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Abstract. A number of supersingular isogeny based cryptographic pro-
tocols require the endomorphism ring of the initial elliptic curve to be
either unknown or random in order to be secure. To instantiate these
protocols, Basso et al. recently proposed a secure multiparty protocol
that generates supersingular elliptic curves defined over Fp2 of unknown
endomorphism ring as long as at least one party acts honestly. However,
there are many protocols that specifically require curves defined over Fp,
for which the Basso et al. protocol cannot be used. Also, the simple solu-
tion of using a signature scheme such as CSI-FiSh or SeaSign for proof of
knowledge either requires extensive precomputation of large ideal class
groups or is too slow for everyday applications.
In this paper, we present CSIDH-SCG, a new multiparty protocol that
generates curves of unknown endomorphism ring defined over Fp. This
protocol relies on CSIDH-ROIP, a new CSIDH based proof of knowledge.
We also present CSIDH-CR, a multiparty algorithm that be used in
conjunction with CSIDH-SCG to generate a random curve over Fp while
still keeping the endomorphism ring unknown.

Keywords: Elliptic curves · Supersingular curves · CSIDH · Multiparty
computation

1 Introduction

Recent attacks on SIDH by Castryck, Decru, Maino, Martindale and Robert
[6,14,18] have shown that torsion point information can be enough to find an
isogeny between two supersingular elliptic curves. It follows that, for an isogeny
based scheme to be secure, it must avoid giving too much information about its
elliptic curves and isogenies.

One such piece of information is the endomorphism ring of the starting elliptic
curve. In fact, the first break by Wouter Castryck and Thomas Decru [6] exploits
this knowledge. We also note that Petit’s torsion point attacks on SIDH [17]
also need a known endomorphism ring. Since many current attacks on SIDH all
make use of the endomorphism ring, it stands to reason that, unless necessary,
a cryptographic protocol should avoid working on elliptic curves with a known
endomorphism ring if possible. In addition, a number of existing schemes require



a supersingular curve of unknown endomorphishm ring. To solve this issue, Basso
et al. [3] proposed a multiparty protocol that generates a supersingular elliptic
curve defined over Fp2 as long as at least one participant acts honestly.

Although the Basso et al. protocol solves the problem in general, there remain
a number of schemes that explicitly require a supersingular curve of unknown
endomorphism ring defined over Fp. As mentioned in [3], some examples of such
protocols include CSIDH-based Verifiable Delay Functions [10], as well as Delay
Encryption algorithms [5] that need to start with a random curve over Fp. Such
curves are also required for some Oblivious Transfer protocols [13] and dual
mode PKE [1]. For such curves, the protocol found in [3] cannot be directly
applied, as random walks in the supersingular isogeny graph have a negligible
probability of ending on a curve defined over Fp. Basso et al. [3] mention possible
solutions, but they all come with important issues as they either leak too much
information, require specific parameter sets or are too inefficient for everyday
use. Another possible solution was proposed by Moriya, Takashima and Tagaki
[15]. However, its security proof only deals with honest but curious participants
(prover and verifier), and does not take into account the case where malicious
adversaries send malformed data. Finally, a recent paper by Atapoor et al. [2]
presents a distributed key generation protocol for CSIDH, but this situation
differs from our scenario in that we are not trying to retain collective knowledge
of any associated secret key.

In this paper, we present CSIDH-SCG, a new multiparty protocol that gen-
erates supersingular elliptic curves defined over Fp of unknown endomorphism
ring as long as at least one of the participating parties is honest. CSIDH-SCG
does not require the knowledge of any ideal class group, is efficient even for
large groups, and resists active adversaries. We also present CSIDH-CR, a mul-
tiparty protocol taking the secure curve outputted by CSIDH-SCG and using
it to generate a random supersingular elliptic curve of unknown endomorphism
ring.

