switch to a bigger key is rep-
resented with dotted arrows and is called enlarging key switch. A key switch to a
smaller key is represented with solid arrows and is called shrinking key switch.

Enlarging Key Switch. When we consider a ciphertext ctin =
(a0, · · · , an1−1, b) ∈ LWEs(1) (m) ⊆ Zn1+1

q under the secret key s(1) ∈ Zn1
q and

want to key switch it to the secret key s(2) ∈ Zn2
q , where s(1) ≺ s(2), the algorithm

translates into simply adding zeros at the end of the ciphertext:

ctout := (a0, · · · , an1−1, 0, · · · , 0, b) ∈ LWEs(2) (m) ⊆ Zn2+1
q

Algorithm 4, describes this procedure in detail. In this paper we only use this algo-
rithm with LWE ciphertexts, but it can trivially be extended to GLWE ciphertexts.

Algorithm 4: ctout ← EnlargingKeySwitch(ctin)

Context:



sin ∈ Znin
q : the input secret key

sout ∈ Znout
q : the output secret key

sin ≺ sout : shared randomness secret keys (Definition 9)

p ∈ Zq

ctin = (a0, · · · , anin−1, b) ∈ Znin+1
q

Input: ctin ∈ LWEsin (p)
Output: ctout ∈ LWEsout (p)

/* Pad with zeros between the mask and the b part */

1 Set ctout := (a0, · · · , an−1, 0, · · · , 0, b) ∈ Znout+1
q

2 return ctout

To sum up, with shared randomness secret keys, the enlarging key switchings are
basically zero-cost operations and do not require the use of a public key. They also
add no noise, instead of adding a linear combination of freshly encrypted ciphertexts
under s(2). The proof of next theorem is trivial.

Theorem 7 (Cost & Noise of Enlarging Key Switching) When working
with shared randomness secret keys, the cost of an enlarging key switching (Algo-
rithm 4) is reduced to zero, and the noise in the output is the same as the one in
the input (no noise is added).
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Shrinking Key Switch. When we consider a ciphertext ctin =
(a0, · · · , an2−1, b) ∈ Zn2+1

q under the secret key s(2) ∈ Zn2
q and we want to

key switch it to the secret key s(1) ∈ Zn1
q , where s(1) ≺ s(2) and s(2) = s(1)||r(2), the

algorithm is simplified precisely because of the shared randomness:
1. the parts (a0, · · · , an1−1) and b do not need to be processed but simply reor-

ganized into a temporary ciphertext: ct = (a0, · · · , an1−1, b) ∈ Zn1+1
q ,

2. the part (an1 , · · · , an2−1) has to be key switched, which can be viewed as
a traditional key switching algorithm: i.e., key switching the ciphertext
(an1 , · · · , an2−1, 0) ∈ Zn2−n1+1

q with a key switching key going from the secret

key r(2) to s(1), and at the end, adding it to ct and returning the result.
Algorithm 5, describes this procedure in detail. In this paper we only use this

algorithm with LWE ciphertexts, but it can be also trivially extended to GLWE
ciphertexts.

Algorithm 5: ctout ← ShrinkingKeySwitch(ctin,KSK)

Context:



sin = (s0, · · · , snin−1) ∈ Znin
q : the input secret key

sout ∈ Znout
q : the output secret key

nout < nin

sout ≺ sin : shared randomness secret keys (Definition 9)

p ∈ Zq

ctin = (a0, · · · , anin−1, b) ∈ Znin+1
q

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

{
ctin ∈ LWEsin (p)

KSK = {KSKi}nout≤i<nin
, with KSKi ∈ LEV(β,ℓ)

sout
(sin,i) : a key switching key

Output: ctout ∈ LWEsout (p)

/* Keep the beginning of the mask and the B part */

1 Set ctout := (a0, · · · , anout−1, b) ∈ Znout+1
q

2 for i ∈ Jnout;nin − 1K do

/* Decompose the rest of the mask */

3 Update ctout = ctout −
〈
KSKi,Dec(β,ℓ) (ai)

〉
4 return ctout

To sum up, with shared randomness secret keys, the shrinking key switching
requires smaller key switching keys: their size becomes proportional to n2 − n1

instead of n2. As a consequence, the computation is faster, equivalent to key switch
a ciphertext of size n2 − n1 + 1 instead of n2 + 1. Finally, the noise in the output is
also smaller because the algorithm involves a smaller linear combination of freshly
encrypted ciphertexts under s(1). The details of the proof of next theorem can be
found in the extended version of the paper.

Theorem 8 (Cost & Noise of Shrinking Key Switching) Consider two
shared randomness secret keys s(0) ≺ s(1) with s(0) ∈ Zn0

q , s(1) ∈ Zn1
q and

22 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

1 < n0 < n1. Let β ∈ N∗ and ℓ ∈ N∗ be the decomposition base and level
used in key switching. The cost of our shrinking key switching (Algorithm 5) is
ℓ (n1 − n0) (n0 + 1) integer multiplications and (ℓ (n1 − n0)− 1) (n0 + 1) integer
additions. The noise added by the procedure satisfies

Var(ShrinkingKeySwitch) = (n1 − n0)

(
q2 − β2ℓ

12β2ℓ

)(
Var (sin) + E2 (sin)

)
+

(n1 − n0)

4
Var (sin) + ℓ · (n1 − n0) ·

β2 + 2

12
σ2
KSK .

4.2.2 Stair Key Switch

In Section 4.2.1, we saw that when one uses different secret keys within an FHE use
case, it is convenient to make use of shared randomness secret keys. However, this
concept can also be used locally inside a key switch procedure to explore a cost/noise
trade-off.

For simplicity, let’s consider an FHE use case where there are only two LWE
secret keys, and only a key switch from the big one to the small one. We start by
setting the two secret keys as shared randomness. The idea here is to add one or
several shared randomness secret keys, only during the key switch procedure.

For example, let’s assume a fixed decomposition base β, a fixed number of levels ℓ
and let s(2) be our big secret key and s(0) be our small (as defined in Section 4.2.1).
To key switch from s(2) to s(0), we will add one intermediate shared randomness
secret key s(1) and compute first a key switch from s(2) to s(1) and then another
from s(1) to s(0). This algorithm will be more costly, because its first part will be
a linear combination of (n2 − n1) ciphertexts of size n1 + 1, and its second part a
linear combination of (n1−n0) ciphertexts of smaller size n0+1, instead of having a
single linear combination of n2−n0 ciphertexts of size n0+1: so the total number of
ciphertexts in the linear combination and in the key switching key has not changed
(n2 − n1 + n1 − n0 = n2 − n0 as in the key switching from s(2) to s(0)), but the
linear combinations are slightly more costly and the ciphertexts composing the key
switching keys slightly larger. However, this algorithm produces less noise: indeed
its first part has ciphertexts with lower noise because they are encrypted under a
bigger secret key.

Here is the trade-off we want to study. The extreme is to go from s(nb) to s(0)

by key switching one element of the key in each key switching, meaning that we
will have a total number of nb = nnb − n0 shrinking key switching (Algorithm 5)
to perform. So nb corresponds to the steps in the stair. This means considering a
total number of shared keys equal to nb+ 1, including the secret keys s(nb) and s(0)

which are the end points of the stair. We call the added keys between s(nb) and s(0)

intermediate secret keys, so we have a total of nb − 1 intermediate secret keys. In
practice, we start with coefficient annb−1 and key switch it to the secret key with
nnb − 1 elements, add it to the rest, and do the same with the next last element,
and so on until we reach the desired secret key, one coefficient at a time. The other
extreme case is when we key switch directly from s(1) and s(0) without intermediary
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key switchings, so nb = 1.
Algorithm 6 gives details about this procedure. It is important to point out that

there are now nb couples of decomposition parameters (βα, ℓα) for 0 ≤ α ≤ nb− 1,
one for each step of the stairs. Note that we could also allow to have more than one
such couple per step as well.

Algorithm 6: ctout ← StairKeySwitch
(
ctin, {KSKα}0≤α≤nb−1

)

Context:



nb ∈ N : the number of steps in the algorithm

n0 < n1 < · · · < nnb

s(nb) ∈ Znnb
q : the input secret key

s(0) ∈ Zn0
q : the output secret key

s(α) ∈ Znα
q ,∀1 ≤ α ≤ nb− 1 : intermediate secret keys

s(0) ≺ s(1) ≺ · · · ≺ s(nb) : shared randomness secret keys (Definition 9)

Input:


ctin ∈ LWEs(nb) (p) ⊆ Znnb+1

q , with p ∈ Zq

{KSKα}0≤α≤nb−1 : intermediate key switching key as in Algorithm 5

where KSKα switches from s(α+1) to s(α)

Output: ctout ∈ LWEs(0) (p) ⊆ Zn0+1
q

/* Set the counter to go from nb− 1 to 0 */

1 Set α := nb− 1

/* Set the initial ciphertext */

2 Set ct := ctin

3 while α >= 0 do

/* Call to Algorithm 5 */

4 Update ct← ShrinkingKeySwitch(ct,KSKα) ∈ LWEs(α) (p) ⊆ Znα+1
q

5 α := α− 1

6 return ctout := ct

Theorem 9 (Cost & Noise of Stair Shrinking Key Switching)
Consider the stair key switch as detailed in Algorithm 6. Its cost
amounts to

∑nb−1
α=0 ℓα (nα+1 − nα) (nα + 1) integer multiplications and∑nb−1

α=0 (ℓα (nα+1 − nα)− 1) (nα + 1) integer additions. The noise added by the
procedure satisfies

Var(StairShrinkKS) =
nb−1∑
α=0

(nα+1 − nα)

(
q2 − β2ℓα

α

12β2ℓα
α

)(
Var
(
s(α+1)

)
+ E2

(
s(α+1)

))
+

(nα+1 − nα)

4
Var
(
s(α+1)

)
+ ℓα · (nα+1 − nα) ·

β2
α + 2

12
σ2
KSKα

.