Section 2 presents the basic definitions and assumptions used in this paper.
Past results related to this problem can be found in Section 3. We present two
new CSIDH based zero-knowledge proofs in Section 4. Section 5 presents CSIDH-
SCG, a new multiparty protocol generating curves of unknown endomorphism
ring over Fp, as well as CSIDH-ASCG, a variation avoiding the use of a random
oracle function at the cost of an additional round of interaction. In Section 6, we
present CSIDH-CR, which is used in addition to CSIDH-SCG or CSIDH-ASCG
for cases where the desired curve needs to be random. Finally, Section 7 contains
a brief summary of the results and possible avenues of further work.

2 Definitions and Assumptions

In this section, we present the various definitions and assumptions that are used
at different points in this paper, as well as heuristics to justify said assumptions.



Since the protocols in this paper work with elliptic curves defined over Fp

when the associated ideal class group is unknown, we start by presenting the
necessary definitions for the sampling method used in CSIDH [7].

Notation 1 Let p be a prime number and let E be a known supersingular elliptic
curve defined over Fp. We denote by C the ideal class group of the endomorphism
ring of E.

Notation 2 In cases where C is unknown, let S = {l1, . . . , lt} ⊆ C denote a
generating set of C consisting of prime ideals of small (relatively prime) norm.

Definition 3. Let B be a positive integer. Define CSIDHSample(S, B) to be
the procedure which outputs a random element of C using the following algorithm:

CSIDHSample(S, B)

(e1, . . . , et)←$ [−B,B]t

a←
t∏

i=1

leii

return a

We also need a basic notation for a set of nonces.

Notation 4 Let N denote a known large set of nonces.

Similarly to Basso et al. [3], we use a chain of secret isogenies to obtain an
elliptic curve of unknown endomorphism ring. This idea is based on Wesolowski’s
theorem.

Theorem 1 ([19,20]). Let IsogenyPath be the problem where, given two super-
singular elliptic curves E and F , one must compute an isogeny ϕ : E → F . Let
EndRing be the problem of computing the endomorphism ring of a supersingular
elliptic curve E. Then IsogenyPath and EndRing can be polynomially reduced to
each other.

Since the goal of this paper is to generate elliptic curves of unknown endo-
morphism ring, we have to assume that computing such a ring is hard. With the
above theorem, we will often use the problems of computing an isogeny and the
problem of computing an endomorphism ring interchangeably and therefore also
assume that computing an isogeny between two curves is hard.

To be more precise, the isogeny problem on which we base our protocol
requires a stronger assumption.

Assumption 1 ([7]) Let E be a supersingular elliptic curve defined over Fp of
unknown endomorphism ring. Given a ⋆E and b ⋆E with unknown a, b ∈ C, the
CCISDH problem is to compute a ⋆ b ⋆ E. We assume that this problem is hard.



The above assumption is required for (and equivalent to) the one-way security
of CSIDH, and is therefore already widely accepted for many protocols that work
with isogenies over Fp. We also note that Assumption 1 implies that computing
isogenies between two curves over Fp is hard.

Our second assumption is an adaptation of the Knowledge-of-Exponent As-
sumption (KEA) that was first described by Damg̊ard [8]. This assumption was
then used to create a classical Diffie-Hellman protocol by Wu and Stinson [21].

Assumption 2 Let E be a supersingular elliptic curve defined over Fp. For
any probabilistic polynomial-time (PPT) A that takes as input E and b ⋆ E,
where b is sampled using CSIDHSample(S, B), and which produces as output
a pair of supersingular elliptic curves over Fp (F, F ′), there exists probabilistic
polynomial-time extractor E which takes the same input and outputs the same
pair (F, F ′), along with a, such the probability that F ′ = b ⋆ F and a ⋆ E ̸= F is
negligible.

In other words, we assume that there is no pair of supersingular elliptic curves
over Fp such that computing an isogeny between them is hard but computing a
random CSIDH exchange involving them is easy. The original KEA is used in the
context of classical Diffie-Hellman, while this new version is applied to CSIDH.
While this assumption is new in the context of post-quantum cryptography, there
is currently no known way to attack it.

Our third assumption simply states that we have access to a function H with
some strong security properties. This same assumption is used by Basso et al. [3]
for generating a multiparty protocol for secure curves over Fp2 .

Assumption 3 ([3]) We assume the existence of a function H which is a sta-
tistically hiding and computationally binding commitment scheme on the set of
binary strings. Denote by H the codomain of H.

The above three assumptions are enough to obtain an efficient protocol gen-
erating supersingular elliptic curves of unknown endomorphism rings. However,
we can obtain a more efficient protocol using a random oracle function.

Assumption 4 Assume that W is a random oracle function. Let W be the
codomain of W . We also assume that W is large enough for collisions to be
unfeasible to find and that the mapping of any input by W can be efficiently
computed.

To be more precise, for this paper, we require that, for any function f with
domain X, the problem of distinguishing between (f(x),W (x)) for a random
x ∈ X and (f(x), r), where r is a uniformly random element of H is equivalent
to the problem of computing x ∈ X when given f(x).

In cases where we use H or W on arbitrary data, we implicitly assume that
this data is encoded in the form of a binary string using a suitable encoding
scheme.



The above assumptions are required for most of our protocols. These as-
sumptions are enough for all our protocols except CSIDH-CR. Hence, if we only
need to generate supersingular elliptic curves with unknown endomorphism rings
over Fp, we do not need to invoke Assumption 5 below. On the other hand, for
our results on random curve generation (Section 6), we require the following
assumption, which was considered in the SeaSign paper [9, p.766].

Assumption 5 The output distribution of CSIDHSample(S, B) is indistin-
guishable from the uniform distribution on the ideal class group C of End(E).

3 Existing Solutions

In this section, we present a brief overview of possible ways to generate supersin-
gular elliptic curves of unknown endomorphism ring that were either presented
or mentioned in previous papers.

3.1 Signature Schemes

In the model used by Basso et al. [3], we have n parties P1, . . . ,Pn whose goal
is to generate a supersingular elliptic curve of unknown endomorphism ring. A
starting elliptic curve E0 is provided.

Their idea is to have each party Pi in turn compute a random isogeny ϕi :
Ei−1 → Ei and publish Ei. If all parties act honestly and do not share their secret
isogenies, then the endomorphism ring is unknown to them all by Theorem 1.

Of course, the above is not sufficient against dishonest adversaries, as noth-
ing stops Pn from choosing the curve of their choice as En and lying about
their isogeny. To solve this issue, [3] proposed having each party prove their
knowledge of their claimed isogeny by publishing a Fiat-Shamir signature of a
zero-knowledge proof.

Using a signature as a proof of knowledge has the advantage of keeping
the number of required interactions to a minimum. The one proposed in [3], in
particular, is fast enough for the desired application over Fp2 .

However, the zero-knowledge proof proposed in [3] reveals the degree of the
secret isogeny. While it does not create issues when working over Fp2 , this
leaks too much information when dealing with isogenies defined over Fp. This
is because isogenies defined over Fp are usually sampled using CSIDHSample.
Therefore, the isogeny degree can be used to efficiently compute |ei| and this
knowledge massively reduces the possible key space. Because of this, a different
signature scheme would need to be used to prove the knowledge of the claimed
isogenies.

Basso et al. mention the possible use of either SeaSign [9] or CSI-FiSh [4] as
possible replacement signatures. While both work in theory, they each come with
issues limiting their practical applications. While SeaSign is a zero-knowledge
signature, its current computation times are way too long to be used for everyday
applications. However, it is worth noting that, in cases where a single secure



curve needs to be generated by parties that can afford to wait multiple hours,
for example when generating secure parameters for a scheme, using SeaSign is a
possible solution.

On the other hand, CSI-FiSh can potentially be both zero-knowledge and
efficient. However, it requires full knowledge of the ideal class group associated
with the chosen parameter set. Currently, the parameter sets for which the ideal
class group is known are pretty limited and, as discussed by Panny [16], com-
puting new ones would require an extensive amount of computation even with
access to a quantum computer. While recent results presented in the SCALLOP
paper [11] have expanded the number of parameter sets that can be used today,
the complexity of finding new ones is still super-polynomial.