Proof 5 (Theorem 9) The cost and noise of the stair shirnking key switching can
be trivially deduced from the Theorem 8. Indeed, at step α of the loop in Algo-
rithm 6, the cost of the shrinking key switching is ℓα (nα+1 − nα) (nα + 1) integer
multiplications and (ℓα (nα+1 − nα)− 1) (nα + 1) integer additions.

24 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

The variance of the noise added at the step α is:

Var(ShrinkKSα) = (nα+1 − nα)

(
q2 − β2ℓα

α

12β2ℓα
α

)(
Var
(
s(α+1)

)
+ E2

(
s(α+1)

))
+

(nα+1 − nα)

4
Var
(
s(α+1)

)
+ ℓα · (nα+1 − nα) ·

β2
α + 2

12
σ2
KSKα

.

To obtain the total cost of the algorithm and the total variance of the noise added,
we simply iterate from α = 0, . . . , nb− 1.

Remark 7 (Stairs in the Blind Rotation.) A similar process can be introduced
in the blind rotation algorithm. The idea would be, during the blind rotation, to pro-
gressively use GLWE partial secret keys (Definition 6) with a smaller filling amount
ϕ which will reduce the output noise of the blind rotate. As with the stair shrinking
key switch, we could use different bases and levels in the external products thus of-
fering potentially an overall speed-up. We leave this problem as a topic for future
work.

Practical Improvement. The use of shared secret keys brings a practical sig-
nifiant improvement to homomorphic computations: Table 1, presents a comparison
of our techniques to the state of the art [CJP21]. More detailed experiments are
reported in Section 6.2.

5 Combining Both Techniques & Their Applica-

tions

In this section, we start by providing details on FHE algorithms that benefit from
having secret keys that are both partial and shared randomness. Later on, we
describe some nice applications of these new types of secret keys.

5.1 Combining Both Techniques

Shared randomness partial GLWE secret keys are simply a list of partial GLWE
secret keys (Section 3) with some public knowledge about shared coefficients in
the exact same way as in Section 4. This type of keys is a combination of shared
randomness and partial secret keys, offering advantages of both types.

It is possible to design a faster shrinking key switch (Algorithm 1) which uses
partial secret keys (Definition 6). This means that for this faster algorithm, we use
both partial secret keys and shared randomness secret keys. Details about this new
procedure is given in Algorithm 7.

Theorem 10 (Noise & Cost of the FFT-Based Shrinking Key Switch)
We consider the FFT-based LWE shrinking key switching as detailed in Algo-
rithm 7. Its cost can be expressed expressed from the cost of a GLWE-to-GLWE
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Algorithm 7: ctout ← FftShrinkingKeySwitch(ctin,KSK)

Context:



nout < nin, nin − nout ≤ kKSK,in ·NKSK and nout ≤ kKSK,out ·NKSK

sout ≺ sin : shared randomness secret keys (Definition 9)

sout ∈ Znout
q : the output LWE secret key

s = (snout , · · · , snin−1) ∈ Znin−nout
q

sin = sout||s ∈ Znin
q : the input LWE secret key

Input:

{
ctin = (a0, · · · , anin−1, b) ∈ LWEsin (p) ⊆ Znin+1

q , where p ∈ Zq

KSK : the key switching key suited for Algorithm 1

Output: ctout ∈ LWEsout (p)

/* Split the input LWE ciphertext into two parts: one related to sout, and

the rest */

1 Set ct0 := (a0, · · · , anout−1, b) ∈ Znout+1
q

2 Set ct1 := (anout , · · · , anin−1, 0) ∈ Znin−nout+1
q

/* Call Algorithm 1 */

3 Set ct′1 ← FftLweKeySwitch (ct1,KSK) ∈ Znout+1
q

4 return ctout = ct0 + ct′1

key switch (Remark 4) since we neglect the costs of sample extraction and
its inverse. The cost is then 𝒞 (FftShrinkingKeySwitch) = 𝒞 (GlweKeySwitch).
Note that kin is smaller thanks to the shared randomness property of the se-
cret keys, which leads to a faster procedure. The added noise can be expressed
from the noise formula of the GLWE-to-GLWE key switch (Theorem 2) which
gives Var (FftShrinkingKeySwitch) = FftErrorkmax,N,β,ℓ + Var (GlweKeySwitch) with
ϕin = nout − nin and kmax = max (kin, kout).

Proof 6 (Theorem 10) The estimation of the variance of the error is immediate.
For the FFT error, we refer to Remark 2 and Proof 3.

Alg. 8 summarizes the process to compute a keyswitch when both approaches
are mixed.

Theorem 11 (Noise of GLWE Key Switching With Partial & Shared Randomness
Keys) Perform a key switching (Algorithm 8) from CTin ∈ Rkin+1

q,N under the secret

key S
[ϕin]
in ∈ Rkin

q,N , to CTout ∈ Rkout+1
q,N under the secret key S

[ϕout]
out ∈ Rkout

q,N , where the

key are shared and partial, i.e., S
[ϕout]
out ≺ S

[ϕin]
in . Each coefficient of the output has

added noise estimated as

Var(GlweKeySwitch′) = (ϕin − ϕout)

(
q2 − β2ℓ

12β2ℓ

)(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+
ϕin − ϕout

4
Var
(
S

[ϕin]
in

)
+ ℓ(kin − kout)Nσ2

ksk

β2 + 2

12
.

The proof of this theorem can be found in the extended version of the paper.
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5.2 Some Higher Level Applications

Through Sections 3.2, 4.2 and 5.1, we discussed the many advantages of using
partial and/or shared randomness secret keys. We now discuss the advantages at a
somewhat higher level.

Key Switching Key Compression. When one deploys an FHE instance
using the shared randomness property, the total amount of public material for
key switching is smaller than usual. Indeed, this only requires to generate all the
shrinking key switching keys (Algorithm 5), from the largest key to the smallest.
All of these shrinking key switching keys are way smaller than the sum of all the
traditional key switching keys that are usually needed. Note that it is possible to
provide more levels in some of the key switching keys, and only use the ones that
are needed at a moment for a given noise constraint.

Compressed Bootstrapping Key. Similarly, with shared randomness secret
keys, the amount of public material for bootstrapping keys can be reduced. A
bootstrapping key is a list of GGSW ciphertexts, each one encrypting a secret key
coefficient of the input LWE secret key. Then, giving the GGSW ciphertexts for
the largest LWE secret key of the instance is enough. Whenever bootstrapping an
LWE ciphertext with a smaller dimension is required, one will only use the first
part of the bootstrapping key. In the same spirit, additional levels can be added,
and only used when strictly needed.

Easier Parameter Set Conversion. In [BBB+22], the authors consider
use-cases where there are a couple of coexisting parameter sets, and it is necessary
to move from one to the other. Using shared (and partial) secret keys helps
converting more efficiently ciphertexts between two (or more) parameter sets. This
is due to the removing of some key switchings and limiting the noise growth.

Multikey Compatibility. Both the partial and shared randomness properties
are preserved in the MK-FHE (such as [KKL+22, KMS22]) and in threshold-FHE
approaches. Indeed, summing two partial secret keys results in another partial
secret key, and summing two pairs of shared randomness secret keys together
results in a new pair of shared randomness secret keys. Those new secret keys could
improve the performance of MK-FHE and threshold-FHE, which are in general less
efficient that the ones of (single key) FHE, as well as reduce the total size of the
public material.

Other FHE Schemes. Partial and shared randomness secret keys could be
used in other FHE schemes such as FHEW [DM15] or NTRU-based schemes (such
as [BIP+22]). This types of keys could also be used in BFV [Bra12, FV12] or
CKKS [CKKS17] when larger polynomials are required for the same modulus q, for
instance.

27 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

Combination With Fixed Hamming Weight. Both partial and shared
randomness secret keys could be instantiated with a fixed Hamming weight We do
not explore this topic any further here.

LWE Encryption Public Key With GLWE Material. If one wants to take
advantage of the FFT to encrypt fresh LWE ciphertexts with a secret key s ∈ Zn

q ,
and/or shrink the size of ciphertexts with partial GLWE secret key, it is possible to
provide a GLWE encryption public key for a partial GLWE secret key S[ϕ=n] ∈ Rk

q,N

such that its flattened version is actually s. In this case, one uses GLWE encryption
and applies a sample extract right after that to obtain the desired LWE ciphertext.