3.2 Multiparty Key Generation

Two other possible ideas to generate secure curves defined over Fp were proposed
by Moriya, Takashima and Tagaki [15]. However, the adversarial model in that
paper is honest but curious, and this creates issues when trying to adapt their
techniques when dealing with active adversaries.

The core idea of the protocol, given n parties P1, . . . ,Pn, is to have n chains
of isogenies that all loop over the same set of ideal class group elements so that,
for each party, there is a chain where they are the last to apply their group
action. This then implies that each party can trust the security of one chain and
that, since the commutativity of the ideal class group implies that all chains end
at the same curve, they can all trust the security of the final curve.

While the security of the above scheme is not proven against active adver-
saries in [15], such a proof might be possible. However, another issue is that the
number of required interactions grows quadratically in proportion to the number
of parties, making the scheme inefficient when working with a large number of
parties.

4 A New Zero-Knowledge Proof

As mentioned in the previous session, there is currently no known fast CSIDH
based signature scheme that works with any parameter set without heavy pre-
computation or the use of a quantum computer.

To get around this issue, we propose replacing the signature part of the
multiparty protocol with an interactive zero-knowledge proof.

The following proposal, CSIDH Random Oracle Interactive Proof (CSIDH-
ROIP), requires Assumptions 1, 4 and 2 for its security proof. Note that, in
contrast to Moriya et al. [15], we allow for malicious parties.

Definition 5 (CSIDH-ROIP). Let a prover P know a secret a ∈ C with as-
sociated public data (E,EP := a ⋆ E).

The goal of the following protocol is for P to prove their knowledge of a to a
verifier V without leaking any extra information.

CSIDH-ROIP consists of the followings steps:



1. Challenge: V sends the challenge curve EV .

2. Response: P computes a ⋆ EV and publishes a masked version of it using a
random oracle function.

3. Verification: V verifies P’s answer.

Challenge(P,V,E,EP)

b← CSIDHSample(S, B)

EV ← b ⋆ E

return EV

Response(P,V,E,EP ,a,EV)

EP,V ← a ⋆ EV

MP,V ←W (P, EP,V)

return EP,V

Verification(P,V,E,EP ,EV ,b,MP,V)

M ′
P,V ←W (P, b ⋆ EP)

if M ′
P,V = MP,V : return true

else : return false

The correctness of CSIDH-ROIP comes from the fact that a ⋆ (b ⋆ E) =
b⋆ (a⋆E). Its soundness and zero-knowledge properties come from the following
theorems.

Theorem 2. Given Assumption 4, CSIDH-ROIP is zero-knowledge.

Proof. We can separate the adversarial strategies as the prover in two cases.
Either they send a challenge EV for which they know the associated b or they
choose a curve for whose associated group element is unknown and not feasibly
computable.

In the former case, for any chosen b, the associated simulator is simple as an
honest verifier knows the correct answer without needing to interact with the
prover.

In the latter case, we use the fact that W is a random oracle function to
simulate transcripts indistinguishable from honest ones. This time, the adversary
can use any method they desire to sample EV , but they do not gain any usable
information from the answer as it is masked by W .

As we have two cases, we present two simulators. Simulator1 represents
the first case while Simulator2 represents the second. The simulator returns a
challenge-response pair with the same distribution as that of an honest exchange.

Simulator1(P,E,EP , b)

EV ← b ⋆ E

Challenge← EV

MP,V ←W (P, b ⋆ EP)

Response← EP,V

return (Challenge,Response)

Simulator2(P,E,EP , EV)

Challenge← EV

MP,V ←$W
Response← EP,V

return (Challenge,Response)

Theorem 3. CSIDH-ROIP is computationally sound under Assumptions 1, 4
and 2.



Proof. Let A be a probabilistic polynomial-time (PPT) algorithm able to gen-
erate valid responses MP,V for random challenges EV .

Since W is a random oracle function, computing a valid MP,V is equivalent
to computing the correct EP,V associated with the given challenge. This implies
the existence of a PPT algorithm A′ capable of generating EP,V when given EV .

By Assumption 2, this then implies the existence a PPT extractor capable
of computing a valid witness a.

4.1 Avoiding the Random Oracle Model

As mentioned in Section 2, it is possible to generate supersingular elliptic curves
over Fp with unknown endomorphism ring without having to rely on a random
oracle function. The core idea of this trick is to remark that, without the use of
W , CSIDH-ROIP is still honest verifier zero-knowledge. Therefore, we only need
a way to deal with dishonest verifiers.

CSIDH-ROIP does so by publishing information unusable by dishonest veri-
fiers, but this is not the only way to proceed. Another way is to have the verifiers
prove that they were honest at the end of the proof. This can be done by re-
quiring verifiers to publish a masked commitment for their challenge using a
statistically hiding and computationally binding protocol H.

Of course, an adversary might still lie about their commitment and not care
about being found cheating, as they still obtain information from the prover’s
answer. However, when it comes to using our proof scheme to generate secure
curves, once the honest parties detect that someone cheated, the guilty party can
then simply be removed from the protocol and the honest parties can then restart
the protocol using new random values. As long as the new values are independent
of the previous ones, the adversary gains no information by cheating.

Definition 6 (CSIDH-AIP). Let a prover P know a secret a ∈ C with asso-
ciated public data (E,EP := a ⋆ E).

The goal of the following protocol is for P to prove their knowledge of a to a
verifier V without leaking any extra information.

CSIDH-AIP consists of the followings steps:

1. Challenge: V sends the challenge curve EV and commits the associated b
using H.

2. Response: P computes a ⋆ EV and publishes it.
3. Verification1: V verifies P’s answer and, if it is valid, publishes b.
4. Verification2: P verifies that V’s commitment coincides with the challenge.

The details of the protocol are as follows:

Challenge(V,E)

b← CSIDHSample(S, B)

EV ← b ⋆ E

r ←$ N

C ← H(b, r)

return (EV , C)

Response(P,a,EV)

EP,V ← a ⋆ EV

return EP,V



Verification1(V,EP ,b,r,EP,V)

E′
P,V ← b ⋆ EP

if E′
P,V = EP,V : return (b, r)

else : return false

Verification2(P,E,EV ,b,r,C)

if C ̸= H(b, r) : return false

E′
V ← b ⋆ E

if E′
V ̸= EV : return false

return true
The proof fails if either Verification1 or Verification2 returns false and suc-

ceeds otherwise.

The correctness of CSIDH-AIP holds for the same reason as CSIDH-ROIP’s.
It is also sound and zero-knowledge, as the following theorems show.

Theorem 4. Given Assumption 3, if it does not abort, CSIDH-AIP is zero-
knowledge.

Proof. SinceH is computationally binding, V must compute EV by first choosing
a valid b. By the same reasoning, they must also choose their nonce r in advance.

The following simulator returns a challenge-response-verification1 triple for
any challenge constructed using (b, r).

Simulator(E,EP , b, r)

EV ← b ⋆ E

C ← H(b, r)

Challenge← (EV , C)

EP,V ← b ⋆ EP

Response← EP,V

verification1← (b, r)

return (Challenge,Response, verification1)

Theorem 5. CSIDH-AIP is computationally sound under Assumptions 1, 2
and 3.

Proof. Since H is statistically hiding, from P’s point of view C can be replaced
with a random value and, therefore, gives no advantage when it comes to beating
the soundness property. Without being able to make use of this extra informa-
tion, successfully generating a valid CSIDH-AIP proof becomes equivalent to
generating a ⋆ b ⋆ E when given b ⋆ E and a ⋆ E.

By Assumption 2, if there was a PPT algorithm capable of doing so, then
there would be another PPT algorithm capable of solving the CCISDH problem,
which we assume is hard.

5 Secure Curve Generation

With the help of CSIDH-ROIP, we can now present our multiparty protocol for
generating supersingular elliptic curves defined over Fp with unknown endomor-
phism ring. As its security mostly relies on CSIDH-ROIP, this new protocol,
which we call CSIDH Secure Curve Generator (CSIDH-SCG), requires Assump-
tions 1 2 and 4, but not Assumption 5.