6 Parameters & Benchmarks

In this section, we describe how to generate FHE parameters for all our experiments.
We use the procedure introduced in [BBB+22] to compare the different approaches.
To demonstrate the impact of partial and/or shared randomness secret keys, we
use the Atomic Pattern (AP) called CJP in [BBB+22] (the name coming from the
paper [CJP21]). After recalling its definition, we explain how to optimize param-
eters for the different experiments and show the different improvements (both in
computational time and size of public material) brought forward by each of the new
procedures introduced in this paper.

Real life applications use additions and multiplications by public integers (i.e.
a dot product) between two consecutive bootstrappings. Formally, given a list of
ciphertexts {cti}i∈[[1,α]] ∈ (LWEsin)

α (with independent noise values) and a list of

integers {ωi}i∈[[1,α]] ∈ Zα, one computes
∑α

i=1 ωi · cti. In that case, we have ν2 =∑α
i=1 ω

2
i and ν is used to fully describe the noise growth during a dot product

following the formalization of [BBB+22]. In this paper, we set ν = 2p where p is the
precision of the message. For every experiment below, the probability of failure is
set to pfail ≤ 2−13.9. Note that with the FHE parameter generation process used in
this paper, any other probability can be chosen. In what follows, we use the CJP
atomic pattern which denotes the chaining of a dot product, a keyswitch and a PBS.

All of the experiments presented in this paper have been carried out on AWS
with a m6i.metal instance Intel Xeon 8375C (Ice Lake) at 3.5 GHz, with 128 vCPUs
and 512.0 GiB of memory using the TFHE-rs library [Zam22]2. In Supplemen-
tary Material E.2 (Tables 4, 5, 6 and 7), we give the parameter sets used for the
experiments reported in Table 2 along with benchmarks and public material sizes.

6.1 Partial GLWE Secret Key

We conduct three experiments with partial GLWE secret keys (Definition 6) that
are displayed in Table 1. This shows the cost estimated by the optimizer (divided
by 106) in function of the precision.

2https://github.com/zama-ai/tfhe-rs/tree/artifact ccs 2024
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Our baseline is CJP. The first experiment focuses on the CJP atomic pattern
where the GLWE secret key could be partial with a filling amount ϕ. During opti-
mization, we set ϕ to the minimum between k · N and the value nplateau discussed
in limitation 2. As expected, this is mostly better with larger precisions, starting at
p = 6 where the plateau is reached.

The second experiment considers the CJP atomic pattern where the traditional
LWE-to-LWE key switch is replaced with the FFT-base LWE key switch introduced
in Algorithm 1. During the optimization, we had to introduce new FHE parameters
for this particular key switch: an input GLWE dimension kin, an output GLWE
dimension kout and a polynomial size NKS. We observe a significant improvement
for all precisions when using this key switch, but it is more visible with smaller
precisions, between 1 and 6.

The third and last experiment is the combination of the two first ones: we allow
the GLWE secret key to be partial (when the plateau is reached) and use the FFT-
based LWE key switch (Algorithm 1). As expected, this last experiment outperforms
the other two. We can see a significant improvement for all precisions.

Note that there is no way to build an LWE-to-LWE key switch based on the
FFT without partial secret keys, so no comparison with our results can be done.

6.2 Shared Randomness Secret Keys

We conduct two experiments with shared randomness secret keys (Definition 9), and
we display the results predicted by an optimizer in Table 1.

The first experiment is the CJP atomic pattern where we allow the secret keys
to share their randomness using the shrinking LWE key switch described in Algo-
rithm 5. We observe a significant improvement with small precisions, up to p = 6.

The second and last experiment is the CJP atomic pattern where we allow the
secret keys to share their randomness, so we can use the 2-step stair LWE key switch
from Algorithm 6. We see a significant improvement at all precisions. Note that if
one tries to trivially have a 2-step stair key switch without any shared randomness,
the computational cost is basically the same as in CJP.

Precision & 2-norm 1 2 3 4 5 6 8 10
Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain Cost Gain

CJP 31 - 42 - 63 - 78 - 118 - 347 - 2351 - 20813 -

Partial: BSK 31 -0% 42 -0% 63 -0% 78 -0% 118 -0% 318 -8% 1934 -18% 16449 -21%
Partial: FFT-KS 25 -18% 33 -21% 41 -35% 62 -21% 92 -22% 298 -14% 2053 -12% 18841 -9%
Partial: BSK + FFT-KS 25 -18% 33 -21% 41 -35% 62 -21% 92 -22% 285 -17% 1879 -20% 16426 -21%

Shared: Shrinking-KS 29 -9% 39 -8% 49 -23% 72 -8% 105 -11% 336 -3% 2331 -0.8% 20785 -0.1%
Shared Stair-KS 27 -15% 35 -17% 42 -32% 66 -17% 94 -20% 316 -9% 2057 -12% 16624 -20%

Table 1: Comparison in terms of estimated execution time, between traditional CJP,
our baseline, two variants of CJP based on shared randomness secret keys and three
variants based on partial secret keys.
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6.3 Combining Both

We conduct two experiments with both partial (Definition 6) and shared randomness
secret keys (Definition 9), we display the results in Table 2.

The first experiment is the CJP atomic pattern where we allow the secret keys to
be partial and to share their randomness. We use the 2-step stair LWE key switch
from Algorithm 6 and we allow the GLWE secret key to be partial when the plateau
is reached.

The second and last experiment also focuses on the CJP atomic pattern where we
allow secret keys to be partial and to share their randomness. We allow the GLWE
secret key to be partial (when the plateau is reached), and use the FFT-based LWE
key switch (Algorithm 7) since our secret keys also share randomness.

Both the stair key switch experiments and the FFT shrinking key switch exper-
iment are faster than our baseline, and we have even better results with the FFT
shrinking key switch than expected. Note that at precision p = 3 we have a 2.4
speed-up factor compared to the baseline.

Our new secret key generation also has the advantage to reduce the key sizes.
For those experiments, we plot the size of the public material needed in Figure 2
in Supplementary Material, to demonstrate their benefit in this matter. For instance,
the storage needed for the public material when p = 3 is going from approximately
105 MB with the CJP method, to 50 MB with the FFT-based approach.

Precision & 2-norm 1 2 3 4 5 6 8 10
Time Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time Gain Time Gain

CJP 5.43 - 8.75 - 12.2 - 12.6 - 20.0 - 55.6 - 415 - 4710 -

All + Stair-KS 3.78 -30% 6.28 -28% 6.22 -49% 9.35 -25% 13.8 -31% 44.3 -20% 323 -22% 3620 -23%
All + FFT shrinking-KS 3.27 -39% 5.32 -39% 5.12 -58% 7.38 -41% 11.0 -45% 41.1 -26% 306 -26% 3603 -23%

Table 2: Comparison in terms of computational time (in ms) of the traditional CJP,
our baseline, with two variants of CJP based on both partial secret keys and shared
randomness secret keys.

7 Conclusion

To sum up, the traditional way of generating GLWE secret keys leads to unnecessary
computation, larger noise growth and bigger public material. In this paper we
introduced two (as secure) new ways to generate GLWE secret keys: partial and/or
shared randomness. The benefits are indeed non negligible as demonstrated in
practical experiments covering a wide range of message precisions. In this paper, we
also described several applications exploiting such secret keys.

As future work, optimizing the step number, the size and the decomposition
parameters of the (shrinking) stair key switch seems promising. Also, it could be
interesting to generalize our approaches to other secret key distributions, like ternary
or Gaussian.
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[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stick-
elberger class relations and application to ideal-svp. In Advances
in Cryptology–EUROCRYPT 2017: 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30–May 4, 2017, Proceedings, Part I, pages 324–
348. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: fast fully homomorphic encryption over the torus.
J. Cryptol., 2020.

[CJL+20] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and
Samuel Tap. Concrete: Concrete operates on ciphertexts rapidly by
extending TfhE. In WAHC 2020, 2020.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable boot-
strapping enables efficient homomorphic inference of deep neural net-
works. In CSCML 2021. Springer, 2021.

32 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In ASI-
ACRYPT 2017, 2017.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
Improved programmable bootstrapping with larger precision and effi-
cient arithmetic circuits for tfhe. In ASIACRYPT 2021. Springer, 2021.
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Supplementary Material

A Comparison between usual secret key types in

FHE

Secret Keys With Fixed Hamming Weight (FHW). A fixed-Hamming-
weight (FHW) binary (resp. ternary) GLWE secret key of hamming weight h ∈ N
is a GLWE secret key such that its polynomial coefficients are in {0, 1} (resp.
{−1, 0, 1}) and contains exactly h non-zero coefficients. We note these two dis-
tributions ℱℋ𝒲 (h, {0, 1}) and ℱℋ𝒲 (h, {−1, 0, 1}) respectively. Such keys come
along with public knowledge: the dimension k, the polynomial ring Rq,N (including
the polynomial degree N), the distribution (binary or ternary), the hamming weight
h. This type of secret keys is in use in FHE schemes such as CKKS [CKKS17], be-
cause it offers a smaller value for the worst-case noise growth. Table 3 summarizes
public knowledge for these different secret key types.