Definition 7 (CSIDH-SCG). Let P1, . . . ,Pn be n parties that want to gener-
ate a supersingular elliptic curve over Fp with unknown endomorphism ring. Let
E0 be a known supersingular curve over the same field. CSIDH-SCG consists of
the following steps.

– CurveGen: For i from 1 to n, party Pi computes an ideal class group ele-
ment ai, saves it, and publishes Ei := ai ⋆ Ei−1.

– Challenge: For each j ∈ [n] \ {i}, Pi sends a CSIDH-ROIP challenge Ei,j

to Pj and saves the associated bi,j.
– Response: After received a challenge from every Pj such that j ∈ [n] \ {i},

Pi publishes a CSIDH-ROIP response M ′
i,j for each of them.

– Verification: After receiving the response to all their challenges, Pi checks
their validity. If every response is correct, Pi published true and then accepts
En as the final curve if every other party also publishes true. Otherwise, Pi

publishes false and aborts the entire protocol.
– Abort: If at any point, a party published false, the protocol is aborted and

every party must publish all their computed values. Any dishonest parties are
thereby revealed.

The algorithms for each step are as follows:

CurveGen(Pi,Ei−1)

ai ← CSIDHSample(S, B)

Ei ← ai ⋆ Ei−1

return Ei

Challenge(Pi,Pj,Ej−1)

bi,j ← CSIDHSample(S, B)

Ei,j ← bi,j ⋆ Ej−1

return Ei,j

Response(Pi,Pj,ai,Ej,i)

M ′
j,i ←W (Pi, ai ⋆ Ej,i)

return M ′
j,i

Verification(Pi,Pj,M
′
i,j,Ej)

M ′′
i,j ←W (Pj , bi,j ⋆ Ej)

if M ′′
i,j = M ′

i,j : return true

else : return false

Notation 8 (Secure Curve Generation Adversary) Given a secure curve
generation multiparty protocol with n parties, the adversary is denoted ASCG.

The goal of ASCG is to compute the endomorphism ring of the final curve
En.

ASCG is able to take control of all parties but one, say Pi. They can try to
be dishonest during the multiparty protocol. However, they fail if the protocol is
aborted.

Theorem 6. Given Assumptions 1, 2, and 4, CSIDH-SCG is secure against
ASCG adversaries.

Proof. During CSIDH-SCG, every party must prove knowledge of their ai using
n− 1 parallel CSIDH-ROIP proofs.

By Theorem 2, ASCG gains no information about ai.
By Theorem 3, ASCG cannot lie about any of their aj .



Since ASCG knows every aj expect for ai, computing the endomorphism ring
of En is equivalent to computing the endomorphism ring of Ei. However, by The-
orem 1, doing so is equivalent to computing ai, which is hard given Assumption
1.

In addition to being secure, CSIDH-SCG is also efficient, even when consid-
ering large groups. This is true for both the computation time and the number
of interactions.

In practice, the CSIDH parameters are chosen so that both sampling and
group actions are computed efficiently. W is also assumed to be efficiently com-
putable. In CSIDH-SCG, the number of times each party must compute a group
action grows linearly in terms of the number of participants. The same is true for
the number of times each party must call the functions W and CSIDHSample.

When it comes to the number of operations, CSIDH-SCG is constructed in a
way that every step of the proof can be done in parallel with every other party.
Because of this, each party is only required to publish once for each of the four
steps of CSIDH-SCG, making the total number of interactions linear in terms of
the number of participants.

5.1 Generating Secure Curves Without a Random Oracle

In cases where we want to avoid needing a random oracle, we can use CSIDH-AIP
instead of CSIDH-ROIP.

Definition 9 (CSIDH-ASCG). Let P1, . . . ,Pn be n parties that want to gen-
erate a supersingular elliptic curve over Fp with unknown endomorphism ring.
Let E0 be a known supersingular curve over the same field. CSIDH-ASCG con-
sists of the following steps.

– CurveGen: For i from 1 to n, party Pi computes an ideal class group ele-
ment ai, saves it, and publishes Ei := ai ⋆ Ei−1.

– Challenge: For each j ∈ [n]\{i}, Pi sends a CSIDH-AIP challenge (Ei,j , Ci,j)
to Pj and saves the associated (bi,j , ri,j).