B Proofs

In this section we provide some useful proofs.

Proof 7 (Correctness for Constant Sample Extraction) As in algorithm 2, we

consider a GLWE ciphertext CTin := (A0, · · · , Ak−1, B) ∈ GLWES[ϕ] (P ) ⊆ Rk+1
q,N where P =∑N−1

i=0 piX
i ∈ Rq,N and for all 0 ≤ i ≤ k − 1 we have Ai =

∑N−1
j=0 ai,jX

j and B =
∑N−1

j=0 bjX
j.

The GLWE secret key is noted S[ϕ] = (S0, · · · , Sk−1) ∈ Rk
q,N and follows Definition 6. By definition

of GLWE ciphertexts, it means that it exists an error polynomial E =
∑N−1

i=0 eiX
i ∈ Rq,N such

that B −
∑k−1

i=0 Ai · Si = P + E.
Following Algorithm 2, the constant sample extraction outputs the following LWE ciphertext:

ctout = (aout,0, · · · , aout,ϕ−1, bout) ∈ LWEs̄ (p0) ⊆ Zϕ+1
q encrypted under the LWE secret key s̄ =

(s̄0, · · · , s̄ϕ−1) ∈ Zϕ
q obtained as defined in Definition 7.

First we define two index functions, the first one is ι : i 7→
(⌊

i
N

⌋
, i mod N

)
and the second

one is ι̃ : i 7→
(⌊

i
N

⌋
, (N − i) mod N

)
. We also need to define a last function γ : i 7→ 1 −

((i mod N) == 0)

36 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



New Secret Keys for Enhanced Performance in (T)FHE

bout −
ϕ−1∑
i=0

aout,i · s̄i = b0 −
ϕ−1∑
i=0

aout,i · s̄i −
kN−1∑
i=ϕ

(−1)γ(i) · aι̃(i) · sι(i)︸ ︷︷ ︸
null since all sι(i)=0 because it is a partial key)

= b0 −
ϕ−1∑
i=0

(−1)γ(i) · aι̃(i) · sι(i)︸ ︷︷ ︸
lines 2 and 3 in Algorithm 2

−
kN−1∑
i=ϕ

(−1)γ(i) · aι̃(i) · sι(i)

= b0 −
kN−1∑
i=0

(−1)γ(i) · aι̃(i) · sι(i) = b0 −
k−1∑
i=0

N−1∑
j=0

ai,N−j · si,j

= b0 −
k−1∑
i=0

N−1∑
j=0

ai,(N−j) mod NX(N−j) mod N · si,jXj

(1)

This quantity is what we have on the constant term of the polynomial resulting from the de-
cryption of CTin:

B −
k−1∑
i=0

Ai · Si = B −
k−1∑
i=0

N−1∑
j=0

N−1∑
j′=0

ai,jX
j · si,j′Xj′

= X0 ·

b0 −
k−1∑
i=0

N−1∑
j=0

ai,(N−j) mod NX(N−j) mod N · si,jXj


︸ ︷︷ ︸

constant coefficient with the same quantity

+X1 · (b1 − . . .) + · · · +XN−1 · (bN−1 − . . .)︸ ︷︷ ︸
non-constant coefficients

(2)

□

Proof 8 (Correctness for Sample Extraction) We follow the context and in-
puts of Algorithm 11. It is trivial to show that the α-th coefficient of the decryption
of CTin is equal to what is in the constant coefficient of X−α · CTin.

Proof 9 (Theorem 2) The inputs of a GLWE-to-GLWE key switching (Algo-
rithm 9) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M) ⊆
Rkin+1

q,N , where Bin =
∑kin−1

i=0 Ain,i · Sin,i +∆ ·M + Ein, Ain,i =
∑N−1

j=0 ai,j ·Xj ←↩
𝒰(Rq,N) for all i ∈ J0, kJ and Ein =

∑N−1
j=0 ej · Xj, and ej ←↩ 𝒩σ2

in
for all

j ∈ J0, N − 1J.
• The key switch key: KSK = (KSK0, . . . ,KSKkin−1), where KSKi ∈
GLEV

(β,ℓ)

S
[ϕout]
out

(Sin,i) =
(
GLWE

S
[ϕout]
out

(
q
β
Sin,i

)
, · · · ,GLWE

S
[ϕout]
out

(
q
βℓSin,i

))
for all

0 ≤ i < kin. We note by KSKi,j = (Ai,j , Bi,j) ∈ GLWE
S

[ϕout]
out

(
q

βj+1Sin,i

)
, for

all 0 ≤ i < kin and for all 0 ≤ j < ℓ, where Bi,j =
∑kout−1

τ=0 Ai,j,τ · S[ϕout]
out,τ +

q
βj+1Sin,i + Eksk,i,j, and Eksk,i,j =

∑N−1
τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,τ ←↩ 𝒩σ2

ksk
.
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The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M) ⊆
Rkout+1

q,N . By definition, in the decomposition described in Supplementary Mate-

rial C, we have that Dec(β,ℓ) (Ain,i) =
(
Ãin,i,0, · · · , Ãin,i,ℓ−1

)
such that Ãin,i =∑ℓ−1

j=0
q

βj+1 Ãin,i,j, for all 0 ≤ i < kin.

Let define Āin,i = Ain,i − Ãin,i, |āi,τ | = |ai,τ − ãi,τ | < q
2βℓ , āi,τ ∈

r
−q
2βℓ ,

q
2βℓ

r
for

all 0 ≤ τ < N . So we have that their expectations and variances are respectively
E (āi,τ ) = −1

2
, Var (āi,τ ) =

q2

12β2ℓ − 1
12
, E (ãi,τ ) = −1

2
and Var (ãi,τ ) =

β2−1
12

.

Now, we can decrypt:

Bout −
〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ,

(
−S[ϕout]

out , 1
)〉

=

〈
(0, Bin)−

kin−1∑
i=0

Dec(β,ℓ) (Ain,i) · KSKi,
(
−S[ϕout]

out , 1
)〉

=Bin −
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j

〈
KSKi,j ,

(
−S[ϕout]

out , 1
)〉

=Bin −
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j

(
q

βj+1
Sin,i + Eksk,i,j

)

=Bin −
kin−1∑
i=0

Ãin,iSin,i︸ ︷︷ ︸
(I)

−
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Eksk,i,j︸ ︷︷ ︸
(II)

Now let’s focus on the wth coefficient of part (I):

bin,w −
kin−1∑
i=0

(
w∑

τ=0

ãin,i,w−τ · sin,i,τ −
N−1∑

τ=w+1

ãin,i,N+w−τ · sin,i,τ

)

= bin,w −
kin−1∑
i=0

(
w∑

τ=0

(ain,i,w−τ − āin,i,w−τ ) · sin,i,τ

−
N−1∑

τ=w+1

(ain,i,N+w−τ − āin,i,N+w−τ ) · sin,i,τ

)

= ∆mw + ew +

kin−1∑
i=0

(
w∑

τ=0

āin,i,w−τ · sin,i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · sin,i,τ

)

Now let’s focus on the wth coefficient of part (II):

kin−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,i,j,N+w−τ · eksk,i,j,τ

)

We can now isolate the output error for the wth coefficient and remove the message
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coefficient. We obtain that the output error is:

e′w = ew +

kin−1∑
i=0

(
w∑

τ=0

āin,i,w−τ · sin,i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · sin,i,τ

)
︸ ︷︷ ︸

(∗)

+

kin−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,i,j,N+w−τ · eksk,i,j,τ

)

Observe that in the term (∗) there are kinN − ϕin terms of type āin,i,· · sin,i,· that
are equal to 0. So we have:

Var(e′w) = Var(ew) + ϕin · Var (āin,i,· · sin,i,·) + kin · ℓ ·N · Var (ãin,i,j,· · eksk,i,j,·)
= σ2

in + ϕin(Var (āin,i,·)Var (sin,i,·) + Var (āin,i,·)E2 (sin,i,·)

+ E2(āin,i,·)Var (sin,i,·))

+ ℓkinN
(
Var (ãin,i,j,·)Var (eksk,i,j,·) + E2 (ãin,i,j,·)Var (eksk,i,j,·)

+ Var (ãin,i,j,·)E2 (eksk,i,j,·)
)

= σ2
in + ϕin

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var

(
S

[ϕin]
in

)
+ ℓkinN

β2 + 2

12
σ2
ksk.

Proof 10 (Theorem 3) This proof is similar to the proof proposed for the key switch with
partial key (proof 9).
The inputs of secret-product GLWE key switch (Algorithm 10) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M1) ⊆ Rkin+1
q,N , where

Bin =
∑kin−1

i=0 Ain,i · S[ϕin]
in,i +∆ ·M1 +Ein, Ain,i =

∑k−1
j=0 ai,j ·Xj ←↩ 𝒰(Rq,N ) for all i ∈ J0, kJ

and Ein =
∑k−1

j=0 ej ·Xj, and ej ←↩ 𝒩σ2
in
for all j ∈ J0, N − 1J.