– Response: After received a challenge from every Pj such that j ∈ [n] \ {i},
Pi publishes a CSIDH-AIP response E′

i,j for each of them.
– Verification1: After receiving the response to all their challenges, Pi checks

their validity. If every response is correct, Pi publishes all their pairs (bi,j , ri,j).
Otherwise, Pi publishes false and aborts the entire protocol.

– Verification2: After receiving every pair (bj,i, rj,i), Pi verifies that each
pair agrees with their challenges. If that is the case for every pair, Pi pub-
lishes true. Otherwise, Pi publishes false and aborts the entire protocol. If
every party publishes true, En is accepted as the curve of unknown endo-
morphism ring.

– Abort: If at any point, a party published false, the protocol is aborted and
every party must publish all their computed values. Any dishonest parties are
thereby revealed.



The algorithms for each step are as follows:

CurveGen(Pi,Ei−1)

ai ← CSIDHSample(S, B)

Ei ← ai ⋆ Ei−1

return Ei

Challenge(Pi,Pj,Ej−1)

bi,j ← CSIDHSample(S, B)

Ei,j ← bi,j ⋆ Ej−1

ri,j ←$ N

Ci,j ← H(bi,j , ri,j)

return (Ei,j , Ci,j)

Response(Pi,Pj,ai,Ej,i)

E′
j,i ← ai ⋆ Ej,i

return E′
j,i

Verification1(Pi,Pj,E
′
i,j,Ej,bi,j,ri,j)

E′′
i,j ← bi,j ⋆ Ej

if E′′
i,j = E′

i,j : return (bi,j , ri,j)

else : return false

Verification2(Pi,Pj,Cj,i,bj,i,rj,i,Ei−1,Ej,i)

if Cj,i ̸= H(bj,i, rj,i) : return false

E′′′
j,i ← bj,i ⋆ Ei−1

if E′′′
j,i ̸= Ej,i : return false

return true

Theorem 7. Given Assumptions 1, 3, and 2, CSIDH-ASCG is secure against
ASCG adversaries.

Proof. During CSIDH-ASCG, every party must prove knowledge of their ai using
n− 1 parallel CSIDH-AIP proofs.

By Assumption 3, since H is statistically hiding, ASCG gains no information
from Pi publishing Ci,j . This implies that ASCG must prove knowledge of its aj
using CSIDH-AIP without any extra information.

By Theorem 4, since the adversary looses if they cause an abort, ASCG gains
no information about ai.

By Theorem 5, ASCG cannot lie about any of their aj .
Since ASCG knows every aj expect for ai, computing the endomorphism ring

of En is equivalent to computing the endomorphism ring of Ei. However, by The-
orem 1, doing so is equivalent to computing ai, which is hard given Assumption
1.

While efficient and secure, CSIDH-ASCG comes with two disadvantages com-
pared CSIDH-SCG. First, since there are two verification steps in CSIDH-AIP,
CSIDH-ASCG requires one more round of interaction than CSIDH-SCG. The
other issue is that CSIDH-AIP is only zero-knowledge if there are no aborts.
Because of this, every time a dishonest party is found, the entire process needs
to be restarted with new random values. In practice, needing a random oracle
function assumption is usually worth it for the efficiency gains of CSIDH-SCG.

6 Curve Randomizer

CSIDH-SCG allows us to generate a supersingular elliptic curve of unknown en-
domorphism ring. However, En is not uniformly random, as Pn has some control



over what the final curve is. This limitation also appears in the protocol proposed
by Basso et al. [3]. However, some protocols (for example Delay Encryption [5])
explicitly ask for a uniformly random (or at least nearly uniform) curve over Fp.

The core idea of CSIDH Curve Randomizer (CSIDH-CR) is to use a multi-
party commitment scheme to generate some random data and then convert that
data into a random isogeny whose codomain is chosen as the random curve.

CSIDH-CR is the only protocol in this paper that requires Assumption 5.
On the other hand, it does not require Assumption 1.