• The secret product key switch key : KSK = (KSK0, . . . ,KSKkin), where KSKi ∈
GLEV

(β,ℓ)

S
[ϕout]
out

(
−M2S

[ϕin]
in,i

)
=
(
GLWE

S
[ϕout]
out

(
− qM2

β S
[ϕin]
in,i

)
, · · · ,GLWE

S
[ϕout]
out

(
− qM2

βℓ S
[ϕin]
in,i

))
for

all 0 ≤ i ≤ kin ( for this proof, we define Skin = −1). We note by KSKi,j =

(Ai,j , Bi,j) ∈ GLWE
S

[ϕout]
out

(
− qM2

βj+1S
[ϕin]
in,i

)
, for all 0 ≤ i < kin and for all 0 ≤ j < ℓ, where

Bi,j =
∑kout−1

τ=0 Ai,j,τ · S[ϕout]
out,τ + qM2

βj+1S
[ϕin]
in,i + Eksk,i,j, and Eksk,i,j =

∑N−1
τ=0 eksk,i,j,τ · Xτ and

eksk,i,j,m ←↩ 𝒩σ2
ksk
.

In output we obtain: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M1 ·M2) ⊆ Rkout+1
q,N .

By definition, for any random polynomial Ai, we have Ai =
∑N−1

j=0 ai,j ·Xj where ai,j ∼ U (Zq),(

ai,j ∈
q−q

2 , q
2

q
).

By definition, for the decomposition (describe in Annex C), we have Dec(β,ℓ) (Ai) =(
Ãi,0, · · · , Ãi,ℓ−1

)
such that Ãi =

∑ℓ−1
j=0

q
βj+1 Ãi,j.

Let define Āi = |Ai − Ãi|, āi,j = |ai,j − ˜ai,j | < q
2βℓ ; āi,j ∈

r
−q
2βℓ ,

q
2βℓ

r
. Finally we obtain:

E(āi) = − 1
2 ; Var(āi) =

q2

12β2ℓ − 1
12 ; E(ãi,j) = −

1
2 ; Var(ãi) =

β2−1
12 .

As Bin is seen as an uniform polynomial, we obtain the same results for the variance and the
expectation for B̃in (resp. B̄in) than Ãi (Resp. Āi). In the next calculations, B̃in,j ·Ej will be write

as −Ãin,kin,j · Ekin,j
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Now, we can compute the decryption:

Bout −
〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ;

(
−S[ϕout]

out , 1
)〉

=
〈
Dec(β,ℓ) (Bin) · KSKkin +

kin−1∑
i=0

Dec(β,ℓ) (Ain,i) · KSKi;
(
−S[ϕout], 1

)〉
=M2

(
B̃in −

kin−1∑
i=0

Ãin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

=M2

(
∆M1 + Ein + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

=∆M2 ·M1 +M2

(
Ein + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

By following the same idea as the proof for the key switch (proof 9), we can isolate the noise and
compute his variance. We obtain:

Var

M2

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


= ||M2||22 · Var

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
+ Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


where

Var

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)

= σ2
in +

(
q2

12β2ℓ
− 1

12

)
+ ϕin

(
q2

12β2ℓ
− 1

12

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var

(
S

[ϕin]
in

)
= σ2

in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var

(
S

[ϕin]
in

)
and

Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

 = ℓ(kin + 1)Nσ2
KSK

β2 + 2

12

Proof 11 (Noise Eternal Product in Bootstrapping) The Theorem 2 gave us
the following noise for an external product:

Var

M2

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


= ||M2||22 · Var

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
+ Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j
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where

Var

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)

= σ2
in +

(
q2

12β2ℓ
− 1

12

)
+ ϕin

(
q2

12β2ℓ
− 1

12

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var

(
S

[ϕin]
in

)
= σ2

in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var

(
S

[ϕin]
in

)
and

Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

 = ℓ(kin + 1)Nσ2
in

β2 + 2

12

In TFHE, we use binary key to perform the bootstrap. So we have M ∈ {0, 1}
which represent a bit of the binary key. Var(M2) =

1
4
and E(M2) =

1
2
. Let focus on

the part with the message:

Var

(
M2

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

))

=
(
Var(M2) + E2(M2)

)
Var

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)

+ Var (M2)E2

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)

=
1

2
Var

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)

+
1

4
E2

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
We have:

E2

(
E + B̄in −

kin−1∑
i=0

Āin,i · Sin,i

)
=

(
E(E) + E(B̄in)− E

(
kin−1∑
i=0

Āin,i · Sin,i

))2

=

(
0− 1

2
− ϕinE (āin,i)E (sin,i)

)2

=
1

4

(
−1 + ϕinE

(
S

[ϕin]
in

))2
Finally, for each coefficient after one external product in the bootstrapping, we
obtain the following formula for the noise variance:

σ2
in

2
+

(
q2 − β2ℓ

24β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

8
Var

(
S

[ϕin]
in

)
+

1

16

(
−1 + ϕinE

(
S

[ϕin]
in

)2)
+ ℓ(kin + 1)Nσ2

in

β2 + 2

12
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Proof 12 (Theorem 8) The proof of this theorem follows the same footprint as the
other key switching proofs presented in this paper (e.g., Theorem 2). We generalize
the proof of this theorem to the GLWE case: the LWE result presented in the theorem
follows by taking k0 = n0, k1 = n1 and N = 1.

We consider two shared randomness GLWE secret keys S(0) ≺ S(1) with S(0) =(
S
(0)
0 , . . . , S

(0)
k0−1

)
∈ Rk0

q,N , S
(1) =

(
S
(1)
0 , . . . , S

(1)
k1−1

)
∈ Rk1

q,N , 1 < k0 < k1 and S
(1)
i =

S
(0)
i for all 0 ≤ i < k0. We take in input:

• A GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWES(1) (∆M) ⊆ Rk1+1
q,N , where

Bin =
∑k1−1

i=0 Ain,i · S(1)
i +∆M +Ein, Ain,i =

∑N−1
j=0 ai,j ·Xj ←↩ 𝒰(Rq,N) for all

i ∈ J0, kJ and Ein =
∑N−1

j=0 ej ·Xj, and ej ←↩ 𝒩σ2
1
for all j ∈ J0, N − 1J.

• The key switching key: KSK = (KSK0, . . . ,KSKk1−k0−1), where KSKi ∈
GLEV

(β,ℓ)

S(0)

(
S
(1)
k0+i

)
=
(
GLWES(0)

(
q
β
S
(1)
k0+i

)
, · · · ,GLWES(0)

(
q
βℓS

(1)
k0+i

))
for all

0 ≤ i < k1. We note by KSKi,j = (Ai,j , Bi,j) ∈ GLWES(0)

(
q

βj+1S
(1)
k0+i

)
, for all

0 ≤ i < k1 and for all 0 ≤ j < ℓ, where Bi,j =
∑k0−1

τ=0 Ai,j,τ ·S(0)
τ + q

βj+1S
(1)
k0+i +

Eksk,i,j, and Eksk,i,j =
∑N−1

τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,τ ←↩ 𝒩σ2
ksk
.

The output of this algorithm is computed as:

(Ain,0, . . . , Ain,k0−1, Bin)−
k1−k0−1∑

i=0

Dec(β,ℓ) (Ain,k0+i) · KSKi ∈ GLWES(0) (∆M) ⊆ Rk0+1
q,N

By definition, in the decomposition described in Supplementary Material C, we have

that Dec(β,ℓ) (Ain,i) =
(
Ãin,i,0, · · · , Ãin,i,ℓ−1

)
such that Ãin,i =

∑ℓ−1
j=0

q
βj+1 Ãin,i,j, for all

k0 ≤ i < k1.

Let define Āin,i = Ain,i − Ãin,i, |āi,τ | = |ai,τ − ãi,τ | < q
2βℓ , āi,τ ∈

r
−q
2βℓ ,

q
2βℓ

r
for

all 0 ≤ τ < N . So we have that their expectations and variances are respectively
E (āi,τ ) = −1

2
, Var (āi,τ ) =

q2

12β2ℓ − 1
12
, E (ãi,τ ) = −1

2
and Var (ãi,τ ) =

β2−1
12

.
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Now, we can decrypt:〈
(Ain,0, . . . , Ain,k0−1, Bin)−

k1−k0−1∑
i=0

Dec(β,ℓ) (Ain,k0+i) · KSKi,
(
−S(0), 1

)〉

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j ·
〈
KSKi,j ,

(
−S(0), 1

)〉

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j ·
(

q

βj+1
S
(1)
k0+i + Eksk,i,j

)

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

Ãin,k0+i · S(1)
k0+i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

(
Ain,k0+i − Āin,k0+i

)
· S(1)

k0+i

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

Since S
(0)
i = S

(1)
i for all 0 ≤ i < k0, the equation becomes:

= Bin −
k0−1∑
i=0

Ain,i · S(1)
i −

k1−k0−1∑
i=0

(
Ain,k0+i − Āin,k0+i

)
· S(1)

k0+i

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

= ∆M + Ein+

k1−k0−1∑
i=0

Āin,k0+i · S(1)
k0+i︸ ︷︷ ︸

(I)

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j︸ ︷︷ ︸
(II)

The wth coefficient of part (I) is equal to:

k1−1∑
i=k0

(
w∑

τ=0

āin,i,w−τ · s(1)i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · s(1)i,τ

)

The wth coefficient of part (II) is equal to:

k1−k0−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,k0+i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,k0+i,j,N+w−τ · eksk,i,j,τ

)

We can now isolate the output error for the wth coefficient and remove the message
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coefficient. We obtain that the output error is:

e′w = ein,w +

k1−1∑
i=k0

(
w∑

τ=0

āin,i,w−τ · s(1)i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · s(1)i,τ

)

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,k0+i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,k0+i,j,N+w−τ · eksk,i,j,τ

)

So the variance is:

Var(e′w) = Var(ein,w) + (k1 − k0)NVar
(
āin,i,·s

(1)
i,·

)
+ (k1 − k0)ℓNVar (ãin,i,j,· · eksk,i,j,·)

= σ2
in + (k1 − k0)N

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S(1)

)
+ E2

(
S(1)

))
+

(k1 − k0)N

4
Var

(
S(1)

)
+ (k1 − k0)ℓN

β2 + 2

12
σ2
KSK.

Proof 13 (Theorem 11) Lets consider two shared and partial secret keys such

that S
[ϕout]
out ≺ S

[ϕin]
in . We have S

[ϕout]
out = (Sout,0, · · · , Sout,kout−1), where Sout,kout−1 =∑ϕout−(kout−1)N−1

i=0 sout,kout−1,iX
i we call Sout,kout−1 : S.

We have S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1) such that for all j ∈ J0, kout − 1J, Sout,j =

Sin,j and Sin,kout−1 = S + S̄ where S̄ =
∑N−1

j=ϕout−(kout−1)N sin,kout−1,jX
j.

The inputs of a GLWE key switching with partial & shared randomness keys
(Algorithm 8) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M) ⊆
Rkin+1

q,N , where Bin =
∑kin−1

i=0 Ain,i · Sin,i +∆ ·M + Ein, Ain,i =
∑k−1

j=0 ai,j ·Xj ←↩
𝒰(Rq,N) for all i ∈ J0, kJ and Ein =

∑k−1
j=0 ej · Xj, and ej ←↩ 𝒩σ2

in
for all

j ∈ J0, N − 1J.
• The key switch key: KSK = (KSKkout−1 ,KSKkout · · · ,KSKkin−1), where KSKi ∈
GLEV

(β,ℓ)

S
[ϕout]
out

(Sin,i) =
(
GLWE

S
[ϕout]
out

(
q
β
Sin,i

)
, · · · ,GLWE

S
[ϕout]
out

(
q
βℓSin,i

))
for all kout ≤ i < kin, and KSKkout−1 ∈ GLEV

(β,ℓ)

S
[ϕout]
out

(
S̄
)

=(
GLWE

S
[ϕout]
out

(
q
β
S̄
)
, · · · ,GLWE

S
[ϕout]
out

(
q
βℓ S̄
))

We note by KSKi,j = (Ai,j, Bi,j) ∈ GLWE
S

[ϕout]
out

(
q

βj+1Sin,i

)
, for all kout ≤ i <

kin for all 0 ≤ j < ℓ, where Bi,j =
∑kout−1

τ=0 Ai,j,τ ·Sout,τ +
q

βj+1Sin,i+Eksk,i,j, and

Eksk,i,j =
∑N−1

τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,m ←↩ 𝒩σ2
ksk
.

We note KSKkout−1,j = (Akout−1,j, Bkout−1,j) ∈ GLWE
S

[ϕout]
out

(
q

βj+1 S̄
)
for all 0 ≤

j < ℓ, where Bkout−1,j =
∑kout−1

τ=0 Akout−1,j,τ · Sout,τ + q
βj+1 S̄ + Eksk,kout−1,j, and

Eksk,kout−1,j =
∑N−1

τ=0 eksk,kout−1,j,τ ·Xτ and eksk,kout−1,j,m ←↩ 𝒩σ2
ksk
.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M) ⊆
Rkout+1

q,N .
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By definition, for any polynomial Ain,i, we have the decomposition (described in

Supplementary Material C), Dec(β,ℓ) (Ain,i) =
(
Ãin,i,1, · · · , Ãin,i,ℓ

)
such that Ãin,i =∑ℓ−1

j=0
q

βj+1 Ãin,i,j. Now, we can decrypt:

Bout −
〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ,

(
−S[ϕout]

out , 1
)〉

=
〈
(Ain,0, · · · , Ain,kout−1, 0 · · · , 0, Bin)−Dec(β,ℓ) (Ain,kout−1)KSKkout−1

−
kin−1∑
i=kout

Dec(β,ℓ) (Ain,i)KSKi,
(
−S[ϕout]

out , 1
)〉

= Bin −
kout−1∑
i=0

Ain,iSout,i −
ℓ−1∑
j=0

Ãin,kout−1,j

〈
KSKkout−1,j ,

(
−S[ϕout]

out , 1
)〉

−
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j

〈
KSKi,j ,

(
−S[ϕout]

out , 1
)〉

= Bin −
kout−2∑
i=0

Ain,iSin,i −Ain,kout−1S −
ℓ−1∑
j=0

Ãin,kout−1,j

(
q

βj+1
S̄ + Eksk,kout−1,j

)

−
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j

(
q

βj+1
Sin,i + Eksk,i,j

)

= Bin −
kout−1∑
i=0

Ain,iSin,i −Ain,kout−1S︸ ︷︷ ︸
(I)

−Ãin,kout−1S̄ −
ℓ−1∑
j=0

Ãin,kout−1,j · Eksk,kout−1,j︸ ︷︷ ︸
(II)

−
kin−1∑
i=kout

Ãin,iSin,i −
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j · Eksk,i,j︸ ︷︷ ︸
(III)

After decrypting, we can split the previous result in three distinct part and analyze
the noise provide by each of them. The first part of the result (term (I)) is only
composed of the noise present in the Bin.
The second part of the result (term (II)) can be seen as a key switching with partial
key (Algorithm 9) from S̄ to Sout. The proof of noise add by this part follows the
proof of Theorem 2.
As for the second part of the result, the third part of the result (term (III)) can be
seen as a key switching with partial key (Algorithm 9) from (Sin,kout , · · · , Sin,kin−1) to
Sout. The proof of noise add by this part follows as well the proof of Theorem 2.
By adding this different noises, we will obtain Var(eout) = Var(I)+Var(II)+Var(III)
where :
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Var(I) = σ2
in

Var(II) = (Nkout − ϕout)

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

Nkout − ϕout

4
Var

(
S

[ϕin]
in

)
+ ℓNσ2

ksk

β2 + 2

12

Var(III) = (ϕin −Nkout)

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin −Nkout
4

Var
(
S

[ϕin]
in

)
+ ℓ(kin − kout − 1)Nσ2

ksk

β2 + 2

12

To conclude we have :

Var(eout) = σ2
in + (ϕin − ϕout)

(
q2 − β2ℓ

12β2ℓ

)(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin − ϕout

4
Var
(
S

[ϕin]
in

)
+ ℓ(kin − kout)Nσ2

ksk

β2 + 2

12

□

C Algorithms From Literature

In this section we recall a few useful algorithms from the literature such as the
GLWE-to-GLWE key switch with and without a secret product, and the decompo-
sition algorithm.

Decomposition Algorithms. Let β ∈ N∗ be a decomposition base and ℓ ∈ N∗

be a decomposition level. The decomposition algorithm with respect to β and ℓ is
noted Dec(β,ℓ): it takes as input an integer x ∈ Zq and outputs a decomposition
vector of integers (x1, · · · , xℓ) ∈ Zℓ

q such that:〈
Dec(β,ℓ)(x),

(
q

β
· · · q

βℓ

)〉
=

⌊
x · β

ℓ

q

⌉
· q
βℓ
∈ Zq.

Usually, the decomposition is done starting from the most significant bits. When
applying the decomposition on a vector of integers, the result is a vector of decom-
position vectors of integers.

Note that it is possible to decompose an integer polynomials X ∈ Rq with this
algorithm i.e., 〈

Dec(β,ℓ)(X),

(
q

β
· · · q

βℓ

)〉
=

⌊
X · β

ℓ

q

⌉
· q

βℓ
∈ Rq

After applying this kind of decomposition on a vector of polynomials, the output
is a vector of vector of polynomials.
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D Algorithms in Details

In this section we give details about some algorithms introduced in this paper, such
as the different sample extraction algorithms (and its inverse) when dealing with
partial GLWE secret keys, the enlarging/shrinking key switch when dealing with
shared randomness secret keys, and the GLWE-to-GLWE key switch when dealing
with both partial and shared randomness secret keys.

E Parameter Sets

In this section we provide the formulae to compute the size of the key switching
keys and bootstrapping keys, and we also give the most important parameter sets
we used for our experiments. They are displayed in Tables 4, 5 and 6. To compute
the filling amount of the FFT-KS ϕin of the FFT-based shrinking key switch, one
needs to compute ϕPBS − n.