Definition 10 (CSIDH-CR). Let P1, . . . ,Pn be n parties that want to gener-
ate a random supersingular elliptic curve over Fp. Let En be supersingular elliptic
curve of unknown endomorphism ring defined over the same field. CSIDH-SCG
consists of the following steps.

– RandomSample: Each Pi samples a random a′i and nonce r′i and commits
H(a′i, r

′
i).

– CurveComp: Once every commitment has been published, each party pub-
lishes their pair (a′i, r

′
i). If every pair corresponds to their commitment, the

final curve is chosen to be (
∏n

i=1 a
′
i) ⋆ En.

– Abort: If any of the pairs do not correspond to their commitments, the
protocol aborts and any dishonest parties are thereby revealed.

The algorithms for each step are as follows:

RandomSample(Pi)

a′i ← CSIDHSample(S, B)

r′i ←$ N

C′
i ← H(a′i, r

′
i)

return C′
i

CurveComp(En,(C
′
1, . . . , C

′
n),((a

′
1, r

′
1), . . . , (a

′
1, r

′
1)))

F ← En

for j ∈ [n] :

if C′
j ̸= H(a′j , r

′
j) : return false

F ← a′j ⋆ F

return F

Notation 11 (Curve Randomizer Adversary) Given a curve randomizer
multiparty protocol with n parties and whose initial curve En has an unknown
endomorphism ring, the adversary is denoted ACR.

The goal of ACR is either to guess the final curve F before starting the scheme
or to compute its endomorphism ring.

ACR is able to take control of all parties but one, say Pi. They can try to
be dishonest during the multiparty protocol. However, they fail if the protocol is
aborted.

Theorem 8. Given Assumptions 3 and 5, CSIDH-CR is secure against ACR

adversaries.



Proof. By Assumption 3, H is statistically hiding and ACR gains no information
from C ′

i. By the same assumption, since H is a binding commitment scheme,
ACR must choose their a′j before knowing anything about a′i.

Once the a′j have been chosen, set F ′ :=
(∏

j∈[n]\{j} a
′
j

)
⋆ En.

By Assumption 5, a′i is indistinguishable from a uniformly random ideal class
group element. Since C is an Abelian group, we have that F = a′i ⋆F

′. Therefore,
a′i is indistinguishable from random, and so is F .

Also, since every a′i is revealed at the end of the protocol, computing the
endomorphism ring of F is equivalent to computing the endomorphism ring of
En, which is hard.

7 Conclusion

CSIDH-SCG enables efficient generation of supersingular elliptic curves defined
over Fp with unknown endomorphism ring. In analogy to the work of Basso et al.
for curves over Fp2 [3], the total number of interactions required for CSIDH-SCG
grows linearly in terms of the number of participants. Currently, the greatest
limitation of CSIDH-SCG is the need of a Knowledge of Exponent Assump-
tion. While such an assumption is sometimes used in classical schemes, this new
CSIDH variant requires further study on its security.

The other limitation of CSIDH-SCG is its need of a random oracle function.
However, this can be dealt with by using CSIDH-ASCG. While this alternative is
strictly less efficient, the increase in computation time is only a single additional
round of interactions.

Given an additional assumption on the randomness of CSIDH samples, CSIDH-
CR makes it possible for the generated curve to be random.

It is worth mentioning that the curve randomizer structure can also be
adapted to generate random supersingular elliptic curves defined over Fp2 . Using
the Ramanujan property of supersingular isogeny graphs defined over Fp2 , Jao,
Miller and Venkatesan [12] showed that the codomain of a random isogeny of
large enough degree is indistinguishable from random. It is therefore possible to
use a multiparty protocol to generate random data, which can then be converted
into a random isogeny in order to obtain a random supersingular elliptic curve.
We leave the implementation of such a protocol for future work.

By itself, CSIDH-ROIP is a secure and efficient zero-knowledge proof that
can be used with any CSIDH parameter sets. While its structure makes it so
that it cannot be used in a signature scheme, its large challenge space makes
it so that a single run of CSIDH-ROIP is enough to achieve levels of security
comparable to CSIDH given a KEA assumption.
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