E.1 Size of Public Material

The size (in MB) of the traditional LWE-to-LWE key switching key Size (KSK) is
computed with the following formula:

Size (KSK) := (n+ 1) · ℓKS · k ·N · 2−17

The size (in MB) of the traditional bootstrapping key Size (BSK) is computed
with the following formula:

Size (BSK) := n · ℓPBS · (k + 1)2 ·N · 2−17

The size (in MB) of the FFT-Shrinking keyswitching key Size (FFT-KS) is com-
puted with the following formula:

Size (FFT-KS) := (kout + 1) · ℓKS · kin ·N · 2−17

The size (in MB) of the Stair keyswitching key Size (Stair-KS) with 2 steps is
computed with the following formula:

Size (Stair-KS) : = ((nKS + 1) · ℓKS1 · (ϕ− nKS)

+ (n+ 1) · ℓKS2 · (nKS − n)) · 2−17

For the shrinking key switch, it is enough to use one of the formulae above
and changing some parameters. For instance, for an LWE-to-LWE shrinking (Algo-
rithm 5) key switch one uses Size (KSK) with n = nin − nout.

E.2 Parameter Sets

The following parameter sets are for a failure probability of pfail ≤ 2−13.9.
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Figure 2: Size of public material

Figure 3: Comparison between traditional CJP and two variants of CJP based
on both partial secret keys and shared randomness secret keys. More details in
Section 6.3 and exact plotted values in Tables 4, 5, 6 and 7 in Supplementary
Material.
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Algorithm 8: CTout ← GlweKeySwitch′(CTin,KSK)

Context:



S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

S
[ϕout]
out = (Sout,0, · · · , Sout,kout−1)

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

S
[ϕout]
out ≺ S

[ϕin]
in : shared randomness secret keys (Definition 9)

S
[ϕin]
in ̸= S

[ϕout]
out and kout ≤ kin

k ∈ {kout − 1, kout} such that ∀0 ≤ i < k, Sin,i = Sout,i

P ∈ Rq,N

CTin = (A0, · · · , Akin−1, B) ∈ Rkin+1
q,N

CTi,j ∈ GLWE
S

[ϕout]
out

(
q
βj · Sin,i

)
, for kout ≤ i < kin and 0 ≤ j ≤ ℓ− 1

if k = kout − 1 :

CTk,j ∈ GLWE
S

[ϕout]
out

(
q
βj · (Sin,k − Sout,k)

)
, for 0 ≤ j ≤ ℓ− 1

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

{
CTin ∈ GLWE

S
[ϕin]

in

(P )

KSK = {Ki = (CTi,0, · · · ,CTi,ℓ−1)}k≤i<kin

Output: CTout ∈ GLWE
S

[ϕout]
out

(P )

/* Keep the B part and the first part of the mask */

1 Set CTout := (A0, · · · , Akout−1, B) ∈ Rkout+1
q,N

/* Different public material for this potential partial-shared secret key

polynomial */

2 if k = kout − 1 then

3 Update CTout = CTout −
〈
Kk,Dec(β,ℓ) (Ak)

〉
4 for i ∈ Jkout; kin − 1K do

/* Decompose the mask */

5 Update CTout = CTout −
〈
Ki,Dec(β,ℓ) (Ai)

〉
6 return CTout

Key Type Size Ring Distribution Hamming Weight

Uniform Binary k Rq,N 𝒰({0, 1}) unknown
Uniform Ternary k Rq,N 𝒰({−1, 0, 1}) unknown

Gaussian k Rq,N 𝒩µσ
2 unknown

Small Uniform k Rq,N 𝒰(Zα) unknown
Uniform k Rq,N 𝒰(Zq) unknown

FHW Binary k Rq,N ℱℋ𝒲 (h, {0, 1}) h
FHW Ternary k Rq,N ℱℋ𝒲 (h, {−1, 0, 1}) h

Table 3: Comparison between secret key types in terms of public knowledge.
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Algorithm 9: CTout ← GlweKeySwitch(CTin,KSK)

Context:



(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:


CTin = (A0, · · · , Akin−1, B) ∈ GLWE

S
[ϕin]

in

(P ) ⊆ Rkin+1
q,N , with P ∈ Rq,N

KSK = {KSKi = {KSKi,j}0≤j≤ℓ−1}0≤i≤kin−1 , with

KSKi,j ∈ GLWE
S

[ϕout]
out

(
q
βj · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

Output: CTout ∈ GLWE
S

[ϕout]
out

(P )

/* Keep the B part */

1 Set CTout := (0, · · · , 0, B) ∈ Rkout+1
q,N

2 for i ∈ J0; kin − 1K do

/* Decompose the mask */

3 Update CTout = CTout −
〈
Ki,Dec(β,ℓ) (Ai)

〉
4 return CTout

Algorithm 10: CTout ← SecretProductGlweKeySwitch(CTin,KSK)

Context:



S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

Q ∈ Rq,N

CTin = (A0, · · · , Akin−1, B) ∈ Rkin+1
q,N

CTi,j ∈ GLWE
S

[ϕout]
out

(
q
βj ·Q · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

CTkin,j ∈ GLWE
S

[ϕout]
out

(
q
βj ·Q

)
, for 0 ≤ j ≤ ℓ− 1

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

{
CTin ∈ GLWE

S
[ϕin]

in

(P ) , with P ∈ Rq,N

KSK = {Ki = (CTi,0, · · · ,CTi,ℓ−1)}0≤i≤kin

Output: CTout ∈ GLWE
S

[ϕout]
out

(Q · P )

/* Decompose the B part */

1 Set CTout =
〈
Kkin ,Decomp(β,ℓ) (B)

〉
2 for i ∈ J0; k − 1K do

/* Decompose the mask */

3 Update CTout = CTout −
〈
Ki,Decomp(β,ℓ) (Ai)

〉
4 return CTout
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Algorithm 11: ctout ← SampleExtract (CTin, α)

Context:


S[ϕ] ∈ Rk

q,N : a partial secret key (Definition 6)

(k − 1)N + 1 ≤ ϕ ≤ kN : filling amount of the partial secret key

s̄ ∈ Zϕ : the flattened version of S[ϕ] (Definition 7)

P :=
∑N−1

i=0 piX
i ∈ Rq,N

Input:

{
CTin ∈ GLWES[ϕ] (P ) : a GLWE encryption of the plaintext P

0 ≤ α ≤ N − 1 : the coefficient to extract

Output: ctout ∈ LWEs̄ (pα) : an LWE encryption of the plaintext pα

/* Rotation of the GLWE ciphertext */

1 set CT := X−α · CTin

/* Call to Algorithm 2 */

2 return ctout := ConstantSampleExtract (CT)
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p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

1 ✗
traditional

n 588
time 5.43

LWE-to-LWE

log2 (σn) −12.66 log2 (βPBS) 15 log2 (βKS) 3
k 5

log2 (N) 8 ℓPBS 1 ℓKS 3 size 58.6
log2 (σk·N) −31.07

n 532 nKS 782
log2 (σn) −11.17

log2 (βPBS) 15
log2 (σnKS

) −17.82 time 3.78

1 ✓
2 steps k 5 log2 (βKS1) 9
(Alg. 6) log2 (N) 8

ℓPBS 1
ℓKS1 1

ϕ 1280 log2 (βKS2) 2 size 44.45
log2 (σϕ) −31.07 ℓKS2 4

FFT-based

n 534
kin 3

(Alg. 7)

log2 (σn) −11.22
log2 (βPBS) 15 kout 3

time 3.27

1 ✓
k 5

log2 (NKS) 8
log2 (N) 8

ℓPBS 1 log2 (βKS) 1
ϕ 1280

ℓKS 9
size 37.76

log2 (σϕ) −31.07

2 ✗
traditional

n 668
time 8.75

LWE-to-LWE

log2 (σn) −14.79 log2 (βPBS) 18 log2 (βKS) 4
k 6

log2 (N) 8 ℓPBS 1 ℓKS 3 size 87.45
log2 (σk·N) −37.88

n 576 nKS 896
log2 (σn) −12.34

log2 (βPBS) 18
log2 (σnKS

) −20.85 time 6.28

2 ✓
2 steps k 6 log2 (βKS1) 10
(Alg. 6) log2 (N) 8

ℓPBS 1
ℓKS1 1

ϕ 1536 log2 (βKS2) 2 size 66.55
log2 (σϕ) −37.88 ℓKS2 5

FFT-based

n 590
kin 1

(Alg. 7)

log2 (σn) −12.71
log2 (βPBS) 18 kout 1

time 5.32

2 ✓
k 6

log2 (NKS) 10
log2 (N) 8

ℓPBS 1 log2 (βKS) 1
ϕ 1536

ℓKS 11
size 56.64

log2 (σϕ) −37.88

3 ✗
traditional

n 720
time 12.2

LWE-to-LWE

log2 (σn) −16.17 log2 (βPBS) 21 log2 (βKS) 4
k 4

log2 (N) 9 ℓPBS 1 ℓKS 3 size 104.1
log2 (σk·N) −51.49

n 648 nKS 944
log2 (σn) −14.25

log2 (βPBS) 18
log2 (σnKS

) −22.13 time 6.22

3 ✓
2 steps k 3 log2 (βKS1) 7
(Alg. 6) log2 (N) 9

ℓPBS 1
ℓKS1 2

ϕ 1536 log2 (βKS2) 2 size 57.83
log2 (σϕ) −37.88 ℓKS2 6

FFT-based

n 686
kin 1

(Alg. 7)

log2 (σn) −15.27
log2 (βPBS) 18 kout 1

time 5.12

3 ✓
k 3

log2 (NKS) 10
log2 (N) 9

ℓPBS 1 log2 (βKS) 1
ϕ 1536

ℓKS 13
size 43.08

log2 (σϕ) −37.88

Table 4: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.
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p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

4 ✗
traditional

n 788
time 12.6

LWE-to-LWE

log2 (σn) −17.98 log2 (βPBS) 23 log2 (βKS) 4
k 2

log2 (N) 10 ℓPBS 1 ℓKS 3 size 92.39
log2 (σk·N) −51.49

n 664 nKS 1126
log2 (σn) −14.68

log2 (βPBS) 22
log2 (σnKS

) −26.97 time 9.35

4 ✓
2 steps k 2 log2 (βKS1) 13
(Alg. 6) log2 (N) 10

ℓPBS 1
ℓKS1 1

ϕ 2048 log2 (βKS2) 2 size 68.68
log2 (σϕ) −51.49 ℓKS2 6

FFT-based

n 682
kin 3

(Alg. 7)

log2 (σn) −15.16
log2 (βPBS) 23 kout 3

time 7.38

4 ✓
k 2

log2 (NKS) 9
log2 (N) 10

ℓPBS 1 log2 (βKS) 1
ϕ 2048

ℓKS 14
size 48.61

log2 (σϕ) −51.49

5 ✗
traditional

n 840
time 20.0

LWE-to-LWE

log2 (σn) −19.36 log2 (βPBS) 23 log2 (βKS) 3
k 1

log2 (N) 11 ℓPBS 1 ℓKS 6 size 131.3
log2 (σk·N) −51.49

n 732 nKS 1171
log2 (σn) −16.49

log2 (βPBS) 23
log2 (σnKS

) −28.17 time 13.8

5 ✓
2 steps k 1 log2 (βKS1) 9
(Alg. 6) log2 (N) 11

ℓPBS 1
ℓKS1 2

ϕ 2048 log2 (βKS2) 2 size 78.62
log2 (σϕ) −51.49 ℓKS2 7

FFT-based

n 766
kin 3

(Alg. 7)

log2 (σn) −17.39
log2 (βPBS) 23 kout 3

time 11.0

5 ✓
k 1

log2 (NKS) 9
log2 (N) 11

ℓPBS 1 log2 (βKS) 1
ϕ 2048

ℓKS 15
size 48.58

log2 (σϕ) −51.49

6 ✗
traditional

n 840
time 55.6

LWE-to-LWE

log2 (σn) −19.36 log2 (βPBS) 14 log2 (βKS) 3
k 1

log2 (N) 12 ℓPBS 2 ℓKS 5 size 341.4
log2 (σk·N) −62.00

n 748 nKS 1313
log2 (σn) −16.91

log2 (βPBS) 14
log2 (σnKS

) −31.94 time 44.3

6 ✓
2 steps k 1 log2 (βKS1) 16
(Alg. 6) log2 (N) 12

ℓPBS 2
ℓKS1 1

ϕ 2443 log2 (βKS2) 2 size 224.2
log2 (σϕ) −62.00 ℓKS2 8

FFT-based

n 774
kin 1

(Alg. 7)

log2 (σn) −17.61
log2 (βPBS) 14 kout 1

time 41.1

6 ✓
k 1

log2 (NKS) 11
log2 (N) 12

ℓPBS 2 log2 (βKS) 1
ϕ 2443

ℓKS 15
size 194.0

log2 (σϕ) −62.00

Table 5: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.
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New Secret Keys for Enhanced Performance in (T)FHE

p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

7 ✗
traditional

n 896
time 129.0

LWE-to-LWE

log2 (σn) −20.85 log2 (βPBS) 15 log2 (βKS) 3
k 1

log2 (N) 13 ℓPBS 2 ℓKS 6 size 784.4
log2 (σk·N) −62.00

n 776 nKS 1332
log2 (σn) −17.66

log2 (βPBS) 15
log2 (σnKS

) −32.45 time 101.0

7 ✓
2 steps k 1 log2 (βKS1) 10
(Alg. 6) log2 (N) 13

ℓPBS 2
ℓKS1 2

ϕ 2443 log2 (βKS2) 1 size 463.3
log2 (σϕ) −62.00 ℓKS2 16

FFT-based

n 818
kin 1

(Alg. 7)

log2 (σn) −18.78
log2 (βPBS) 14 kout 1

time 90.3

7 ✓
k 1

log2 (NKS) 11
log2 (N) 13

ℓPBS 2 log2 (βKS) 1
ϕ 2443

ℓKS 16
size 409.5

log2 (σϕ) −62.00

8 ✗
traditional

n 968
time 415

LWE-to-LWE

log2 (σn) −22.77 log2 (βPBS) 11 log2 (βKS) 3
k 1

log2 (N) 14 ℓPBS 3 ℓKS 6 size 2179
log2 (σk·N) −62.00

n 816 nKS 1359
log2 (σn) −18.72

log2 (βPBS) 11
log2 (σnKS

) −33.17 time 323

8 ✓
2 steps k 1 log2 (βKS1) 9
(Alg. 6) log2 (N) 14

ℓPBS 3
ℓKS1 2

ϕ 2443 log2 (βKS2) 1 size 1304
log2 (σϕ) −62.00 ℓKS2 17

FFT-based

n 854
kin 1

(Alg. 7)

log2 (σn) −19.73
log2 (βPBS) 11 kout 1

time 306

8 ✓
k 1

log2 (NKS) 11
log2 (N) 14

ℓPBS 3 log2 (βKS) 1
ϕ 2443

ℓKS 18
size 1282

log2 (σϕ) −62.00

9 ✗
traditional

n 1024
time 1340

LWE-to-LWE

log2 (σn) −24.26 log2 (βPBS) 9 log2 (βKS) 3
k 1

log2 (N) 15 ℓPBS 4 ℓKS 7 size 5890
log2 (σk·N) −62.00

n 860 nKS 1388
log2 (σn) −19.89

log2 (βPBS) 8
log2 (σnKS

) −33.94 time 1010

9 ✓
2 steps k 1 log2 (βKS1) 10
(Alg. 6) log2 (N) 15

ℓPBS 4
ℓKS1 2

ϕ 2443 log2 (βKS2) 1 size 3525
log2 (σϕ) −62.00 ℓKS2 18

FFT-based

n 902
kin 1

(Alg. 7)

log2 (σn) −21.01
log2 (βPBS) 8 kout 1

time 1003

9 ✓
k 1

log2 (NKS) 11
log2 (N) 15

ℓPBS 4 log2 (βKS) 1
ϕ 2443

ℓKS 18
size 3609

log2 (σϕ) −62.00

Table 6: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.
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p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

10 ✗
traditional

n 1096
time 4710

LWE-to-LWE

log2 (σn) −26.17 log2 (βPBS) 6 log2 (βKS) 2
k 1

log2 (N) 16 ℓPBS 6 ℓKS 12 size 19730
log2 (σk·N) −62.00

n 904 nKS 1417
log2 (σn) −21.06

log2 (βPBS) 6
log2 (σnKS

) −34.71 time 3620

10 ✓
2 steps k 1 log2 (βKS1) 11
(Alg. 6) log2 (N) 16

ℓPBS 6
ℓKS1 2

ϕ 2443 log2 (βKS2) 1 size 10940
log2 (σϕ) −62.00 ℓKS2 19

FFT-based

n 938
kin 3

(Alg. 7)

log2 (σn) −21.97
log2 (βPBS) 6 kout 3

time 3603

10 ✓
k 1

log2 (NKS) 9
log2 (N) 16

ℓPBS 6 log2 (βKS) 1
ϕ 2443

ℓKS 20
size 11260

log2 (σϕ) −62.00

11 ✗
traditional

n 1132
time 43900

LWE-to-LWE

log2 (σn) −27.13 log2 (βPBS) 2 log2 (βKS) 2
k 1

log2 (N) 17 ℓPBS 20 ℓKS 13 size 105300
log2 (σk·N) −62.00

n 984 nKS 1471
log2 (σn) −23.19

log2 (βPBS) 3
log2 (σnKS

) −36.15 time 18000

11 ✓
2 steps k 1 log2 (βKS1) 11
(Alg. 6) log2 (N) 17

ℓPBS 12
ℓKS1 2

ϕ 2443 log2 (βKS2) 1 size 47330
log2 (σϕ) −62.00 ℓKS2 21

FFT-based

n 1018
kin 3

(Alg. 7)

log2 (σn) −24.10
log2 (βPBS) 3 kout 3

time 19450

11 ✓
k 1

log2 (NKS) 9
log2 (N) 17

ℓPBS 13 log2 (βKS) 1
ϕ 2443

ℓKS 22
size 52940

log2 (σϕ) −62.00

Table 7: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.
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